
Spectral theory of Schrödinger operators over circle
diffeomorphisms

Svetlana Jitomirskaya1∗and Saša Kocić1,2†

1 Dept. of Math., University of California Irvine, 340 Rowland Hall, Irvine, CA 92697-3875
2 Dept. of Math., University of Mississippi, P. O. Box 1848, University, MS 38677-1848

August 28, 2019

Abstract

We initiate the study of Schrödinger operators with ergodic potentials defined
over circle map dynamics, in particular over circle diffeomorphisms. For analytic
circle diffeomorphisms and a set of rotation numbers satisfying Yoccoz’sH arithmetic
condition, we discuss an extension of Avila’s global theory. We also prove a sharp
Gordon-type theorem which implies that for every C1+BV circle diffeomorphism,
with a Liouville rotation number and an invariant measure µ, for µ-almost all x ∈ T1,
the corresponding Schrödinger operator has purely continuous spectrum for every
Hölder continuous potential V.

1 Introduction and the statements of the results

Spectral theory of discrete ergodic 1D Schrödinger operators has seen a considerable
development in the last several decades. The general setup involves Schrödinger operators
H on the space of square-summable sequences `2(Z), defined by

(Hxu)n := un−1 + un+1 + V (T nx)un, u ∈ `2(Z), (1.1)

where T is an ergodic automorphism of a phase space (M,µ), x ∈ M and V : M → R.
Aside from the beautiful general results that hold for all ergodic operators, or under
minimal general assumptions1, most attention has been devoted to two families: random
∗Email: szhitomi@math.uci.edu
†Email: skocic@olemiss.edu
1some also for multi-dimensional analogues and further generalizations
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potentials (T being a shift operator on a product measure space) and almost periodic,
particularly, quasiperiodic potentials (T being an irrational rotation of the torus). Both
of these families have strong origins in physics and both have led to deep mathematics.
While it would be very interesting to understand the features of potentials over other
base dynamics, it has proved surprisingly difficult, and there are few results for other
underlying dynamical systems. We refer the reader to the reviews [9, 18] for further
history and discussion of these results. In this paper, we initiate the study of Schrödinger
operators with potentials over circle maps, i.e., orientation-preserving homeomorphisms
of a circle T1 = R/Z.

As an irrational rotation is a basic example of a circle map, it is natural to view
corresponding potentials as generalizations of one-frequency quasiperiodic potentials. The
theory of the latter has seen dramatic advances in the last twenty years (see e.g. [6, 22, 23]
and references therein) and continues to develop rapidly. It remains the only ergodic
family with established transitions between the spectral types with changes of parameters,
that can often be proved and analyzed in a sharp arithmetic way or through analytic
behavior of certain dynamical quantities.

Poincaré established that, for every orientation-preserving homeomorphism T : T1 →
T1, there is a unique rotation number ρ ∈ (0, 1), given by the (x-independent) limit

ρ := lim
n→∞

T n(x)− x
n

mod 1, (1.2)

where T is any lift of T to R, and x ∈ R. Poincaré also proved that if the rotation number
ρ of an orientation-preserving circle homeomorphism T is irrational, T is topologically
semi-conjugate to the rotation Rρ : x 7→ x + ρ mod 1, i.e. there is a continuous map
ϕ : T1 → T1 such that

T ◦ ϕ = ϕ ◦Rρ. (1.3)

It follows that T n ◦ ϕ = ϕ ◦ Rn
ρ , for every n ∈ Z, i.e. the orbit xn = T nx of x can be

viewed as the image of the orbit θn = Rn
ρθ of a preimage θ of x = ϕ(θ) under ϕ. This

establishes a relation between Schrödinger operators over circle maps and one-frequency
quasiperiodic Schrödinger operators.

It is a fundamental problem to understand the rigidity of Schrödinger operators over
circle maps. Rigidity is a phenomenon that systems that are a priori equivalent in a
weak sense are actually equivalent in a much stronger sense. An important problem is to
determine the classes of these operators with, in a sense, equivalent spectral properties.

In general, the semi-conjugacy ϕ may not even be invertible. However, as shown by
Denjoy [11], if T is a C1+BV circle diffeomorphism, i.e. a C1-smooth circle diffeomorphism
with a derivative of bounded variation, ϕ is a homeomorphism, termed the topological
conjugacy. Herman’s theory [16] — further developed by Yoccoz [31] — establishes cer-
tain level of smoothness of the conjugacy for diffeomorphisms of higher smoothness. In
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particular, as proved by Herman [16], analytic circle diffeomorphisms with Diophantine
rotation numbers are analytically conjugate to a rotation. These results are at the core of
rigidity theory of circle diffeomorphisms. An optimal condition for analytic linearization
has been obtained by Yoccoz [31]. He established that for a set H of irrational num-
bers satisfying an arithmetic condition — known as Yoccoz’s H arithmetic condition —
every analytic circle diffeomorphism, with a rotation number in this set, is analytically
conjugate to the rotation.

Some of the most interesting recent advances in the theory of one-frequency quasiperi-
odic operators have been developed for analytic potentials [1, 6, 21, 25]. An analytic
conjugacy maps potentials Vn = f(T nx) with analytic f into potentials of the form
Wn = g(Rn

ρx) with analytic g, allowing for some results concerning the spectrum of the
Schrödinger operators over (analytic) circle diffeomophisms to be obtained directly from
the corresponding results for one-frequency quasiperiodic operators. However, when the
conjugacy is not analytic the resulting g will not be analytic either, potentially leading to
counter-intuitive properties (e.g.[30]). An important aspect of the study of the spectrum
of Schrödinger operators over circle diffeomorphisms is to understand what properties hold
in the absence of an analytic conjugacy. In this paper, we address one of the most basic
questions of this nature: absence of the point spectrum for Liouville rotation numbers,
already leading to non-trivial analysis.

Finally, the study of the smoothness of the conjugacy between circle diffeomorphisms
with irrational rotation numbers and the corresponding rotations has been one of the
prime examples of small denominator analysis that has eventually led to the first sharp
arithmetic transition results [31]. The study of spectral properties of quasiperiodic oper-
ators has also recently led to sharp arithmetic transitions [4, 19, 20, 21, 25]. The study
of ergodic Schrödinger operators with circle map dynamics is expected to lead to further
interplay between those small denominator problems.

In this paper, we consider a class of Schrödinger operators H = H(x) = H(T, V, x)
of the form (1.1) where T : T1 → T1 is an orientation-preserving homeomorphism of the
circle, V : T1 → R, and x ∈ T1. Since T, V will usually be fixed we will often suppress
them from the notation.

Ergodic Schrödinger operators are intimately related with a family of cocycles — dy-
namical systems associated with each eigen-equationHu = Eu. In the case of Schrödinger
operators over circle maps with an irrational rotation number, the cocycle is given by

(T,A) : (x, y) 7→ (Tx,A(x,E)y), (1.4)

where A ∈ SL(2,R), x ∈ T1, y ∈ R2. If u = (un) is a sequence satisfying Hu = Eu, then(
un+1

un

)
= An(x,E)

(
un
un−1

)
, where An(x,E) :=

(
E − V (T nx) −1

1 0

)
(1.5)
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is the transfer matrix. Thus, (
un
un−1

)
= Pn(x,E)

(
u0

u−1

)
, (1.6)

where Pn(x,E) :=
∏0

i=n−1Ai(x,E) = An−1(x,E) . . . A0(x,E). Thus, Pn(x,E) is the
product of the values of a matrix valued function A(·, E) : T1 → SL(2,R) along the orbit
xi = T ix of x, under the action of T . We also define P−n(x,E) = Pn(T−nx,E)−1 and
P0 = I.

One way to divide the spectrum of one-frequency quasiperiodic Schrödinger operators
into different regimes is through the Lyapunov exponent [1]. One regime corresponds to
positive Lyapunov exponent; another corresponds to zero Lyapunov exponent stable under
complexification; and the third one (critical) corresponds to zero Lyapunov exponent
unstable under complexification. An operator is called acritical if there are no critical
energies E in the spectrum.

In the case of more general Schrödinger operators over circle maps with an irrational
rotation number, we can still define the Lyapunov exponent. If the rotation number ρ
of T is irrational, T is uniquely ergodic [13]. We will denote by µ the unique invariant
probability measure of T .

We define the Lyapunov exponent

L(E) := lim
n→∞

Ln(E), (1.7)

where
Ln(E) :=

∫
Ln(x,E) dµ, Ln(x,E) :=

1

n
ln ‖Pn(x,E)‖. (1.8)

Due to submultiplicativity of Pn(x,E), L(E) exists. Since T is ergodic, by Kingman’s
ergodic theorem, for almost every x,

L(E) = lim
n→∞

1

n
ln ‖Pn(x,E)‖. (1.9)

This paper can be divided into two parts. In the first part, we discuss the spectral
properties of Schrödinger operators with large, small, as well as typical potentials, over
analytic circle diffeomorphisms, with badly approximable rotation numbers.

Theorem 1.1 Let T be an analytic circle diffeomorphism with rotation number ρ satis-
fying Yoccoz’s H arithmetic condition and V : T1 → R be analytic. Then

(i) There exists λ0(T, V ) > 0 such that for λ < λ0(T, V ) operator H(T, λV ) has purely
absolutely continuous spectrum.
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(ii) There exist λ1(T, V ) <∞ such that for λ > λ1(T, V ) the Lyapunov exponent L(E) >
0 for all E.

(iii) For a (measure-theoretically) typical analytic V : T1 → R, the operator H(T, V ) is
acritical.

In the second part, we prove our main result and exclude localization for well-approximable
rotation numbers.

For ρ ∈ R let ‖ρ‖ := dist(ρ,Z) be the distance to the nearest integer. Let

β = β(ρ) := lim sup
n→∞

− ln ‖ρn‖
n

. (1.10)

Definition 1.2 A number ρ ∈ R\Q is called Liouville if β(ρ) =∞.

Definition 1.3 The class of C1+BV diffeomorphisms consists of C1-smooth diffeomor-
phisms T with T ′ of bounded variation.

In particular, a C2-smooth diffeomorphism of a circle is also of class C1+BV . As a corollary
of our main result, we have the following claim.

Theorem 1.4 For every Liouville number ρ ∈ (0, 1), and every C1+BV circle diffeomor-
phism T , with rotation number ρ and the invariant measure µ, for µ-almost all x ∈ T1, the
corresponding Schrödinger operator H(T, V, x) has purely continuous spectrum for every
Hölder-continuous potential V : T1 → R.

Remark 1 As shown in a parallel work [28], an analogous claim holds for sufficiently
smooth circle diffeomorphisms with a single singular point where the derivative vanishes
(critical circle maps) or has a jump discontinuity (circle maps with a break). The rigidity
theory of these maps has been an important topic in circle dynamics — in the context
of an extension of Herman’s theory — which experienced a considerable development in
recent years [15, 26, 27].

Remark 2 It is an interesting question whether, unlike the case of Schrödinger operators
with Hölder continuous potential over rotations, for some circle diffeomorphisms T with
Liouville rotation numbers, there are phases x ∈ T1 such that H(T, V, x) has eigenvalues.
Clearly, if the conjugacy to the corresponding rotation is sufficiently regular (e.g. Hölder
continuous), then there could be no such phases, for any Hölder continuous potential.
The existence of such phases for Schrödinger operators over rotations is known only for
unbounded (and therefore discontinuous) potentials (e.g. [19]).
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Remark 3 For C1+BV circle diffeomorphisms T , φ is a topological conjugacy, soH(T, V, x)
is unitarily equivalent to H(Rρ, V1, y) with a continuous V1 : T1 → R. Even though ab-
sence of point spectrum of H(Rρ, V1, y) holds for all y, for topologically generic ρ (de-
pending on V1), this is insufficient to conclude such an absence for H(T, V, x) because V1

depends on T .

Theorem 1.4 is a corollary of the following sharp result. Different components of the
spectrum ΣT,V of an operator H(T, V, x) are denoted by Σac (absolutely continuous),
Σsc (singular continuous) and Σpp (pure point). By ergodicity, all those sets are µ-a.e.
x-independent, however Σpp and Σsc may depend on x (e.g. [21]). We also denote the
collection of eigenvalues of H(T, V, x) by Spp(x). Finally, we set H = `2(Z), Hsc(x) the
corresponding singular continuous subspace, and PA(x) the operator of spectral projection
on a Borel set A, corresponding to H(T, V, x).

Theorem 1.5 Let T : T1 → T1 be any C1+BV circle diffeomorphism with an irrational
rotation number ρ ∈ (0, 1) and an invariant measure µ. For µ-almost all x ∈ T1, and any
α-Hölder continuous real-valued function V : T1 → R on the circle, with α ∈ (0, 1],

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ(ρ)} = ∅,

(ii) P{E:0<L<αβ(ρ)}(x)H ⊂ Hsc(x).

Remark 4 This theorem is optimal in the sense that there exist H(T, V, x) with α = 1
and eigenvalues at E with L(E) ≥ β(ρ) [3, 20].

While Theorem 1.1 is a direct corollary of the main results of [1, 2, 29], the proof of
Theorem 1.4 and Theorem 1.5 require new techniques from one-dimensional dynamics,
previously not used in the spectral theory of Schrödinger operators. In the next section, we
discuss global theory of typical Schrödinger operators over analytic circle diffeomorphisms.
In the third section, we prove a sharp Gordon theorem (that could be of independent use)
and give a proof of Theorem 1.5.

2 Typical operators over analytic circle diffeomorphisms

The Yoccoz set H of rotation numbers can be defined as follows.
For α ∈ (0, 1), and x ∈ R, we define

rα(x) :=

{
α−1(x− lnα−1 + 1), if x ≥ lnα−1,

ex, if x ≤ lnα−1.
(2.1)

For α ∈ R\Q and k > 0, we set

Υk(α) := rαk−1
◦ · · · ◦ rα0(0), (2.2)
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where α0 = α − [α], αn = Gn(α0), and G is the Gauss map G : x 7→
{

1
x

}
. Here, [·] and

{·} denote the integer and fractional part of a number, respectively. We also define

Hk,n := {α ∈ B, B(αn) ≤ Υk(αn−k)}, (2.3)

where B(α) =
∑

n≥0 βn−1 lnα−1
n is the Brjuno function, βn =

∏n
j=0 αj, and B is the set of

Brjuno numbers α for which B(α) <∞. We define

H := ∩m≥0(∪k≥0Hk,k+m). (2.4)

Clearly, H ⊂ B.
In this section, we restrict our considerations to ρ ∈ H. The study of the spectrum of

Schrödinger operators with analytic potentials over analytic circle diffeomorphisms with
rotation numbers that do not satisfy the Yoccoz’s H arithmetic condition corresponds
to the study of one-frequency quasiperiodic Schrödinger operators with not-necessarily
analytic potentials, and involves difficult problems. In the case when T is an analytic
circle diffeomorphism with a rotation number ρ ∈ H satisfying this condition, however,
there is an analytic conjugacy ϕ to the rotation Rρ, and many results follow directly from
the corresponding results for the one-frequency quasiperiodic Schrödinger operators with
analytic potentials. Indeed, we have the following correspondence

H(T, V, x) = H(Rρ, V ◦ ϕ, ϕ−1x), (2.5)

In the case when T = Rρ, to simplify the notation, we denote the spectrum ΣRρ,V of
H(Rρ, V, x) by Σρ,V .2

As in [1], we can classify energies in the spectrum ΣT,V of H(T, V, x) in the following
way. An energy E in the spectrum ΣT,V of H(T, V, x) is said to be

(i) supercritical if L(E) > 0, so supx∈T1 ‖Pn(x,E)‖ grows exponentially;

(ii) subcritical if there is a uniform subexponential bound on the growth of ‖Pn(z, E)‖
through some band |Im z| < ε;

(iii) critical otherwise.

Clearly, the notions of supercritical, subcritical and acritical are also independent of x.
It is well-known that, contrary to the case of the almost Mathieu operator, in the

case of general quasiperiodic potentials, and T = Rρ, the coexistence of these regimes is
possible. Hence, the supercritical and subcritical are properties of the individual energies,
not of the whole operators. Although a given potential may display both subcritical

2Since orientation-preserving circle homeomorphisms with an irrational rotation number are minimal,
we have ΣT,V,x = ΣT,V .
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and supercritical energies, in order to go from one regime to the other, it may not be
necessary to go through the critical regime. The reason is that the spectrum may be a
Cantor set and the transition may happen through a gap. Avila showed that this is a
prevalent behavior, when T is a circle rotation [1]. The same holds when T is analytic
circle diffeomorphism with an irrational rotation number satisfying Yoccoz’s H arithmetic
condition.

The operator H(T, V, x) is said to be acritical, if no energy E in the spectrum ΣT,V of
H(T, V, x) is critical. Since the spectrum ΣT,V and the notion of acritical do not depend
on x, we will simply say that the operator H(T, V ) is acritical if no energy E in the
spectrum ΣT,V of H(T, V ) is critical.

Proof of Theorem 1.1. When T = Rρ, it follows from [29] that large potentials fall into
the supercritical regime. It further follows from [2] and [7] that small potentials fall into
the subcritical regime. When T is an analytic circle diffeomorphism with rotation number
satisfying Yoccoz’s H arithmetic condition, we similarly obtain that large potentials fall
into the supercritical regime and that small potentials fall into the subcritical regime. This
follows from the above correspondence (2.5), the fact that in this case the conjugacy ϕ is
analytic (so V ◦ϕ is analytic, whenever V is), and the fact that the supremum norms of V
and V ◦ϕ are the same. This implies parts (i) and (ii) of the claim. Since the composition
operator is an isometry, part (iii) of the claim follows from the main theorem of [1].QED

3 Absence of eigenvalues for well-approximable rota-
tion numbers

3.1 A sharp Gordon theorem

Gordon’s trick [14] has been fruitfully used to prove absence of point spectra of 1D op-
erators since [5] (see e.g. [10]). A sharp version was used in [4] to treat the singular
continuous part of arithmetic spectral transition for the almost Mathieu operator. Here,
we give an abstract formulation, for any bounded (not necessarily ergodic) potential.3

Consider Schrödinger operator on `2(Z) given by

(Hu)n = un+1 + un−1 + V (n)un. (3.1)

For β > 0, we say that a real sequence {V (n)}n∈Z has β-repetitions if there is a sequence
of positive integers qn →∞ such that

max
0≤j<qn

|V (j)− V (j ± qn)| ≤ e−βqn . (3.2)

3In fact, only the boundedness of the Cesaro average of lnV (n) is required.
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As in (1.5), we can define the transfer matrix An(E) and, as in (1.6), the n-step
transfer-matrix Pn(E). Let

Λ(E) := lim sup
|n|→∞

ln ‖Pn(E)‖
n

. (3.3)

Clearly, for bounded V, Λ(E) <∞, for every E.

Theorem 3.1 Suppose that V has β-repetitions with β > Λ(E). Then E is not an eigen-
value of operator (3.1).

Remark 5 This theorem is sharp in the sense that there are operators (3.1) (found e.g.
within the almost Mathieu family) with β ≤ Λ(E) and eigenvalues [3, 4, 20].

Remark 6 As usual with the Gordon-type arguments, we actually prove more: absence
of decaying solutions to HΨ = EΨ, in fact that lim infn→∞ |Ψn| ≥ 1/2 if Ψ(0) = 1.

Remark 7 The small but crucial difference with the usual Gordon-type proof is to study
the characteristic polynomial not of the periodic approximation but of the q-step transfer-
matrix itself.

Proof. Since E is fixed, we will suppress it from the notations. Let q = qn. By a standard
telescoping argument4, for any ε > 0 and sufficiently large n, we have

‖P−q − P−1
q ‖ < e(Λ−β+ε)q, (3.4)

‖P2qv − P 2
q v‖ < e(Λ−β+ε)q‖Pqv‖. (3.5)

Assume there is a decaying u such that Hu = Eu. Let v = (u0, u−1)T and assume
‖v‖ = 1. Then, for sufficiently large n we have max(‖Pqv‖, ‖P−qv‖, ‖P2qv‖) < 1/2. Since,
by the characteristic equation, Pq − TrPqI + P−1

q = 0, using (3.4) (assuming ε < β − Λ)
and applying the characteristic equation to v, we obtain |TrPq| < 1, for n large enough.
Then, applying another form of the characteristic equation, P 2

q −TrPqPq+I = 0, again to
v and using (3.5), we obtain, for large enough n, ‖P2qv‖ > 1/2, which is a contradiction.
QED

Consider the Schrödinger operator (3.1) with Vn = V (T nx) where V : T1 → R is a
bounded real-valued function on the circle and T is an orientation-preserving homeomor-
phism of a circle with an irrational rotation number ρ. Let the Lyapunov exponent L(E)
be defined as in (1.7). We then have

4The core of the argument is the identity Pq − P̃q =
∑q−1

i=0 Aq−1 . . . Ai+1(Ai − Ãi)Ãi−1 . . . Ã0.
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Theorem 3.2 Assume that for some x ∈ T1, C > 0 and β̄ > 0, there is a sequence of
positive integers qn →∞ such that

sup
0≤i<qn

|Vi±qn(x)− Vi(x)|} < Ce−β̄qn . (3.6)

If L(E) < β̄, then E is not an eigenvalue of the Schrödinger operator H(T, V, x).

Proof. In order to apply Theorem 3.1, it suffices to prove lim sup|n|→∞
ln ‖Pn(E)‖

n
≤

L(E). This is a result of Furman [12], and also a well-known corollary of subadditivity,
compactness, and unique ergodicity (see e.g. [24] for a short proof). QED

For a sequence qn →∞, let

β̂ := lim sup
n→∞

ln(sup0≤i<qn |xi − xi±qn|)−1

qn
, (3.7)

where xi = T ix.
Let Spp, PA,H,Hsc be as in Theorem 1.5.

Theorem 3.3 Let V : T1 → R be a α-Hölder continuous real-valued function on the
circle, with α ∈ (0, 1]. Then, we have

(i) Spp(x) ∩ {E : 0 ≤ L(E) < αβ̂} = ∅,

(ii) P{E:0<L<αβ̂}(x)H ⊂ Hsc(x).

Proof. It suffices to prove the part (i) of the claim, i.e. to exclude the point spectrum.
Part (ii) of the claim then follows from Kotani’s theory [8] since, the set {E : L(E) > 0},
does not support any absolutely continuous spectrum.

If L < αβ̂, then vi = V (T ix) satisfy the assumption (3.6) of Theorem 3.2 for any β̄
satisfying L < β̄ < αβ̂. The claim follows. QED

In order to establish Theorem 1.5, all we need is an appropriate bound on β̂(x). For
T = Rρ we have β̂ = β(ρ) for all x. This is no longer true in general. However, our goal
is to show that for C1+BV diffeomorphisms β̂ ≥ β(ρ) for µ-a.e. x, which is sufficient.

3.2 Dynamical partitions of a circle and renormalization

The construction of a set of full measure for which Theorem 1.5 holds is based on the
dynamical partitions of a circle. These partitions are obtained by using the continued
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fraction expansion of the rotation number ρ ∈ (0, 1) of the map T . Every irrational
ρ ∈ (0, 1) can be written uniquely as

ρ =
1

k1 + 1
k2+ 1

k3+...

=: [k1, k2, k3, . . . ], (3.8)

with an infinite sequence of partial quotients kn ∈ N. Conversely, every infinite sequence
of partial quotients defines uniquely an irrational number ρ as the limit of the sequence
of rational convergents pn/qn = [k1, k2, . . . , kn], obtained by the finite truncations of the
continued fraction expansion (3.8). It is well-known that pn/qn form a sequence of best
rational approximations of an irrational ρ, i.e., there are no rational numbers, with denom-
inators smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents
can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, starting
with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the dynamical partitions of an orientation-preserving homeomorphism T :
T1 → T1, with an irrational rotation number ρ, we start with an arbitrary point x0 ∈ T1,
and consider the orbit xi = T ix0, with i ∈ N. The subsequence xqn , n ∈ N, indexed by
the denominators qn of the sequence of rational convergents of the rotation number ρ,
are called the sequence of dynamical convergents. It follows from the simple arithmetic
properties of the rational convergents that the sequence of dynamical convergents xqn , n ∈
N, for the rigid rotation Rρ has the property that its subsequence with n odd approaches
x0 from the left and the subsequence with n even approaches x0 from the right. Since
all circle homeomorphisms with the same irrational rotation number are combinatorially
equivalent, the order of the dynamical convergents of T is the same.

The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 .

We also define ∆
(n)
i = T i(∆

(n)
0 ). Certain number of images of ∆

(n−1)
0 and ∆

(n)
0 , under the

iterates of a map T , cover the whole circle without overlapping beyond the end points
and form the n-th dynamical partition of the circle

Pn := {T i(∆(n−1)
0 ) : 0 ≤ i < qn} ∪ {T i(∆(n)

0 ) : 0 ≤ i < qn−1}. (3.9)

The intervals ∆
(n−1)
0 and ∆

(n)
0 will be called the fundamental intervals of Pn. These

partitions are nested, in the sense that intervals of partition Pn+1 are obtained by dividing
intervals of partition Pn into finitely many intervals.

The n-th renormalization of an orientation-preserving homeomorphism T : T1 → T1,
with rotation number ρ, with respect to a point x0 ∈ T1, is a function fn : [−1, 0] → R,
obtained from the restriction of T qn to ∆

(n−1)
0 , by rescaling the coordinates. More precisely,

if τn is the affine change of coordinates that maps xqn−1 to −1 and x0 to 0, then

fn := τn ◦ T qn ◦ τ−1
n . (3.10)

If we identify x0 with zero, then τn is just the multiplication by (−1)n/|∆(n−1)
0 |. Here,

and in what follows, |I| denotes the length of an interval I on T1.
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3.3 A set of full invariant measure

In this section, we construct a set of full invariant measure, for which we have an appro-
priate control on the distances between an orbit of a point under the map and an orbit of
the ±qn-th iterate of the point, i.e, the control of the quantity β̂ in (3.7). Let σn, n ∈ N,
be any increasing subsequence of N such that the corresponding sequence kσn+1 of partial
quotients diverges to infinity. We will assume that such a subsequence exists since if the
sequence of partial quotients is bounded, then β = 0. Let ηn be any sequence converging
to zero such that ηnkσn+1 diverges to infinity as well, as n→∞.

For each n ∈ N, let

En,0 :=

{
I ∈ Pσn+1|I ⊂ ∆

(σn−1)
0 \∆(σn+1)

0 , |τσn(I)| ≤ 1

ηnkσn+1

}
. (3.11)

and let
En,i := T i(En,0), for i = 1, . . . , qσn − 1. (3.12)

We define

En :=

qσn−1⋃
i=0

En,i, (3.13)

and
E := lim sup

n→∞
En =

⋂
n≥1

⋃
j≥n

Ej. (3.14)

Proposition 3.4 µ(E) = 1.

Proof. The number of the elements I of partition Pσn+1 inside of ∆
(σn−1)
0 , that do

not belong to En,0 is bounded from above by ηnkσn+1, since the length of each of the
corresponding rescaled intervals τσn(I) ⊂ τσn(∆

(σn−1)
0 ) is larger than (ηnkσn+1)−1 and the

length of their union is less than or equal to 1. Since the invariant measure of the intervals
τ−1
σn ([f i−1

σn (−1), f iσn(−1)]) is independent of i and equal to µ(∆
(σn)
0 ), for i = 1, . . . , kσn+1,

and ∆
(σn+1)
0 ⊂ τ−1

σn ([f i−1
σn (−1), f iσn(−1)]), for i = kσn+1 + 1, we have

µ(En,0)/µ(τ−1
σn ([−1, 0])) ≥ 1− ηnkσn+1µ(∆

(σn)
0 )

kσn+1µ(∆
(σn)
0 ) + µ(∆

(σn+1)
0 )

≥ 1− ηn. (3.15)

By the invariance of the measure µ, µ(En,i)/µ(∆
(σn−1)
i ) ≥ 1− ηn. Since

qσn−1∑
i=0

µ(∆
(σn−1)
i ) +

qσn−1−1∑
i=0

µ(∆
(σn)
i ) = qσnµ(∆

(σn−1)
0 ) + qσn−1µ(∆

(σn)
0 ) = 1, (3.16)
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qσn−1 ≤ qσn and µ(∆
(σn)
0 ) = µ(τ−1

σn ([−1, fσn(−1)])), we have

µ(En) ≥ (1− ηn)
kσn+1

kσn+1 + 1
. (3.17)

Since µ(∪j≥nEj) ≥ µ(Ei), for any i ≥ n, and µ(Ei) → 1 as i → ∞, it follows that
µ(∪j≥nEj) = 1, for any n ∈ N. The claim follows. QED

3.4 Distance of dynamical convergents

In this section, we consider circle maps (orientation-preserving homeomorphisms of a
circle) T with an irrational rotation number and bounded variation V = VarT1 lnT ′ <∞.
Consider dynamical partitions of a circle defined by an arbitrary point χ0 ∈ T1. The
following proposition holds for all intervals I0 ⊂ ∆

(n−1)
0 such that I0 ∈ Pn+1, and the

corresponding intervals Ii = T i(I0), i ∈ Z.

Proposition 3.5 If T is C1+BV (T1) orientation-preserving circle diffeomorphism with
an irrational rotation number, there exists C1 > 0 such that |Ii| ≤ C1|∆(n−1)

i | |I0|
|∆(n−1)

0 |
, for

all i = 0, . . . , qn − 1, and all n ∈ N.

Proof. For i = 0, . . . , qn− 1, there exist ζi−1 ∈ Ii−1 ⊂ ∆
(n−1)
i−1 and ξi−1 ∈ ∆

(n−1)
i−1 such that

|Ii|
|∆(n−1)

i |
=
|T (Ii−1)|
|T (∆

(n−1)
i−1 )|

=
T ′(ζi−1)

T ′(ξi−1)

|Ii−1|
|∆(n−1)

i−1 |
. (3.18)

This implies the estimate

|Ii|
|∆(n−1)

i |
≤
(

1 +
|T ′(ζi−1)− T ′(ξi−1)|

T ′(ξi−1)

)
|Ii−1|
|∆(n−1)

i−1 |
. (3.19)

By iterating this inequality, we obtain that, for some ζj, ξj ∈ ∆
(n−1)
j ,

|Ii|
|∆(n−1)

i |
≤

i−1∏
j=0

(
1 +
|T ′(ζj)− T ′(ξj)|

minξ∈T1 T ′(ξ)

)
|I0|
|∆(n−1)

0 |
. (3.20)

Using the obvious inequality 1 + x ≤ ex, we obtain

|Ii|
|∆(n−1)

i |
≤ exp

(
i−1∑
j=0

|T ′(ζj)− T ′(ξj)|
minξ∈T1 T ′(ξ)

)
|I0|
|∆(n−1)

i−1 |
. (3.21)
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Since, for i = 0, . . . , qn− 1, the intervals ∆
(n−1)
i do not overlap except possibly at the end

points, we have

qn−1∑
j=0

|T ′(ζj)− T ′(ξj)| ≤ max
χ∈T1

T ′(χ)

qn−1∑
j=0

| lnT ′(ζj)− lnT ′(ξj)| ≤ V max
χ∈T1

T ′(χ), (3.22)

where V = VarT1 lnT ′. Since T ′ is bounded both from below and from above by positive
constants, the claim follows. QED

Let ln = maxξ∈T1 |T qnξ− ξ|. If T is C1+BV (T1) orientation-preserving circle diffeomor-
phism, the Denjoy theory implies that, for some C > 0,

(A) ln(T qn)′(ξ) ≤ V , for any ξ ∈ T1,

(B) ln ≤ Cλn, where λ = 1
1+e−2V .

Proposition 3.6 If T is C1+BV (T1) orientation-preserving circle diffeomorphism then,
there exists C2 > 0 such that, for all x ∈ E, there are infinitely many n ∈ N such that

|T qσnx− x| ≤ C2|∆(σn−1)
i |

ηnkσn+1

, (3.23)

where ∆
(σn−1)
i is an element of partition Pσn containing x.

Proof. For every x ∈ E, there are infinitely many n, such that x ∈ En. Furthermore,
there exists an element Ii of partition Pσn+1 inside En,i ⊂ ∆

(σn−1)
i , for some i = 0, . . . , qσn−

1, such that x ∈ Ii. It follows from the definition of En,0 and Proposition 3.5 that
there exists χ ∈ En,i, such that Ii = [χ, T qσnχ] and |Ii| ≤ C1|∆(σn−1)

i |/(ηnkσn+1). Then,
|x− χ| ≤ |T qσnχ− χ| ≤ C1|∆(σn−1)

i |/(ηnkσn+1).
Since there exists ζ ∈ Ii such that

T qσnx = T qσnχ+ (T qσn )′(ζ)(x− χ), (3.24)

we obtain the following estimate

|T qσnx− x| ≤ |T qσnχ− χ|+ |χ− x|+ (T qσn )′(ζ)|x− χ|. (3.25)

If T is C1+BV (T1) orientation-preserving circle diffeomorphism, by the Denjoy estimate
(A), we have ln(T qn)′(ξ) ≤ V , for all ξ ∈ T1. The claim now follows. QED

Let xi = T iΩρx and let Ii := [xi−qn , xi], if n is even, or Ii := [xi, xi−qn ], if n is odd. Let
χ0 ∈ T1, χj = T jχ0, and let ∆

(n−1)
j (χ0) := [T qn−1χj, χj], if n is even, or ∆

(n−1)
j (χ0) :=

[χj, T
qn−1χj], if n is odd.
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Proposition 3.7 Let x ∈ ∆
(n−1)
j (χ0). There exists C3 ≥ 1 such that

|Ii| ≤ C3|∆(n−1)
i (χj−qn)| |Iqn|

|∆(n−1)
j (χ0)|

, (3.26)

for all i = 0, . . . , qn − 1.

Proof. To be specific, let us assume that n is even, i.e., ρ > pn/qn; the proof in the other
case is similar.

It follows from the mean value theorem that, for i = 0, . . . , qn − 1, there exist ξi ∈
∆

(n−1)
i (χj−qn) ∪∆

(n)
i (χj−qn) and ζi ∈ ∆

(n−1)
i (χj−qn), such that

|Ii|
|∆(n−1)

i (χj−qn)|
=

|T−1(Ii+1)|
|T−1(∆

(n−1)
i+1 (χj−qn))|

=
|Ii+1|

|∆(n−1)
i+1 (χj−qn)|

T ′(ζi)

T ′(ξi)
. (3.27)

This implies the estimate
|Ii|

|∆(n−1)
i (χj−qn)|

≤ |Ii+1|
|∆(n−1)

i+1 (χj−qn)|

(
1 +
|T ′(ζi)− T ′(ξi)|
|T ′(ξi)|

)
. (3.28)

By iterating the latter inequality, we obtain

|Ii|
|∆(n−1)

i (χj−qn)|
≤ |Iqn|
|∆(n−1)

j (χ0)|
exp

(
qn−1∑
k=i

|T ′(ζk)− T ′(ξk)|
minξ∈T1 |T ′(ξ)|

)
. (3.29)

Since the intervals ∆
(n−1)
i (χj−qn), for i = 0, . . . , qn − 1, belong to the same partition of

a circle, taking into the account the order of points ζk and ξk, for k = i, . . . , qn − 1, we
obtain

|Ii|
|∆(n−1)

i (χj−qn)|
≤ |Iqn|
|∆(n−1)

j (χ0)|
exp

(
maxξ∈T1 |T ′(ξ)|
minξ∈T1 |T ′(ξ)|

2V

)
. (3.30)

The claim follows. QED

Proposition 3.6, Proposition 3.7 and Denjoy estimate (A) imply the following lemma.

Lemma 3.8 If T is C1+BV (T1) orientation-preserving circle diffeomorphism with an ir-
rational rotation number ρ then, there exists C4 > 0 such that, for all x ∈ E, there are
infinitely many n ∈ N such that, for all i = 0, . . . , 2qσn − 1,

|xi − xi−qσn | ≤
C4lσn−1

ηnkσn+1

. (3.31)

Proof. For i = qσn , the claim holds directly from Proposition 3.6, with C4 ≥ C2.
Proposition 3.6 and Proposition 3.7 together imply (3.31) for i = 0, . . . , qσn − 1, with
C4 ≥ C2C3. Using the Denjoy estimate (A), the bound (3.31) can be extended to i =
qσn + 1, . . . , 2qσn − 1, with C4 ≥ C2C3e

V , since |xi+qσn − xi| ≤ eV |xi − xi−qσn |, for i =
1, . . . , qσn − 1. QED
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3.5 Proof of the main result

Proof of Theorem 1.5. Let pn/qn be the sequence of rational convergents of ρ, given
by the truncations of the continued fraction algorithm of ρ. If ρ satisfies L < αβ, then
β > 0 and there is an increasing sequence σn, such that kσn+1 diverges to infinity. Let ηn
be any sequence converging to zero such that ηnkσn+1 diverges to infinity as well. We use
these sequences to construct the set E, as in section 3.3. For every x ∈ E, by Lemma 3.8,
there are infinitely many n, such that estimate (3.31) holds. This implies β̂ ≥ β. The
claim now follows from Theorem 3.3. QED
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