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Abstract: We study solvability of some linear nonhomogeneous edliptoblems
and prove that under reasonable technical conditions tineecgence in.?(R¢) of
their right sides implies the existence and the convergenéé(R¢) of the solu-
tions. The equations involve the fourth order non Fredhoiffer@ntial operators
and we use the methods of spectral and scattering theorycfob&inger type op-
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1. Introduction

Consider the equation
—Au+V(z)u —au = f, (1.1)

whereu € £ = H?(RY) andf € F = L?(RY), d € N, a is a constant andl ()

is a function tending t® at infinity. If « > 0, then the essential spectrum of the
operatorA : £ — F', which corresponds to the left side of equation (1.1) costai
the origin. As a consequence, this operator does not s#lisfifredholm property.
Its image is not closed, fat > 1 the dimension of its kernel and the codimension
of its image are not finite. In the present work we will studyngoproperties of the
operators of this kind. We recall that elliptic problemskwiion-Fredholm operators
were treated extensively in recent years (see [16], [178],[119], [20], [21],



[23], [24], also [5]) along with their potential applicatis to the theory of reaction-
diffusion equations (see [7], [8]). In the particular cadeewa = 0 the operatod
satisfies the Fredholm property in some properly chosenhteigspaces [1], [2],
[3], [4], [5]. However, the case when+£ 0 is considerably different and the method
developed in these works is not applicable.

One of the important questions concerning equations withFFredholm opera-
tors is their solvability. We address it in the following tseg. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — f in L?(R%) asn — oc.
Denote byu, a sequence of functions froft?(R?) such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenamay
not be convergent. We call a sequengesuch thatdw,, — f a solution in the
sense of sequences of equatibn = f (see [15]). If such sequence converges to
a functionu, in the norm of the spacé, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thissgernthe usual solution.
However, in the case of the non Fredholm operators, thisexgewnce may not hold
or it can occur in some weaker sense. In this case, solutitheisense of sequences
may not imply the existence of the usual solution. In the gmésvork we will find
sufficient conditions of equivalence of solutions in thessenf sequences and the
usual solutions. In the other words, the conditions on secg®f,, under which
the corresponding sequenagsare strongly convergent. Solvability in the sense of
sequences for the sums of non Fredholm Schrodinger typaimpe was studied in
[25].

In the present article we would like to exploit these ideastii@ fourth order
differential operators without the Fredholm property. e first part of the work
we study the equation

A%y —a*u= f(z), z € R? d €N, (1.2)

wherea > 0 is a constant and the right side is square integrable. Thielgoro
analogous to (1.2) but with the standard Laplace operativeicontext of the solv-
ability in the sense of sequences was considered in [26f Nheit for the operator
A? —a? : HY(R?Y) — L*(R?) the essential spectrum fills the semi-axisi?, o)
such that its inverse from?(R?) to H*(R¢) is not bounded.

Let us write down the corresponding sequence of equatiotiewd N as

A*u, — d®u, = fo(z), € R, d €N, (1.3)

where the right sides converge to the right side of (1.2)3(R?) asn — cc. The
inner product of two functions

() gt = [ F)gla)ds 14
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with a slight abuse of notations when these functions aresguoare integrable.
Indeed, iff(x) € L'(R%) andg(x) is bounded, then clearly the integral in the right
side of (1.4) makes sense, like for instance in the case atifums involved in the
orthogonality relations of Theorems 1 and 2 below. Let usestraces*(R?) and
H*(R?) equipped with the norms

HuH%ﬂ(Rd) = HuH%Q(Rd) + ”AUH%%W) (1.5)
and

HUH%M(Rd) = HuH%Q(Rd) + HAzuH%Q(Rd) (1.6)
respectively. Throughout the article, the sphere of radius 0 in R? centered at
the origin will be denoted by<. First of all, we formulate the solvability relations
for problem (1.2).
Theorem 1.Leta > 0, f(z) € L*(R?), d € Nandzf(x) € LY(R?).

a) Whend = 1, problem (1.2) admits a unique solutiofr) € H*(R) if and only if

105 R R 1.7)
) \/% . = .

holds.

b) Whend > 2, equation (1.2) possesses a unique solution) € H*(R?) if and
only if

f(2), em> 0, peS ae (1.8)
< (:C) (277) L2(R4) ! ve e

[S]I=H

holds.

Then we turn our attention to the issue of the solvabilityhe sense of se-
quences for our problem.

Theorem 2. Leta > 0, n € Nand f,(z) € L*(R%), d € N, such thatf, (z) —
f(x) in L*(R%) asn — oo. Letin additionzf,(z) € L'(R?), n € N, such that
xf,(r) = xf(x)in LY (R?Y) asn — oc.

a) Whend = 1, let the orthogonality relations

e:ti\/ax
(055, -

hold for all » € N. Then problems (1.2) and (1.3) admit unique solutio(is) €
H%R) and u,(z) € H*(R) respectively, such that,(z) — u(z) in H*(R) as
n — oQ.




b) Whend > 2, let the orthogonality relations

1pT
(fn(:c), ¢ ) =0, pe Sfl/a a.e. (1.10)
(27T) L (Rd)

[S]I=H

hold for all » € N. Then problems (1.2) and (1.3) have unique solutiofis <
H*(R?) andu,(z) € H*(R?) respectively, such that,(z) — u(z) in H*(R?) as
n — OQ.
We use the hat symbol to denote the standard Fourier transfor
1
(27m)% Jra

(1.11) will be needed to establish the statements of our FEme® 1 and 2.
In the second part of the work we study the equation

(—A +V(2)*u—a*u= f(z), r€R? a>0, (1.12)

f(p) = f(x)e P dx, p e RY, d € N. (1.112)

with the square integrable right side. The correspondingiesece of approximate
equations for € N is given by

(—A +V(2)*u, — a*u, = fo(z),  €R? a >0, (1.13)

with the right sides converging to the right side of (1.12)[i(R?) asn — oo.
Let us make the following technical assumptions on the s¢adtential involved
in problem above. Note that the conditions i), which is shallow and short-
range will be analogous to those formulated in Assumptidnof. [17] (see also
[18], [19]). However, for the technical purposes we will aalew extra regularity
assumptions. The essential spectrum of our Schrodingeaty fills the nonnega-
tive semi-axis (see e.g. [10]).
Assumption 3. The potential functio’(z) : R* — R satisfies the estimate
C

Vi) < —————

| ( )‘ — 1+ ‘x|3.5+5
with some) > 0 andx = (z1, 72, x3) € R3 a.e. such that

19 _2 1 8
49§(47r) 3||V||200(R3)”V”2§(R3) <1 and \/CHLSHVHL%(RS) <Ar. (1.14)

Moreover,|VV (z)], AV (x) € L=(R3).

Here and further dowa’ will stand for a finite positive constant ang s given
on p.98 of [12] is the constant in the Hardy-Littlewood-Slk#vanequality

(v) 2 w3
L dzdy| < e L2 (R°).
}/Rs R3 |$—y‘2 !Ey CHLS||f1||L2(R3) h (R
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By virtue of Lemma 2.3 of [17], under Assumption 3 above on plogential
function, the operator A + V' (z) on L?(RR?) is self-adjoint and unitarily equivalent
to —A via the wave operators (see [11], [14])

—A+V) GitA

)

OF := 5 — lim,_, 50"

where the limit is understood in the strond sense (see e.g. [13] p.34, [6] p.90).
Hence(—A + V(x))? : H4(R?) — L?(R3) has only the essential spectrum

Oess((—A +V(2))* — a”) = [—a’, o0)

and no nontrivialL?(R?) eigenfunctions. Its functions of the continuous spectrum
satisfy
(—A +V(2)0r(x) = |k|*or(z), kR (1.15)

in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed
plane waves (see e.g. [13] p.98)

etk 1 6i\l<:||mfy|

(2m)

or(r) = (Vor) (y)dy (1.16)

Njw

dr s |2 — Yl
and the orthogonality conditions

(pr(a), 0q(@))2rey = 0(k — q), k,q € R, (1.17)

In particular, when the vectdr = 0, we havep,(z). Let us denote the generalized
Fourier transform with respect to these functions usingitle symbol as

Fk) = (f(x),01(2)) 12rs), k € R, (1.18)

(1.18) is a unitary transform oh*(R?). The integral operator involved in (1.16) is
being denoted as

1 etlkllz—yl

(Qp)(2) =~ P (Ve)(y)dy, »e€ L*(R%).

Let us conside@) : L>°(R?) — L>(R?). Under Assumption 3, by virtue of Lemma
2.1 of [17] the operator norii?||« is estimated from above by the quantityy/),
which is the left side of the first inequality in (1.14), sutlat/ (V) < 1. We have
the following proposition dealing with the solvability ofjeation (1.12).

Theorem 4. Let the constant > 0, Assumption 3 holdsf;(z) € L*(R?) and in
additionz f(z) € L'(R®). Then problem (1.12) admits a unique solutiax) €
H*(R3) if and only if

(f(2), or(x)) 23y =0, k€ Sf’/a a.e. (1.19)
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holds.

Our final main statement is devoted to the solvability in thiese of sequences
of problem (1.12).

Theorem 5. Let the constant. > 0, Assumption 3 holds; € N and f,,(z) €
L*(R?), such thatf,,(z) — f(x) in L*(R?) asn — co. Let in additionz f,,(z) €
LY(R?), n € N, such thate f,,(z) — zf(x) in L'(R3) asn — oo and the orthogo-
nality relations

(fu(), ou(®))r2@s) = 0, k € S?/a a.e. (1.20)

hold for all n € N. Then equations (1.12) and (1.13) have unique solutidn$ €
H*(R3) andu,(z) € H*(R?) respectively, such that,(z) — u(z) in H*(R?) as
n — oQ.

Note that (1.19) and (1.20) are the orthogonality cond&itmthe functions of
the continuous spectrum of our Schrodinger operator, sigdt from the Limiting
Absorption Principle in which one needs to orthogonalizéh standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).

2. Solvability in the sense of sequences in the no potenticdse

Proof of Theorem 10bviously, ifu(x) € L?(RY) is a solution of (1.2) with a square
integrable right side, it belongs td*(R¢) as well. Indeed, directly from (1.2) we
haveA?u(x) € L*(R?). This implies that:(x) € H*(R?) via the norm definition
(1.6).

To prove the unigueness of solutions for our equation, letuppose that (1.2)
has two square integrable solutiangz) andus(z). Then their differencev(z) :=
ui(z) — uz(z) € L?(R?) as well. Evidently, it solves the equation

A%w = ad*w.
Since the operatoA? has no nontrivial square integrable eigenfunctions in the
whole space, we have tha{z) = 0 vanishes iR,
We apply the standard Fourier transform (1.11) to both stdgsoblem (1.2)
and arrive at

o~

ap) = 2 (2.21)

N

Clearly, the right side of (2.21) can be easily written as

]/C\(p) f(p)
2a(|p]* —a)  2a(|p]? +a) (2.22)



Obviously, the second term in (2.22) can be bounded from eloovhe absolute
value by

~

|f(p)| c L2(Rd)

2a?
due to the one of our assumptions. Let us recall the proofeop#rt a) of Lemma 5
of [24] and the argument to establish the result of the paof &gmma 6 of [24].
Hence, the first term in (2.22) is square integrable if ang @n(1.7) holds in one
dimension and (1.8) faf > 2. [ |

Let us turn our attention to establishing the solvabilityhia sense of sequences
for our equation in the no potential case.

Proof of Theorem 2Let us suppose(z) andu,(z), n € N are the unique solutions
of problems (1.2) and (1.3) i/*(R9), d € N respectively and it is known that
u,(z) — u(z) in L2(RY) asn — oo. Then it can be easily verified thaf,(z) —
u(x) in H*(R%) asn — oo as well. Indeed, from equations (1.2) and (1.3) we easily
obtain that

A (un(2) — u(@)) = a*(un(z) — u(@)) + (ful2) — f(2)).
Clearly, this gives us
1A% (un(2) — u(@) |l z2(re) < ®[lun(z) = u(@) | r2ge) + [ falz) = f(@)l]2Re) = O

asn — oo due to our assumptions. By virtue of the result of the parena)b) of
Theorem 1, problem (1.3) has a unique solutigir) € H*(R?), n € N. Let us
recall the statement of the part a) of Lemma 3.3 of [26]. Henoeler the given
conditions we arrive at the limiting orthogonality relats

<f(x)’ e:tz'\/a:v) 0
V2T )

in one dimension and

1pT
<f(:1:), ¢ é> =0, pESfl/a a.e.
(2m)2 L2(R)

for d > 2. Therefore, by virtue of the results of the parts a) and b) fegdrem 1
above, problem (1.2) possesses a unique solutioh € H*(R?). Let us apply the
standard Fourier transform (1.11) to both sides of (1.2)(ar®). This yields

TS P L1 R (2.23)

" il

N



This allows us to writéi, (p) — u(p) as

~

fol0) = f0) _ F) —F0)
2a(pF—a)  2a(pra) "N 229

Obviously, the second term in (2.24) can be estimated froovein the absolute

£ (p) — F(p)]

value by 53 . Thus
fu(p) = f(p) - Ifa(@) = F@)l2@e) 0. n— o
2a([p? + a) 202
L2(R4)

via the one of our assumptions. Let us recall the proof of ¢ @) of Theorem

1.1 of [26] ford = 1 and the argument to establish the statement of the part a) of
Theorem 1.2 of [26] forl > 2. Therefore, the first term in (2.24) tends to zero in
the L?(RY), d € N norm asn — oo as well. This gives us that

|wn(2) — U($)||H4(Rd) — 0, n— oo,
which completes the proof of our theorem. [ |
3. Solvability in the sense of sequences with a scalar potesit

Proof of Theorem 4 First of all we observe that it is sufficient to solve problem
(1.12) in H*(R?), since such solution will belong t&*(R?) as well. Indeed, it can
be trivially shown that

(—A+V(2)*u = A%u+ V3 (2)u— 2V (2)Au—uAV (z) —2VV (z).Vu, (3.25)

whereu(x) is a solutions of (1.12) belonging #8*(R?). The dot symbol in the last
term in the right side of (3.25) stands for the standard sgatzduct of two vectors
in R3. We observe that the left side of identity (3.25) is squategrable, which
easily follows from (1.12) withf (z) € L*(R?) as assumed. The second term in the
right side of (3.25) belongs ta?(R?) since the scalar potenti®i(z) is bounded
via Assumption 3. The third term in the right side of (3.25kwuare integrable
sinceV(z) € L*(R?*) andAu € L*(R?) as assumed. The last two terms in the
right side of (3.25) belong td?(R?) because\V (z) and|VV (z)| are bounded due
to Assumption 3. Hence, by virtue of equality (3.25) we haVfe:(z) € L*(R?),
which implies thatu(z) € H*(R?).

To establish the uniqueness of solutions for our equati@swppose that there
existuy(z), us(x) € H*(R?) satisfying (1.12). Then their difference(z) :=
up(7) — us(x) € H*(R?) solves the equation

(A +V(2))*w = a*w.
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But the operatof—A + V(x))? : H*(R?) — L?*(R®) does not have any nontrivial
eigenfunctions as discussed above. Therefote) = 0 a.e. inR?.

Let us apply the generalized Fourier transform (1.18) watspect to the func-
tions of the continuous spectrum of our Schrodinger opetatboth sides of prob-
lem. (1.12). This yields

_ f(k)
u(k) |/{Z|4 - CL2 (3 6)
The right side of formula (3.26) can be easily written as

3 o fk) f(k)
(k) + ga(k) = 2a(k2—a)  2a(|kE +a) (3.27)

Obviously, the second term in the right side of (3.27) candmly bounded from
above in the absolute value by

70 ¢ 2 s,

because (z) € L*(R?) due to the one of our assumptions. Moreover, the image of
g2(k) under the inverse of the transform (1.18) will satisfy theatepn

flz)
2a

SinceV(x) € L*(R?) and f(z) € L*(R?) as assumed ang(zr) € L*(R?), we
deduce from equation (3.28) thatg,(z) € L*(R?), such thaty,(z) € H?*(R?).
Evidently, the functiory, (z) solves the equation

—Ago(z) + V(z)g2(x) 4+ aga(z) = — (3.28)

~201(2) + V(@hos(e) — agi(a) = 12 3.29)

and its image under transform (1.18) is the first term in tightrside of equality

(3.27). Let us recall the result stated in the part a) of Taeot.2 of [17]. Hence

g1(z) € L*(R?) (and equivalently;, (z) € H?(IR?), since the right side of equation
(3.29) is square integrable and the scalar potential fandti(x) is bounded as

assumed) if and only if orthogonality condition (1.19) hel@inceu(z) € H?*(R?),

it will belong to H*(R?) as well as discussed above. |

Let us proceed to the proof of our last main statement conugthe solvability
in the sense of sequences.

Proof of Theorem 5First of all, we establish that ifi(x) andu,(x), n € N are
the uniqueH*(R?) solutions of (1.12) and (1.13) respectively andz) — u(z) in
H?(R3) asn — oo, then we have, () — u(z) in H*(R?) asn — oo as well.



Indeed, from (1.12) and (1.13) we easily obtain that
(A + V(2))*(un(2) — u(2)) = a®(un(2) — u(@)) + (fulz) = f(z)), neN.
Thus
(A + V(2))* (un(2) — w(@)) | 2@y < 0?||un(@) — w(@)] g2+

Flfulz) = f@)ll2@s) = 0, n— o0
as assumed. Evidently, we have the identity

(—A + V(@) (un — 1) = A% (up — u) + V) (uy — u) — 2V (2) Auy, — u)—

—(up, — w)AV(z) — 2VV(2).V(u, — u), (3.30)

whereu(z) andu, (x) are the solutions of equations (1.12) and (1.13) respédgtive
belonging toH*(R?). Sinceu, (z) — u(z) in H*(R3) asn — oo, as assumed, we
have here

up(x) = u(x), Vu,(z) = Vu(x), Au,(z)— Au(z)

in L2(R3) asn — oo andV (z), |VV (z)], AV (x) are bounded functions due to our
Assumption 3 above. Therefore, the second, the third anth#téwo terms in the
right side of identity (3.30) tend to zero it (R3) asn — oo, which implies that
A%u, — A%*uin L*(R3) asn — oo as well. By means of norm definition (1.6) we
obtain thatu,,(z) — u(x) in H*(R3) asn — oo.

By virtue of Theorem 4 above, equation (1.13) admits a unsqltionu,,(x) €
H%(R3?), n € N. We recall the statement of the part a) of Lemma 3.3 of ( [26]).
Hence, under our assumptions we obtain the limiting orthadjty relation

(f(7), on())2ms) =0, k€ Sf/a a.e.

Note that the functions of the continuous spectrum of our&tihger operator are
bounded under the given conditions due to Corollary 2.2 @f.[Then by means of
Theorem 4 above equation (1.12) possesses a unique salgiipe H*(R?). Let
us apply the generalized Fourier transform (1.18) to batbssof equations (1.12)
and (1.13). We arrive at

fa()

e

R ) B
U(/{?) - Vi] 4 —CL2’ un<k>

n € N. (3.31)

This allows us to express, (k) — u(k) as

_ k) = J(B)  falk) — f(K)
2a(|k|? —a) 2a(|k|>+a)’

91.n(K) =1 (k) +G2n (k) —ga(K) neN, (3.32)

10



where B -

N ) k)

Gun(k) = 2a([k|? — a)’ 2a(|k|2 + a)’
g1(k) and gy (k) are given in formula (3.27). Clearly, () is a solution of the
equation

—Agon(z) + V(2)gon(z) + agen(z) = 5. (3.33)

andg.(z) solves (3.28). Evidentlyy, (k) can be easily estimated from above in
the absolute value by

§2,n(k) =

[f(R)]

5o € L*(R?), (3.34)
sincef,(x) is square integrable as assumed. From (3.32) we easily de¢ldaic
_ N [fn(k) = F(R)]
_ < HUryvy  JAVL
G2 (k) — G2(k)| < 902 )

such that

5@ = F@) 2y
- 2a?

asn — oo as assumed. By means of (3.33) along with (3.28) we arrive at

— 0

lg2.n(x) — 92(5’3)”L2(R3)

1A (G20 (2) = g2(2) | 223y < (IIV (@)l L @) + @)llg2n(2) = g2(2)]| 2@y +

1
ol fal2) = f(@)llz2me) = 0

asn — oo according to our assumptions. Therefore, by means of tha defini-
tion (1.5) we have thag, ,,(x) — go(x) in H*(R?) asn — cc.
Obviously,g; »,(x) solves the equation

—Ag1a(7) + V(2)g1,0(7) — agin(2) = anf)

(3.35)

andg; (x) is a solution to (3.29). By virtue of the result of the part & beorem 1.4
of [26] under the given conditions, we haye,(z) € H?*(R?), such thay, ,,(z) —
g1(x) in H*(R?) asn — oco. Thereforeu, (x) — u(x) in H*(R?*) asn — oo. This
implies thatu,,(z) — u(z) in H*(R?) asn — oo as discussed above. |
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