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Preface

Many Partial Differential Equations (PDEs) arising in physics can be seen as infinite di-
mensional Hamiltonian systems

Oz=J(V,H)(z), z€F, (0.0.1)

where the Hamiltonian function H : E — R is defined on an infinite dimensional Hilbert
space E of functions z := z(x), and J is a non-degenerate antisymmetric operator.
Main examples are the nonlinear wave equation (NLW)

uy — Au+ V(z)u+ g(z,u) =0, (0.0.2)

the nonlinear Schrodinger equation (NLS), the beam equation, and the higher dimensional
membrane equation, the water waves equations, i.e. the Euler equations of Hydrodynamics
describing the evolution of an incompressible irrotational fluid under the action of grav-
ity and surface tension, as well as its approximate models like the Korteweg de Vries
(KdV) equation, the Boussinesq, Benjamin-Ono, Kadomtsev-Petviashvili (KP) equations,
..., among many others. We refer to [95] for a general introduction to Hamiltonian PDEs.

In this Monograph we shall adopt a “Dynamical Systems” point of view, regarding the
nonlinear wave equation , equipped with periodic boundary conditions z € T¢ :=
(R/27Z)?, as an infinite dimensional Hamiltonian system, and we shall prove the existence
of Cantor families of finite dimensional invariant tori, filled by quasi-periodic solutions of
(0.0.2)). The first results in this direction are due to Bourgain [40]. The search of invariant
sets for the flow is an essential change of paradigm in the study of hyperbolic equations,
with respect to the more traditional pursuit of the initial value problem. This perspective
has allowed to find many new results, inspired by finite dimensional Hamiltonian systems,
for Hamiltonian PDEs.

When the space variable = belongs to a bounded domain like a compact interval z € [0, 7]
(with Dirichlet boundary conditions), or 2 € T¢ (periodic boundary conditions), or, more
generally, x belongs to a compact manifold, the dynamics of a Hamiltonian PDE ,
like , is expected to have a “recurrent” behaviour in time, with many peritodic and
quasi-periodic solutions, i.e. solutions (defined for all times) of the form

u(t) =U(wt) € E where T>p—U(p) € E (0.0.3)
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is 2m-periodic in the angular variables ¢ := (i1, ...,¢,) and the frequency vector w € R"

is nonresonant, namely w- ¢ # 0, V¢ € Z™\ {0}. When n = 1 the solution wu(t) is periodic in

time, with period 27 /w. If U(wt) is a quasi-periodic solution then, since the orbit {wt}icr

is dense on T", the torus-manifold U(T") C E is invariant under the flow of (0.0.1).
Notice that all the solutions of the linear wave equation with g =0,

Uy — Au+V(z)ju=0, ze&T?, (0.0.4)

are of this form. Indeed the self-adjoint operator —A + V(z) possesses a complete L*-
orthonormal basis of eigenfunctions V,;(z), j € N, with eigenvalues \; — 400,

Supposing for simplicity that —A 4V (z) > 0, the eigenvalues \; = u?, w; > 0, are positive,
and all the solutions of ((0.0.4)) are

Zaj cos(pt +6;)V;(z), «j, 0; €R, (0.0.6)
jeEN
which, according to the resonance properties of the linear frequencies p; = p;(V), are
periodic, quasi-periodic, or almost-periodic in time (i.e. quasi-periodic with infinitely many

frequencies).
What happens to these solutions under the effect of the nonlinearity g(z,u) 7

There exist special nonlinear equations for which all the solutions are still periodic, quasi-
periodic or almost-periodic in time, for example the sine-Gordon equation, KdV, 1d cubic-
NLS, .... These are completely integrable PDEs. However, for generic nonlinearities, one
expects, in analogy with the celebrated Poincaré non-existence theorem of prime integrals
for nearly integrable Hamiltonian systems, that this is not the case.

On the other hand, for sufficiently small Hamiltonian perturbations of a non degenerate
integrable system in T" x R", the classical KAM —Kolmogorov-Arnold-Moser— theorem
proves the persistence of quasi-periodic solutions with Diophantine frequency vector w € R",
i.e. satisfying for some v > 0 and 7 > n — 1, the non-resonance condition

w b > ﬁ Ve e Z"\ {0} (0.0.7)
Such frequencies form a Cantor set of R" of positive measure if 7 > n — 1. These quasi-
periodic solutions (which densely fill invariant Lagrangian tori) were constructed by Kol-
mogorov [92] and Arnold [2] for analytic systems using an iterative Newton scheme, then
modified by Moser [97]-[98] with the introduction of smoothing operators in order to deal
with merely differentiable perturbations. This scheme then gave rise to abstract Nash-
Moser implicit function theorems like the ones due to Zehnder in [I17, [118], see also [100],
[80)].

What happens for infinite dimensional systems like PDEs?
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e The central question of KAM theory for PDEs is: do “most” of the periodic, quasi-
periodic, almost-periodic solutions of an integrable PDE (linear or nonlinear) persist,
jgust slightly deformed, under the effect of a nonlinear perturbation?

KAM theory for Partial Differential Equations started a bit more than thirty years ago
with the pioneering works of Kuksin [93] and Wayne [115], about existence of quasi-periodic
solutions for semilinear perturbations of 1-dimensional linear wave and Schrodinger equa-
tions in the interval [0, 77]. These results are based on an extension of the KAM perturbative
approach developed for the search of lower dimensional tori in finite dimensional systems,
see [99], [53], [102], and relies on the verification of the so called second order Melnikov
non-resonance conditions.

Nowadays KAM theory for 1-d partial differential equations has reached a satisfactory
level of comprehension, including bifurcation of small amplitude solutions [96], [104], [16],
perturbations of large finite gap solutions [94], [95], [32], [90], [28], extension to periodic
boundary conditions [51], [34], [45], [67], use of weak non-degeneracy conditions [11], non-
linearities with derivatives [86], [I19], [18] up to quasi-linear ones [6]-[8], [62], including
water-waves equations [30], [5], applications to quantum harmonic oscillator [77], [9]-[10].
We describe these developments more in detail in section [L.3]

On the other hand, KAM theory for multidimensional PDEs still contains few results
and a satisfactory picture is under construction. If the space dimension d is 2 or more,
major difficulties are the following:

1. the eigenvalues u? of the Sturm-Liouville operator —A + V(x) in (0.0.5) appear in
huge clusters of increasing size. For example, if V(z) = 0, and 2 € T?, they are

=P =3+ da G = Gneeeda) €27

2. The eigenfunctions ¥;(z) may be “not localized” with respect to the exponentials,
i.e., roughly speaking, the elements (U, ") 2 of the matrix which expresses the
change of basis between () and (¢'**), do not decay rapidly to zero as the distance
||k| — j] = +o0.

The first existence result of time periodic solutions for the nonlinear wave equation
yw — Ay+my=vy>+hot., zeT d>2,

has been proved by Bourgain in [35], extending the Craig-Wayne approach [51], origi-
nally developed if x € T. Further existence results of periodic solutions have been proved
in Berti-Bolle [2I] for merely differentiable nonlinearities, Berti-Bolle-Procesi [25] for Zoll
manifolds, Gentile-Procesi [71] using Lindstedt series techniques, and Delort [52] for NLS
using paradifferential calculus.
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The first breakthrough result about existence of quasi-periodic solutions for space mul-
tidimensional PDEs was due to Bourgain [37] for analytic Hamiltonian NLS equations of
the form

i, = Au+ Myu + €0, H (u, u) (0.0.8)

with = € T?, where M, = Op(o;) is a Fourier multiplier supported on finitely many sites
ScZ?ie o;,=0,Vj€ Z*\'S. The gj, j €S, play the role of external parameters used
to verify suitable non-resonance conditions. Notice that the eigenfunctions of A 4+ M, are
the exponentials €/ and so the above mentioned problem [2] is non present.

Later on, using tools of sub-harmonic analysis previously developed for quasi-periodic
Anderson localization theory, in Bourgain-Goldstein-Schlag [41], [39], Bourgain [40] was
able to extend this result in any space dimension d, and also for analytic nonlinear wave
equations of the form

Yu — Ay + Moy +eF'(y) =0, xcT. (0.0.9)

We also mention the existence results of quasi-periodic solutions of Bourgain-Wang [42]-[43]
for NLS and NLW under a random perturbation. The stochastic case is a priori easier than
the deterministic one because it is simpler to verify the non-resonance conditions with a
random variable.

The main analysis for proving the existence of quasi-periodic solutions of concerns
finite dimensional restrictions of the quasi-periodic operators obtained linearizing at
each step of the Newton iteration,

Iy((w-0,)° — A+ M, +eb(p, x)) (0.0.10)

M’
where ¢ € T" (v is the number of frequencies) and IIy denotes the projection on the finite
dimensional subspace

Hy = {h — Z AN N/ W= Zd} .

(6.5)|<N

The matrix which represents in the exponential basis is a perturbation of the
diagonal matrix Diag(—(w-£)*+ |j|* 4+ o) with off-diagonal entries 5(55_@,]'_3»/) which decay
exponentially to zero as |(¢ — ¢',j — j')| — +oo. The goal is to prove that such matrix
is invertible, for most values of the parameters, and that its inverse has an exponential or
Gevrey off-diagonal decay. It is not difficult to impose lower bounds for the eigenvalues
of the self-adjoint operator for most values of the parameters. These “first order
Melnikov” non-resonance conditions are essentially the minimal assumptions for proving
the persistence of quasi-periodic solutions of , and provide estimates of the inverse
of the operator in L? norm. In order to prove fast off-diagonal decay estimates for
the inverse matrix, Bourgain’s technique is a “multiscale” inductive analysis based on the



repeated use of the “resolvent identity”. An essential ingredient is that the “singular” sites

(0,5) €Z" x Z* such that | — (w-0)*+|j]*+ 0, <1 (0.0.11)
are separated into clusters which are sufficiently distant from one another (otherwise the
bounds on the inverse operators would not be good enough to allow the convergence of
the Newton scheme). However, the information about just the linear frequencies
of is not sufficient (unlike for time-periodic solutions [35]) and also finer properties
of non-resonance at each scale along the induction are verified. We describe the multiscale
approach in section [I.4] and we prove novel multiscale results in Chapter [4

These techniques have been extended in the recent work of Wang [114] for the nonlinear
Klein-Gordon equation

yu — Ay+y+y =0, peN, zeT?,

that, unlike , is parameter independent. A key step is to verify that suitable non-
resonance conditions are fulfilled for most “initial data”. We refer to [I13] for a correspond-
ing result for NLS.

Another stream of important results for multidimensional PDEs have been inaugurated
in the breakthrough paper [58] of Eliasson-Kuksin for the NLS equation (0.0.8). In this
paper the authors are able to block diagonalize, and reduce to constant coefficients, the
quasi-periodic Hamiltonian operator obtained at each step of the iteration. This KAM
reducibility approach extends the perturbative theory developed for 1d-PDEs, by verifying
the so called second order Melnikov non-resonance conditions. It allows to prove directly
also the linear stability of the quasi-periodic solutions. Other results in this direction have
been proved for the 2d-cubic NLS by Geng-Xu-You [70], by Procesi-Procesi [106], [107]
in any space dimension and arbitrary polynomial nonlinearities, by Geng-You [68] and
Eliasson-Grébert-Kuksin [55] for beam equations. Unfortunately, the second order Melnikov
conditions are strongly violated for nonlinear wave equations for which an analogous result
does not hold. We describe the KAM reducibility approach with PDEs applications in
section [[.3

We now present more in detail the goal of this research Monograph. The main result
is the existence of small amplitude time quasi-periodic solutions for autonomous nonlinear
wave equations

uy — Au+V(z)u+gla,u) =0, €T g(z,u) =a(x)u® + Ou?), (0.0.12)

in any space dimension d > 1, where V(z) is a smooth multiplicative potential such that
—A + V(x) > 0, and the nonlinearity g(z,u) is C*. Given a finite set S C N (tangential
sites) the quasi-periodic solutions u(wt, z) that we construct have |S|-independent frequen-
cies (wj);es, and have the form

u(wt, x) = Z ajcos(wt)Vj(x) +r(wt,x), w;=p;+0(la]), (0.0.13)

jeSs
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with o := (¢;)jes and a remainder r(yp,z) which is o(|a|)-small in some Sobolev space.
The solutions are thus a small deformation of linear solutions , supported
on the “tangential” space spanned by the eigenfunctions (V;(x)),es, with a much smaller
component in the normal subspace. These quasi-periodic solutions of exist for
generic potentials V' (z), functions a(z) and “most” small values of the amplitudes («;);es.
The precise statement is given in Theorem [1.2.1) and Theorem [1.2.3]

The proof of this result requires various mathematical methods which this book aims
to present in a systematic and self-contained way. A complete outline of the steps of
proof is presented in section [1.5] Here we just mention that we shall use a Nash-Moser
iterative scheme in scales of Sobolev spaces for the search of an invariant torus embedding
supporting quasi-periodic solutions, with a frequency w to be determined. One key step is
to establish the existence of an approximate inverse for the operators obtained by linearizing
the nonlinear wave equation at any approximate quasi-periodic solution u(wt,z), and to
prove that such approximate inverse satisfies tame estimates in Sobolev spaces, with loss
of derivatives due to the small divisors. These are linear operators of the form

h (w-0,)*h — Ah+ V(x)h + (0,9)(x, u(wt, z))h

with coefficients depending on z € T¢ and ¢ € TP, The construction of an approximate
inverse requires several steps. After writing the wave equation as a Hamiltonian system in
infinite dimension, the first step is to use a symplectic change of variable to approximately
decouple the tangential and normal components of the linearized operator. It is a rather
general procedure for autonomous PDEs, which reduces the problem to the search of an
approximate inverse for a quasi-periodic Hamiltonian linear operator acting in the subspace
normal to the torus, see Chapter [6] and Appendix [C]

In order to avoid the difficulty posed by the violation of the second order Melnikov
non-resonance conditions required by a KAM reducibility scheme, we develop a multiscale
inductive approach a la Bourgain, which is particularly delicate since the eigenfunctions
U, (x) of —A+V(z) defined in are not localized near the exponentials. In particular
the matrix elements (V;, a(x)W,; ) > representing the multiplication operator with respect
to the basis of the eigenfunctions ¥, (z) do not decay, in general, as j —j" — oo. In Chapter
we provide the complete proof of the multiscale proposition (which is fully self-contained
together with the Appendix [B]) which we shall use in Chapters . These results extend
the multiscale analysis developed for forced NLW and NLS in [22]-[23].

The presence of a multiplicative potential V' (z) in (0.0.12)) makes also difficult to control
the variations of the tangential and normal frequencies due to the effect of the nonlinearity
a(x)u® + O(u*) with respect to parameters. In this Monograph, after a careful bifurcation
analysis of the quasi-periodic solutions, we are able to use just the frequency length |w| as
an internal parameter to verify all the non-resonance conditions along the iteration. The
frequency is constrained to a fixed direction, see ((1.2.24])-(1.2.25). The measure estimates
are obtained relying on positivity arguments for the variation of parameter dependent
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families of self-adjoint matrices, see section [4.8, that we verify of the linearized operators
obtained along the iteration, see .

The genericity of the non-resonance and non-degeneracy conditions that we require on
the potential V() and the function a(z) in the nonlinearity a(x)u® 4+ O(u*), are finally
verified in Chapter

The techniques developed above for the NLW equation would certainly apply to
prove a corresponding result for nonlinear Schrodinger equations. However we have decided
to focus on NLW because, as explained above, there are less results available. This context
seems to make appear more evident the advantages of the present approach with respect
to that of reducibility.

A feature of the Monograph is to present the proofs, techniques and ideas developed
in a self-contained and expanded manner, with the hope to enhance further developments.
We also aim to describe the connections of this result with previous works in the literature.
The techniques developed in this Monograph have deep connections with those used in
Anderson localization theory and we hope that the detailed presentation in this manuscript
of all technical aspects of proof, will allow a deeper interchange between the scientific
communities of Anderson-localization and “KAM for PDEs”.

Massimiliano Berti, Philippe Bolle,
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Chapter 1

Introduction

1.1 Main result and historical context

We consider autonomous nonlinear wave equations (NLW)
uy — Au+V(z)u+g(r,u) =0, zeT*:=R/(2rZ)", (1.1.1)

in any space dimension d > 1, where V(z) € C*(T% R) is a real valued multiplicative
potential and the nonlinearity g € C*(T¢ x R, R) has the form

g(z,u) = a(z)u® + O(u*) (1.1.2)
with a(z) € C*°(T? R). We require that
—A+V(x)>pld, p>0. (1.1.3)

Condition ([1.1.3)) is satisfied, in particular, if the potential V(z) > 0 and V' (z) # 0.

In this Monograph we prove the existence of small amplitude time quasi-periodic so-
lutions of (1.1.1)). We remind that a solution w(t,z) of ([1.1.1) is time quasi-periodic with
frequency vector w € R”, v € N, if it has the form

u(t,z) = U(wt, )

where U : TV x T? — R is a continuous function and w € R” is a nonresonant vector,
namely

w-L#0, VleZ"\{0}.
If v =1 a solution of this form is time-periodic with period 27 /w.
Small amplitude solutions of ([1.1.1]) will be close to solutions of the linear wave equation

Uy — Au+V(z)u=0, =T (1.1.4)

1



CHAPTER 1. INTRODUCTION 2

The Sturm-Liouville operator —A +V (z) admits an L*-orthonormal basis of eigenfunctions
{¥;}ien, ;
(— A+ V(@) W,(x) = 129, (x) (1.15)

with positive eigenvalues

O<B<pm<pi<... <<, p>0, (u3)— 400,
written in increasing order and with multiplicities, and therefore the solutions of the linear
wave equation ([1.1.4) are given by the linear superpositions of normal modes oscillations,

Zaj cos(pit +6;)V,(x), a;,0; e R. (1.1.6)

JjEN

All the solutions of are periodic, or quasi-periodic, or almost periodic in
time, with linear frequencies of oscillations p;, according to the resonance properties of
t; (which depend on the potential V(z)) and how many normal mode amplitudes «; are
not zero. In particular, if a; = 0 for any index j except a finite set S (tangential sites),
and the frequency vector fi := (f1;);jes is nonresonant, then the linear solutions are
quasi-periodic in time.

The main question we pose is the following:

e Do small amplitude quasi-periodic solutions of the nonlinear wave equation ((1.1.1))
exist?

The main result presented in this Monograph (Theorem actually proves that small
amplitude quasi-periodic solutions of the linear wave equation , which are sup-
ported on finitely many indices j € S, persist, slightly deformed, as quasi-periodic solutions
of the nonlinear wave equation , with a frequency vector w close to ji, for “generic”
potentials V() and coefficients a(z) (Theorem[1.2.5) and “most” amplitudes (ov;)jes.

The potentials V' (x) and the functions a(x) such that Theorem holds are generic
in a very strong sense; in particular they are C*°-dense, according to Definition [1.2.2} in
the set

(PN C=(T%) x C=(T?)
where P := {V(z) € H(T%) : —A+V(z) > 0}, see (1.2.38).

Theorem is a KAM (Kolmogorov-Arnold-Moser) type perturbative result. We
construct recursively an embedded invariant torus which supports quasi-periodic solutions
of (1.1.1]) with frequency vector w (to be determined), by a modified Nash-Moser iterative

scheme for the search of zeros
F(Ai)=0
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of a nonlinear operator F acting on scales of Sobolev spaces of functions 7, depending on
a suitable parameter A, see Chapter [f] As in a Newton scheme, the core of the problem
consists in the analysis of the linearized operators

diF(A;Z)

at any approximate solution ¢ at each step of the iteration, and proving its approximate
invertibility, for most values of the parameters, with quantitative tame estimates for the
approximate inverse in high Sobolev norms. The approximate inverse will be unbounded,
i.e. it loses derivatives, due to the presence of small divisors. As we shall describe in
detail in section [I.5] the construction of an approximate inverse for the linearized operators
obtained from is a subtle problem due to complicated resonance phenomena between
the frequency vector w of the expected quasi-periodic solutions and the multiple normal
mode frequencies of oscillations, shifted by the nonlinearity, and the fact that the normal
mode eigenfunctions W;(z) are not “localized close to the exponentials”.

We now make a short historical introduction to KAM theory for partial differential
equations, that we shall expand in section [[.3] As we already mentioned in the preface,
in these small divisors problems for PDEs, as , the space dimension d =1 or d > 2
makes a fundamental difference, due to the very different properties of the eigenvalues and
eigenfunctions of the Sturm-Liouville operator —A + V(z) on T for d = 1 and d > 2.

The first KAM existence results of quasi-periodic solutions were proved by Kuksin [93],
see also [95], and Wayne [115] for 1-d wave and Schrédinger (NLS) equations on the interval
z € [0,7] with Dirichlet boundary conditions and analytic nonlinearities, see (1.3.22)-
(1.3.23). These pioneering theorems were limited to Dirichlet boundary conditions because
the eigenvalues /L]2~ of the Sturm-Liouville operator —0,, + V' (x) had to be simple. Indeed
the KAM scheme in [95], [115], see also [103], reduces the linearized equations along the
iteration to a diagonal form, with coefficients constant in time, requiring “second-order
Melnikov” non-resonance conditions, which concern lower bounds for differences among the
linear frequencies. In these papers the potential V() is used as a parameter to impose non-
resonance conditions. Once the linearized PDEs obtained along the iteration are reduced to
diagonal, constant in time, form, it is easy to prove that the corresponding linear operators
are invertible, for most values of the parameters, with good estimates of their inverses in
high norms (with of course loss of derivatives). We refer to section for a more detailed
explanation of the KAM reducibility approach.

Subsequently these results have been extended by Pdschel [104] for parameter inde-
pendent nonlinear Klein-Gordon equations like (1.3.31)), and by Kuksin-Poschel [96] for
NLS equations like ([1.3.30]), using Birkhoff normal form techniques to verify (weak) non-
resonance conditions among the perturbed frequencies, tuning the amplitudes of the solu-
tions as parameters.

In the case x € T, the eigenvalues of the Sturm-Liouville operator —d,, + V(z) are
asymptotically double, and therefore the previous second order Melnikov non-resonance
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conditions are violated. In this case the first existence results were obtained by Craig-
Wayne [51] for time periodic solutions of analytic nonlinear Klein-Gordon equations (see
also [49] and [19] for completely resonant wave equations), and then extended by Bour-
gain [34] for time quasi-periodic solutions. The proofs are based on a Lyapunov-Schmidt
bifurcation approach and a Nash-Moser implicit function iterative scheme. The key point
of these papers is to renounce to diagonalize the linearized equations at each step of the
Nash-Moser iteration. The advantage is to require only minimal non-resonance conditions
which are easily verified for PDEs also in presence of multiple frequencies (the second order
Melnikov non-resonance conditions are not used). On the other hand, a difficulty of this
approach is that, since the linearized equations obtained along the iteration are variable
coefficients PDEs, it is hard to prove that the corresponding linear operators are invertible
with estimates of their inverses in high norms, sufficient to imply the convergence of the
iterative scheme. Relying on a “resolvent” type analysis inspired by the work of Frolich-
Spencer [66] in the context of Anderson localization, Craig-Wayne [51] were able to solve
this problem for time periodic solutions in d = 1, and Bourgain in [34] also for quasi-periodic
solutions. Key properties of this approach are:

(1) “separation properties” between singular sites, namely the Fourier indices (¢, j) of the
small divisors |(w - £)* — j*| < C in the case of (NLW);

(1) “localization” of the eigenfunctions of the Sturm-Liouville operator —0,,+V (z) with re-
spect to the exponential basis (¢'*);.cz, namely that the Fourier coefficients (V) converge
rapidly to zero when ||k| — j| — oo. This property is always true if d = 1.

Property (i) implies that the matrix which represents, in the eigenfunction basis, the
multiplication operator for an analytic (resp. Sobolev) function has an exponentially (resp.
polynomially) fast decay off the diagonal. Then the “separation properties” (i) imply a
very “weak interaction” between the singular sites. If the singular sites were “too many”
the inverse operator would be “too unbounded” to prevent the convergence of the iterative
scheme. This approach is particularly inspiring in presence of multiple normal mode fre-
quencies and it stands at the basis of the present Monograph. We describe it in more detail
in section [[4l

Later on, Chierchia-You [45] were able to extend the KAM reducibility approach to
prove existence and stability of small amplitude quasi-periodic solutions of 1-d NLW on T
with an external potential. We also mention the KAM reducibility results in Berti-Biasco-
Procesi [I7]-[18] for 1-d derivative wave equations.

In the case the space dimension d is > 2 major difficulties are:

1. the eigenvalues u? of —A 4+ V(z) in (1.1.5) may be highly degenerate, or not suffi-
ciently separated from each other in a suitable quantitative sense, required by the
perturbation theory developed for 1-d-PDEs;
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2. the eigenfunctions V,;(z) of —A + V() may be not “localized” with respect to the
exponentials, see [61].

As discussed in the preface, if d > 2, the first KAM existence result for nonlinear
wave equations has been proved for time periodic solutions by Bourgain [35], see also the
extensions in [21], [25], [71]. Concerning quasi-periodic solutions in d > 2, the first existence
result was proved by Bourgain in Chapter 20 of [40], for wave type equations of the form

Uy — Au+ Myu+eF'(u) =0

where M, = Op(o;) is a Fourier multiplier supported on finitely many sites S C Z?, i.e.
o; =0,V) € Z4 \'S. The oj, j € S, are used as a parameter, and F' is a polynomial
nonlinearity. Notice that the linear equation u; — Au + M,u = 0 is diagonal in the
exponential basis 7%, j € Z¢, unlike the linear wave equation . We also mention the
paper by Wang [113] for the completely resonant NLS and the Anderson localization
result of Bourgain-Wang [42] for time quasi-periodic random linear Schrédinger and wave
equations.

As already mentioned, a major difficulty of this approach is that the linearized equations
obtained along the iteration are PDEs with variable coefficients. A key property which
plays a fundamental role in [40] (as well as in previous papers as [37] for NLS) for proving
estimates for the inverse of linear operators

In((w-0,)* — A+ M, + eb(ep, :E))IHN ,
(see (0.0.10))) is that the matrix which represents the multiplication operator for a smooth
function b(x) in the exponential basis {7}, j € Z% has a sufficiently fast off-diagonal
decay. Indeed the multiplication operator is represented in Fourier space as a convolution
operator with a Toplitz matrix (l;j_j/)mfezd, with entries given by the Fourier coefficients
b, of the function b(x), constant on the diagonal j — j* = J. The smoother the function
b(z) is, the faster is the decay of b;_; as [j — j'| — +0o. We refer to section (1.4 for more
explanations.

Weaker forms of this property, as for example those required in Berti-Corsi-Procesi
[26], [31] may be sufficient for dealing with the eigenfunctions of —A on compact Lie
groups. However, any possible off-diagonal decay-property may lack for the matrix elements
(V;,b(x)¥,/) > representing the multiplication operator with respect to the basis of the
eigenfunctions W;(x) defined in (T.1.5) of —A + V(z) on T% d > 2. This was proved by
Feldman, Knorrer, Trubowitz in [61] and it is the difficulty mentioned in item We remark
that weak properties of localization have been proved by Wang [112] in d = 2 for potentials
V() which are trigonometric polynomials.

In the present Monograph we shall not use any kind of localizations properties of the
eigenfunctions U,(z), that actually might not be true. A major reason why we are able
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to avoid the use of such properties is that our Nash-Moser iterative scheme requires only
very weak tame estimates for the approximate inverse of the linearized operators as (|1.4.0)
see the end of subsection [I.4.3] Such conditions are close to the optimal ones, as a famous
counterexample of Lojiaciewitz-Zehnder in [87] shows.

The properties of the exponential basis €77, j € Z%, play a key role also for developing
the KAM perturbative diagonalization/reducibility techniques, and, indeed, no reducibility
results are available so far for multidimensional PDEs in presence of a multiplicative poten-
tial which is not small. Concerning higher space dimensional PDEs we refer to the results in
Eliasson-Kuksin [58] for the NLS equation with a convolution potential on T%, used
as a parameter, Geng-You [68] and Eliasson-Grébert-Kuksin [56] for beam equations with
a constant mass potential, Procesi-Procesi [100] for the completely resonant NLS ,
Grébert-Paturel [75] for the Klein-Gordon equation on $* and Crébert-Paturel [76]
for multidimensional harmonic oscillators.

On the other hand, no reducibility results for NLW on T? are known so far. Actually a
serious difficulty which appears is the following: the infinitely many second order Melnikov
non-resonance conditions required by the KAM-diagonalization approach are strongly vio-
lated yet by the linear unperturbed frequencies of oscillations of the Klein-Gordon equation
uy — Au+ mu = 0, see [55]. A key difference with respect to the Schrodinger equation is
that the linear frequencies of the wave equations are ~ |j|, j € Z?, while for NLS, and beam
equation, are ~ [j|?, respectively ~ |j|*, and |j|?, |j|* are integer. Also for the multidimen-
sional harmonic oscillator the linear frequencies are, up to a translation, integer numbers.
Although no reducibility results are known so far for NLW| a result of “almost” reducibility
for linear quasi-periodically forced Klein-Gordon equations has been presented in [54], [55].

Existence of Sobolev quasi-periodic solutions for wave equations on T¢ with a time-quasi
periodic differentiable forcing nonlinearity

wy — Au+V(z)u = ef (wt,z,u), x€T¢, (1.1.7)

has been proved in Berti-Bolle [22] extending the multiscale approach of Bourgain [40].
The forcing frequency vector w, which in [22] is constrained to a fixed direction w = A,
A € [1/2,3/2], plays the role of an external parameter. In [26] a corresponding result has
been extended for NLW on compact Lie groups, in [33] for Zoll manifolds, in [29] for general
flat tori, and in [48] for forced Kirkhoff equations.

Existence of quasi-periodic solutions for autonomous non-linear Klein Gordon equations

Uy — Au+u+ 1P+ hot. =0, peN, zeT?, (1.1.8)

have been recently presented by Wang [I14], relying on a bifurcation analysis to study the
modulation of the frequencies induced by the nonlinearity «”™!, and multiscale methods
of [40] for implementing a Nash-Moser iteration. The result proves the continuation of
quasi-periodic solutions supported on “good” tangential sites.
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The papers [22]-[23] for forced NLW and NLS are the closest background of the present
Monograph. The passage to prove KAM results for autonomous nonlinear wave equations
with a multiplicative potential as is a non trivial task, since it requires a bifurcation
analysis which distinguishes the tangential directions where the major part of the oscillation
of the quasi-periodic solutions takes place, and the normal ones, see the form of the
quasi-periodic solutions proved in Theorem [1.2.1] When the multiplicative potential V()
changes, both the tangential and the normal frequencies vary simultaneously in an intricate
way (unlike the case of the convolution potential). This makes difficult to verify the non-
resonance conditions required by the Nash-Moser iteration. In particular, the choice of the
parameters adopted in order to fulfill all these conditions is relevant. In this Monograph we
choose any finite set S C N of tangential sites, we fix the potential V' (x) and the function
a(x) appearing in the nonlinearity (in such a way that generic non-resonance and
non-degeneracy conditions hold, see Theorem and then we prove, in Theorem m,
the existence of quasi-periodic solutions of (|1.1.1)) for most values of the one dimensional
internal parameter A introduced in , which amounts just to a time rescaling of the
frequency vector w. This also implies a density result for the frequencies of the quasi-
periodic solutions close to the unperturbed vector . We shall explain more in detail the
choice of this parameter in section [1.5]

1.2 Rigorous statement

In this section we state precisely the main result of this Monograph, which is Theorem
21

Under the rescaling u + eu, € > 0, the equation (|1.1.1)) is transformed into the nonlinear
wave equation

Uy — Au+V(z)u+ egle, z,u) =0 (1.2.1)
with the C'™ nonlinearity
gle,z,u) = e ?g(x, cu) = a(z)u® + O(eu) . (1.2.2)

We choose arbitrarily a finite set of indices S C N, called the “tangential sites”. We denote
by |S| € N the cardinality of S and we order the tangential sites by S = {ji,...,Js/}.
We look for quasi-periodic solutions of which are perturbations of normal modes
oscillations supported on 5 € S. We denote by

A= (i)es = (M1 - ) € RS >0, (1.2.3)

the frequency vector of the quasi-periodic solutions

>y A28 cos(uit) i), &> 0, (1.2.4)

JjEeS
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of the linear wave equation (|1.1.4)). The components of ji are called the unperturbed
tangential frequencies. We shall call the indices in the complementary set S° := N\ S, the
“normal” sites, and the corresponding p;, j € S, the unperturbed “normal” frequencies.

Since (|1.2.1)) is an autonomous PDE, the frequency vector w € RBI of its expected quasi-
periodic solutions u(wt, z) is an unknown, that we introduce as an explicit parameter in
the equation, looking for solutions u(y, z), ¢ = (1,...,¢s|) € TSI, of

(w-0,)%u— Au+ V(z)u+eg(e,z,u) = 0. (1.2.5)

The frequency vector w € RSl of the expected quasi-periodic solutions of will be
O(g%)-close to the unperturbed tangential frequency 7 in (1.2.3), see precisely —
(11.2.25)).

Since the nonlinear wave equation is time-reversible (see Appendix , it makes
sense to look for solutions of which are even in ¢. Since is autonomous, more
general solutions are obtained from these even solutions by time translation. Thus we look
for solutions u(p, z) of even in ¢. This induces a small simplification in the proof,
see remark B.1.11

In order to prove, for € small enough, existence of solutions of close to the solu-
tions of the linear wave equation , we first require non-resonance conditions
for the unperturbed linear frequencies p;, j € N, which will be verified by generic potentials
V(z), see Theorem [1.2.3]

Diophantine and 1-th order Melnikov non-resonance conditions. We assume that

e the tangential frequency vector i in ((1.2.3) is Diophantine, i.e. for some constants

Yo, To > 07
I % vee Z8N\ {0}, (f) := max{L,|¢]}, (1.2.6)
where |€| := max{|(|,...,|{;s)|}. Notice that (L.2.6) implies, in particular, that the

unperturbed tangential frequencies p;, j € S, are simple.

e the unperturbed “first order Melnikov” non-resonance conditions hold:

i C+p| > ez j¢s. (1.2.7)

(e’

The non-resonance conditions (1.2.6)), (1.2.7) imply, in particular, that the linear equation
(1.1.4) has no other quasi-periodic solutions with frequency ji, even in ¢, except the trivial

ones (1:24).

In order to prove “separation properties” of the small divisors as required by the mul-
tiscale analysis that we perform in Chapter , we require, as in [22], that
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e the tangential frequency vector i in (|1.2.3) satisfies the quadratic Diophantine con-
dition

[SIAS[+1)

V(n,p) € ZxZ =2 \{0}. (1.2.8)

70
’n—k E Pijhitts| = ek
i,jES,i<j p

The non-resonance conditions (1.2.6)), (1.2.7) and ([1.2.8)) amount to assumptions on the

potential V' (z), which are “generic” in the sense of Kolmogorov measure, see [89] where
(11.2.6), are proved to hold for most potentials. Genericity results are stated in
Theorem [I.2.3] proved in Chapter [12]

We underline that along the Monograph the constant 79 > 0 in ((1.2.6)), (1.2.7)), (1.2.8))
is regarded as fixed, and we shall often omit to track its dependence in the estimates.

Birkhoff matrices. We are interested in quasi-periodic solutions of which bifurcate
for small £ > 0 from a solution of the form of the linear wave equation. In order to
prove their existence, it is important to know precisely how the tangential and the normal
frequencies change with respect to the unperturbed actions (§;);es, under the effect of the
nonlinearity ”a(z)u® + O(*u*). This is described in terms of the “Birkhoff” matrices

A = (MEIGiMJI)j,keS, B = (1 Ghp ") jese wes (1.2.9)

where

(3/2) (W2, a() W), #F,
(342, a() V)2, j =k

and U (x) are the eigenfunctions of —A+V () introduced in (L.1.5)). Notice that the matrix
(G.) depends on the function a(x) and the eigenfunctions ¥;, thus on the potential V(z).
The |S| x [S| symmetric matrix o is called the “twist”-matrix. The matrices <, Z describe
the shift of the tangential and normal frequencies induced by the nonlinearity a(z)u® as
they appear in the fourth order Birkhoff normal form of —. Actually, we prove
in section that, up to terms 0(54), the tangential frequency w of a small amplitude

quasi-periodic solution of (1.1.1])-(1.1.2)) close to (|1.2.4)) is given by the action-to-frequency

map

Gl = Gl(V,a) := { (1.2.10)

i+ (), ¢eRP (1.2.11)

On the other hand the perturbed normal frequencies are shifted by the matrix % as de-
scribed in Lemma [7.3.2l We assume that

e (Twist condition)
det.o/ #£0, (1.2.12)

and therefore the action-to-frequency map in (1.2.11)) is invertible. The non-degeneracy, or
“twist”-condition ([1.2.12)), is generically satisfied by choosing the potential V(x) and the
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function a(z), as stated in Theorem [1.2.3] (see in particular Corollary [12.1.10] and remark
12.1.11).

Second order Melnikov non-resonance conditions. We also assume second order
Melnikov non-resonance conditions which concern only finitely many unperturbed normal
frequencies. We have first to introduce an important decomposition of the normal indices
j € S°. Note that, since p; — +00, the indices j € S° such that p; — (B4 7'ji); < 0 are
finitely many. Denoting

—g:=min {p; — (B '1);,j €S}, (1.2.13)
we split the normal indices as
S¢=FuUG, G:=S°\F, (1.2.14)

where

F={jes: |u— (B )| <o}
G .= {j €Sy — (Bt ), >g}.

The set F is always finite, and it is empty if g < 0. The relevance of the decomposition
(1.2.14)) of the normal sites, concerns the variation of the normal frequencies with respect
to the length of the tangential frequency vector, as we describe in (1.5.24]) below, see also
Lemma If all the p; — (B ' [1); (j € S°) were positive, then, by (1.5.24)), one could
directly rely on positivity arguments as in [22], [23], used in the forced case to verify the
measure estimates. In general g > 0 and we shall be able to decouple, for most values of the
parameter A, the linearized operators obtained at each step of the nonlinear Nash-Moser
iteration, acting in the normal subspace Hg, along Hy and its orthogonal Hy = Hg. We
discuss the relevance of this decomposition in section [I.5]

(1.2.15)

We assume the following

e unperturbed “second order Melnikov” non-resonance conditions:
7 O+ 1y — | > # (k) € ZF < FxS°, (6,5,k) #(0,4,5), (1.2.16)

- 0+ g+ o] 2%, V(0,5 k) € ZF x F x §°. (1.2.17)

Note that implies, in particular, that the finitely many normal frequencies
wi, j € F, are simple (clearly all the other eigenvalues i, j ¢ F, could be highly degenerate).

In order to verify a key positivity property for the variations of the restricted linearized
operator with respect to A (Lemma , we assume further
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e unperturbed “second order Melnikov” non-resonance conditions:

7 4 gy — ] > # V(¢ 5, k) € Z x (M\ F) x §°, (1.2.18)
(67]’7 k) % (07j7j)7
- €+ + ] > % (¢4, k) € Z x (M\F) x §°, (1.2.19)
where
M:={jeS: |j|<C} (1.2.20)

and the constant C, := C1(V,a) > 0 is taken large enough such that F C M and
(7.1.8) holds. Notice that the set M depends on (V,a), but can be chosen to be
locally constant in (V,a); it will be fixed in Lemma [7.1.1]

Clearly the conditions ((1.2.16])-(1.2.17) and (1.2.18)-(|1.2.19) could have been written to-
gether, requiring such conditions for j € M, without distinguishing the cases 7 € F and
j € M\ F. However, for conceptual clarity, in view of their different role in the proof, we
prefer to state them separately. The above conditions ((1.2.16])-(1.2.19)) on the unperturbed
frequencies allow to perform one step of averaging and so to diagonalize, up to O(s?), the
normal frequencies supported on M, see Proposition [7.3.1. This is the only step where
conditions (|1.2.18))-(1.2.19) play a role. Conditions ((1.2.16])-(1.2.17)) are used also in the
splitting step of Chapter [9, see Lemma [9.3.3

Conditions ([1.2.16])-(1.2.19) depend on the potential V' (z) and also on a(x), because the
constant C; in ([1.2.20)) (hence the set M) depends on a(z), actually on ||a|z~ and [|A™].
Given (Vp, ap) such that the matrix o/ defined in is invertible and s > d/2, the set
M can be chosen constant in some open neighborhood U of (V, ag) for the H*-norm. In U,
conditions (1.2.16)-(1.2.19)) are generic in V' (x), as it is proved in Chapter [12| (see Theorem
12.3).

Non-degeneracy conditions. We also require the following finitely many

e non-degeneracy conditions:

(j — (Bt R)y) = (e — (B ) #0, Vi keF, j#k, (1.2.21)
(:uj o [’%d_lﬂb) + (:uk - ['@”Q{_lﬂ]k) 7é 0, VjkeF, (1222)

where &7 and 2 are the Birkhoff matrices defined in (|1.2.9)).

Such assumptions are similar to the non-degeneracy conditions required for the continuation
of elliptic tori for finite dimensional systems in [53], [I02] and for PDEs in [96], [104], [16].

Notice that the finitely many non-degeneracy conditions (|1.2.21]) depend on the potential
V(z) and the nonlinearity a(z)u® and we prove in Theorem that they are generic in
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(V,a).

Parameter. We now introduce the 1-dimensional parameter that we shall use to perform
the measure estimates.

In view of (1.2.11]) the frequency w has to belong to the cone of the “admissible”
frequencies fi + %4/ (lel), more precisely we require that w belongs to the image

A=f+ a%zf([%,zl] 'Sl) C R (1.2.23)

of the compact set of actions & € [1/2, 4]l under the approximate action-to-frequency map
(1.2.11). Then, in view of the method that we shall use for the measure estimates for the
linearized operator, we look for quasi-periodic solutions with frequency vector

w=(1+Nw., A€ A=)\, (1.2.24)
constrained to a fixed admissible direction
o=+, ¢e([1,2]F), (1.2.25)

(notice that in general we can not take w. = f, because ( = 0 might not belong to
o7 ([1,2]1)). We fix ¢ below so that the Diophantine conditions (1.2.29)-(T.2.30) hold.

In (1.2.24) there exists Ao > 0 small, independent of ¢ > 0 and of ¢ € 7 ([1,2]¥), such
that,

VAEA =[N, ], w=(1+Nw. €A (1.2.26)
are still admissible (see ([1.2.23])) and, using ((1.2.25)),

(14+2Nw. = i+ 2 (§)  +—=

E=¢N) = (1+ENT ' C+ A . (1.2.27)

We shall use the 1-dimensional “parameter” A € A := [—\g, \g] in order to verify all the
non-resonance conditions required for the frequency vector w in the proof of Theorem [1.2.1]

For £ small fixed, we take the vector ( such that the direction w, in (|1.2.25]) still verifies
Diophantine conditions like (|1.2.6)), (1.2.8]) with the different exponents

M =%/2, 71 :=310+|S|(|S|+1)+5>m, (1.2.28)

namely
e - £] > <Z>1ﬁ . wee P {0}, (1.2.29)
S @) @)] = e, Vnp) €Zx 27T\ {0} (1.2.30)

(p)™

1<i<j<S]
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This is possible by Lemma 2.3.1l Actually the vector @. = ji+ ¢ satisfies (T.2.29)-(T.2.30)
for all ¢ € o7/([1,2]"!) except a small set of measure O(¢). In (1.2.30), we denote, for
i=1,...,|S|, the i-component (@.); = p;, + £>¢;, where jy, ... , Jis| are the tangential sites

ordered according to ([1.2.3)).

Main result. We may now rigorously state the main result of this Monograph, concerning
existence of quasi-periodic solutions of the nonlinear wave equation (1.1.1). Let us define
the Sobolev spaces

H® = H(TE! x T R)
- {“(%x) = > g @Il = Y (i) < oo, (1.2.31)

(£,5)€ZISI x 74 iezlsl+d

U_; = ﬂi) Vi .= (f,]) S Z'Sl X Zd}

where
<Z> = maX(|€|7 |J|a ]-) ) |.7| = ma‘X{Ullv SRR |jd|} :
We look for solutions of the equation ((1.2.5)) in #* for some

s> 59> (|S|+d)/2, (1.2.32)
so that H*(TIEH) — CO(TI*4) and H* is an algebra.

Theorem 1.2.1. (Quasi-periodic solutions for the nonlinear wave equatlon g)
Fiz finitely many tangential sites S C N Take the multiplicative potential V (z (T% R
such that the positivity condition ) holds, the unperturbed frequency fuector e R‘ m
3)) satisfies the Diophantine condztzons -, - and such that the unperturbed
first and second order Melnikov non-resonance conditions (1.2.7), (1.2.16))-(1.2.19) hold.
Assume also the twist condition (1.2.12)) and the finitely many non-degeneracy conditions
(T221)-(1.2.22). Fiz @, ==+ %C, ¢ € ([1,2]®), as in (1.2.25) such that the Diophan-
tine conditions (1.2.29)-(1.2.30)) hold. There exist 5 > sy and a Cantor like set G-, C A
(the set A is fized in ) with asymptotically full measure, i.e.

IANGe¢e| =0 as €—0,

such that, for all X € G, there exists a solution u., € C™ of (1.2.5), even in ¢, with

frequency vector
w= 14N, @ =p+e,
of the form
Uen(py@) = 3y P2 cos(i0,) W5 () + 1, ) (12.33)

JES
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where & == £(\) € [1/2,4]" is given in (T.2.27) and ||re||s — 0 as e — 0. As a conse-
quence cu. \(wt, ) is a quasi-periodic solution of the nonlinear wave equation (1.1.1)) with
frequencies w = (1 + &*\)@,.

Theorem [1.2.1]is a direct consequence of Theorem [5.1.2]
Let us make some comments on the result.

1. (Measure estimate of G. ) The speed of convergence of |A\ G.¢| to 0 does not
depend on (. More precisely (70,71, 70,71 being fixed) there is a map ¢ — b(e),
satisfying liH(l) b(e) = 0, such that, for all ¢ € <7([1,2]'¥!) so that the vector @, = fi+&%¢

e—
satisfies the Diophantine conditions ((1.2.29))-(1.2.30]), we have the measure estimate

[AN Gzl < b(e).

2. (Density) Integrating in A\ along all possible admissible directions @w. in (1.2.25)),
we deduce the existence of quasi-periodic solutions of ((1.1.1)) for a set of frequency
vectors w of positive measure. More precisely, defining the convex subsets of RIS/,

Co=pn+RyCy,
Cri= o/ ([L2]F) + Afi= {C+ M Ce ([1,2]°), A e A},

the set €2 of the frequency vectors w of the quasi-periodic solutions of ([1.1.1)) provided
by Theorem has Lebesgue density 1 at i in Cs, i.e.

lim —

r=0+|Co N B(g, )|

(see the proof below Theorem [5.1.2). Moreover, we restrict ourself to ¢ € <7 ([1, 2]
just to fix the ideas, and we could replace this condition by ¢ € @ ([r, R]|®)), for any
0 < r < R (at the cost of stronger smallness conditions for Ay and ¢ if 7 is small and

(1.2.34)

=1 (1.2.35)

R is large). Therefore we could obtain a similar density result with Cj := i+ o/ (R'E')
instead of Cs.

3. (Regularity) Theorem also holds if the nonlinearity g(x,u) and the potential
V(z) in (L.1.1]) are of class C for some ¢ large enough, proving the existence of a
solution u. y in H®, see remark [11.2.9

4. (Lipschitz dependence) The solution w. ) is a Lipschitz function of A € G, with
values in any H®, s > s.

Theorem below proves that, for any choice of finitely many tangential sites S C N,
all the non-resonance and non-degeneracy assumptions required in Theorem|[1.2.1{are gener-
ically verified varying the potential V(x) and the function a(x) present in the nonlinearity
g(z,u) = a(x)u® + O(u*) in (1.1.2). In order to state a precise result we anticipate the
following definition.
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Definition 1.2.2. (C*°-dense open) Given an open subset U of H*(T?) (resp. H*(T?) x
H*(T%)) a subset V of U will be called C*-dense open in U if

1.V is open for the topology defined by the H*(T%)-norm,
2.V is C®-dense in U, in the sense that, for any w € U, there is a sequence (h,) €

C>®(TY) (resp. C=(T?) x C*(T%)) such that w + h, € V, for alln € N, and h,, — 0
i H" for any r > 0.

Let s > d/2 and define the subset of potentials
P:={VeH (T : —A+V(z)>0} (1.2.36)
which is open in H*(T%) and convex, thus connected. Fized a finite subset S C N of

tangential sites, consider the set G of potentials V(z) and functions a(z) such that the
conditions required in Theorem hold, namely

G = {(V(x),a(x)) € P x H*(T?) : there are 79,79 > 0 such that
(1.2.37)

([T2.6)-(T2.8), (T.2.12), (T.2.16)-(T.2.19), (T.2.21)-(T.2.22) hold} .

Given a subspace E of L*(T%) we denote by Ez* its orthogonal with respect to the L?
scalar product.

Theorem 1.2.3. (Genericity) Let s > d/2. The set
G () (C=(T%) x C=(T) is C®—dense in (PN C(T%)) x C*(T*) (1.2.38)

where P C H*(T?) is the open and connected set of potentials V(x) defined in (1.2.36)).
More precisely, there is a C*-dense open subset G of P x H*(T%) and a |S|-dimensional
linear subspace E of C°°(T?) such that, for all va(x) € B2 N H¥(TY), a(z) € H*(TY), the
Lebesque measure (on the finite dimensional space E ~ RI)
{vneE : (v1+v2,a)eg\§}}:0. (1.2.39)
Theorem [1.2.3|is proved in Chapter [12|

In order to introduce the reader to the topic, we first provide a non technical survey
about the main methods and results in KAM theory for PDEs.

As already mentioned, in a Newton-Nash-Moser iterative scheme, a key step for the
existence proof of quasi-periodic solutions consists in the analysis of the linearized operators
obtained at each step of the iteration, and proving its approximate invertibility, for most
values of suitable parameters, with quantitative estimates for the inverse in high norms.
For achieving this task two main approaches have been developed:

1. the “reducibility” approach, that we describe in section 1.3}

2. the “multiscale” approach, presented in section

In section [1.5] we shall provide a detailed account of the proof of Theorem [1.2.1
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1.3 The reducibility approach to KAM for PDEs

The goal of this section is to present the perturbative reducibility approach for a time
quasi-periodic linear operator (subsection [1.3.1)) and then describe its main applications to
KAM theory for PDEs (subsection |1.3.2]).

Transformation laws. Consider a quasi-periodically time dependent linear system
u+ Alwt)lu=0, weH, (1.3.1)

where, for any ¢ € T, v € N, A(p) is a linear operator acting on a phase space H,
which may be a finite or infinite dimensional Hilbert space with scalar product (, ), and
w € R"\{0} is the frequency vector. We suppose that w is a nonresonant vector, i.e.
w-l#0,V0 e 7"\ {0}, thus the linear flow {wt};cr densily fills the torus T”. Under a
quasi-periodically time dependent transformation

u = d(wt)[v] (1.3.2)

where ®(p) : H — H, ¢ € T", are invertible linear operators of the phase space (or of
dense subspaces), system ([1.3.1]) transforms into

vy + B(wt)v =0 (1.3.3)
with the new linear operator

B(p) = 07 () (w - 9,2) () + () ' A(p)D() - (1.3.4)

Remark 1.3.1. Suppose that H is endowed with a symplectic form Q defined by Q(u,v) :=
(J ru,v), Yu,v € H, where J is an antisymmelric, non-degenerate operator. If A(wt) is
Hamiltonian, namely A(wt) = JS(wt) where S(wt) is a (possibly unbounded) self-adjoint
operator, and ®(wt) is symplectic, then the new operator B(wt) is Hamiltonian as well, see
Lemma[3.2.3.

Reducibility. If the operator B in (1.3.3)) is a diagonal, time independent operator, i.e.
B(wt) = B = Diag;(b;) (1.3.5)

in a suitable basis of H, then (1.3.3]) reduces to the decoupled scalar linear ordinary differ-
ential equations
i)j + bﬂ}j =0 (136)

where (v;) denote the coordinates of v in the basis of eigenvectors of B. Then ([1.3.3) is
integrated in a straightforward way,

v;(t) = e"i;(0),

and all the solutions of system ([1.3.1]) are obtained via the change of variable ([1.3.2). We
say that ((1.3.1) has been reduced to constant coefficients by the change of variable ®.
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Remark 1.3.2. If all the b; in (1.3.6) are purely imaginary, then the linear system ([1.3.1])

is stable (in the sense of Lyapunov), otherwise, it is unstable.

We shall also say that system (1.3.1]) is reducible if B is a constant coefficient block-
diagonal operator, i.e. b; in (1.3.5))-(1.3.6|) are finite dimensional matrices, constant in time.
The spectrum of each matrix b; determines the stability /instability properties of the system
(T31).

If w € R (time-periodic forcing) and the phase space H is finite dimensional, the classical
Floquet theory proves that any time periodic linear system is reducible, see e.g. [59],
Chapter I. On the other hand, if w € R”, v > 2, it is known that there exist pathological
non reducible linear systems, see e.g. [44]-Chapter 1.

If A(wt) is a small perturbation of a constant coefficient operator, perturbative algo-
rithms for reducibility can be implemented. In the next subsection we describe this strategy
in the simplest setting. This approach was systematically adopted by Moser [99] for devel-
oping finite dimensional KAM theory (in a much more general context).

1.3.1 Perturbative reducibility

Consider a quasi-periodic operator
w - 0y + A(p) where  A(¢) =D+ R(y), ¢e€T”, (1.3.7)
is a perturbation of a diagonal operator
D = Diag(id;);jez = Op(id;), d; €R, (1.3.8)

where the eigenvalues id; are simple and constant in ¢. The p-dependent family of operators
R(p) acting on H is a small perturbation of D.

Remark 1.3.3. We suppose that the d; are real because this is the common situation arising
for PDFEs, i.e. uw = 0 is an elliptic equilibrium for the linear system u; + Du = 0. On
the other hand, if some Imd; # 0, then there are hyperbolic directions which do not create
resonance phenomena, and perturbative reducibility theory is easier. For nonlinear systems,

this case corresponds to the search of whiskered tori, see e.g. [T3] for finite dimensional
systems, and [65)] for PDEs.

We look for a transformation ®(p), ¢ € T", of the phase space H, as in which
removes from R(y) the angles o up to terms of size ~ O(|R|?). We present below only the
algebraic aspect of the reducibility scheme, without specifying the norms.

For computational purposes, it is convenient to transform the linear system under
the flow ®r(p, 7) generated by an auxiliary linear equation

arq)F(Sp7 T) = F(SO)(I)F(% T) ) (I)F(SO’ O) =1Id, (139)
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generated by a linear operator F'(p) to be chosen (which could also be 7-dependent). This
amounts to computing the Lie derivative of A(y) in the direction of the vector field F(y).
Notice that, if F'(¢) is bounded, then the flow ([1.3.9) is well posed. This is always the case
for a finite dimensional system, but it may be an issue for infinite dimensional systems.
Given a linear operator Ag(y), the conjugated operator under the flow ®g(p, 7) gener-

ated by (T39),
A(g&, T) = @F(cp, T)AO(SO)(PF(QQ T)_l )

satisfies the Heisenberg equation

{&A(%T) = [F(¢), A, 7)]
A(p, T)jr=0 = Ao(p)

where [A, B] :== Ao B — Bo A denotes the commutator between two linear operators A, B.
Then, by a Taylor expansion, using (({1.3.10]), we obtain the formal Lie expansion

(1.3.10)

1
A(§07 7—>|7':1 = AO(SO) + AdFAo + éAd%ﬂAo + ... (1311)

where Adp[-] := [F, -]. One may expect this expansion to be certainly convergent if F' and
Ag are bounded and F' is small, in suitable norms, because the adjoint action produces, in
such a case, bounded operators Ad%[Ag], k& € N, with smaller and smaller size.

Conjugating (1.3.7) under the flow generated by (1.3.9) we then obtain an operator of
the form

w-0,+ D —w-0,F(p)+ [F(p), D]+ R(p) + smaller terms. .. . (1.3.12)

We want to choose F'(p) in such a way to solve the “homological” equation

—w - 0,F(p) + R(p) + [F(p), D] = [R] (1.3.13)
where N N ) |
7] = Ding(B(0) . R(0) 1= /T Ri(p) dg. (1.3.14)

is the normal form part of the operator R(y), independent of ¢, that we can not eliminate.
Representing the linear operators F'(¢) = (F{(¢));kez and R(p) = (R},(¢));kez as matrices,
and computing the commutator with the diagonal operator D in (|1.3.8) we obtain that
(1.3.13)) is represented as

—w - 0,F () + Ri(v) +i(d; — d) F(¢) = [R]}.,
and, performing the Fourier expansion in ¢,

Fl(o) =Y Fl(0)?, Ri(p) =Y Ri(0)e"?,

Lezvr Lezvr



CHAPTER 1. INTRODUCTION 19

it reduces to the infinitely many scalar equations
—iw - LFI(0) + RI(0) +i(d; — dp)FI(0) = [R).60o, jkeZ, (el (1.3.15)

where ;9 := 1 if £ = 0 and zero otherwise. Assuming the so called second-order Melnikov
non-resonance conditions

w0+ dj — dy > % (4,4, k) # (0,7,7) (1.3.16)

for some v, 7 > 0, we can define the solution of the homological equations (1.3.15]) (see
(11.3.14)
—RI(0) _ .
=~ YVl g,k 0
0 V(5. k) =(0,7,7).
Therefore the transformed operator (|1.3.12)) becomes

w -0, + D + smaller terms (1.3.18)

where

is the new diagonal operator, constant in ¢. We can iterate this step to reduce also the
small terms of order O(|R|*y ") which are left in (1.3.18)), and so on. Notice that, if R(y) is
a bounded operator and depends smoothly enough on ¢, then F'(¢) defined in , with
the denominators satisfying , is bounded as well and thus certainly defines
a flow by standard Banach space ODE techniques. On the other hand the loss of time
derivatives induced on F(p) by the divisors in can be recovered by a smoothing

procedure in the angles ¢, like a truncation in Fourier space.

Remark 1.3.4. If the operator A(y) in (1.3.7)) is Hamiltonian, as defined in remark
(with a symplectic form J which commutes with D), then F(yp) is Hamiltonian, its flow
G p(p,7) is symplectic, and the new operator in (1.3.18)) is Hamiltonian as well.

In order to continue the iteration one also needs to impose non-resonance conditions
as in at each step and therefore we need information about the perturbed normal
form D, in , in particular the asymptotic of [R]; If these steps work, then, after
an infinite iteration, one could conjugate the quasi-periodic operator to a diagonal,
constant in ¢, operator of the form

w - 0, + Diag;(id), id® =id;+ [R)+.... (1.3.20)
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At this stage, imposing the first order Melnikov non-resonance conditions

w4+ d®| > = VL],

({0
the diagonal linear operator is invertible with an inverse which loses 7 time-
derivatives. Verifying that all the changes of coordinates that have been constructed it-
eratively to conjugate ((1.3.7) to (1.3.20) map spaces of high regularity in itselfs, this ap-
proach finally enables to prove the existence of an inverse of the initial quasi-periodic linear
operator (|1.3.7)) which satisfies tame estimates in high norms (with loss of 7 derivatives).

This is the essence of the Newton-Nash-Moser-KAM perturbative reducibility scheme,
that has been used for proving KAM results for 1d NLW and NLS equations with Dirichlet
boundary conditions in [93], [115], [103], as we shall describe in the next section.

The following questions arise naturally:

1. What happens if the eigenvalues d; are multiple ¢ This is the common situation for
1-d PDEs with periodic boundary conditions or in higher space dimensions. In such
a case it is conceivable to reduce w- 0, + A(p) to a block-diagonal normal form linear
system of the form where d’_ are finite dimensional matrices.

2. What happens if the operator R(y) in (1.3.7)) is unbounded ¢ This is the common
situation for PDEs with nonlinearities which contain derivatives. In such a case also
the operator F(y) defined in (1.3.17)) is unbounded and therefore (|1.3.9)) could not

define a flow.

3. What happens if, instead of the Melnikov non-resonance conditions , we have
only N

|w£+dj dk' ZW? V(&j,k)#(@,j,j), (1321)

for some d > 0, which induce a loss of space derivatives ¢ This is the common

situation when the dispersion relation d; ~ 7%, o < 1, has a sublinear growth. Also

in this situation the operator F(¢) defined in would be unbounded. This

situation appears for example for pure gravity water waves equations.

We describe below some answers to the above questions.

1.3.2 Reducibility results

We now present the main results about KAM theory for PDEs based on the reducibility
scheme described in the previous section.
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KAM for 1d NLW and NLS with Dirichlet boundary conditions

The iterative reducibility scheme outlined in section has been effectively implemented
by Kuksin [93] and Wayne [115] for proving existence of quasi-periodic solutions of 1-d
semilinear wave

Yit — You T V(2)y +f(x,y) =0, y(0)=y(r)=0, (1.3.22)
and Schrodinger equations
i — Uge + V(2)u+ef(Jul)u=0, u(0)=u(r)=0, (1.3.23)

with Dirichlet boundary conditions. These equations are regarded as a perturbation of the
linear PDEs
Yt — You T V(X)y =0, iy — Uy + V(2)u =0, (1.3.24)

which depend on the potential V' (x), used as a parameter.
The linearized operators obtained at an approximate quasi-periodic solution are, for
NLS,

h—iw - Osh — hyy + V(2)h + eq(@, )b + ep(p, x)h (1.3.25)
with ¢(p,z) € R, p(p,z) € C, and, for NLW,
Yy = (W 0,)%Y = Yoo + V(2)y + calp, 2)y (1.3.26)

with a(p, z) € R, that, in the complex variable

h =Dy +iD,*y;, Dy:=+/—-A+V(z),

assumes the form

his - &ph+iDvh+i%D;%a(go,x)D;%(thﬁ). (1.3.27)

Coupling these equations with their complex conjugated component, we have to invert the

quasi-periodic operators, acting on (%), given, for NLS, by
10z — 1V (z) 0 (e, x)  ip(p, @)
w0t ( 0 —i0z, +iV(I)) ) (—iﬁ(so,x) —ig(p, ) (13.28)
and, for NLW,

_ iDy 0 e -1 (alpx) alpz) \ -3
¢ aWL( 0 —iDv>+12DV (—a(so,x) ~alp.x)) PV 1:3:29)



CHAPTER 1. INTRODUCTION 22

which have the form with an operator R(y) which is bounded. Actually notice that
for NLW the perturbative term in ([1.3.29)) is also 1-smoothing. Moreover the eigenvalues
,u?, j € N\{0}, of the Sturm-Liouville operator —0d,, + V(z) with Dirichlet boundary
conditions are simple and the quasi-periodic operators and take the form
—, where the eigenvalues of D are

:i:iu?, u? ~ j2, for NLS, +ipj, pj~ j, for NLW .

Then it is not hard to impose second order Melnikov non-resonance conditions as in .
In view of these observations, it is possible to implement the KAM reducibility scheme
presented above to prove the existence of quasi-periodic solutions for ([1.3.22))-(1.3.23) (ac-
tually the KAM iteration in [93], [I15] is a bit different but the previous argument catches
its essence).

Later on these results have been extended in Kuksin-Péschel [96] to parameter indepen-
dent Schrodinger equations

{iut = Ugy + f(|u|2)u7
u(0) =u(m) =0,

where f(0) =0, f/(0)#£0, (1.3.30)

and in Poschel [104] to nonlinear Klein-Gordon equations
Yit — Yoo + my =y° +hot, y(0)=y(r)=0. (1.3.31)
The main new difficulty of these equations is that the linear equations
Wy = Ugz, Yot — Yaw +my =0,

have resonant invariant tori. Actually all the solutions of the first equation,

u(t,z) = Zuj(O)eijzteijx, (1.3.32)
JEL

are 2m-periodic in time (for this reason is called a completely resonant PDE) and
the Klein-Gordon linear frequencies 1/j? + m may be resonant for several values of the
mass m. The new key idea in [104], [96] is to compute precisely how the nonlinearity in
(1.3.30)-(1.3.31)) modulates the tangential and normal frequencies of the expected quasi-
periodic solutions. In particular, a Birkhoff normal form analysis enables to prove that
the tangential frequencies vary diffeomorphically with the “amplitudes” of the solutions.
This non-degeneracy property allows then to prove that the Melnikov non-resonance con-
ditions are satisfied for most amplitudes. We notice however the following difficulty for the
equations ([1.3.30)-(1.3.31)) which is not present for (1.3.22)-(1.3.23): the frequency vector
w may satisfy only a Diophantine condition with a constant vy which tends to 0 as
the solution tends to 0 (the linear frequencies in are integers), and similarly for the
second order Melnikov conditions . Notice that the remainders in have size
O(|R|*y™ ") and, as a consequence, careful estimates have to be performed to overcome this
“singular” perturbation issue.
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Periodic boundary conditions x € T

The above results do not apply for periodic boundary conditions x € T because two eigen-
values of —0,, + V(z) coincide (or are too close), and thus the second order Melnikov non
resonance conditions are violated. This is the first instance where the difficulty
mentioned in item [I] appears.

Historically this difficulty was first solved by Craig-Wayne [51] and Bourgain [34] de-
veloping a multiscale approach, based on repeated use of the “resolvent identity” in the
spirit of the work [66] by Frolich-Spencer for Anderson localization. This approach does
not require the second order Melnikov non-resonance conditions. We describe it in section
1.4] Developments of this multiscale approach are the basis of the present Monograph.

The KAM reducibility approach was extended later by Chierchia-You [45] for semi-
linear wave equations like with periodic boundary conditions. Because of the
near resonance between pairs of frequencies, the linearized operators (|1.3.26))-(1.3.27)) are
reduced to a diagonal system of 2 x 2 self-adjoint matrices, namely of the form
with d7° € Mat(2 x 2;C), by requiring at each step second-order Melnikov non-resonance
conditions of the form

o L dy = il = (LK) # (0,5, 45). (1.3.33)
Notice that we do not require in ([1.3.33]) non-resonance conditions for £ = 0 and k& = +.
Since NLW is a second order equation, the nonlinear perturbative part of its Hamiltonian
vector field is regularizing of order 1 (it gains one space derivative), see ((1.3.29)), and this is
sufficient to prove that the perturbed frequencies of ((1.3.29)) satisfy an asymptotic estimate
like
pi(e) = mj+ OCelsI™) = 11| + O(lj1 ™)

as |j| — +oo, where i denote the eigenvalues of the Sturm-Liouville operator —9,,+V ().
Thanks to this asymptotic expansion it is sufficient to impose, for each ¢ € Z”, only finitely
many second order Melnikov non-resonance conditions as ((1.3.33)), by requiring first order
Melnikov conditions like

lw -+ h| >~ (1.3.34)
for all (¢,h) € (Z" x Z) \ (0,0). Indeed, if |j|,|k| > C|¢|"y!, for an appropriate constant
C >0, we get

jw - €+ pj(e) = p(e)] = Jw - £+ [5] = [K[]| = O(1/ min([E], |j]))
(L.3.34) . . . Yo

= {077 = O(1/min([k], |j])) = 5{6) (1.3.35)

noting that [j| — |k| is an integer. Moreover if ||k| — |j|| > C|¢| for another appropriate
constant C' > 0 then |w - ¢ + p;(e) — pu(e)| > |¢|. Hence, under (1.3.34)), for ¢ given, the
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second order Melnikov conditions with time-index ¢ are automatically satisfied for all (j, k)
except a finite number.

Remark 1.3.5. If the Hamiltonian nonlinearity does not depend on the space variable x,
the equations (1.3.30))-(1.3.31) are invariant under space translations and therefore possess
a prime integral by Noether Theorem. Geng-You [67], [69] were the first to exploit such
conservation law, which is preserved along the KAM iteration, to fulfill the non-resonance
conditions. The main observation is that such symmetry enables to prove that many mono-
mials are a-priori never present along the KAM iteration. In particular, this symmetry
removes the degeneracy produced by the multiple normal frequencies.

For semilinear Schrodinger equations like ((1.3.23), (1.3.30]), the nonlinear vector field
is not smoothing. Correspondingly, notice that in the linearized operator the
remainder R((p) is a matrix of multiplication operators. In such a case the basic perturbative
estimate for the eigenvalues gives

:uj(g) = M]Q + 0(5) )

which is not sufficient to verify second order Melnikov non resonance conditions like (|1.3.33)),
in particular

w -l 4 py(e) — p—j(e)| = vEeZ"\{0}, jeN,

(0"
for most values of the parameters.

The first KAM reducibility result for NLS with £ € T has been proved by Eliasson-
Kuksin in [58] as a particular case of a much more general result valid for tori T¢ of any
space dimension d > 1, that we discuss below. The key point is to extract, using the notion
of Toplitz-Lipschitz matrices, the first order asymptotic expansion of the perturbed eigen-
values. For perturbations 1-dimensional Schrodinger equations another recent approach to
obtain the improved asymptotics of the perturbed frequencies, i.e.

1(e) = 72+ c+ 0(g/]4)),

for some constant ¢ independent of j, which allows to verify the second order Melnikov
non-resonance conditions , is developed in Berti-Kappeler-Montalto [28] via a reg-
ularization technique based on pseudo-differential ideas, that we explain below. The ap-
proach in [28] applies to semilinear perturbations (also z-dependent) of any large “finite
gap” solution of

iu, = —Opu + |ulPu +ef(x,u), z€T.

Let us explain the term “finite gap” solutions. The 1d-cubic NLS

i, = —Opeu + |ul*u, z€T, (1.3.36)
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possesses global analytic action-angle variables, in the form of Birkhoff coordinates, see [74],
and the whole infinite dimensional phase space is foliated by quasi-periodic -called “finite
gap” solutions- and almost-periodic solutions. The Birkhoff coordinates are a cartesian
smooth version of the action-angle variables to avoid the singularity when one action com-
ponent vanishes, i.e. close to the elliptic equilibrium u = 0. This situation generalizes what
happens for a finite dimensional Hamiltonian system in R*" which possesses n-independent
prime integrals in involution. According to the celebrated Liouville-Arnold theorem (see
e.g. [4]), in suitable local symplectic angle-action variables (0, ) € T" x R", the integrable
Hamiltonian H () depends only on the actions and the dynamics is described by

0=0,H(I), 1=0.

Thus the phase space is foliated by the invariant tori T" x {£}, £ € R", filled by the quasi-
periodic solutions §(t) = 0y +w(&)t, 1(t) = &, with frequency vector w(€) = (0rH)(€). The
analogous construction close to an elliptic equilibrium, where the action-angle variables
become singular, is provided by the Riissmann-Vey-Ito theorem [109], [IT1], [83], see [90]
for an introduction.

Other integrable PDEs which possess Birkhoff coordinates are KAV [90] and mKdV [91],

see Appendix [A.4]

Remark 1.3.6. The Birkhoff normal form construction of [96] discussed for the NLS equa-
tion (1.3.30]) provides, close to uw = 0, an approximation of the global Birkhoff coordinates
of the 1d-cubic NLS.

Space multidimensional PDEs

For space multidimensional PDEs the reducibility approach has been first worked out for
semilinear Schrodinger equations

—iuy = —Au+V xu+edgF(z,u,u), €T, (1.3.37)

with a convolution potential by Eliasson-Kuksin [58], [57]. This is a much more difficult
situation with respect to the 1-d-case because the eigenvalues of —A + V(z) appear in
clusters of unbounded size. This is the difficulty mentioned in item [} In such a case
the reducibility result that one could look for is to block-diagonalize the quasi-periodic
Schrodinger linear operator

h—iw-0,h — Ah+V x h+eq(p, x)h +ep(p, x)h,

i.e. to obtain an operator as with finite dimensional blocks d°, which are self-
adjoint matrices of increasing dimension as j — +o0o. The convolution potential V' plays
the role of “external parameters”. Eliasson-Kuksin introduced in [58] the notion of T6plitz-
Lipschitz matrices in order to extract asymptotic information on the eigenvalues, and so
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verify the second order Melnikov non resonance conditions. The quasi-periodic solutions of
(1.3.37)) obtained in [58] are linearly stable.

Remark 1.3.7. The reducibility techniques in [58] enable to prove a stability result for all
the solutions of the linear Schrodinger equation

i, = Au+eV(wt, ), xeT?,

with a small quasi-periodic analytic potential V (wt, ). For all frequencies w € R”, except
a set of measure tending to 0 as € — 0, the Sobolev norms of any solution u(t,-) satisfy

lu(, -)]

Subsequently for the cubic NLS equation

HS(']Td) ~ ||UJ(07 )| Hs(']l'd) s Vt € R.

i, = —Au+ |ul*u, x€T?, (1.3.38)

which is parameter independent and completely resonant, Geng-Xu-You [70] proved a KAM
result using a Birkhoff normal form analysis. We remark that the Birkhoff normal form of
(1.3.38]) is not-integrable, unlike in space dimension d = 1, causing additional difficulties
with respect to [96].
For completely resonant NLS equations in any space dimension and a polynomial non-
linearity
i, = —Au+ |u|*u, peN, reT?, (1.3.39)

Procesi-Procesi [105] realized a systematic study of the resonant Birkhoff normal form and,
using the notion of quasi-T6plitz matrices developed in Procesi-Xu [108], proved in [106],

[107], the existence of reducible quasi-periodic solutions of (|1.3.39)).
Remark 1.3.8. The resonant Birkhoff normal form of (1.3.38)) is exploited in [46], [79],

to construct chaotic orbits with a growth of the Sobolev norm. This “norm inflation” phe-
nomenon is an analogue of the Arnold diffusion problem [3] for finite dimensional Hamil-

tonian systems. Similar results for the NLS equation (1.3.39) have been proved in [78].

KAM results have been proved for parameter dependent beam equations by Geng-
You [68] and, more recently, in Eliasson-Grébert-Kuksin [56] for multidimensional beam
equations like

wy + A u +mu+ 0,G(z,u) =0, z€T?, ueR.

We also mention the work [75] of Grébert-Paturel concerning the existence of reducible
quasi-periodic solutions of Klein-Gordon equations on the sphere S¢,

Uy — Au+mu+ SMu+eg(z,u) =0, €S, uweR, (1.3.40)

where A is the Laplace-Beltrami operator and M, is a Fourier multiplier.
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On the other hand, if z € T?, the infinitely many second order Melnikov conditions,
required to block-diagonalize the quasi-periodic linear wave operator

(w-0,)> —A+V* +ea(p,x), z€T?,

are violated for d > 2, and no reducibility results are available so far. Nevertheless, results
of “almost” reducibility have been announced in Eliasson [54], Eliasson-Grébert-Kuksin
55).

Before concluding this subsection, we also mention the KAM result by Grébert-Thomann
[77] for smoothing nonlinear perturbations of the 1-d harmonic oscillator and Grébert-
Paturel [76] in higher space dimension.

1-d quasi and fully nonlinear PDEs

Another situation where the reducibility approach that we described in subsection [1.3.]
encounters a serious difficulty is when the non-diagonal remainder R(y) is unbounded. This
is the difficulty mentioned in item [2| In such a case, the auxiliary vector field F'(y) defined
in is unbounded as well. Therefore it could not define a flow, and the iterative
reducibility scheme described in subsection would formally produce remainders which
accumulate more and more derivatives.

KAM for semilinear PDEs with derivatives. The first KAM results for PDEs with
an unbounded nonlinearity have been proved by Kuksin [94] and, then, Kappeler-Péschel
[90], for perturbations of finite-gap solutions of

Up + Ugpe + Opti® + €0, (0uf)(z,u) =0, x€T. (1.3.41)

The corresponding quasi-periodic linearized operator at an approximate quasi-periodic so-
lution v has the form

h— w - 0,h 4 Opueh + 0, (2uh) + €0, (ah), a:= (Ouf)(z,u).

The key idea in [94] is to exploit the fact that the frequencies of KAV grow asymptotically
as ~ j> as j — 400, and therefore one can impose second order Melnikov non-resonance
conditions like

w432 =P >+ 307, i#7],

which gain 2 space derivatives (outside the diagonal ¢ = j), sufficient to compensate the
loss of one space derivative produced by the vector field €0,(9,f)(x,u). On the diagonal
¢ # 0,1 = j, one renounces to solve the homological equations, with the consequence that
the KAM normal form is p-dependent and one uses the so called Kuksin Lemma to invert the
corresponding quasi-periodic scalar operator. Subsequently, developing an improved version
of the Kuksin Lemma, Liu-Yuan in [86] proved KAM results for semilinear perturbations
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of Hamiltonian derivative NLS and Benjiamin-Ono equations and Zhang-Gao-Yuan [119]
for the reversible derivative NLS equation

iy + Uy = |ug)?u, u(0) =u(r)=0.

These PDEs are more difficult than KdV because the linear frequencies grow like ~ j* and
not ~ 5% and therefore one gains only 1 space derivative when solving the homological
equations.

These methods do not apply for derivative wave equations where the dispersion relation
is asymptotically linear. Such a case has been addressed more recently by Berti-Biasco-
Procesi [I7]-[I8] who proved the existence and the stability of quasi-periodic solutions of
autonomous derivative Klein-Gordon equations

Yt — Yoz + MY = 9(2, Y, Yar, Y1) (1.3.42)

satisfying reversibility conditions which rule out nonlinearities like 37, »2, for which no pe-
riodic nor quasi-periodic solutions exist (with these nonlinearities all the solutions dissipate
to zero). The key point in [I7]-[I8] was to adapt the notion of quasi-T6plitz vector field
introduced in [I0§] to obtain the higher order asymptotic expansion of the perturbed normal

frequencies

pi(e) =vj2+m+ar +0(1/j), asj— oo,
for suitable constants ai (of the size ax = O(e) of the solution y = O(e)). Thanks to
this asymptotic expansion it is sufficient to verify, for each ¢ € Z”, that only finitely many
second order Melnikov non-resonance conditions hold. Indeed, using an argument as in
(1.3.35)), infinitely many conditions in are already verified by imposing only first
order Melnikov conditions like

w-Ll+h[ =), w4 (ar —a)+h[Z )T,
for all (¢,h) € Z" x Z such that w-¢+h and w- £+ (a; —a_)+ h do not vanish identically.

KAM for quasi-linear and fully nonlinear PDEs

All the above results still concern semi-linear perturbations, namely when the number of
derivatives which are present in the nonlinearity is strictly lower than the order of the linear
differential operator. The first existence results of quasi-periodic solutions for quasi-linear
PDEs have been proved by Baldi-Berti-Montalto in [6] for fully nonlinear perturbations of
the Airy equation

U + Uggy + Ef (W T, U, Uy, Uy, Ugz) =0, x €T, (1.3.43)
and in [§] for quasi-linear autonomous perturbed KdV equations

Up + Ugge + Opti® + N (2, U, Uy, Uy, Uggr) = O (1.3.44)
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where the Hamiltonian nonlinearity

N (@, U, Uy Uy Ug) = =0y [(Ouf) (@, 0, ) — Oy (D, f) (2, 0, 1y) )] (1.3.45)

vanishes at the origin as O(u?), see [72] when N vanishes only quadratically.

The main new tool which has been introduced to solve this problem is a systematic use
of pseudo-differential calculus. The key point is to reduce to constant coefficients the linear
PDE

ur + (14 ag(wt, ) Ugee + ao(Wt, T)Uze + a1 (Wi, T)u, + ap(wt, z)u =0 (1.3.46)

which is obtained linearizing at an approximate quasi-periodic solution u(wt, z).
The coefficients a;(wt, z) = O(e), i = 0,...,3. Instead of trying to diminish the size of the
variable-dependent terms in , as in the scheme outlined in subsection —the big
difficulty [2[ would appear—, the aim is to conjugate to a system like

U + M3Ugge + Mity + Ro(wt)u =0 (1.3.47)

where m3 = 1+ O(g), m; = O(e) are constants and Rg(wt) is a zero order operator, still
time dependent. To do this, is conjugated with a time quasi-periodic change of
variable (as in (|1.3.2)))

u = ®(wt)[v] =v(t,z + f(wt, z)), (1.3.48)

induced by the composition with a diffeomorphism =z — = + S(p,x) of T, ( requiring

82| < 1). The conjugated system (1.3.3)-(1.3.4) is
v + O Hwt) (1 + az(wt, 2)) (1 + Bu(wt, 2))*)vawa (t, ¥) + lower order operators = 0
and therefore one chooses a periodic function (¢, x) such that
(1+as(e, 2))(1 + Bal(p, 2))° = ma(e)

is independent of x. Since [,(¢, x) has zero space average, this is possible with

1 dx -3
ms(p) = <E/T (1 +a3(go,x))§> :

The ¢ dependence of mg(p) can also be eliminated at the highest order using a quasi-
periodic reparametrization of time and, using other pseudo-differential transformations,
we can reduce also the lower order terms to constant coefficients obtaining . The
reduction ((1.3.47)) implies the accurate asymptotic expansion of the perturbed frequencies

p(e) = —imgj® +imyj + O(e)
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and therefore now it is possible to verify the second order Melnikov non-resonance conditions
required by a KAM reducibility scheme (as outlined in subsection [1.3.1]) to diagonalize

Ro(wt), completing the reduction of (|1.3.47)), thus (|1.3.46)).

These techniques have been then employed by Feola-Procesi [62] for quasi-linear forced
perturbations of Schrédinger equations and in [47], [63] for the search of analytic solutions
of autonomous PDEs. These kind of ideas have been also successfully generalized for un-
bounded perturbations of harmonic oscillators by Bambusi [9], [10] and Bambusi-Montalto
[13].

The KdV and the NLS equation are partial differential equations and the pseudo-
differential tools required are essentially commutators of multiplication operators and Fourier
multipliers. On the other hand, for the water waves equations, that we now present, the
theory of pseudo-differential operators has to be used in full strength.

Water waves equations

The water waves equations for a perfect, incompressible, inviscid, irrotational fluid occupy-
ing the time dependent region

D, ={(z,y) e TxR: —h<y<ntz)}, T:=T,:=R/271Z, (1.3.49)

under the action of gravity, and possible capillary forces at the free surface, are the Euler
equations of hydrodynamics combined with conditions at the boundary of the fluid:

( 1 17
0P+ = |V + :magC(—””) at y =n(t,x
AP =0 in D, (1.3.50)
0y, =0 at y = —h

\atn = ayq) - axnaa:q):c at y = n(ta ZE)

where g is the acceleration of gravity and  is the surface tension coefficient. The unknowns
of the problem are the free surface y = 7)(t, ) and the velocity potential ¢ : D, —
R, i.e. the irrotational velocity field of the fluid v = V, ,®. The first equation in (1.3.50)
is the Bernoulli condition according to which the jump of pressure across the free surface is
proportional to the mean curvature. The second equation in is the incompressibility
property divw = 0. The third equation expresses the impermeability of the bottom of the
ocean. The last condition in means that the fluid particles on the free surface
y = n(x,t) remain forever on it along the fluid evolution.

Following Zakharov [116] and Craig-Sulem [50], the evolution problem ([1.3.50) may be
written as an infinite-dimensional Hamiltonian system in the unknowns (n(t, z),v¥(t, z))
where ¥(t,z) = ®(t,x,n(t,z)) is, at each instant ¢, the trace at the free boundary of the



CHAPTER 1. INTRODUCTION 31

velocity potential. Given 7(t,z) and (¢,x) there is a unique solution ®(¢,z,y) of the
elliptic problem

AP =0 in{-h<y<n(tz)}
0, =0 ony=—h
®=v  on{y=ntu)}.
System is then equivalent to the Zakharov-Craig-Sulem system

O = G(n)y )
o 1 2 s (1.3.51)
) = —gn 2+2(1+n§)( (MY + nets)” + 5 (m>
where G(n) := G(n; h) is the Dirichlet-Neumann operator defined as
G = () = na®s), 1\ o (1.3.52)

which maps the Dirichlet datum ¢ into the (normalized) normal derivative G(n)vy at the
top boundary. The operator G(n) is linear in 9, self-adjoint with respect to the L? scalar
product, positive-semidefinite, and its kernel contains only the constant functions. The
Dirichlet-Neumann operator depends smoothly with respect to the wave profile 7, and it is
a pseudo-differential operator with principal symbol D tanh(hD).

Furthermore the equations (|1.3.51)) are the Hamiltonian system

atT/ = V¢H(nv 1/)) ) @1/) = _VUH(na ¢) (1353)

where V denotes the L*-gradient, and the Hamiltonian

1
H(n,w):Q/TwG(n,h)wdw—l—g/Tnde—l—ﬁ/T\/l—l—ngdx (1.3.54)

is the sum of the kinetic, potential and capillary energies expressed in terms of the variables

(n, %)
The water waves system ([1.3.51])-(1.3.53|) exhibits several symmetries. First of all, the

mass
/ n(r)dx
T

is a first integral of (|1.3.51). Moreover ({1.3.51)) is invariant under spatial translations and
Noether’s theorem implies that the momentum

/T nal(2)(2) da
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is a prime integral of ([1.3.53)). In addition, the subspace of functions that are even in x,

n(x) =n(=z), ) =d(-z), (1.3.55)

is invariant under (1.3.51)). In this case also the velocity potential ®(z,y) is even and 27-
periodic in x and so the z-component of the velocity field v = (®,, ®,) vanishes at x = k,
for all k& € Z. Hence there is no flow of fluid through the lines x = kw, k € Z, and a solution
of satisfying describes the motion of a liquid confined between two vertical
walls.

We also notice that the water waves system ((1.3.51))-(1.3.53)) is reversible with respect
to the involution S : (n,v) — (1, —1), i.e. the Hamiltonian H in (1.3.54) is even in 1, see
Appendix |Al As a consequence it is natural to look for solutions of satisfying

u(—t) = Su(t), i.e n(—t,x)=ntx), v(-t,x)=—(t,z) Vt,reR. (1.3.56)
Solutions of the water waves equations ([1.3.51)) satisfying (|1.3.55)) and ([1.3.56|) are called

standing water waves.

The phase space of (1.3.51]) is (a dense subspace) of
(n,¢) € HY(T) x HY(T)  where  HYT) := HY(T)/~

is the homogeneous space obtained by the equivalence relation 1 (x) ~ 15(x) if and only
if ¢1(x) — ¥o(x) = c is a constant, and H,(T) is the subspace of H'(T) of zero average
functions. For simplicity of notation we denote the equivalence class [¢)] by ¥. Note that
the second equation in is in HY(T), as it is natural because only the gradient of
the velocity potential has a physical meaning.

Linearizing ((1.3.51)) at the equilibrium (7n,v) = (0,0) we get

{ Om = G(0),

1.3.57
O = —gn + KNe ( )

where G(0) = D tanh(hD) is the Dirichlet-Neumann operator at the flat surface n = 0.
The linear frequencies of oscillations of ((1.3.57]) are

wj = \/j tanh(hj)(g + Kj%), JEZ, (1.3.58)
which, in the phase space of even functions (1.3.55)), are simple. Also notice that

|3/2

if k > 0 (capillary — gravity waves) = w; ~ |j|”/7 as |j]| = o0,

1/2

if kK =0 (pure gravity waves) =  w; ~|j|/ as|j| = o0.

KAM for water waves. The first existence results of small amplitude time-periodic
gravity standing wave solutions for bi-dimensional fluids has been proved by Plotinkov and
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Toland [101] in finite depth and by Iooss, Plotnikov and Toland in [84] in infinite depth.
More recently, the existence of time periodic gravity-capillary standing wave solutions in
infinite depth has been proved by Alazard-Baldi [I].

The main result in [30] proves that most of the standing wave solutions of the linear
system (|1.3.57]), which are Fourier supported on finitely many space Fourier modes, can be
continued to standing wave solutions of the nonlinear water-waves system for most
values of the surface tension parameter k € [k1, K.

A key step is the reducibility to constant coefficients of the quasi-periodic operator L,
obtained linearizing at a quasi-periodic approximate solution. After the introduc-
tion of a linearized Alinhac good unknown, and using in a systematic way pseudo-differential
calculus, it is possible to transform L, into a complex quasi-periodic linear operator of the
form

(h,B) > (w - By + img| D|Z (1 — KkByy)? + imy|D|2)h + R()[h, ] (1.3.59)

where m3, m; € R are constants satisfying mg &~ 1, m; &~ 0, and the remainder R(¢p) is a small
bounded operator. Then a KAM reducibility scheme completes the diagonalization of the
linearized operator L. The required second order Melnikov non-resonance conditions are
fulfilled for most values of the surface tension parameter x generalizing ideas of degenerate
KAM theory for PDEs [I1], exploiting that the linear frequencies w; in ((1.3.58)) are analytic
and non degenerate in x, and the sharp asymptotic expansion of the perturbed frequencies
obtained by the regularization procedure.

In the case of pure gravity water waves, i.e. kK = 0, the linear frequencies of oscillation

are (see (|1.3.58)))
w; = w;(h) == +/gjtanh(hj), j>1, (1.3.60)

and three major further difficulties in proving the existence of time quasi-periodic solutions
are:

(7) The nonlinear water waves system ((1.3.51)) (with x = 0) is a singular perturbation of
(1.3.57) (with x = 0) in the sense that the quasi-periodic linearized operator assumes
the form 1 1

w - 0, + 1| D|2 tanh? (h|D|) + V (¢, 2)0,
and the term V' (p, x)d, is now a singular perturbation of the linear dispersion rela-

tion operator i\D|% tanh%(h\DD (on the contrary, for the gravity-capillary case the
transport term V' (p, x)0, is a lower order perturbation of ]D\%, see (1.3.59))).

(¢7) The dispersion relation (1.3.60)) is sublinear, i.e. w; ~ \/; for 7 — oo, and therefore
it is only possible to impose second order Melnikov non-resonance conditions as in
(1.3.21]) which lose space derivatives.
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(73) The linear frequencies w;(h) in (1.3.60) vary with h of just exponentially small quan-
tities.

The main result in Baldi-Berti-Haus-Montalto [5] proves the existence of pure gravity
standing water waves solutions.

The difficulty (i) is solved proving a straightening theorem for a quasi-periodic transport
operator: there is a quasi-periodic change of variables of the form z — = + §(¢, z) which
conjugates

w- 0y + V(p,x)0,

to the constant coefficient vector field w - 0, for V(p, z) small. This perturbative rectifi-
cation result is a classical small divisor problem, solved for perturbations of a Diophantine
vector field at the beginning of KAM theory, see e.g. [117, [I18]. Notice that, despite the
fact that w € R” is Diophantine, the constant vector field w - d,, is resonant on the higher
dimensional torus T¢ x T,. We exploit in a crucial way the symmetry induced by the
reversible structure of the water waves equations, i.e. V(p,x) is odd in . This problem
amounts to prove that all the solutions of the quasi periodically time-dependent scalar
characteristic equation & = V' (wt,z), x € T, are quasi-periodic in time with frequency w.

The difficulty (ii) is overcome performing a regularizing procedure which conjugates
the linearized operator, obtained along the Nash-Moser iteration, to a diagonal, constant
coefficient linear one, up to a sufficiently smoothing operator. In this way the subsequent
KAM reducibility scheme converges also in presence of very weak Melnikov non-resonance
conditions as in ([1.3.21)) which lose space derivatives. This regularization strategy is in prin-
ciple applicable to a broad class of PDEs where the second order Melnikov non-resonance
conditions lose space derivatives.

The difficulty (iii) is solved by an improvement of the degenerate KAM theory for PDEs
in Bambusi-Berti-Magistrelli [11], which allows to prove that all the Melnikov non-resonance
are fulfilled for most values of h.

Remark 1.3.9. We can introduce the space wavelength 2ws as an internal free parameter
in the water waves equations . Rescaling properly time, space and amplitude of the
solution (n(t,z),¥(t,x)) we obtain system (1.3.51) where the gravity constant g = 1 and
the depth parameter h depends linearly on . In this way [J] proves ezistence results for a
fized equation, i.e. a fized depth h, for most values of the space wavelength 27s.

1.4 The multiscale approach to KAM for PDEs

We present now some key ideas about another approach developed for analyzing linear
quasi-periodic systems, in order to prove KAM results for PDEs, started with the seminal
paper of Craig-Wayne [51] and strongly extended by Bourgain [34]-[40]. This set of ideas
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and techniques -referred as “multiscale analysis”- is at the basis of the present Monograph.
For this reason we find convenient to present it in some detail.
For definiteness we consider a quasi-periodic linear wave operator

(-0, —A+m—+eb(p,x), peT’, 2T, (1.4.1)

where m > 0 and b(yp, x) is a smooth function, that is obtained linearizing a nonlinear wave
equation at a smooth approximate quasi-periodic solution.

Remark 1.4.1. The choice of the parameters in makes a significant difference. If
(1.4.1) arises linearizing a quasi-periodically forced NLW as , the frequency vector w
can be regarded as a free parameter belonging to a subset of R”, independent of €. On the
other hand, if arises linearizing an autonomous NLW like , or , the
frequency w and € are linked. In particular w has to be £2-close to some frequency vector
((|7:]* + m)?)iz1.. (actually w has to belong to the region of “admissible” frequencies as
in ([1.2.23)). This difficulty is present in this Monograph as well as in [11]).

In the exponential basis {e!(“#* 'm)}gezud‘ezd the linear operator ([1.4.1)) is represented by
the self-adjoint matrix

A:=D+¢€T,

| o o (1.4.2)
D = Dlag(&j)ezuxzd( - (w : g) + |]‘ + m) ) T= (Tg,j ) = (bg_ﬁl:j_jl) )

where /l;g,g/,j,j/ are the Fourier coefficients of the function b(p, ) that decay rapidly to zero
as |( — 0,7 — j")| — +oo, exponentially fast, if b(p, x) is analytic, polynomially, if b(¢, )
is a Sobolev function. Notice that the matrix T" is T6plitz, namely it has constant entries
on the diagonals (¢ — ¢',j — j') = (L, J) € Z" x Z°.

Remark 1.4.2. The analytic/Gevrey setting has been considered in [34)]-[40] and the Sobolev
case in [21]-[26]. The Sobolev reqularity of b(p, x) has to be large enough, see remark[1.4.6,
In KAM for PDE applications this requires that the nonlinearity (thus the solution) is
sufficiently many times differentiable. For finite dimensional Hamiltonian systems, it has
been rigorously proved that, otherwise, all the invariant tori could be destroyed and only
discontinuous Aubry-Mather invariant sets survive, see e.g. [82)].

The infinite set of the eigenvalues of the diagonal operator D,
—(w-0?+|jP+m, (€7, jeZ,

accumulate to zero (small divisors) and therefore the matrix 7" in , which represents
in Fourier space the multiplication operator for the function b(p, x), is a “singular” pertur-
bation of D. As a consequence is not obvious at all that the self-adjoint operator D + T
has still pure point spectrum with a basis of eigenfunctions with exponential/polinomial
decay, for € small, for most values of the frequency vector w € R”. This is the main problem
addressed in Anderson localization theory.
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Remark 1.4.3. If a quasi-periodic operator iw - 0, + S(p) where S(p) is self-adjoint, is
reduced to constant coefficients as we discussed in section with a quasi-peritodic change
of variables ®(wt) which acts between Sobolev spaces, then it is pure point.

Actually, for the convergence of a Nash-Moser scheme in applications to KAM for PDEs,
it is sufficient to prove, for most values of the parameters, the invertibility of its finite
dimensional restrictions,

Ly = Iy((w-0,)° — A+m+eb(p,x)) (1.4.3)

[Hw’

for any N large, where [T denotes the projection on the finite dimensional subspace

Hy = {h((p,:c) = Z h[7j€i(£.¢+j-x)}7 (1.4.4)
I(

LIISN

and prove that the inverse satisfies, for some p > 0, s; > 0, tame estimates as
L3 Rlls < Cls)N*([11lls + [1Blls[12]ls, ) s VR € Hu s Vs > 51, (1.4.5)

where || ||s denotes the Sobolev norm in (1.2.31)). Notice that y > 0 represents a “loss of
derivatives” due to the small divisors. Since the multiplication operator h — bh satisfies
a tame estimate like with © = 0, the estimate means that £3' acts, on the
Sobolev scale H?®, somehow as an unbounded differential operator of order pu.

Also weaker tame estimates as

1L Blls < C()NT (N + |[blls)|hlls, + N*'||Rls), VR € Hu, Vs > s1, (1.4.6)

for ¢ < 1, are sufficient for the convergence of the Nash-Moser scheme. Notice that such
conditions are much weaker than because the loss of derivatives 7" + ¢s increases
with s. Conditions like are essentially optimal for the convergence, compare with
Lojasiewicz-Zehnder [87].

Remark 1.4.4. It would be also sufficient to prove the existence of a right inverse of the
operator [L]3 = HN((w 20, — A+ m+ Eb(go,a:))mw satisfying or (L.4.6), as
we do in section [{.6 We remind that a linear operator acting between finite dimensional
vector spaces admits a right inverse if it is surjective, see Definition [3.3.11]

In the time periodic setting, i.e. ¥ = 1, we achieve the stronger tame estimates
while, in the time quasi-periodic setting, i.e. v > 2, we prove the weaker tame estimates
(L.4.6). Actually, in the present Monograph, as in [22]-[23], we shall prove that the approx-
imate inverse satisfies tame estimates of the weaker form (|1.4.6)).

In order to achieve ((1.4.5)) or ([1.4.6)) there are two main steps:
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1. (L* estimates) Impose lower bounds for the eigenvalues of the self-adjoint operator
(1.4.3]), for most values of the parameters. These “first order Melnikov” non-resonance
conditions provide estimates of the inverse of EJ_Vl in L?-norm.

2. (H’-estimates) Prove the estimates (1.4.5) or (1.4.6)) in high Sobolev norms. In the
language of Anderson localization theory, this amounts to prove polynomially fast
off-diagonal decay estimates for the inverse matrix £y

In the forced case when the frequency vector w € R” provides independent parameters,
item (1] is not a too difficult task, using results about the eigenvalues of self-adjoint ma-
trices depending on parameters, as Lemmata and [£.8.2] On the other hand, in the
autonomous case, for the difficulties discussed in remark [I.4.1] this is a more delicate task
(that we address in this Monograph).

In the sequel we concentrate on the analysis of item [2l An essential ingredient is the
decomposition into “singular” and “regular” sites, for some p > 0,

S = {(&j)eZ”de such that |—(w-€)2+|j|2+m|</0}
(1.4.7)
R = {(ﬁ,j)eZ”de such that \—(w-€)2+\j\2+m|20}-

It is clear, indeed, that, in order to achieve ([1.4.5)), conditions that limit the quantity of
singular sites have to be fulfilled, otherwise the inverse operator £3' would be “too big” in
any sense and (|1.4.6)) would be violated.

Remark 1.4.5. If in (1.4.1) the constant m is replaced by a (not small) multiplicative
potential V(x) (this is the case considered in the present Monograph), it is natural to define
the singular sites as | — (w - €)* + |7]> + m| < © for some © large depending on V (x).

We first consider the easier case v = 1 (time-periodic solutions).

1.4.1 Time periodic case v =1

Existence of time periodic solutions for NLW on T¢ have been first obtained in [35]. In
the exposition below we follow [21]. The following “separation properties” of the singular

sites (1.4.7) are sufficient for proving (T.4.5)): the singular sites S in the box [N, N]**¢ are
partitioned into disjoint clusters €2,

SO[=N,N" = JQa, (1.4.8)

satisfying
e (H1) (Dyadic) M, < 2m,, Va, where M, := max |(¢,j)| and m, := min [(¢,j)];

(£,7)€Q0a (£,5)€Q0
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e (H2) (Separation at infinity) There is 6 = d(d) > 0 (independent of N) such that

— . Nt > 1) . 4.
Q)= i |(05) - ()] 2 O+ M) Va o (149)

Notice that in (H2) the clusters €2, of singular sites are “separated at infinity”, namely
the distance between distinct clusters increases when the Fourier indices tend to infinity.

A partition of the singular sites as (|1.4.8)), satisfying (H1)-(H2), has been proved in [21]
assuming that w? is Diophantine.

Remark 1.4.6. We require that the function b(p,x) in has the same (high) regular-
ity in (p,x), i.e. ||b]|s < oo for some large Sobolev index s, because the clusters Qy in
are separated in time-space Fourier indices only. This implies, in KAM applications, that
the solutions that we obtain will have the same high Sobolev regqularity in time and space.

We have to solve the linear system
Lng=h, g,h€Hy. (1410)

Given a subset Q of [-N, N]'*? C Z x Z* we denote by Hg the vector space spanned
by {0 (¢, 5) € Q} and by I, the corresponding orthogonal projector. With this
notation the subspace Hy in coincides with H_y yji+e. Given a linear operator L
of Hx and another subset ' C [-N, N]'*¢ we denote L%, := IIy o L~ For simplicity we
also set Lo, := Iy, (Ln) g

According to the splitting of the indices [-N, N]'*® = S U R, where for simplicity of
notation we still denote by S, R the sets of the singular and regular sites intersected
with the box [-N, N ]Hd, we decompose in orthogonal subspaces

Hy =Hs ® Hr.

Writing the unique decomposition g = gs + gr, 9r € Hr, gs € Hs, and similarly for h, the
linear system ({1.4.10)) then amounts to

LEgr + LYgs = hr
Ligr + Ligs = hs.

Notice that, by , the coupling terms LSR = €T g , L? = €T§, have polynomial off-
diagonal decay.

By standard perturbative arguments, the operator L%, which is the restriction of Ly to
the regular sites, is invertible for ep™' < 1, and therefore, solving the first equation in gp,
and inserting the result in the second one, we are reduced to solve

(L — LE(L®)'LY) gs = hs — LE(LE) hg.
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Thus the main task is now to invert the self-adjoint matrix
U:=L3— LELHTLY, U:Hs— Hs.

This reduction procedure is sometimes referred as a resolvent identity.
According to (|1.4.8]) we have the orthogonal decomposition Hg = &,Hq, which induces
a block decomposition for the operator

U= (Uq)as, Uss = Lot — L, (i)~ L
Then we decompose U in block-diagonal and off-diagonal parts:
U=D+7R, D:=Diag Uy, R:= (U3 )are- (1.4.11)

Since the matrix 7" has off-diagonal decay (see ((1.4.2)) and recall that the function b(p, x)
is smooth enough) and the matrices with off-diagonal decay form an algebra (with interpo-
lation estimates) it easily results an off-diagonal decay of the matrix R like

eC(s
UG o) < i Q()zlgd . ato. (1.4.12)

In the simplest case that the w are independent parameters (forced case), it is not too
difficult to impose that each self-adjoint operator Ugg is invertible for most parameters and
that

1US) ey < M7, Va,

for some 7 large enough. Since, by (H1), each cluster €, is dyadic, this L*-estimate implies
also a H’-Sobolev bound: for all h € Hq,,,

S
«

< 2°N7|[Rlls

- s - S T Mé T
(W) hlls < MENI(UG2) " llze < MIM|B]lz2 < —2 MR,

by (H1) and M, < N. As a consequence the whole operator D defined in (1.4.11)) is

invertible with a Sobolev estimate
||D_1h||8 < C(s)N7||hlls, VheHy.

Finally, using the off-diagonal decay (1.4.12)) and the “separation at infinity” property
(1.4.9), the operator D~ 'R is bounded in L?, and it is easy to reproduce a Neumann-series
argument to prove the invertibility of U = D(I+D~'R) with tame estimates for the inverse

U~! in Sobolev norms, implying (1.4.5)).
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1.4.2 Quasi-periodic case v > 2

In the quasi-periodic setting, i.e. v > 2, the proof that the operator Ly defined in (|1.4.3])
is invertible and its inverse satisfies the tame estimates is more difficult. Indeed the
‘separation at infinity” property (H2) never holds in the quasi-periodic case, neither for
finite dimensional systems. For example, the operator w - d,, is represented in the Fourier
basis as the diagonal matrix Diag,;. (iw-¢). If the frequency vector w € R” is Diophantine,
then the singular sites ¢ € Z" such that

w- [ <p

are “uniformly distributed” in a neighborhood of the hyperplane w - ¢ = 0, with nearby
indices at distance O(p~“) for some o > 0. Therefore, unlike in the time periodic case, the
decomposition into singular and regular sites of the unperturbed linear operator is
not sufficient, and a finer analysis has to be performed.

In the sequel we follow the exposition of [22]. Let
A=D + €T, D= Diag(m)ezuxzd(—(u} . 6)2 + |j|2 + m) s T .= (Bf—é’,j—j’) ,

be the self-adjoint matrix in (1.4.2)) that represents the second order operator (|1.4.1). We
suppose (forced case) that w and e are unrelated and that w is constrained to a fixed
Diophantine direction

13

W=)a, Aeb,ﬂ, w0 > % veezr\ {0} (1.4.13)

||

A way to overcome the difficulty mentioned above, concerning the lack of “separation
properties at infinity” of the singular sites, is to implement inductive arguments which prove,
for most parameters, off-diagonal decay estimates for the inverses A]_V}L of the restrictions

ANn = HNnA\'HNn R (1414)
at an increasing sequence of scales
N,=[Ny"], n=>0, (1.4.15)

for some Ny and x large enough, relying on information about the invertibility and the

off-diagonal decay of “most” inverses Ay' ;o of submatrices

AN 1 todo 7= Alt—to]<Nn_1.li—jol<Nn_1

of size N, _;. This program motivates the name ‘multiscale analysis”.
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In order to give a precise statement we first introduce decay norms. Given a matrix
-/

M = (M; )yep,icc, where B, C are subsets of 7", we define its s-norm

|M|? = Z [M(n))*(n)*  where (n):=max(1,|n|),

and y
max | M| if neC—-0B

[M(n)] = { i-i'=nicCieB
0 if n¢ C—B.

Remark 1.4.7. The norm |T|s of the matriz which represents the multiplication operator
for the function b(p, ) is equal to |T'|s = ||b||s. Product of matrices (when it makes sense)
with finite s-norm satisfy algebra and interpolation inequalities, see Appendiz[B.1]

We now outline how to prove that the finite dimensional matrices Ay, in (1.4.14) are
invertible for “most” parameters A € [1/2,3/2] and satisfy, for all n > 0,

A < C(8)NT (NS +[Ib]ls) s s €(0,1/2), 7/ >0, Vs> s. (1.4.16)

Such estimates imply the off-diagonal decay of the entries of the inverse matrix

il ] < N,

—Lyi NI (NS + ||bll
(ANl < C(s) (@- _wy )

and Sobolev tame estimates as (|1.4.6) (by Lemma [B.1.9)), assuming that ||b||s, < C.

In order to prove (|1.4.16)) at the initial scale Ny we impose that, for most parameters,
the eigenvalues of the diagonal matrix D satisfy

| = (-0 + > +m|>Ny7, V|((j)| < No,

and, then, for £ small enough, we deduce, by a direct Neumann argument, the invertibility
of Ay, = Dn, + €Ty, and the decay of the inverse A]’V(l).
In order to proceed at the higher scales, we use a multiscale analysis.

L?*-bounds. The first step is to show that, for “most” parameters, the eigenvalues of Ay,
are in modulus bounded from below by O(N,,7) and so the L*-norm of the inverse satisfies

AN llo = ONy)  where || [lo = || l|z2)- (1.4.17)

The proof is based on eigenvalue variation arguments. Recalling (1.4.13)), dividing Ay, by
A%, and setting € := 1/A\?, we observe that the derivative with respect to & satisfies

0¢(EAn,) = Diagy jy <, (|71 +m) + O (e[| T[lo +£l|:T o) > ¢ >0, (1.4.18)
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for € small, i.e. it is positive definite. So, the eigenvalues py ;(£) of the self-adjoint matrix
£ Ay, satisfy (see Lemma [4.8.1))

Bepe;(€) > ¢ >0, V| 5)] <N,
which implies (T.4.17) except in a set of A’s of measure O(N ™).

Remark 1.4.8. Monotonicity arguments for proving lower bounds for the moduli of the
eigenvalues of (huge) self-adjoint matrices have been also used in [58], [23], [22]. Notice
that the eigenvalues could be degenerate for some values of the parameters. This approach to
verify “large deviation estimates” is very robust and the measure estimates that we perform
at each step of the iteration are not inductive, as those in [40].

Multiscale Step. The bounds (|1.4.16)) for the decay norms of A]_Vi follow by an inductive
application of the multiscale step proposition [B.2.4] that we now describe. A matrix A €
ME E c 7", with diam(E) < 4N is called N-GooD if it is invertible and

A7, < NT*ss Vs e (S0, 51],

for some s; := s1(d, v) large. Otherwise we say that A is N-bad.
The aim of the multiscale step is to deduce that a matrix A € M%E with

diam(F) < N := NX with x> 1, (1.4.19)
is N'-good, knowing
e (H1) (Off-diagonal decay) |A — Diag(A)|s, <Y where Diag(A) := (62-71-/142/)1-714,@9;
e (H2) (L*-bound) ||[A™"||p < (N')” where we set || [lo := || ||z

and suitable assumptions concerning the N-dimensional submatrices along the diagonal of
A. We define an index i € E to be (A, N)-REGULAR if there is I’ C E containing i such
that diam(F) < 4N, d(i, E\F) > N/2 and AL is N-good. A site i is (A, N)-BAD if it is
singular (i.e. |AY < p) and (A, N)-REGULAR.

We suppose the following “mild” separation properties for the (A, N)-bad sites.

e (H3) (Separation properties) There is a partition of the (A, N)-bad sites B =
Uy 2, with
diam(Q,) < N9, d(Q,,Q8) > N? | Va # 3, (1.4.20)

for some C; := Cy(d,v) > 2.
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The multiscale step proposition deduces that A is N'-good and ((1.4.16]) holds at the
new scale N', by (H1)-(H2)-(H3), with suitable relations between the constants y, Ci, s,
s1, 7. Roughly, the main conditions on the exponents are

Ci <<y and S1> XT.

The first means that the size N of any bad cluster Q, is small with respect to the size
N’ := NX of the matrix A. The second means that the Sobolev regularity s; is large enough
to “separate” the resonance effects of two nearby bad clusters €, (3.

Separation properties. We apply the multiscale step Proposition to the matrix
ANp, .- The key property to verify is (H3). A first key ingredient is the following co-variance
property: consider the family of infinite dimensional matrices

A() := D)+ T, D) := diag(&j)ezuxzd< —(w-l+0)+|j]* + m) :

and its (2N + 1) -restrictions Ay s, jo(0) := Ajr—ro|<n,j—jol<n(0) centered at any ({o, jo) €
7" x 7. Since the matrix T in (T.4.2) is Toplitz we have the co-variance property

ANto,o(0) = Anjoo(0 +w - bo) . (1.4.21)

In order to deduce (H3), it is sufficient to prove the “separation properties” (1.4.20)) for the
N,-BAD sites of A, namely the indices (¢, jo) which are singular

| = (w- £0)? + |jol* +m| < p, (1.4.22)

and for which there exists a site (¢, 5), with (¢, 7) — (o, jo)| < N, such that Ay, ¢; is N,-
bad. Such separation properties are obtained for all the parameters A which are N,-good,
namely such that

Vjo € Z¢, By, (o \) i= {9 ER : Ay, 0,0(0) is Ny, — bad}

C U I, where I, are intervals with |I,| < N, 7. (1.4.23)

We first use the covariance property (|1.4.21)) and the “complexity” information (|1.4.23)) to
bound the number of “bad” time-Fourier components. Indeed

ANn,ZOJO 18 Nn—bad < ANmOJO(w . 60) is Nn—bad < w- Eo € BNn(jO; )\) .

Then, using that w is Diophantine, the complexity bound (|1.4.23) implies that, for each
fixed jo, there are at most O(NS @) sites (£o, jo) in the larger box [¢y| < N,,1, which are
N,-bad.
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Next, we prove that a N>2-“chain” of singular sites, i.e. a sequence of distinct integer
vectors ({1, 71),...,({r,jr) satisfying and [ly11 — €g| + |jgr1 — Jql < N2, for any
q = 1,..., L, which are also N,-bad, has a “length” L bounded by L < Nfl(d’”). This
implies a partition of the (Ay, ,, N,)-bad sites as in at order N,,. In this step we
require that w € R” satisfies the quadratic Diophantine condition

Yo v(v+1)

’”Jr > wiwpi Zmy Vp = (pij) EZ
1<i<j<v b

, VneZ, (p,n)#(0,0), (1.4.24)

for some positive vy, 7.

Remark 1.4.9. The singular sites are integer vectors close to a “cone” and
(1.4.24) can be seen as an irrationality condition on its slopes. For NLS, 1S5 not
required, because the corresponding singular sites (€,7) satisfy |w - € + |j|*| < C, i.e. they
are close to a paraboloid. We refer to [29] to avoid the use of for NLW.

Measure and “complexity” estimates. In order to conclude the inductive proof we
have to verify that “most” parameters A are N,-good, according to . We prove
first that, except a set of measure O(N,, '), all parameters A € [1/2,3/2] are N,-good in a
L?-sense, namely

Vjo € Z4, BY (jo;A) = {9 ER ¢ [|AR 00 (O)]lo > N,;}

- U I, where I, are intervals with |I,| < N, ". (1.4.25)

g=1,..,Ng (")

The proof is again based on eigenvalue variation arguments as in ((1.4.18)), using that —A+m
is positive definite.

Finally, the multiscale Proposition step[B.2.4] and the fact that the separation properties
of the N,,-bad sites of A(f) hold uniformly in # € R, imply inductively that the parameters
A which are N,-good in L?*-sense, are actually N,-good, i.e. holds, concluding the

inductive argument.

1.4.3 The multiscale analysis of Chapter

In this Monograph we consider autonomous nonlinear wave equations ((1.1.1). As a conse-
quence the analysis of the quasi-periodic linear operator

(w-0,)° — A+ V(x) +*(0ug)(z,u(p, 7)), ¢€T”, veT, (1.4.26)

obtained linearizing ([1.2.1]) at an approximate quasi-periodic solution, acting in a subspace
orthogonal to the unperturbed linear ‘tangential” solutions (see (|1.2.33)))

{ Z ajcos(p;)¥,(z), a; € R} C Ker((i-0,)° — A+ V(z)),

jes
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is a much more difficult task than in the previous section. First of all, in ([1.4.26f), as
discussed in remark [[.4.1], the frequency vector w and the small parameter ¢ are linked. In
particular w has to be e%-close to the unperturbed frequency vector ji = (1) es in @ .
More precisely w varies approximately according to the frequency—to actlon map (|1.2.11]),
and thus it has to belong to the region of admissible frequencies ((1.2.23)). Moreover the
multiplicative function

(0ug) (@, ulp, 7)) = 3a(z)(u(p, z))* + ...

n (1.4.26)) (recall the form of the nonlinearity ) depends itself on w, via the approxi-
mate quasi-periodic solution u(p, z), and, as the tangential frequency vector w changes, also
the normal frequencies undergo a significant modification. At least for finitely many modes,
the shift of the normal frequencies due to the effect of 3a(x)(u(yp, r))?* can be approximately
described in terms of the Birkhoff matrix % in as i + 2(BE); (see (1.5.22)). Be-
cause of all these constraints, positivity properties like (1.4.18]) in general fail, see ((1.5.24))
and remark [1.5.3] This implies difficulties for imposing non-resonance conditions and for
proving suitable complexity bounds.

An additional difficulty in is the presence of the multiplicative potential V (x),

which is not diagonal in the Fourier basis.

In this Monograph we shall still be able to use positivity arguments for imposing non-
resonance conditions and proving complexity bounds along the multiscale analysis. This re-
quires to write as a first order Hamiltonian system and to perform a block-reduction
of the corresponding first order quasi-periodic linear operator acting in the normal sub-
space. We refer to the next section for an explanation about this procedure and here
we limit ourselves to describe the resulting quasi-periodic operators that we shall analyze
in Chapter 4| with multiscale techniques.

The multiscale Proposition of Chapter [f] provides the existence of a right inverse
of finite dimensional restrictions of self-adjoint linear operators of the form:

1. for w = (14&*Nw., Ae A C A,
L,=Jw-0,+ Dy +7r(e,\,p) acting on h € (L*(TF x T R))?, (1.4.27)

where Dy :=/—A 4+ V(z), J is the symplectic matrix

0 Id
S = (—Id 0) ’
and r(g, A, ¢) is a self-adjoint operator with polynomial off-diagonal decay;

2. for w= (142N, A € A C A,

Ly =Jw-0,+ Dy + (e, )JTg +r(e, A, ¢)

1.4.28
acting on h € (L*(TF x T R))*, | )
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where Jh := JhJ and the left/right action of J on R* are defined in (#.1.3)), (4.1.4),

u(e, A) is a scalar, Il is the projector on the infinite dimensional subspace
Hg := Hyp, Hsur:= { > Qs P)¥y(x), (Q),P) € R2}
JESUF

(the set G C N is defined in (1.2.15))) and r(e, A, ¢) is a self-adjoint operator with
polynomial off-diagonal decay.

The operators (T.4.27)), (1.4.28) are defined for all A belonging to a subset A C A (which
may shrink during the Nash-Moser iteration).

Notice that ([1.4.27)), (1.4.28)) are first order vector valued quasi-periodic operators, unlike
(1.4.26)) which is a second order scalar quasi-periodic operator (it acts in “configuration
space”). Since arises (essentially) by writing the linear wave operator as
a first order system as in ((1.3.27)), where the non-diagonal vector field is 1-smoothing, it is
natural to require that the operators r = r(e, A, ) in (1.4.27)), (1.4.28)) satisfy the decay
condition

11
7|45 == |DarDals, = O(e*) where D,, :=vV—-A+m (1.4.29)

for some m > 0.

A key property of the operators £, and L, ,,, that we shall be able to verify at each step
of the Nash-Moser iteration, is the monotonicity property in item [3| of Definition |4.1.2, For
L, it is

(Dv—f-T‘
AT+ 2

where we use the notation, given a family of linear self-adjoint operators A(\),

) < —ce?fd, ¢>0, (1.4.30)

A(Xs) — AN
AN < —cld = ( i) A( D < old, WA £, (1.4.31)
2 — M

and A < —cId means as usual (Aw,w)2 < —c|jw||72. The condition for L, , is similar.
Such property allows to prove the measure estimates stated in Properties of Proposition
415

All the precise assumptions on the operators £, in and £, , in are
stated in Definition [.1.2] (we neglect in (1.4.27), (1.4.28) the projector cIls which has a
purely technical role, see remark .

Remark 1.4.10. We shall use the results of the multiscale Proposition about the
approximate invertibility of the operator L, in mn Chapter and, for the operator
L., defined in (1.4.28)), in Chapter @ In the next section we shall describe their role
in the proof of Theorem [1.2.1]
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The application of multiscale techniques to the operators ((1.4.27)), (1.4.28]) is more
involved than for the second order quasi-periodic operator described in the previous
section. For definiteness we consider £, ,. In the Fourier exponential basis, the operator
L., is represented by a self-adjoint matrix

A=D,+T (1.4.32)
with a diagonal part (see (4.2.4))
(Jym—p w-l 0 0
D, = Diagezerea | g £ >m0_ a <j>n? T iwo. R (1.4.33)
0 0 —iw-l  (f)m+p

where (j),, := /|7]?> + m for some m > 0 and p := p(e, \). The matrix T in (1.4.32) is

El’ -/
T:= (T&]‘J )(e,j)ez\SHd,(g/’j/)eZde R
T,/ = (Dv = Dn)} — u[TUsusl + 7)) € Mat(4 x 4) .

The matrix T is Toplitz in ¢, namely Tﬁlf " depends only on the indices ¢ — ¢, j, 5.
The infinitely many eigenvalues of the matrix D,, are

VIiP+mtptw-0, jezd, (B

By Proposition and Lemma [3.3.8] the matrix T satisfies the off-diagonal decay, see
(14.2.6]),
IT| s, := |DY?TDY?|,, < 4o00. (1.4.34)

We introduce the index a € J := {1,2,3,4} to distinguish each component in the 4 x 4
matrix ([.4.33). Then the singular sites (¢,j,a) € Z x Z% x J of L, are those integer
vectors such that, for some choice of the signs o1(a),02(a) € {—1,1},

©
12 +m+ + A < ——
VI m+ (@ + oa(aer €] < — e

In ([1.4.35)) the constant © := O(V) is chosen large enough depending on the multiplicative

potential V(x) (which is not small). Note that, if (¢, j, a) is singular, then we recover the
second order bound

(1.4.35)

171> +m — (o1(a)p + o2 (a)w - £)?| < CO,

similarly to ((1.4.22).
The invertibility of the restricted operator £, , n := IIn(L, ), and the proof of the
off-diagonal decay estimates (4.1.23)) is obtained in section by an inductive application
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of the multiscale step Proposition [4.3.4, which is deduced by the corresponding Proposition
. On the other hand, section contains the proof of the existence of a right inverse
of [E WV = TIN(Ly )y satisfying at the small scales N < N(e) (notice that
the size of N depends on ¢).

In view of the multiscale proof, we consider the family of operators

Ly, (0):=Jw-0,+ Dy +i0J + pJllg +r, 0€cR, (1.4.36)

which is represented, in Fourier basis, by a self-adjoint matrix denoted A(0).

The monotonicity assumption in item 3| of Definition , see , allows to obtain
effective measure estimates and complexity bounds similar to ([1.4.25)). Notice however that
by the eigenvalues of £, , x vary in A with only a O(g%)-speed, creating further
difficulties with respect to the previous section.

The verification of assumption (H3) of the multiscale step Proposition , concerning
separation properties of the N-bad sites, is a key part of the analysis. The new notion
of N-bad site is introduced in Deﬁnition | according to the new definition of N-good
matrix introduced in Deﬁmtlon (the dlfference is due to the fact that the singular

sites are defined as in and m holds).

Then, in section 4.4} we prove that a I'-chain of singular sites is not too long, under the
bound (4.4.9) for its time components, see Lemma m Finally in Lemma 4.4.15( we are
able to conclude, for the parameters A which are N-good, i.e.

Vjo € Z¢, Bx(jo; \) = {9 ER : Ay (0) is N-bad} U L.
q=1,...,NC(d.[s],;70) (1.4.37)

where I, are intervals with measure |I,| < N77,

(Definition an upper bound L < N (see ([#.4.40))) for the length L of a N?-chain of
N-bad sites. This result implies the partition of the N-bad sites into clusters separated by
N?, according to the assumption (H3) of the multiscale step Proposition m

We remark that Lemma [4.4.15| requires a significant improvement with respect to the
arguments in [22], described in the previous section: the exponent 7 in ((1.4.37)) is large, but
independent of y, which defines the new scale N’ = NX in the multiscale step, see remark
4.4.6, This improvement is required by the fact that by the eigenvalues of L, , v
vary in A with only a O(e?)-speed.

We finally comment why the multiscale analysis works also for operators L, £, , of the
form (1.4.27)), (1.4.28), where Dy is not a Fourier multiplier. The reason is similar to [23],
[22]. In Lemmal4.7.3|we have to prove that all the parameters A € A are N-good (Definition
at the small scales N < Ny. We proceed as follows. We regard the operator L, ,(6)

in (|1.4.36]) as a small perturbation of the operator
ﬁonu(e) =Jw- ap + DV +160J + MJHG
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which is p-independent. Thus a lower bound on the modulus of the eigenvalues of its
restriction to My implies an estimate in L? norm of its inverse, and, thanks to separation
properties of the eigenvalues |j|> of —A, also a bound of its s-decay norm as O(N™ +%).
By a Neumann perturbative argument this bound also persists for IIyL, (), , taking €
small enough, up to the scales N < N,. The proof is done precisely in Lemmata |[4.7.214.7.3|
The set of § such that the spectrum of IIyLo,(0)n, is at a distance O(N™") from 0 is
contained into a union of intervals like , implying the claimed complexity bounds.
The proof at higher scales follows by the induction multiscale process.

1.5 Outline of proof of Theorem 1.2.1

In this section we present in detail the plan of proof of Theorem [1.2.1, which occupies
Chapters 211l This section is a road map through the technical aspects of proof.

In Chapter [2| we first write the second order wave equation (1.2.1) as the first order
Hamiltonian system ([2.1.13)-(2.1.14)),

- D
S n (1.5.1)
pe=—Dyq—¢e°D,g(e,x, Dy %q),

where Dy := \/—A + V(x) is defined spectrally in (2.1.11)), and the variables (g, p) belong
to a dense subspace of
H = L*(T%,R) x L*(T% R).

We prove polynomial off-diagonal decay of Dy in section [3.4
Fixed finitely many tangential sites S C N, we decompose (see (2.2.2))) the canonical
variables

(Q>p) = Z(QJap])\Ij](x)+(Q7P)7 (QJapj) €R27
jES
into “tangential” and “normal” components, where W;(z) are the eigenfunctions of the

Sturm-Liouville operator —A + V' (z) defined in ((1.1.5)), and (@, P) belong to the subspace
Hg, called the normal subspace, L*-orthogonal of

He:= {} _(0:p)¥(2), (a.p)) € B*}. (1.5.2)

The dynamics of (1.5.1)) on the symplectic subspaces Hs and Hg is handled quite differently.
On the subspace Hs we introduce action-angle variables (6, I), by setting (see ([2.2.3))

(g;,p;) := \/ij(COSQj,—Sinej) , VjeSs.
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In these new coordinates the solutions (|1.2.4) of the linear wave equation (1.1.4]) are de-

scribed as the continuous family of quasi-periodic solutions
0t)=pt, I(t)=¢, Qt) =P()=0, ¢eRY (1.5.3)

with frequency vector fi = (1) jes, which is independent of the unperturbed actions £ € R‘f‘.
Notice that, by the assumption ([1.2.6]), the unperturbed tangential frequency vector [ is
Diophantine. Introducing the translated action variable y by setting

I=¢t+y, yeRF,

the quasi-periodic solutions (1.5.3]) densely fill the invariant torus

Ty x {0}, x {(0,0)}@.p) -
In the variables (0,y, @, P) the Hamiltonian system (1.5.1]) assumes the form
0 — [ —*0,R(0,y,Q,¢) =0
§+e*R(0,y,Q,8) =0 (1.5.4)
(at - JDV) (Q7 P) - 82(07 VQR(G, Y, Qa 5)) =0,

see ([2.2.12)), where J is the symplectic matrix

0 Id
S = <—Id O> ’
and R(0,y,Q,¢&) is the Hamiltonian in (2.2.8]).
The goal is now to look, for e sufficiently small, for quasi-periodic solutions

(wit + I(wt), y(wt), Q(wt), P(wt)) (1.5.5)

of the nonlinear Hamiltonian system (1.5.4)), with a frequency vector w € RISI, O(g?)-close
to 11, to be determined, and where the function

o = (9(0), y(0), Q), P(¢)) € R x RFl x He

is periodic in the variable ¢ = (¢;);cs € TPl and close to (0,0,0,0).
We shall be able to constrain the frequency vector w in ((1.5.5)) to a fixed “admissible”
direction w;, as stated in ([1.2.24)-(1.2.25)), namely

w=(1+Nw., A€ A=][-N, N\, (1.5.6)
where @, € RFl satisfies the Diophantine conditions (1.2.29) and (1.2.30). In Lemma

we prove that these conditions are actually satisfied by “most” vectors @, = i + €%¢ close
to ji. We shall use the 1-dimensional parameter A, which corresponds to a time-rescaling,
in order to impose all the non-resonance conditions required by our KAM construction, in
particular along the multiscale analysis of the linearized operator. Notice that A has to be
considered as an “internal” parameter of the wave equation (|1.1.1)).
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Remark 1.5.1. The existence of quasi-periodic solutions with tangential frequencies con-
strained along a fixed direction had been proved, for finite dimensional autonomous Hamal-
tonian systems, by Eliasson [53] and Bourgain [36], and for 1-d nonlinear autonomous
wave and Schiodinger equations in [16]. Results in the easier case of quasi-periodically
forced PDFEs, where w is an external parameter constrained to a fixed direction, have been
obtained in [23] for NLS, [22] for NLW, [6] for KdV.

The search of an embedded invariant torus

@ = i(p) = (9,0,0) + (I(p), y(v), (Q, P)(¢)) ,

of the Hamiltonian system , supporting quasi-periodic solutions with frequency w =
(14 £*\)@. as in , amounts to solve the functional equation F(\;i) = 0 where F is
the nonlinear operator defined in (5.1.2)),

w-0,9(p) +w — ﬂ—é(é’ R)(i(»), §)
F(Ni) = w-B,y(p) + & (aeR)( ©),§)
9,(Q, P)(¢) — JDv(Q, P)(p) — (0, (VqR)(i(¢),£))

The operator F acts on the Sobolev scale of spaces

(1.5.7)

(0(9),y(9), (@, P)(p)) € Hy(TH, R > H(TELRE) x (H(TH x T, R?) N Hy),

for s > s, losing one (¢, x)-derivative due to the unbounded operators w-d,, and Dy .
We have that
F(X9,0,0,0) =0(?), VAEA.

Then, in section [5.3] using the unperturbed first order Melnikov non-resonance condition
(1.2.7)), we are able to construct the first approximate solution i;(¢) such that

F(\i(@) =0(h), VAeA.

Next, in Theorem [5.1.2] which contains the core of the result, we construct, by means of
a Nash-Moser implicit function iterative scheme, for “most” values of A € A, a solution
i (A; ) of the equation

F(Aio(Asp)) =0,

thus an invariant torus of with frequency w = (1+&*)\)@.. The iteration is performed
in Chapter [II] In particular, in Theorem [I1.2.1] we construct a sequence of approximate
solutions i, (A; ¢) which converges to i (\; ¢) for A in a set of large measure. The key point
is to prove the approximate invertibility of the linearized operators

diF (N in (X)),
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obtained at any approximate quasi-periodic solution i, := i,(};¢) along the Nash-Moser
iteration, for a large set of \’s, together with suitable tame estimates for the approximate

inverse in high Sobolev norms, with of course loss of derivatives, due to the small divisors.
This is achieved by the analysis performed in Chapters [6410}

In Chapter @ we implement the general strategy proposed in [24] where, instead of
(approximately) inverting d;F(\;4,), where all the (¢, vy, Q, P) components are coupled by
the differential of the nonlinear term (—9,R, R, 0, —VoR) in , we introduce suitable
symplectic coordinates

(¢, ¢, w) € T x RIS x |7

in which it is sufficient to (approximately) invert the linear operator D(i,) defined in
(6.1.22)). The advantage is that the components of the operator D(i,) can be inverted
in a triangular way, that is, first one inverts the operator in the tangential action compo-
nent C , then the normal one for w € HS , and finally the operator for the tangential angles
qb This construction is implemented in detail in Chapter@ completed with the results
reported in Appendix [C]

Remark 1.5.2. The above decomposition is deeply related to the Nash-Moser approach for
isotropic tori of finite dimensional Hamiltonian systems in Herman-Fejoz [64]. A related
construction for reversible PDEs is performed in [47].

After this transformation, the main issue is reduced to prove the approximate invertibil-
ity of the linear operator L, (i,) defined in (6.1.23)) which acts on functions A : TS — Hg 3
with values in the normal subspace HS As proved in Lemma u this operator has the
form

L,(i,) =w-0,— J(Dy +&™B(p) +r(p)), Dy =+—-A+V(x), (1.5.8)

where B(yp) is the self-adjoint operator defined in and r.(p) is a self-adjoint re-
mainder of size O(e*), more precisely it satisfies the quantitative bounds (6.1.26)-(6.1.27).
Notice that J(Dy +&”B(¢) + r.(®))w is a linear Hamiltonian vector field and that the cor-
responding quasi-periodic operator is a small deformation of the operator obtained
linearizing the normal component of F, defined in , at an approximate solution. A
quasi-periodic operator as is called Hamiltonian, see Definition m

Chapters are devoted to prove the existence of an approximate right inverse of
L, (i), as stated in Proposition [11.1.1} for “most” values of A € A. This is obtained in
several steps.

Remark 1.5.3. We cannot directly apply to the operator L, (i,) the approach devel-

1
142N
oped for the quasi-periodically forced NLW and NLS in [23], [22], [20)], described in section

1.4.2. Actually, since 0xB(¢) = O(1) the operator 8,\(1

L,(i,)) is not positive or
oy Lalia)) s ot p
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negative definite, posing a serious difficulty for verifying that the eigenvalues of its finite
dimensional restrictions are in modulus bounded away from zero for most values of the
parameter \. In order to overcome this problem we perform the splitting of the normal
subspace that we describe below.

In Chapter [7} using the unperturbed second order Melnikov conditions ([1.2.16)-(1.2.19),

L, (i,) to the Hamiltonian op-

1
we first apply an averaging procedure to conjugate ———
1+e2A

erator ([7.3.4)-(7.3.5)) which has the form
We - 0y, — J(Ag + o) (1.5.9)

where A is split admissible according to Deﬁnitionm (see Lemma and the coupling
operator o' has size O(¢?) in the | |, ;,-norm defined in (more precisely it satisfies
10" |Lip.+.s; = O(g*) where the norm | |1, 4.5, is introduced in Definition . The main
feature of a split-admissible operator is to be self-adjoint and block diagonal with respect
to the orthogonal splitting

Hg = Hp @ Hg,
He= {3 (@) Wi(0), (,0) € B}, (1.5.10)
Hg = {ZjeG(qg'7pj)‘1’j($), (4,p) € R2} )
i.e. of the form

0 Vole, A )
and, in the basis of the eigenfunctions {(\V;,0), (0,¥;)};er, Do(e, A) is a diagonal operator

Ay = (DO(‘E’ A 0 ) , (1.5.11)

Dy(e,\) = Diag;cp pi(e, \)Ida,  pi(e, A) € R, (1.5.12)

with eigenvalues y;(g,\) = p; + O(¢?) (the p; are defined in (1.1.5)) satisfying the non-
degeneracy conditions (8.1.5)-(8.1.7)) and, for all j € F, the monotonicity property

[N (%(57 /\) + ,uj(E, )\)Id) < —0152
{aA(Vo(aA) — (e, MId) < 2 (1.5.13)

where we use the notation (1.4.31]).
The subsets F and G of the normal sites S° in ((1.5.10) are defined in ((1.2.15)). Recall

that
FUG=S‘, FNG=90.
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It is for proving Lemma [8.1.2] i.e. that Ay is a split-admissible operator, that we need the
precise knowledge of how the tangential and normal frequencies are shifted by the nonlin-
earity a(z)u® + O(u*) (via the Birkhoff matrices o7, % in (1.2.9))), we use the additional
second order Melnikov non-resonance conditions (|1.2.18])-(|1.2.19)), the specific definition
of the subsets F and G, and the non-degeneracy conditions (|1.2.21))-(1.2.22]). More
precisely we use ([1.2.18])-(|1.2.19) and to prove the monotonicity property @D,
and the non-degeneracy conditions (1.2.21))-(1.2.22) to prove (8.1.5)-(8.1.7). The properties
- allow to prove that the non-resonance conditions required along the multi-
scale analysis of the linearized operator are fulfilled for a large set of values of the parameter
A. We comment about this issue below, around .

The quasi-periodic Hamiltonian operator @, - 9, — J(Ag+ ¢") in (1.5.9) is in a suitable
form to apply Proposition [8.2.1) in order to prove that it admits an approximate right
inverse. Proposition is proved in Chapters [9] and

In Chapter @ we block-diagonalize @. - 0, — J(Ao + ¢"), according to the splitting Hy =
Hy® Hg, up to a very small coupling term, see Corollary[9.1.2] More precisely, we conjugate,
via symplectic transformations, the Hamiltonian operator &, - 9, — J(Ag + ¢") in (1.5.9)),

where the block non-diagonal term o" has size O(e*) in | |, 5, norm, to the quasi-periodic
Hamiltonian operator in ((9.1.34]),

e 0y — J(Ag + pa) (1.5.14)

where the operator A, is split admissible, thus of the form ((1.5.11f), with

[ Da(g, N) 0
o = ( 0 %(E,A,w)) ’ (1.5.15)

|Dw — Dollo = 0(€?), ||[Va = Vollo = o(¢?),

(the norm || |lo = || ||z(z2) is the operatorial L? norm) and the block non-diagonal self-adjoint
term p, is super-exponentially small, i.e. satisfies ((9.1.33]),
[pal e = O((%) ). (1.5.16)

The proof of the splitting Corollary is based on an iterative application of the ‘splitting
step” Proposition [9.1.1] which block diagonalizes a Hamiltonian operator of the form

plp) = (Z;EZZ; pQ(SO)*) € L(HE),

p1(p) = pi(p) € L(Hr), pa(p) € L(Hr, Hg),

We - 0p — J(Ag + p) where

into a new Hamiltonian operator &, - 9, — J(AJ + pt) where AJ is block-diagonal with
respect to Hy @ Hg and the coupling remainder p* is much smaller than the previous one,
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i.e. pt = 0(p*?) (compare the size of p in (9.1.2) and that of p* in (9.1.11))). The iteration
is based on a super-convergent Nash-Moser scheme, to compensate the loss of derivatives
due to the small divisors.

In this decoupling procedure (Proposition [9.1.1]) a central role is played by the possibility
of solving approximately the homological equations, see (9.2.5))-(9.2.6)),

J(Dg'a@d‘f‘Dod—F(]dJDO:Jpl, (1517)
Jo. - 0,0 — JVoJa+ JaJ Dy = Jp, . (1.5.18)

where d(¢) € L(Hg) is self-adjoint, and a(p) € L(Hg, Hg), for all ¢ € TSI
For solving the homological equation (|1.5.17) (Lemma [9.3.2]), we need the second order
Melnikov non-resonance conditions (9.3.6]), which concern only the finitely many normal

modes in F. Then we use the non-degeneracy properties (8.1.5))-(8.1.7) to prove that they
are fulfilled for most values of \’s (see the measure estimate of Lemma [9.3.3)).

On the other hand we use the monotonicity property to solve (approximately)
the homological equation for most values of \’s. This is a difficult step where we
use the multiscale techniques of Chapter [d] Let us try to indicate some key aspects of our
approach. We have to solve, approximately, each equation

Tj(a)) = Jpy, Vj€F,

where , .
() = (al@)); » p2(p) = (p2(@)i, € L(H;, He),
Vo e T Hj = {(q,p))¥;(), (¢;,p5) € R*},
and T is the linear operator (see (9.3.33)))
Ti(a’) == Jo. - 0,07 — IVoJal + (e, N)Jal J . (1.5.19)

We solve approximately (1.5.19) by applying the multiscale Proposition to the ex-
tended operator (see (9.3.39)),

- Dy ¢
A+entt, TH= [T Ot Pt 0 (1.5.20)
0 L

which acts on p-dependent functions with values in £(H;, H) = L(H;, Hsur) ® L(H;, Hg),
see ([9.3.36). The operator Ilg is the L? projector on the subspace Hg in (1.5.2) and ¢ is a
positive constant. Identifying (see (3.2.6)))

L(Hj,H) ~ H x H ~ (L*(T% R))*
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the operator T}j can be regarded to act on (dense subspaces of) the whole (L?(T'S! x T4 R))*

and not only in subspaces of ¢-dependent functions with values in the normal subspace
Hg x Hg. The self-adjoint operator Tf has the form (9.3.37)), thus as in Definition m

(ii). We can apply the multiscale Proposition to T]@. The monotonicity property
implies, in Lemma , the sign condition 0 ,\T}i < —ce? required in Definition
M1 2Htem

Notice that, by , the subspaces Hs and H§ are invariant for the action of the
extended operator T and therefore estimates for the approximate inverse of Tf (obtained
by the multiscale analysis with the exponential basis) provide also estimates for the ap-
proximate inverse of 7 and thus for the approximate solution of .

We now explain the relevance of the decomposition S© = F U G of the normal sites
introduced in (1.2.14)-(1.2.15), and why we are able to obtain, in the splitting Corollary
9.1.2] a block-diagonal operator as in (1.5.14)-(1.5.15)), with an error like (1.5.16)), with
respect to the splitting . The decomposition S° = F U G of the normal sites is
important for the proof of the ‘splitting step” Proposition [9.1.1]

As we prove in section , under the effect of the nonlinearity a(x)u® + O(u?), the
tangential frequency vector of the expected quasi-periodic solutions of is, up to
terms of O(g*),

[+ et € (1.5.21)
where o7 is the twist matrix defined in ([1.2.9). Moreover, as proved in Lemma [7.3.2]

the perturbed normal frequencies of the Hamiltonian linear operator (|1.5.9)), with normal
indices in a large finite set M C S¢, admit the expansion, up to O(g*),

i +e*(#E);, VjieM, (1.5.22)

where # is the Birkhoff matrix defined in ((1.2.9). Thus the Hamiltonian linear operator
, restricted to Hy, is in diagonal form, up to terms O(e*). The set M contains F and
it is fixed in Lemma large enough so that the sign condition holds. Notice that,
in order to get the expansion for all the indices j € M, and not just in F, we have
assumed the further second order Melnikov conditions ([1.2.18)-(1.2.19)), and performed the
averaging Proposition [7.3.1 Expressing £ in terms of w by inverting the relation

w=jg+etdE, w=(1+*Nw.,
(the twist matrix & is invertible by ((1.2.12])), the shifted normal frequencies ([1.5.22)) become

pj— (B )+ (Bt T w); =

1.5.23

s — BV, + (1+ 2N B 0, = (6,0 1529
Then we divide (1.5.23) by 1+ &°\ and we consider the derivative
d Q(e, A —g? 1o .

o) _ (1~ B/, Vi eM. (15.24)

dAA1+e2X  (1+e20)2
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In order to decouple the Hamiltonian linear operator ((1.5.9) with respect to Hp and Hg,
the first naive idea suggests to impose second order Melnikov non-resonance conditions like

v

|w -+ Qj(&“, )\) + Qk(E,)\)‘ > <€>T 5

VeezZB jeG, ke, (1.5.25)

or equivalently,

Qj(e, \) 4 Qe(e, N)

v s
‘fg,j,k()\)’ > <€>T where fg,jyk()\) = -+ 1+ 22\ T2\ (1.5.26)
Thanks to (1.5.24)), for j € G, k € F, by the definition of F and G in ([1.2.15])
([L.5.24), for j € G, , by :
—¢’ 1 £’ 1
OfritN) = ————(u; — B 1|l;) F ——= (. — B [0
Afév]vk( ) (1 +52>\)2 (Iu] [ M]J) + (1 +€2/\)2 (luk [ lu]k)
2
< — 1.5.2
- 1 —|—82)\g (1.5.27)

is negative for all \, allowing to prove that (1.5.26) is fulfilled for most values of A. This
explains the relevance of the splitting ((1.2.14])-(1.2.15]) on the normal indices S°.

Actually G is an infinite set and we can not impose for all the j € G, since we
have only the expansion for finitely many j € M. The homological equation to be
solved, in order to decouple Hyr and Hg, is indeed , ie. .

On the other hand we take M large enough as in Lemma [7.1.1] in order to prove that
the operator Aj in ((1.5.9) is split-admissible, see Lemma [8.1.2) and so the operator A, in
(1.5.14)-(1.5.15)). Indeed, for M large enough, the infinite dimensional operator

Dy + £B(yp)
BT (see (1.5.8)),

is strongly negative definite (see ((7.1.9))) and, jointly with ([1.5.24)), this allows to prove the
sign conditions (|1.5.13). As already mentioned, this property allows to use monotonicity

arguments for families of self-adjoint matrices to verify that the non-resonance conditions
required to solve the homological equation ((1.5.19) are fulfilled for most values of the pa-
rameter .

Once the linear operator ((1.5.9) has been approximately block-diagonalized, accord-
ing to the decomposition Hy & Hg, obtaining, as in (1.5.14]), (1.5.15), the quasi-periodic
Hamiltonian operator

O\Aorte = Or\Ayt., where A :=

e 0, — J(Aw+ pa), (1.5.28)

where p, is a very small coupling term according to (1.5.16)), we prove in Chapter [10| that
it admits an approximate inverse, for most values of \’s, applying once more the multiscale
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Proposition 4.1.5. More precisely we first find in section [10.2|an approximate inverse of the
block-diagonal operator

) _ (Da(e,N) 0
@e - Op — JAn, An—< 0 Vn(s,A,%O))’

applying the multiscale Proposition to an extension of the self-adjoint operator

J(Ds : aga + ‘/n(gu )‘7()0)

acting on a dense subspace of the whole H, and not just Hg, see (10.2.26)-(10.2.27). The
extended operator has the form £, in (1.4.27)), see Definition [£.1.2}(i), and satisfies the sign

condition

(L (1N < —ce?.

This allows to verify lower bounds for the moduli of the eigenvalues of finite dimensional
restrictions of £,., for most values of \’s. These lower bounds amount to first order Melnikov
type non-resonance conditions.

Finally, once we have constructed an approximate inverse of the block-diagonal operator
We - 0, — J Ay, we obtain an approximate inverse of @, - 9, — J(Ay + pn) in , taking
into account the small residual coupling term p,, which satisfies , by a Neumann
perturbative argument, see section [10.3]

In conclusion, after all this analysis, going back to the original coordinates, we finally
prove, in Proposition [11.1.1], the existence of an approximate right inverse of the quasi-
periodic Hamiltonian operator L, (i,) in (1.5.8), and thus of d;F(\;i,), for most values of
M\’s, satisfying tame estimates. This enables to implement a Nash-Moser iterative scheme
(Chapter [L1)) which proves Theorem and therefore Theorem

Sobolev regularity thresholds. Along the Monograph we shall use four Sobolev indices
S K 81 K §9 K 83

The first index
so > (|S| +d)/2

is fixed in ([1.2.32)) to have the algebra and interpolation properties for all the Sobolev spaces
H?, s > sg, defined in ((1.2.31). We prove these properties in section The index
S1 > S0

is the one required for the multiscale Proposition m (see hypothesis 1 in Definition 4.1.2))
to have the sufficient off-diagonal decay to apply the multiscale step Proposition [4.3.4] see
in particular (4.3.6) and assumption (H1). It is the Sobolev threshold which defines the
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“good” matrices in Definition [4.3.1] Another condition of the type s; > sq appears in the
proof of Lemma [10.2.6]
Then the Sobolev index
So > 8y

is used in the splitting step Proposition , see . This proposition is based on a
Nash-Moser iterative scheme where sy represents a ‘high-norm”, see (8.2.2]).
The largest index
S3 > S9

is finally used for the convergence of the Nash-Moser nonlinear iteration in Chapter |11}
Notice that in Theorem the divergence of the approximate solutions 4, in the high
norm || ||Lip.s, is under control. We require in particular and, in section [11.2} also
stronger largeness conditions for s3 — so. Along the iteration we shall verify (impose) that
the Sobolev norms of the approximate quasi-periodic solutions remain bounded in || ||Lip.s,

and || ||Lips, norms (so that the assumptions of Propositions and are
fulfilled).
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1.6 Basic Notation

For s € R we denote the Sobolev spaces
H* = H(TF x T4 C")
={ulen) = D w0 ulf = Y P,

(£,9)EZISI x 724 iczIsI+d
i=(£,), (i) == max(|¢],[5],1), |j] := max{w,...,ud\}

and we use the same notation H® also for the subspace of real valued functions. Moreover
we denote by H® := H: the Sobolev space of functions u(x) in H*(T% C) and H the

Sobolev space of functions u(y) in H*(TSl, C). We denote by b := [S| + d.

Let E be a Banach space. Given a continuous map u : Tl — E, ¢ — u(y), we denote
by @(f) € E, ¢ € ZF, its Fourier coefficients

_ 1 v
u(l) == W/TS u(p)e ¥ dp,

and its average

N 1
(1) = (0 = gy [ o)

Given an irrational vector w € Rl ie. w-€ # 0, V¢ € ZF\ {0}, and a function g(p) € R
with zero average, we define the solution h(y) of w - d,h = g, with zero average,

h(e) = (w-9,) g = Y %eiw. (1.6.1)

1w
e8I\ {0}

Let E be a Banach space with norm || ||g. Given a function f : A :=[-Xg,\)] CR = FE
we define its Lipschitz norm

£ llsp = W e = fllip. 2= sup [ £l + [ Flup

17 (%) = FOW)le (1.6.2)
i i— i = i = Ssu :
[ flip == [flipa = [ hip, M,AQGA&#Q Ao — A

If a function f : A C A — E is defined only on a subset A of A we shall still denote by
[ flluip == I/ lltipz = I fllLip,s the norm in (1.6.2) where the sup-norm and the Lipschitz
seminorm are intended in /N\, without specifying explicitly the domain A.

If the Banach space E is the Sobolev space H* then we denote more simply || ||Lipys =
I [|Lip,s- If £ = R then || [[Lipr = [| [lLip-
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If A(\) is a function, operator, ..., which depends on a parameter A, we shall use the
following notation for the partial quotient
AAAQ) = AQW)

AT mon 0 T 16

Given a family of functions, or linear self-adjoint operators A(\) on a Hilbert space H,
defined for all A € A, we shall use the notation

AA ~
DAN 2Pl = F7 20, VAL ER, M# (1.6.4)

where, for a self-adjoint operator, A > SId means as usual (Aw,w)y > B|lw|%, Yw € H.
Given linear operators A, B we denote their commutator by

AduB :=[A,B]:= AB — BA. (1.6.5)
We define by Dy :=/—A + V(z) and D,, := vV—A + m for some m > 0.

e Given = € R we denote by [z] the smallest integer greater or equal to z, and by [z]
the integer part of x, i.e. the greatest integer smaller or equal to x;

e Given L € N, we denote by [0, L] the integers in the interval [0, L];

e We use the notation a <, b to mean a < C(s)b for some positive constant C(s), and
a ~¢ b means that C(s)b < a < Cy(s)b for positive constants Ci(s), Co(s);

e Given functions a,b: (0,£9) — R we write
. ale)
a(e) < b(e) = lim ——= =0. (1.6.6)
In the Monograph we denote by S, F, G, M subsets of the natural numbers N, with

N=SuUus‘, FUG=S°, FNnG=0, FcM.

We refer to Chapter (3] for the detailed notation of operators, matrices, decay norms, ...



Chapter 2

Hamiltonian formulation

In this Chapter we write the nonlinear wave equation (|1.2.1)) as a first order Hamiltonian
system in action-angle and normal variables. These coordinates are convenient for the proof
of Theorem [1.2.1] In section [2.3] we provide estimates about the measure of the admissible
Diophantine directions @. of the frequency vector w = (1 4 €*\)@. of the quasi-periodic
solutions of Theorem [1.2.1]

2.1 Hamiltonian form of NLW

We write the second order nonlinear wave equation (1.2.1)) as the first order system

{“’* - (2.1.1)

vy = Au— V(z)u — g(e, z,u)
which is the Hamiltonian system

O(u,v) = Xg(u,v), Xu(u,v) == JV2H(u,v), (2.1.2)

= (_2(1 1(;1) , (2.1.3)

is the symplectic matrix, and H is the Hamiltonian

where

2 2 2
Hiuo)i= [ 5+ VO | v@)L 4 26, 2,u) de
a2 2 2
with primitive
G(e,z,u) ::/ gle,x,s)ds, (0,G)(e,x,u)=g(e, x,u). (2.1.4)
0

62
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For the sequel it is convenient to highlight also the fourth order term of the nonlinearity
g(z,u) in (1.1.2), i.e. writing

g(z,u) = a(x)u’ + as(x)u’ + gs5(z,u),  gss(z,u) = OW°), (2.1.5)
so that the rescaled nonlinearity g(e,z,u) in ((1.2.2)) has the expansion

gle, v, u) == e ?g(x,eu) = a(x)u® + cay(z)u + e*e(e, 2, u), (2.1.6)
t(e, z,u) =g Pgss(w, cu), o

and its primitive in (2.1.4) has the form

Gle,z,u) = %a(x)u‘* + (o)t + 2R, 2, 0) (2.1.7)

where (0,R)(e, z,u) = v(e, z,u).
The phase space of (2.1.2)) is a dense subspace of the real Hilbert space

LA(T%) x LA(TY), L*T%) := L*(T*R),

endowed with the standard constant symplectic 2-form

Q(u,v), (u',0") :== (J(u,v), (v, ") r2xr2e = (v,u) 2 — (u, ') g2 . (2.1.8)
Notice that the Hamiltonian vector field Xy is characterized by the relation

Q(Xpy, ) =—dH.
System is reversible with respect to the involution
S(u,v) = (u,—v), S*=1Id, (2.1.9)
namely (see Appendix
XpgoS=—-So0Xy, equivalently HoS=H.

Notice that the above equivalence is due to the fact that the involution S is antisymplectic,

namely the pull-back
S*¥Q)=-0Q.

Let us write (2.1.1]) in a more symmetric form. Under the symplectic transformation

q=DZu, p=D,%v, (2.1.10)
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where Dy := y/—A 4 V() is the linear (unbounded) operator defined on the orthonormal
basis {U;(x),j € N} of L*(T%) formed by the eigenfunctions of —A + V() in (L.1.5), by
setting

the Hamiltonian system ([2.1.1)) becomes
=D
BT o (2.1.12)
Pe = _qu — & Dvgg(57l’, DV2Q)7
which is the Hamiltonian system
O(q,p) = JV12K(q,p) (2.1.13)
with transformed Hamiltonian
D% 2 D% 2 1
K(q,p) := / ( ;p) + ( ZQ) +&G(e, x, Dy, % q) dx . (2.1.14)
Td

This Hamiltonian system is still reversible with respect to S defined in (2.1.9), i.e. KoS =K,
i.e. K is even in p.

2.2 Action-angle and “normal” variables

We look for quasi-periodic solutions of the Hamiltonian system ([2.1.13]) which are mainly
Fourier supported on the tangential sites S C N. Thus we decompose

L*(T%,R) x L*(T% R) = Hs ® Hg",
Hs = {(Q(m)’p(a’")) =D (@p)¥;(), (4,p)) € RQ} (2:2.1)

Jjes

splitting the canonical variables (g, p) into tangential and normal components

(0:0) = D _(4,2)¥;(z) + (Q, P) (2.2.2)

j€eS

where (g;,p;) € R? and (@, P) € Hg. Then we introduce usual action-angle variables on
the tangential sites by setting

(¢j,pj) = /21;(cosb;, —sinb;), Vj€ES. (2.2.3)
The symplectic form (2.1.8) then becomes (recall that ¥;(z) are L*-orthonormal)
W= (dI Ndb) @ Q (2.2.4)
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where, for simplicity, we still denote by €2 := (), HE the restriction of the 2-form €2, defined

in (2.1.8), to the symplectic subspace Hg".

By [2.2.2), (2:2.3), the Hamiltonian in (2.1.14) then becomes, recalling that i € Rl is
the unperturbed tangential frequency vector defined in (|1.2.3)),

1

K(0,1,Q,P)=ji-I+ 2/ (DZQ)? + (DEP)* da (2.2.5)
Td

+€/ <€x2u] \/ﬁcosﬁ\lf )+ D QQ)

j€es

For ¢ = 0, the Hamiltonian system generated by (2.2.5) admits the continuous family of
quasi-periodic solutions

0(t) =60+ put, I(t) =&, Q) =P(t) =0,

parametrized by the unperturbed tangential “actions” & := (§;);es, £ > 0. The aim is to
prove their persistence, being just slightly deformed, for € small enough, for “most” values
of £, and with a frequency close to p.

Then we introduce nearby coordinates by the symplectic transformation

I=¢4y, (2.2.6)

and, substituting in (2.2.5)), we are reduced to study the parameter dependent family of
Hamiltonians (that for simplicity we denote with the same letter K)

K0,y,Q,P,§) =c+pa-y+ 2(DVQ Q)2 + 2(DVP P)2 +*R(0,y,Q,€) (2.2.7)
where
R(0,,0,€) := /T Gle,z,0(0,,€) + Dy Q) du (2.2.8)
and
v(0,y,8) : %u]%mcosgﬁl( z). (2.2.9)

The phase space of ([2.2.7)) is now
T xR x HY 5 (0,y,2), z:=(Q,P) e Hy,
endowed with the symplectic structure (see ([2.2.4)

W= (dy Adb) & Q, (2.2.10)
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so that the Hamilton equations generated by (2.2.7) have the form

0= 0,K(0,y,2,€)
y=-0K(0,y,2,¢) (2.2.11)
2=JV.K(0,y,z¢)
or, in expanded form,
0 —i—*0,R(0,y,Q.€) =0
U+ e*0gR(0,y,Q,£) =0
(0, — JDv)(Q, P) +€*(0, VoR(8,y,Q,¢)) =

By (2:2.8) and (2.1.4), we have that 0,R := (9,,, R)m=1. s € R has components

(2.2.12)

_1
2

R(0,y,Q,¢) = /Ed gle,x,v(0,y,8) + DV;Q)m coS(0, )V () dx (2.2.13)

and ) )
VoR(0,y,Q,&) = Dy2g(e,z,v(0,y,£) + Dy2Q) . (2.2.14)
We note that the 2-form W in (2.2.10) is exact, i.e. W = ds where s is the Liouville

1-form

0. [0.9.2] = Z y;0; + - (Jz Z)2 (2.2.15)

The Hamiltonian system (2.2.11)) is reversible with respect to the involution
S0,y,Q,P) = (-0,y,Q,—P) (2.2.16)
which is nothing but in the variables —. This means that
KoS=K, K(-0,y,Q,—P)=K(0,y,Q,P),
and the Hamiltonian R in satisfies
R(=0,y,Q,8) = R(0,y,Q,¢) (2.2.17)

2.3 Admissible Diophantine directions w.

As explained in the introduction, we look for quasi-periodic solutions of (2.2.11))-([2.2.12))
with frequency vector

w=(1+&*N)w.

restricted to a fixed line, spanned by w. = ji + ¢°¢ (see (1.2.24)-(1.2.25))), which has to
satisfy the Diophantine conditions ([1.2.29))-(/1.2.30). We now prove that for “most” vector
¢ € RBI these conditions are satisfied.
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Lemma 2.3.1. Assume (1.2.6) and (1.2.8). Then there exists a subset B. C < ([1,2])
(where <f is the invertible twist matriz in (1.2.9)) with measure |B:| < €, such that all the
vectors

©.=p+e(, Ced([1,2%)\ B,
satisfy the Diophantine conditions ((1.2.29)-(1.2.30) with v1, 71 defined in (1.2.28]).

ProOF. We first verify that most vectors @, = i + ¢, ¢ € <7/ ([1,2]¥), satisfy (1.2.29).
Since [i is (7o, 7o)-Diophantine, i.e. (1.2.6) holds, then, for all £ € ZSI\ {0},

1/(10+1)
(@ + %) -0 > 20 _ 20 > -0 V|£|§< 70 ) o

(£)mo 2(¢)m’ 202
Then it remains to estimate the measure of
B. = o+ R (2.3.1)
o> (22
where ~ 5
_ 1 0
Re={Cea (L2 < [+ 4 < oo m= )
l
Since the derivative e Oc((p + €°¢) - £) = £%|¢], then the measure |Ry| < %.
5 T
Therefore " ] Syl
1B < 4D <C(y)e” o7 T <e
€>Tl+1
W><2;22) <
by (T.2.28).

We now consider the quadratic Diophantine condition (1.2.30)). Let M := M, be the
(IS| x |S|)—symmetric matrix such that

Z wiw;pi; = Mw - w, Vw € RIS

1<i<j<[8]

The symmetric matrix M has coefficients

M, = %(1 +6,), V1<i<j<IS|, and M= M. (2.3.2)

We want to prove that for most ¢ € o/([1,2]¥) the vector @. = i + ¢ satisfies the
non-resonance condition

[SIS[+1)

n+ M. - >np)™™, Yinp) €ZxZ =z \{(0,0)}.
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Then we write

n4+ Mo, -0, =n+ Mp-fi+22MC-p+e*MC-C. (2.3.3)
We first note that, by (1.2.8) and |M,;| < (p) by (2.3.2)), then, for all |(| < 1,
2
n+ M- fi+2*MC - i+e'M¢-¢| > [n+ M- | — 2C(p) > %
' Yo\ (ro+1) 5
if (252C> > |p|. Thus we erase values of ¢ € <7([1,2]™) only when
Yo >1/(m+1)
> . 2.3.4
P> (55 (2:3.4)
Since M is symmetric there is an orthonormal basis V' := (vq,...,v;) of eigenvectors of M

with real eigenvalues Ay := Ag(p), i.e. Mvr = A\gvg. Under the isometric change of variables
(¢ = Vy we have to estimate

Rupl = |{y € Ryl <1 -

2.3.
‘n+Mﬁ-ﬂ+252Vy-Mﬂ+€4 > Aky,i‘< il }‘ (2:35)
1<i<fs| 2p)m

Since M?v, = Aoy, Yk =1,...,[S|, we get
IS IS

' 2
ZV Tr(M?) = ZMU = |pQ|

7,j=1
Hence there is an index ko € {1,...,|S|} such that [A\| > |p|/+/2|S| and the derivative

8§k0 (n + Mp- i+ 22Vy - M + ¢ Z A;{yi) ‘ = e*2), |
1<i<]8| (2.3.6)

> e'V2[pl/V/IS] -
As a consequence of (2.3.5) and (2.3.6)) we deduce the measure estimate

Yo
<p>T1+1 ’

Recalling (2.3.4), and since R,,, = 0 if |n| > C(p), we have

U Ruls 3 o/l g, e lmmta

~ 141 ~>70
[SI(S|+1) 1/(ro+1) <p>
peZ 2 \{0}
‘p|> 2520

‘Rn,pl N e?

<e

for € small, by (|1.2.28)). m
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Remark 2.3.2. The measure of the set |B:| < ¢ is smaller than €*, for any p, at the expense
of taking a larger Diophantine exponent 7. We have written |B:| < e for definiteness.

We finally notice that, for w = (1 + £2)\)w. with a Diophantine vector @. satisfying
([1.2:29), for any zero average function g(p) we have that the function (w - d,) 'g, defined
in ((1.6.1)), satisfies

1w - 05) " glltip,s < O Igllvip,sim - (2.3.7)



Chapter 3

Functional setting

In this Chapter we collect all the properties of the phase spaces, linear operators, norms, in-
terpolation inequalities used through the Monograph. Of particular importance for proving
Theorem [1.2.1] is the result of section [3.4l

3.1 Phase space and basis

The phase space of the nonlinear wave equation (2.1.12)) is a dense subspace of the real

Hilbert space
H := L*(T%) x L*(T%), L*(T%) := L*(T*R). (3.1.1)

In the Monograph we shall denote for convenience an element of H either as h = (h(V), h(?))

1)
a row, either as a column h = ( > with components h) € L*(T%), 1 =1,2.

h(2)
In the exponential basis any function of H can be decomposed as
(q(=).p(x) = > (a5,p1)e"" . qj =G, p—j =p;- (3.1.2)
jezd

We will also use the orthonormal basis
{V;(2),j € N}

of L*(T?) formed by the eigenfunctions of —A + V(z) defined in (I.1.5) with eigenvalues
M?- We then consider the Hilbert spaces

H = {u = g = ((CA+ V(@) u) = il < oo} . (3.1.3)

jeN jeN

70
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Clearly H) = L?. Actually, for any s > 0, the “spectral” norm ||lu
usual Sobolev norm

ms 1S equivalent to the

N

(3.1.4)

lullay 2= Nl = ((=2)"w, ), + (u,u)r2)
For s € N, the equivalence (3.1.4) can be directly proved noting that V(x) is a lower
order perturbation of the Laplacian —A. Then, for s € R\ N, [s] < s < [s] + 1, the
equivalence follows by the classical interpolation result stating that the Hilbert
space H; in , respectively the Sobolev space H, is the interpolation space between
HE and HEFL respectively between Hl*) and HE+! and the equivalence for integers

S.

Tangential and normal subspaces. Given the finite set S C N, we consider the
L2-orthogonal decomposition of the phase space in tangential and normal subspaces as in

221),
H = Hs ® Hy

where

Hs = {(a(@), p(@)) = Y (a5,2)¥5(2),  (5,0) € R}

JES

In addition, recalling the disjoint splitting

N=SUFUG

where F, G C N are defined in ([1.2.14])-(1.2.15]), we further decompose the normal subspace
Hg as

Hi = Hr @ Hg (3.1.5)
where
Hg = {(Q(:c),P(x)) cH : (Q,P)LHs, (Q,P)LH]F} , 510
He = {(Q(x), P(x) € H : (Q,P)LHs, (Q,P)LHz}. h
Thus
H=Hs® Hy = Hs® Hy ® Hg = Hsr ® Hg . (3.1.7)

Accordingly we denote by IIg, I, I, IIsur, the orthogonal L2-projectors on Hs, Hg, Hg,
Hs r. We define
Iy :=1d — g = Iys

and similarly for the other subspaces.
Decomposing the finite dimensional space

H[F = @jEFHj s (318)
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we denote by II; the L*-projectors onto H;. In each real subspace H;, j € F, we take the
basis (¥;(z),0),(0,¥;(x)), namely we represent

1, = {a(¥(x).0) +p(0. 9;(2)). 0.0 € R]. (3.1.9)

Thus H; is isometrically isomorphic to R

Symplectic operator J. We define the linear symplectic operator J € L(H) as

Qz)) _ ([ Plx) _ (0 I
J(P(:p) =\Zow) J = 14 o) (3.1.10)
The symplectic operator J leaves invariant the symplectic subspaces Hg, Hg", Hg, Hg. For
simplicity of notation we shall still denote by J the restriction of the symplectic operator

J = Jiu, € L(Hg), J:=Jjys € L(Hy ), J := Ji, € L(Hp), J := Jj, € L(Hg) .
The symplectic operator J is represented, in the basis of the exponentials (see (3.1.2))
{(eij'x,()), (0’€ij~x> ,j c Zd} 7

, 0 1
J = Diag,cza (_1 O) .

Note also that the symplectic operator J leaves invariant each subspace H;, j € F, and it

is represented, in the eigenfunction basis (3.1.9), by the same symplectic matrix ( 0 ) .

by the matrix

-1 0

3.2 Linear operators and matrix representation

According to the decomposition Hy = Hy @ Hg in (3.1.5) a linear operator A of Hg can
be represented by a matrix of operators as

(AI@FE Ag)
AL AS ) (3.2.1)
Ag = HIFA|H]F s A% = H]FA|HG s Ag = HGA|H]F s Ag = H(GA\H@ .
Moreover the decomposition ([3.1.8)) induces the splitting
L(Hp,H) = ®jerL(Hj, H), (3.2.2)
namely a linear operator A € L(Hp, H) can be written as

A= (d)jer, o =Ap, € L(H;H). (3.2.3)
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In each space L£(H;, H) we define the scalar product
(a,b)o :==Tr(b*a), a,be L(H;H), (3.2.4)

where b* € L(H, H;) denotes the adjoint of b with respect to the scalar product in H. Note
that b*a € L(H;, H;) is represented, in the basis (3.1.9), by the 2 x 2 real matrix whose

elements are L? scalar products

(b(¥;,0),a(¥;,0))5  (b(¥;,0),a(0,¥;)n
( (6(0,;),a(P;,0)x  (b(0,%;),a(0,¥;))u ) : (3.2.5)

Using the basis (3.1.9)), the space of linear operators L£(H;, H) can be identified with H x H,
L(Hj,H) ~ H x H=(L*T%R))*, (3.2.6)
identifying a € L(H;, H) with the vector

(W, a®,a® W) e Hx H

a(P;,0) =: (e, a®) e H, a(0,%;) =: (a®¥,aW) € H, (3.27)
so that
a(q(¥;,0) +p(0, 7)) = q(a, a®) + p(a® o), V(g,p) € R?. (3.2.8)
With this identification and the scalar product takes the form
4
(a, b : => (a1 (3.2.9)
1=1
and the induced norm
(a,a)g = Tr(a*a) Z a2, (Td) - (3.2.10)

By the identification (3.2.7)) and taking in H the exponential basis (3.1.2)), a linear operator
a € L(H;, H) can be also identified with the sequence of 2 x 2 matrices (aj,)rezq,

4 Ei(l) Zi(g)
a, == | by "hy | € Maty(C Zak eFr1=1,2,3,4,
ak ak kezd

so that, by (3.2.8),

a(q(¥;,0) +p(0, %)) = > ai(g.p)e*, V(g,p) € R*.

kezd
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Similarly, using the basis {V;(x)};en a linear operator a € L(H;, H) can be also identified
with the sequence of 2 X 2 matrices (aj,)ken,

| L
al = (a@) a@)) coal = (W, aD), 1=1,2,3,4, (3.2.11)
a9
so that, by (3.2.8),
a(g(V;,0) +p(0,¥))) = > aj(q,p)Wa(z), V(g,p) € R*. (3.2.12)

keN

In addition, if a € L(H;, H) is identified with the vector (aV,a® a® W) € H x H as

in (3.2.7), then, Ja € L(H;, H) where J is the symplectic operator in (3.1.10]), can be
identified with

Ja = (a?, —aW, a®, —a®) (3.2.13)
and aJ € L(H;, H) with
at = (aV,a? a® a®)J = (—a® —a® oV @), (3.2.14)
Each space £(H;, H) admits the orthogonal decomposition
L(H;,H)=L(H;, Hs.r) ® L(H;, Hg) , (3.2.15)
defined, for any o’ € L(H;, H), by
@’ = lgpa’ +ga’ , Tspa’ € L(Hj, Hsur), Nlga’ € L(H;, Hg) (3.2.16)

where IIgr and Il are the L*-orthogonal projectors respectively on the subspaces Hg p =
Hy & Hs and Hg, see (3.1.5)).
A (possibly unbounded) linear operator A acting on the Hilbert space

(i) H:= H = (L*(T%))?, (ii) H := H x H = (L*(T%))* (3.2.17)

can be represented in the Fourier basis of L?(T?) by a matrix (A;:,)j,jle
Matox2(C) in case (i), respectively Matyy4(C) in case (ii), by the relation

A( Z hjeij-x> _ Z (Z Aj:lhj>€ij’-x

jEZA j'ezd  jezd

with h; € C? in case (i), respectively h; € C* in case (ii).

We decompose the space of 2 x 2-real matrices

Maty(R) = M, & M_ (3.2.18)
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where M, respectively M_, is the subspace of the 2 x 2-matrices which commute, respec-
tively anti-commute, with the symplectic matrix J. A basis of M is formed by

0 1 10
M1 =J= (_1 0) y M2 = Id2 - (0 1) y (3219)
and a basis of M_ is formed by
10 0 1
Notice that the matrices { My, My, M3, M4} form also a basis for the 2 X 2-complex matrices

Matg(C).
We shall denote by 71, 7~ the projectors on M, respectively M ~. We shall use that,
for a 2 x 2 real symmetric matrix

M= (a b) ) = g, = BOD (3.2.21)

b ¢ 2 2

p-dependent families of functions and operators. In this Monograph we often identify
a function

he LA(TS L*(TY), h:e— h(p) € L3(TY),
with the function h(yp,-)(z) = h(p, ) of time-space, i.e.
LA(TS L2(T%)) = L¥(TIS x T%) .
Correspondingly, we regard a p-dependent family of (possibly unbounded) operators
A:TB = £(H\, Hy)), ¢~ Alp) € L(Hy, H,),

acting between Hilbert spaces Hy, Hs, as an operator A which acts on functions h(p,z) €
L*(TI!, Hy) of space-time. When Hy, = Hy, = L*(T%) we regard A as the linear operator
A LHTB % T4 — L2(TBI x T?) defined by

(Ah)(@, x) = (Alp)h(p, ")) ().

For simplicity of notation we still denote such operator by A.
Given a,b: TF! — L(H;, H) we define the scalar product

(a,b)g = /TIS Tr(b*(p)alyp)) de, (3.2.22)

that, with a slight abuse of notation, we denote with the same symbol (3.2.4)). Using ((3.2.7))
we may identify a, b : T — L(H;, H) with a,b: TS — H x H defined by

a(p) = (a,a®,a® a®)(p), b(p) = O, 6@ 63 b)) (),
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and, by (3.2.22) and (3.2.9), (3.2.10),

4

(a,bYo = / Tra(e) b)) dp = 3@ H0) oo (3.2.23)
T =1
Jall3 = (a,a)o = / {alr e de = 3 1o s (3.2.21)
=1

We identify a p-dependent family of linear operators A(p) acting on p-dependent family of
functions with values in the Hilbert space H defined in ((3.2.17)), with the infinite dimensional
matrix (Aﬁ;fj,)(&j)7((/7j,)ez|3|+d, with Ag;fj, € Matay2(C) in case (i), respectively Matyx4(C) in
case (1), defined by the relation

ALY wen ) S (X )l @y

(6,5)ezlSI+d (@ JNEZISIHE  (¢,5)eZISI+d

where h,; € C? in case (3.2.17)-(i), respectively hy; € C* in case (3.2.17)-(44).
Taking in (L2(T|S| x T))? the basis {€“?(W;(x),0),“?(0,¥;(z))}jen we identify A with

the matrix (Aﬁ}fj,)(M),(&jl)em\XN by the relation
A( > he,jew'“"‘lfj(:v)) = > ( > Aﬁ;{;,h&ﬁew’wqx, () (3.2.26)
(£,5)EZISIxN (¢ jNEZISIXN  (£,§)€ZISIXN

where hy; € C?.

Normal form. We consider a ¢-dependent family of linear operators A(y) acting in Hg .
According to the decomposition Hg = Hy @ Hg, each A(p) can be represented by a matrix

as in ((3.2.1])
~([AP)E [Aw)]s
A“‘”QA(@]%& [A(son%)‘ (3.2.27)

We denote by Il A the operator of H§ represented by the matrix

D.(AE) 0
oAle) = ( 0 [A(sa)]%> (3.2.28)

where, in the basis {(¥;,0), (0, V;)},er of Hp,
D, (AY) := Diag,cp (. [A7(0)]) (3.2.29)

and 7, : Mate(R) — M, denotes the projector on M., see (3.2.18), and A\j(O) is the

p-average
. 1
A%(0) = Al(p)d
0) = o | Ao de.
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We define also

We remark that, along the Monograph, the functions and the operators may depend on a
one-dimensional parameter A € A C A in a Lipschitz way, with norm defined as in ([1.6.2)).

Hamiltonian and symplectic operators. Along the paper we shall preserve the Hamil-
tonian structure of the vector fields.

Definition 3.2.1. A ¢-dependent family of linear operators X(p) : D(X) C H — H,
defined on a dense subspace D(X) of H independent of ¢ € TP, s HAMILTONIAN if

X(p) = JA(»)

for some real linear operator A(p) which is self-adjoint with respect to the L* scalar product.
We also say that w - 0, — JA(p) is Hamiltonian.

In the Monograph we mean that A is self-adjoint if its domain of definition D(A) is
dense in H, and (Ah, k) = (h, Ak), for all h, k € D(A).

Definition 3.2.2. A p-dependent family of linear operators ®(¢) : H — H, Y € TS s
SYMPLECTIC if
Q@ (p)u, ©(p)v) = Qu,v), Vu,veH, (3.2.31)

where the symplectic 2-form ) is defined in (2.1.8)). FEquivalently
() JB(p) =J, VeeTh.

A Hamiltonian operator transforms into an Hamiltonian one under a symplectic trans-
formation.

Lemma 3.2.3. Let ®(p), ¢ € TSV be a family of linear symplectic transformations and
A*(p) = A(y), for all p € TSI, Then

() (w0, = JA(9)2(p) = w- 0, — JAL()
where Ay () is self-adjoint. Thus w - 0, — JAL(p) is Hamiltonian.

Proor. We have that

D) (w -0y — JA(9))D(p) =w - 0, + D) (W - 9, @) () — P () JA(p)D(¢0)
= W'aso - JA—I—(‘P)

with

Ap(p) = JO7H (@) (- 0,P)(p) — JO ' (0) JA(p)®(¢)
= JO ' (p) (w- 0,P) () + D" () A(p)D() (3.2.32)
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using that ®(y) is symplectic. Since A(y) is self-adjoint, the last operator in (3.2.32)) is
clearly self-adjoint. In order to prove that also the first operator in (3.2.32)) is self-adjoint
we notice that, since ® () is symplectic,

() (- 0,0)(p) + (- 0,0)" (9)J () = 0. (3.2.33)
Thus, using that ®(y) is symplectic,

(JO7 (@) (w - 0,2)(9))" = —(w - 0,2)" () (2*) ()
= —(w- 0,2) () JO()
() J(w - 0,®)(p) = JO ' (p)(w - ,P) () -

We have proved that A1 () is self-adjoint. m

3.3 Decay norms

Let b := |S| 4+ d. For B C Z" we introduce the subspace
”Hfgzz{u:ZuieiE’Hs ; uieCr,uizoifigéB} (3.3.1)
iczb
where e; := “?H0) i — (¢, ) € Z x 74, and H? is the Sobolev space
He = HA(TH x T C7) = {u =Y we : ul?=Y |u,-|2<¢>2s} . (3.3.2)
i€z i€z

Clearly H° = L*(T'®! x T¢;C"), and, for s > b/2, we have the continuous embedding
H* C CUTHI x T, C").
For a Lipschitz family of functions f : A — H*, A — f(\), we define, as in ([1.6.2)),

||fHLip,s = ileli) ”f”s + sup ||f()\2) — f(>‘1)||s .

AL A2EA N £ A2 — A

(3.3.3)

Remark 3.3.1. In Chapter [{] we shall distinguish the components of the vector u; =
(Uia)acs € C" where 3 = {1,2} if r = 2, and T = {1,2,3,4} if r = 4. In this case we
also write an element of H® as

u = § Ui a€ia, Ui € Cu €i,a = €464,
1,a€ZbxJ

where eq := (0,..., 1 ,...,0), a € J, denotes the canonical basis of C".
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When B is finite, the space H} does not depend on s and will be denoted Hp. For
B, C c 7" finite, we identify the space ,Cg of the linear maps L : Hp — H with the space
of matrices

ME = {M = (M )yepec, M € Mat(r x ;) } (3.3.4)

identifying L with the matrix M with entries

s/

M = (M.":C’lul)u’a/eg e Mat(r x ,C), M2 := (Leg o, €ia)o,

A % 7,0

where (, )o := (2m)7°(, )12 denotes the normalized L*-scalar product.
Following [23] we shall use s-decay norms which quantify the polynomial decay off the
diagonal of the matrix entries.

Definition 3.3.2. (s-norm) The s-norm of a matriz M € MZ is defined by

M3 =) M) )

nezb

where (n) := max(|n], 1) (sec (B33)),
sup |[MI| if neC—B
M ()] i= { e |
0 if n¢C—-B,
where | | denotes a norm of the matrices Mat(r x r,C).

We shall use the above definition also if B or C' are not finite (with the difference that
|M|s may be infinite).

The s-norm is modeled on matrices which represent the multiplication operator. The
(Toplitz) matrix 7" which represents the multiplication operator

M, : H(TB x T C) — H (TS x T4 C), h— gh,
by a function g € H* (T x T C), s > s, satisfies
|T|S ~ ||g||87 |T|Lip,s ~ HgHLip,s . (335)

The s-norm satisfies algebra and interpolation inequalities and control the higher Sobolev
norms as in (3.3.7) below: as proved in [23], for all s > so > b/2

|ABls Ss |Also| Bls + [Als| Blso (3.3.6)
and for any subset B,C' C Z°, VM € M5, w € Hp we have

[Mwlls Ss [M]s, [[wl]]s + [M]s[w]]

| Mw||Lip,s Ss [M|Lip,sollw|lLip,s + | M |Lip,s||w]|Lip,so -

S0
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The above inequalities can be easily obtained from the definition of the norms | |; and the
functional interpolation inequality

Vu,v € 1, fuvlls Ss llullsollvlls + [Jullsllo]ls, - (3.3.9)
Actually, (3.3.9) can be slightly improved to obtain (see Lemma [3.5.1)
Juvlls < Collulls[[vlls + C(s)]Julls[[v]ls, (3.3.10)

where only the second constant may depend on s and Cj depends only on sy (we recall that
sp is fixed once for all). From ({3.3.10)) can be derived the following slight improvements of

(3.3.6) and (3.3.8)), which will be used in Chapter
|AB|s < ColAls,|Bls + C(s)|Als| Bls, (3.3.11)

and
[Mw||Lip,s < ColMlvuip,so l|w]lLip,s + C(8)[ M |Lip,s 1w Lip,s0 - (3.3.12)

We also notice that, denoting by A* the adjoint matrix of A, we have
‘A’S = |A*’sa |A‘Lip,s = ‘A*‘Lip,s- (3313)

The following lemma is the analogue of the smoothing properties of the projection operators.

See Lemma 3.6 of [23], and Lemma [B.1.10]
Lemma 3.3.3. (Smoothing) Let M € MEZ. Then, ¥s' > s >0,

M'=0,V[i-i]|<N = |M|,<NE9M|,, (3.3.14)
and similarly for the Lipschitz norm | |Lip,s-

We now define the decay norm for an operator A : E — F defined on a closed subspace
E C L? with range in a closed subset of L?.

Definition 3.3.4. Let E, F be closed subspaces of L* Eéz(']l“SI x T4 C"). Given a linear
operator A : E — F, we extend it to a linear operator A : L*> — L? acting on the whole
L? = E® E*, with image in F, by defining

Apr=0. (3.3.15)
Then, for s > 0 we define the (possibly infinite) s-decay norm
Al = |4l (3.3.16)

and

Al = |DAADZ], (3.3.17)
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where D, is the Fourier multiplier operator
Dy i=vV—=A+m, Dp(e"*) :=+/|j2+me*, ez, (3.3.18)

and m > 0 is a positive constant.
For a Lipschitz family of operators A(\) : E — E, A € A, we associate the Lipschitz

norms |Alvip,s, |AlLip,+,s, accordingly to (1.6.2)).

The norm (3.3.17) is stronger than (3.3.16)), actually, since 1 <., ([j|>+m)5(|j'|*+m)3,
we have

’A‘s Sm |A‘+,sa ’A‘Lip,s ,Sm ‘A’Ljpgﬁs . (3319)

Lemma 3.3.5. (Tame estimates for composition) Let A, B : E — E be linear opera-

tors acting on a closed subspace E C L*. Then, the following tame estimates hold: for all
s> s0> (S| +d)/2,

‘AB‘S ~S ‘A’SO‘B’S + |A|S’B‘So (3320)
|AB|Lip,S ~S |A|Lip,so|B|Lip,s + |A|Lip,s|B|Lip,so P (3321)
more precisely
|AB|Lip,s < ColAlLip,so| BlLip,s + C(8)| Alrip,s| B|Lip,s0 (3.3.22)
and
[ABls + |BAlss So ALy Bl + [Aluy3Blis (3.3.23)
|AB|Lip,+,s + |BA|Lip,+,s ~S |A|Lip,so+%|B’Lip7+,S + |A|Lip,s+% |B‘Lip,+,50 . (3324)

Notice that in (3.3.23)), resp. (3.3.24), the operator A is estimated in | |s+% norm, resp.
| ‘Lip,s+%7 and not in | |4, resp. | |Lip+s-

ProoOF. Notice first that the operation introduced in ([3.3.15)) of extension of an operator
commutes with the composition: if A, B : F — FE are linear operators acting in F, then
AB — AB. Thus (3.3.20)-(3.3.21) and ( (3.3:22) follow by the interpolation inequalities
and (E310).

In order to prove (3.3.23))-(3.3.24])) we first show that, given a linear operator acting on
the whole L2,

Dn? AD3l., DA ADE S Al - (3.3.25)

S ~oS

We prove ((3.3.25)) for

1 _1 1
DZ ADy? = A+ (D2, A|Dn? .
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_1 1
Since |Dpn?|s < C(m), Vs, it is sufficient to prove that |[Dj,, A]|s Ss |A|, 1. Since, Vi, j €
Z* 2

(517 +m) % = (] +m) | =

|11 = L] (|| + J2])

((13[2 + )4 (]2 4 m) 4 (]2 +m)> + (Jif2 +m)2)

< i 3

= (2P A+ ) (i +m)t)

PR
the matrix elements of the commutator [Dy,, A]} satisfy

1D, AL = 1A (517 +m) Y = (i +m) V] < A5V — il

and therefore ([3.3.25)) follows.
We now prove the estimates (3.3.23)-(3.3.24). We consider the extended operator AB =
AB and write

DAABD} = (DaADR? ) (DAEDE) .

Hence ({3.3.23))-(3.3.24)) follow, recalling (3.3.17)), by (3.3.6) and (3.3.25)). =
By iterating (3.3.21)) we deduce that, there exists C(s) > 1, non decreasing in s > s,
such that

’Aleip7s < (C(5>)k|A‘IIE)%sO|A|Lip,Sv Vk>1. (3.3.26)

Lemma 3.3.6. Let A : E — E be a linear operator acting on a closed subspace E C L*.
Then its operatorial norm satisfies

[Allo Sso 1Also Sso [Al 450 - (3.3.27)

PROOF. Let A be the extended operator in L? defined in (3.3.15). Then, using Lemma 3.8

in [23] (see Lemma [B.1.12), and (3.3.16), we get [|Allo < [|Allo oo [Alsy = Al Soo 14450
by (3.3.19)). m

We shall also use the following elementary inequality: given a matrix A € MJE where
B and C are included in [~N, N]°, then

|Als S N|Dn? ADy? | . (3.3.28)

We shall use several times the following simple lemma.
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Lemma 3.3.7. Let g(\, p, ), X(\, @, ) be a Lipschitz family of functions in H* (T xT?, C)
for s > so. Then the operator L defined by

L{h)(p, ) = (h(p, ), 9(p. ) o X(ps ), Vh € HUTF < T, C)
satisfies
| Llvip,s s [19l|ui,so [ X[[Lip,s + [[9lLip,s X[ Lip,s0 - (3.3.29)

Proor. We write L = M, Py M7 as the composition of the multiplication operators M, , Mz
for the functions y, g respectively, and the mean value projector F, defined as

1

Poh(p) := @) /Td h(g,z)dx, YheH®.

For i = (j,0), 7 = (j/,0') € Z* x ZF its entries are (P,)! = 6?(58/55, and therefore
|Poluips = [Pols <1, Vs, (3.3.30)

We derive (3.3.29) by (3.3.5)), (3.3.30) and the tame estimates (3.3.6) for the composition
of operators. m

Now, given a finite set M C N, we estimate the s-decay norm of the L?*-orthogonal
projector Ty on the subspace of L*(T% R) x L*(T¢ R) defined by

Hua = { (a(@),p(@)) = Y (40)W;(x), g.0; €R}. (3:3.31)
jeM
In the next lemma we regard Il as an operator acting on functions h(yp, z).

Lemma 3.3.8. (Off-diagonal decay of Ily;) Let M be a finite subset of N. Then, for all
s >0, there is a constant C(s) := C(s,M) > 0 such that

|HM’+,S == |HM’Lip,+,s S O(S) . (3332)
In addition, setting I3 = Id — Iy = Iy, we have
|HM|Lip,8 < C(S) ) |HMC Lip,s — |H1J\_4I|Ljp7g S C(S) . (3333)

PrROOF. To prove (3.3.32) we have to estimate |Tij|rip+.s = | DY T DY iy 5. For any
h= (A, h®) e (LT x T%)? we have

1 1 Wy . 2 1
(DaTL;DAR) (g, x) = (R (e, >’DT‘I’J)L3 D2V, . (3.3.34)
JEM (h(2)<907 '>7 DTZH\I/])L%

Now, using Lemma [3.3.7], the fact that each ¥;(z) is in C*° and M is finite, we deduce, by

(3.3.34), the estimate (3.3.32)). The first estimate in (3.3.33)) is trivial because |Iy|rips S
|y |Lip,+.s- The second estimate in (3.3.33)) follows by Iy + Hﬁ =Id and |Id|pips =1. =
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Lemma 3.3.9. Given a p-dependent family of linear operators A(p) acting in Hg, the
operators lIpA and TIgA defined respectively in (3.2.28) and (3.2.30) satisfy

T AlLip,+,s + [TloAlLip+.s < C(8)[AlLip,+.s - (3.3.35)

PrROOF. We consider the extension of the operator IIp A defined in ([3.2.28])-(3.2.29)), acting
on (LQ(']I“S| X ']I'd))Q, defined as A; + Ay where the operators A; and A,, are

A, =T Allg (3.3.36)

and, for any h = (b, h®) € (L3(T x T%)?,

N W(p ) )
() (.) = S w20 (Gl (2 002 ) o) (3.3.37)

We remark that, for j € F, A\g(()) is the 2 x 2 matrix

(A(qjj7 0)7 (\Ilja O))O (A<O’ \Ijj)a (\Ijj’ O))O
0w (3.3.38)

A3(0) = ((A(\IJj,O),(O, U;))o (A0, 95), (0, wo)

where (, )o is the (normalized) L? scalar product in (Lz(Tlgl X ’]Td))Q.
By Definition [3.3.4] we have |IIpA|vip+s = |[A1 + Asluip+s- By (3.3.36), (3.3.24) and
(3.3.33) (with M = G) we get

|A1|Lip7+,s 55 |HG|iip’s+%|A|Lip,+,s Ss |A|Lip7+,5' (3‘3-39)

For As, we apply Lemma m Using that, by (3.3.37)),

-

1 1 . (1) . 3 N 1
(D2AsD2h) (g, z) = ZWJFA;(O) ((h ) 2 )7Dm\IJJ>LZ) D2V,
(e, ), D) s

jEF
with gj(O) given in (3.3.38), that ¥; € C*°(T?) and F is finite, we deduce by (3.3.29) that

1 1
| AaLip,+.s = [DinA2Din|Lip.s Ss max | AllLip,o - (3.3.40)

Finally (3.3.39), (3.3.40) imply

M AlLip,+,s < |A1lLip,+.s + | A2(Lip+.s < C(5)[AlLip,+.s

and
|HCIA‘Lip,+7s = |A - HDA|Lip,+,s S |A‘Lip,+7s + |HDA|Lip,+,s S O(S>‘A|Lip,+,s .
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Thus (3.3.35)) is proved. m

We now mention some norm equivalences and estimates that shall be used in the Mono-
graph.
Let us consider a @-dependent family of operators p(¢) € L(Hg ), that, according to

the splitting (3.2.1]), have the form
o) = (05 P07 € Ll (o) € Lltte) puli) € (o).

Recalling (3.2.3)), we can identify each p;(p), [ = 1,2, with

L(H; Hy)if [ =1

pi(®) = (p1j(©))jer , where pi;(p) := (po)in; € {,C(Hj,HG) if 1 =2.

Moreover, according to (3.2.7), we can identify each operator p; ;(¢) with the vector

Hp x Hp if [=1
(1) (2) 3) (4) F F

(o), ;7 (@), o7 (0), P € 3.3.41
(pl,_] (30) IOZ,] (30) pl,] (90) pl,] (gp)) {HG « H(G if 1 27 ( )

(1) (3)
Prj\ ._ <‘1’a> Prj\ ._ < 0 )

g = Pl y ’ = Pl . (3342)
<ﬂ§?> 0 \oly v;

4
k
lnll} = max (D leff02) (3.3.43)
k=1

where

and ||p;||Lip,s according to (|1.6.2)).
Lemma 3.3.10. We have

|p1lLip, s ~s P1|Lips ~s o1 lLip,s » (3.3.44)
’P2|Lip,+,s SJS |p2’Lip,s+% ) |P2|Lip,s ~s ”P2HLip,S‘ (3‘3‘45)

PROOF.
Stepl. We first justify that, for [ = 1,2,

’pl’Lip,s ~s leHLip,s . (3346)
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By Definition the s-norm |p|Lips = | leF\Llps Now, recalling (3.3.42)), the extended
operator pIlg has the form, for any h(p) = (hV(p), hP(¢)) € H,

(1) (3)
(piTTeh) (i) = ﬁz{g(h(”«o),%m (g“gg) + (W (), )1z (ﬁuﬁg) o (3.347)

Using that ¥; € C*>(T%), for all j € F, and that F is finite, we derive, from (3.3.47) and
Lemma [3.3.7] the estimate |p|Lip.s Ss ||01]Lip.s-

The reverse inequality ||pi]|Lip.s Ss |0i|Lip,s follows by (3.3.42), (3.3.8), and that fact that
S C*(T%). This concludes the proof of (3.3.46) and so of the second equivalences in

(3.3.44)-(3.3.45).
Step 2. We now prove that

p1|Lip 4.5 Ss lo1][Lip,s - (3.3.48)
1 1
By Definition [3.3.4] the norm |p;|Lip +.s = |DmpillpDi|Lip,s and, by (3.3.47),

s A 1 Dz (U( )
_ (1) . mPL P
(DapI=Dah) () = (h (so),Dr%\Ifan( 15

jEF mpl ]( )
+ (), DA, (gmggwi) (3.3.49)

Now, applying Lemma [3.3.7, we deduce by (3.3.49)) and the fact that U; are C*° (and
independent on \) and F is finite, that

1 1
|p1|Lip7+,S - |D7$Lp1HFDTQIZ‘L1p,S S_;S jEFmaX HDmpl ] ||L1p S (3350)
Now, by (3.3.41]), each p@, kE=1,...,4,is a function of the form u(y) = Z u; ()W
jeF

1
claim that, for functions of this form, ||Dau||Lip.s ~s ||t||Lip,s- Indeed

lelliips ~s D s luip, sy

JEF

because F is finite and ¥, is C* (and independent on \). Similarly,
| Diluins = || D i) = 3l e

jeF
and the claim follows. Applying this property to u = p§k]) we deduce, by (3.3.50)), that

k
Prlip s So _mmax 197 i,
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and thus (3.3.48)). Finally, by (3.3.46) and (3.3.19) we have ||p1||Lip,s Ss |91|Lip+,s and thus
we deduce the first equivalence in (3.3.44)).

Step 3. We finally check
|p2lLipts Ss 1P2lLipstt s (3.3.51)

which is the first estimate in (3.3.44)). We have

(3:3.24)
|/)2’Lip7+,s:|p2HF’Lip7+,s Ss ’pQ‘Lip,s+%|HF|Lip,+,s Ss |102|Lip,s+%

(applied with M =TF). m

We also remind a standard perturbation lemma for operators which admit a right inverse.

Definition 3.3.11. (Right Inverse) A matrizx M € M5 has a right inverse, that we
denote by M~ € MS, if MM~ = Ide.

Note that M has a right inverse if and only if M (considered as a linear map) is surjective.
The following lemma is proved as in Lemma 3.9 of [23] (see also Lemma [B.1.14) by a
Neumann series argument.

Lemma 3.3.12. There is a constant ¢y > 0 such that, for any C, B C Z°, for any M € ./\/lg
having a right inverse M~' € M, for any P in ME with |M™'|,,|P|s, < co the matriz
M + P has a right inverse that satisfies

(M + P)~ s, < 2IM 7,

3.3.52
(M4 Py, <o (MY, + M7 [P, ¥s > 5o (3:3.52)

Finally, we report the following lemma (related to Lemma 2.1 of [25]) which will be used
in Chapter [I0]

Lemma 3.3.13. Let E be a closed subspace of H° = L*(TI¥ x T¢) and let E* := ENH*
for s > sg. Let R: E — E be a linear operator, satisfying, for some s > s; > s, a > 0,

1
Vo e B, |[Rulls, < 5lvlls, (3.3.53)
1
Vo e B, |[Roll, < Sllells + afloll, (3.3.54)

Then 1d 4+ R is invertible as an operator of E°*, and

Yo € B, ||Id + R) 'olls, < 2||v]ls, (3.3.55)
Yo € E5, ||(Id+ R) vl < 2||v||s + 4av]s, - (3.3.56)
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Moreover, assume that R depends on the parameter \ € A and satisfies also

Voh) € B [Rellins, < 5ol (3357
Vu(A) € E°, [[RullLip,s < %||v||mp,s + al[v|Lip,s, - (3.3.58)
Then
Vo(A) € B, |[(Id + R) ™ 0||Lip.s; < 2|10 lLip.ss (3.3.59)
Vo(A) € E*, [[(Id+ B) " "lluips < 2l[v[lLip,s + 4[v]lLip,s, - (3.3.60)

PROOF. Since F is a closed subspace of H°, each space E* = ENH?®, s > 0, is complete.
By (3.3.53)) the operator Id + R is invertible in E°' and (|3.3.55) holds. In order to prove
(3.3.56), let k = (Id + R)"'v so that k = v — Rk. Then

1
&lls < llolls + 1Bl < [lvlls + 1]l + allklls,

1
< llvlls + S 1Ells + a2fjolls,

and we deduce [|k|ls < 2(||v]|s + a2]|v]|s,) which is (3.3.56)). The proof of (3.3.59) and
(3.3.60) when we assume (|3.3.57)) and (3.3.58)) follows the same line. m

3.4 Off-diagonal decay of \/—A + V(z)

The goal of this section is to provide a direct proof of the fact that the matrix which

represents the operator
DV = \/ —A + V(l’) s

defined in (2.1.11)), in the exponential basis {¢”“},cz« has off-diagonal decay. This is
required by the multiscale analysis performed in Chapter [d We compare Dy to the Fourier
multiplier D,, = v —A + m defined in (3.3.18)).

Proposition 3.4.1. (Off-diagonal decay of Dy — D,,) There ezists a positive constant
d
T, :=Y(||V]cns ), where ng = [s + 51 +1 €N, such that
|Dv = D), = |Di(Dy = Dp) Dia| < Y. (3.4.1)

The rest of this section is devoted to the proof of Proposition [3.4.1, In order to prove
that the matrix (A?); jez« which represents, in the exponential basis {€*};cz¢ a linear
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operator A acting on a dense subspace of L*(T?), has polynomial off-diagonal decay, we
shall use the following criterium. Since the operator Adgka, where

Adaxk = [&Bk, ]
denotes the commutator with the partial derivative d,,, is represented by the matrix
(ln(zk - jk‘)nAg)Z"jezd Y

it is sufficient that A and the operators AdgxkA, k=1,...,d, for n large enough, extend

to bounded operators in L*(T%).
We shall use several times the following abstract lemma.

Lemma 3.4.2. Let (H,{ , )) be a separable Hilbert space with norm ||ul| := (u,u)é. Let
B :D(B) C H— H be an unbounded symmetric operator with a dense domain of definition
D(B) C H, satisfying:

(H1) There is B > 0 such that (Bu,u) > B||ul|*, Vu € D(B).

(H2) B is invertible and B~' € L(H) is a compact operator.

Let A:D(A) C H— H be a symmetric linear operator, such that:

(H3) D(A), respectively in addition D(B%AB%), contains D(BP) for some p > 1.
Moreover we assume that:

(H}) There is p > 0 such that |{Au, Bu)| < p||u||?, Vu € D(A) N D(B).

Then A, respectively B%AB%, can be extended to a bounded operator of H (still denoted by
A, respectively B2 AB: ) satisfying

|Allzcay < p/B,  respectively ||B%AB%H£(H) <p. (3.4.2)

PROOF. The operator B~! € L(H) is compact and symmetric, and therefore there is
an orthonormal basis (¢5)r>1 of H of eigenfunctions of B!, i.e. B ', = Agtby, with
eigenvalues Ay € R\{0}, (A\x) — 0. Each ¢, is an eigenfunction of B, i.e.

By, = vpthy  with eigenvalue v := A\, (1) — o0

By assumption (H1), each v, > > 0. Clearly each eigenfunction v, belongs to the domain
D(BP) of B for any p > 1.

For any N > 1, we consider the N-dimensional subspace Ex := Span(t¢y,...,¥y) of
H, and we denote by IIy the corresponding orthogonal projector on Ey. We have that
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Eyx C D(BP) for any p > 1, and therefore assumption (H3) implies that Ey C D(A).

PROOF OF ||Al|zm) < p/B. The operator Ay := IIyA|g, is a symmetric operator on the
finite dimensional Hilbert space (Ey, (, )) and

AN z(Ey) = max{|A|; X eigenvalue of Ay} . (3.4.3)

Let A be an eigenvalue of Ay and u € Ex\{0} be an associated eigenvector, i.e. Ayu = Au.
Since B(Ey) C Ey, the vector Bu is in FEy, and we have

Mu, Bu) = (Ayu, Bu) = (IIyAu, Bu) = (Au, Bu) . (3.4.4)

Since (u, Bu) is positive by (H1), by (3.4.4) and using assumption (H4) (notice that u is
in Ey C D(A)ND(B)), we get

[Al(u, Bu) = [(Au, Bu)| < pllull*,

and, by assumption (H1), we deduce that |\| < p/S. By (3.4.3) we conclude that, for any
N >1,

ANl een) < /8- (3.4.5)
Defining the subspace E := U En of D(A), we deduce by ({3.4.5) that
N>1
Y(u,v) € Ex E, (Au,v) < pB~Hul[[v] - (3.4.6)

Moreover, since F is dense in H (the (¢x)r>1 are an orthonormal basis of H), the inequality
(3.4.6) holds for all (u,v) € E x H, in particular for all (u,v) € E' x D(A). Therefore, since
A is symmetric, we obtain that

Vu e B, Yv e D(A), (u, Av) < pB~|ull||v]) . (3.4.7)

By the density of E in H, the inequality (3.4.7) holds for all (u,v) € H x D(A), and we
conclude that
Vo e D(A), [Av]l < pB ], (3.48)

By continuity and ([3.4.8]), the operator A can be extended to a bounded operator on the
closure D(A) = H (that we still denote by A) with operatorial norm |A| s < p/B,
proving the first estimate in (3.4.2)).

PROOF OF ||B%AB%||C(H) < p. The linear operator B? is defined on the basis (Vr)k>1 by
setting

B %%c = \/V_kwk:-
Notice that, since in assumption (H3) we also require that, for some p
D(B?) C D(B2AB?), we have the inclusion Exy C D(B2AB?). Since B

v

1, we have
(EN) C EN,

[N
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1 1 1
and the operators B2z, A are symmetric on Ey C D(A), then Ay = B2lINABf,, is
a symmetric operator of Ey. Let A be an eigenvalue of Ay and «' € Ex\{0} be an
associated eigenvector, i.e. Ayu' = Nu'. Using that y := B2u' € Ey and By € Ey, we
obtain (recall that Ay = lyAg,)

N(u', Bu'y = (B2 AyB7u/, Bu') = (B% Ayy, B7y)
= (Any, By) = (Ay, By) . (3.4.9)

Since (u', Bu') is positive by (H1), by (3.4.9) and assumption (H4) (notice that «' is in
Enx CD(A)ND(B)), we get

N/, Bu') < plly||? = p(B2u/, B2u') = p(u, Bu') . (3.4.10)
Since (v, Bu') > 0 by (H1), we deduce by (3.4.10)) that [X'| < p and thus [|[Ay||zEy) < p-
Since B2 and Iy commute and Ey C D(B%AB%), we have
Ay =y(A) gy, A :=DB:AB?,

and arguing by density as to prove (3.4.8)) for A, we deduce that for all v € D(A’), || A'v]| <
pllv||. Hence A" can be extended to a bounded linear operator of H with norm || A'||z(m) < p.
This proves the second estimate in (3.4.2)). m

In the sequel we shall apply Lemma with Hilbert space H = L*(T?) and an
operator B € {By, By, B3} among

By =Dy, By:=Dy, Bs:=D,+ Dy, (3.4.11)

with dense domain

D(B;) := H*(T?).

Notice that each operator B;, i = 1,2, 3, satisfies assumption (H1) (recall (I.1.3)) and B;'
sends continuously L*(T%) into H'(T%) (note that | Dyullrz ~ ||ulm by (3.1.3)-(.1.4)).
Moreover, since H*(T?) is compactly embedded into L*(T?), each B; " is a compact operator
of H = L*(T%), and hence also assumption (H2) holds.

Lemma 3.4.3. (L2-b0unds of Dy — D,,) Consider the linear operators
Ay := Dy — D,,, (3.4.12)
Ay = DA(Dy — D,,) DA (3.4.13)

with domains D(Ag) = H'(TY), D(A}) := H*(T?). Then Ay and A} can be extended to
bounded linear operators of L*(T?) satisfying

1 Aollecz2): [ Aol ey < CUIV L) - (3.4.14)
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PROOF. Since D2, = —A +m. and D} = —A + V(x), we have
Dy(Dy — Dy,) + (Dy — D) D,,, = D} — D2, = Op(V(x) —m),

where Op(a) denotes the multiplication operator by the function a(z). Hence, for all
u e H*(TY),
|(Dv(Dy — Dp)u,u)rz 4+ ((Dy — Dyp) Digu, u)rz| = [((V(z) — m)u, u)re|
< (Vg +m)ullz:
which gives, by the symmetry of Dy and Dy — D,, that
Vu € H*(T?), |((Dy — Dp)u, (Dy + Dy)u) 2| < (||[V ||z +m)||ull3e - (3.4.15)
Actually (3.4.15)) holds for all v € H'(T%), by the density of H*(T%) in H'(T%) and the
fact that Dy and D,, send continuously H*(T?) into L*(T?): setting Ag = Dy — D,, as in

(3.4.12)) and B3 = Dy + D,, as in (3.4.11f), we have
Vu € HY(T?), |(Aou, Bsu) 2| < (||V]|ze +m)|jul|% . (3.4.16)

Thus the assumption (H4) of Lemma holds with A = Ay, B = Bs, Hilbert space
H = L*(T% and p = ||V~ + m. Applying Lemma to Ag and Bs (also assumption
(H3) holds since D(Ag) = D(Bs) = H'(T?)) we conclude that Ay can be extended to a
bounded operator of L*(T?) with norm

[Aollzz2y < C(IV][z<) (3.4.17)

(depending also on the constants m and § > 0 in (1.1.3)). This proves the first bound in
(3.4.14). Then, recalling the definitions of Ay, By, By in (3.4.12)), (3.4.11)), using (3.4.16)

and (3.4.17)), we also deduce that
1
Vu € HY(TY), [(Aou, Buu) 2| = 5[(Aow, (Bs = Ao)u)rz| < C(IV [l ullZ2
Thus the assumption (H4) of Lemma m holds with A = Ay, B = B;. Also assumption
(H3) holds since D(Ay) = D(B,) = H'(T%) and D(B} AyB?) D H*(T%) = D(B?). There-
1

1

fore Lemma [3.4.2 implies that Ay = B AgB?# can be extended to a bounded operator of
L*(T?), with operatorial norm ||A||zz2y < C(||V||r=). This proves the second bound in

(3.4.14). m
Let [A))) = (|i|* + m)Y4[Dy — D)2 (7> + m)Y/4, 4,5 € Z?, denote the elements of the
1 1

matrix representing the operator Ay = D2 (Dy — D,,)D2 in the exponential basis. By
Lemma [3.4.3] we have that

LA < 1Al erzy < C([V ||z), Vi, j € Z°. (3.4.18)
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In order to prove also a polynomial off-diagonal decay for [A’]‘ i # j, we notice that, for

7,7
n>1,

Adnmk Aj  is represented by the matrix (1’”(2k - jk.)”[A{)]D (3.4.19)

i,jeZ4
and then prove that Adg% A} extends to a bounded operator in L*(T?) .

Lemma 3.4.4. (L2 bounds of Adj DV) For anyn > 1, k = 1,...,d the operators

Ady, Dy and D2 (Adj, DV)D%1 can be extended to bounded operators of L*(T?): there
exist p032twe constants C’ and C!, depending on ||V||cn such that

|AdG, Dv || 2 < Ca (3.4.20)
|DA(AS, Dy)D| 1y < Ch. (3.4.21)

ProoF. We shall use the following algebraic formulas: given linear operators Ly, Lo we
have

Adp,, (L1Ls) = (Adg,, L1)La + L1(Adg,, Lo) (3.4.22)
AL (L) = Y (m) (Ady L) (A" L,). (3.4.23)
n1=0

We split the proof in two steps.
1st step. We prove by iteration that, for all n > 1, there are constants C,,, C!! > 0 such

that
H(Adgzk Dy)Dy + DV(Adgzk Dy)ll 2y < CY (3.4.24)
HAdgszch(Lz) <C,. (3.4.25)
Clearly the estimates (3.4.25)) are (3.4.20)).

INITIALIZATION: PROOF OF (3.4.24)-(3.4.25) FOR n = 1. Applying (3.4.22)) with L; =
Ly = Dy and since D} = —A + V(x), we get

(Ada,, Dv)Dv + Dy (Adp,, Dy) = Adg,, (—A +V(z)) = Op(V,, () (3.4.26)

where Op(V},) is the multiplication operator by the function V, (x) := (9,,V)(z). Hence
(3.4.24) for n = 1 holds with Cf = ||[V||c1. In order to prove (3.4.25) for n = 1 we apply
Lemma, to the operators A; := Adp, Dv and By = Dy. Assumption (H3) holds

because D(A;) = H*(T?) = D(B2). Note that, because of the L*-antisymmetry of the
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operator O,,, if L is L*-symmetric then so is Adaka. Hence A; = Adawk Dy is symmetric.
Also assumption (H4) holds because

Yu € HQ(Td) s |<A1U, BQU)L2| = |<AAd@m]C Dvu, Dvu)L2| (3427)

1
= —‘ ( AdaZk Dv)DV + Dv(AdaZk Dv)u, u) L2|

c"
< Sl

by (3.4.24) for n = 1. Therefore Lemma implies that (3.4.25) holds for n = 1, for

some constant C7 depending on ||V||c:1.

ITERATION: PROOF OF (3.4.24)-(3.4.25) FOR n > 1. Assume by induction that (3.4.24))-
3.4.25) have been proved up to rank n — 1. We now prove them at rank n. Applying
3.4.23) with L; = Ly = Dy and since D} = —A + V(z), we get

n—1
(Adh, Dv)Dy + Dy(Adj, Dv) + 3 (1) (D) (ady, ™ D)

= Adj, (—A+ V() = Op((F, V). (3.4.28)

Let T,, := (Adgxk DV)DV + Dy (Ad”xk DV). By (3.4.28)) and using the inductive assumption
(3.4.25|) at rank n — 1, we obtain

n—1

I Tulleqerne <||vucn+2( )I\Ad’“ Dyllews IAdL ™ Dy lleusy < G (3:429)

n1=1
where the constant C! depends on ||V||¢gn. We have that

1 € o

Vu € H"(TY), |(Adj, Dyu, Dyu)p:| = \(T u, 1) 2| ”H 172 . (3.4.30)

We now apply Lemma 2l to A, = Adgmk Dy and By = Dy. Assumption (H3) holds
1(’H‘ ) =

because D(A,) = H"" D(B”Jrl ) by (3.1.4). Assumption (H4) holds by (3.4.30).
Therefore the first inequality in 2)) implies that || Ap || z(r2(rayy < Cu(||V]|on). This proves

(3.4.25) at rank n.

2nd step. PROOF OF (3.4.21) FOR ANY n > 1. In order to prove that the operator
D (Ad" DV)D,?,L extends to a bounded operator of L*(T%) we use Lemma [3.4.2] with
A=A, =Adj, Dy and B = D,,. Assumption (/13) holds because D(A,) = H""(T) =

1 1
D(D™™) and D(Dz A, D3) D H"(T?) = D(D™). Also Assumption (H4) holds because,
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by (3.4.30), and the fact that A, and D,, — Dy are bounded operators of L*(T?) by (3.4.25)
and Lemma we get

Vu € H" T, |(Apu, D) 2| < |(Anu, Dyu) 2| + | (A, Dy — Dyu) e
< 2
< pullullzz

where p,, depends on ||V||cn. Then the second inequality in (3.4.2)) implies (3.4.21f). m
Proof of Proposition concluded. Recalling (3.4.18)) the entries of the matrix
1 1

([AG)])ijeza, which represents the operator Ay := Dz (Dy — D,,)D# in the exponential

1
basis, are bounded. Furthermore, since each 0,,, k = 1,...,d, commutes with D,, and Dy,
we have that, for any n > 1,

Adj, Ay = Di(Ad3, Dy)Di.

By Lemma [3.4.4] this operator can be extended to a bounded operator on L?(T%) satisfying

(see (GA21))

IAd3, Apllzzcray < CL(IVlen) - (3.4.31)
By (3.4.18]), (3.4.19)), (3.4.31) we deduce that

Vn>0,Vk=1,...,d, V(i,j) € Z* x 7,
[ix — Gul"1[AG]| < 1A, Apllzzay < Cr(IV]Ien)

d d
with the convention Adgzk :=Id. Hence, for s > 0 and n, := [s + 51 +1>s+ B + 1, we
deduce that the s-decay norm of Aj satisfies

2
K.

L

A< K3+ >

1
2s 2 .2
0P < KLY s = T
¢ez4\{0}

¢czd

for some constant Y, depending on s and ||V||¢ns only. The proof of Proposition is
complete. m

With the same methods we also obtain the following propositions.

1 1 d
Proposition 3.4.5. |DZ — D3|, < C(s,||V||cns ) where ng := [s + 5] +1.

PROOF. Since the proof closely follows Lemmata [3.4.3| and [3.4.4] we shall indicate just the
1 1

main steps. One first proves that DZ — DZ, can be extended to a bounded operator of L?,
arguing as in Lemma [3.4.3] Writing

1 1

DZ(DZ — D3) + (DE — D3)D3 = Dy — D, ,
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1 1 1
using the symmetry of Dy, and Dy, — Dy, that Dy — D,, is bounded on L* by Lemma|3.4.3

(see (3.4.14)), and the density of H' in H%, we deduce that

Vue H2(T?), |(Df — Di)u, (Df + Diu)rz| < C([V|z=)lull3 -

1 1
Then, arguing as in Lemma [3.4.3|, Lemma |3.4.2| implies that D¢ — Dy, can be extended to
a bounded operator of L? satisfying

1 1
ID% = Diallezy < CIV |ze) - (3.4.32)

1
Next one proves that, for all m > 1, £k =1,...,d, the operators Adg% D can be extended
to bounded operators on L? satisfying

|Adj, Dy < Co(|lV]len) - (3.4.33)

Hﬁ(LQ)

It is sufficient to argue as in Lemma [3.4.4] applying (3.4.22)-(3.4.23) to L; = Ly, = D and

11
D Dy, = Dy, and using that Adgzk Dy are bounded operators of L? satisfying (3.4.20)). The

Proposition follows by (3.4.32)) and (3.4.33)) as in the conclusion of the proof of Proposition
BAT1l m

11 11
Proposition 3.4.6. |D3.D, |5, |D,?>Dals < C(s, [|[V]cns)-
Proor. Writing

1 1 _1 1 1
D,?D3 =1d — D,* (D2 — D3),
DzD,? =1d — (DZ — DZ)D,?,

Proposition follows by Proposition [3.4.5| (3.3.6]), and
1
|Dy2|s < C(s, ||V lens) - (3.4.34)

The estimate ([3.4.34)) follows, as in the conclusion of the proof of Proposition by the
1
fact that D,,* is a bounded operator of L? and

||Adgka;%||£(L2) <CullVIlen), Vn>1,k=1,....d. (3.4.35)

The estimates (3.4.35) can be proved applying (3.4.22)-(3.4.23) to L; = L, = D and
11
D D, = Id. For example, applying (3.4.22), we get

(Ady, Dy?) = —Dy? (Ady, D2)Dy?

which is a bounded operator on L? satisfying (3.4.33)), and D,,®> € L(L?). By iteration, the
estimate (3.4.35)) follows for any n > 1. m
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3.5 Interpolation inequalities

We conclude this Chapter with useful interpolation inequalities for the Sobolev spaces H*

defined in (3.3.2)).

For any s > so > (|S| + d)/2, we have the tame estimate for the product

1 9llips Ss [1fl|eipslgllip,so + [1f1Lip,so 9| Lip,s - (3.5.1)
Actually we directly prove the improved tame estimate (3.5.2]) below, used in [23], [25].

Lemma 3.5.1. Let s > so > (|S| +d)/2. Then

[uv|[Lip,s < CollullLip,sllvllLip,so + C ()l ul|Lip,so l|v]|Lip,s (3.5.2)
where the constant Cy > 0 is independent of s > sq.
PROOF. Denoting y := (¢, ) € T°, b = |S| 4 d, we expand in Fourier series
u(y) = Z Uy €Y v(y) = Z Uy €Y
meZb mezbd
Thus
2 2
ol = 3 |3 w0 < 3 (S lualivsl) mi < 5145, (353
mezZdb  keZb mezZb  kezZb
where

S1=2) < > |UkHUm—k|>2<m>28

meZd  |m|<|k|21/s

=23 (0 Jusllvil) tm).

meZd  |m|>|k|21/¢

The indices in the sum S are restricted to |m| < |k[2Y/¢, thus ((m)/(k))* < 2, and, using
Cauchy-Schwarz inequality, we deduce

D S S (e o

meZl |m|<|k|21/s

<230 (0 P o a2 m — k)oa) (32 ﬁ)

mezZd  kezb kEZD

< C(s0)|lull2[[llZ, - (3.5.4)
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On the other hand, the indices in the sum Sy are restricted to |k| < |m|27%, and therefore
m — k| > |m] = |k| > [m|(1 —27"%)
and ((m)/(m —k))® < ¢(s). As a consequence

=23 3 (|uk|<k>s°\vmfkf<m — k)’ #f

meZP |k|<|m|2-1/s

<2 3 (X b0 oo Pm — 1) (3 5

mezZb  keZb kezb

< C)lullz, oIz - (3.5.5)
By (3.5.3) and the estimates (3.5.4))-(3.5.5) we deduce
[uvlls < Clso)llullsllvlls + Cls)llullsollv]ls -

Recalling (3.3.3)), the estimate (3.5.2) follows. m

In the case when 0 < s < s, the estimate of ||uv||s can be simplified.

~
[\ =
»
o
N———

Lemma 3.5.2. Let s > (|S|+d)/2 and 0 < s < sq. Then

[wv]lLip,s < C(so)llwluip,sollvllip,s (35.6)

PROOF. Denoting b = (|S| + d)/2, we have, as in the proof of Lemma [3.5.1]

Juol? < 3 (St llom el )

< 3 (X ol = 1 )’
: ZZb (kzzb |Uk|2<k>2so|vm_k|2<m - k>2s> <;§7 <k>280<?:32i /{3>28> (3-5.7)

by the Cauchy-Schwarz inequality. We now use the following inequality: for 0 < s < s,

b b (m)* of 1 1
Vm e Z", Vk ez, m§2(<k>50+<m_k>80>. (3.5.8)

To prove ((3.5.8)), we distinguish two cases: if (m — k) > (m)/2 then (3.5.8) is trivial. If
(m — k) < (m)/2, then (k) > (m)/2 > (m — k) and, since so — s > 0,

(e 0"
(i =2 = ke

(m)* < 2 (k) = 2
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which implies (3.5.8)). By (3.5.8)) we deduce that, for any m € Z°,

()2 1 |
2 T lm = & 2 T+ 2 T < )

kezb kezb ezb
and therefore, by (3.5.7)), we obtain
[uvlls < Clso)llullsol[lls - (3.5.9)

Recalling (3.3.3)), the estimate (3.5.6) is a consequence of (3.5.9)). m

As in any scale of Sobolev spaces with smoothing operators, the Sobolev norms || ||
defined in (3.3.2) admit an interpolation estimate.

Lemma 3.5.3. For any s < sq, $1,52 € R, and 0 € [0, 1], we have
||h||L1P5 S 2||h||L1p 51||h||L1p Ss2 § = 081 + (1 - 0)82 : (3510)

PROOF. Recalling the definition of the Sobolev norm in (3.3.2)), we deduce, by Holder
inequality,

P12 =D 1halP0)® = Y (Il (@)% (hal () *>2)

iezb i€Zb
0 1-6
< (D Imaltiy) (D Inaf2tiy®)
SyA 1ezb
— [|Bl2 )20

Thus [|Alls < [|R]|2 |A]|% ¢, and, for a Lipschitz family of Sobolev functions, see (3.3.3), the

inequality (3.5.10]) follows. m
As a corollary we deduce the following interpolation inequality.

Lemma 3.5.4. Let a« < a <b < f3 such thata+b=«a+ 3. Then
[Alleip,allPllLips < 4l[Allvip,ollPlLip,s - (3.5.11)
Proof. Write a = 0+ (1 —6)5 and b = pa + (1 — )3, where

a-8  b-p
04—57 M—Oé——67

By the interpolation Lemma [3.5.3, we get
HhHI—JPa S 2||h||L1pa||h||L1p,B7 ||h||L1Pb < 2||h||L1pa||h||L1p,3’

and (3.5.11)) follows multiplying these inequalities. ]

0 —

0+p=1.
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We finally recall the following Moser tame estimates for the composition operator

(g, yup) = £(ug, ..., up) (@, ) == flo,z,ui(e, ), ..., uy(p,)) (3.5.12)
induced by a smooth function f.

Lemma 3.5.5. (Composition operator) Let f € C®(TSl x T? x R?R). Fiz s, >
(d+[S])/2, so € N. Given real valued functions u;, 1 < i < p, satisfying ||uillLip.sy, < 1,
then, Vs > s,

p
e, )l < Cls, (14D ulluins) (3.5.13)
i=1
Assuming also that ||vi||ips, < 1, 1 <1i <p, then
P
[£(vr, - vp) = £(un, - up) llLip,s Sey Z [0: = | Lip,s+ (3.5.14)
i=1

p p
(D Huslluips + lollips ) D o5 = tilipn-
i=1 =1

PROOF. Let y:= (p,2) € T° b =|S| + d. For simplicity of notation we consider only the
case p = 1 and denote (uq,...,u,) = u; = u.

STEP 1. For any s > 0, for any function f € C, for all |julls, <1,
I£(w)lls < C(s, F)(L+ [lulls) - (3.5.15)

This estimate was proved by Moser in [98]. We propose here a different proof, following
[20]. Note that it is enough to prove (3.5.15) for u € C°°(T?).

Initialization: holds for any s € [0, so]. For a multi-index a = (ay,...,a;) € N,
we denote 0 = 0! ...0," and we set |a| := a3 + ...+ a;. Recalling that sg is an integer,
by the formula for the derivative of a composition of functions, we estimate the Sobolev
norm ||£(u)lls, by

C(s0) max {[|(8202 ) (-, u) (02" u) ... (0" w)lo; 0 < g < 50, [aV) 4 ...+l + 5] < 50}

D ...,a9 3 €N’ By the Sobolev embedding |l oo oy Sso [Ju]ls, we have

10, 08.1) (y. w())l oo (rey < C(F, lullso) -

Hence, in order to prove the bound ||f(u)||s, S¢ 1+ ||ulls,, it is enough to check that, for
any 0 < ¢ < sg, @ + ... +al?| < 50, the function

where o

vi= (02" u) .. (92 u) satisfies [|u]lo < C(so)[|ull?, - (3.5.16)
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Expanding in Fourier u(y) = E upe™Y, we have
kezb

2
. (1) o \al@
v]|2 = Z‘ S k)™ k) | (3.5.17)
keZb  kit.tho=k
where, for w € C® and a € N°, we use the multi-index notation w® := le‘”. Since

o] 4+ ...+ |aW| < s, the iterated Young inequality implies
e o \al@ a (@ s s
(k1) L (k)™ | < |1 R 1T < (R} L (Kg)™
and therefore by (3.5.17)) we have

HvHoNqZS with 5= 30 (S kel )

kezb  kit+..t+kq=k

An application of the Cauchy-Schwarz inequality, using

> (k)T (k)P0 < o0,

provides the bound Sy <, [lu]|??. The bounds for the other S; are obtained similarly. This

proves (13.5.16)) and therefore (3.5.15|) for s = sg9. As a consequence, (3.5.15)) trivially holds

also for any s € [0, so: in fact, for all ||u||s, < 1, we have

[£(w)lls < I£(w)]lse < CU) < CUA A+ [lulls) -

Induction: (3.5.15)) holds for s > sy. We proceed by induction. Given some integer k > s,
we assume that (3.5.15) holds for any s € [0, k], and for any function f € C*. We are
going to prove (3.5.15)) for any s €]k, k + 1]. Recall that

ull2 = Jurl*(k)* ~, HUIIL2+ max ||3y1u
e/

2. (3.5.18)

Then
)l S22 11 £ w2+ max 1164, (7w, u(w))llss

.....

Ssg 14 max, (II(%f)(y, ( Nls—1 + 100uf) (Y w(®) (0 ) W) ]ls=1) - (3.5.19)

-----

By the inductive assumption,

10y ) (s w(y))ls—1 < CUHA A+ [Julls—1) - (3.5.20)
To estimate ||(Ouf)(y, u(y))(9y,u)(y)||s—1, we distinguish two cases:
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e 1st case: k = so. Thus s € (s, S0+ 1]. Since s — 1 € (s — 1, 8] we apply Lemma

obtaining
10uf) (Y, w(y)) Dy, w) (W)lls—1 Sso 1(Ouf) (s u(y))llso [l Oy

e 2nd case: k > so+ 1. For any s € (k, k+ 1] we have s — 1 > s, and, by Lemmam
and the inductive assumption, we obtain
10uf) (s w() Oy, w) (W)l s—1 Ssr (14 Nulls—)l[ellsorr + Nulls-
By the interpolation inequality ||u|[s_1||w|lsor1 < |Jul|s||w]|s, (Lemma [3.5.4), and s >

so + 1, we conclude that

10uf) (Y, u(y)) (D) (W) ls1 S llulls - (3.5.22)

Finally, by (3.5.19)), (3.5.20), (3.5.21), (3.5.22)), the estimate (3.5.15 holds for all s €
|k, k + 1]. This concludes the iteration and the proof of (3.5.15)).

STEP 2. PROOF OF (3.5.13)). In order to prove the Lipschitz estimate we write

f(v)(y) — £(u)(y) = f(y,v(y)) — f(y,u(y))
- / Ouf) () + 7(0 — u)())(w — w)(y)dr (3.5.23)

s S llulls- - (3.5.21)

Then

1£(v) = £(u)]s S/O 10uf)(y, u+7(v —u)(v —u)sdr (3.5.24)

!
Se /0 10 /)y, u+ 70 = w)lsllv = ullsg + [1(0uf) (Y, u+ 70 =)l [0 = ullsdr-

Specializing (3.5.24) for v = w(\2) and v = w();), using (3.5.15) and |[ullLips, < 1, we

deduce
[£(u(A2)) — £(u(M)ls Ssop ullLipslAa — Arl, - VAL A2 € A (3.5.25)

The estimates (3.5.15]) and ((3.5.25)) imply (3.5.13)).
STEP 3. PROOF OF (3.5.14)). By (3.5.23),

1£(v) = £ () lLip,s < /0 10uf) (s w +7(0 = w) (v = w)l|Lip,sdT

1
< / 10uf) (s + (0 — @) limell — lliipen
0

+ 10uf) (Y, v+ 7(v = w))|[Lip,so lv = wllLip,s d7
and, using (3.5.13) and ||u||Lip.so, [|]|Lip,se < 1, we deduce (3.5.14) for p = 1.

Estimates (3.5.13]) and (3.5.14)) for p > 2 can be obtained exactly in the same way. m




Chapter 4

Multiscale Analysis

The main result of this Chapter is the abstract multiscale Proposition 4.1.5, which provides
invertibility properties of finite dimensional restrictions of the Hamiltonian operator £, ,

defined in (4.1.9)) for a large set of parameters A € A. This multiscale Proposition will

be used in Chapters [0] and [10]

4.1 Multiscale proposition
Let H := L*(T% R) x L*(T% R) and consider the Hilbert spaces
()H:=H, (i) H:= H x H.

Any vector h € H can be written as

(i) h = (hy, hs) , (ii) h = (hy, hy, hs, hy) h; € L*(T% R).

On H, we define the linear operator J as

J(hi,ha) = (ha, —h1) in case (7)
J(hl,h27h3,h4) = (hg, —hl,h4, —h3> in case (ZZ) .

Moreover, in case (ii), we also define the right action of J on H as

hJ = (h17h27h3ah4)<] = (_h37 _h47h17h2) .

(4.1.1)

(4.1.4)

Remark 4.1.1. The motivation for defining (4.1.3]), (4.1.4) is the following. Identifying
a € L(H;, H) with (aV,a®,a® W) € Hx H as in [3.2.6)-(3.2.7), the operators Ja,aJ €
L(H;, H), where J is the symplectic operator in (3.1.10)), i.e. (4.1.2), are identified with

the vectors in H x H in (3.2.13)), (3.2.14), i.e. (4.1.3), (4.1.4

S—
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We denote by Ilsur the L?-orthogonal projection on the subspace Hs r in H defined in
(3.3.31)) or the analogous one in H x H. Note that IIs r commutes with the left (and right
in case (4.1.4])) action of J. We also denote

Mg e :=1d — Hsp = I,
see ([1.2.14]). We fix a constant ¢ € (0, 1) such that

B l4p+e > weZl jes. (4.1.5)

(&)
By standard arguments, condition (4.1.5)) is fulfilled by all ¢ € (0, 1) except a set of measure

O(7). We explain the purely technical role of the term cIlg in (4.1.6)-(4.1.7) below, in
remarks [4.1.3] and 4.6.3] .

Definition 4.1.2. Given positive constants Cy,co > 0, we define the class €(Cy,c3) of
L?-self-adjoint operators acting on H, of the form, according to the cases (i)-(ii) in (A.1.1)),

(7) X, =X, (e, N\, @) = Dy + clls + (e, \, @) (4.1.6)

(11) Xy = Xeu(e, N @) = Dy + cllg + pu(e, )Tz 5 + 7(g, A, ©) (4.1.7)

defined for \ € AC A, where Dy = \/—A+V(x), ple,\) € R, J is the self-adjoint
operator

J:HxH—HxH, hvw Jh:= JhJ, (4.1.8)

(recall (4.1.3)-(4.1.4)) and such that

1|7 |uip s < C1€%, for some s; > sp,

2. |p(e, A) — pgluip < Cie? for some k € F (set defined in (1.2.15))),
X, _
3. 0,\<1 n ‘;)\) < —pe’ld, see the notation (1.6.4).
€

We assume that the non-resonance conditions (1.2.7)), (1.2.16))-(1.2.17), (4.1.5)) hold.
For simplicity of notation, in the sequel we shall denote by X, , also the operator X, in
(4.1.6)), understanding that X, = X, , does not depend on pu, i.e. J = 0.

Notice that the operator J defined in (#.1.8) and ITg ; = Ilg commute.

Remark 4.1.3. The form of the operators X,, X, in (4.1.6), (4.1.7) is motivated by the
application of the multiscale Pmposz’tz’on to the operator L, in (10.2.30) acting on H,

and the operator L, ,, in (9.3.44) acting on H x H. We add the term cllg in (4.1.6]), (4.1.7)
as a purely technical trick to prove Lemma see remark [{.6.3
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In the next proposition we prove invertibility properties of finite dimensional restrictions

of the operator
L,,=Jw 0+ X, ule,\), w=(1+N)w., (4.1.9)

for a large set of A € A. For N € N we define the subspace of trigonometric polynomials

Hy = {U(%x) = Z ug € Py € Cr}

I(6HI<N

_ , (4.1.10)

2in case (4.1.1)-(7)

where r:=
4in case (4.1.1)-(7) ,

and we denote by [Ty the corresponding L?-projector:

u(p,x) = Z wg ;€T [T = Z ug el eI (4.1.11)
(AN |(€,5)|<N

The projectors 1y satisfy the usual smoothing estimates in Sobolev spaces: for any s, 8 > 0,

[ yullsss < NPYulls, [ Hyulls < N7P|ullsis (4.1.12)
I nulluip,sis < NPNullups s 1 ullups < N2 ullip,ses - (4.1.13)

We shall require that w satisfies the following quadratic Diophantine non-resonance
condition.

Definition 4.1.4. (NR)__ Given v € (0,1), 7 > 0, a vector w € RSl is (NR)_ _ non-

7 VT
resonant, if, for any non zero polynomial P(X) € Z[X1, ..., X|g|] of the form

P(X)=n+ Z piXiXj, n,piy €L, (4.1.14)
1<i<j<[s|
we have
[Pw)] =v(p)", (p):= ijinﬁ.}.ﬂsﬁl’ pij|}- (4.1.15)

The main result of this section is the following proposition. Set
¢:=1/10. (4.1.16)

For simplicity of notation, in the next proposition £, , also denotes Jw - 0, + X, under-
standing that X, = X, , in (4.1.6)) does not depend on p.
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Proposition 4.1.5. (Multiscale) Let @. € R be (v1,m)-Diophantine and satisfy prop-
erty (NR),, . in Definition with 1,7 defined in (1.2.28)). Then there are g9 > 0,
7' >0, 51 > s9, N € N (not depending on X, but possibly on the constants Ci, ca, Yo, To,
Y1, 71) and 75 > 0 (depending only on 19) such that the following holds:

assume s; > 351 ang take an operator X, , in €(Ch,cz) as in Definition which
is defined for all X € A. Then for any € € (0,e9), there are N(¢) € N, closed subsets
Aen, X,.,) C A, n e [1/2,1), satisfying

1. A(esn, Xop) S A0, X)), forall 1/2<n<n' < 1;
2. the complementary set A(e;1/2,X,.,)" == A\ A(e;1/2,X,.,,) satisfies
IA(£;1/2, X,,)°NA| Se; (4.1.17)

S if |1 — | 4 |1 — p] <6 < €2, then, for (1/2)+V6 <n <1,

[A(sim, X ) N A(esn — V6, X, ) N A| < 6% (4.1.18)
such that,
1. YN < N < N(g), A € A, the operator
L0 = T (L) (41.19)
has a right inverse ([EW]?VN)f1 : Hy — Han satisfying, for all s > sq,
| (w) Ul < CENTNS 1 ) (4.1.20)
1+e2)\ Lip,s

Moreover, for all A € AN /NX', we have
-1 -1 Th+6s
(0B = (1Y) [, S NHSS0H (= N> = 7]1) (41.21)

~oS1
where w, (', v, v’ are evaluated at fived \.

2. VN > N(e), A € Ae;1,X,.,,), the operator

Loy =y (Jw- 0y + X, (e, A))lHN ;o w= (14N, (4.1.22)
1s invertible and, for all s > sg,
£ uw,N -1 / _
Lo < C(s) N2 Hes)t8 (yslsmsn) iptos ) - 4.1.23
(), SOOI ). (12

Moreover for all A € AN N,

£,k = Loy, S CEONE I ([N e —'le) (4120

where w, i, v, v’ are evaluated at fived \.
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Remark 4.1.6. The measure of the set A(e;1/2,X,.,)¢ is smaller than €, for any p, at
the expense of taking a larger constant 7', see remark|4.8.17. We have written € in (4.1.17)
for definiteness.

Remark 4.1.7. Properties -@ for the sets A(e;n, X,.,,) are stable under finite intersection:

if
(AD(g;m, X)), (AP (g5m, X, )

are families of closed subsets of A satisfying ﬂ then the family ( ﬂ A®(eim, X)) still

1<k<p
satisfies these properties.

The proof of Proposition is based on the multiscale analysis of the papers [22], [23],
[26] for quasi-periodically forced nonlinear wave and Schrodinger equations, but it is more
complicated in the present autonomous setting. The proof of the multiscale Proposition
4.1.5|1s given in the next sections [4.2H4.8|

4.2 Matrix representation

We decompose the operator L, in (4.1.9), with X, , as in (4.1.7) or (4.1.6)) (in such a case
we mean that J = 0), as

D, :=Jw-0,+ Dy + pnJ , (4.2.1)
T := Dy — Dy, — pJ Ugur + 1 + cllg

where Dy := \/—A + V() is defined in [2.1.11), D,,, := vV—-A+m in (3.3.18), and w =
(1 + e*\)@.. By Proposition the matrix which represents the operator Dy — D,, in
the exponential basis has off-diagonal decay.

In what follows we identify a linear operator A(y), ¢ € TPl acting on functions h(y, z),
with the infinite dimensional matrix (Ag;j-/){(g7j)7(g/7j/)ezb} of 2 X 2 matrices Aﬁ}j., in case

(4.1.1)-(7), respectively 4 x 4 in case (4.1.1)-(77), defined by the relation (3.2.25). In this
way, the operator L, in (4.2.1]) is represented by the infinite dimensional Hermitian matrix

Ale,N) :==A(e, \;7r) :=D, + T, (4.2.2)
of 2 x 2 matrices in case (i), resp. 4 X 4 matrices in case (i), where the diagonal part is,

in case (i), (7) !
' m 1w -
D, = Dlagiezb (_i]w -/ <]>m> 7

i=(05) €2 =2 x 2, () = VI]iP+m.

(4.2.3)
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In case (ii), recalling the definition of J in (4.1.8)), of the left and right action of J in

[@.1.3)-([#.1.4), and choosing the basis of C*

{f1, fo, f3, fa} =={es —ea,e1 + €4,61 — €4,€2 + €3},

— 4
eq:=(0,...,.1 ,...,0) € C",
a—th
we have
<.]>m — K iw - ¢ 0 0
. —iw-l (J)m—u 0 0
D, = Dlag(f,j)ezb 0 < > 0 <j>m n i ol (424)
0 0 —iw-l (fhm
The off-diagonal matrix
Ti= (T )iemricr, b=IS|+d, T :=(Dy—Dpn)] —plJTel] +rf,  (425)

where TZ:/ are 2 X 2, resp. 4 x 4 matrices, satisfies, by (3.4.1), Lemma m property (1] of

Definition
IT|45, < C(s1). (4.2.6)

Note that (TV)* = T%. Moreover, since the operator T T () in is a ¢-dependent
family of operators acting on H (as r defined in - wh1ch is the only p-dependent

operator) the matrix T is Toplitz in ¢, namely TZ = Tz ' depends only on the indices
¢—1' 4,7 We introduce a further index a € J where

J:={1,2} in case (4.1.1)-(7), J:=1{1,2,3,4} in case (4.1.1)-(z7), (4.2.7)
to distinguish the matrix elements of each 2 x 2, resp. 4 x 4, matrix
T: = (T;&a )u,a’Ej .

Under the unitary change of variable (basis of eigenvectors)

: 1 /1 1
U:= Dlag(z’j)ezbﬁ (i —i) (4.2.8)
the matrix D, in (4.2.3)) becomes completely diagonal

o —1 _ : <j>m — W E 0
D, :=U""D,U = Diag j)ez ( 0 (Y + 0 £> (4.2.9)

and, under the unitary transformation

1

NG , (4.2.10)

_ O O

U := Diag(@’j)ezb

O O =
o |
—

—_ OO
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the matrix in (4.2.4)) becomes completely diagonal
D,, := U"'D,U = Diagy j)cz

G — 11— w - L 0 0 0
0 (Y — p+w- L 0 0
0 0 G+t — - € 0 (4.2.11)
0 0 0 (Jym+p+w-l

Under the unitary change of variable U in (4.2.8)) in case (4.1.1)-(7), (4.2.10) in case (4.1.1])-
(1), the hermitian matrix A in (4.2.2)) transforms in the hermitian matrix

Ale,\) =A=UW =D, +T, T/ =U'TU, (4.2.12)
where the off-diagonal term T satisfies, by (4.2.6]),
74,5, < C(51)- (4.2.13)

We introduce the one-parameter family of infinite dimensional matrices

A(e, N\, 0) == A(e,\)+0Y =D,+0Y +T, 6ecR, (4.2.14)
where
: -1 0) . :
Y := Diag;cz ( 0 1) in case (4.1.1)—(7),
—01 (1) 8 8 (4.2.15)
Y := Diag,» 0 0 -1 0 in case (4.1.1)—(é7) .
0 0 0 1

The reason for adding Y is that, translating the time Fourier indices
(£,5) = (£+ Lo, )

in A(eg, \), gives A(e, A, 0) with = w-{y. Note that the matrix 7" remains unchanged under
translation because it is Toplitz with respect to £.

Remark 4.2.1. The matriz A(e, \,0) = A(e, \,0;7r) in ([£2.14) represents the L*-self-

adjoint operator
L, (0) = Jw-0,+i0J + Dy + uJUg 5 + clls + 7. (4.2.16)
In section we shall denote by ful(e, A\, 0) := A(e, A\, 0;0) the matriz which represents
Lo, (0) == Jw -0, +1i0J + Dy + puJ g + clls . (4.2.17)

Notice that L ,,(8) is independent of ¢, thus A(e, N, 0) is diagonal in ¢ € ZI.
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The eigenvalues of the 2 x 2 matrix D,, 4+ Y, with D,, in (4.2.9) and Y defined in
(4.2.15)-case (i), resp. 4 x 4 matrix with D, in (4.2.11)) and Y defined in (4.2.15))-case (i),

(-t ifa=1
dia(0) = {<j)m + (w- £+ 0) if a=2, (4.2.18)

and, in the second case,

m—p—(w-0+0) ifa=1

U ptF (w0 ifa=2
Balf) = (Dm b= (w-£+60)  ifa=3 (4.2.19)

D+ p+w-L+0)  ifa=4.

The main goal of the following sections is to prove polynomial off-diagonal decay for
the inverse of the |J]|(2N 4 1)°-dimensional (where |J| = 2, resp. 4, in case (&.1.1)-(i), resp.
(4.1.1)-(47)) sub-matrices of A(e, A, 0) centered at (¢o, jo) denoted by

AN,ﬁo,jo (5> A, 0) = A|£*€0|§N,|J*jo|SN(5a A, 9) (4'2'20)

where
10 = max{|tr], ., VY, 1] = masc{ljil, . Ljal} (1.2.21)

If /5 = 0 we use the simpler notation
Anjo(e, A, 0) = Anoo (e, N, 0) . (4.2.22)
If also jo = 0, we simply write
An(e, N, 0) .= Ano(e, A, 0), (4.2.23)
and, for # = 0, we denote
An (e, A) == AN (e, X,0),  An(e, ) := Ano(e, A, 0). (4.2.24)

Remark 4.2.2. The matriz Ax(e,\) in (4.2.24)) represents the truncated self-adjoint op-
erator

IN(Lr )y = Hn(Jw - 0p + X0 ) ppy = Hn(Jw - 0, + Dy + pT g g + 1)y

where Hy is defined in (4.1.10) and Iy in (4.1.11)).

We have the following crucial covariance property

AN (80, 0) = Anji (e, M, 0 +w - 4y). (4.2.25)
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4.3 Multiscale step

The main result of this section is the multiscale step Proposition which is a variant of
that proved in [23]. The constant ¢ € (0,1) is fixed and 7" > 0, © > 1 are real parameters,
on which we shall impose some condition in Proposition |4.3.4!

Given Q,Q € E C Z° x J, where J is defined in (£.2.7)), we define

diam(FE) := sup |k — K|, d(Q,Q):= inf |k—F],

kk'eE keQ,k ey

where, for k = (i,a), k' := (¢,a') € Z® x J, we set

1 ifi=1d,a#d,
|k—FK]:=<0 ifi=1,a=d,
i — | it

Notation: Given a matrix A € ME, when writing the matrix DY2ADY? € ME we
understand that we apply the diagonal matrix D,ln/ 2. E — E to the right/left of A.

Definition 4.3.1. (N-good/bad matrix) The matric A € M%, with E C 7 x 7,
diam(F) < 4N, is N-good if A is invertible and

Vs € [so, 1], |DY2PATIDIV2 < NTESS (4.3.1)
Otherwise A is N-bad.

The above definition is different with respect to that of [23]: the matrix A is N-good
according to Definition if and only if DY/2ADY? is N-good according to Definition
B.2.1

Definition 4.3.2. (Regular/Singular sites) The index k := (i,a) = ((,j,a) € Z* x J
(where J is defined in (4.2.7) ) is REGULAR for A if

Al > 03)".
Otherwise k is SINGULAR.

Also the above definition is different with respect to that of [23]: the index k is regular
for A according to Definition if and only if k is regular for DY2AD!/? according to
Deﬁnitionwith O replaced by ¢(m)© (because of the equivalence (|j|2+m)? ~,, (j)).

The constant © := ©(V) will be chosen large enough depending on the potential V(x)
in order to apply the multiscale proposition (as in [23], [22]).

Definition 4.3.3. ((A, N)-good/bad site) For A € M%, we say that k € E C Z' x J is
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e (A, N)-REGULAR if there is F C E such that diam(F) < 4N, d(k, E\F) > N and
AL is N-good.

e (A, N)-GoOD if it is reqular for A or (A, N)-reqular. Otherwise we say that k is
(A, N)-BAD.

Note that a site k is (A, N)-GOOD according to Definition if and only if £ is
(DY2ADY? N)-coob according to [23].

Let us consider the new larger scale
N' = Nx (4.3.2)

with y > 1.
For a matrix A € ME we define Diag(A) := (6kk/A’,z/)k7k/eE.

Proposition 4.3.4. (Multiscale step) Assume
ce(0,1/2), 7' >2r+b+1, C; >2, (4.3.3)

and, setting k := 7' + b+ 50,

X(7" =27 =b) > 3(k + (so + b)), (4.3.4)
xs > Ch (4.3.5)
s1>3k+ x(7+b) + Cisp. (4.3.6)

For any given T > 0, there exist © := O(Y,s1) > 0 large enough (appearing in Definition
, and No(T,0, s1) € N such that:

VN > Ny(Y,0,51), VE C Z' x 3 with diam(E) < 4N’' = 4NX (see [#.3.2)), if A € ML
satisfies

e (H1) (Off-diagonal decay) |A — Diag(A)|;s < T
e (H2) (L*bound) ||D;?A"1D; 2|y < (N')"

e (H3) (Separation properties) There is a partition of the (A, N)-bad sites B =
Uy 2, with
diam(Q,) < N9, d(Q,Q5) > N? | Va # 3, (4.3.7)
then A is N'-good. More precisely

1 /
Vs € [so sl s IDL2ATIDL, < (N ((N') + |A— Diag(A)].)) . (438)

and, for all s > sq,

D PATIDL, < C(s) (V') ((N')*° + | A — Diag(A)]1.s) - (4.3.9)
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Remark 4.3.5. The main difference with respect to the multiscale Proposition 4.1 in [23]
15 that, since the Deﬁmtion of reqular sites is weaker than that in [23], we require the
stronger assumption (H1) concerning the off-diagonal decay of A in | |4 norm defined in
, while in [23] we only require the off-diagonal decay of A in | |5, norm. Another
difference is that we prove (with the constant 1/4) for s € [so, 1], and not in a
larger interval [so, S| for some S > sy. For larger s > sy we prove with C(s).

PROOF OF PROPOSITION [4.3.4] The multiscale step Proposition follows by Propo-
sition 4.1 in [23], that we report in the Appendix [B.2] see Proposition [B.2.4] Set

T := A — Diag(A), T 4.6, (2) T, (4.3.10)
and consider the matrix
Ay = DY?AD!? = Diag(A.) + T (4.3.11)
where
Diag(A,) := D}/*Diag(A)DY?*, T .= DY*TD}?. (4.3.12)

We apply the multiscale Proposition to the matrix A,. By (H2) the matrix A, is

invertible and

(H2)
147 o B2 | D712 A7 D2, < (NY)T

Moreover, the decay norm

E312) B317)
71, 2 DDy, B T, S T

S1

Finally the (A4, N)-BAD sites according to Definition coincide with the (A, N)-BAD
sites according to Definition [4.3.3] (with a © replaced by ¢(m)®©). Hence by (H3) also the
separation properties required to apply Proposition hold, and we deduce that

1 / )
Vs € [so, s, 1AL < (V) ((N) + A, — Diag(4,)],)

that, recalling (4.3.11)), (4.3.10)), (4.3.12)), implies (4.3.8). The more general estimate (4.3.9))
follows by (B.2.8). m

4.4 Separation properties of bad sites

The aim of this section is to verify the separation properties of the bad sites required in
the multiscale step Proposition [4.3.4]

Let A := A(e, \,0) be the infinite dimensional matrix defined in ([£.2.14)). Given N € N
and ¢ = ({y, jo), recall that the submatrix Ay, is defined in (4.2.20)).
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Definition 4.4.1. (N-regular/singular site) A site k := (i,a) € Z° x J is:
e N-REGULAR if Ay; is N-good (Definition[4.3.1).
e N-SINGULAR if Ay; is N-bad (Definition .

We also define the N-good/bad sites of A.

Definition 4.4.2. (N-good/bad site) A site k := (i,a) € Z° x J is:
e N-GOOD if

kisregular (Def.|4.3.2) or all the sites k' with d(k', k) < N are N —regular . (4.4.1)

e N-BAD if

kis singular (Def.|4.3.2) and 3k withd(k' k) < N, k'is N—singular.  (4.4.2)

Remark 4.4.3. A site k which is N-good according to Definition is (AL, N)-good
according to Definition for any set E = Ey x J containing k where Ey C Z° is a
product of intervals of length > N.

Let
B (jo; \) == {9 ER : Ayo(e, A 0)is N — bad} . (4.4.3)

Definition 4.4.4. (N-good/bad parameters) A parameter A € A is N-good for A if

Yijo € Z¢, Bn(jo;)\) C U L. a=3d+2/S|+4+3n, (4.4.4)

where 1, are intervals with measure |I,| < N~7. Otherwise, we say that X\ is N-bad. We
define the set of N-good parameters

Gy = {)\ €A : A is N —good for Ale, )\)} (4.4.5)

The main result of this section is Proposition 4.4.5| which enables to verify the assump-
tion (H3) of Proposition for the submatrices An- j, (e, A, 0).

Proposition 4.4.5. (Separation properties of N-bad sites) Let 71,71, 7o, v2 be fized
as in (1.2.28)) and (4.5.9), depending on the parameters 1y, which appear in proper-

ties (1.2.6)-(1.2.8), (1.2.16)-(1.2.19). Then there exist Cy = Ci(d,[S|, ) > 2, 7" =

(d, |S|, ), and N := N(|S|,d, 0,70, m,©) such that, if N > N and

e (i) A is N-good for A,
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o (ii) 7> 77,

o (iii) w. satisfies andw = (1+&°\)w, satisfies (NR)., ., (see Deﬁm’tz’on,
then, Y6 € R, the N-bad sites k = ((,j,a) € Z x ¢ x T3 of A(e,\,0) admit a partition
Ua$2q in disjoint clusters satisfying

diam(Q,) < NO@BSo) q(Q,, Qg) > N?, Ya # 3. (4.4.6)

We underline that the estimates are uniform in 6.

Remark 4.4.6. Hypothesis (ii) in Proposition Just requires that the constant T s
larger than some 7*(d, |S|, 70). This is important in the present autonomous setting for the
choice of the constants in section[{.5. On the contrary in the corresponding propositions in
the papers [29], [23], the constant T was required to be large with the exponent x in (4.3.2).

The rest of this section is devoted to the proof of Proposition In some parts of
the proof, we may point out the dependence of some constants on parameters such as 7o, 71,

which, by ((1.2.28) and (4.5.9)), amounts to a dependence on 7.

Definition 4.4.7. (I-chain) A sequence ko, ...,k € Z5 x 2% x 3 of distinct integer
vectors satisfying
|kq+1_kq|§1—‘7 quO,,L—l,

for some I' > 2, is called a I'-chain of length L.

We want to prove an upper bound for the length of a I'-chain of #-singular integer vectors,
i.e. satisfying (4.4.8]) below. In the next lemma we obtain the upper bound (4.4.10) under
the assumption (4.4.9)). Define the functions of signs

01,09 : 3 = {—1,+1}
01(1) := 01(2) := 09(1) := 02(3) := —1, (4.4.7)
01(3) :=01(4) := 02(2) :=09(4) :=1.

Lemma 4.4.8. (Length of I'-chain of #-singular sites) Assume that w satisfies the non-
resonance condition (NR)., -~ (Definition . For T > T(d,m,0,72,7) large enough,

.....

Vg=0,...,L, |(g)m({g)m + o1(ag)p + o2(ag)(w - £, +60))| <O, (4.4.8)
with oy, 04 defined in (E£4.7), such that, Vj € Z¢, the cardinality

|{(€¢Z>jq> aq)qzﬂ ..... L - jq = j}| < K. (449)
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Then there is Cy := Co(d, 72) > 0 such that its length is bounded by
L<(TK), (4.4.10)

Moreover, if € is fized (i.e. L, ={, ¥q=0,...,L) the same result holds without assuming
that w satisfies (NR)

Y2,72 "

The proof of Lemma is a variant of Lemma 4.2 in [22]. We split it in several steps.
First note that it is sufficient to bound the length of a I'-chain of singular sites when
0 = 0. Indeed, suppose first that 8 = w - ¢ for some ¢ € Z°l. For a I-chain of f-singular

----------

0-singular sites, namely

| Gadm (Gg)m + o1(ag)i+ oa(ag)(w - (L, +0))| < ©.

For any 6 € R, we consider an approximating sequence w - £, — 0, £, € ZI°l. Indeed, by
Assumption (1.2.29), w = (1 +*\)@. is not colinear to an integer vector, and therefore the
set {w- ¢, ¢ € ZF} is dense in R. A DI'-chain of ¢-singular sites (see (4.4.8)), is, for n large
enough, also a I'-chain of w - £,-singular sites. Then we bound its length arguing as in the
above case.

We first prove Lemma in a particular case.

.....

be a T-chain of integer vectors of Z¥ x Z% x J satisfying, Vg =0,..., L,

|\ 1da> +m + oa(ag) w- 4] < %, in case (1) of Def.4.1.2), (4.4.11)
q
[/ 1dal? + m+ o1(ag)p + o2(ag) w - £y| < %, in case (i1) of Def.[4.1.2,  (4.4.12)
q

where 01,09 are defined in (4.4.7)). Suppose, in case (4.4.12)), that the product of the signs
o1(ag)oq(a,) is the same for any q € [0, L]. Then, for some constant Cy := C(d, m2) and

C :=C(m,0,7,d, 1), its length L is bounded by
L<C(K)* (4.4.13)

where K is defined in (4.4.9).
Moreover, if £ is fized (i.e. ¢, = {, ¥q), the lemma holds without assuming that w
satisfies (NR)

Y2,7T2 "

PrOOF. We make the proof when (4.4.12) holds, since (4.4.11]) is a particular case of
(4.4.12) setting u = 0 (notice that, in the case (4.4.11)), the conclusion of the lemma follows

without conditions on the signs os(a,), see remark 4.4.11)).
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We introduce the quadratic form @ : R x R? — R defined by
Q(z,y) = —2* + |y|? (4.4.14)

and the associated bilinear symmetric form @ : (R x R%)? — R defined by

O((z.y), (2',y) = w2’ +y-y'. (4.4.15)
Note that @ is the sum of the bilinear forms
b=—-P, +@
Lo (4.4.16)

2 ((J}, y)? (xlv y/)> = :L‘JZ/, @2((1‘7 y)’ (xlv y/)) =Yy~ y/-
Lemma 4.4.10. For all q,q € [0, L],
}@((wqovjqo% (Tqg = Tgor Jg — jqo))| < CF2’Q - c]0‘2 +C(0), (4.4.17)
where x4 1= w - .

PROOF. Set for brevity o1, := 01(a,) and 02, := 02(a,). First note that by (4.4.12)) we
have
}quF +m — (o140 + o2 qw - Kq)2‘ <CO.

Therefore
| = (W) + |jg|* = 2014020 pw - | <C', C':=CO+m+ 42,
and so, recalling (4.4.14), for all ¢ =0,..., L,
|Q(xg, jg) — 201 4024 ppxg| < C' where  z,:=w-{,. (4.4.18)
By the hypothesis of Lemma [4.4.9]
014024 = 01.4002.400» V¢ Qo € [0, L],
and, by bilinearity, we get

Q(xqvjq) — 201,402, gH1Tq = Q<x!I0=jqo)
+ 2@((Iqo7jqo)a (Iq — TgosJq — qu>) + Q(Iq — Tgy,Jqg — jqo)

— 201,402,400 WTqy — 201,402,9/1(Tq — Tqy) - (4.4.19)
Recalling (4.4.14]) and the Definition of I'-chain we have, ¥q, qo € [0, L],
‘Q<xq — Ty, Jg — Jao) — 201,402, — xq0)| < CT?|q — qof*. (4.4.20)

Hence (1.4.19), (£.4.18), (4.4.20) imply (.4.17). m
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Remark 4.4.11. In the case (4.4.11), the conclusion of Lemma |4.4.10 follows without
conditions on the signs oa(a,). This is why Lemma holds without condition on the

signs oa(ay).

Proof of Lemma continued. We introduce the subspace of R4
G .= SpanR{(xq — Ty, Jo—Jg)  0<q,¢ < L}

(4.4.21)

= SpanR{(xq — Tgy,Jq — Jao) 1 0< g < L}

and we call ¢ < d + 1 the dimension of . Introducing a small parameter 4 > 0, to be
specified later (see (4.4.38))), we distinguish two cases.

Case 1. Vg, € [0, L],

Spang { (T4 — Tgos Jo — Jao) * la— @0l < L°, ¢ €[0,L] } =G. (4.4.22)
We select a basis of G C R™ from (2, — 74, jq — Jgo) With g — qo| < L°, say
fs = (gy — Tgor Jg — Jao) = (WAl AG), s=1,...,9, (4.4.23)

where (A0, Agj) := (Ly, — Loy, Jo. — Jqo) Satisfies, by the Definition of T'-chain,
(AL, A)| < CT|qs — qo| < CTLO. (4.4.24)

Hence
Iff <CTL°, Vs=1,...,g. (4.4.25)

Then, in order to derive from (4.4.17) a bound on (z4,,j,) or its projection onto G, we
need a nondegeneracy property for Q)i¢. The following lemma states it.

Lemma 4.4.12. Assume that w satisfies (NR) Then the matriz

Y2,72 "
Q= ()0, Q= fo), (4.4.26)
18 1nwvertible and
(@] < CrL)s@m) s ' =1,....9, (4.4.27)

where the multiplicative constant C depends on ~s.

ProOOF. According to the splitting (4.4.16)) we write €2 as

Q= (= Di(fo, fo) + Polfor fs)) oy , = —S+R (4.4.28)
where, by ,
S =D (fo, fs) = (w- Agl)(w - Agl),

; —A (4.4.29)
Rs = gpQ(fs’afs) = As’] . As] .
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The matrix R = (Ry,..., R,) has integer entries (the R; € Z‘ denote the columns). The
matrix S := (S51,...,95,) has rank 1 since all its columns Sy € RY are colinear:

Sy =(w-AL)(w-Arl,...,w-00)T, s=1,...g. (4.4.30)

We develop the determinant

P(w) = detQ det(—S + R)
= det(R) - det(Sl, RQ, ey Rg) — ... det(Rl, ey Rgfl, Sg)
= det(R)— Y (=1)"S,- (RiA... ARy ARei Ao A Ry) (4.4.31)
1<s<g

using that the determinant of matrices with 2 columns S;, S;, ¢ # j, is zero. By (4.4.30)), the
expression in ([4.4.31)) is a polynomial in w of degree 2 of the form (4.1.14}) with coefficients

(@.4.29), (@.4.29)
(n,p)l — < C(TL)* < C(DLO)* Y. (4.4.32)
If P # 0 then the non-resonance condition (NR)_, _ implies
vy EE3Y Y
|det Q| = [P(w)] = B 2 ODpm@n (4.4.33)

In order to conclude the proof of the lemma, we have to show that P(w) is not identically
zero in w. We have that

P(lw) = det (¢1 (fs’a fs) + QBQ(fS’v fs))s,s’:l,...g = det(fs’ ’ fs)s,s’:l,...g >0

because (fs)1<s<g is a basis of G. Thus P is not the zero polynomial.

By (4.4.33), the Cramer rule, and (4.4.25)) we deduce (4.4.27). m

Remark 4.4.13. As recently proved in [29] the same result holds also assuming just that

w is Diophantine, instead of the quadratic non-resonance condition (NR)%TQ.

Proof of Lemma [4.4.9] continued. We introduce
GL? = {z ERHML . Bz, f) =0, Vf € G}.

Since (2 is invertible (Lemma {4.4.12)), @\ is nondegenerate, hence

R™ =G GH?

Rd+1

and we denote by Pg : — G the corresponding projector onto G.
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We are going to estimate

g

PG(xqovjqo) = Z as’fs’ . (4434)

s'=1

For all s=1,...,¢, and since f, € G, we have
g
. . (139
P((Xg0: Jao)s ) = P(Peltgy Jan)s f) "= Y as®@(fo, f)
s'=1
that we write as the linear system
aq gp((l’qovjqo)af1>
Qa =0, a:= : , b= : (4.4.35)
ag ¢((x%7jq0)7fg>
with () defined in (4.4.26)).
Lemma 4.4.14. For all ¢y € [0, L] we have
|Pe(gp, Jao)| < C(IL) 1), (4.4.36)

where C' depends on s, O.

Proor. We have

(14.4.35)

<
s

[CI29), (117D
S 0012 max [g, — qof? < C(O)(TLY)?,

1<s<g

@<(Iq0,jq0), fs)

recalling that, by (4.4.22), the indices (gs)1<s<4 Were selected such that |g; — qo| < L.
Hence, by (4.4.35)) and (4.4.27)),

la] = Q71| < C(72,0)(NL%)” (4.4.37)

for some constant C' := C(d, 75). We deduce (4.4.36]) by (4.4.34)), (4.4.37)) and (4.4.25). m

We now complete the proof of Lemma 4.4.9] when case I holds. As a consequence of
Lemma [4.4.14] for all ¢, g2 € [0, L], we have

|(xt;{1’qu> - (xtI27jtZ2)| - |PG((‘rq1=th1) - (ququ))l S C(FL(;)C‘l(d’TQ)

where C' depends on 72, ©. Therefore, for all ¢1, g2 € [0, L], we have |j,, —jg| < C (DL%)Caldm),
and so

diam{j, ; 0 < ¢ < L} < C(DL°)“m).
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Since all the j, are in Z?, their number (counted without multiplicity) does not exceed
C (I’L‘S)C“(d’m)d, for some other constant C' which depends on 7., 79,d. Thus we have ob-
tained the bound

t{j, + 0< g <L} <C(LY)“ldm)d,

By assumption (4.4.9)), for each ¢y € [0, L], the number of ¢ € [0, L] such that j, = j,, is
at most K, and so

L<CIL)PU™K, Cs(d, ) = Ci(d, 7)d.

Choosing ¢ > 0 such that
5C5<d, TQ) < 1/2 , (4438)

we get L < C' (I’C"’(d’”)K )2, for some multiplicative constant C' that may depend on 7,, 0, d.

This proves (4.4.13)).
Case II. There is o € [0, L] such that

dimSpanR{(:L“q — Zg9, Jq _jqo) : ’q_qO| < L(s, /S [[OaL]]} <g-—1,

namely all the vectors (z,, j,) stay in a affine subspace of dimension less than g — 1. Then
we repeat on the sub-chain (£, j,), |¢ — qo| < L°, the argument of case I, to obtain a bound
for L° (and hence for L).

Applying at most (d 4 1)-times the above procedure, we obtain a bound for L of the
form L < C(I'K)°“™) . This concludes the proof of of Lemma m

To prove the last statement of Lemma 4.4.9) notice that, if ¢ is fixed, then (4.4.17)
reduces just to |j, - (j; — Jo)| < CT?lg — qo|* and the conclusion of the lemma follows as
above, see also Lemma 5.2 in [23] (actually it is the same argument for NLS in [37]). m

Proof of Lemma Consider a general I'-chain (k;)4=0,..c. = ({4, Jg: 0¢)g=0,..... Of
singular sites satisfying (4.4.12). To fix ideas assume o;(ag)oa(ap) > 0. Then the integer
vectors k, along the chain with the same sign oy (a,)o2(a,) > 0, say k,,,, satisfy

Gm+1 — Gm < C<FK)CI )

by Lemma applied to each subchain of consecutive indices with oy(a,)o2(a,) < 0.
Hence we deduce that all such k,, form a I := CT(I'K)“'-chain and all of them have
the same sign o4(a,,,)os2(a,,) > 0. It follows, again by Lemma that their length is
bounded by

C(F/K>Cl = C(CF(FK)Cl K) Cq _ CI<PK>C1(01+1) )
Hence the length of the original I'-chain (k,),—0...1. = (¢4, Jq, 0¢)g=o,...., Satisfies

L < C(TK)'C(IK)C1 @) < (TK)“
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where Cy := Cy(d, ) = C1(Cy + 2) + 1, and provided T" is large enough, depending on
m, ©, s, o, d. This proves (4.4.10)).

Finally, the last statement of Lemma follows as well by the last statement of
Lemma 4.4.9. m

We fix
=2+ C(3+a))+1 (4.4.39)

where 7 is the Diophantine exponent of w, in ([1.2.29), Cs is the constant defined in Lemma
4.4.8] and « is defined in (4.4.4)).

The next lemma proves an upper bound for the length of a chain of N-bad-sites.

Lemma 4.4.15. (Length of I'-chain of N-bad sites) Assume (i)-(iii) of Proposition
with 7 defined in (4.4.39). Then, for N large enough (depending onm,©, o, To, V1, T1 ),

any N?-chain (€4, jq, 0q)g=0...1. of N-bad sites of A(e, \,0) (see Deﬁm’tz’on has length
L < NGt (4.4.40)
where Cy is defined in Lemma and o in (4.4.4)).

PROOF. Arguing by contradiction we assume that

L>1:= NG+, (4.4.41)

-----

singular sites. Then, for N large enough, the assumption of Lemma with
I' = N2, and L replaced by [, can not hold with K < N'™  otherwise would imply
| < (N?N')@ = NG contradicting (#-4.41). As a consequence there exists j € Z¢,
and distinct indices ¢; € [0,1], 7 =0,..., M := [N*" /4], such that

0<q¢<lI and Ju =17, ¥Yi=0,...,M:=

[N aﬂ] . (4.4.42)

4

77777

E = {ly,a4}im0,..m C Z8! x 7 satisfies
diam(E) < N?I.

Moreover, each site (¢,,7,a,) is N-bad, and therefore, recalling it is in a N-
neighborhood of some N-singular site. Let & be the number of N-singular sites (¢, 7, a)
such that |j — 7| < N and d(E, (¢,a)) < N. Then the cardinality |E| < CNFI&. Moreover
there is 7 € Z* with |j — j| < N such that there are at least £/(CN?) N-singular sites
(¢,7,a) with distance d(E, (¢,a)) < N. Let

E = {(5/, @) ez x 3 . (¢,7,d) is N—singular and d(E, (¢, d)) < N} .
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By what preceeds the cardinality

/ |E| Not1—d-lS| a—d—|S|
Elzoyamz— >N ’ (4.4.43)
and diam(E’) < N?l + 2N .
Recalling Definition and the covariance property (4.2.25)),
V(é/, Cl/) €F , AN’g/J/ (é‘, /\) = ANJ/ (5, AW - E’) is N—bad,
and, recalling (4.4.3)),
V(,d) e E, w-l € By({:). (4.4.44)

Since A in N-good (Definition 4.4.4), (4.4.4)) holds and therefore

Bn(7; M) C U I, where I, are intervals with measure |[,| < N77.  (4.4.45)

By (#.4.44)), (#.4.45) and since, by ([#.4.43)), the cardinality |E’| > N*~¢®l  there are two
distinct integer vectors {1, fo € E' such that w - ¢;,w - {5 belong to the same interval I,.
Therefore

|w-(€1—€2)| = |W'€1—W'£2| S |Iq| SN_T. (4446)

Moreover, since by (1.2.29) the frequency vectors w = (1+&*)\)@., VA € A, are Diophantine,
namely

wwg%, Ve e 78\ {0},

we also deduce

gt n
(= )] > =
(b =Bl 2 5= 2 GamE)n

4.4>.43 Y1

~— (N2 4+ N)n
1' T

- (2N2+(3+0¢)Cg)7‘1 ’

(4.4.47)

The conditions (4.4.46))-(4.4.47) contradict, for N large enough, the assumption that 7 > 7*
where 7* is defined in (4.4.39)). =

PROOF OF PROPOSITION COMPLETED. We introduce the following equivalence
relation in the set

Sy = {k — (6,j,0) € ZF x Z x T : k is N-bad forA(e,)\,Q)}.
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.....

x toy, namely kg = x, kr, = v.

This equivalence relation induces a partition of the N-bad sites of A(e, A, 0), in disjoint
equivalent classes U,(),, satisfying, by Lemma

d(Q,Q5) > N?,  diam(Q,) < N2NGFTC — yO (4.4.48)

with C} := C1(d, S|, 70) := 2+ (3 + a)Cs. This proves ({4.4.6]).

4.5 Definition of the sets A(e;n, X, )

In order to define the sets A(e;n, X,.,,) C A appearing in the statement of Proposition ,
we first fix the values of some constants.

1. Choice of 7. First we fix 7 satisfying
7> max {7",9d + 8|S| + 5sg + 5}, (4.5.1)

where the constant 7° is defined in (4.4.39). Thus (4.5.1) implies hypothesis (i7)
of Proposition about the separation properties of the bad sites. The second

condition on 7 arises in the measure estimates of section (see Lemma [4.8.16]).
Moreover the condition (4.5.1)) on 7 is also used in the proof of Proposition |4.6.1], see

(1.6.47).

2. Choice of y. Then we choose a constant y such that
xs>Cy, xX>717+s+d, (4.5.2)

where ¢ := 1/10 is fixed as in (4.1.16|) and the constant C; > 2 is defined in Proposition
. The constant y is the exponent which enters in the definition in of the
scales Npi1 = [N,f] along the multiscale analysis. Notice that the first inequality
in (4.5.2)) is condition in the multiscale step Proposition m The second
condition on Yy arises in the measure estimates of section (see Lemma [1.8.13).

3. Choice of 7’. Subsequently we choose 7’ large enough so that the inequalities (4.3.3))-
([.3.4) hold for all x € [y, x?]. This is used in the multiscale argument in the proof
of Proposition [.7.6, We also take

7> 7+ (IS)/2) (4.5.3)

where 7 > 7 is the constant provided by Lemma associated to 7 = 7.



CHAPTER 4. MULTISCALE ANALYSIS 125

4. Choice of s;. Finally we choose the Sobolev index s; large enough so that (4.3.6)
holds for all x € [y, Y.

We define the set of L?-(N,n)-good/bad parameters.
Definition 4.5.1. (L*-(N,n)-good/bad parameters) Given N € N, n € (0,1], let

B (joi ) = {0 € R ¢ | D243 (2, A,0)D, 2o > nN” } (4.5.4)
= {9 € R : 3 an eigenvalue of DY?Ay (¢, \,0) DL/
with modulus less than n~'N _T}

where || ||o is the operatorial L*-norm, and define the set of L*~(N,n)-good parameters

% ::{A el :VijoeZ!, B(jo;\n) C U I, (4.5.5)

q=1,..., N2d+(S[+4+379

where I, are intervals with measure |I,| < N ’T} .
Otherwise we say that \ is L*~(N,n)-bad.
Given N € N, n € (0, 1], we also define
6, = {A e X : | DIV2AN e, MDY, < nNT} . (4.5.6)
Notice that the sets Q?\,m, G?v,n are increasing in 7, namely
n<n = QRL77 C QRW , G(])\,,77 C G?Vm’ ) (4.5.7)
We also define the set
G = {)\ €A :w=(1+e*N)w. satisfies (NR)WQ} (4.5.8)
(recall Definition [4.1.4]) with
w_% SIS

=== : 2 2). 4.5.
NE T T 5 +2(m +2) (4.5.9)
and 7,77 defined in ([1.2.28]).
Fix Ny := Ny(e) such that
1 < e2NJFrotd <2 (4.5.10)

and define the increasing sequence of scales

Ne=[NS], k>0, (4.5.11)
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Remark 4.5.2. Condition (4.5.10)) is used in Lemma |4 7.9, see ({4.7.9), and in the proof of
Proposition |4.6.1, see (£.6.47). The first inequality ¢~* < N T (@5.10) is also used

in Lemma[4.8.0,
Finally we define, for n € [1/2, 1], the sets

Aen, Xep) = ()G [ Grn[ )9 (4.5.12)

k>1 NZNQ

where QR,J] is defined in (4.5.5)), the set G?v,n is defined in (4.5.6)), and G in ([.5.8)). These are
the sets A(e;n, X, ) C A appearing in the statement of Proposition [4.1.5 By (4.5.7]) these
sets clearly satisfy the property [1] listed in Proposition 4.1.5. We shall prove the measure
properties [2] and [3] in section [{4.8]

Remark 4.5.3. The second intersection in 18 restricted to the indices N > Ng for
definiteness: we could have set N > Ng(T) for some exponent a(T) which increases linearly
with 7. Indeed, the right invertibility properties of IIN[L, |,y at the scales N < Nj
are deduced in section by the unperturbed Melnikov non-resonance conditions (|1.2.7)),
(1.2.16)-(1.2.17), (4.1.5) and a perturbative argument which holds for N < N(?(T) with o(T)
linear in 7, see (4.6.47)).

4.6 Right inverse of [£, )3 for N < N < N

The goal of this section is to prove the following proposition, which implies item [1| of

Proposition with N(g) := N; and Ny = Ny(¢) satisfying (4.5.10).

Proposition 4.6.1. There are N and gy > 0 such that, for all e € (0,¢), for all N < N <
N§(e), the operator
[ﬁr u]N = Iy [‘Cnu]\?{zzv )

which is defined for all A € A, has a right inverse ([L',W]?\,N)f1 : Hn — Haon satisfying, for

all s > sg,
2N

(F5)

where 75 is a constant depending only on 9. Moreover (4.1.21)) holds.

< C(s)NTOTH (N + |r|iip4.s) (4.6.1)

Lip,s

The proof of Proposition [4.6.1]is given in the rest of this section.

We decompose the operator £, in (4.1.9), with X, , defined in (4.1.6)-(4.1.7)), as
Er,,u == Ed + p(57 )‘7 90) (462)
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with
Lq:=Jpi-0,+ Dy + upJg 5 + cllg (4.6.3)
ple. A ) = J(w — 1) Oy + (1 — ) T Mg e +7(2, A, 0) -
Notice that the operator L4 is independent of (e, A) and ¢, and p is small in ¢ since
w=1+Nw. =+ + M+ =a+0(%),  |wp = 0(?), (4.6.5)
where [ is the vector defined in ((1.2.3)) (see (|1.2.25))),

p=p,+O0(?) forsomek €F, |uly=O0(?), (4.6.6)

by item [2| of Definition , and |7|pip 4.6, = O(?) by item |1| of Definition [4.1.2]
H

In order to prove Proposition [4.6.1| we shall first find a right inverse of [L43", thanks
to the non-resonance conditions ([1.2.7)), (1.2.16)-(1.2.17), (4.1.5)), and we shall prove that
it has off-diagonal decay estimates, see (4.6.43)). Then we shall deduce the existence of a
right inverse for [£,,]3" by a perturbative Neumann series argument.

Notice that the space ¢'“?H, where H is defined in , is invariant under £4 and

DY2LyDY?(%%h) = e“? (M), Yh=h(z) € H, (4.6.7)

where M, is the operator, acting on functions h(z) € H of the space variable x only, defined
by

M, = D}?(ifn- € J + Dy + pp T g e + cIls) D2 . (4.6.8)

Lemma 4.6.2. (Invertibility of M) For all ¢ € Z, |¢| < N2, the self-adjoint operator
M, of H is invertible and
1M o S 9 (O™ (4.6.9)

Proor. We write M, = DY2M;D}/? where
M :=ifi - £J + Dy + up J g p + clls (4.6.10)

and we remind that, in case (i) of (4.1.1)), M, acts on H, and we have set J = 0 (see
4.1.6))), while in case (ii), M, acts on H x H and J (hy, ha, hs, hy) = (—hy, hs, ha, —hy), by
119), ([4.1.3), [@.14).

In case (i) of (4.1.1), M, is represented, in the Hilbert basis ((¥;,0),(0,7;));en of
H = H, by the block-diagonal matrix DiagjeNle’j where

: T - ; 1 ifj€8
Mg.;=<“f.+°5s 1“£j> and =4 "JE
7 —ipp -l g+ cog 0 ifjé¢s.
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The eigenvalues of My ; are

a0+ pj+c ifjes

In case (i¢) of (4.1.1]), M; is represented, in the Hilbert basis

(02 ) (B0 t). (Bon ). (0% %0)

of H= H x H, by the block-diagonal matrix DiagjeNMéJ, where

M, ; =
+ 8% — prdls e il 0 0
—iji - 0 i+ cdd — ,ukdfsumc 0 0
0 0 +cdh + l‘k‘s(guw il
0 0 —if - 0 i + cdd + “k(;gSu]F)c

and, in this case, the eigenvalues of M, ; are

-0+ pj+c it jeS,
+i 0+ py if jeTF, (4.6.11)
-0+ py £ if j¢SUF.

By @.15), (L2.7), [1.2.16)-(1.2.17), in both cases we have ||(M; ;)| < 7o' ()™ for all
j € N. Hence M, defined in (4.6.10)) is invertible and ||(M;) 'l < 75 *(¢)™. In conclusion
M, = DY?M,DL/? is invertible and (4.6.9) holds, by the bound || D;,}?||o < C(m). m

Remark 4.6.3. The role of the term cllg in , 15 precisely to prove Lemma
[4.6.9 Otherwise, if ¢ = 0, then some of the eigenvalues xfi - £ + pj, j € S, would vanish.
We have some flezibility in defining the extended operators L,, L, , in the complementary
subspace Hgur: the important point is to define a positive definite operator leaving Hsup
1mvariant.

Let Hy be the finite dimensional subspace of H in (4.1.1)),

y 2 | T13)-(i
Hy — {ha) = 3 weruye 0y o, pim 2000 BLD0 )
4 in case (4.1.1)-(4)

ljI<N

and denote by Iy the corresponding L2-projector.
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Notice that, since the space Hy is not invariant under the operator M, the invertibil-
ity of the infinite dimensional operator M, does not imply the invertibility of the finite
dimensional restriction ITy Mg, . However, in the next lemma we prove that, for N large
enough, the operator

My == [M)3 = Un(M¢)pm,y : Hoy — Hy (4.6.13)

has a right inverse.
We shall use the following decomposition of the operator M, in (4.6.8)):

My = D}?(ifi - € J + Dy, + uJ + R) DY/, (4.6.14)

where the operator ifi - £ J + D,, + uJ is diagonal in the exponential basis {¢7*, j € Z},
and the self-adjoint operator

R := Dy — D, — i JHsur + cllg (4.6.15)
satisfies, by (3.4.1) and Lemma [3.3.8] the off-diagonal estimate
|R|1s<C(s) < +oo, Vs>sg. (4.6.16)

Lemma 4.6.4. (Right inverse of M;y) Let M;y : Hy — Hyy denote the adjoint
operator of My . For all N > N large enough, |{] < N < NOQ, the operator My My y -
Hy — Hpy is invertible and

H(M&NMZN)_IHO SN (4.6.17)

As a consequence, the operator By n defined in (4.6.13)) has the right inverse

Me_zif = MZN(‘7\4£,N]\44*,N)71 :Hy — Hoy, (4.6.18)
which satisfies
IMallo SN™, Ml S NTOT0Fs (4.6.19)

PROOF. Since M, = M;, MZN = H2N(M;)|HN = HQN(M[)‘HN. USiIlg (|4614|)—(|4615D,

we have

* -

1M}y — (Mo llo = Moy (Me)iy llo —= [|Han (D2 RDY)imy o
< Mgy (DY2RDY?) s,
B319) -

<o NTE|R|

~

(4.6.16)
< C(s)N-(s7s0) (4.6.20)
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For all |[/| < N < N§, we get, by ([4.6.9), that, for any h € Hy,
[Mehllo Z 706" Ihllo Z Yo N~ [Rllo- (4.6.21)

Choosing s > 5o + 79 + 2 in (4.6.20)), we deduce by ({.6.21]) that, for N > N large enough,
Vh € Hy,

1M whllo > [[Mehllo — || (M7 y — (M) my )b,
> y0eN "™ |hllo — C(s)N"™72[|hl|q
2 YN[kl
and therefore
(MM b, h)o = || Mg phlls Z AN [IA)E

Since Hy is of finite dimension, we conclude that My y M/ y is invertible and (4.6.17)) holds
(we do not track anymore the dependence with respect to the constant 7).

It is clear that MZ]%, defined in (4.6.18]) is a right inverse of M, . Moreover, for all
heH N

||M£Nh||0 = (MeNMeN MeNMeN) Yhy (Myn M) th),
H(MfNMeN) 1” HhHo

and (4.6.17) implies that ||MZ]%,||0 < N™. The second inequality of (4.6.19) is an obvious
consequence of the latter. m

Our aim is now to obtain upper bounds of the | |-norms, for s > sg, of the right inverse

operator M[]%, defined in (4.6.18). We write

My = Hn (M), = (I My + HNMeHﬁ)\HzN

(4.6.22)
=Dy + Ry + Ry

where, recalling (4.6.14]),

Dy :=1nDu,, D:=D}*(ifi-tJ+ Dy +mJ)DL?, (4.6.23)
Ry =Ty (DY*RDYTIN )k,
Ry := Ty (D)*RDY?) gt on,e = Uv(Dy? RDYTIN )

By (4.6.16) we have

[Hay -

|R1|s < C(s), |Rals <C(s), Vs>sg. (4.6.24)
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We decompose accordingly the adjoint operator as

My = Hon (Mp) iy = v (Mg)jay + Ty o (M)

. i (4.6.25)
- DN + Rl + R2 .
By (.6.23), (3.3.13)), (4.6.24), M, y satisfies the estimate
|M;nls < [Dyls + | Rils + |R3ls < CN? + C(s) <o N2 (4.6.26)
Thus the right inverse M[ﬁ, defined in (4.6.18)), satisfies, by (3.3.6) and (4.6.26]),
|M£T]%f|s SS |M£*,N|80|(M€,NMZN)_1|S + |MZN|8|(M€,NMZN)_1|SO
S N2 (M M) s (4.6.27)

In Lemma below we shall bound | (M x M; ~) " 's by a multi-scale argument. Without
any loss of generality, we consider the case (i7) of . We first give a general result which
is a reformulation of the multiscale step Proposition 4.1 of [23], with stronger assumptions.
Here 7 :={1,2,3,4}.

Lemma 4.6.5. Given s € (0,1/2), Cy > 2, 7 > 0, there are 7' > 7 (depending only on 7
and d), s* > s, n >0, N > 1 with the following property. For any N > N, for any finite
E C 7% x 3 with diam(E) < N, forany A=D+ R ¢ ./\/lg with D diagonal, assume that

i) (L*-bound) ||A7Y|o < N7,
ii) (Off-diagonal decay) |R

S*ST/,

iii) (Separation properties of the singular sites) There is a partition of the singular
sites Q:={i € E : |D| < 1/4} C U,Q, with

diam(Qa) < NCI§/(CI+1)’ d(QouQB) > N2§/(Cl+l)’ Vo # 5
Then ]
|A7Y, < C(s)NT (N +|R|,), Vs> s0. (4.6.28)

As usual, what is interesting in bound (4.6.28)) is its “tamed” dependence with respect
to N (¢ < 1); the constant C(s) may grow very strongly with s, but it does not depend on
N.

Lemma 4.6.6. There exist ty, depending only on 79, and N such that for all N < N < N2,
|¢| < N, we have that, ¥s > s,

(Mo M y) s < Cs)N™T<* (4.6.29)
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PrOOF. We identify the operator Dy in (4.6.23) with the diagonal matrix
Diag ey nja D)

where each Dj: is in £(C*) (we are in case (ii) of (#.1.1))). Using the unitary basis of C*
defined in (4.2.10)), we identify each D; with the 4 x 4 diagonal matrix (see (4.2.11)))
D} = Diag(DYacii 250, Do) = (M (D) + o1(@)p + 0a(@)i- ) (4.6.30)

with signs oy (a), o2(a) defined as in (4.4.7)).

Notice that the singular sites of M, are those in (4.4.8) with w = fi, 1t = g, € = 0 and
¢ fixed.

By Lemma [4.4.8, which we can apply with K = 4 (¢ being fixed), for I' > ['(0), every
I-chain of singular sites for M, is of length smaller than (4T')“2. Let us take

C1=20,+3, T'=NX with y=¢(C,+1). (4.6.31)

As a consequence, arguing as at the end of section [4.4] we deduce that, for N large enough
(depending on ©), the set 2 of the singular sites for M, y can be partitioned as

Q=UyQ , with diam(Q,) < (4?2 x T < NO/X | d(Q,, Q) > N¥X.  (4.6.32)

We now multiply

Myn My D% + DyR; + RiDy + RiR; + RoR; (4.6.33)
notice that Dy R5, RoDy, R1R5, RyR7 are zero) in both sides by the diagonal matrix
2 2 1

dé}N = (|Dn| + Oldy) ™" where

. - (4.6.34)
Dy | := Diag;j<naes(|D7aDiji<n s Idy = Hyldjm, -

We write B
Py = dgyMynM; ydg'y = Dy + 0on (4.6.35)
where, by (4.6.33)),
Dy =dg\Didgly.  oven :=dg'y(DnR} + RiDy + R\ R} + RyR3)dgly .  (4.6.36)

We apply the multiscale Lemma to Pp v with C; defined in (4.6.31)) and 7 := 275 + 5.
Let us verify its assumptions. The operator Py x defined in (4.6.35)) is invertible as M, y M;
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(Lemma |4.6.4) and, by the definition of dg y in ([£6.34) and (4.6.30), for N; > N > N
large enough (depending on ©), for all |¢/| < N, and using (4.6.17)), we obtain

1Pilo = [[dex (Men M)~ o]l
< NI (Mendz) g
< N?F5 — N7 (4.6.37)

by the definition of 7 := 275 + 5. Thus Assumption 7) of Lemma 4.6.5: holds.
Then we estimate the | |s-decay norm of the operator pg y in (4.6.36). By (3.3.20)),
(4.6.24]) and |dé}N s <07 |d(:),1NDN|s < 1 which directly follow by the definition (4.6.34)),

we get, for all s > s,

|99,N|s Ss |d(g,1N,DN|S|R1|S|dE),1N|S + |dg),1N|§(|R1|SO|R1|s + |R2|80|R2|8)
= o (4.6.38)

In particular, provided that © has been chosen large enough (depending on ¢, Cy, 79), As-
sumption i) of Lemma is satisfied.
To check Assumption #ii) it is enough to notice that, by the definition of Dy in ,
and of dé’lN in (£.6.34), for all i € [-N, N]? x J, we have
B _IDIP and |DI| >0 <« |Di|>1/4
C (Dl + o) T R
As a consequence, the separation properties for the singular sites of M, y proved in (4.6.32)
(with x = ¢ *(Cy + 1)), imply that Assumption iii) of Lemma is satisfied, provided
that N is large enough (depending only on ©). Lemma m implies that there is %,
depending only on 79, such that (see (4.6.28))

|Pyyls Ss NP(N + |oonls)

which gives, using (4.6.35)), (3.3.20)), ]d(;}N]S <1,

(Mo v M ) s = o v Prndenls Ss 1o w < Prnls
Ss NtO(Ncs + oons) -
Finally, estimate (4.6.29)) follows by (4.6.39) and (4.6.38]). m

PROOF OF PROPOSITION CONCLUDED. Recalling the decomposition (4.6.2)), the
first goal is to define a right inverse of the operator

(4.6.39)

Lan:Hon — Hy, Lan = IyDY*LyDY?y,, (4.6.40)
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where L4 is defined in (4.6.3). Recalling (4.6.7)), (4.6.13) and Lemma the linear
operator E;}V : Hy — Haon defined by

Lin(€“%g) ="M\ (g), VL e[-N,NFl, VgeHy,

is a right inverse of L4 . Using that C;}V is diagonal in time it results

|Lon]s < NEIZ2 TE?ﬁ’M’“’Nl (4.6.41)
By (4.6.27)) and Lemma [4.6.6, we have the bound
[ My nls Ss NOFSF2 00 Vs > s (4.6.42)

Therefore, by (4.6.41)), (4.6.42) and the second estimate in (4.6.19)), we get

Lkl Sy N2HORH2 ys > g0 Lok ] SNEFOE L p—d (S|, (4.6.43)

S0 ~v

Finally we use a perturbative Neumann series argument to prove the existence of a right
inverse of

'C:MN — D;{Z[‘C ]ZNDl/Q m II Dl/gﬁru(g )\)Dl/Q

(Faw (4.6.44)
(T52),[E6.10)
Lan + pN
where
pn = Iy D} p(e, \, ) DY 5, (4.6.45)
satisfies, by (4.6.4)), (4.6.5), (|4.6.6|), Lemma and item [1] of Definition [4.1.2]
o8 |Lip,s S €2N? + [T[uips s 10N |Lipsy Sor €M7 (4.6.46)
Using the second estimates in (4.6.43)) and (4.6.46), N < N3, (4.5.10) and (#.5.1)), we get
Lol P lLip sy Soy NETTOH0H2e2 < NFF2F20T42 (4.6.47)

Hence Idy, + pNEd « is invertible and the operator £’ L in (4.6.44) has the right inverse

-1

(L) = Dy L, IR T DL = Ly (1w, + oLy ) (4.6.48)
which satisfies the following tame estimates (see Lemma [3.3.12)) for all s > s,
|(£:M,N)_1|Lip,s 58 |£;}V|Lip,s + |£_,1 : |PN|Lip,8‘ (4‘6‘49)

Since Ly ) does not depend on A, |£dN|L1P5 = |£;7]1\,|57 and (4.6.48)), (4.6.49), (4.6.43)),
(4.6.46) imply

D (L) T D P s So NN+ [ruip,4.6)
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where
75 :=max {(|S|/2) + to + 2,b + 259 + 279 + 4}

and, using (3.3.28)), the estimate (4.6.1)) follows.
Let us now prove (4.1.21)). Calling p’ the operator defined in (4.6.4)) associated to (¢, ")
we have p — p' = (u — p/)Jg p + 7 — 7" and, by (#.6.45),
Dy (LX) = (L w3 1) D2
_ 1yl 11
= Lah| (g + pvLah) ™ = (s + pyLah) |
_ 131 _ 1yl
= £d,}\f (IdHN + pNﬁd,JlV) (Pn — pN)'Cd,JlV (IdHN + p?VEd,}V)
= (L) e = (LS ) (4.6.50

In conclusion, by ([£.6.50) (3.3.20)), (£.6.49), and |Lg y|s,|on|Lip.s < 1, we get

DR (L) — (LB YD, S 1E2AE oy — il
§81N2(‘ré+§81) (|M _ M/|N2 4 |7” . T/|+,81)

which, using (3.3.28]), implies (4.1.21]). This completes the proof of Proposition m

Remark 4.6.7. In this section we have proved directly the Lipschitz estimate of (L, )5 )"

instead of arguing as in Proposition because for a right inverse we do not have the

formula (4.7.23).

4.7 TInverse of L, , y for N > N;

In Proposition 4.6.1] we proved item [I] of Proposition [4.1.5] The aim of this section is

prove item [2 of Proposition namely that for all N > N§ and A € A(¢;1, X,.,) the
(4.1.22

operator L, y defined in (4.1.22)) is invertible and its inverse £ ; ~ has off-diagonal decay,
see Proposition [1.7.6l The proof is based on inductive applications of the multiscale step
Proposition thanks to Proposition [4.4.5] about the separation properties of the bad
sites.

The set A(e;1,X,,,,) is good at any scale

We first prove the following proposition.
Proposition 4.7.1. The A(e; 1, X,,,) in (4.5.12) satisfies

A1, X)) C () [ 9 (4.7.1)

N<Np k>1

where Gy are defined in (4.4.5)).
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We first consider the small scales N < Nj.

Lemma 4.7.2. Let fl(s, A, 0) be the matriz in (4.2.14) corresponding to r = 0, see remark

4.2.1. There is N such that for all N < N < Ny < (25_2)T+Slo+d (see (15.10)), VA € A,
Vijo € Z%, 0 € R,

|D AR (e, X, 0) D P lg < NTo=

, 4.7.2
DL 2ARG, (2, A, 0) DR < NTF5 s € [so, 1], e

namely the matriz Ay ;, (€, X, 0) is N-good according to Definition |4.3.1]

PROOF. For brevity, the dependence of the operators with respect to (g, A) is kept implicit.
Step 1. We first prove that there is N such that VN > N, Vj, € Z%, V0 € R,

| D52 AN, 0) D, Plo < N7 =
D2 ARL (0)DL2], < Cs)NTHS | Vs > g

m

(4.7.3)

where 71 := 7 + (|S|/2) and 7' > 7 is the constant provided by Lemma associated to
T=T.

Recall that the matrix 121(6) represents the L*-self-adjoint operator Lo ,(6) defined in
(4.2.17)), which is independent of . For all ¢ € 78 h € H, we have that

DY2Lo (0)DL2(e“h) = e“?My(0)h, Mqy(0) = Dy(0) + T,

where
Dy(0) :=i(w - £+ 0)JD,, + D2 + uJ D, ,

T, := D}/*(Dy — Dy, — pnJ Usur + cllg) D}/
Note that, by (3.4.1), Lemma [3.3.8, and since p = O(1) (item 2| of Definition [4.1.2)), it

results
|T.ls < C(s), Vs>sg. (4.7.4)
In order to prove (4.7.3)), since
‘D;f/QAJ_\f,ljo(Q)D;f/Q\S < NISI/2 |rer|131)\§ \(MZ(G))]_V}].OIS, (4.7.5)

it is sufficient to bound the | |;-norms of (M,(0))y",. We apply the multiscale Lemma {4.6.5|
We identify as usual the operator D,(f) with the diagonal matrix Diagj(('Dg(H));) where

(Dy(0))] = Diag([De(0)]%)acqr.234)
De(0))%) = () ((G)m + o1()p + oa(@) (w - £+ 6))
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with signs o1(a), o2(a) defined as in (4.4.7). Notice that the singular sites of D,(6) are those
in (4.4.8) with /¢ fixed. By Lemma , which we use with K = 4, ¢ being fixed, there is
(5 (independent of @) such that, for I' > I'(0), any I'-chain of singular sites has length
L < (4I)%. As in , we can apply this result with C7 = 2C5 + 3, x = g e+ 1)
and T' = N¥X (for any N > N large enough), and we find that the operator © ' (M,(6))xj,
satisfies Assumption iii) of Lemma [4.6.5 where we take 7 = 7. Assumption i) is also
satisfied, provided that © has been chosen large enough, more precisely © > n~'C(s*),
with the constant C’ ) of -
By Lemma there is 7 > 7 such that VN > N, Vj, € Z% V0 € R, V¢ € Z/5I,

IG5l S N7 = Vs> s0, [(MO)iL ) S N7 (N +[T,) . (4.7.6)

Since y
1D, 2 AR, (0) D7 lo = ‘rgllgﬁ 1(Me(0)) 3l -
the premise in (4.7.3]) implies the premise in and therefore (4.7.5)), (4.7.6), (4.7.4)

imply (4.7.3)) since 7] := 7 + [S]|/2.
Step 2. We now apply a perturbative argument to the operator

D}* An o (0) D) = D> An o (0) DY + pvjo » (4.7.7)
where p is the matrix which represents D,ln/ 27’D,1n/ 2 and, by item [1| of Definition m,
o8 jolsi < [Pl < Cr?. (4.7.8)
If | D, 2 AL (0)D,)/]lo < N7 then

V2| o olsy S NTFOHEDE2 < N 2 (4.7.9)

m

|DLPAR (0) D,

1
since Ny < (2e7%)7%074 (see (.5.10)). Then Lemma [3.3.12 implies that D2 Ay ; (§) D>
in (4.7.7)) is invertible, and Vs € [so, 1]

D5 PANG, (01D s Soy |1DLPARY ()DL + 1D 2 AR () D212 ool

m
@E79) (4.7.3)
“1/2 -1 ~1/2 o =
581 |Dm / AN,jo<0)Dm / |5 581 N7 < NT gs’

because 7' > 1) = 7 + (|S|/2) (see (#.5.3))) and for N large enough. m
At small scales N < Ny, any \ € A is N-good.

Lemma 4.7.3. (Initialization) For all N < Ny and € small, the set Gy defined in (4.4.5)
18 QN = A.
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PROOF. Lemma implies that V\ € A, Vjo € Z%, the set By (jo; \) defined in (4.4.3)

satisfies
By(jo; A) € BY = {9 ER : | DRY2ARL (6,0, 0) D52y > NT/Q} . (4.7.10)
Thus, in order to prove that Gy = /N\, it is sufficient to show that the set B?V in (4.7.10)
satisfies the complexity bound ([#.4.4). Note that, since | D/2||y < m™'/*, we have
By c{OeR : [|AF (e, A,0)]o > CNT, C:=m/2} (4.7.11)
= {6 € R : 3 an eigenvalue of An jo (g, X, 0) with modulus less than N7T/C}.

Let Iy ;, denote the L*-projector on the subspace

sy = {@@ o) = Y (@)},

l7—jol<N

Since fulN,jo (¢, A, 0) represents the operator Lo ,(6) in (4.2.17) which does not depend on ¢
(see remark [4.2.1)), the spectrum of Ay, (&, A, ) is formed by

t(w-l+0) =B, j=1,...,2N+ 1), 1ez
B; eigenvalue of Iy j, (Dy + pJ g 5 + clls) Iy, ,

and, by (4.7.11]), we have

B?\] C U Zj?
[€|<N,j=1,...,2N+1)d 0=+ (4.7.12)
Ri,={0eR:|o(@+w-0)—B;|<NT/C}.

It follows that é?\, is included in the union of NS4+ intervals I, of length 2N~7/C. By
eventually dividing the intervals I, we deduce that BY, is included in the union of N4+l
intervals /, of length N™7. m

Lemma 4.7.4. For all k > 0 we have
Gne [ )9%t ()G C G (4.7.13)
where the set Gy is defined in (4.4.5)), QR]’W in [@.5.5) and G in (4.5.9).

PrOOF. Let A € Gy, N QR,HM N G. In order to prove that \ € Gn,,, (Definition (4.4.4),
since \ € Qjovk%1 (set defined in (4.5.5))), it is sufficient to prove that the sets By, ., (jo; A)

in (4.4.4) and B?Vk+1(j0; A, 1) in (4.5.4) satisfy:

ij € Zda BNk.H (]07 )\) C B?Vk+1 (JOa )\7 1) )
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or equivalently, that
1D, AN o€ A 0D P llo < Ny =

D2 AR (A 0D < NS, Vs € [s0,51].

Ng11,J0

(4.7.14)

We prove ([4.7.14]) applying the multiscale step Proposition to the matrix Ay, ,, j,.- By

(4.2.13)) the assumption (H1) holds. The assumption (H2) is the premise in (4.7.14). Let
us verify (H3). By remark 4.4.3] a site

ke B = ((o, Jo) + [~ N, Nnﬂ]b) <7, (4.7.15)

which is Nj-good for A(e, A,0) := L., + 0Y (see Definition with A = A(e, A\, 0)) is
also
(ANn+1,j0 (87 A, 0)7 Nk) — good

(see Definition with A = Ay, (e, A, 0)). As a consequence we have the inclusion

{ (ANn+1,j0(57 >\7 0), Nk;)—bad sites } C
(4.7.16)
{Nk—bad sites of A(e, A\, 0) with |¢| < Nk+1}

and (H3) is proved if the latter Nj-bad sites (in the right hand side of (4.7.16])) are contained
in a disjoint union U,(2, of clusters satisfying (with N = Nj). This is a consequence
of Proposition applied to the infinite dimensional matrix A(e, A,6). Since A € Gn,
then assumption (i) of Proposition holds with N = Nj. Assumption (ii) holds by
(4.5.1). Assumption (iii) of Proposi holds because A € G, see ([&.5.8). Therefore
the Np-bad sites of A(e, A, 0) satisfy with N = Ny, and therefore (H3) holds.

Then the multiscale step Proposition applied to the matrix Ay, , jo(e, A, @) implies
that if

1D Ay (2 A )DL 2o < NIy
then
12 4— ) 1
‘DmWANiH,jo(S’ A\, 0)D12|, < Z]\f,m(]\f,g+1 +|T)+.s)
@21
< NS, Vs € [so, 8], (4.7.17)

proving (4.7.14). m

Corollary 4.7.5. For alln > 1 we have

(9%.1()G C 9. - (4.7.18)
k=1
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PrOOF. For n = 1 the inclusion (4.7.18)) follows by (4.7.13)) at £ = 0 and the fact that
Gn, = A by Lemma Then we argue by induction. Supposing that (4.7.18]) holds at
the step n then

n+1 n
5 5 n ~ "
N9 NG = N (N9 NG) € R0 NG T G
k=1 k=1
proving (4.7.18|) at the stepn+1. m

PROOF OF PROPOSITION CONCLUDED. Corollary implies that

(G (1G S ()G, - (4.7.19)

k>1 n>1

Then we conclude that the set A(e; 1, X, ,) defined in (4.5.12) satisfies

MeiL X = (V0 () a6 5E7 0,

k>1 N2N2 n>1

proving (4.7.1)), since Gy = A, for all N < N, by Lemma m

Inverse of £, , v for N > N;

We can finally prove the following proposition.

Proposition 4.7.6. For all N > Ng, A € A(s;1,X,,,), the operator L.,y defined in

(4.1.22)) 1s invertible and satisfies (4.1.23)). Moreover (4.1.24)) holds.

PrOOF. Let A € A(g;1,X,,). Foral N > NZ there is M € N such that N = MX, for
some x € [Y, X¥*] and A € Gy;. In fact

1. If N > Ny, then N € [N,41, Nyy2| for some n € N, and we have N = NX for some
X € [X, X*]- Moreover if A\ € A(g;1, X,.,,) then A € Gy, by ([(.7.1).

2. If N7 < N < Ny, it is enough to write N = MX for some integer M < N,y. Moreover
if A € Ae;1,X,,) then A € Gy by (4.7.1]).

We now apply the multiscale step Proposition to the matrix Ay(e,\) (which
represents L., y as stated in remark @ , for N > NZ, with E = [-N,N]* x J and
N’ ~» N, N ~ M. The assumptions (£.3.3)-(£.3.6) hold, for all y € [y,x?], by the
choice of the constants y, 7/, s; at the beginning of section . Assumption (H1) holds by
(4:2.13). Assumption (H2) holds because A € A(e;1, X,.,) C Gy, for N > N§, see (4.5.12).
Moreover, arguing as in Lemma -for the matrix A(e,0,\) with § = 0, jo = 0-, the
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hypothesis (H3) of Proposition holds. Then the multiscale step Proposition [4.3.4]
implies that, VA € A(e; 1, X, ,,) C Gy N G?v,p we have

/ /
D, PARD, 2, TS ClsINT (N 4 22 ) < CONT (N + [rl) . (47.20)

We claim the following direct consequence: on the set A(e; 1, X, ) we have
‘D—1/2< Lryn >1D—1/2
m 1+ g2\ m Lip,s
For all X in the set A(e; 1, X, ), the operator

Ule,\) :== D1/? (E”’—“N> 71D—1/2

< C<S)N2(7-/+§51+1) (N§(s—s1) + |T|Lip,+,s) . (4‘7‘21)

m 1+e2)\ m
satisfies, by (4.7.20) and |r|, ,, < C1€? (see item (1| of Definition [4.1.2)), the estimates
[U(,M)]s < C(s)NT (N +|rlys), |U(g,N)]s, < C(sp)NT s (4.7.22)
Moreover, for all A, Ay € A(e; 1, X,.,,), we write (using that N +w€2)\ is independent of \)
U()\Q) — U(/\l) U_l<>\2) — U_l()q)
=-U(\ U(A
Az =M S Y )
1 XranN)  Xeun(A)
A2) D2/ (G2t - Zee N SV DLRU(A) (472
U( 2> m )\2 )\1 1+ 62/\2 1+ 82/\1 m U( 1> ( 7 3)
where X, v = IIn(X;..) - Decomposing
1 (Xw,N(M) B Xr,,u,N()\l)> _ X () = Xopun(A) 2 Xun(M)
)\2 — )\1 1+ 82)\2 1+ 52)\1 ()\2 — )\1)(1 -+ 52)\2) (1 + 52)\2)(1 + 82)\1)

we deduce by ([{£.7.23), [1.7.22) and p = O(1), |phip = O, [7]4ers [Thip+.sy < Ci€?, the
estimates

‘U‘lip S ~US N2(T’+<31+2)<N§(S_51) + ’r‘Jr,S + ’rhip:+75) ’

(4.7.24)

|U|11ps s NQ(T +€81+1)
1 ~JS1

Finally (4.7.22) and (4.7.24)) imply (4.7.21] m The inequalities (3.3.28|) and (4.7.21)) imply

(@1.23).
We finally prove (4.1.24]). Denoting A’y the matrix which represents £, y as in remark
we have that Ay — A'y represents [In((u — /)T Mg g + 7 — ")z Then it is enough

to write
|D;zl/2 (A7} — (A/N)—1)D;11/2‘81
Sor DR AN DL [ A — Al | DRV (A) T DL,
o N2TTED (| = IN? 4 r =1y )
using (£.7.20) at s = s; and the bounds |r|, ., ||+ < €% This estimate and ([3.3.28))

imply (4.1.24). m
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4.8 Measure estimates

The aim of this section is to prove the measure estimates (4.1.17))-(4.1.18)) in Proposition

4. 1.0l

Preliminaries

We first give several lemmas on basic properties of eigenvalues of self-adjoint matrices,
which are a consequence of their variational characterization.

Lemma 4.8.1. Let A(§) be a family of self-adjoint matrices in ME, E finite, defined for
&€ A CR, satisfying, for some 3 > 0,

0 A(E) = pld
(recall the notation (1.6.4]) ). We list the eigenvalues of A(§) in non decreasing order

pa€) < - < pg(8) < < pye(§)

according to their variational characterization

pe(€) == inf  max (A&)y,y)o (4.8.1)

FeFqyeF|lyllo=1
where F, is the set of all subspaces F' of CEl of dimension q. Then
deig(€) > f>0, Wg=1,..|F|. (48.2)

PROOF. By the assumption d:A(§) > BId, we have, for all & > &, &,& € /N\, y € F,
l|lyllo = 1, that

(A(&L)y, y)o > (A&)y y)o + B(& — &) -
Therefore
max  (A(§2)y,y)o > max  (A(&)y, y)o + B(E2 — &)

yer|lyllo=1 ~ yeRlylo=1

and, by (4.8.1)), forall ¢ = 1,...,|E],
tq(§2) = 1g(&1) + B(&2 — &1) -
Hence d¢4(6) > 5. m

Lemma 4.8.2. i) Let A(€) be a family of self-adjoint matrices in M, E finite, Lipschitz
with respect to € € A C R, satisfying, for some > 0,

0:A(§) > pld.
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Then there are intervals (1g)1<q<|p| i R such that
{eek: a7 @loza e U L, ILl<2087, (4.8.3)
1<q<|E|
and in particular the Lebesgue measure
{eeR a7 @l = a '} < 2Blas™". (4.8.4)
ii) Let A(€) := Z + W be a family of self-adjoint matrices in M%, Lipschitz with respect
to £ € A C R, with W invertible and
fild < Z < Bold
with By > 0. Then there are intervals (1g)1<q<|p| such that
{eeX: A ©bza} e U L ILI<20850W o (485
1<q<|E|

PROOF.  Proof of 7). Let (14(€))1<q<p) be the eigenvalues of A(¢) listed as in Lemma
4.8.11 We have

{eeR: a7 @loza} = |J {€€h:m(©) e l-aal}.

1<q¢<|E|

By each B
I={ee R 1y(6) € [~a,al}
is included in an interval of length less than 2a37'.
Proof of 4i). Let U := W~'Z and consider the family of self-adjoint matrices

AE) =AU = (Z+EW)U =2ZW ' Z +€7.

We have the inclusion

{eeh: a7 @loza}c{eek: A Ol 2 (allUo) "} (4.8.6)
Since 9:A(€) > B11d we derive by item i) that
{eeR 1A @lo = @)} < U 1 (4.87)
1<g<|E|

where I, are intervals with measure
Ig| < 20| Ul < 20 |W ol Z 108" < 2al|WH[oBaf5y (4.8.8)
Then (4.8.6)), (4.8.7)), (4.8.8)) imply (4.8.5). m

The variational characterization of the eigenvalues also implies the following lemma.
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Lemma 4.8.3. Let A, A; be self adjoint matrices ME, E finite. Then their eigenvalues,

ranked in nondecreasing order, satisfy the Lipschitz property

|1q(A) = pg(AD)[ < [[A= Ao, Vg=1,....[E].

We finish this section stating a simple perturbative lemma, proved by a Neumann series

argument.

Lemma 4.8.4. Let B, B' € M% with E :=[-N, N]’ x 3, and assume that
1D, ?B7DL 2]l < Ky, [|B' = Bllo < o
If 4(N? + m)?aK, <1, then

1D, (B D, |lg < Ky + 4(N? +m) oK} .

Measure estimate of A\ G

We estimate the complementary set A \ G where G is the set defined in (4.5.8)).

Lemma 4.8.5. |[A\ G| < &2,
PROOF. Since @, := @ satisfies (|1.2.30)) we have

In+ (1+4°A)? Z pijei;| > |n+ Z pi@i;| — C|A€%p|

1<i<G<[S] 1<i<5<[S|
71 ’_2 71/
> — Ce”|p| =
O
1
for all |p| < (%) 7+l Moreover, if n = 0 then, for all A € A, we have

_ 0
’(1 +£2))? E pijwiwj} > (1-— 052)2< >171 )
1<i<i<Is| P

(4.8.9)

(4.8.10)

As a consequence, recalling the definition of G in ([£.5.8)), Definition and vp := 71/2,

we have
MG | Rup. Ni= {méo, Ip| > (23,162)”“, In| 30|p\}, (4.8.11)
(n,p)eN
where
2y n I
Rn,p = {)\ cA;: ‘fn,p(A)’ < ﬁ}, fmp()\) = m + Z DijWiW;

1<i<j<[S]
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2 2
Since O frp(A) == _(1+n—5€2)\)3’ if |n| # 0, we have |R,,,| < e 2y2(p)” ™ and by ({4.8.11)

~ 5—2 B “+00 a1 B
|A \ g‘ S’)’o Z ‘plW S'Yo c 2/< ) )7-11+1 p 2+35ISI(IS] 1)dp
2072

1

T
Ip|> | =2 r
2072

2(mo—(IS[(US|=1)/2)—2—71)
£ T1+1 S €

2
~70

for 75 large with respect to 7y, i.e. 75 defined as in (4.5.9)), and ¢ small. m

Measure estimate of A \ G 1 for N > N

2
We estimate the complementary set A \ G?\, 1 where G(J)\“7 is defined in (4.5.6)).

1) )
Lemma 4.8.6. If N > Ng then
AN\ QS | < e ANTTHIHISIHL < N2 SIS (4.8.12)
ProOF. By (4.5.6) we have the inclusion
K\G?Vé c{re A [[PF N0 > N7/4}

where (see remark |4.2.2))

An(e,\
Py()) = D},{Q—lfi(;; D2 = Dif21ly | o - 0, +

Xw(g’/\)} 1/2
1+82)\ |H v o

By assumption [3 of Definition the matrix Py()) satisfies 0yPy()\) < —ce? with
¢ := cgr/m. The first inequality in (4.8.12)) follows by Lemma z) (in particular (4.8.4)
applied to —Py(\) with E = [-N, N]%Fl x 3 o = 4AN~", § = c£?, taking N large. The
second inequality in follows because, by ,

T+d+sq

5_2 S N(7)'+d+$o S N—=2

for N> N;. m

Measure estimate of A \ QR,R , for k£ >1
)

We estimate the complementary set A \ ngk 1 where QR,W is defined in (4.5.5)).
D) ?
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Proposition 4.8.7. For all N > N; := N§ the set B?V 1= A \ g]o\,l has measure
72 72
1B, .| < N (4.8.13)
2

We first obtain complexity estimates for the set B%(jo; A,1/2) defined in (£.5.4). We
argue differently for [jo| > 3(1 + ||)V and [jo| < 3(1 + |a|) NV

Lemma 4.8.8. For all A € A, for all |jo| > 3(1+ |iz|)N, we have

Nd+IS|+1

By (joi A, 1/2) C U I, (4.8.14)

where |1,| are intervals with length |I,] < N77.
PrROOF. Recalling (4.2.22)), (4.2.14]) and (4.2.15)), we have

D2 Ay . (e, N, 0)DY? = DY2 Ay i (e, \)DY? + 0 D}/?Yy ;, DL/ (4.8.15)
We claim that, if |jo| > 3(1 + |ji])N and N > N(V,d,|S]|) is large, then

|]10(l Id < DY? Ay j (e, \)DL/? < 4]5o)1d . (4.8.16)

Indeed by (4.2.12), (4.2.18)-(4.2.19)) the eigenvalues v ; of Ay j, (e, A) satisfy

vy = 0y, + O D) T jo (2, N) D} [lo) - where 67 := () (()m £w- € £ p). (4.8.17)

Since |[¢| < N and |j| > |jo| — N we see that, for |jo| > 3(1 + ||)N, for N > N(V,d,|S|)
large enough,

ol e 3P (4.8.18)
9 >0 = Jol| - 0.

Hence (4.8.17)), (4.8.18)) and (4.2.13]) imply (4.8.16]). As a consequence, Lemma i7)
applied to the matrix in (]:/4 8.15) with Z = D}/* Ay j, (e, \)D}/*, a = 2N, By = [jo|*/10,
By < 4ljol%, W = DYy ;. DI Wl < O, imply that

4(2N+1)2+I8]
BY(ju\1/2)c  |J I, with || <ONTT.
q=1
Dividing further these intervals we obtain (4.8.14).m

We now consider the case |jo| < 3(1 + |z|)N. We can no longer argue directly as in
Lemma [£.8.8 In this case the aim is to bound the measure of

B (jos A) = {0 € R + | D245 (6,0, 0)D 2o > N7/} (4.8.19)
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The continuity property of the eigenvalues (Lemma[4.8.3)) allows then to derive a complexity
estimate for BY (jo; A, 1/2) in terms of the measure | Bj y(jo; A)| (Lemma [4.8.10). Lemma
is devoted to the estimate of the bi-dimensional Lebesgue measure

H(A,@) cEAxXR:fe BSW(]‘O;)\)H.

Such an estimate is then used in Lemma to justify that the measure of the section
|Bg7 ~(Jo; A)| has an appropriate bound for “most” A (by a Fubini type argument).

We first show that, for [jo| < 3(1+ |i|)N, the set BY y(jo; A) is contained in an interval
of size O(N) centered at the origin.

Lemma 4.8.9. V|jo| < 3(1 + ||)N, VA € A, we have
Ban(joi A) € In := (= 5(1L+ [N, 5(1 + [a))N)
PROOF. The eigenvalues v,;(0) of DY*Ay (e, X, 0) DL/? satisfy

ve(0) = 6;(0) + O(T|4.5,)

where 62, 1= ({0 €+ 0) £1) (4:820)

If |#] > 5(1 + |f2|)N then, using also (4.2.13)), each eigenvalue satisfies |1 ;(6)] > 1, and
therefore 6 belongs to the complementary of the set B;{ ~(Jo: A) defined in (4.8.19). m

Lemma 4.8.10. V|jo| < 3(1 + ||)N, YA € A, we have

BGer2c U 1
q=1,..,[CMNT+1]

where 1, are intervals with |I,| < N~ and M := | B y(jo; M)

PROOF. Suppose that 8 € BY(jo; A, 1/2) where B%(jo; A, n) is defined in (4.5.4). Then
there exists an eigenvalue of DY/ Ay ; (g, A, #) DX? with modulus less than 2N~". Now, by

(4.8.15)), and since |jo| < 3(1 + |@|)N, we have

HDrlr{2 (AN,jo(gv )‘7 0+ AG) - AN,jo(gﬂ )‘7 0))Di,{2||0 = |A6|“D717{2YNJ0D717{2”0
< 20]5(1+ BN

Hence, by Lemma W, if 5(1+ [a|)N|AG] < N77 then § + A0 € B y(jo; A) because
An j, (g, A, 0+ Af) has an eigenvalue with modulus less than 4N~". Hence

[0 — N~ 0+ N € BY (s M) -
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Therefore BY (jo; A, 1/2) is included in an union of intervals .J,, with disjoint interiors,

BR(jo; 1, 1/2) € | JJm € BY v (jo; A),  with length [ J,,| > 2N~ (4.8.21)

(if some of the intervals [§ — cN~+Y 0 4+ ¢N~+Y] overlap, then we glue them together).

We decompose each J,, as an union of (non overlapping) intervals I, of length between
cN_(T+1)/2 and ¢N~U Then, by (4.8.21), we get a new covering

BY(oiA1/2) | I, € B n(jos A)
with ¢N~CH) /2 < || < eN-CH) < N7
and, since the intervals I, do not overlap,
Q
QeN~TH /2.2y |1,] < By (o M| = .
q=1

As a consequence Q < CMNTH, proving the lemma. m

In the next lemma we use the crucial sign condition assumption |3 of Definition [4.1.2]
Lemma 4.8.11. V|jo| < 3(1 + |z|) N, the set

Bg,N(jO) = Bg,N(j0§5) =

A 4.8.22
{()\, 0) e A xR : "Drﬁl/QAN}jo (£, \,0) D12 ( )

> NT/4}

has measure
B v (jo)| < Ce NI (4.8.23)

PROOF. By Lemma [4.8.9| the set B y(jo) C A x Iy. In order to estimate the “bad”

(X, 0) where at least one eigenvalue of DY2Ay (g, A, 0)DL/* has modulus less than 4N,
we introduce the variable

0
V= Y where ¥ € 2ly, (4.8.24)

and we consider the self adjoint matrix (recall that w = (1 + &))@, )

AN' (8 A Q)
Prvi () = D1/2 Jo\&s 7Y D1/2
Nv]O( ) m 1+€2>\ m
(X (8, Mg
1+¢e2)

(4.8.25)

= D}/? (J@a 0, + +19YNJO>D},{2.
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By the assumption [3] of Definition [4.1.2] we get
0\ P jy(A) < —ce?, ci=coym.

By Lemma i), for each fixed 1, the set of A € A such that at least one eigenvalue is
< 4N77 has measure at most O(s_QN_TJ“dHS'). Then, integrating on ¥ € Iy, whose length

is |[In| = O(N), we deduce (4.8.23). m
As a consequence of Lemma [4.8.11| for “most” A the measure of BQ, N (Jo; A) is “small”.

Lemma 4.8.12. V|jo| < 3(1 + |a|)N, the set
Fuljo) i= {/\ €A B (o V)| > 5’2@’1]\[’”2”‘8'*3} (4.8.26)

where C' is the positive constant of Lemma has measure
| Fn(jo)] < ON-972. (4.8.27)

Proor. By Fubini theorem, recalling (4.8.22) and (4.8.19)), we have
2N (Jo)| = / |B2N Jo; M) dA. (4.8.28)

Let p:=71—2d—|S| — 3. By (4.8.28) and (4.8.23)),

0872N7T+d+|8|+1 Z /|B2N ]0’ ‘d}\

v

20NN e R ¢ B (oi N)| 2 e 7207 N
= e 2CINTH|Fy (o)

whence (4.8.27). m

As a corollary we get

Lemma 4.8.13. Let N > N; := [N}], see (.5.11). Then V|jo| < 3(1+|a|)N, VA & Fn(jo),
we have

B (Go: M\, 1/2) © U I, (4.8.29)

g=1,..., N2d+8|+5

with 1, intervals satisfying |I,| < N7".
PROOF. By the definition of Fy(jo) in (4.8.26)), for all A ¢ Fn(jo), we have

|BY v (jo; A)| < e 2CIN TSI,
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Then Lemma [4.8.10] implies that V|jo| < 3(1 + |a])V,

BGursy2c U I

q=1,....e "2 N2d+S|+4
For all N' > Ni = [Ng] we have

(4.5.10))
’ N8'+80+dN2d+|S|+4 S CN

by (4.5.2]). This proves (4.8.29)). m
PROOF OF PROPOSITION CONCLUDED. By Lemmata [4.8.8] and 4.8.13] for all N >
N, A €A,

T+sg+d
X

_ 2 4
o2 \2d-+S|+4 +2d+(S|+ < N24HSIH5

Ag o |J Fal) = Ae Q?\,’%

ljol <3(1+|R)N

(see the definition of G}, in (4.5.5)) and therefore

B.<c U FvGo). (4.8.30)

ljol<3(1+|a))N

0
N7

N

In conclusion, (4.8.30) and (4.8.27)) imply that, for N > Ny,

B i< Y Fnlo)l SNINTTE <N

jo|<3(1+|RI)N

Stability of the L?>-good parameters under variation of Xy

In order to prove (L.1.18) we prove the “stability” of the sets G}, = Gy, (X,,) and

QJO\,’77 = QJOVW(XT,#) defined respectively in (4.5.6]) and (4.5.5]) with respect to small variations
of the operator X, ,.

Lemma 4.8.14. Assume |r' —r|q +|p/ — pl < 6.
i) If N5 is small enough, then, for (1/2) + Vo <n<il,

G va(Xru) N C Gy (X ) (4.8.31)
i) If N;:H\/g, k > 1, is small enough, then, for (1/2) + Vo < n <1,

s (X)) NN C G (X ) (4.8.32)
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Proor. Call AN(e A), resp. Al (e, A), the truncated operator associated to L, resp.
L, v, see remark [4.2.2} defined for A € A resp. A € N, By assumption, for any A € ANKN

we have

[AN (e, ) = Ay (e Mllo S llr = 'llo + | — 1| < C5. (4.8.33)

Proof of 7). Assume that A € GN _vs(Xe) N A’ where Gl = G, (Xp) is defined in
(4.5.6). Then

1D, 2 Ayt (e, N Dy, 1/2||0 (n—VE)NT. (4.8.34)
Now we apply Lemma to B = Anx(g,\), B' = Aly(e,\). By (4.8.34), (4.8.33), the

assumption (4.8.9)) holds with K; = (n — \/S)N Tand a = C§. If SN is small enough
then (4.8.10]) applies, and we deduce

1D, 2 (AN) " e, D2 o < (1 — V)N + 4CON*1 < pN™

provided that VAN < 1/(4C). Hence \ € Gy (X ), proving (4.8.31)).

Proof of ii). Assume that A € g%k 77_\/S(Xw) N A" where GRy = G(Xop) is defined in

([45.8). Let BY, (jo; A, ), resp. (Biy,)°(jo; A, m), be the the set defined in (4.5.4) correspond-
ing to X, ,, resp. X,/ s, at N = Ni. Applying the same perturbative argument of item 17)

to the matrices D, '/? Ay, j (¢, A,0) D, /* and D;, 1/2A’Nk (& A 0)D 12 we prove that, if

N,:“\/S is small enough, then, for all \jo| < 3(1 + |;a|) Nk, we have the inclusion
(B,) (o A1) € BY, (jos A — V).

Hence, by Lemma , we have \ € QR,M(X,,/,M/), proving (4.8.32). m

Conclusion: proof of (4.1.17)-(4.1.18))

We finally prove that the sets A(e;n, X, ,), n € [1/2,1], defined in (4.5.12)) satisfy the
measure estimates (4.1.17)-(4.1.18).

Proor or (4.1.17). We have to estimate the measure of the complementary set

AMe1/2, X, nA= BY,.1 U (6%1)° g nA (4.8.35)

k>1 N>N?

where BY Nl = =A\ Qg,k 1 with QJOVW defined in (#.5.5), the set G% , 18 defined in ([4.5.6), and
Gin (@59

Lemma 4.8.15. ’ UB, 1| <e
2
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Proor. By Proposition 4.8.7 we have

. 2%
(UBL | M SN TS Nt s e <
k>1 k>1
since y is large according to the second inequality in (4.5.2). m
0 YRRl <&
Lemma 4.8.16. | [ J (64,) N4 <<

N>NZ

PROOF. By Lemma we have

| U (o) 0| s 3 asramsion g st

N>NZ N>Ng
(4.5.10 o (T=4d—4|8| =250 —2)
< € T+sg+d
~Y
€
S —
3

since 7 is large according to (4.5.1). m
By Lemmata 4.8.15] 4.8.16] |4.8.5( we deduce that the complementary set (4.8.35)) has

measure

+] U @) ni|+1genk

N>Ng

A(e:1/2,X,,)°NA| < ) B
E>1
< 2% % <e

proving (4.1.17)).

Remark 4.8.17. We could prove that the measure of A(e;1/2, X, ,) is smaller than €”, for
any p, optimizing the choice of the constants. Indeed the measure of the set of Lemmal{.8.5,

respectively decreases taking the constant o in (4.5.9), respectively x in (4.5.2)),
larger. The set in Lemma has measure €2~ as the constant T defined in (4.5.1

increases. If we had intersected in (4.5.12)) for N > Ng“(T), as explained in remark |4.5.5
the new set in Lemma[4.8.16 would have arbitrarily small measure as well.

PROOF OF (4.1.18). Recalling the definition of the sets A(e; 7, X,.,,), n € [1/2,1], in (4.5.12)
and Lemma [4.8.14] we have that, for N > N, (1/2) + Vo <n<l,

Ns <1 BB A —vE X,,) N6 (X ) NN =0
NVE<1 BB A =6, X,,)Nn 6% (Xew) NN = 0.
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Hence
Ae;n — V6, X,,) N A (g, X )0 N
oy (A(e; n—V8,X,,)N Q?\,M(XT/,#/)C> N (4.8.36)
k>1
U (A(e;n — V6, X,,) N G?V,H(X,,/#/)C> NA'
N>Ng
c U RuaXeww) U &R (Xww)n A
N7F2V5>1 NT+2/5>1
c U G U @) nk
N{F2V5>1 NT+2/5>1
by (4.5.7)). Finally, by (4.8.36)), Proposition and Lemma we deduce the measure
estimate

7/2)—2d+2[S|+4

~ 1 (
|A(5; n— \/5; Xr,u) N A(é?; 7, Xr’,u’)c N A/| < 02+ 4§ 2(7+2)
< 9§77

by (4.5.1). This proves (4.1.18) for o < 1/(2(7 + 2)).




Chapter 5

Nash-Moser theorem

The goal of this Chapter is to state the Nash-Moser implicit function Theorem [5.1.2, which
proves the existence of a torus embedding ¢ +— i(p) of the form which is a zero
of the nonlinear operator F defined in (5.1.2)). Theorem implies, going back to the
original coordinates, Theorem [1.2.1]

5.1 Statement

In this section we state a Nash-Moser implicit function theorem (Theorem which
proves the existence of a solution

o —=i(p) = (0(p),y(w), 2(¢)) = (¢ +9(0), y(p), 2(¥)) , (5.1.1)

with 2(¢) = (Q(p), P(¢)) € Hs, Y € Tl of the nonlinear operator

F(i) = F(Ni) == w - 0,i(p) — Xk (i(0))

w-0p0() +w = i~ (0, R)(i(), €)
— w-0,y(p) + (39 )(i(9), §) 12
w-0,2(¢) — JDyz(p 20, (VoR)(i(#),€))

which depends on the one dimensional parameter
A€ A= [—/\07 /\0]

(the set A is fixed in (T.2:26))) through the frequency vector w = (1+22\)@. where @, € RF!
is introduced in ([1.2.25)), and the amplitudes £ := £(\) are defined in . A solution
i(p) of is an embedded invariant torus for the Hamiltonian system ([2.2.11))-(2.2.12]),
filled by quasi-periodic solutions with frequency w.

154
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We look for reversible solutions of F(A;i) = 0, namely satisfying Si(p) = i(—¢) (the
involution S is defined in (2.2.16)), i.e.

0(—p) = —0(9), y(=p)=ylp), z(—=p)=(S2)(p). (5.1.3)

Remark 5.1.1. The reversibility property slightly simplifies the argument in Proposition
because the right hand side in has zero average, and therefore the equation
(11.2.41) is directly solvable. Otherwise we would have to add a counterterm in the second
component of the operator F as in (2], [8].

The Sobolev norm of the periodic component of the embedded torus

J(p) :=i(p) = (»,0,0) = (I(p),y(p), 2(¢)),  Ip) =0(p) — ¢, (5.1.4)
1T lip,s == 19 Lip,rrs + [[YllLip, s + 12]|Lip,s - (5.1.5)

The solutions of F(A;i) = 0 will be found by a Nash-Moser iterative scheme. Evaluating
F at the trivial embedding

ZO(@) = (907 07 0)
we have
W—p— 52(82,/R>(907 Oa O? 5)
F(io) = e2(OpR)(,0,0,&) (5.1.6)
—£(0, VR(p,0,0,¢))

which satisfies, since w is O(g?)-close to fi,
| F (i0)||Lip.s < C(s)e®, Vs> sq. (5.1.7)

In order to construct a better approximate solution we first compute in section the
shifted tangential frequency vector induced by the nonlinearity, up to O(*). Then in section
m we construct the first approximate solution i;(y), defined for all A € A, by using the
unperturbed Melnikov non-resonance conditions — on the linear unperturbed

frequencies, in such a way that (see ([5.3.5)))
| F (i) ||Lip,s < 0(8)64, Vs > 5.

Subsequently, given an approximate solution i,(y), the main point is to construct a much
better approximate solution i,.1(¢). We use an inductive Nash-Moser iterative scheme.
The key step concerns the approximate right invertibility properties of the linearized op-
erators d;F(i,) obtained along the iteration, that we obtain restricting the values of A to
subsets A,, C A with large measure, see Theorem [11.2.1] The following theorem will be
proved in Chapter relying on the results of Chapters concerning the invertibility
properties of the linearized operator d;F(i,).
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Theorem 5.1.2. (Nash-Moser) Assume (1.1.3) and the non-resonance conditions (|1.2.6))-
(1.2.8), (1.2.16)-(1.2.19). Assume also the twist condition and the non-degeneracy
conditions (1.2.21)-(1.2.22). Fiz a direction @. == i+ 3¢, ¢ € ([1,2]®), as in
such that the Diophantine conditions (1.2.29)-(1.2.30) hold. Define A = [—=Xg, Xo] as in
(1.2.26)). Then there are Sobolev indices so > s; > sg, a constant g > 0, and, for all
e € (0,&9) there exist

1. a Cantor-like set Coo C A of asymptotically full measure as e — 0, i.e.

lim —’COO| =

=1 1.
e—0 |A| ’ (5 8)

more precisely, there is a map € — b(e), independent of ¢ € < ([1,2]) such that
the Diophantine conditions (1.2.29)-(1.2.30)) hold, and satisfying |A \ Cs| < b(e),
lim b(e) = 0

e—0

2. a Lipschitz function
ins (03 A) = (£,0,0) = (Yoo, Yoos 200) : Coo — H2 x H? x (1™ N Hy')
satisfying
lice = (.0,0)|[Lipsy < C(s1)e?,  lice = (,0,0)l|Lipsy < €, (5.1.9)
such that the torus is(©;A), A € Coo, 1s a solution of F(A;is(A)) =0.

Moreover, for any A € Cu, the function is — (p,0,0) is of class C* in (p,x), and
Lipschitz in A as a map valued in Hj x H x (H* N Hg), Vs > sy.

As a consequence the embedded torus ¢ +— in(p;\) is invariant for the Hamiltonian
system ([2.2.11))-(2.2.12)), and it is filled by quasi-periodic solutions with frequency w =
(14 &2)\)..

Going back to the original coordinates via (2.1.10), (2.2.2)), (2.2.3)), (2.2.6), Theorem

implies the existence, for all A € C.,, of a quasi-periodic solution of the wave equation
(1.2.1)) of the form

_1 _1
ult, 1) = 3y 206 + (o) (1)) cos (w3t + (Do) () U (2) + Dy Qoo ()
j€S
with frequency w = (1 + 62/\)@:- This proves Theorem with G, ¢ := Cs and 5 = s,.
The proof of Theorem [5.1.2] occupies the rest of the Monograph from section 5.2 until
Chapter [11]

We first prove, as a corollary of Theorem [5.1.2] the result (1.2.35) about the density,
close to fi, of the frequency vectors w of the quasi-periodic solutions of ((1.2.1)) obtained in

Theorem £.1.2]
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Proof of (|1.2.35)

Let € be the set of the frequency vectors w of the quasi-periodic solutions of ([1.1.1]) provided
by Theorem Such frequency vectors have the form

w= 14N, =a+2C+ M+, ¢e (1,28, AeA, (5.1.10)
where

o ¢ € /([1,2]®)\ B. (the set B. is defined in Lemma [2.3.1), so that @. = f + ¢
satisfies the Diophantine conditions ((1.2.29))-(1.2.30));

o A€ A\ G.. where G, := Cs is the set defined in Theorem [5.1.2|

We define
B = {(CN) € /(1.2 x A (€ Bor A ¢ Goc)

&, = (([1,2]) x A) \ B..

By Lemma the Lebesgue measure of B. satisfies |B.| < ¢, and, using also the measure
estimate provided in item (1| of Theorem [5.1.2] we deduce that

1B.| < e|A|+ be) | ([1,2]0)] =: bi(e) (5.1.11)

where lim by (¢) = 0.
e—0

In view of ([5.1.10)), in order to prove ((1.2.35)), we have to estimate the measure of the
set

Bl := {B €C :=a([1,2]°) +Afi : A, \) € &, such that 3 = C+/\ﬂ+€2)\§}. (5.1.12)
Lemma 5.1.3. |B| -+ 0 ase — 0.
PROOF. Define the map
U ([1,2]5) x A = REU A, (G N) = (C+ A+ €2XE N

which is a diffeomorphism onto its image. Thus, recalling (5.1.11)),

(U= (B:)| S [Be] S bale). (5.1.13)
For any B € Cy, let
._ CB=Am S|
Us. == {)\ €A 5y e (1Y) )}, (5.1.14)

i.e. A € Us, if and only if (3, \) is in the image ¥, (o7 ([1,2]/) x A). Thus, recalling (5.1.12)),
we deduce that
feB., NeUsg. = (B, €P.(B,).
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Therefore

/Mwwﬂwﬁﬂﬁb&% (5.1.15)
Bl

Our aim is now to justify that the measure of Us, satisfies |Ug.| > /bi(e) for all § €
<7 ([1,2]¥1) + Afi but a subset the measure of which vanishes as ¢ — 0.

First note that <7 ([1,2]%) is a convex subset of RIl, with interior «7((1,2)l). For
e > 0, define

V.= {x eRE . VaeA, H% = M((1,2)|§|)} (5.1.16)
={zerd [ +1€2A0, 1 _15%] 2 C (L2} (12,

Each set V. is convex and open,

VoCV.,Vo<e<e and [ JVo=((1,2)9). (5.1.17)

e>0

Then, for any 3 € C; define

(-1.16),(F-1.14)
Upe i ={reA : B-daev} ¢ U,

Recalling (5.1.17]) we have Ué,s/ C Uéﬁ, V0 < e < &'. At last define, for § > 0,
D.s:={Be€C : |Us|>0d}. (5.1.18)
The following properties holds:

(i) For0<e <& and 0 < § < ¢, we have Doy C D 5.

(ii) Since the sets Uy are open (hence of strictly positive measure if nonempty),

UD-s={BeccC : U, #0} = D..

>0

Moreover D, = V. + Aj.
(iii) By items (i)-(ii) and ([5.1.17) we deduce
U (UDws) =UD = (12" + A=

e>0 6>0 e>0



CHAPTER 5. NASH-MOSER THEOREM 159

Claim:
lim  |C\D.s| = |Ci\(((1,2)®) + Ap)| = 0. (5.1.19)

€—>0+,5—>0+

The first equality follows by items (i)-(iii) above. To justify this last equality, let us intro-
duce the (|S| — 1)-dimensional linear subspace of Rl F := 1. Let K be the orthogonal
projection of o7 ([1, 2]'8‘) onto F; note that K is a convex compact subset of F of nonempty
interior in E. Moreover, since o ([1,2]"!) is convex, it can be decomposed as

A ([1,2°) = (J {z +[a(x), as ()]}

zeK

where the functions a;,a_ : K — R are respectively concave and convex, with a_(x) <
ay(z), for all z € K, and a_(x) < ay(z) for z € int(K). Hence, since ax are continuous
on int(K),

((1,2)%) = int( o/ ([1,2]%)) = {2+ (a_(x), a4 (2))fi; @ € mt(K)} |
and
C\ (7 ((1,2)8)) + Aj) = {a: A : (2 €0K, A€ [a_(z) — Mooy () + Ao))
or (v K, A=ax(z) £ ) }

which gives }Cl\(ﬂ((l, 2)'8‘) + Aﬁ)‘ =0.
Setting D. := D_ NCYEE where D, ; is defined in ([5.1.18)), the estimate (5.1.19) implies

. A
613& IC\D.| =0. (5.1.20)
Moreover, by the definition of D, and the inclusion Uj . C Ug., we deduce

VB € D,/ea ’U,B,El > v bl(€>7

and therefore

|B;ﬂD;|s/bl(5)§/ UsldB < bi(e). (5.1.21)
'nDL

. . / / / / : -
Finally, since B. C (B.ND.)U(C;\Dy), we deduce, by (5.1.21)) and ([5.1.20), that ll_r}(l) |BL| =
0. Lemma is proved. m

Now, recalling (5.1.12)) and (5.1.10)), we have

i+ Je@\B) ca (5.1.22)

e>0
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where ) is the set of the frequency vectors w of the quasi-periodic solutions of (|1.1.1))
provided by Theorem [1.2.1] Notice that, by (1.2.26)), (1.2.25), (1.2.23), we get that

1
Cant e o ([5,4%), vees(1,2%), Waen,
and therefore C; = 7([1,2]¥1) + Afi does not contain 0. Moreover C; is a compact convex
subset of RISl with nonempty interior, which implies that
{z € RyC; : RyzNC is asingleton } C O(R4Cy). (5.1.23)

Thus, given y € Ry Cy, the measure |[{r > 0 : y/r € Ci}| > 0 except for y € I(RCy),
which is of zero measure. Using (5.1.23)) and Lemma [5.1.3] we can obtain

| (Usezensy) B
lim =1. (5.1.24)
r=0: ‘R+cl N B(0, 7«)(

We omit the details. Recalling (5.1.22)), (5.1.24)) implies (1.2.35)).

5.2 Shifted tangential frequencies up to O(c*)

In this section we evaluate the average of the first component in (5.1.6)):
O 52<ayR(907 Oa 07 g)) (521)

where

1
1) = m [, TV (522)

Evaluating (2.2.13)) at (0,y Q) (p,0,0), we get, inserting the expression of g(e,z,u) in
(2.1.6), that for each m = 5 18],

(00,08 = o [ [ o0, 0.0) B o ) s
=T33+ Er,a+ 2 Tm5 (5.2.3)

where

Pt
T3 1= 27r Gy /’H‘Sl /Td v(p, 0, 5)) \/Tcos Om Vo () dx (5.2.4)

Ll
T4 i= L] /TS| /Td v(g,0,8)) \/%_mcos Om Vo () dx (5.2.5)
~1/2
— Hm
Tp5 i= (QW)\SI /TS| /Td t(e,x,v(g&,o,f))\/%_mcos Om Vi (x) dx . (5.2.6)

We now compute the terms in (5.2.3)).
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Lemma 5.2.1. r,, 3 in (5.2.4)) is
T3 = [ ]m (5.2.7)

where o := () ; mes is the symmetric twist matriz defined in (1.2.9).
Proor. Using (2.2.9), we expand the integral ([5.2.4)) as

~1/2 —1/2 —1/2 _
Tm3 = Z gy //”Laz/ 3/ 1/2\/@15325]3 —

J1,32,J3€S fm

2m)P [ cosion cosincos o cos o

X a(z)W;, ()W, (2)¥j, (2) ¥, (2) do . (5.2.8)

The integral / COS (P}, COS j, COS Pj, cOs Py dy does not vanish only if
TS|

1. j1:j2:j3:m

2. j1 = jo # js = m and permutation of the indices (3 times).

Hence, by (5:2.8),

4 \114
I3 fm (27T)|S| /T|§ CcOos med@/Ed CL(ZC) m(x) dx
3 Lyt / 2, 2 d / W2 ()02 d
+ j;nluﬁ g]l 27T)‘S| - COS™ j, COS ® - a(x) jl(x) m(x) T
3 J—
= ST+ S TG
J#m
having set

T’ ::/ a(m)\llf(x)\lfil(x) dr, j,m €S,
Td

and noting that

2 , 1 , 3
md = - md m —
(27-‘-)|S‘ /TS COS @ 2 . /TCOS (2 @ 1
A np = 0do) ==
O /11‘8 cos” @j, cos” Ppdyp )2 TrCOS 5

Recalling the definition of the twist matrix & = (&) mes in (1.2.9)-(1:2.10) we deduce

F27. =
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Lemma 5.2.2. For allm € S, each r,, 4 in (5.2.5)) is r,,4 = 0.

PROOF. Since the function v defined in (2.2.9) satisfies the symmetry

v +7,0,6) = —v(p,0,6), 7= (m,...,m) €R", (5.2.9)

the function g(p) = (v(,0,£))* cos(pn) satisfies g(p + @) = —g(p) and therefore its

integral
/ g(p)de =/ gl +m)dp = —/ g(p)dyp
TISI TISI TIS|

is equal to zero. Hence r,, 4 = 0. m

By (5.2.3), Lemmata [5.2.1{ and |5.2.2] we deduce that

(0yR(,0,0,8)) = & + er5(¢, ) (5.2.10)

R®l As a consequence, the term ([5.2.1)) is O(c*), more precisely, since w = (1 + £2\)@, it
results

w—fi—eX9,R(¢,0,0,8)) = (L + "M@ — i — e* A€ — €'r5(e,§)

li —64r5(5, 5) ' (5.2.11)

5.3 First approximate solution

We now define the first approximate torus embedding solution

i1(0) = (01(0), y1(9), Q1(0), Pi(9)),  01(p) =@+ Vi(p), (5.3.1)

in such a way that F(i;) = O(e*). Given a function f : TSl — Rl we denote by (f) € R
its average with respect to ¢ (as in (5.2.2])) and by [f](y) its zero mean part, so that

fle) = () + [f(e). (5.3.2)

Lemma 5.3.1. (First approximate solution) Let w = (1 + &\, with ©. = i +£*C as
n (1.2.25) and define £ := &(N) as in (1.2.27). Then there exists a unique solution iy, with
the form in (5.3.1)), with average (y1) = 0, independent of A\ € A, of the system

- 860191 —é [(8yR) (90’ 0,0, 6)] =0
fi Opy1 +€*(0sR)(,0,0,€) = 0 (5.3.3)
(:L_L ’ ago - JDV) (Ql; Pl) - 62 (07 (VQR>(907 07 075)) =0
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satisfying, for all s > s,

lix = (,0,0)l[Lip.s = [lix = (#,0,0)[s < C(s)e”. (5.3.4)

It results
| F (1) || Lip,s < 0(5)54, Vs > sg. (5.3.5)

PROOF. SOLUTION OF THE FIRST EQUATION IN ([5.3.3). Since f is a Diophantine vector

by (1.2.6]), we solve the first equation in (|5.3.3)), finding
0y = 221 9,) 7 [(9,R)(,0,0,)] (53.6)

where (ji- 9,) " is defined as in (.6.1]) (with  instead of w).
SOLUTION OF THE SECOND EQUATION IN ([5.3.3). Since

(@sR)(,0,0,€) = 9,(R(¢,0,0,¢))

it has zero average in . Then, since ji is Diophantine by ((1.2.6]), the second equation in
(5.3.3) admits the unique solution with zero average

N = _ez(ﬂ ’ 890)_1 [(aOR) (SO? 07 07 5)] : (537)

SOLUTION OF THE THIRD EQUATION IN (5.3.3). The operator fi-0, — JDy is represented,
in the basis {“#(V;(z),0), e ?(0,¥;(x))}jen (see (3.2.26)) by the diagonal matrix

: -l —py
Dlageezv,jeN< 1 i/l'é) )

and therefore, by the unperturbed first Melnikov condition ([1.2.7)), it is invertible. Moreover,
arguing as in the end of Lemma it satisfies the estimate

(72~ 0y — JDV) "' hlls < C()[|Al]sir - (5.3.8)

Then the third equation in ([5.3.3|) admits the unique solution
(Qh Pl) = 82 (/1 ’ 84,0 - JDV)_I (07 (VQR)«D? 07 07 g)) : (539)

The estimate follows by the definition of i, () = (61(¢), y1(¢), 21(®)) Where 2 (p) =
(Q1(p), Pi(¢)), in (5.3.6), (5.3.7), (5.3.9), using and the Diophantine condition
(1.2.6). Finally, comparing (5.1.2]) with system (/5.3.3]), we have
Flir) =
w— i = eX{(0yR)(ir(¢), §)) + (w — 1) - 9p01(0) — *([9y R(ia (), )] — [0y (¢, 0,0, €)])
(w o ﬁ) ’ 830y1(90) + 62((69R)(Z1(90 76) - (89R> (907 0,0, 5))
(1) p21(0) — (0. (VoR)(in(),6)) — (0. (VR)(£,0,0,))
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and follows using the estimate (5.3.4), the fact that w = (1+e*\)@. with &, = fi+£>(,
and . [ ]

The successive approximate solutions i,, n > 2, of the functional equation F(i) = 0,
are defined through a Nash-Moser iterative scheme. The main point to define i, is the
construction of an approximate right inverse of the linearized operators d;F(i,) at the
approximate torus i,, that we obtain in the next Chapters [GH10]



Chapter 6

Linearized operator at an
approximate solution

In order to implement a convergent Nash-Moser scheme (Chapter that leads to a solu-
tion of F(A, i) = 0 where F(),7) is the nonlinear operator defined in (5.1.2)), the key step is
to prove the existence of an approximate right inverse of the linearized operator d;F(\;1)
in (6.1.2). The first step is Proposition where we introduce suitable symplectic coor-
dinates which reduce the problem to the search of an approximate inverse of the operator
L, in (6.1.23) acting in the normal components only. This will be studied in Chapters .

6.1 Symplectic approximate decoupling

We linearize F(\,7) at an arbitrary torus

i(p) = (0(v), y(w), 2(¢)) , (6.1.1)

obtaining
diF (A )[t] = w- 00— di Xk (i(p))[1] (6.1.2)

We denote by
I(p) =1i(p) = (¢,0,0) :== (D(p), y(¢), 2(»)),  Dp) :==0(p) — ¥, (6.1.3)

the periodic component of the torus ¢ +— i(p) with norm as in (5.1.5). We assume the
following condition for ¢ which is satisfied by any approximate solution obtained along the

Nash-Moser iteration performed in Chapter (11| (see precisely (11.2.11])):
e The map A — J()) is Lipschitz with respect to A € A; C A, and

13| Lipsite < Cls1)e?, T |uips: < €. (6.1.4)

165
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We implement the general strategy proposed in [24], used also in [§], [30], where, instead of
inverting d;F (X;7) (where all the (6, y, z) components are coupled, see (5.1.2)) we invert the
linear operator D(z) in (6.1.22)), which has a triangular form. The operator D(i) is found
by a natural geometrical construction. We define the “error function”

Z(@) = (21, Za, Z3) (@) := F(X;1)(p) = w - 0,i(p) — Xk (i()) - (6.1.5)

Notice that, if Z = 0 then the torus 7 is invariant for Xg; in general, we say that 7 is
“approzimately invariant”, up to order O(Z). Given i(y) satisfying (6.1.4)) we first construct
an isotropic torus is(¢) which is close to i, see and (6.2.6). By (6.1.7), F(is) is also
O(Z). Since the torus is is isotropic, the diffecomorphism (¢, (, w) — Gs(¢, ¢, w) defined in
is symplectic. In these coordinates, the torus is reads (¢,0,0), and the transformed

Hamiltonian system becomes ([6.2.12)), where, by (6.1.15)) the terms 0;Koo, K10 — w, Ko1 are
O(Z). Neglecting such terms in the linearized operator (6.1.21)) at (¢, 0,0), we obtain the

linear operator D(7) in (6.1.22)).

The main result of this section is the following Proposition.

Proposition 6.1.1. Leti(y) be a torus of the form (6.1.1), defined for all X € Ay, satisfying
(6.1.4). Then

e (isotropic torus) there is an isotropic torus is(w) = (0(p),ys(v), z(v)) satisfying,
for some T :=1(|S|,71) > 0,

195 = yllLips Ss (1 Z]ILip,stz + |21 Lip,so+2 13 Lip s+ (6.1.6)
1 F(@s)lLips Ss 121 Lipstz + 1 Z]|Lip,so+2 13| Lip,s42 - (6.1.7)

Given another i’ satisfying (6.1.4) we have
li6(2) — () lsy Sor 13— T Nls141 - (6.1.8)

e (symplectic diffeomorphism) the change of variable Gs : (¢,(,w) — (0,y,2) of
the phase space TP x RIS x H§ defined by

0 ¢ 0(¢) .
y|=Gs | €)= |us(d) +[0:6(0)]" ¢ = [(%2)((9))] Juw (6.1.9)
z w 2(¢) +w

where 2(0) := 2(07*(0)), is symplectic.

In the new coordinates (¢, (,w), the isotropic torus is is the trivial embedded torus
(p,0,0), i.e.
is() = Gs(,0,0). (6.1.10)
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The linearized diffeomorphism DGs(p,0,0) satisfies, for all s > s,

1DGs(2,0,0)[ uipes + || (DG, 0,0)) " [1l5,.. S 1T nipes

~ (6.1.11)
+ 13| Lip,s+2/1 7 || Lip,so
and
1D*Gs(2,0,0)[01, 2] [ Lip.s S 1171 Lipos]| 22l Lipso + 1|7 [|Lipyso | 22| Lip,s (6.1.12)

+ |3 Lip,s+311 21 | Lip,s0 | 22| ip,s0 -

e (Transformed Hamiltonian) Under the symplectic change of variables Gs, the
Hamiltonian vector field Xy (the Hamiltonian K is defined in (2.2.7)) transforms
mto

X¢ = (DGs) ' XgoGs  where  K:=KoGs. (6.1.13)

The Hamiltonian K is reversible, i.e. Ko S =K. The 2-jets of the Taylor expansion of
the Hamiltonian K at the trivial torus (¢,0,0),

K(¢, ¢, w) = Koo(9) + Kio(@) - ¢ + (Ko (¢), w) r2(r,) + %Kzo(@g ¢
1

+ (K (0)Cw) o) + 5 Koa(D)w, w) o ) + K0, Gw) - (6.1.14)

where K>3 collects the terms at least cubic in the variables (¢, w), satisfy the following
properties:

i) The vector field

Kio(o) w
Xi(6,0,0) = | —8sKao(0) | = [ 0| = (DGs($,0,0)) ™" Z5(9) (6.1.15)
JKo1 () 0

where Zs(¢p) = Flis)(p). The functions Koo : T — R, Koy : T — RE and
Kor : TP — Hg, that we regard as an element of HS(T|S| x T R?), satisfy the
estimate

10sKool|Lip,s + K10 = wllLip,s + [[KotllLip,s Ss [ Z 1 Lip stz

N (6.1.16)
+ 121 Lip,so 2 13| Lip, sz -

ii) The average (Koo) 1= (27r)_|S|/ Koo(@)do satisfies

TISI

[ (Kao) — €2 ||Lip S * (6.1.17)
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where o7 is the twist matriz in (1.2.9), and

1K20C | Lips Ss € (11CIILips + 13| Lip,stz 1 Lipuso ) (6.1.18)
1K11C N Lip.s Ss €2 (11CHILip,s + 13| Lip,stz 1 Lipuso) (6.1.19)
KL W] Lips Ss € ([[wlLips 4 3] Lipsiz 10] Lipso ) - (6.1.20)

e (Linearized operator in the new coordinates) The linearized operator
w'ago - d(¢,§,w)XK(¢7 07 O)
18

w-@y(}i—aqulo( )[ ] Kao (¢ )C KT1(¢>@
= | -0, + poKon(0)[@) + [0K10(0)] ' C + [DpKor (@)@ |- (6.1.21)
w- 0,0 — J{DyKo1(¢)[0] + K11(¢)C + Koo ()}

) )y -)

In order to find an approximate inverse of the linear operator in (6.1.21) it is sufficient
to invert the operator

w-&pg@— K20(¢)Z— Ky ()@
= | w-0,C (6.1.22)

o~

w-0pW — JKo2(9)W — JK11(4)C

D = D(z)

) M)
£) ™)

which is obtained by neglecting in the terms 0yKi0, OpsKoo, OsKoo, OpKo1, which
vanish if Z = 0 by (6.1.16). The linear operator D(i) can be inverted in a “triangular”
way. Indeed the second component in for the action variable is decoupled from the
others. Then one inverts the operator in the third component, i.e. the operator

L., = L,(i) =g (w-0, — JK02(¢))|H§ , (6.1.23)

and finally the first one. The invertibility properties of £, will be obtained in Proposition
11.1.1) using the results of Chapters[7H10, We now provide the explicit expression of L, ().

Lemma 6.1.2. (Linearized operator in the normal directions) The linear operator
Ko2(@) := Koa(2; @) has the form

Koz(¢) = Dy + £°B(¢) + r.(9), (6.1.24)

where B := B(e, \) is the self-adjoint operator

Q\ _ (TIED,?(3a(x)(v(6,0,))? + eday(z)(v(0,0,£))*) Dy *Q
B<P>. ( (3 05 v )) (6.1.25)
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with the function v defined in (2.2.9), the functions a(x) and ay(x) are in (2.1.5)), the vector
€=¢€N) € 1,21 in (1.227), and r. := r(3) is a self-adjoint remainder satisfying

T |Lip s S €7 (6.1.26)

|Te|Lip, s S 52<52 + 1T luip,s+2) - (6.1.27)
Moreover, given another torus i = (,0,0) + 3" satisfying (6.1.4), we have
re = vl s Ser €913 = Tlsy 42 (6.1.28)

The next Chapters will be devoted to obtain an approximate right inverse of £,,(2),
as stated in Proposition [11.1.1} In Chapter [7| we shall conjugate L, (i) to an operator (see

(7.3.4)-(7.3.5) and (11.1.8))) which is in a suitable form to apply Proposition [8.2.1] and so
proving Proposition [I1.1.1} Proposition [8.2.1]is proved in Chapters [9] and

The rest of this Chapter is devoted to the proof of Proposition and Lemma [6.1.2]

6.2 Proof of Proposition 6.1.1

By (1.2.29), for all A € A the frequency vector w = (1 + £?)\)w@. satisfies the Diophantine
condition

w -] > <Z>2Tl . YeZFN\ {0}, where 4y =/2="/4. (6.2.1)

We recall that the constant ~y in depends only on the potential V' (z), and it is

considered as a fixed O(1) quantity, and thus we shall not track its dependence in the
estimates.

An invariant torus 7 for the Hamiltonian vector field X, supporting a Diophantine flow,

is isotropic (see e.g. Lemma 1 in [24] and Lemma [C.1.2), namely the pull-back 1-form i*s

is closed, where s is the Liouville 1-form defined in (2.2.15]). This is equivalent to say that
the 2-form

W =1i"dse =d(i"») =0

vanishes, where W = dsr is defined in (2.2.10)). Given an “approximately invariant” torus i,
the 1-form 7" ¢ is only “approximately closed”. In order to make this statement quantitative
we consider

k=1,....|S| (6.2.2)
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and we quantify how small is the pull-back 2-form

PW=ditx= ) Aylp)des Adp;,
kj=1,...,|S|,k<j (6.2.3)

Akj(p) = 0p05(p) — Opyar (),
in terms of the error function Z(y) defined in (/6.1.5).
Lemma 6.2.1. The coefficients Ag; in (6.2.3)) satisfy
[AkjlLip.s Ss 1211Lip.stm+1 + 12| Lip,so+2 |13 Lipsr 1 - (6.2.4)
PROOF. The coefficients Ay; satisfy the identity (see [24], Lemma 5, and (C.2.7))
W'asoAkj = W(asoz(@)éka awi(@)ﬁj) + W@ﬁ(@)ﬁk» apZ(SD)Qj)
where e, denote the k-th vector of the canonical basis of RISl. Then by (6.1.4) we get
lw: 0y AjllLip,s Ss [ Z1ILipss1 + 112 ILip,so+1 1T [Lip,s41 -
Notice that the functions Ay;(y) defined in (6.2.3) have zero mean value in ¢, so that
Arj(0) = (W~ 0,) T (W(0,2(0)ex, 0,i(9)e;) + W(0,i(#)er, 0.2 ()e;))
Now, since w is Diophantine according to (6.2.1)), by (2.3.7) we have
1w+ 85) " gllLips < CligllLip.sn

where the constant 75 = 7¢/4 is included in C' because it is considered a fixed constant

O(1). By the expression of W in (2.2.10)), the tame estimate (3.5.1]) and (6.1.4) we deduce
(6.2.4). m

We now modify the approximate torus i to obtain an isotropic torus i5 = i5(7) nearby,
which is still approximately invariant. We denote the Laplacian

Ap= Y 02
Lemma 6.2.2. (Isotropic torus) The torus is(p) := (0(v),ys(v),z(v)) defined by

vs(©) == y(@) = [0,000)] (), p=(pj)ies. pile) =000 > 9, Ay(p) (6.2.5)

k=1,....|S|
is isotropic. There is T := 7(|S|, 1) such that (6.1.6)-(6.1.7)) hold. Moreover
lys — gHLiP,S Ss ||Z‘|Lip,8+1 (6.2.6)

and (6.1.8)) holds.
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Along the section we denote by 7 := 7(|S|, 1) possibly different (larger) “loss of deriva-
tives” constants.

PROOF. The proof of the isotropy of the torus is is in Lemma 6 of [24], see Lemma
Let us prove the bounds (6.1.6))-(6.1.8)) and (6.2.6)). First notice that, since the map
A+ A7 is C™ on the open set of invertible matrices {4 € Mg (R) : det A # 0}, we

derive from (/6.1.4) and Lemma that, for £ small, the map

DO o [DI()] !

satisfies the tame estimates

HDQ71HLip,s Ss 1+ H2H8+17 Vs Z S0 - (627)

Then (6.1.6) and (6.2.6|) follow by (6.2.5)), (6.2.7)), (6.2.2), (6.2.3)), (6.2.4) and (6.1.4). More-
over, we have that the difference

0
Flis) = F(i) = | w-0p(ys — y) | +&*(Xr(is) — Xr(2))
0
and (6.1.7)) follows by (6.1.6), Lemma [3.5.5] and (6.1.4). Finally the bound follows
by (6.2.5)), (6.2.3), (6.2.2)), (6.1.4]). =
It is proved in [24] (see Lemma [C.1.3)) that the diffeomorphism G; : (¢, (,w) — (0,7, 2)
defined in is symplectic because the torus i is isotropic (Lemma . By con-
struction, (6.1.10)) holds. Since Gy is symplectic the Hamiltonian system generated by K
transforms as in into the Hamiltonian system with Hamiltonian K = K o G§. By

(5.1.3) the transformation G5 in (6.1.9) is also reversibility preserving and so the Hamilto-
nian K is reversible, i.e. Ko .S =K.

Lemma 6.2.3. The tame estimates (6.1.11)) and (6.1.12)) hold.

Proor. We write (6.1.9)) as

) 0() 5
Gs | C | = | ws(o)+M(p)C — Z(mj(qﬁ), Jw)rze;
2(¢) +w g

where (¢;) denotes the canonical basis of R and we set

M(¢) = [0,0(0)] 7" my(e) == (95,2)(0(0)) = [(0,0)" " ($)V2(9)]; -
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The tame estimate (6.2.7)) implies

||M||Lip,s Ss 1+ ||Z||Lip,s+1 (628)

and using (3.5.1) and (6.1.4)) we have

M| Lip,s = 11(90;2)(0()) [|Lip,s Ss 2 llLip,s+1 + |2/ Lip,so-+1 19 Lip,s41
Ss 13 wip,s+1 - (6.2.9)
Now R
o() a(yp)
DG5s(,0,0)[i(¢)] := DG5s(,0,0) | ¢(p) | = | bly)
w(ep) ()
where R
a:=0,0(p)[¢] ,
S|
b= 0,us()[0] + M(9)[C] = D (m;(), J@) 12¢; . (6.2.10)
= 0,2(p)[0) + @
and
a(e)
D*G5(,0,0)[01(9),22(0)] = | B(v)
7()
where

= 020[61, o),
= 02ys[61, &) + 0, M (1) + 0, M[a]Cy

IS| R - 6.2.11
— Z ((apmj [#1], JQQ)L% + (apmj [¢2], Jﬁ}l)L?E)Qj ’ ( |
j=1

@) Q)

v = aiz[gb\lu 82] .
The tame estimates (6.1.11)) and (6.1.12)) are a consequence of (6.2.10), (6.2.11)), (3.5.1)),

(6.1.4), and (6.2.8), (6.2.9). =

Then we consider the Taylor expansion (6.1.14]) of the Hamiltonian K at the trivial torus
(¢,0,0). Notice that the Taylor coefficient Koo(¢) € R, Kio(¢) € R Koy (¢) € Hy | Koo(0) is
a |S| x|S| real matrix, Koz(¢b) is a linear self-adjoint operator of Hg- and Ky (¢) € L(RISI, HZ).
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The Hamilton equations associated to (6.1.14]) are

6 = Kio(¢) + Kao(9)¢ + K]y (9)w + OK=3(9, €, )
¢ = —0gKoo() — [05K10(¢)] "¢ — [06Kor(4)] Tw

0 (3K (0)C €+ (Kua(8)G, w)sa(r) + 5 (), w)acry +Kos(6, 6, )
W = J (Kot () + Ki1 ()¢ + Koo (¢)w 4+ VuKs3(9, ¢, w))

(6.2.12)
where 04K/, is the |S| x |S| transposed matrix and
OgKor(6), Kiy(9) - Hy — RF, - Vg € T,
are defined by the duality relation
(DsKor[0], )2 = & - [OKon] Tw, Vo e RS we H, (6.2.13)

where - denotes the scalar product in R/, The transposed operator KlT1 is similarly defined

and it turns out to be the following operator: for all w € Hg, and denoting ¢, the k-th

vector of the canonical basis of R,

Ki(@w= Y (KL(Qw-e)e= Y (w.Kn(@)e)paq e €RT. (62.14)

The terms JyKoo, K10 — w, Ko1 in the Taylor expansion ((6.1.14)) vanish if Z = 0.

Lemma 6.2.4. (6.1.15) and (6.1.16) hold.

ProoF. Formula (6.1.15)) is proved in Lemma 8 of [24] (see Lemma |C.2.6)). Then (/6.1.4)),
(6.1.6), (6.1.7), (6.1.11) imply (6.1.16). m

Notice that, if F(i) = 0, namely i(p) is an invariant torus for the Hamiltonian vector
field X, supporting quasi-periodic solutions with frequency w, then, by (6.1.15))-(6.1.16]),
the Hamiltonian in (6.1.14)) simplifies to the KAM (variable coefficients) normal form

K = const + w - C + %Kgo(qf))c . C —I— (K11(¢>C7 w)LQ(']T) + %(K02(¢)w, w)m(m + Kzg . (6215)

We now estimate Ko, Kqp in (6.1.14)).
Lemma 6.2.5. (6.1.17))-(6.1.20]) hold.

PROOF.



CHAPTER 6. LINEARIZED OPERATOR AT AN APPROXIMATE SOLUTION 174

PRrROOF OF (6.1.17)-(6.1.18)). By Lemma 9 of [24] (see Lemma |C.2.7) and the form of K
in (2.2.7), we have

Kao() = [060(¢)] ™' Dy K (i5(9))10,,0(0)]
= 2(0,0(0)]0,, RUis(9))[068(9)] (6.2.16)
= 523ny(i0(¢)) + 729 (6217)

where io(4) = (¢,0,0) and
rao 1= 22 ([040(0)] 0, Rlis (6)[0:8(6)] T = 0y R(is(0)) )
+22(0, R(i5(9)) — Dy Riol@)) )
By Lemma [3.5.5, (6.1.4), (6.2.6) we have

||3ny(i5(d))) - any(iO(ﬁb))HLip,sO < 0(31)52
and, using also ||(8¢Q(¢)>_1 - Id|S|||Lip,é>‘o < HZHLip,So—i—l Sar 52) that

11050(6)] By R(is(9))[06()] ™" — Oy R(i(9))l1Lip.so < Cls1)€”.

Therefore
[720][Lip,so < Cls1)e™ (6.2.18)

Moreover, by (6.2.16|) and Lemma the norm of Ky (which is the sum of the norms of
its |S| x |S| matrix entries) satisfies
K20l [1ip.s Ss €*(1+ ([T Lip.ssr)

and ((6.1.18)) follows by the tame estimates (3.5.1)) for the product of functions.
Next, recalling the expression of R in (2.2.8), with G as in (2.1.7)), by computations

similar to those in section , it turns out that the average with respect to ¢ of 0, R(io(¢))
is

(OyyR(io())) = o +r with ||r|lL, < Ce? (6.2.19)
where o7 is the twist matrix defined in ((1.2.9) (in particular there is no contribution from
as(z)ut).

The estimate (6.1.17)) follows by (6.2.17)), (6.2.18]) and (6.2.19)).
PrOOF OF (6.1.19)-(6.1.20). By Lemma 9 of [24] (see Lemma [C.2.7)) and the form of K

in we have
K11(9) = 0,V K (i5(8)[0,0(6)] T + J(@2)(0(6)) (0, ) i5(0))[0,8()) T
= *0,V.R(i5(9))[0,0(¢)]™" + *J(052)(0(6)) (0, R) (i5())[0,0(0)] ", (6.2.20)
and using (6.1.4)), (6.2.6]), we deduce (6.1.19). The bound for K/, follows by

and (6.1.19). m
Finally formula (|6.1.21]) is obtained linearizing (6.2.12)).
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6.3 Proof of Lemma [6.1.2

1
We have to compute the quadratic term §(K02(gb)w, w) r2(t,) in the Taylor expansion ((6.1.14)
of the Hamiltonian K(¢, 0, w). The operator Koa(¢) is

K02(¢) = awva(¢7 Oa O)

= 0,V (K 0 G5)(6,0,0) = Dy + €20, V,o(R 0 G5)(,0,0) (6.3.1)

where the Hamiltonian K is defined in (2.2.7) and Gy is the symplectic diffeomorphism
(6.1.9). Differentiating with respect to w the Hamiltonian

(Ro Gs)(,C,w) = R(0(6), ys(9) + Li(@)C + La(d)w, 2(6) + w)
where, for brevity, we set
Li() = [0,600)] 7", La(9) = ~[0s2(8(0))] ", Z(6) = 2(871(8)) (6.3.2)
(see (6.1.9)), we get
V(R0 Gs) (9, ¢ w) = La(9) ' 9,R(G5(¢, ¢, w)) + V.R(Gs(6, C, w)).
Differentiating such identity with respect to w, and recalling (6.1.10]), we get
0w Vu(R 0 Gs)(6,0,0) = 0, V. R(is(¢)) + () (6.3.3)
with a self adjoint remainder r(¢) := ri(¢) + r2(¢) + r3(¢) given by

r1(¢) 1= La(¢) 9y R(is(¢)) La(9)
ro(@) := La(¢) ' V.0, R(is(0)) , (6.3.4)
r3(¢) := 0, V. R(i5(4))La(9) .

Each operator r1, 79, 73 is the composition of at least one operator with “finite rank Rl in
the space variable”, and therefore it has the “finite dimensional” form

n@h = > (h, g;l><¢,.>)L%Xy><¢,.>, Vhe H, 1=1,2,3, (6.3.5)

for functions gj(-l)(¢, -),)é-”((b, ) € Hi. Indeed, writing the operator Ly(¢) : Hi — RISl as

L@kl = > (b La(&)le])) jpe; . VR € Hy,
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we get, by ,
@b = > (b, La(9) e)]) pAile], A= La(0) 9, R(is(9)) (6.3.6)

J=1,..,[8|

re( @b = Y (hAsle)) La(0) [ej] Az = 0.0,R(is(9)), (6.3.7)
j=1,...,|S|

ra@ = D (h L) Tle)]) pAsle],  Asi=0,VoR(is(9) = A7 . (6.3.8)
j=1,...,|S|

Lemma 6.3.1. Foralll=1,2,3, 7 =1,...,[S|, we have, for all s > sy,

l [ ~
19 Nips + X lips So 1+ 1T ipsea

(6.3.9)
. l l ~
min{|[g3 [ Lip.ss X eips} So 13N nipsc -

PROOF. Recalling the expression of Ly in (6.3.2)) and (6.3.6))-(6.3.8) we have:
i) 91"(6) = 6" (8) = X{"(6) = La(9) " [e;) = J(05,2)(8(#)). Thercfore by ([6.2.9).

1 3 2 ~
19 (s = 1195 tips = X ips S 1T nipsc -

ii) x\" = La(¢) "9, R(is(9))[e;]. Then, recalling (6.3.2) and using Lemma [3.5.5| we have

1 3 . ~ )
S = CLC)] A CR R P R LI R P P
S 13]lip,s1 -

iii) ng) = g](-2) = 0y, V:R(i5((¢)). Then, using Lemma |3.5.5{and (6.2.6)), we get

3 2 ~ ~
X Nips = 195 [ipsSs 1+ 11Tl tips So 1+ [T nipisa -

Items i) — iii) imply the estimates . n

We now use Lemmata [3.3.7 and to derive bounds on the decay norms of the
remainders r; defined in . Recalling Definition , we have to estimate the norm
171 Lip +.s = |D71n/27“l1'ISLD71n/2 |Lip,s Of the extended operators, acting on the whole HO = Lz(Td X
TII; C?), defined by

l !
DYDY = Y (EDh. "), (DY)

= > (b, DYg) (D), hen, (6.3.10)

J J
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where we used that g(-l)

;€ H§. Then the decay norm of r = r{ 4+ ry + r3 satisfies

|7 |Lip s S max | D?rillg D [,

(6310),E329) l l l l
Se om0 sl Dl i + 103205 Tnip sl DX i
39,610
Sso I3l Lipste - (6.3.11)

Finally, by (6.3.1), (6.3.3) we have
Koz2(¢) = Dy + 0. V. R(i5(9)) + *r(¢)
= DV + 82azsz(¢7 07 O) + 52 (azsz(Z5<¢)) - @zsz(¢7 07 O)) + €2T(¢>
=Dy +e’B+r. (6.3.12)
where B is defined in (6.1.25)) and

r. :=¢e’0,V.R($,0,0) — £’B+ *(9.V.R(is(¢)) — 0.V.R(¢,0,0)) + ’*r(¢).  (6.3.13)

This is formula (6.1.24). We now prove that r. satisfies (6.1.27)). In (6.3.11) we have yet
estimated |r|Lip 1 s. Recalling Definition [3.3.4] and the expression of R in (2.2.8) (see also

(2.2.14))) we have to estimate the decay norm of the extended operator, acting on the whole
HO = L*(T? x TFI; C?), defined as

0. R(is(¢))T1E (Z;) -

L . oy (6.3.14)
(HgDV2<aug><e, £, 0(0(6), 15(6).€) + Dy Q(6)) Dy Hh)

0

where g(¢,z,u) = 0,G(g,z,u) is the nonlinearity in (1.2.2). Hence, by Proposition [3.4.6]
and Lemma |3.3.8, we have

|azsz(Z5(¢)) - azsz(¢a 07 0)|Lip,+,s Ss
1(0ug) (e, 2, 0(0(6), ys(9), €) + Dy *Q(6)) = (Dug) (e, 2,0(6,0,€))

Lip,s
Lemma 16.2.6)
Ss 1TsllLips Ss N3 [Lipsta - (6.3.15)

Moreover, recalling (2.1.6)) and the definition of B in (6.1.25)), we have
0.V .R(6,0,0) — BlLipt.s S (6.3.16)

In conclusion, the operator r. defined in (6.3.13)) satisfies, by (6.3.16)), (6.3.15]), (6.3.11]),
the estimate (6.1.27). In particular, (6.1.26)) holds by (6.1.4]).
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There remains to prove (6.1.28). Let i/ = (,0,0) + 3’ be another torus embedding
satisfying (6.1.4)) and let r. be the associated remainder in (6.3.13). We have

r(¢) — re(¢) = *(9. V. R(i5(9)) — 0. V. R(is(¢))) +*(r'(¢) — 1(9)) .-
By Lemma and the expression of 0,V.R,

(6.1.8)

’azsz(ig(Cﬁ)) - 8ZVZR(i5(¢))‘+,S1 551 Hj:S - jz?“Sl 581 ”Z, - szﬁl . (63'17)

Moreover let glgl) and Xlg‘l) be the functions obtained in (6.3.5])-(6.3.8) from ¢’. Using again
Lemma as well as (6.1.8)) and (6.2.6), we obtain, for any j =1,2,3,j =1,...,[S|,

l l l l ~ ~ ~ ~ ~
19’5 = g lls + 15 = X5 s S 137 = Tl + 11341113 = D1

Hence, by Lemma [3.3.7, |7 — 7|+ Se 1|13 — Tls, 2. With (6.3.17), this gives (6.1.28)).



Chapter 7

Splitting of low-high normal
subspaces up to 0(54)

The main result of this Chapter is Proposition [7.3.1, Its goal is to transform the linear

operator L, in (6.1.23), into a form (see (7.3.5])) suitable to apply Proposition in the

next Chapter, which will enable to prove the existence of an approximate right inverse of

L, for most values of the parameter .
In the next section we fix the set M in the splitting Hy = Hy & Hy;.

7.1 Choice of M

We first remind that, by Lemma [6.1.2] the linear operator £,, defined in (6.1.23)), acting in
the normal subspace Hg, has the form

L,=w-0,—J(Dy+eB+r.), w=(l+Nw., (7.1.1)

where B = B(e, ) is the self-adjoint operator in (6.1.25)) and the self-adjoint remainder
r. satisfies (6.1.26)). Recalling (6.1.25)), (2.2.9)), (1.2.27), we derive, for [|as][z~ < 1, the
following bounds for the L2-operatorial norm of B:

IBllo < Cllallz= +€),  IBllipo < C(llallz~ + &)l (7.1.2)

where ||.277!|| is some norm of the inverse twist matrix .7 .

Dividing (7.1.1)) by 1 + &\ we now consider the operator

L,
142\

r
e+ O —J(A : )
et e M
DV E2B

- 1+52)\+1+52/\'

(7.1.3)
A:=A(N)

179
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We denote by ¢ the self-adjoint operator

e’B
= 7.1.4
SR ( )
and, according to the splitting Hg = Hy @ Hy;, and taking in Hyy the basis
we represent A as (recall that Dy W; = p;¥; and the notation (3.2.1]))
DiagjeMlu—jD\Idg 0 M Me°
A= te Dy |+ <%%ﬂ QMC) . (7.1.5)
0 Ome  Ome
142X

Recalling (6.1.25)), since the functions a, as € C*°(T?), using (2.2.9)), (1.2.27)), and Proposi-
tion [3.4.6, we derive that the operator g defined in ([7.1.4)) satisfies

|0|Lipt.s < C(s)e”. (7.1.6)

In the next lemma we fix the subset of indices Ml. We recall the notation AMS = g, Amy,. =

Lemma 7.1.1. (Choice of M) Let

p; — (B i)

Q(g,\) == [B 0y + Lo ,

jEeM, (7.1.7)

where &/, B are the “Birkhoff” matrices defined in (1.2.9), (L.2.10)), the p; are the un-
perturbed frequencies defined in , and the vectors ji, w. are defined respectively in
(1.2.3), (1.2.25). There is a constant C' > 0 such that, if M C N contains the subset F
defined in (1.2.15)), i.e. F C M, and

min yi; > C' (14 €*llafl . + [lall e[l + el ) , (7.1.8)

JjEMe
then
DA < —(m%x EXpn 52>Id. (7.1.9)
je

Proor. Differentiating the expression of A in ((7.1.3)) we get

€2DV 828)\]3 €4B

O\A == — — .
3 (4202  T1en (L4
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Then by (7.1.2) and the fact that [Dy]if. > m&/ﬂn L, we get
JEM*

2
= min g + CeM([lall e +2) + C(alle + )l ]|, (7.1.10)

(14 e2)0)2 jeme
Now, recalling ([7.1.7)), we have
2 L
hy(e,A) = m(w — B/~ fi];) (7.1.11)
and so (7.1.10)) and (7.1.11)) imply

O\ALL. + max |0yQ;] < —
jEF

O\Ayge < —

g2 _ L
7 e Ui — iy — (90
+ Cet([lalle + &) + C(Jlall L + )77
Thus (7.1.9) holds taking M large enough such that (recall that j; — +00)

min ;> max |y — (B V| + C(1+ Elall o + a7~ +ell ). (7.112)

jEMe je
By (T.2.15), (1.2.13), the fact that ; > /5 (see (L.1.5)), we get
max | — (B | < g = max{ (B )5 - g}

jEF

1 (7.1.13)
< C(llallze~l || + 1)

for some C' := C(f,S), having used that (T.2.10)) we have sup |G| < C|la||z~3. By (7-1.12)-
keS
(7.1.13)) and ([7.1.8) we deduce ((7.1.9)). m

In the sequel of the Monograph the subset M is kept fixed. Note that the condition
(7.1.8) can be fulfilled taking M large enough because p; = 400 as j — +o0.

In the next part of the Chapter we perform one step of averaging to eliminate, as much
as possible, the terms of order O(¢?) of g, ohf » onge in (7.1.5)).

7.2 Homological equations

According to the splitting H = Hy & Hﬁ we consider the linear map
S = J/jL : 3<pS + [JS, JDv]
where i € REl is the unperturbed tangential frequency vector defined in (1.2.3), and

S(p) = (223 a(g)*) € L(HF), Yo € TF

d() = d"() € L(Hu), aly) € L(Hu, Hij)

(7.2.1)
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is self-adjoint.
Since Dy and J commute, we have
Jii- 0,8 + [JS, JDy]
_ (Jp-0,d+ Dyd+ JdJDy Ji-0y,a" + Dya* + Ja*JDy (7.2.2)
- \Ji-90ya+ Dya+ JaJDy 0 ’

Recalling the definition of Il in 13.2.28: (with F ~» M) and of 11 in (3.2.30]) we decompose
the self-adjoint operator o = ¢’B(1 + £°\) " defined in (7.1.4) as

0= Tlpo + 0. (7.2.3)

The term Ilyp has the form

naote) = (2(7) #07") e cts).

o2(p) 0 (7.2.4)
o1(p) € L(Hw) , 02(¢) € L(Hy, Hyg)
where 01(¢) = 0j(¢), and, recalling (3.2.29), (3.2.18)), the p-average
G0 = e | (@R dpe M. View. (7.25)
The aim is to solve the “homological” equation
J - 0,8 + [JS, JDy| = Jllgo (7.2.6)
which, recalling , , amounts to solve the decoupled pair of equations
Jii- O,d + Dyd + JdJDy = Jo, (7.2.7)
Jii-0,a+ Dya+ JaJDy = Jo, . (7.2.8)

Note that, taking the adjoint equation of , multiplying by J on the left and the right,
and since J and Dy commute, we obtain also the equation in top right in , see
and (7.2.4)).

The arguments of this section are similar to those developed in section [9.3] actually
simpler because the equation has constant coefficients in ¢, unlike the corresponding
equation (9.2.6)) where the operator V) depends on ¢ € TP, Thus in the sequel we shall
often refer to section [9.3l

We first find a solution d of the equation (7.2.7)). We recall that a linear operator d(¢) €
L(Hy) is represented by a finite dimensional square matrix (d?()); jen with entries d? (o) €
L(H;, H;) ~ Maty(R). To solve we use the second order Melnikov non-resonance
conditions (|1.2.16))-(1.2.19)), that depend just on the unperturbed linear frequencies defined

by (L13).
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Lemma 7.2.1. (Homological equation (7.2.7))) Assume the second order Melnikov non
resonance conditions (1.2.16)-(1.2.19). Then the equation (7.2.7) has a solution d(p) =

(&(9))ijens, () = d" (), satisfying
||dg||Lip,H5(’JT|S\) < C”(Ql)gHLip,HS'*‘?TO(WS\) , Vi,j € M. (7.2.9)

PrRoOF. Since the symplectic operator J leaves invariant each subspace H; and recalling

(2.1.11)), the equation ((7.2.7)) is equivalent to
_ ; ; ; TN 0 1
i 0,0lle) + mal(e) + wyaale) = el vid et g = (0 ).

and, by a Fourier series expansion with respect to the variable ¢ € T writing

=Y d(O)e"?,  d(0) € Maty(C), d(0) =d(—0),

Lezlsl
to
i(7- 0)JA () 4 pdl (0) + p; JA (0T = J[a)L(€), Vi, j e M, £ ZF. (7.2.10)

Using the second order Melnikov non resonance conditions (|1.2.16)-(1.2.19)), and since, by

(7.2.5), the Fourier coefficients ] (0) e M_, the equations ([7.2.10|) can be solved arguing
as in Lemma “ 2{ and the estimate ) follows by standard arguments. m

We now solve the equation (|7 in the unknown a € L(Hy, Hy;). We use again the
second order Melnikov non-resonance conditions (1.2.16)-(1.2.19).

Lemma 7.2.2. (Homological equation (7.2.8)) Assume the second order Melnikov non
resonance conditions (|1 2.16)-(1.2.19). Then the homological equation (7.2.8) has a solution
a € LX(TB £L(Hy, Hy;)) satisfying

lalLip,s < C(8)ll0allLip,s+2r - (7.2.11)

PROOF. Writing aj(go) = a(gp)lH,, o) = (02(9)) 1, € L(Hj, H;:) and recalling (2.1.11)),
the equation (|7 amounts to

Jii- 0,37 () + Dval () + p;Jal (p) ] = Jah(p), Vje€M. (7.2.12)

Writing, by a Fourier series expansion with respect to ¢ € IS

al(p) = ()t al (v —/ al(p)e ¥ dyp,
(0= @08 @0 = o [ e
=D JB0e",

Lezlsl



CHAPTER 7. SPLITTING OF LOW-HIGH NORMAL SUBSPACES UP TO O(s*) 184

the equation ([7.2.12) amounts to
ifi - 0J30 (€) + Dya’ (€) + p; Ja (0)] = Jgy(0), VjeM, (€ zZB. (7.2.13)

According to the L?-orthogonal splitting Hy; = @;ecmeH; the linear operator a’(f), which
maps H; into the complexification of Hy; and satisfies a/(¢) = a’(—/), is identified (as in
(3.2.11)-(3.2.12) with index k£ € M) with a sequence of 2 x 2 matrices

(@(0)keme ,  34(0) € Mato(C), &) =&)(—0). (7.2.14)

Similarly @5(¢) = ([02).(¢))kense- Thus (7.2.13) amounts to the following sequence of equa-
tions : . : .
ifi - CJa(0) + pay (€) + pg T (0] = J[eali (0)

7.2.15
jeM,keMc,EEZS,JZ(_Ol (1)) ( )

Note that the equation (7.2.15)) is like (7.2.10)). Since j # k (indeed j € M, k € M€), by the
second order Melnikov non resonance conditions (1.2.16))-(|1.2.19), each equation ((7.2.15)

has a unique solution for any o, the reality condition (|7.2.14)) holds, and

IOl < O™ @57 0)] - (7.2.16)

We now estimate |al,. By Lemma |3.3.10| we have |a|, ~, ||a||s (we identify each a’ €
L(Hj, Hy;) with a function of Hy; x Hy; as in (3.2.6), (3.2.7)). Given a function

u(p, ) = Z W,kew"p\lfk(:c) € Hi:

LeZ)S| keMe
the Sobolev norm ||ul|s defined in (3.3.2)) is equivalent, using (3.1.4), (3.1.3), to

[al=r HuHia(H;mHﬁ) + [|ul i];(L%mHRJ/E)

s Z (/Lzs + <€>28) |Ug’k‘2 . (7217)

LeZ)S| keMe

In conclusion (7.2.17)) and (7.2.16]) and the fact that by Young inequality

(e

(e < = e S (O g,
2(7’0 + S) L 2(7’0 + 8)
N 27'0 » 477 2s ’

imply |als < C(s)]|02]|s+r- The estimate ([7.2.11]) for the Lipschitz norm follows as usual. m
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7.3 Averaging step
We consider the family of invertible symplectic transformations
P(p) :=e5@)  plp) =80, eThl (7.3.1)

where S := S(¢p) is the self-adjoint operator in £(Hg) of the form (7.2.1)) with d(y), a(p)
defined in Lemmata [7.2.1] By Lemma [3.3.10 the estimates ((7.2.9), (7.2.11)) and

[T16) imply

S[Lip. s Ss [Sluip sty Ss lolLipstan+1 < C(s)e? (7.3.2)

and the transformation P(y) in (7.3.1)) satisfies, for e small, the estimates
’P|Lip,sl S 2, ’P|Lip,sa |P71’Lip,s S C(S) s Vs Z S1 . (733)

In the next proposition, which is the main result of this Chapter, we conjugate the whole
re
operator @, - 0, — J(A + 7 2)\) defined in ([7.1.3) by P(¢p

Proposition 7.3.1. (Averaglng) Assume the second order Melnikov non resonance con-
ditions (1.2.16)-(1.2.19) where the set M is fized in Lemma|7.1.1. Let P(y) be the symplectic

transformation (7.3.1)) of Hg, where S(p) is the self-adjoint operator of the form (7.2.1))
with d(y), a(y) defined in Lemmata [7.2.3. Then the conjugated operator

PL(p )[ .0, —J<A+ )} (¢) = @. -9, — JAF (7.3.4)

1+ €2>\

acting i the normal subspace H§, has the following form, with respect to the splitting
Hi = Hy © Hy;,

D D(e,A\) O
A+ = AO + Q+ X AO = 1 v + HD(Q = ( (6’ ) Mc) , (735)

+ &2 0 Ay
where, in the basis {(V;,0),(0,¥;)}jem of Hum, the operator D(e, \) is represented by the

diagonal matriz

D(e, \) = Diag;cuQ;(s, M1dy,  1d, = (é ?) (7.3.6)

with Qj(e, \) defined in (7.1.7)), A is defined in (7.1.3), and
|0F Lip s S €8 A [T |Lip 4 - (7.3.7)
Moreover, given another self-adjoint operator . satisfying (6.1.26), we have that

’Q+ - (Q+)/‘+,51 551 |ra - r;’+,81 . (738)
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The rest of this Chapter is dedicated to prove Proposition [7.3.1, We first study the

conjugated operator
P (0)(@: - 9 — JA)P()
where A is defined in ([7.1.3]). We have the Lie series expansion

P () @ 0, — TAP(9) = (@20, — J) + Ad(gg)(R0) + 3 AdE gy (Xo) (739

k>2

where Xo := @, -0, — JA. Recalling that A = (1+&°\) "Dy + o by (7.1.3)-(7.1.4), we expand
the commutator as

Ad(_Js)(XO) = Qg - QAJS) + [JS, JA] (7310)
= J(@ - 0,8) + (1 +*N)7'[JS, JDv] + [JS, Jo]
= J(ii - 0,8) + [JS, JDy] — 2 A(1 + £2\)7'[JS, JDv] + [JS, J ]
+ J(we — [1)-0,8
Jgo — X1+ &*N) ! [JS, JDv] + [JS, Jo] + €*(J¢-0,)S .
As a consequence of (7.3.9), (7.3.10)), (7.2.3)), (7.1.3)-(7.1.4) we deduce (7.3.4]) with
AT =Ag+ 0", Ay:= (142N "Dy + 1o (7.3.11)

and
—Jot = =X +*N)1JS, JDy] + [JS, Jo] +€*(J(-0,)S (7.3.12)
i 1
— (4N PTEP+ ) | S AdL g (o).

k>2

The estimate (7.3.7)) for o follows by (7.3.2)), (7.3.3)), (7.1.6) and the same arguments used
in Lemmata [9.4.2H9.4.3, Similarly we deduce ([7.3.8)).

Now, recalling (3.2.28)-(3.2.29) (with F ~» M, G ~» M), and (7.1.3)-(7.1.4), we have
that the operator Ag in (|7.3.11]) can be decomposed, with respect to the splitting Hy & Hyye,

as
D D(e. A
Ay = —% +HDQ—( (&:A) O),

142\ 0 A
where, taking in Hy the basis {(V,(z),0),(0,¥;(x))},em, we have
[Dv i
142X
() 1 _ wi 0 2~ 7T+@'(0)]

— 1_'_ 62)\D1agj€M (0‘7 ,u]> + € DlagjeM(m> . (7313)

We now prove that D(e, \) has the form ((7.3.6)).

D(e, ) =

+ Diag;cy (7T+ [@; (0)])
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Lemma 7.3.2. (Shifted normal frequencies) The operator D(e, \) in (7.3.13) has the
form ((7.3.6]) with Q;(e, \) defined in (7.1.7)).

Proor. By ([7.3.13)) and recalling the definition of 7 in (3.2.21]), the operator D(e, ) is

and, by the definition of B in (6.1.25)), we have
~ 3 _
Te(Bj(0) = g / (95, Dy (a(@) (v(,0,)* Dy *W5)) oy dp, - (7.3.15)
(277) TIs|
4e ~1/2 —1/2
+w/w (W5, Dy " (aa(@) (v(9, 0,€)° Dy ""95) ) 1y dip (7.3.16)

We first compute the term ([7.3.15)). Expanding the expression of v in we get

3 _
[315) = = / (Dy W5 (x))a(z) (v(, 0,€))? Dy W (x) dipda
(2m)8l Jpisita
3 \IJJ('I> Pk 205 (z)
Vi Uy ( dpd
RGN \/—j <% 2&}, cos Wi ( ) T pdx
3 _1/2 _
= 0— \/2 \/ 2
(2m)Hs! k%es /’Jl‘SHda Sk V 28k €05 Pk COS P,
U2
X Wy, (2) W, () /(@) dodx
J
3 -1 2 2 -1 2
- WZ [ ate) w26t s [ cost e
|S|,uj Z,uk {k/ U2 (x )\Iff(x)dx (2m)ISI-1 /00820d0
kes T
=3 Z (02, a(z)02) 26, = 2(5€), (7.3.17)
kes
using m On the other hand, the term in ([7.3.16|) is equal to zero, because
45 U (x)
(7.3.16) / 0,6 dpdz 7.3.18
TEI Ay - \/—j as(x) (v(e, )) Nr ( )

and, by (5.2.9), the integral

/Tlg <U(S07 " g))SdSO - /’[rs| (U(SO +7,0, 5>>3d90 - /TS| (U(% 0, 5))3d90>
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is equal to zero.

In conclusion, we deduce by (7.3.14), (7.3.15)), (7.3.16), (7.3.17), (7.3.18) that b; =
(%¢€);, and, inserting the value ¢ := £()\) = ¢ 2/ ((1 + *N\)w. — 1) defined in (1.2.27),
we get that the eigenvalues of D(g, \) in , are equal to

,u] + €2bj

— (e, \
1+ &2\ i(& )

with Q;(e, \) defined in (7.1.7)). m

The new operator &, - , — JA" obtained in Proposition is in a suitable form
to admit, for most values of the parameter A\, an approximate right inverse according to
Proposition [8.2.1] in the next Chapter.



Chapter 8

Approximate right inverse in normal
directions

The goal of this Chapter is to state the crucial Proposition for the existence of an
approximate right inverse for a class of quasi-periodic linear Hamiltonian operators, acting
in the normal subspace Hg, of the form . - 0, — J(Ay + p) where Ay and p are self-
adjoint operators, Ay is an admissible split operator according to Definition [8.1.1] and p is
“small”, see . We shall use Propositionto construct the sequence of approximate
solutions along the iterative nonlinear Nash-Moser scheme of Chapter [[I], more precisely to
prove Proposition [11.1.1]

8.1 Split admissible operators

We first define the following class of admissible split operators Aj.

Definition 8.1.1. (Admissible split operators) Let Cy,ci,co > 0 be constants. We
denote by C(C, c1, ca) the class of self-adjoint operators

D
A0(€>/\v<10) - 1+ZQ)\ +RO(€’ )‘790)7 Dy = (_A+V($))l/27 (8'1'1)

acting on Hg, defined for all \ € AcC A, that satisfy
1. ’R0|Lip,+,sl S 0152;

2. Ay is block diagonal with respect to the splitting Hy = Hy ® Hg, i.e. Ay has the form

(sce (B21))

Ay = Ao, M, ) = (Do(g’ A Vo(e,OA, @)) , (8.1.2)

189
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and, moreover, in the basis of the eigenfunctions {(¥;,0), (0,V;)}er (see (3.1.9)),

the operator Dq 1s represented by the diagonal matrix

Dy := Dy(¢,\) = Diag;p pj(e, \)Ida,  p (e, A) € R. (8.1.3)
The eigenvalues f1;(e, \) satisfy
li(e, \) — | < Cie?, (8.1.4)
where p; are defined in , and
(i = 1) (8, A) > eoe? om0 — py)(e,A) < =g, i # ], (8.1.5)
(i + 1) (e, N) > o or O + ) (g, N) < —coe?, (8.1.6)

VjeF, (0252 <opi(e,\) <cyte? or —cyte? < oapie, \) < —02£2> , (8.1.7)
and, in addition, for all 7 € T,

(o) + (e V1) < i
{UA(Vo(& A) — (e, V1) < —epe?. (8.1.8)

We now verify that the operator Ay defined in ((7.3.5)) is an admissible split operator
according to Definition [8.1.1}]

Lemma 8.1.2. (A, is split admissible) There exist positive constants Cy, ¢y, co such that

the operator Ay defined in ((7.3.5))-(7.3.6|) belongs to the class C(Ch, ¢y, o) of split admissible
operators introduced in Definition |8.1.1. Notice that Ay is defined for all X € A.

PRrROOF. Remind that the decomposition in refers to the splitting Hy = Hyr © Hyye,
where the finite set M D F has been fixed in Lemma [7.1.1] whereas the decomposition in
concerns the splitting H§ = Hyp & Hg.

By the operator Ay has the form (8.1.1) with Ry = Ilppo and (3.3.35)), (7.1.6)
imply

|Ro|Lip+.s1 = |Hpo|Lip+,s1 < Cie?.

In addition, with respect to the splitting H§ = Hyp & Hg, and taking in Hy the basis

of the eigenfunctions {(¥;,0), (0,¥;)},cr, the operator Ay in (7.3.5))-(7.3.6) has the form
(8.1.2)-(8.1.3)) (recall that F C M) with

Do(E, >\) = DiagjelFQj(Ea A)IdQ ) p“j(‘c:a >‘) =1 (57 )‘) )

and the operator V{, which acts in Hg, admits the decomposition, with respect to the
splitting Hg = Hynr ® Hue, and taking in Hynr the basis of the eigenfunctions {(¥;,0),

(07 \Ijj)}jEM\]F’ .
v = (DlagjeM\IFQj(57)‘)Id2 1(341) . (8.1.9)
0 A
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By (7.1.7) and (1.2.25)) we have, for all j € M, Q;(g, A) = 2;(0, \)+O(c?), where 2;(0, \) = 1,
are the unperturbed linear frequencies defined in ([1.1.5)), and the derivative of the functions
Q;(e, A) (which are defined for all A € A) is

52

Qi(e, A _ Bl il ; e M. 1.1

8)\ 1(57 ) (1+62/\) ( [ ] >’ Vj € (8 0)

Then, by (8.1.10) and the definition of F and G in (1.2.15)), for any j € MI\F C G, we have
2

6 _1_
0 + max 03| = — e (s — 12/ ly) — s g — (2~

2

- 8.1.11

(1+ 52)\)2C ( )

for some ¢ > 0. By (8.1.11)) (recall that u;(e,\) = Q;(e,A)) and (7.1.9) we conclude that,

for ¢ small, property (8.1.8)) holds for some ¢; > 0. The other properties (8.1.5)-(8.1.7))
follow, for € small, by (8.1.10) and the assumptions (|1.2.21))-(1.2.22)). m

8.2 Approximate right inverse

The main result of this Chapter is the following proposition which provides an approximate
solution of the linear equation

Lh=yg where Li=w.-0,—J(Ay+p).

Proposition 8.2.1. (Approximate right inverse in normal directions) Let &. € RF
be (71, 71)-Diophantine and satisfy property (NR in Definition with 1, T ﬁxed

in (1.2.28)). Fiz sy > so according to Proposition |4.1.5 (more preczsely Proposztzon ,
and s1 < Sy < s3 such that
(i) s2 — s1 > 300(7" + 3s1 + 3), (i1) s3 — 51 > 3(s9 — 51) (8.2.1)

where the constant 7' appears in the multiscale Proposition[{.1.5 and we assume that 7' >
21 + 3.
Then there is 9 > 0 such that, Ve € (0,¢q), for each self-adjoint operator

Dv

2)\
acting in Hg, belonging to the class C(Cy, ¢y, 02) of admissible split operators (see Definition
-) for any self-adjoint operator p € L*(TS L(HZ)), defined in A C A, satisfying

AO—

|p|Lip7+781 < 5 ) |R0|Lip,+,82 + |:0|Lip7+,82 < 5_1 ) (8'2'2)

there are closed subsets A(e;n, Ag, p) C K, 1/2 <n <5/6, satisfying
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1. Ale;sn, Ao, p) C Alesn', Ao, p), for all 1/2 <n <n <5/6,
2. HA(E; 1/2, Ao, p)]° N /~\| < b(e) where llir(l) b(e) =0,
3. if Ay = (1+e°N)'Dy + Ry € C(Ch, ¢1,¢2) and o' satisfy
|RG — Roly.sy + 10 = plyss <6 <%, (8.2.3)
for allx € AN N C A, then, for all (1/2) + 6*° <n <5/6,
[N N [Ae;n, Ap, o)) N Ale;n — 6%, Ag, p)| < 6°7%; (8:2.4)
and, for any v € (0,¢), there exists a linear operator

el =gl e L(HPNHE)

approx approx,v

such that, for any function g : A= H®N Hg satisfying

19llLip.ss <€V, |Roltiptss T |oltiptss + 19lluipss < v, (8.2.5)
the function h := Q;I}pmg, h:Al(e;5/6,Ag, p) — H™ N Hy satisfies
hlltips: < €5, |hlluips, < 07T, 8.2.6
P,s1 P,s3
and
(@e - 0p — J(Ag+p))h =g+ (8.2.7)
with
17 Lip,s; < e (8.2.8)

Furthermore, setting Q' = 2(7' + ¢s1) + 3 (where ¢ = 1/10 and 7' is given by Proposition
, for all g € H*T N Hy,

||£ctplprom gHLiP,SO 551 Hg||Lip730+Q/ : (829)

The required bounds in 1' will be verified along the nonlinear Nash-Moser
scheme of Chapter . Proposition will be applied to the operator &, - 9, — JAT where
AT = A + " is defined in Proposition to prove Proposition [11.1.1} Notice that A® is
split admissible by Lemma and the coupling operator o satisfies |07 |Lip. .5y Koy € <

3 by (7.3.7) and (6.1.26).

Proposition [8.2.1] is proved in Chapter [I0] using the results of Chapters [ and [9]

We remark that the value of £y given in Proposition [8.2.1) may depend on s3, because, in
the estimates of the proof, there are quantities of the form C(s3)e®, a > 0, and we choose €
small so that C'(s3)e® < 1. However, such terms appear by quantities C'(s3)v*, a; > 0, and
so we may require C'(s3)v* < 1 assuming only v small enough, i.e. v < 7(s3) (see Remark

10.4.1)). As a result, the following more specific statement holds.
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Proposition 8.2.2. The conclusion of Proposition can be modified from mn
the following way.
For any s > s3, there is v(s) > 0 such that: for any 0 < v < min(e,v(s)), there ezists
a linear operator
gl =g € L(H N HS)

approx approx,v,s

such that, for any function g : A= HN H§ satisfying

19llLipss < €%, [Roluipts + [olLipts + [19]lLips < 070, (8.2.10)
the function h = £, g, h: A(e;5/6, A, p) — H* N Hg satisfies
IhllLipsy < €205, |lh]lLips < 20710, (8.2.11)
and
(@We - 0p — J(Ag+p))h =g+ (8.2.12)
with
rlleip,s: < &2, (8.2.13)

Furthermore, setting Q' := 2(7" + ¢s1) + 3 (where ¢ = 1/10 and 7' is given by Proposition
, for all g € H°T¢ N Hy,

||£;;71prom gHLip,So SSl ||g||Lip7$0+Q/ : (8214)



Chapter 9

Splitting between low-high normal
subspaces

The main result of this Chapter is Corollary below. Its goal is to block-diagonalize
a quasi-periodic Hamiltonian operator of the form @, - 9, — J(Ag + p) according to the
splitting Hy = Hy ® Hg, up to a very small coupling term, see the conjugation (9.1.34)

where p, is small according to (9.1.32).

9.1 Splitting step and corollary

The proof of Corollary is based on an iterative application of the following Proposition.

Proposition 9.1.1. (Splitting step) Let @. € RSl be (1, 7)-Diophantine and satisfy

property (NR),, _ in Definition 4.1.] with 1,7 fived in (1.2.28). Assume sy — s; >
120(7" + 3sy + 3), i.e. condition ([8.2.1)-(i). Then, given C; > 0, ¢c; > 0, co > 0, there is
go > 0 such that, Ve € (0,eq), for each self-adjoint operator

. DV . Do(f,)\) 0
0_1+52A+R0_( 0 Volg, A, )

belonging to the class C(Ch,cq,¢a) of admissible split operators of Definition (see
(8.1.1)-(8.1.2)) ), defined in A, with

DO(ga )‘) = Diagje]F Hj (8’ )‘)IdQ I (E’ )‘) €R,

as in (8.1.3), there are

e closed subsets A(g;m, Ag) C A, 1/2 < n <1, satisfying the properties
1. Ag;m, Ag) C Alg;n, Ag) forall1/2 <n<n <1,

194
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2. [[A(g;1/2, Ap))° N A] < b(e) where limb(s) = 0,

e—0
3. if Ay = (1+ 2N Dy + R} € C(C4, c1, ¢2) with | Ry — Ro|4.s, < 6 <2 for all
A e ANN, then, for all (1/2)+V5 <n <1,

}K' N[A(g;n, AY)° N Ag;n — \/5, Ao)} <0, a>0, (9.1.1)
and, for each self-adjoint operator p acting in Hg, defined for \ € K, satisfying
1Pl Lipts <01 <€, 01(| RolLip,+.s, + |PlLip,+.5.) < €, (9.1.2)

there exist

e a symplectic linear invertible transformation
e’5¥) e L(HE), ¢eTh, (9.1.3)

defined for all X € A(e; 1, Ag), where S(p) := S(e,\)(p) is a self-adjoint operator in
L(Hg), satisfying the estimates (9.1.7)-(9.1.8)) below;

e a self-adjoint operator AT of the form

DV D+(€ )\) 0
A—i— - _ vV + + 0\~ + 14
1+€2/\+R0—|—p ( 0 V0+(€,)\,g0) +p, (9.1.4)

defined for all A € A(g;1, Ap), with
R§, pt L*—self — adjoint, DJ(g,\) = Diagcp pj(e, Mdsy (9.1.5)
and i} (g, \) € R;
such that, for all X € A(g; 1, Ay),
(@ - 0y — JAg — Jp)e’5¥) = 759 (@, - 9, — JAT), (9.1.6)
and the following estimates hold:

e The self-adjoint operator S satisfies

T _1 _3
SlLipsi1 < 05, [S|Lipsatrt < 01 * (| RolLip+,ss + |PlLip4,s0) +01 (9.1.7)

and more generally, for all s > so,

s—s9

_1 _3 3¢
Shuipert < C(5) |8 (Roluips.s + lpluip) + 01 18, 7] (9.1.8)
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e The operators in (9.1.4)-(9.1.5) satisfy

1 (e, ) = e, Mlp < 67" = 0(?), (9.1.9)
Vst = Valluipo < 67" = o(e?) (9.1.10)
and
3/4 3/2

|RS_ - R0|Lip,+,81 < 51/ ) |p+|Lip7+,81 < 51/ /2’ (9'1'11)

—1/4 —3/4
RS |tipstss + 10 Tinrose < 00 (| Roltiptss + [0ltips.s) + 01 (9.1.12)

©.1.2)

< 6, (9.1.13)

and, more generally, for all s > so,

S—s9

_1 -3 =3¢
’R(J)r’Lip,+,s + |p+|Lip,+,s Ss 51 : (|R0‘Lip,+,s + |p|Lip,+,s) + 61 451 2 (9114)

where ¢ = 1/10 s fized in (4.1.16]).

At last, given Ay = (1 +&*X\) "Dy + R € C(Cy,e1,¢2) and p' satisfying (9.1.2), then, for
all X € A(g; 1, Ag) N A(e; 1, Ap), we have the estimates

’R6+ - Ra_’+,81 S ‘R/O - R0|+,S1 + C’pl - p|+,51 (9115)
0" = 0|1 < 0PIRY — Rolsy + 0010 — plis, - (9.1.16)

Note that, according to (9.1.6)), (9.1.4)), (9.1.11)), the new coupling term p* is much
smaller than p, in low norm | |Lip+s,. Moreover, by , the new p' satisfies also
the second assumption ((9.1.2) with 53/ ® instead of §;. Notice also that the Cantor sets
A(g;m, Ap) depend only on Ay and not on p. Finally we point out that (9.1.15])-(9.1.16)) will
be used for the measure estimate of Cantor sets of “good” parameters A, in relation with
property [3] (see (9.1.1))): for this application, an estimates of low norms | | ,,, without the
control of the Lipschitz dependence, is enough.

Applying iteratively Proposition we deduce the following corollary.

Corollary 9.1.2. (Splitting) Let @. € RE! be (v, m)-Diophantine and satisfy property
(NR),, ,, in Definition with 1,71 fived in (1.2.28)). Let

_ Dy
C1+e2)

0 + Ry

be a self-adjoint operator in the class of admissible split operators C(Ch, ¢1, o) (see Definition

and p be a self-adjoint operator in L(Hg), defined for X € A, satisfying (8.2.2). Then
there exist
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o closed sets Noo(g5m, Ao, p) C A, 1/2 <n <5/6, satisfying the properties
1. Aoo(e3m, Ao, p) C Aao(e317', Ao, p) for all 1/2 < <1 < 5/6,
2. |[As(e;1/2, Ao, p)]" N K} < by(€) where }g% bi(e) =0,
3. if Ay = (1+e*N)"'Dy + R) € C(Cy,c1,¢0) and p' satisfy
[Ro = Ryl +|p = pl1sy <0 <67
for all x € AN A, then, for all (1/2) + 6*/° <5 < 5/6,
[N N [Aso(m, Af, 9] N A3 — 0%/, A, p)| < 6°7%;
e a sequence of symplectic linear invertible transformations
Poi=1d, Py:=Pale,\)(p) = /SHENE | ISENE) 0>
defined for all A € Ayo(£;5/6, Ag, p), acting in Hg, satisfying, for
5 =3,
the estimates
for 0> 1, [PE = P g <07 [P~ |, < 205,
no13

P i < (Cls2)) 2 [e072 1],

and, more generally, for all s > so,

—()" (3 4als)) 14 2a(s)
Pt Lip s < (C(s))6, 20 [(|Roluip.+.s + |plLip )07 7 +1]
where
s— 8§
a(s) = 3= 521 ;

e a sequence of self-adjoint block diagonal operators of the form

Dy Da(g, \) 0
A, 1+52/\+Rn ( 0 Vn(s,)\,w))’ n>1,

197

(9.1.17)

(9.1.18)

(9.1.19)

(9.1.20)

(9.1.21)
(9.1.22)

(9.1.23)

(9.1.24)

(9.1.25)

defined for A € Ao (g;5/6, Ao, p), belonging to the class C(2C1, ¢1/2, c2/2) of admissible

split operators, with

Da(e, \) = Diagep ™ (e, )dy,

J

(9.1.26)
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satisfying

172, N) = 15(2, My = O(8)*) = 0(e?), (9.1.27)
IV = Volluipo = O(37*) = o(¢?), (9.1.28)
|Rn|Lip,+,sl S C1152 + 26;5/4 S 26’162 ) ( )
[Raluip s, < (C(52))"0; 2 ¥ [0, +1] (9.1.30)

and, more generally, for all s > so,

~(3) (G +als)) J+2a(
| Ralrip+.s < (C(s))"6, [(|R0|Lip,+,s + |P|Lip,+,s)51
where a(s) is defined in (9.1.24);
e a sequence of L* self-adjoint operators p, € L(Hg ), n > 1, defined for A € Ayo(e;5/6, Ag, p),
satisfying

1

[0, 2 +1], (9.1.32)

3
4

(é)n 7(§)n—1
|PalLipr,sr <0177, [PnlLip s << (C(82))"0; 2

and, more generally, for all s > so,

2a(s)

3552
+1]  (9.1.33)

(3134 (s
’pnlLip,Jr,s S (C<8))n51 (2) (4+ ) [(‘RO’Lip,Jr,s + ’p’Lip,+,s)512

where a(s) is defined in (9.1.24);
such that, for all A € A(g;5/6, Ao, p),

(@: -0, — JAg — Jp)Pulp) = Pul) (@e - Op — JAx — Jpu) - (9.1.34)
At last, given
D
A6 = 1 T ZQ)\ + R(/J € C(Cl,Cl,CQ>
and a self-adjoint operator p' € L(Hg) satisfying (8.2.2), if
JAL — Aglss + 10 = plys, <6<, VAeANA, (9.1.35)

then, for all X € Ao(g;5/6, Ag, p) N Ao(£55/6, Ag, p), for alln € N,

|Al = Aply, <65, (9.1.36)
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Note that each operator A, in (9.1.25)) is block-diagonal according to the splitting Hy =

Hy @ Hg in (3.1.5)), i.e. it has the same form as Ay in (8.1.2)) but the coupling term p, in
9.1.34) is much smaller than p (in the low norm | |pip + s, ), compare the first inequality in

9.1.32) (where 6, = £* by (9.1.20))) and the first inequality in (8.2.2). The tame estimates
9.1.23]) and ((9.1.33)) for all s > so, will be used in the proof of Proposition [8.2.1] which

provides an approximate right inverse required in the Nash-Moser nonlinear iteration in
Chapter [T1]
PROOF. Let us define the sequences of real numbers (0y)a>1 and (7,)n>0 by

3y\n
2

3\yn—1 3 3
On 1= 5§2) Lo =¢>, and ny:=0, N1 =1 + 05 =1+ (518( " (9.1.37)
We shall prove by induction the following statements: for any n € N
e (P), there exist:

(i) symplectic linear invertible transformations Py, ..., P, of the form (9.1.19)), de-

fined respectively for A in decreasing subsets

An(£:5/6, Ao, p) C ... C Ai(£:5/6, Ag, p) C Ag := A,

satisfying (9.1.21))-(9.1.23)) at any order k = 0,...,n. The sets A,(g;7, Ao, p),
1/2 <n <5/6, are defined inductively by

n—1
Ng=A and Ag(en, Ao, p) = [ A+ A), n2 1, (9.1.38)

k=0

where the sets A(e;n + ny, Ax) are those defined by Proposition [9.1.1 Notice
that, for € small enough, 1, < 1/6 for any £ > 0 (and so n+n < 1).

(ii) Self-adjoint admissible split operators Ay, ..., A, as in (9.1.25)-(9.1.26)), in the
class C(2C1, ¢1/2, ¢2/2) (see Definition [8.1.1]), satisfying (9.1.27)-(9.1.31)) at any
order £ = 0,...,n, and such that the conjugation identity @]} holds for all
Ain Ay (g;5/6, Ao, p), with py satisfying (9.1.32))-(9.1.33)) for £ =0,...,n.

(iii) Moreover we have, Vn > 1,

%)n—l

3 3
|Aw — AuctlLipss, <08 =672 on Au(2:5/6, Ag, p) . (9.1.39)

Initialization. The statement (P),-(i) holds with P, := Id, and ({9.1.21))-(9.1.23)) trivially
hold. The conjugation identity (|9.1.34) at n = 0 trivially holds with py := p. Then, in order
to prove (P),-(ii), it is sufficient to notice that the self-adjoint operator Ay € C(Ch,c1, ¢2)

has the form (9.1.25), (0-1.26) with 4\” (s, A) = (e, A), and (9.1.27)-(9-1.29) hold. The
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estimate ((9.1.30) (which for n = O is |R0\Llp+52 < 0y 1/2[ oy V2 ) and (9.1.32) are
consequences of Assumption (8.2.2), since & = £°. Finally notice that (|9 1.31]) and (9.1.33))
are trivially satisfied.

Induction. Next assume that (P), holds. In order to define P, and A, we apply the
“splitting step” Proposition with Ay, p replaced by A,, p.. In fact, by the inductive
assumption (P),, the operator A, in belongs to the class C(2Ch, ¢1/2,¢2/2) of
admissible split operators, according to Definition . Moreover, by (9.1.32), (9.1.30)),
we have

» BI30 5

|pn|L1p +,s1 S 5 n+1 5n+1 (|Rn|Lip,+,52 + |pn|Lip,+,sg> S g, (9140)

which is with p,, Ry, 0441 instead of p, Ry, 9.
We deﬁne, for 1/2 <n <5/6, the set

Anr1(g5n, Ao, p) = Aalesn, Ao, p) OV A (g5 + 1y An) - (9.1.41)

in agreement with (9.1.38]) at n+ 1.
By (9.1.40), Proposition implies the existence of a self-adjoint operator S,; €

L(Hg), defined for A € Ayi1(55/6, Ag, p) C A(e;1, Ay), satistying (see (9.1.7)-(9-1.8))

G
s(3
|Sﬂ+1|L1p s1+1 < 5n+1 - 5 )

‘Sn+1’L1p so+1 < 5n+1(‘R ’L1p+ S92 + ’pn‘LlerSQ) + 5n+17 (9142)

sS—S9

—35

|8n+1|Lip,s+1 < C<5)[ n+1(|R |L1p+s + |pn’L1p+ S) + 5n+16n+152 Sl] )

such that, for any A € Ayy1(€;5/6, Ao, p), we have

(cDE -0, — JA, — Jpn) el = oIS (ws O0p — JAni1 — Jan) (9.1.43)
where the operator
A= 2R (9.1.44)
T ey T o
is block-diagonal as in (9.1.25))-(9.1.26)). By (9.1.11))-(9.1.13)), (9.1.14)), we have
3(3yn
|Rn+1 - Rn‘Lip,Jr,m < 53441 - 64(2)
3 n+1
|Put1|Lip 4,50 < —5(2 ,
(9.1.45)

|Rn+1’Lip7+,82 + |pn+1‘Lip,+782 > n+1 (|R |L1p 4,59 T |pn|L1p + 82) + 5n+1 )
S— 82
52 Sl

|Rn+1|Lip,+,s + |pn+1|Lip,+,s 55 5;1_431(|Rn|Lip,+,s + |pn|Lip,+,s) + 5n+15n+1
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In particular, we have the first bound in (9.1.32)) at the step n + 1.

THE SYMPLECTIC TRANSFORMATION P,.1. We define, for A € A,,1(g;5/6, Ao, p), the
symplectic linear invertible transformation

@119
Poy1 = Ppe/ortt 5= 751 | elSnelSnn (9.1.46)

which has the form (9.1.19) at order n + 1. By the inductive assumption (P),, the conju-
gation identity (9.1.34) holds for all A € A,(g;n, Ao, p), and we deduce, by (9.1.43)), that,
for all X in the set Ay;1(g;n, Ag, p) defined in (9.1.41)), we have

(19.1.46))

(@ 0p — JAg— Jp)Pas1 = (@. -0, — JAg — Jp) Pre’>+!
Pa(@: -0, = J Ay = Jpp) e’
'Pne‘]S"H ((Da : &p — JAu1 — Jpn—H)
Pact (@2 - 0, — T Auir — Jpusn)

which is (9.1.34)) at the step n + 1.
We have Poy1 — Py = Pu(e’S+ —1d). By (0.1.42), using (3.3.44)-(3.3.45) and the

definition of 6,1 in (9.1.37),
|e7Sm — Id[Lip 10 S [TSnt1luip+.s1 S 1S SnstlLipsit1 S 51181 : (9.1.47)

Moreover, by the second inequality of (9.1.21)), [Py|vip,+.s, < 2. Hence

3/4
"PnJrl - ’Pn‘LipHr,Sl < 5n+1

which is the first inequality in (9.1.21]) at the step n 4+ 1 (we obtain in the same way the
estimate for P, +11) As a consequence,

n+1
Posr = Tdluips < D 8" <267
k=1
which is the second inequality in (9.1.21]) at the step n+ 1 (we obtain in the same way the

estimate for P,Yy). Estimates (9.1.22)-(9.1.23)) at the step n + 1 are proved below.

Aupi1 IN (9.1.44) 1S A SPLIT ADMISSIBLE OPERATOR IN C(2C1,¢1/2,¢2/2), see Definition

8.1.1} By (9.1.45) we have
3 3(3yn
‘AnJrl - AnlLip,+,51 = |Rn+1 - Rn‘Lip,Jr,sl S 51;1_;,_1 - (514(2) on An+1 (5; 5/67 AOa p) )
which is (9.1.39) at the step n+ 1. As a consequence

n+1 3,3 \k_1
Rt = Roltiporsr = [Anes — Aoluiprss < Y052 <260/ (9.1.48)
k=1
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and (9.1.29) at order n + 1 follows: in fact, | Ro|Lip.+.s, < C1€> by item [1| of Definition m
and
|Rn+1|L1 +,s S |R0|L1 +,8 + 253/4 < 0152 + 259/4 S 2C(152
P, 1 b, 1

for £ small enough, since 6§, = . Recalling (9.1.25] , the estimate (9.1.28)) at order n+ 1 is
also a direct consequence of (9.1.48)), as well as

| Dny1 — DoHLip,o = 0(55/4) = 0(52) )

which implies at order n+ 1.

Now, since Ao € C(Cl, cl, c2) (Deﬁnition, either 0 (p; — 1) (g, \) > coe? or 0y (1 —
;) (g, A) < —coe?, see . Thus, by (9.1.27)) at order n+ 1, we deduce that 0, (x; (1) _
,ug.“ﬂ )&, A) > c6?/2 in the first case and 0, ( (nH) ,ug-nﬂ (g, \) < —coe?/2 in the second
case, for € small enough

In a similar way (9.1.27)) provides properties ({8.1.6} - with constant cy/2 instead
of ¢y at order n + 1, and (]9 1.27)-(9.1.28)) provide 1' with constant ¢;/2 instead of ¢;

at order n + 1.

ESTIMATES OF |Rui1|Lip+.s AND |pni1|Lip+,s- We first consider the case s = so. By (9.1.45))
and (9.1.30)), (9.1.32), and recalling the definition of §,; in (9.1.37)),

|Rn+1|Llp+82 + ’pn+1‘L1p+S2 < 6n+1(|R ‘L1p+82 + ‘pn|L1p+82) + 5n+1

< (Cs2))" b (60, * +1).

which gives (9.1.30) and the second bound in (9.1.32)) at the step n + 1.
To estimate the s-norms for any s > s,, let us introduce the notation

S — 89

Un(8) = |RulLip.+.s + |pnlLip+.s and  a(s) := 3¢ as in (9.1.24)) . (9.1.49)

S9 — 51

By (9.1.45)), we have the inductive bound

_1 3 ols
un-l-l(s) = |Rn+1|Lip7+,S + |pn+1|Lip,+,s < Cl(‘g) [5n+41uﬂ(8) + 6n+41 5n+1( )] :

Then, since (9.1.31]) and ((9.1.33]) hold at order n, we obtain

2a(5)

tns1(5) < C'(8) [y (C(5))0n P uo()07 7% +1) + 62,070

a(s 14 2a(s)
< ()™ 0" (ug(s)57 T F +1)

for C'(s) large enough, and using that 6,1 = 62/2. Hence the estimates (9.1.31)) and (9.1.33)
are proved also at order n + 1.
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ESTIMATES OF [Pl |Lip+.s- We first consider the case s = s. By (3.3.26) and the first
estimate in ({9.1.42) we obtain

(C(s2)"”

|75 | Lip 41 < 1+ C(s2) Z T’SnJrl‘Llp s1|SntlLipsa 1
k>1

S 1+ 01(52)‘Sn+1|]_‘ip’52+1 . (9150)

Hence by (9.1.46)) and (3.3.24)), we get

Puatlip oo < C(52) (IPalLip, 175 Lipsr 41 4 [Paluip s [€7 |Lip o 1)
E-1.49,@.150
S C 82)<|Pn|Lip,+,sz + |7Dn|Lip,+7gl|Sn+1|Lip752+1) (9151)

for some new constant C'(sy). Therefore, by (9.1.51)), properties (9.1.22)), (9.1.21]) at order
n, the second inequality in (9.1.42), and recalling the definition of 9, in (9.1.37)), we have

1

_3 _1 _1 _3
Pasiltip e < C52) ((C(52))"05 (2077 4 1) + 20,5 (1 Bulvips o + nltipes.s0) + 0o )

F150). §133) ) 1
< (C(s2)) “511;‘1( o % +1)

provided the constant C(sz) is large enough, proving (9.1.22)) at the step n+ 1. We obtain
in the same way the estimate for P, +11.
Now, for any s > s9, we derive by the last inequality in (9.1.42)), (9.1.49), (9.1.31)),

9.1.33),

(St luipss1 < C(6) [Frhttn(s) + Gy ]
< (C(s)™ 16,5 (uo(s)87 "

41, (9.1.52)
As in the case s = s9 (see (9.1.50])) we obtain

le75 1 a1 < 1+ C(8)|Snst|Lip.stt -

Since Pyy1 = Pue’S+ we derive the bound (9.1.23) on | n+1|L1p +.s, exactly as in the case
s = 89, using the interpolation inequality (3.3.24)), the inductive assumptions ((9.1.23)) and
(9.1.21)), (9.1.52)), and taking the constant C'(s of (9.1.23) large enough.

This completes the iterative proof of (Py)a>0.
THE CANTOR-LIKE SETS Ay (g;7, Ao, p). We define, for 1/2 <n < 5/6, the set

Aso(g5m, Ag, p) == ﬂ An(g5m, Ao, p) = ﬂ Ag;m + mg, Ax) (9.1.53)

n=0 k=0
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where A,(g;n, Ag, p) are defined in (9.1.38)) and A(e;n + ng, Ax) are defined by Proposition

9.1.1} We recall that the sequence (7)) is defined in (9.1.37)).
The sets A (€57, Ao, p) satisfy Property |1 of Corollary as the sets A(e;n + g, Ax)

satisfy Property 1 of Proposition [9.1.1}

PROOF OF PROPERTY [2| FOR THE SETS A (g;7, Ag,p).  The complementary set of
As(g5m, Ag, p) may be decomposed as (the sets Ay(e;7, Ao, p) in (9.1.38) are decreasing in
n)

Now: e .
Aoo(5377>A07P) — U An(g;naA();p)

n=0

Az Reyy U (Ak(a; 15 Ao, £) OV A (51, Ao, 'O)C>

k=0

Acu U (Ak(gsﬁ,Ao,P) N (Ak(esn, Ao, p) N A(esn + Uk,Ak))c)
k=0

= A°U U (Ak(é?;TI’AoyP) NA(gn+ 77k=Ak)c)

[e.e]

AReUA(e g, Ao U (Ak e;m, Ao, )mA(g;nJrnk,Ak)C) . (9.1.54)

By Property [2] of Proposition [9.1.1] we have
IA(e:1/2, Ag)* N A| < b(e)  with lim b(e) = 0. (9.1.55)
e—

Moreover, for k > 1, we have, by the definition of Ax(g;n, Ag, p) in (9.1.38)),
Ar(gim, Ao, p) () A(ﬁ; 1+ Nk, Ak;) =
Ay, (5; n, Ao, P) ﬂA<€§ n+ M, Ak) ﬂ A(€; 1+ Mk—1, Ak—l) . (9.1.56)

Now, since, for all k& > 1 we have |Ay — Ap_1|1s < 5,‘3/4 on Ay (see (9.1.39)) and 7, =
Mk—1 —1—52/8 (see (9.1.37))), we deduce by (9.1.1)) and (9.1.56)) the Lebesgue measure estimate,

’Ak( 5+ A0.p) A (= +nk,Ak> <ot R (9.1.57)
In conclusion, by (|9.1.54|), (9.1.55)), (9.1.57) we obtain, recalling (9.1.37)),

Auo(2:1/2, Ao, p)¢ N A| < b(e) 254

< b(e) + 20,0 = b(e) + 26 = by(e)
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since &; = €°. Property 2| of Corollary is proved.

PROOF OF ((9.1.36). Actually we prove that, if Ay € C(Cy, e, ca), (Ry, p') satisfy (8.2.2)) as
(Ro, p) and (Aj, p) satisfy (9.1.35]), then

|A:1 - An|+,81 < 54/5 ) VA e An(ES 5/67 AOv p) n An(g; 5/67 A67 pl) ) (9158)
where the sets A, are defined in (9.1.38]). Let
AWM = |R — Rylysr, AP =1pl —pules, Ap:=AL AP (9.1.59)

The assumption means that Ay < 6 on AN A. We recall that (Ans1, pnr1) (resp.
(Al.1, Prpr)) s built applying Proposition [9.1.1 to (Ay, ps) (vesp. (Ay,py)) instead of
(Ao, po) (resp. (Ag,pp)). Hence, by (9.1.15)-(9.1.16) (with 0; replaced by d,11), for all
neN, forall A € Ayyq(g;5/6, Ao, p) N Ans1(e;5/6, Ap, p'), we have the iterative inequalities

A <AL oA®  and AP <62AW 46 AD (9.1.60)

n+1

1
As a consequence Ay < 6,7 Ay and, recalling the definition of 4, in (9.1.37), we deduce
that, for any n > 1, for all A € A, (e;n, Ao, p) N An(g; 1, Ay, p'), we have

Au < By 8y) 180 < 8, 005 < w65 (9.1.61)

Let ng > 1 be the integer such that

3yn 3yng—1
5" <5 < 5 (9.1.62)
Thus, by (9.1.61]) and the second inequality in (9.1.62)), we get
_l(ﬁ)no 3 16
m<ng, A< §<07190=019. (9.1.63)
On the other hand, recalling (9.1.59) we bound, using the first estimate in (9.1.32)),
3y\n
W >ng+1, AR < |palps, + phls < 26,7 (9.1.64)

Applying iteratively the first inequality in (9.1.60)) we get, Vn > ng + 1,

A = Asliy = A =< AP +C(AD +.. +A2)
153 {15 e s
< 51 +20(6" 4. 467
3\n
< RECIEEE: o 1L
19.1.62)

5§15 +3C5 < 65 (9.1.65)



CHAPTER 9. SPLITTING BETWEEN LOW-HIGH NORMAL SUBSPACES 206

for 6 small enough. In conclusion (9.1.63]) and (9.1.65)) imply (9.1.58]).
PROOF OF PROPERTY |3| FOR THE SETS A (¢;n, Ao, p). By (9.1.54) (with Ay, p’ instead
of Ay, p) and (9.1.53) we deduce, for all (1/2) + 6%° < 5 < 5/6, the inclusion

M =N N As(e;n, AL, )N Aso(e3m — 6%, Ay, p) € M, U ( U /\/ln> (9.1.66)

n>1

where

Mo =N N A(e;n, A N A(esn — 677, Ag)

and
M, =
Anlesn, A, ) (Y AEs 1 + 1, A" () Anlesn — 87°, Ao, p) [ Alesn + mo — 077, Ay) .

By the assumption (9.1.17) we have |Ry — Ro|+.s, < 6 on AN A, and therefore property
of Proposition and the fact that 6'/2 < §*° imply that, for all (1/2) +6%/° < n < 5/6,

Mol < IR 1 A(e:m, Ap)° N A(ein — 672, Ag)| < 6. (9.1.67)
For n > 1, we have, by (9.1.38)), the inclusion
M C Aalgim, Ap, ) VA(e5 + T, Ayy) NA(E; 0 + 1, AL

and therefore, since |R, — R\ |15, = |AL — AL |45 < 03% on Ay(e;n, A, p) by (9.1.39),
the estimate (9.1.1) and 7, = 1,1 + 62/ 8 imply

IM,| < 53/ (9.1.68)
On the other hand, by (9.1.58), |A, — AL| 4, < 6*/° for any
A€ My, C Aul(gsm, Ay, p') [ Aales . Ao, p)
and we deduce, by , the measure estimate

M| < |Alesn +mm, A)° [ Alesn + mo — 6777, Ay)| < 6%/5. (9.1.69)

Finally (9.1.66)), (9.1.67)), (9.1.68)), (9.1.69)) imply the measure estimate

’M‘ <5t Zmin(5§:a/4’54a/5) < 604/2

n>1

for 6 small, proving (9.1.18]). The proof of Corollary is complete. m
The rest of the Chapter is devoted to the Proof of Proposition [9.1.1]
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9.2 The linearized homological equation

We consider the linear map
S Juw. - 0,8+ [JS, JA|
where S := S(¢), ¢ € TI¥! has the form

st = (57 ") e e,

a(p) 0 (9.2.1)
d(p) =d*(p) € L(Hr), aly) € L(Hy, Hg),
and it is self-adjoint.
Recalling (8.1.2) and using that Dy and J commute, J? = —Id, we have
Jwe - 0,8 + [JS, JAg| =
J@. - 0pd + Dod + JdJDy  Ja. - Oya* + Ja* JVy + Doa* (9.2.2)
Jwe - Opa — JVoJa+ JaJ Dy 0 ‘
The key step in the proof of the splitting Proposition [9.1.1] (see section is, given p(y)
of the form ) (o)
pPi\p)  p21¥ 1
= € L(Hg),
&2 (Pz(%ﬁ) 0 ) (H) (9.2.3)
pi(p) = pi(p) € L(Hr), pa2(p) € L(Hr, Hg),
to solve (approximately) the “homological” equation
Jwe - 0,8 + [JS, JAo| = Jp. (9.2.4)
The equation ((9.2.4) amounts to solve the pair of decoupled equations
Jwe - Opd + Dod + JdJ Dy = Jpy (9.2.5)
J&. - 0,0 — JVoJa+ JaJ Dy = Jp, . (9.2.6)

Note that, taking the adjoint equation of (9.2.6)), multiplying by J on the left and the right,
since Vo and Dy are self-adjoint and JDyJ = —D,, J* = —.J, we obtain

Jo. - 0,a" + Ja* JVy + Doa™ = Jpj,

which is the equation in the top right in (9.2.4)), (9.2.2)), (9.2.3).

Remark 9.2.1. We shall solve only approximately the homological equation up
to terms which are Fourier supported on high frequencies. The main reason is that the
multiscale Proposition provides tame estimates of the inverses of finite dimensional
restrictions of infinite dimensional operators. This is sufficient for proving Proposition

911
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We shall decompose an operator p of the form (9.2.3), as well as S in (9.2.1)), in the

following way. The operator p; € L(Hr) can be represented as a finite dimensional self-
adjoint square matrix ((p1)?)i jer with entrles (p1)] € L(H;, H;). Using in each subspace H;,
j € F, the basis ((¥;,0), (0,¥;)), see , we identify each operator (p)! () € L(H;, H;)
with a 2 X 2-real matrix that we still denote by (p1)!(¢) € Maty(R). We shall also Fourier
expand

(p)](p) = Y B0, [al](0) € Mats(C) . [l (6) = B (~0), (9.2.7)

£ezl8l
where [51]7(0) is the average

AEO) = G [ (o)) d € Mata(R). 929

The operator py € L(Hy, Hg) is identified, as in (3.2.3)), with (p});cr where pf, € L(H;, Hg),
which, using in H; the basis ((¥;,0), (0, V;)), can be identified with a vector of Hg x Hg.
We also recall that, for a p-dependent family of operators p(¢), ¢ € TSI, of the form
(9.2.3), we have the estimates (3.3.44))-(13.3.45)).
The next lemma provides an approximate solution of the homological equation (9.2.4)).

Lemma 9.2.2. (Homological equations) Given C; > 0, ¢; > 0, ¢o > 0, there is e; > 0
such that Ve € (0,e1), for each admussible split operator Ag € C(Cy,c1,c2) (see Definition
-) defined for \ € A there are closed subsets A(e;n, Ag) C A 1/2 < n <1, satisfying

the properties 1-3 of Proposztzon such that, if p € L(Hg) has the form 1_' p is
L*-self-adjoint, defined for X € A, and satisfies

9 11
|p|Lip,+781 < 5110 ) 61 < 53 ) 5110 (|R0|Lip7+752 + |P|Lip,+,52) <e, (929)
[711(0) € M_ (recall (9.2.8), (3:218)), VjeF, YA€A, (9.2.10)

then there is a linear self-adjoint operator S := S(e,\)(¢) € L(Hg) of the form (9.2.1),
defined for all X € A(e;1, Ay), satisfying (9.1.7)-(9.1.8), such that
T
’J(JTJ&— : 8908 -+ [JS, JA()] — Jp‘Lip’Jr"Sl S (514 s (9211)
1 _3
|Jw€ ’ acpS + [JS’ JA0]|Lipa+,82 < 51 ! (|R0|Lip7+782 + |p|Lip7+,S2) + 51 ! ) (9‘2'12)

and, more generally, for all s > so,

s—59

_1 _3 =3
| Jwe - 0,8 + [JS, JAo]|Lip,+,s < C(s) [51 (| Rolvuip,+,s + [PlLip+.s) +01 "6 <32_31] - (9.2.13)
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At last, denoting by Sa,, and Sa; » the operators defined as above associated, respectively,
to (Ao, p) and (Ay, p'), we have, for all X € A(e; 1, Ag) N A(e; 1, Ap),

3 _ 1
|SA(),p - SA’07p/|+,81 S 514 |AO - A6|+,51 + 51 30 |p - p,|+,31 y (9214)
and
|(J(;J5 : QOSAU,,; ‘I‘ [JSA07/), JAO] - Jp) - (J@g : 8408146,;)’ + [JSA&p/, JA()] - Jp/)|+,sl
3 _ 1
< 614 ‘AO - A6’+,s1 =+ 51 % |p - p/’+,s1 . (9215)

The proof of Lemma [9.2.2] is given in the next section.

9.3 Solution of homological equations: proof of Lemma
9.2.2]

Step 1: approximate solution of the homological equation (9.2.5). We represent
a linear operator d(¢) € L(Hg) by a finite dimensional square matrix (d}(p)); jer with
entries d!(¢) € L(H;, H;) ~ Mats(R). Since the symplectic operator J leaves invariant

each subspace H; and
DO = DiagjeF %% (8, )\)Idg

(see (8.1.3))), the equation (9 is equivalent to
J&: - o] () + (e, Nl (9) + (2, NI dl () = J(p1)i () ,

. 0 1
Vi,jeF where J = (_1 0),

and, by a Fourier series expansion with respect to the variable ¢ € T, writing
=Y d(O)e"?,  d(l) € Maty(C), d(0) =d(—0), (9.3.1)
LeZIS|

i(@e - 0)Jdi (£) + (e, A)d; (€) + (e, A) Jdi (€)] = J[pali (),

Vi,jeF, 0ez.
In order to solve we have to study the linear operator

(9.3.2)

Tije - Mato(C) — Mato(C), d i, - £Jd+ pi(e, A)d+ pi(e, A)JdJ . (9.3.3)
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In the basis (M, My, M3, My) of Maty(C) defined in (3.2.19))-(3.2.20) the linear operator
T;;e is represented by the following self-adjoint matrix (recall that JM; = M;J for | = 1,2
and JMl = —MZJ for [ = 3,4, and JMl = —MQ, JMg = —M4)

(i —1)EN) i 0 0
_wg L (i — /g)(s, A) s lLOj)(g, N 1@60. , (9.3.4)
0 0 —i@, - ¢ (i + ) (e, N)
As a consequence the eigenvalues of T, are
tw, 0+ pi(e, ) — (e, N), Ewe 0+ pile, A) + (e, A) . (9.3.5)
To impose non-resonance conditions we define the sets, for 1/2 <n <1,
Al(esn, Ag) = {)\ €N @ 0 (e, \) £ (e, )| > 27]7@ (9.3.6)
V(ti,5) € Z¥ X FxF, (6,i,7) # (0,5,5) }
where the constant y; = 70/2 (recall that v, is fixed in (1.2.6))) and
T>(3/2)7 +3+ S| (9.3.7)

where 71 is defined in ((1.2.28]). The inequalities in (9.3.6|) are second-order Melnikov non-
resonance concerning only a finite number of normal frequencies.

Remark 9.3.1. Since pj(e,\) > co > 0, for any j € N, if 1 < 2¢q, then the inequality
|we - 0+ pi(e, N) + pile, N)| > ﬁ in (9.3.6) holds for ¢ =0 and j = i, for all X € A,
77 T
n € [1/2,1].
In the next lemma we find a solution dy of the projected homological equation

J@g'aspdN_l_DodN_'_JdNJDO = HNJpl (938)

where here the projector IIy applies to functions depending only on the variable ¢, namely

Iy : hp) = Z hee'®? = (IIyh)(p Z heel? (9.3.9)
LeZI8| | <N
Lemma 9 3 2. (Homologlcal equation (9.2.5))) Let p be a self-adjoint operator of the

form (9.2.3)), defined for A E A, satisfying (9.2.9), and assume that the average [p1]3(0) €
M_, Vj E]F VA, i.e. holds Let

Ne [5 T g5 4 1] (9.3.10)
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Then, for all X € A (g;1, Ag) (set defined in (9.3.6)) ) there exists dy := dn(\; ) € L(Hy),
dy = dy, satisfying

7 _1
|dN|Lip,sl+1 < 518 ) |dN|Lip,s+1 < 51 o |10|Lip,37 VS Z 51, (9311)

which solves the projected homological equation (9.3.8), and which is an approximate solu-
tion of the homological equation (9.2.5)) in the sense that

|J(D5 . apdN + Dody + JdnJ Dy — JP1|Lip,sl < 517/4. (9.3.12)

At last, denoting by dy the operator associated to Dy, p' as above, we have, for all X €
A(g;1, Ap) N A (g1, A),

T _ 1
|dy — dnls, < 071Dy — Dols, + 61 ®|py — puls, (9.3.13)
and
| (J&2 - Qpdiy + Diydly + Jdiy J D) — Jph) — (Jx - ydy + Dody + JdxJ Do — Jp1) |,
< 1o} = puls; - (9.3.14)

Proor. We split the proof in some steps.
STEP 1. For any ((,1,5) € ZS' xF xF, for all A € Al(e; 1, Ay), there exists a solution c/i\f(ﬁ)
of the equation (9.3.2), satisfying the reality condition (9.3.1)) and

G e ORIAAG] (9.3.15)

where || || denotes some norm in Mats(C).

Recalling and the definition of A'(g; 1, Ag) in , we have that, for all \ €
A'(e;1, Ay), the operators Tj;, defined in ([9.3.3) are isomorphisms of Maty(C) for £ # 0 or
1 # j, and

I < clor (9.3.16)
where || || denotes some norm in £(Mats(C)) and C' := C(v;). Hence, in this case, there
exists a unique solution 07{(6) = Ti;gl (J[ﬁl]f(é) of the equation (9.3.2)).

Let us consider the case ¢ = 0 and ¢ = j. By , the linear operator T}jq is

represented, in the basis (M, My, M3, My) of Maty(C), by the matrix

0 O
2/4@(& /\) (02 Id2) .

Moreover there is ¢y > 0 such that (e, \) > ¢ for any j € N, € € (0,0), A € A. Hence the
range of Tj;o, is the subspace M_ = Span(Ms, My) of Maty(C) defined in (3.2.18)), (3.2.20)),
and

VpeM_, 3lde M_ solving Tiod=p with |d|| <7l
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with a little abuse of notation, we denote d by T:53(p). By the assumption [pAl]ﬁ(O) e M-
and the fact that M_ is stable under the action of J, we have that J[,oAl]g(O) is in M_ and
there is a unique solution c/l\;(O) € M_ of the equation (9.3.2).

To conclude the proof of Step 17 it remains to show that the matrices dj (£) € Mat,(C)
satisfy the reality condition (0.3.1). It is consequence of Tj;(_¢ = Tjje, the fact that [,01]2 (0)

satisfies the reality condition , and the uniqueness of the solutions of ng( 1(0)) =
J[p1]](¢) (with the condition df (6) € M_if ¢ =0 andi=j).

STEP 2. DEFINITION OF dy AND PROOF THAT dy = dy. We define dy := Ilyd(p)
where Ily is the projector defined in (9.3.9) and

d(p) = (())sjer, dio) = &0, &) =Ty ([0, (9.3.17)
(718!

is the unique solution of (9.2.5)). Note that, taking the adjoint equation of (9.2.5)), multi-
plying by J on the left and the right, since Vj and D, are self-adjoint, the operators D
and J commute, J* = —J, and using that p; is self-adjoint, we obtain

J@ - O,d* + Dod* + Jd*JDy = Jpy .

By uniqueness d* = d is the unique solution of (9.2.5). Then also d} = dy.
StEP 3. PROOF OF (0.3.11). By (9.3.15) (and (3.3.44), (£.1.13)) we have

|dn]s1 S N7 pals - (9.3.18)
We claim also the estimate
ldnip,ss1 S NP7 pr1lLips (9.3.19)
which implies, together with (9.3.18)),
‘dN|L1p s+1 ~5 N2 Jrllpl‘Llps . (9320)
To prove ([9.3.19) notice that, by ((9.3.16]),
1T (M) = T Q) = 1T () (Tige(A2) = Tie(M)) Tigg (M) |
SAOTNTie(A2) — TigeM) || S (07 Aa — A (9.3.21)

recalling the definition of Tj;, in , and - By (9.3.16]) and (9.3.21)) we estimate
the lip seminorm of d’(£) = nge ([pl] (f)) as

! (Ollsp < (0 X[ + (O 17T () i
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and (9.3.19) follows. The estimates (9.3.20)), (9.3.10) and (8.2.1)-(i), finally imply
ldn|Lipsi1 < ON?pilLips < 61 ©p1lnip.s

which gives the second inequality in (9.3.11)). By (9.2.9) we deduce

9

_ 1
AN |Lip,si+1 < 07 *0)°

T
oF
which is the first inequality in (9.3.11)).
STEP 4. PROOF OF (9.3.12)). By the definition of dy we have
J. - O,dy + Dody + JdyJ Do — Jpy = — I Jpy . (9.3.22)

Then, recalling ((3.3.44]),

|J@ - Odn + Dody + JdnJ Do — Jpi|uip.sy = |15 T palLip.ss
ELD) £29)
N

~oS2

(19.3.10))

11
—(82—51)5;E

_1
85,0 < 574

~oS2

STEP 5. PROOF OF (9.3.13))-(9.3.14). We denote by Tj;, the linear operator as in (9.3.3)
associated to Ag, i.e. with (e, \) instead of y1;(e, A). Arguing as for (9.3.21]) we get that,
if A€ A'(e;1,49) N A'(g;1, A)), then

751 -

o ijz)_lH < C<€>2T I?SFX ‘uj(e, )\) — ,u;(e, )\)‘ . (9.3.23)
Let us denote dy := dn,p,,, and dy :=d N.Dy.! where we highlight the dependence of dy
with respect to Dy and p. Using that dy depends linearly on p, actually only on p;, see

(19.3.17), we get

|dN,Do,p - dN,D{)yp"ﬁ < ‘dN,Do,p - dN,Dg,p’a + ‘dN7D67p—p”=91

EHEEN , o
S N7 pals, Ig.lgfgxmj(é,k) — 15(e, N[+ N7 p1 — pils,

and therefore, by (9.2.9)), (9.3.10)), (8.2.1)-(i), |p1]+.s = |p1|s we conclude that

_1 9 1
|dN.Do.p = AN,pyprlsr < 0y 061 [ Do — Dols, + 0y |1 = pils,

4 1
<07 [Do = Dolsy + 01 |1 = pils,
proving (9.3.13)). Finally (9.3.14)) is an immediate consequence of ((9.3.22)). m

We now prove measure estimates for the sets A'(e;n, Ag) defined in (9.3.6).
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Lemma 9.3.3. [[A'(e;7, A))*NA| <& forall1/2 <n < 1.

Proor. For £ € Z n € [1/2,1], we define the set

Aj(g;m, Ag) := {/\67\ Dwe - 0 (e, N) £ pi(e, N)] > :
20y (9.3.24)
V(i) € F x F with |£|+\z’—j]7é0}

where v = 79/2 and 7 > 7, see (9.3.7). By the unperturbed second order Melnikov non-
resonance conditions (1.2.16))-(1.2.17)), the Diophantine property (1.2.29), since @, = fi+&*C

(see (1.2.25))) and p;(g,A) = p; + O(?) (see (8.1.4))), we have

if e2(0)™*lygt < ¢ small enough = Al(g;1/2, Ag) = A.

Hence, for € small enough,

A(esn, Ag) = m Ag(esn, Ag) = ﬂ Ay(g3m, Ao) (9.3.25)

LezZls| [¢]>c1e=2/70

where ¢; = (¢70)Y™. Now, using (8.1.5)-(8.1.6), we deduce that the complementary set

g;m,Ag)|” 1s Included 1n the union of 4f“ intervals of length ———— where £ denotes
Ad(e;m, Ap)]° is included in the union of 4 intervals of 1 h<£>%2h d
n{L)T Ccae
the cardinality of F. Hence its measure satisfies
~ 4’71f2
A(esn, A NA| < ———
H 4(577% 0)] ‘ —= 77<‘€>T02827
and, for any L >0, 1/2 <n <1, 7 > [S|, we have
4’}/1f2 C
1/_.. c
D [k A < 30 o < (9.3.26)

=L [¢|>L

The lemma follows by (9.3.25), (9.3.26) with L = ¢;e=%™ and (9.3.7). m

Remark 9.3.4. The measure of the set [A'(g;n, Ap)]¢ can be made smaller than P as €
tends to 0, for any p, if we take the exponent T large enough. This is analogous to the
situation described in remark [{.8.17.

Lemma 9.3.5. Assume that |A)— Ag|4.., <6 < &® on ANN'. Then, forn € [(1/2)+V6, 1],
we have

A N [AY(ern, AN A ey — V6, Ag)| < 612 . (9.3.27)
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Proor. We first prove the estimate

IS|

[[A' (g5 m, AD)] ﬂAl e;n— \/_A0)| < min(e 26272 ). (9.3.28)

Denoting Aj(g;n, Ap) the set (9.3.24)) associated to Aj, we claim that there exists c¢(sq) > 0
such that

[Ab(e;m, ADE N A e — V6, Ag) =0, if ()7 < e(so)v1/ (V). (9.3.29)

Indeed, denoting by (e, A) € R the eigenvalues of Dy = TlrAg| s, since ||Ag — Aollo <
Clso)| 4y — Aolng < Cs)d (sce (BIZM). we have

1(e,A) = (e, M) < C(s0)d, VjeT. (9.3.30)

If X ¢ Aj(e;n, A}) then, recalling (9.3.24)), there exist 4,7 € F (with i # j if £ = 0), signs
€; = £1 and €; = &1 such that

|we - 0+ €pi(e, A) + €55(e, M) < 20y

and so, by ((9.3.30)),

- 2l gi!
e A+ € pi(e, N) +eipi(e, V)| < +2C(s9)0 < ——————

for all (1/2)4+V8 <1 < 1, ()7 < ¢(s)71/V3, for some ¢(s,) small enough, proving (9.3.29).

Hence

[Al(e;m, Ap)] ﬂAl e — V6, Ay C U [Ab(e;m, ADJEN AN e — V6, Ay)
0eZ)8!
©329)

U [Aken, )

>y

which implies (9.3.28) by (9.3.26) with L = (y1/v/3)"/" (applied to Aj)) and Lemma9.3.3|
Finally, by (9.3.7) and since 71 > [S|, we have |S|/27 < 1/4 and so

min(e’Q(S%’g, g) < min(a’zé%, g) <

IN

512 (9.3.31)

where the last inequality follows distinguishing the cases ¢ < 612 and £ > 012, By (9.3.28)

and ((9.3.31)), the estimate (9.3.27)) is proved. =

Step 2: approximate solution of the homological equation (9.2.6). We decompose
a € L(Hp, Hg) as a = (a)ep and py € L(Hg, Hg) as py = (p});er where o/ = am; €
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L(H;, Hg) and pf := (p2)i; € L(Hj, Hg). Recalling the form of Dy in (8.1.3), the equation
(9.2.6)) is equivalent to A ‘
Ti(a’) = Jp}, VjeTF, (9.3.32)

where we define 7} as the linear operator which maps o TS — L(H;, Hg) to
Ti(a?) = Jw. - 0,0’ — JVoJd? + p;(e,N)Ja J . (9.3.33)

We shall consider 7} as an unbounded linear operator from the space LQ(T|S|, L(H;, Hg))
to itself.
In the sequel ig denotes the injection

Before applying the multiscale Proposition we need to extend the linear operator 7}
defined in ({9.3.33)), which acts on L2(T L(Hj, Hg)), to a linear operator T}j acting on the
whole space L*(TF, £L(H;, H)) ~ L*(TFI, H x H) (by (3:2:6)) and satisfying the properties
of Definition £.1.2

We define, for any ’ € L*(TF, L(H;, H)), the operator

T'}j(aj) =
(9.3.35)

) D . . . .
Jw. - D07 + —_Tlg pa’ + Hsa’ — JigVellgJa? + (e, A) JTga’ J

142X 142X

where Igur, g, s are the L*-orthogonal projectors on the subspaces Hsur, Hg, Hs and
¢ > 0 is a positive constant that we fix according to (4.1.5). Clearly Tj@ is an extension of
T}, ie.

THd') = Ty(d?), Vo’ € L(TF, L(H;, Hg)) € L*(T®, L(H;, H)).

Recalling the decomposition ([3.2.15)-(i3.2.16]), i.e.

L(H;, H) = L(H;, Hsur) © L(H}, Hg) ,
@ (p) = s pa? (p) + Med? ()

we may write the operator Tf in ((9.3.35)) as

(9.3.36)

¢

PN ,
Ti(a’) = Jw. - 00" + T

lsa’ + R;a’  (9.3.37)

a + (e, \)Jga J +

1%
1+ &2

where, using that J commutes with Dy and Ilg, J? = —Id,

Rja’ = J(l Dy

- icV ) lgJa! = —J Rollg Ja! (9-3.38)
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and we used (8.1.1])-(8.1.2)) to obtain the last equality. Notice that, according to the decom-
position (9.3.36]), the operator Tf is represented by the block-diagonal matrix of operators

DV ¢
Jaw. - 0 IIs O
T}i = [Ty +e2) 7 Fe2n o ; (9.3.39)
0 )

and, according to the further splitting
L(H;, H) = L(H}, Hs) & L(H;, Hr) & L(H;, Hg),
a’(p) = Tsa’ () + Tra’ (p) + I’ (),
recalling ((9.3.35]), by the matrix of operators

D Id
LA 0
1+e2N 142X
TF = Jo. - 9, + 0 Dy 0 (9.3.40)
1+e2X
0 0 —JVod + (e, \)T
where J is defined in (4.1.8). Note also that

Tl = T} . (9.3.41)

Now, given ¢’ := Jp), : TSl — L(H;, Hg) we define
g T - L(H; H)~H x H, g¢i(p):=icg (p), (9.3.42)

(recall (3.2.6]), (9.3.34)) and we look for an (approximate) solution ag- TS — £(H;, H) ~
H x H of the equation

fr.8y —
T;(a}) = g; - (9.3.43)

As already said, Tjﬁ is an (unbounded) operator on L*(TF| £(H;, , H)) and an exten-
sion of Tj. It is important to notice that, since the subspaces L2(T|S‘,£(Hj, Hsur)) and
L*(TSI £(H;, Hg)) are invariant under the operator T]’Aj (see e.g. (9.3.39)), a solution of
0.3.43) satisfies Tj(HGag) = g?, by (9.3.41)), and therefore o = HGag solves equation
9.3.32)) for the non extended operator 7;. Actually in Lemma we find an approxi-
mate solution of the equation ({9.3.32)).

In the sequel Tf is regarded as an operator acting on L2('IF|S‘;H x H): in fact, us-

ing the basis ((V;,0),(0,¥;)) of Hj;, see (3.1.9), we have the identification (3.2.6) and
LTS £(H;, H)) ~ L*(TFl; H x H). We will apply the multiscale Proposition (in

case-(ii) in (4.1.1))) to the operator
‘Cr,u - (1 + 52)\)7_'}1 .
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Actually, recalling (9.3.37)), Ilg = Il s, and the definition of 7 in (#.1.8)), we have that

Lrp=(1+ 52)‘)71;t =Jw-0, + Xy,

| (9.3.44)
Xr,/,L = DV + CHS +ML7HSUIF +r,
has the form ({.1.9) with w = (1 + &*)\)@. and X, , as in (£.1.7) with
p= (142NN, =1+ SR, (14 NIRRT, (9.3.45)

We now prove that X, , in (9.3.44) satisfies the properties stated in Definition |4.1.2] begin-
ning with its self-adjointness.

Lemma 9.3.6. (Self-adjointness) The operator X, defined in (9.3.44)-(9.3.45) is self-
adjoint with respect to the scalar product { | )o in (3.2.22)).

PrRoOOF. The self-adjointness of Dy and Ilg with respect to ( , ) directly follows by
the fact that Dy and Ilg are L*- self-adjoint. Now let a := a(y), b := b(¢) belong to
L*(TSI £(H;,, H)). We obtain, using that TI3 p is L*-self-adjoint, that

(4.1.8) *
(0. 71000 B [ T((migsbaya)d
T

= / Tr(Jb* g pJa)dp = / Tr(Jb* J1g pa)dp
TISI

TIS|

because J and Il5 ; commute. Thus, using that Tr(AB) = Tr(BA), we deduce that

(a, TTIE gb)o = / Tr(b* J1IE pa)dp EEVEED (711d o b,

TISI

Hence the operator J1Ig  is self-adjoint with respect to ( , )o.

It remains to prove that the operator R; in is self-adjoint with respect to ( , )o.
Since Ry is self-adjoint and Ry(Hg) C Hg, we deduce that B := Ryllg is L*-self-adjoint,
i.e. it satisfies B* = B, and, recalling , we obtain

(a.Rb)o = — /T (BB @)y = - /T T IBIa)dg = (Rya, b,
This completes the proof of the lemma. m
Lemma 9.3.7. (Off-diagonal decay) The operator R; defined in (9.3.38) satisfies
RjlLip,s < C(8)[Rolvip,s - IR |Lip4.s < C(5)|RolvLip,+,s 5 (9.3.46)

in particular |R;|Lip+.s; < C1e? for some constant C| depending only on C}.



CHAPTER 9. SPLITTING BETWEEN LOW-HIGH NORMAL SUBSPACES 219
Proor. We identify a(p) € L(H;, H) with the vector (a™M(p),a® (), a® (), a®()) in
H x H as in (3.2.7). Then, using (3.2.13]), we have

Rja = ( - JR()H((;,(CLQ, —al), —JR()H((;,((I?), —a4)) .

Hence
|Rj|Lip,s ~ |ROHG|Lip,s and |Rj|Lip,+,s ~ |ROHG|Lip,+,s-

Lemmata [3.3.5 and |3.3.8| imply that

E321) E33)
|ROHG|Lip,s 58 |HG|Lip,s|R0|Lip,s 55 |RO|Lip,s

B329) B3333)
|R0HG|Lip,+,s SJS |HG|Lip,s+%‘RO|LiP,+,S SJS |R0|Lip,+,s

proving (9.3.46). Since |Roluip+.ss < C1e% by Definition 8.1.1) the second estimate in
(9.3.46) implies |R;|Lip+.s < Cre°. m

Lemma 9.3.8. (Sign condition) The operator X, ,, defined in (9.3.44) satisfies, for some
¢ > 0 depending on the constant ¢y in (8.1.8]),

X 2
: < —ce’ld.
0>‘<1+52/\> =Tee

X
Proor. According to (9.3.40) the operator 7 +T’“ is represented by the matrix of oper-

g2\
ators
DV + cld 0
1+¢e2)
1%
0
1+e2)
0 0 —JVod + pi(e, \) I
where Ja = Ja.JJ. We clearly have
Dy +cld e2(Dy + ¢1d) 2Dy 9
0 = — < — < —ce’ld 9.3.47
A1 e (I1+e2X0)2 = (14202 — « ( )

for some ¢ > 0. Then it is sufficient to prove that, for all a € LQ(']I‘|S|, L(H;,Hg)), and for
all A1, As € A with A\; # )\, using the notation (|1.6.3)),

A% A/Lj(é‘, /\)
< AT T AN

JCLJ, a> < _052“aHg )
0
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for the scalar product ( , )o defined in (3.2.22)). We have

AVh Api(e, N) AV Api(e, M)
(=ImyJa+ = Jaha) = (Fydada) - =55 (o a),
AV, A,uj g,\)
< (== e ARV
(320 g0, 1a) + [ gy
AV, A,uj g,\)
<A)\J J> +)—‘HJ 12 (9.3.48)

noting that ||aJ||o = ||Jallo = ||allo from the definition (3.2.22)) of the scalar product ( , ).
Let

(Ja)M(p) = Ja()(¥;,0), (Ja)?(p) = Ja(p)(0,¥,), (Ja) € L*(TF Hg).

Using the notations (, )¢ and || ||o for the scalar product and its associated norm both in
L*(TS £(H;, Hg)) and in L*(T"); Hg), we obtain by (9.3.48)

AVo ;o Au(eA)
< IS e+ =S o, a>0 .
‘ . NTHEDY 3.
_0 (%) (3) ’ Nj ’ Z) 9
< .
< ;< A (Ja)', (Ja) >0 (Ja) @2
Now the assumption (8.1.8]) implies that for all h € LQ(’]I‘lgl Hg)
AV Api(e,\) )
<A/\ h h> + ‘—‘HhHo —c1€?|| R[5 - (9.3.50)

The estimates (9.3.47)), (9.3.49) and (9.3.50)) imply the lemma. =

By Lemmata[9.3.6] [0.3.7, [0.3.8 we apply the multiscale Proposition to the operator
L.,= 1+ 82)\)ij in ((9.3.44]) where r is given in (9.3.45)). As a consequence there exist,

for any j € I, closed subsets

A?(&?; n,Ag), 1/2 <n <1, satisfying Properties 1—3 of Proposition [9.1.1], (9.3.51)

and N € N, such that, for all YN > N, for all A € A?(s; 1, Ap), there are operators (T}i)]_\,1
defined in Proposition as
i) the right inverse of HN(T})WQN if N<N<N(e),

ﬁ (9.3.52)
ii) the inverse of IIy(T})n, if N > N(e),

where Hy are the finite dimensional subspaces defined in (4.1.10). By (4.1.20)), (4.1.23]),
(9:3.45))-(9-3.46)) and | Ro|Lip.+.s, < C1” by Definition , the operators (Tjn)]_\,1 satisfy the
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following tame estimates: Vs > s,

(TN ILipsy < C(s) N2 oo+ (9.3.53)

(TN ips < C(s)N2TFss0+3(NG=s0) | Ryfpi ) (9.3.54)

J

To justify that the sets A? (g;1m, Ap) satisfy Property 3 of Proposition we remark that
if the operators Ay and Aj satisfy | Ry — Ro|1.s, <0 < &2, then p, i/, r, 7’ defined in (9.3.45)
satisfy

[ P I R e

and refer to (4.1.18]) in Proposition m (note that the exponent « of Property 3 of Propo-
sition may be taken slightly smaller than in (4.1.18))).
We now obtain an approximate solution of the homological equation ((9.3.32)), finding

an approximate solution of ((9.3.43]).
Lemma 9.3.9. (Homological equation ((9.3.32)) Let

3 3

Ne [5{52*51 1,8, 7 4 1] . (9.3.55)

Then, for all 3 € F, for all A\ € A?(a; 1, Ag) (set introduced in (9.3.51), the function a’
defined as

o =Tghh, V=THy'dy. dn=1Ing;, gi=icg’, ¢ =J(p2)m,  (9.3.56)

(recall the notation (9.3.42)), (9.2.3)) ), satisfies

. 7
|0 [Lip,si+1 < 07, (9.3.57)
s—s9

. _ 1 1 —3§s —
|07 |Lip,s1 S 01 " (1plLip,s + |Roluipi,s) 086, 770, Vs > sy, (9.3.58)

and it is an approzimate solution of the homological equation (9.3.32)) in the sense that

7507 = ¢ |1ipsy 41 < 61" (9.3.59)
At last, denoting by o := ai‘mp and (a’) := af% p the operators defined as above associated

to (Ao, p) and (Ap, p') respectively, for all X € A*(g;1, Ag) N A*(g;1, Ap), we have

K 07| Ag = A4, + 01 Clp = 0|1 (9.3.60)

J _
’aAo,P aAE),p’ s1+1

and

. . . . 4 _ 1
|(Biaohp = 95) = (Ty@ly = 9) g < 0710 = Aplss +0, % lp = pllis, - (9:3.61)

S1
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PrOOF. The function bg defined in (9.3.56|) satisfies, by (9.3.52]), the property

i) Ihyb: = b8 if N <N < N(e)

A (9.3.62)
i) IIyb; =b; if N> N(e),

and it is a solution of I7, NTJﬁbg. =11 Ngg-. Then, up to terms which are Fourier supported on
high harmonics, it is an approximate solution of the equation (9.3.43]), more precisely,

THV: = IINTIV: + TNV, = Tvgh + IR TH: = gf + 2y (9.3.63)

where

Applying Ilg to both sizes in (9.3.63)), we deduce, by (9.3.41]) and (9.3.56)), that o := H(G,bg»
is an approximate solution of the homological equation ((9.3.32), in the sense that

Tjaj — J(p2>|H] = HGZN, J(p2)|H] = J[JJQ = gj . (9365)

We now prove ((9.3.57))-(9.3.59)).

ESTIMATES OF bg-. By (3.2.6) we identify the ¢-dependent family of operators gg» =
icJ(p2)|m, in L*(TBI £(H;, H)) defined in (9.3.56) with a function of L*(TFl H x H).
We have the equivalence of the norms

1951~ g8 - (9.3.66)
In fact, let us define, for all ¢ € T, the functions

9 (¢) = g5 [(¥;,0)] € H and g7*(¢) = gj() [(0,9;)] € H.

W

7 |g§'|s = |g§|s, where the

We have to prove that |g§-|s ~g Hgg’lﬂs + |\g§2||s By Definition [3.3.
operator gg is defined on the whole L2(TF, H) by

- 2

GE[(hD R =" g (0D, 0y,

i=1 ’
Now, by Lemma |3.3.7], N
: 2
191s < C(s) (g M1s + 11952 1s) -

Conversely N N _
g5 s = N9 [(V5, 0)] s So 1115115 <o 1651
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and similarly || g§’2||5 <s | g§.|8. This proves the norm equivalence ((9.3.66)).
We have g% v = IIyg} . and ({1.13), (9.3.50), (9-3.53), (9-2.9), imply

‘b§'|Lip,81+1 < N’bg'lLip7S1
§S1 N| (TJ#)]QllLip,Sl |g§,N|Lip,81
’ 9
<oy N2OFat2) g Sy N9 (9.3.67)

~oS1

having set
Q:=2(7"+¢s1+2) with ¢=1/10 (asin (4.1.16)). (9.3.68)

Similarly, for s > s, using (4.1.13)), (9.3.56)), the tame estimate (3.3.21)), (9.3.53))-(9.3.54)),
FZ9), we get

|b§‘|Lip,s+1 < N|b§‘|Lip,s
S NITHR Lipslg v ipwss + N TN Lipyen 19 v Lip.s
S0 NN Ry 4 0)07 + N2IgE yluips
Ss NQ(Nc(S_SI)fsf% + |Ro|Lip,+,s5f% + |plip,s) - (9.3.69)

ESTIMATES OF zy DEFINED IN ((9.3.64]). We first claim that
| T Iy |rip,s < INTE Don|ips Ss N + |Rolvip,s - (9.3.70)

Indeed, recalling the expression ((9.3.37) of TJ@, setting J (a’) := Ja’J, and writing Dy =
D,, + (Dy — D,,), we get
Iy T Dy = 3 J@. - 0,1y + ——5~ (I Dy Iy + i (Dy — Dyy) Iy)
J 1 -+ 52)\ (9 3 71)
¢ 3.
+ (e, NV T oy + TR oy + Hﬁmngnm .

In view of (9.3.71]), Lemmas 3.3.8] and Proposition imply (9.3.70).
Then, by (9.3.64)), (9.3.62)), (9.3.56)), (9.3.70), (3.3-20)), |Ro|Lip,s; < 1, we obtain

|2nluips < 168 luip,s + 1R T |uip s
S 1pILips + N|b§'|Lip,s + (N + |RO|Lip75)|b§|Lip,sl

~S

9

9
NO(|plLip.s + |RolLip,+.561° + NC70610) (9.3.72)
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By (9.3.64)) we have IIyzy = 0, and, using (9.3.72) and the assumption (9.2.9)), we derive

that
_( gy —

| 2N Lip,sy 11 < N 79275 1)|ZN|Lips2

<,y NQFIZ(amsn) 510 4 NQHI=(=9)sa=s1) g0 (9.3.73)

PRrROOF OF ((9.3.57))-(9.3.59). By the choice of N in ({9.3.55)), the condition (8.2.1))-(7), and
(19.3.68) we get

_ 1
N = o(6, ™) | (9.3.74)
_ 11 9
NQ+1_(82_51)(51 0 _ 0(5 ) N@H1I=(1=¢)(s2—~ 51)5 (54) (9.3.75)
Vs > s, NQ+1+<(8751)5119 — NQtl+s(s2—s1 510 NS(s—s2) < 62 573(55278521 _ (9376)

Then, by (9.3.67)), (9.3.74)) and (9.3.73)), (9.3.75)), for 4; small enough, we deduce the bounds

|b§'|LiP751+1 < 5’17/87 |ZN|L1p s1+1 < 57/4 (9377)
In addition, (9.3.69)), (9.3.74)), (9.3.76)) imply the estimate in high norm

8—389

-3¢
B liipars < 8 (Ioliipe + [Roluiprs) + 076, = 1. (0.3.78)

By Lemma [3.3.8] the function @’ := Hq;,bﬁ satisfies the same estimates as b* in
(9.3.78]). In particular ((9.3.57))-(9.3.58]) hold and, by (9.3.65), Lemma[3.3.8] (9 m, we get

7/4

|Tjaj — gj|Lip,sl+1 |HGZN|L1p si41 K 0y

proving ({9.3.59)).
Proof of (9.3.60))-(9.3.61). We denote by (aj,)’, bg-/ the functions obtained in 9.3.56 from
(Af, p') instead of Ay, p, and, similarly, by Tli the linear operator defined in ) from

(A, p'). Recall that to define Tti we apphed Proposition with g and r deﬁned in
-3 45)). In particular, we have

|M - :U’,| 5 |A0 - A6|+751 ) |T - r,|+781 5 |R0 - R6|+,51 - |A0 - A6|+,51 :

Hence, by (£.1.21), (£.1.24) in Proposition |4.1.5] for any X € A%(e;1, Ag) N A3 (e; 1, A7), we
have

/ /
(TR = (TR, < N0 g = Afls, (9.3.79)
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By (9.3.56) and Lemma we have

) . /
’(a]), - aJ’SHrl 581 |b§ - b§’51+1

S NI = (TN, 1wl + NI, NN = vl
B37).€359 @29 27!+ 4 qr % 2+ 4 /
So T NERSOHAL Al o N )
[9.3.65) 9
§S1 NQ(Slro |A6 - A0|+,$1 + NQ|p - pll-l-,sl (9380)
(9.3.74)

7 1
< 518 |A6 - A0|+7S1 + 51 0 |p - pl|+781
proving (9.3.60)). In addition
ry) /
A R Y
where, by ((9.3.64]),

oy = 2logr = | (= g} + IRTIY) — (= Tyl + T 0|

51+%
# t/ Lt 1\ 74 Lt ff i
< |gj — Y |S1+% + |HN (TJ - TJ )bj|sl+% + |HNTJ' HQN(bj - bj )|51+%
(©.3.37),(0.3.38),(0-3.70) ﬁ " / .
551 |gj - gj ’sﬁ-% + ‘AO o AO}sH—% ‘bj’sﬁ-%

+ (N + ‘RolLip,sﬁr%) |b§ - b§/|51+%

/ /
S’Sl |g§ o gg ’51+% + ‘AO - A{)‘Jr,sl ‘b§|51+% + <N + |RO‘Lip,+,sl)‘b§ - bg ‘31+%
Ser lp— p/|+,81 + 67 [Ag — A6|+,S1
Q+15710 | A7 _ Q+1y, _ ./
+ N 61 |AO A0|+,81 + N |p p |+781
19.3.74) 4 _1
07 [ A — Aol s + 01 o= 'l s - (9.3.81)

Finally, recalling (9.3.65)) and Lemma [3.3.8} we obtain
(T30 — ) — (@Y — (@), 4y = Mol — Ay S 2w — 2l

and (9.3.81)) implies the estimate ((9.3.61]). m
Step 3: Conclusion of the proof of Lemma [9.2.2] We consider the sets

<n<l, (9.3.82)

N | —

Ale;n, Ag) == [ A3 (e m, Ao) (A (g5, Ao),

jEF
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where the sets A'(e;n, Ag) are defined in (9.3.6) and the sets AZ(e;7, Ag) in (9.3.51). By
Lemmata [9.3.3| and [9.3.5| and (9.3.51)), the sets A(e;n, Ag), 1/2 < n < 1, satisfy the prop-

erties 1-3 listed in Proposition for some 0 < o < 1/12.
For all A € A(e; 1, Ag) we define the self-adjoint operator

S(p) == <‘ZV(§;§) a*((f)> (9.3.83)

where dy(p) = diy(y) is defined in Lemma [9.3.2] and a := (/)¢ by Lemma [9.3.9 The
operator S defined in satisfies the estimates (9.1.7))-(9.1.8) by (9.3.11]) and (9.3.57)-
(9.3.58).

Proor oF (9.2.11). The estimate (9.2.11)) follows by (9.3.12), (3.3.44)-(3.3.45), and
, recalling the definition of 7j in l|9.3.33|) and of ¢’ in (19.3.56]).

Proor oF (9.2.12)-(9.2.13). By (9.2.2)), (9.3.8), Lemma 9.3.9, (3.3.44)-(3.3.45) and the
fact that

Tj(a;) = Ty(Mebf) =TT ()
(see (9.3.56)), (9.3.41))), we derive

|J(Z)5 . 8@8 + [J87 JAO] |Lip,+,8
< |HNp1|Lip,+,s + Z ‘Tyj(a“j)|Lip,s+%

jeF
ol Lt ot
,Ss ’pl‘Lip,Jr,s + Z ‘UN@ (bj>}Lip7s+% + Z |HN7; <bj)|Lip,s+%
j€EF JEF
Seloiltipes + [ npz gy oo+ D IRT )], 000 (9.3.84)
jeF
Now
(©.3.70)
‘Hﬁ@ﬁ(bg) Lip.st L Ss (N+ |R0|Lip,s+l)||b5‘”Lip781 + (N + |R0|Lip,51>“b§'”Lip,s+l
pP,s+3 2 2

<s (N+ ‘Ro
o, 0T
<

~S

v iy (O 2 [B 2

(N + ’R0|Lip,+,s)NQ5?/10
+ NQ+1 ((Ng(S*sl) + ’R0|Lip,+7s)5?/10 + ‘p‘Lipth)
<o N (|Rolip,s.s + |pluipors) + N@H15I/10 ys(s—s1)

- 7/8 s

Estimates 9.2.12|) (for € small enough) and (9.2.13)) are immediate consequences of (9.3.84])
and (9.3.85).
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ProoF oF (9.2.14)). By (9.3.83), Lemma Lemma |3.3.10, and Lemma for any
A€ A(g; 1, Ag) N A(g; 1, Ap), we have

‘SAo,p - SA{),p’|+,81 5 |dN - le’ler% + Z ‘aj - a;”ler%
jeF

4 _ 1
S 515 |A0 - A6|+,51 + 51 % |P - p/|+,81

proving ((9.2.14)).

PROOF OF ({9.2.15)). Also ({9.2.15)) is a consequence of Lemma and Lemma more
precisely of (9.3.14)), (3.3.44)-(3.3.45) and (9.3.61). This concludes the proof of Lemma

022

9.4 Splitting step: Proof of Proposition 9.1.1

Recalling (3.2.28)), (3.2.29)), (3.2.30) we decompose the coupling term p € L£(Hg) as

The operator Ilgp has the form (9.2.3)), satisfies (9.2.10) and, by (3.3.35)) and (9.1.2)), it
satisfies also (9.2.9). We then apply Lemma with Ay and p ~ Ilgp. It provides the

existence of closed subsets A(e;n, Ag) C A, 1/2 < n < 1, satisfying the properties 1-3 of
Proposition [9.1.1) and a self-adjoint operator S(¢) = S(g,\)(¢) € L(Hg) of the form
(9.2.1)), defined for all A € A(e;1, Ag), such that

7
|J@, - 0,8 + [JS, JAg] — JMop|Lip 4.5, < O (9.4.2)

(see (9.2.11))) and (9.1.7))-(9.1.8]), (9.2.12)), (9.2.13) hold.
We now conjugate the Hamiltonian operator

Dy,
14+e2)\

@6-(‘9§0—JA, A:Ao—‘rﬂ + Ry +p, (943)

by the symplectic linear invertible transformations e’$¥). We first notice that the conju-
gated operator

e—IS(®) (@a Dy — JA(gp))eJS(“”) =@, -0, — JAT(p) (9.4.4)

is Hamiltonian, because /) is symplectic and Lemma implies that the (unbounded)
operator AT (¢p) is self-adjoint. We are going to prove that (see (9.4.13)), (9.1.4))

Dy

AT =
( 1+e2)

©) + Ri(p) +p" (),
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where
R{ == Ry +1lpp, (9.4.5)
and the estimates (9.1.11))-(9.1.13)), (9.1.14)) of Proposition hold. First notice that the

bounded operator p*(y) is self-adjoint because the operators A*(p), Dy and R] (p) are
self-adjoint.

Lie series expansion. Consider the 1-parameter family of operators
X, =@, 9, — JA)SW e 0,1], (9.4.6)
connecting Xg := w, - d, — JA to
Xy = e 5@ (@, 0, — JA) 'S B2V 5 g, — JAT (9.4.7)

Since the path ¢t — X, solves the problem

dX;
b= —JSXi+ XS =[-8, Xi] = Adi_ys) (X)) 9.48)
Xo=w.-0,—JA,
we deduce from ((9.4.7)), (9.4.6)), (9.4.8]) the Lie series expansion
_ 1
We * QO — JA+ = Xl = Z EAdI(C_JS)(Xo)
k>0
1
= Xo + Adss)(Xo) + Y A df_s)(Xo) - (9.4.9)

k>2
Now
Ad(_JS)(Xo) - XoJS - JSXO
= JS W - 0p + W, - 0,(JS) — JAJS — (JSw. - 0, — JSJTA)
=W, - 0,(JS) + [JS, JA]
=Jw. - 0,8+ [JS, JAq| + [JS Jp] (9.4.10)
recalling that A = Ay + p, see - Comparing ((9.4.9) and (| m we obtain

—JAY = —JA+ Jao. - 0,8+ [JS, JAd + [JS, Jp] + Y k‘Ad( 75 (Xo0)

k>2

=—JAy— Jlpp — Jp* (9.4.11)
where, recalling the decomposition ((9.4.1)),

1
—Jp" = (Ja. - 0,8 + [JS, JAg) — Jlop) + [JS, Jp] + > EAd’(iJS)(XO) . (9.4.12)

k>2
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Note that, by (9.4.2)), the first addendum in the expression of —Jp" in (9.4.12)) is very small
(in low norm) and the others terms in ([9.4.12)) are “quadratic” in p (note that the term p*

satisfies the estimate (9.4.17))). By (9.4.11]) we have that
Dy

1+ &2
Dy

142X\

Lemma 9.4.1. A" has the form (9.1.4)-(9.1.5) and (9.1.9)-(9.1.10) holds.
ProOF. By (9.4.13), (8.1.2), (3.2.28)), (3.2.29)), (8.1.3), the operator A" has the form
EL7) with

A+=A0+an+p+ + Ry +Ipp+p*

+ Ry +p". (9.4.13)

D§ = Do + D (pr) = Diagjex (e, N1dz + 4 [57(0)]) ,
Vo = Vo + 8.

Since p?(gp) is a 2 X 2 symmetric matrix, (3.2.21]) implies (9.1.5)) with

1.
1y (&) = (e, A) + S Tr[p5(0)]
Hence
15 (e, A) = 158, Mlwip + 11Ve" = Volluipo S llolluipo

and by (9.1.2)) the bounds (9.1.9)-(9.1.10]) follow. m
The first estimate in ((9.1.11]) follows by

£339.613 :

(9.4.5)
RS~ Rolupersr =2 [Mopluipess, 5 < 5 (9.4.14)

for 6; < £® small. For the estimate of | pﬂLip,Jr,Sl we use the following lemma.
Lemma 9.4.2. We have

’Ad(—JS)(X0>|Lip,+,S1 581 01 (9-4‘15)

k 143 (k—1)

|Ad(_JS)(X0)|Lip,+751 <4 , Vk > 2. (9.4.16)

Proor. By (9.4.10) and (3.3.24]), we have
|Ad(_JS) (X0)|Lip,+,sl = |J(DE . &K,S + [JS, JA()] + [JS, Jp”Lip,—i—,sl
< }J@s 20,8+ [JS, JAy| — l'IU,o|Lip’+,s1

+ |H0p‘Lip,+,sl + C(Sl)“]S’Lip,ler% |p|Lip,+,Sl
©.4.3),3335),01.2),017)
<

57 4+ C(s1)01 + C(s1)65
01

~oS1
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for 9; small, proving (9.4.15)). In order to prove (9.4.16), let my := |Adl(tJS)(X0)|Lip7+,sl.
For k£ > 1, we get, for d; small,

B39
M1 = |[—JS, Ad{_5)(Xo)] Lprs, = C50)IS|Lip s, 41 T
(9.1.7) 7

< C(syp)05my
< (51%mk )
This iterative inequality and imply . ]
We derive by the bound
0" |Lip 51 < [J@e - 058 + [JS, T Ao] = JHoplvip, 61 + [[JS, T pl|Lip,+.s1

1
+ Z o ‘Adl(g,JS) (Xo) |Lip,+,31

k>2

(©-42),(3-3.24),(0.1.2),(0.1.7),(0.4.16) = 741 7 3
< 5F+ C(s1)63 T + 61 < 62 (9.4.17)

for 6; < &% small. This proves the second estimate in (9.1.11)).
There remains to estimate the high norms |Rg |Lip.+.s + |p" |Lip+.s for s > sy. First, by

(9.4.5) and (3.3.35)),
|R8_|Lip7+,s = |Ro + HDP|Lip,+7s < |R0|Lip,+,s + C(S)|p|Lip,+7s (9.4.18)

which implies the bound for |R{|nip+,s in (9.1.14) (actually (9.4.18) is much better than
the estimate (9.1.14)) for |R{ |Lip.+.s). For |p¥|Lip +.s we use the following lemma.

Lemma 9.4.3. For k> 1,

3k=1
A 5) (X0)[Liprs < (C(5))F M7 (9.4.19)

where

S—s9

1 L8 e
M = 6, " (|Roluip, 4.5 + [PlLip+,5) + 01 10, : (9.4.20)
ProOOF. By (9.4.10) and (3.3.24]) we have

|Ad(—18)(X0)|Lips < |J@e - 0,8 + [JS, J Ao
< |Jwe - 0,8 + [JS, JAg

+|[JS, Jp
+C(s)‘8

HLip,-hs ]|Lip,+,s

HLip,-ﬁ-,s Lip751+% |p|Lip,+,s

+ C(S) |S‘Lip,s+% ‘p‘LipHr,Sl
213,179,018
<

s—s9

_1 3 —3¢
C(5)[ 07 * (1Roluipss + loluip,e.6) + 07 6y 7
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Hence, the estimate ((9.4.19)) is proved for £ = 1, recall (9.4.20)). In order to prove ((9.4.19))
for k > 2, let My, := [Ad(_;5)(Xo)|Lip,+s- For k> 1, we have, by (3.3.24),
My = |[-J8, Ad( s5) )HLiers

(8)|S|Lip,sl+%Mk + C( )|S|L1p s+1 |Ad( JS) (X0)|Lip,+781

(©.1.7),(9.1.8),(©.4.20)), (9.4.16) 7 3 (k—1)
< C(s) (518Mk+M5(51 i ).

(9.4.21)

Then ((9.4.19)) follows by iteration from (9.4.21)), provided ¢ is small enough (independently
of 5). m

Finally, by (9.4.12) and (9.4.10)) we get

1
—Jpt = —Jlep+ Y yAd’(“_JS) (Xo) (9.4.22)

k>1

so that

1
10" Lip s < opluip s + ) E\Adl(f_m (Xo)

k>1

6333, A1) ) C(s)8H)"
D ol s+ Mo :@M

k!

Lip,+,s

k>1

CE"

< C(8)lpluip,+.s + MsC(S)W

—1/4 —3/4 352
< 5 <|R0|Llp+s + |p|Llp+5) + 0 5 S (9.4.23)

~S

The estimate (9.1.14) is a consequence of (9.4.18)) and (9.4.23]). We can prove in the same
way (9.1.13) taking ¢; small enough (depending on s,).
At last, by (9.4.5)) and (3.3.35]) we get

|RG" — R§ |1 s < |1RG — Rolysy + Clp' = plys,
for some positive C':= C(s1), proving (9.1.15).
Lemma 9.4.4. holds.
Proor. By we have
—J(p" = (p")) = _JHO(P — ')+ Ad(ss)(Xo) — Ad(—1s(Xp)
+ Z . (Adf_)(Xo) — Ad{_s(X5)) - (9.4.24)

k>2
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Set
By (9.2.15)) in Lemma[9.2.2] (that we applied with IIgp instead of p), and recalling (9.4.10)),
we have
3 i
H/l - JHU(p - pl>’+751 < 614 ’AO - Ai)’+,81 + 61 o ‘H(](p - p,)‘Jr,Sl
+|[JS, JTgp] — [JS', JTop]| 1., (9.4.26)
3 1

581 614 ‘AO - A6’+,S1 + 51 . ’p - pl|+,31 (9427)

because the term in ((9.4.26)) is bounded as
/ / / / /
IS, Jop] = [JS, Top]| 161 S 18 = 8|g 11 opls s, + 185,12 [Mo(p = o)1
B339)

Ssl ’S - Sl|+,81’p’+751 + ’Sl|s1+%‘p - p/’+,81

©219.012.017 ) a )
S (614 |A0 - A0‘+,81 + 51 0 |P - p ‘Jr,sl)(sl

7
+00lp— Pl
(the estimate ((9.1.7)) is applied to 8). By (9.4.27) and (3.3.35]) we deduce that

3 1
0= Vil < O (6140 A 4600 plas). (0.428)
Now, recalling ([9.4.25)),
Vi1 = Ad(_JS)(Vk) + [JSI - JS, Ad](tJS/)(X(/))} .
Hence, for k > 1, we get, setting m) = |Ad](“_JS,)(X(’))|+731,
Uk+1 °= |Vk+1‘+,81 581 |’S|+,81vlc + |S - S/|+,81m;c
5 1+3(k=1) (¢F / ~3 /
< C(s1)07 v + C(s1)0, (51 [Ao — Agls,ss + 0, P lp—p |+,81)
by (0.1.7), (9.2.14) and Lemma [0.4.2] From the previous iterative estimate and (9.4.28),

we may derive

3
ka S 514 (|A0 - A6‘+,81 + |/0 - pl|+781) . (9429)

k>2

Finally, recalling (9.4.24) and (9.4.25|), we get

0" =0 s < V= la(p = )|, + >
k>2

(9.4.27),(9.4.29) 1 _ 1
/ /
< 07 [Ao — Apl sy + 01 o — 4.0

which is (9.1.16)). =



Chapter 10

Construction of approximate right
inverse

The goal of this Chapter is to prove Proposition [8.2.1]

10.1 Splitting of low-high normal subspaces

The first step in order to find an approximate solution of the equation
(@e -9, — J(Ag+p))h =g, (10.1.1)

see (8.2.7)), is to apply the splitting Corollary , whose assumptions are verified by
the hypothesis of Proposition . As a consequence there are sets Ay (€57, Ao, p) C A,
1/2 < n < 5/6, and a sequence of symplectic linear transformations P,(¢) € L(Hg ), n > 1,
satisfying (9.1.21))-(9.1.23)), such that, for all A € A (e;5/6, Ao, p), the conjugation (9.1.34))
holds for any n > 1, namely

(@ - 0y — JAg — Jp)Palp) = Pulep) (@: - 0p — JAw — Jpu) (10.1.2)

where the operators A, have the form described in (9.1.25)-(9.1.26) and satisfy (9.1.27)-
(9.1.31)), in particular A, € C(2C4,c1/2,c9/2) is an admissible split operator according
to Definition 8.1.1, Moreover the coupling operator p, € L(Hg) in satisfies the
estimates ((9.1.32))-(9.1.33)), in particular it is small in the low norm | |Lip.+ s, -

Thus, given a function g satisfying (8.2.5), in order to find a function k such that
holds with a remainder r satisfying , we make the change of variables

g () =P, (p)gle) € Hy . K(p) =P (p)h(p) € Hy, (10.1.3)
and we look for an approximate solution of the equation
(@0, — JA = Jpa )W = ¢ . (10.1.4)

233
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In sections [10.2[ and we shall solve approximately the more general equation
(@E c0p — JU(, N, ) — Jg)h/ =g (10.1.5)

with an admissible split operator 20 € C(2C4, ¢1/2,¢3/2) as in Definition [8.1.1] i.e. of the

form

D
2[(5, )‘7 90) = 1 + :‘;/\ + 9%(5, >" QD) 9 |%|Lip,+,81 S 2C’152 ’ (1016)

and a self-adjoint operator o € L£L(Hg") satisfying suitable smallness conditions (see (10.3.2))).
Multiplying by J both sizes of the equation ((10.1.5)), we look for an approximate solution
h' of

Lh = Jg with L:=Lp+o, Lp:=Jw. -0,+A. (10.1.7)

Notice that the operator Lp is block-diagonal according to the splitting Hy = Hy & Hg,
as the admissible split operator 2l € C(2C1, ¢1/2,¢2/2).

In section [10.2] we shall first find an approximate right inverse of £Lp. Then in section
10.3] we shall obtain, by a Neumann series argument, an approximate right inverse of the
whole £ = Lp + p under a suitable smallness condition on g, see ((10.3.2)).

Finally in section [10.4] we shall apply the results of sections and to obtain an
approximate solution of the equation ((10.1.5) with A = A, and ¢ = p,, namely of equation
, and, ultimately, of (10.1.1). The number n of splitting steps will be chosen in
section large enough (see ((10.4.3)-(10.4.4)), so that the coupling term p, is a small
perturbation of Lp, satisfying the smallness condition .

10.2 Approximate right inverse of Lp

We first obtain an approximate right inverse of the block diagonal operator £p introduced

in (10.1.7).

Proposition 10.2.1. (Approximate right inverse of Lp). Let 2 be a split admissible
operator in C(2Cy, ¢1/2,c2/2) according to Definition [8.1.1 Then there are closed subsets
Ae;n, ), 1/2 < n < 1, satisfying Properties 1-3 of Pmposz'tz'on and N € N such
that, for all N > N, there exists a linear operator Ip := Ip y, defined for A\ € A(e;n,2A),
with the following properties:

e setting
Q :=2("+¢s1)+3, (10.2.1)

where 7' is given by Proposition[{.1.5, we have

H-’Z-Dg,HLip,So 580 NQng/HLiP,SO ) HIDg/“Lip,Sl §31 NQ/Hg/HLip,sl ) (1022)
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and, Vs > sq,
1Z0¢ lLip.s < CN? (g uip,s + Cs)NF (N 4 1R 1 )9 lLips: (10.2:3)

where C' is a constant independent of s (it depends on s1) and R is introduced in
(10.1.6)). Furthermore

IZog'lILip.so s N9 [Lip.so+cr (10.2.4)

e T is an approximate right inverse of Lp, in the sense that

I(£pZp = 1d)g [[Lip,s:
S N0 (g g s + (NS [ R[ip, 50 ) 19 ipss) - (10.2.5)

The rest of this section is devoted to the proof of Proposition [10.2.1]

Recalling Definition|8.1.1} the split admissible operator 2t € C(2C4, ¢1/2, ¢2/2) in (10.1.6))
is block-diagonal according to the splitting H§ = Hp ® Hg, i.e.

Ae, \, ) = <©(f)’ A w(gg’(p)) , (10.2.6)

and, moreover, in the basis of the eigenfunctions {(V;,0), (0,V;)},er (see (3.1.9)), the
operator ® is represented by the diagonal matrix

D := Diag;pm;(g, A)Idz, (10.2.7)
where each m; (e, \) € R satisfies (see (8.1.4)))
m;(e, A) — 5| < Cie?,
and the estimates (see (8.1.7)))

VjeTF (62—252 <omj(e,\) <2¢,'e? or  —2¢;'e? <oymy(e, ) < —%52) (10.2.8)

and, by (8.1.8)),
0,20(e, \) < —%EQId. (10.2.9)

By (10.2.6), in order to find an approximate solution of (Jw. - 9, + A)h' = ¢', where
g € L*(T S, H§), we have to solve approximately the pair of decoupled equations
(J@. - 0y + D (e, N)) hip = g (10.2.10)
(Joe - 9y +W(e, A, ) hig, = gl (10.2.11)
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h/ /
W= (,f) g = (g?) :
& 95 (10.2.12)
hy :=1gh', hg :=1lgh', gp :==Upg', g5 =gy .

SOLUTION OF (|10.2.10)). Recalling ({10.2.6)) and (|10.2.7]), and decomposing

o= Wi(@)V,(x), Nlp) € R,

having used the notation

= / ) (10.2.13)
g =D _di(@W;(x), gj(p) €R?,
jEF
the equation ([10.2.10]) reduces to the decoupled system of scalar equations
(J@. - 0, +m(e, ) () = gi(y), jEF. (10.2.14)

Setting, for 1/2 <n <1,

A ey, 2A) = {)\ X @ L+my(e,\)] > 277(«14)7’ (e, §) € 25 x ]F} (10.2.15)

with 71 = 70/2 and 7 satisfying (9.3.7)), we have the following usual lemma.

Lemma 10.2.2. (Solution of (10.2.10)) For all A € M (g;1,21) the equation ([10.2.10)
has a solution hy = Z Wi(p)W(x), written as in (10.2.13)), satisfying

jeF
||h;'||Lip,HS(']I‘|S|) < O||g;'||Lip,HS+2"(']I‘|S|)> Vj elF. (10-2-16)
Moreover, for all N € N\{0},

||HNh3' ||Lip,Hs(Tr\SI) < CHHNg} ||Lip,Hs+2T(1r\SI)

or , , (10.2.17)
< ONTNING | Lip, sty , Vi €T
Proor. By the Fourier expansion
gile) =" g, gi(6)eC?, gi(0)=gi(-0), (10.2.18)
Lezls|
W)=Y W0, R(0) e C?, M) = hi(-0), (10.2.19)

LeZISI
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each equation ({10.2.14)) amounts to

Ml (0) = gi(0), € Z, where M;,:=iw.-€J +mldy, jeF,  (10.2.20)

are 2 x 2 self-adjoint matrices with eigenvalues m; = @, - £. As a consequence, for any A in
the set A'(g; 1,A) defined in (10.2.15]), the matrices M;, are invertible and ||M;£1|| < ()T,

for some positive constant C' := C(~), for any ¢ € 7Bl Hence the equation (10.2.14) has
the unique solution

=3 M} g0 satistying |5l gecren < Cllgllgoseerey - (10.2.21)
Le7ZIS]

In addition f?;(ﬁ) = MﬁlgA}(E) satisfies the reality condition (10.2.19) since, taking the
complex conjugated equation in ((10.2.20]), we obtain, by ((10.2.18§] m

M-l (0) = gj(=0)

and, therefore, by uniqueness f?;(é) = i/z\;(—ﬁ).
Moreover, since ||M;£1H < C{)T and || Mj|lip = [mylp < 2¢5'e? (see (10.2.8))), we get

s — -5 _ -~ 2 1/2
Hh;'Hlip,Hs(’]I‘\S\) S ( Z <£>2 (||Mj7£1’|hp|g;.(£)| + ||Mj,el|||g}(f)|np) )
LeZS]
s — - - ~ 9 1/2
S (0™ U 1M alsnlg) (O] + 1 15O
LeZS]
S T - T -~ 2 1/2
< (X (0T 1g 00+ 07150 )°)
tezls|
N 52”9}‘ Hs+27(TIsly T+ Hg;'Hlip,HS-‘rT(’ﬂ‘lS\) : (10.2.22)

The bounds ((10.2.21)) and ((10.2.22)) imply ((10.2.16)). The estimate (10.2.17)) is obtained in
the same way, just considering sums over |[{| < N. m

Moreover, with arguments similar to those used in Lemmas [9.3.3] and [9.3.5] using
(10.2.8), the fact that m;(e,\) = p; + O(£?), and the unperturbed first order Melnikov
non-resonance conditions ((1.2.7)), we deduce the following measure estimate.

Lemma 10.2.3. (Measure estimate) Let 7 > (3/2)10 + 3 + |S| (7o is the Diophantine

exponent in (1.2.7)). Then the sets A'(e;n,2) defined in (10.2.15)) satisfy, for € small
enough (depending on Cy,c;),

A (e, M) NA|<e, V1/2<n<1. (10.2.23)
Moreover, if | — A4, <6 <& on ANN, then, forn € [(1/2) +V6,1],
A A A (e, A N A (e — V6, A)| < 612 (10.2.24)
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Remark 10.2.4. The measure of the set [A'(e;1,A)]¢ is smaller than P, for any p, taking
the exponent T in (10.2.15)) large enough. This is analogous to the situation described in

remark[9.3.4)

APPROXIMATE SOLUTION OF (|10.2.11]). We now solve approximately the equation ((10.2.11)),
that we write as

T(hg) =g9c,  T:=Jo. -0, +Wle, ), (10.2.25)

where we regard T as an unbounded operator of L? (T‘S|, Hg). We first extend the operator
T to an unbounded linear operator T* acting on the whole space

L2(T‘S|7H)7 H:HSU]FEBHG:HS@HF@HGv
(see @IT)), by defining
DV ¢
—7—II ——F—1II W (e, A\, )11
1+ 2\ SUF+1+€2)\ s +icW(e, A, 9)llg
(10.2.6),(10.1.6) ,_ Dy ¢
MBS o, Tls + R(e, A, )T 10.2.26
w 1+52)\+1+52/\ s +R(e, A, p)llg ( )
where ¢ > 0 is a positive constant that we fix according to (4.1.5)), ig is the canonical

injection defined in (9.3.34) and (e, A, ) is given in (10.1.6).
According to the decomposition H = Hg g & Hg the operator T* is represented by the
matrix of operators

T = Jw. - Oy +

L0, +

_ Dy ¢
ph— (TR 0+ 1 o T O g = e, (10.2.27)
0 T

and, according to the decomposition H = Hs ® Hy @ Hg, and recalling ((10.2.25)), by the
matrix of operators

DV + cld 0
1+ e2)

T = Jo. -0, + Dy . (10.2.28)

@ 0 —_— 0

1+ 2\
0 0 W(e, A\, )
We look for an approximate solution of

Téht = gg}/ where g(ﬂG/ = iggg - (10.2.29)

With this aim we apply the multiscale Proposition [£.1.5 (in case (£.1.1)-(¢) and (4.1.6)) to

the operator

L, = (1+NT Jw-8,+ Dy +clls +7=Jw- 0, + X, (10.2.30)
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where
w=1+eNw., r=1+NRIg, X,= Dy +cllg+r.

The operator X, belongs to the class €(Cy, ¢;) (see Definition [1.1.2}(i)) for some positive
constant C,c; > 0. Indeed X, is self-adjoint with respect to the scalar product LZ(']I'|S|, H)
(argue as in Lemma and r = (1 + e®A\)RIlg has off-diagonal decay by (10.1.6). More
precisely, arguing as in Lemma (9.3.7] we obtain

&
Pluip+s Ss L+ ) RluprslUeliipsgs S [Rluiprs (10.2.31)

and therefore, by (10.1.6), |7|rip+.s, < C(s1)e. Finally, recalling (10.2.30) and (10.2.28),

according to the decomposition H = Hs & Hyp & Hg, we represent

D I
v +cld 0 0
X 142X
S Dy
14 e2A 11 2n
0 0 W(e, A, p)

and we deduce by the assumption (10.2.9)), and arguing as in Lemma [9.3.8] that

X
r < —ce’Id
D’\<1—|—52)\) = ek

for some constant ¢ > 0. We have proved that X, is in €(Cj,¢;) according to Definition
4.1.2t(7), for suitable positive constants C1, ¢;.

Thus Proposition implies the existence of ¢y > 0 (depending only on fixed positive
constants as C4, ¢y, 71, 71), of closed subsets

£ (g;m,A), 1/2 < n <1, satisfying Properties 1 — 3 of Proposition 1.5,  (10.2.32)
and N € N, such that, for all A € A*(¢;1,20), VN > N,

Vs > 5o, [(Th) uips < C()N(NC=*) 119|150 4.6 (10.2.33)
(T3) Mo < Cls0)NY . |(TR) Muipsy < Cls1)NY (10.2.34)

(see (4.1.20), (£.1.23), (10.2.31))) where Q' is defined in (10.2.1)) and (T%)! denotes

i) the right inverse of IIy(T%),, defined in Proposition .15 if N < N < N(e),

ii) the inverse of IIn(T%)p, if N > N(e),
(10.2.35)
and Hy are the finite dimensional subspaces defined in . We lay the stress on the
fact that IV can be regarded as a fixed constant, being independent of . Note also that

(10.2.34)) is a straightforward consequence of ((10.2.33)), by ((10.1.6)).
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Now, given g; € L*(TFI Hg), we define the following approximate solution of the

equation (|10.2.29)),

h=Tght . W =T, &= 1vgl b i=icdl (10.2.36)
and notice that, by ((10.2.35)),
W' e Moy if N<N(), and A eHyif N> N(e). (10.2.37)

Finally, for all A in

e, A) == Al (e, A) N A% (5, 2), 1/2<n <1, (10.2.38)

where AM| A®) are the sets introduced in (10.2.15), (10.2.32), we define the following
approximate right inverse Zp of the operator Lp: given ¢’ € L*(TISl, HZ), let

Wi=TIpg =Tyl +hi,  Oyhp=> (Ivhi(9)¥;(x), (10.2.39)

jEF

where hy is the solution of equation (10.2.10)) given in Lemma [10.2.2] hg is defined in
10.2.36|) and the projector Il applies to functions depending only on the variable ¢ as in

9.3.9).

Lemma 10.2.5. The operator Ip defined in (10.2.39)) satisfies (10.2.2))-(10.2.3]).

PROOF. We first estimate the function hlfy = Igh? = Tl (T%) ‘g, in (10.2.36). Since
g |Lips < C(s) by (3.3.33), the estimate (3.3.12)) implies that, Vs > s,

! _
1P tip.s = 1T |[ip,s = [ITe(Th) " g [lLip.s (10.2.40)

< ONTE)  Ellaps + CEITE) & e
B L) i 8 s + C(8)(TE) ™ fuaplgie I
-~ N Lip,s1 gN Lip,s S N Lip,s gN Lip,s1

uexs Ny S o
< CNY||gh lip,s + C ()N (N 1 1R, 1 o)l g ILipsy

OzH.Em .
< ON| g5 lluip,s + Cs) NV (N 4 1R[pip 4 0) |9 lip.s,  (10-2.41)

where C' is a positive constant which depends on s;. Moreover (10.2.40)), (3.3.33)), (3.3.8)),
(10.2.34), (10.2.36)), (A 1.13) imply

/ /

”thHLip,Sl 581 “hﬁ HLiP781 581 NQ ”g(/GHLip,Sl ) (10'2'42)
/ ’

186 |Lip.so Sso 17 Lip.so Sso N 1196 Lip.so - (10.2.43)
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In addition, Lemma [10.2.2{and the fact that ¥;(z) € C°(T?) for all j € F imply that Iyhy
defined in (|10.2.39) satisfies, for s > s,

I0xhe uips < max (OISl IR iy e nity + COI IV RS i o1 o)
)
<N (C?&XHQQ‘HLip,HS(TIS‘) +C(s) r?eaFXHg;'HLip,Hsl(’ﬂ‘\S\))
< N7 (Cllggllvip,s + C ()l g8 lLip.ss) (10.2.44)

using that ¢}() = (gp(p, -), ¥;) L2, see (10.2.13)).
In conclusion, by (10.2.41)), (10.2.44]), the fact that 27 < @', (10.2.42]), (10.2.43)), (10.1.6]),

the function ' := Zpg' defined in (10.2.39)) satisfies (10.2.3)) and (10.2.2)). m

Lemma 10.2.6. The operator Ip defined in (10.2.39) satisfies (10.2.4]).

PROOF.  Recalling (10.2.39), that W;(x) € C®(T?) for all j € F, and arguing as in
(10.2.44)), we obtain

(10.2.16))

TN g (| Lip,so Sso ﬂjf.lgFX||h§||Lip,Hso(T|S\) Seo IglgFX||9}||Lip,Hso+2r(qr\S|)

551 HgI/F"|LiP750+QI

where Q" = 2(7" + ¢s1) + 3 is defined in ((10.2.1]). Hence, in order to prove ((10.2.4)), it is
sufficient to show that

176 ILip.so Ssr 196 NLip.so+er (10.2.45)

We use a dyadic decomposition argument. First, given an integer N > N, we define a
sequence (M, )o<p<q Of positive integers, ¢ > 1, by

My:=N, M,:=2M, ,,Vpe[l,q—1] and 2M, , < M,:=N <4M, ,

so that
[[O,N]] - HO,M()H U...u [[Mq—la Mq]] .

For 0 < p < ¢, we set II, := II;, and we define the dyadic projectors
No:=1ly, Ap:=1I,— I, =1L Vpe[l,q, I:=1d—1I,,.

For any function h € Hy (recall that N = M,) we consider its dyadic decomposition

q
h=Y h, where h,:=Ah, (10.2.46)
p=0
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and, for 0 < p < ¢, we denote

p
H, = he = IL,h . (10.2.47)
=0
In order to estimate hg := Igh! we recall that, by ((10.2.36]) and ((10.2.35)), we have
INT'RY =g, YN >N, (10.2.48)

and the function h? satisfies (10.2.37)). The key estimate is the following:

o Let g, := Apggv. Then, each function hf; = Aphﬁ/, p € [0, q], satisfies

/ Q|| 8 i il
||h§: ILipso o1 N€ ng_1 + gf) T 91 T Ip+2|lLip 5o+ (10.2.49)
i ) 2.
+ M, (10 ([uipso + 1192 Lip.so)

with the convention that glti =0forl<0Oorl>gq.

We split the proof of (10.2.49) in different cases.

Case I: 0 <p < ¢g—3and M,.; < N(e). Applying in (10.2.48) the projectors II,,; and
I, 15 for 0 < p < ¢ — 3, and using the splitting Id = 11,4, + Upﬁl, we get

Do T Ty B+ [, T B = GE, where  GE L, = IT,0gh,  (10.2.50)

and therefore
12 !
ThaHY = Gh oy — 11, T, b (10.2.51)

p

!

where 7;?“ = ]Yer2(Tjj)|7.[Mp+1 and H1§+1 = Hp+1h’j/.
We claim that 7;d+1 has a left inverse. Indeed, by ({10.2.32))-([10.2.35)) (applied with M,
instead of N) each operator 1T, (T*)

H has a right inverse
[Har, o
p

Ry = (TJLPH)_l VA S ST

Taking the adjoints in the identity HPHTﬁRpH = Idy My WE obtain
R;+17;7ﬁ+1 = IdH]Merl where 721—&-1 = p+2(Tu>|7-lMp+1 )

ie. Ry Hu,y, — Mo,y is a left inverse of 7j+1, that we denote by (7j+1)_1 =R

By (3.3.13)) and since R,+1 = (T}f/l,wl)_1 satisfies ((10.2.34]) we deduce that

/

(T ™ e, < Cls1) M, (10.2.52)

p
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Applying the left inverse (7;}1+1)_1 in (10.2.51)) we deduce that HpJrl = ]Ypﬂhﬁ, may be
expressed as

/ _ /
H£+1 = (Tﬁﬂ) 1G£;+2 (7j+1) 1Hp+2TﬁHpL+1hﬁ .

p

Finally, applying the projector A, we get, setting g, := Apgg\,,

hE = AHE = Ay(Th ) gl + g+ g + 0hys) (10.2.53)
+ A(TS) G (10.2.54)
— A(TH ) T o THITS B (10.2.55)

For p = 0,1 the previous formula holds with gﬁ_1 =0 and Gﬂ_2 = Gﬁ_1 := 0. In particular

for p = 0,1 the term ((10.2.54)) is not present.

We now estimate separately the terms in (10.2.53))-({10.2.55]).

ESTIMATE OF ([10.2.53). By (3.3.8), (10.2.52) and since M,;; = 2M, we have, for
pzoa"‘)q_gu

||Ap(7j+1)_1(9f771 + gﬁ + gf)+1 + gfﬁz) ||Lip780
Ser MpQ ||gf;—1 + gf; + g;ﬁo-;-l + g?;+2||Lip,80
Ser NNGE_1 + gh+ Gt + GrallLipsorar - (10.2.56)
Note that we make appear the multiplicative constant N9 to deal with the cases p = 0, 1,

where g is in the last sum (we use My, My < 4N). Notice that the constant C(s;) in
m does not depend on N.

ESTIMATE OF ((10.2.54]). Denoting
By, = {i € ZF* . i < M,}, (10.2.57)

we have, if 2 <p < ¢ — 3 (for p = 0,1 this term is not present)

] ]
||Ap(7j+1) 1G:;szLip,sO 550 |Ap<7j+1)|ylMp_2|Lip,so||Gf072||Lip,sO
50 d(B,- 2, B, e ‘A )|7-[M . LlpslngNHLlpso

({10.2.57),(10.2.52), (10.2.36)

M_(Sl_SO)MI?IHg(’GHLiRSO , (10.2.58)

~oS1 P

keeping in mind that M;,; = 2M, for 0 <[ < p.
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EsSTIMATE OF (10.2.55). By (3.3.8) we have
— /
1A (TF) ™ L2 TS B i

p

NSO }A p+1) H 2TﬁH+1‘LlpsO|h HLIPSO

(13.3.14) L N
580 (B B;CH-I) (62 SO)| p+1) Hp-&-?TﬁHp—H

<

~oS1

!/
|htt ||Lip780

Lip, s1|
Mpf(&’l*So)M;?”rlHhﬁ/HLip’sO ’ (10.2.59)

using that |11, 2T |Lip.s, Koy Mpro Ss, M,. Now, since s, is large according to (4.3.6)), and
Q" = 2(7" + ¢s1) + 3, we have that Q" — (s; — s9) < —1 and by ((10.2.53))-(10.2.55)) and
(10.2.56)), (10.2.58), (10.2.59) we obtain the estimate ({10.2.49)), for any 0 < p < ¢ — 3 and
Merl S N(S)

Case II: 0 <p < ¢—3 and M,;; > N(e). We have just to replace (10.2.50)) with

Dy TH Ty B + I, THIY B = G

and apply the inverse (Tuﬂ)*l of 7'ﬁ+1 = T1%4p+1 (recall that by (10.2.35) this operator

p p

admits an inverse), which satisfies (10.2.34]). Then H =1 +1hﬁ satisfies

HY o= (TF) 7 G — (Th) M THIL Y

p p

and, applying A,, we derive the estimate (10.2.49) in the same way (notice that since the
functions gf)_l, ceey gf) 4o are orthogonal for the scalar product associated to the so-norm, we

have ||9£71 +.ot ggH”Lip,SO < ||gf)71 +...+ gf)ﬂ + g£+2||Lip,80)-
Case III: ¢ — 2 < p < q. By (10.2.36)) we write

by = DphF = A(T5) gy
= Dp(TR) 7 (ghy + - 98) + Ap(TR) T, agy
Now recalling (10.2.57)), and since p —2 > ¢ — 4, M, = N, we have that
d(B;

p—1

B, o) > M, , > N/32.

Hence, arguing as above, we get by (10.2.34)), (3.3.14]), (3.3.8)),

1B |Lims Sor N9 (1951 lLipso + -« - + 1168 Limso) + NN TR) ™ wipsa 8 [ Lipyso
Sor (195t llnimsorer + - -« + 168 Lipsorar) + N7 HIgk Lipso -

In conclusion, since N~7! < M, ! the estimate (10.2.49) is proved for any p € [0, q].
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By ((10.2.49)) we have
15 0.0 S0 N* (g1 l1Eip 04 + 195 Eip soe0r + 1511 1ip s 10 + 19512 Fip 50 1)
— / _
+ Mp 2||hTj ||I%ip,so + Mp 2||g(/G||iip,so : (10260)

Taking the sum for 0 < p < g of (10.2.60)), recalling that g, := Apggv, the definition of gg\,
in (10.2.36)), and that My = N, we obtain

/ — oy — — ’
Hhﬂ Hiip,so Ssl NZQ ”g(/GHiip,soJrQ’ + N QHgé}”iip,so +N 2||h1:1 Hiip,so :
For N™' < §(s;) small enough, this implies
!/ 0
17 | Lipuso o1 N9 Nl 9g lLip,sor -
Then the function hg := Tgh® satisfies, by Lemma the estimate

— !
1 llipso Sso NNl gellLip,so

Since N is a fixed constant, depending on s;, this inequality implies (10.2.45). The proof
of the lemma is complete. m

We now prove that Zp is an approximate right inverse of Lp satisfying (10.2.5)).

Lemma 10.2.7. (10.2.5) holds.

Proor. We have to estimate

(LpTp — 1d)g Lol — ¢ (Jo. -0, + MK — . (10.2.61)

Recalling the definition of A’ := Zpg' in (10.2.39), (10.2.10)-(10.2.11)), Lemma [10.2.2}
([[0.2.25) (10.2.27), (10.2.35), (10.2.36), we have

_HJ_g/
Jo. -0, +M)h — ¢ = NI . 10.2.62
e ORI g <HGHﬁ(Tﬂhﬁ’—gé’)> 0262

Hence by ((10.2.61]) and (|10.2.62) we have
_ / !/
| (e 0+ 200 = gy, Ser Mgl + TR = )iy (10.2.63)
/ /
Sor TN GellLip,ss + IIET* B [[Lip,sy + 1595 Iluip.s:

o N7O)lg iy + N~ IETE 1 5,

~oS1

by the smoothing property (4.1.13]).
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Recalling the form of 7% in (10.2.26)), and writing Dy = D,, + (Dy — D,,), we obtain
TR = ITET8 n kY

— I3 J@. - O,Ih k! + (I3 Dy Ilon b + 5 (Dy — D,,)hY)

1+ e2X
1
+ mnﬁcnsnmhﬁ’ + I RIIghE . (10.2.64)

Notice that, by (10.2.37), if N > N(g) then R € Hy and the first and second terms in
(10.2.64)) are zero.
In conclusion, by ((10.2.63)), (10.2.64)), using (3.3.8)), (3.3.33)), we get

(T - B+ 20 — ¢ i, (10.2.65)
—(83—S / /
Sos N7 ([ g [ip.se + 1Dy — D) B ||Lip.sy + IRIeh? [|Lipss + N[|AH|1ip,ss )
eoom . .
Ses N7V (g Lipss + NI |Lip,ss + 1R Lip,ss 12 [Lip,s: )

(10.2.40), (10.2.41), (10.2.42) /
Ses NGO NOH (]| o/ | i sy + (N30 1 R0 4 s )19 Lipyss))

(and recall that g; = IIgg’ by (10.2.12)). Recalling (10.2.61), the estimate proves
{023, =

Now by Lemma[10.2.3|and (10.2.32), A'(g;7, ) and A*(e;n,2l) satisfy properties 1-3 of
Proposition[4.1.5] Since these properties are preserved under finite intersection, this implies
the following lemma.

Lemma 10.2.8. The sets A(e;n,2l) defined in (10.2.38)) satisfy properties 1-8 of Proposition
[4.1.5

10.3 Approximate right inverse of L =Lp + ¢

In this section we construct an approximate right inverse of £ = Lp + o by a perturbative
Neumann series argument, for o € £(Hg) small, using the approximate right inverse Zp of

Lp found in Proposition [10.2.1]
We denote

U(s) = Uno(s) = [Rluip+,s + |0l Lip4,s - (10.3.1)

Proposition 10.3.1. (Approximate right inverse of £). There is co > 0 (depending
on s1) such that, for N > N, if o satisfies

|Q|Lip,slNQ/ — |Q|Lip751N2(Tl+§51)+3 < ¢, (10'3'2)
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then VA € A(e;n,A), 1/2 < n <1 (where the set A(e;n,2A) is defined in Proposition|10.2.1)),
the operator Id + Zpo is invertible and

WARES IN = (Id +IDQ)_1ID (1033)
1s an approximate right inverse of L, in the sense that

H(ﬁI - Id)g/HLip,sl Ses

/ —(s3—s g2—38 / (1034)
N@FIls 1)(Hg/HLip,53 + (Ng( 371 4 N9 U<33))Hg/HLip,sl> .
Moreover the operator I satisfies
HIg/HLip,s1 581 NQ Hg/HLip,s1 ) (1035)

IZ9 lLip.s < CNVlg |[Lips + C()NV (NCT + NVU(5)llg [Lipss - Vs = 51, (10.3.6)

where the constant C' is independent of s (it depends on sy ). Furthermore

||Ig/||Lip,so ,581 ||g,||Lip,so+Q’- (1037)

The proof of Proposition [10.3.1]is given in the rest of this section.
We first justify that the operator Id+Zpp is invertible and provide appropriate estimates
for its inverse, as an application of Lemma [3.3.13] By (10.2.2)) and (3.3.8]) we have

1Zp0h |Lipse Sso NN 0M [Lipso Sso N 0l Lipyso |2 Lipyso »

! < Q’ / < QI ’ (1038)
“IDQh ||Lip,81 ~S1 N ||Qh ||Lip,81 ~S1 N |Q|Lip,sl ||h ||Lip,51 P
and, by (10.2.3), (10.3.1)),
IZpoh||Lip.s < CNV|[oh||Lip.s + C(s)N? (N0 + U(s)) |07 || ip.s.
D, ,
< ONYolvip,s 17 [[uip.s + C ()N [olvip sl 2 | Lip.s,
F CE)N? [oluipy (N + U() 11 i (10.3.9)

where C' = C(s1). Hence, there is a positive constant ¢y (depending on s;) such that, if
|0lLip.ss N9 < o, (10.3.10)
then the operator Zpp satisfies, by (10.3.8)), (10.3.9)) and recalling also ((10.3.1)),

1

| Zpoh ||Lip,sy < §||h'||Lip,so (10.3.11)
1

1 Zp0l||Lip,s; < §Hh'!|Lip,s1 (10.3.12)

1 )
IZo0k s < IR ips + C(8) (N 4+ NOU5)) [H 1, (10.3.13)
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By (10.3.11)-(10.3.13) and Lemma [3.3.13| (applied with R = Zpg and E = L*(TFl Hy)),

the operator Id + Zpp is invertible and its inverse satisfies the tame estimates

1(Id + Zpo) "' ¢/ |Lip.so < 2019 l|Lip,so (10.3.14)
[(Id + ZDQ)_lgl”Lipm < 2[|g'l|Lip,s: (10.3.15)
1(1d + Zpo) "' llLips < 2019 |Lips + C () (N<C) + N9 U ()| || ips: (10.3.16)

for all s > s;. We now estimate the operator Z defined in ((10.3.3]).

Lemma 10.3.2. The operator T = (Id + Ipo) 'Zp defined in (10.3.3)) satisfies (10.3.5))-
([10.3.6) and (10.3.7).

Proor. By (10.3.15) and (|10.2.2) we have
IZ9'l[tip,s1 < 21Z0 ltipsy Sor NN lleip,ss

which is (10.3.5). In addition (10.3.16), (10.2.2), (10.2.3), (10.3.1), imply

1Z9lLips < 201Zpg lLip.s + C(5) (NE=Y + NVU(5)) | Zng lLip.ss
< ONYlg'uips + C(s)NY (N0 + NVU(5)) 19| ipess

proving ((10.3.6)). Finally, by ((10.3.14]),

129 ||Lip.so = II(Id + Zpo) " Zpg' |Lip.se < 21209 l|Lip,s0
@z1)
Sa 19 lILip.sorr

which is (10.3.7). m
We now prove that 7 is an approximate right inverse of £ satisfying (10.3.4]).

Lemma 10.3.3. (10.3.4) holds.
PrROOF. Recalling that £ = Lp + o by (10.1.7), and setting

W o=Tg (1d + Zpo) " (Zng) , (10.3.17)
we have
(LT —1d)g = Lph' + ob' — ¢
= £D<Id +IDQ)h/ - £DIDQh, + th - g/

= ﬁDIDg/ — ﬁDIDQh/ + Qh/ — g/
= (,CDID — Id) (g/ - Qh,) . (10318)
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Then we estimate ((10.3.18]) as
I(£Z = 1d)g|ip.s; = (LpZp —1d)(g" = 0h')|[Lip,s,
[z3 @3y .
Soo N (g 0 i

4 (N1 4 U (53)) (1 i + P i)

B39 @31).@39) ,
Ses N@ sy (||9'||Lip7s3 + [ 0|Lip.si |2 | Lipyss + 10]Lip.ss NP (|9 | Lip,s:

4 (NSGa=s1) U(s3)) (19 [|Lips: + ’Q’Lip,mNQlHg/”LiP:SI))

(10-3:17),(10-3.6)), (10-3-2)), (10.3.1))
<

~vS3

which proves ((10.3.4)). m

NQ/+17(53781)(HgIHLip,53 + (N<(53781) 4 NQIU(S;),))HngLip,sl>

10.4 Approximate right inverse of w. - 9, — J(Ay + p)

In this section we complete the proof of Proposition [8.2.1] As said in section [10.1], by the
hypotheses of Proposition [8.2.1} the assumptions of Corollary are satisfied by (Ao, p).

Corollary then provides, for all A in A (g;5/6, Ao, p), the conjugation (see (10.1.2))
(ws : a«p - JAO - Jp>73n<90) = ’Pn(QO)(U_JE ' ago - JAn - Jpn) )
where A, is a self-adjoint block diagonal operator of the form

Dy
Ay = ———
1—1—52)\+

see (9.1.25))-(9.1.26)), satisfying (9.1.27)-(9.1.31)), in particular A, € C(2C1,¢1/2,¢2/2) is an
admissible split operator according to Definition 8.1.1] The sequence (P,(¢)) of symplectic
transformations satisfies (9.1.21)-(9.1.23) and R,, p, satisfy (9.1.29)-(9.1.33)); in particular

Ry,

3y\n
[Paltips < 017 (10.4.1)

We define, for 1/2 <n <5/6, the sets
A<€) n, A07 p) = AOO<€) n, A07 p) ﬂ < ﬂ A(é" n + T, An)) (1042)
n>0

where A, is defined in Corollary [9.1.2) A in Proposition [10.2.1] (i.e. (10.2.38))) and the
sequence (17,) is defined in ((9.1.37)). Note that we can apply Proposition [10.2.1jwith 2l = A,
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for any n > 0, because A, € C(2C4,¢1/2,¢y/2). In Lemma [10.4.4 below we shall prove that
the sets A(e;n, Ao, p) satisfy properties 1-3 of Proposition [8.2.1]

CHOICE OF THE CUT-OFF N AND OF THE NUMBER n OF SPLITTING STEPS.
For any v € (0,¢), we choose N € N such that

__3 1 __s 1
N € [V e T + 5) (10.4.3)

and the number n € N of splitting steps in Corollary as

3k, 3k ,
= min{k eN : 02 NQ = §l2) pAreas < Co}

where 6, = £* (see (9.1.20)) and (9.1.2))) and c is the strictly positive constant of Proposition
M0.3.1l Hence

3yn / 3yn— f
SN <, andif n>1, 827 N > . (10.4.4)

Remark 10.4.1. In the sequel we suppose that v is small enough, possibly depending on ss
(the aim is to obtain estimates without any multiplicative constant depending on s3). Since
v € (0,¢), any smallness condition for v is satisfied if € is small enough, possibly depending
on s3, which is a large, but fized, constant. For this reason, often we will not explicitly
indicate such dependence. However it is useful to point out that, for e fixed, our estimates
still hold for v small enough. In fact, in Proposition we extend some estimates on
the s3-norm to estimates on the s-norm for any s > s3, with a smallness condition on €
which does not depend on s but only on sz, while the smallness condition on v depends on
s.

In the sequel of this section the notation a < b means that a/b — 0 as v — 0.
By (10.4.3) that, for v small enough, N > N.
By (10.4.3), (8.2.1) and recalling that Q" = 2(7' + ¢s1) + 3 and ¢ = 1/10, we have

NOH Nl o3 N (-90sms1) )8 (10.4.5)
N@HI=(a=s1) < =g N=(9=s0) < =368 (10.4.6)
Moreover, by (10.4.3)), (10.4.4)), (8.2.1)), we have
P T ln(31/2) Inlnv~",
[C(s)]" = 06 < et ™0™ < (1 y*l)llﬁg/(g , (10.4.7)

and, for n > 1,
-3Q’ 1

—(3)n—
0, @ Svs—»1 Ly 20, (10.4.8)
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Recalling (10.3.1)), we introduce the notation

Un(8) = Uappa(8) = [Ruluip+,s + |PalLip+,s - (10.4.9)
The bounds (9.1.31)), (9.1.33) where «a(s) = 3¢ "7 %2 and (10.4.7)), (10.4.8) provide the
S9 — 51
estimate
InC(s3) _ 3Q" (3 s3—s 14 20(s3)
Un<83) 553 2(111(1/71)) 1n(3/25) 1 33—s1(4+3gsg—3?) [(|R0‘Lip,+,53 + ‘,O‘Lip,+,33)512+ 3 + 1]
825 n S 3Q’ s$3—S
<o () FA R EEEED [ )
InC(s3) __9Q"  _ 9Q's
s 2(In(r7h) WG/ T e T e [v'e? +1]
B2) o
< C(sz)v 1. (10.4.10)
The estimate ((9.1.23]) provides similarly
PE Lip sy < Cls3)r 710 . (10.4.11)

SOLUTION OF (8.2.7)).

By (10.4.1) and (|10.4.4)), the smallness condition ({10.3.2)) is satisfied by ¢ = p,. Then
Proposition [10.3.1] applies to the operator £ := Ji, - 0, + A, + pn, implying the existence

of an approximate right inverse Z := Zy,, defined for A € A(e;n, Ay, p) (see (10.4.2))),
satisfying (10.3.4])-(10.3.7]). The operator Z satisfies

. - -
1Tl o NNGlipes < v ipes (10.4.12)

and

. 53—8 ! a
1Z9lipss < ONPGllip,ss + Cs3) (N2 + N Un(s3)) |9 ip,ss

O @, PRI
< v 20H9|’Lip,53+(’/ e 4 10)“9”Lip,51

1~ _6 |~
S V20 ||g||Lip,53 +v s ||g||Lip,s1 . (10413)

In addition estimates ({10.3.4)), (10.4.5)-(10.4.6)), (10.4.10|) give

~ 11 ~ _2 1 11N~
1£Z = 1) luipss < v (IFlluinss + (778 + 7507 8) [Fuip, )
i, o 3~
< v ||gllLipss + v2 19l Lip,s, - (10.4.14)

Now let g € Hg satisfy the assumption (8.2.5) and consider the function ¢ = Py '(¢)g
introduced in ([10.1.3). We define, for any A in A(e;n, Ag, p), the approximate solution
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h' = Z(Jg') of the equation (10.1.7) where Z is the approximate right inverse, obtained in
Proposition [10.3.1] of the operator £ = Jw,-0,+ Ay + pn, and we consider the “approximate

solution” h of the equation ((10.1.1)) as
h:=Py(p)h’  where K :=Z(Jg), ¢ =P (p)g. (10.4.15)
It means that we define the approximate right inverse of @, - 9, — J(Ay + p) as

g = Pu(0)ZIPu(p) 7 . (10.4.16)

approx

We claim that the function h defined in ((10.4.15]) is the required solution of ({8.2.7) with a
remainder r satisfying (8.2.8]).

Lemma 10.4.2. The approximate solution h defined in (10.4.15)) satisfies (8.2.6) and
829).

Proor. We have

([[0A15) _ ©-121),B3.9)
= HP“I(JPI'L 19)

”hHLip,S1 HLip781 S HI(JPn_lg)HLipm
. , s
581 V20 Hpn_ g“Lip,Sl 581 v 20 ||g||Lip,S1 551 gv0 (10'4'17)

< 45 for v small

enough (depending on s;), proving the first inequality in ({8.2.6)).
Let us now estimate ||h||Lips,- We have

)
19 ILipss = Pa " gllLip.ss

-1 -1

Sss |Pa Lip,ss 19l Lipss + 1Py [Lip,si | 9]|Lip,ss

10.4,1,9.1.21 1

by the assumption ||g||Lips, < €°v, see (8:2.5). Therefore ||hl|Lips, < v

Ses v 10| gllLip,s; + |9l Lip.ss
(18.2.5)) 1
s v+ < et (10.4.18)

Then (10.4.13), (10.4.18) and ||¢/||Lip.s, Ser 19llnip.ss Ss, €27, imply

21

1Z(TG ) |[Lipss S €20 20 417 50) S,y 207 (10.4.19)

and finally, using (3.3.8), (9.1.21), (10.4.11)),([10.4.19) and [|Z(J¢")||Lip.si Ssi 220 (see
(10.4.17))), we conclude that

11

1 Lipss = P2 TG ) tipsy Sss €2(v 5 + 107 50) <2 (10.4.20)
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for v small enough (depending on s3). This proves the second inequality in (8.2.6)).

At last, by (9.1.21)) and (10.3.7), for any g € H**¥' N Hg,
”’QappngHLip,So = ||7DHIJ,Pn_lg||Lip,So SJSI ||J7Dn_lg||Lip780+Q’ §31 HgHLip,So-&-Q'

using that so + @' < s;. This proves (8.2.9). m
We finally estimate the error r in the equation ([8.2.7)).

Lemma 10.4.3. ||7||Lips, < v¥? | where r = (@e -0, — J(Ag + p))h — g.

Proor. By (10.1.2)), (10.4.15) and recalling that £ = Je, - 0, + A, + pn we have

r = (®5-8¢—J(Ao+p))h—g
= 73,1[(@E 0 — J(An+ pa)) I — g’}
= —P.J[LN — Jg]
= —P.J[(LT - 1d)Jg'] . (10.4.21)
Now, by the estimates in the proof of Lemma[10.4.2} see (10.4.18), we know that ¢’ = P, 'g
satisfies

1
19 Lipss Sso (7 +0710) Sy €7, g luipsy S €%V (10.4.22)

Hence by ((10.4.21)), (3.3.8]), (9.1.21)), we get

17 llLipss S 1(£Z —1d) T g'||Lip,s,
(10.4.14)) 11 3
S VT“QIHLiRS:a +V§||9/||Lip781
(10.4.22]) ) - 5
2(vi +v2) <&y

~S3 —

Njw

proving the lemma. m

The next lemma completes the proof of Proposition [8.2.1

Lemma 10.4.4. (Measure estimates) The sets A(e;n, Ao, p), 1/2 <n <5/6, defined in
(10.4.2) satisfy properties 1-3 of Proposition (8.2. 1.

PrROOF. Property 1 follows immediately because the sets A, defined in Corollary [9.1.2]
and A in Proposition 1| are increasing in 7).

For the proof of properties [2 I andl we observe that whereas Ay is defined for any A € A by
Corollary [9.1.2 the operators An, 1> 1, are defined for A € Ay (;5/6, Ay, p) C A. Hence
for n > 1, the set A(e,n, Ay) (1/2 < n < 1) is considered as a Subset of A(g;5/6, Ao, p),
and we shall apply Proposition (more precisely Lemma in this setting.
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PROOF OF PROPERTY [2] OF PROPOSITION [8.2.1]. Definining

n—1

A(g5m, Ao, p) := As(E5m, Ao, p) ﬂ ( ﬂ Ae;n + ng, Ak)> , Vn>1, (10.4.23)
k=0

we write the set in (10.4.2)) (recall that 1y = 0) as

A(e;n, Ao, p) = Aoo(g5m, Ao, p) ﬂA(E; n, Ao) ﬂ ( ﬂ Ay (g n,AO,p)> ) (10.4.24)

n>1

Then its complementary set may be decomposed as (arguing as in ((9.1.54))

A(e;m, Ao, p)° = Aol 1, Ao, p)° | Mesm, Ap)°

U (U (s, Ao 0) A5+, A0))) (10.4.25)
n>1
By property [2] of Corollary we have
|Aoo(€51/2, Ao, p)° N A| < bi(e)  with lim by () = 0. (10.4.26)
E—r
By Lemma [10.2.8] _
|A(e;1/2, Ag)°NA| Se. (10.4.27)

Moreover, for n > 1, by ({10.4.23)), we have

An(&f; n, A07 p) N A(€7 n + T, An)c
C Aoo(£55/6, Ao, p) N A(31 + M1, Anc1) N A(3 1) + 1, An)©.

Then, since, for all n > 1, we have |A, — Ay_1]15, < 0% on As(e;5/6, Ag, p) (see (9.1.39))
and 0+ Moy = 1 + 1m0 — 05/% (see ([9.1.37)), we deduce by Lemma [10.2.8] that, for any
1/2<n<5/6,

|An<€; n, Ao, p) ﬂA(e; 7+ 1, An)c‘ < g4 (10.4.28)
In conclusion, by ([10.4.25) and ((10.4.26)), (10.4.27)), (10.4.28)) at n = 1/2, we deduce

|A(5:1/2, Ao, p) N A| < byi(e) + Ce+ > a3/
n>1

< by(e) 4+ Ce + 82" < b(e)

e—0

A(e;n, Ao, p).

with lim b(¢) = 0, since 6; = *. This proves property [2| of Proposition [8.2.1| for the sets
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PROOF OF PROPERTY |3| OF PROPOSITION [8.2.1] By ([10.4.25)) (with Ay, p’ instead of
Ay, p) and ([10.4.24) we deduce, for all (1/2) + §*° < 5 < 5/6, the inclusion

M= N[V A(ein, Ay, ) [V Alesn — %7, Aq, p)

C Moo | Mo ( U /\/ln> : (10.4.29)

n>1
where
Mo = NN [Aso(e:m, A, )N Aol — 6%, Ag, p)

My = N N A, Ap)° N A(e;n — 62/, Ag)
M, = Dy(e3m, Ay, ) N A(Esn + 10, AN (S + 0 — 6777, A,), forn > 1.

By (8:2.3) and noting that 6*/2 < 6%/°, we deduce by (0.1.18) that, for all (1/2) + 6%/° <
n < 5/6,

M| < 672, (10.4.30)
Moreover Lemma |[10.2.8 implies that
IMo| < | N A(esn, A N A(s;n — 672, Ag)| < 67 (10.4.31)
For n > 1, we have, by (applied to (Ajg, p'))
(M| < [Aa(esm, AG, 1) O AEs ) + 0, A°| < 570 (10.4.32)

On the other hand, assumption (8.2.3)) implies (9.1.35)), and so (9.1.36) holds, i.e. |A, —
Al <0Y5 for any X in M, C Ay (g;5/6, Al p') ﬂAoo(e; 5/6, Ag, p), and we deduce, by
Lemma [10.2.8] the measure estimate

(M| < [Aso(e35/6, A, p) NV A(E; 0 + 0oy AL) NV A 0 + o — 67/, Ay

< giafs (10.4.33)

Finally (10.4.29)), (10.4.30)), (10.4.31)), (10.4.33)), (10.4.32)) imply the measure estimate

M| < 6%2 + 6%+ C Y min(5*/5, 53/) . (10.4.34)

n>1

3\yn—1
Now, using that 4, = 552) with §; = &3, there is a constant C' > 0 such that

3a

<4t = n<Cln(ln(6™").

da
5

J
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Hence
4o 3a « 3a
S min(8%, 0,0 ) < Cla(ln(@)ss + Y 4
n>1 3a 4q
n>1,6,% <675
< Cln(In(6 )65 +C55 . (10.4.35)
The estimates ((10.4.34)) and ((10.4.35]) imply, for ¢ small, that
(M| <52,

which is (8.2.4). m

PROOF OF PROPOSITION [8.2.2] The result of Proposition holds for any fixed s3
satisfying . The sets A(g;n, Ag, p) do not depend on the choice of s3. On the other
hand, the smallness condition for ¢ may depend on sz but, as explained in Remark [10.4.],
what is really used in the proof of Proposition |8.2.1]is that v is small enough. This naturally
leads to Proposition [8.2.2] the proof of which is exactly the same as for Proposition [8.2.],
replacing s3 by s, and the smallness condition on e by a smallness condition on v (depending
on s). Notice that the approximate inverse £  depends not only on v, but also on s, in

approx

particular through the choice of N, that, replacing s3 with s in (10.4.3]), results in

3 1 3 1
Ne |: T s—s - =, T s—s _)
v 1 5 v 1+ 5



Chapter 11

Proof of the Nash-Moser Theorem

In this Chapter we finally prove the Nash-Moser Theorem [5.1.2] finding, by an iterative
scheme (see section [11.2), a solution of the nonlinear equation F(X;i) = 0 where F is the
operator defined in ([5.1.2)).

By the procedure described in Chapter @ (see Proposition in order to find an
approximate inverse for the linearized operator at an approximate solution ¢, and thus
implement a convergent Nash-Moser scheme, it is sufficient to prove the existence of an

approximate right inverse of the operator (i) defined in (6.1.22)). This is achieved in
Proposition [11.2.4

11.1 Approximate right inverse of L,

We first give the key result about the existence of an approximate right inverse of the
operator L, := L, (i) defined in (6.1.23)), acting on the normal subspace Hg. We recall
that i(p) = (p,0,0) + J(p) is defined for all A € A;.

Proposition 11.1.1. (Approximate right inverse of £, (i)) Let @. € Rl be (v, 7)-

Diophantine and satisfy property (NR),, . in Definition with vy, 71 fized in (1.2.28)).
Assume (8.2.1]).

Then there is g > 0 such that, Ve € (0,¢¢), for all 3, defined for all A € Ay, satisfying
13| Lip.sst2 < €, there are closed subsets A(e;m,T) C Ay, 1/2 <n <5/6, satisfying

1. A(g;n,3) C Ae;n,3) forall1/2<n<n <5/6,
2. |[A(e;1/2,3)]° N Ag| < b(e) where liII[l) b(e) =0,
e—
3 if |3 = 3lsyq2 < 6 <2 for all X € Az N Ay, then, for all (1/2) + 6> < <5/6,

|Ay N[A(e;n,3)]° N Alesn — 6*°,3)| < 6°7%; (11.1.1)

257
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3 ~ _9 : :
2) such that ||J||Lip,ss+a < eV~ 10, there exists a linear operator

Lt o=l

appr appr,vV

and, for any v € (0,¢

such that, for any function g : Ay — H*3? N Hy satisfying

_9
9llLipss <%, ||gllLipyssre < €070, (11.1.2)

the function h =L, g, h: A(e;5/6,3) — H*** N Hy satisfies

11

1Pllip.si < 0(31)52’/% ;1] Lipsse < Clss)ev™ 10 (11.1.3)
and, setting L, = L, (i) defined in (6.1.23)), we have
Hﬁwh - gHLip,sl < C(Sl)EZV

Furthermore, setting Q' := 2(t" +¢s1) + 3 (where ¢ = 1/10, see (4.1.16)) ) and 7" are given
by Proposition . for all g € H*T9' 0 Hg,

3
2

(11.1.4)

1L epprlLipse Ssr N9lLipsor - (11.1.5)
We underline that the estimate (11.1.9)) is independent of v which defines Laoppr = Lappr.y-

Remark 11.1.2. We lay the stress on the fact that along the proof, any smallness condition
depending on s3 will concern v rather than € (while € is small depending on sy and $s3).
Since v € (0, 5%), these conditions obviously will be satisfied for € small enough (depending
on s3). However to obtain C solutions in section we shall need to replace s3 with
some s that is slowly increasing along the Nash Moser scheme, and we shall use that, for e
fized, the estimates of Proposition hold for any v small enough (depending on s).

ProoF. The proposition is a consequence of Lemma 6.1.2] Proposition|7.3.1, Lemma|8.1.2
and Proposition [8.2.1, By (6.1.23)), (6.1.24) and recalling that w = (1 + £*)\)@. we write
the operator L, acting on HSL,

r Dy e’B
L, = (1+e%\ [*-a —J(A < )} h A= ,
(14" |@e - 2, +1+52)\ Where 1+€2)\+1+52)\
as in (7.1.3). Notice that the term r. = r.(J) depends on the torus i at which we linearize,
see (6.1.1)), unlike B in (|6.1.25)), and thus A. Moreover, by (6.1.27)) and the assumptions of
the proposition

13 ipsarz S €0 3 lLipusyea < V710,

we get

e Lip sy < O(s2)e%(e% 4+ ) < e (11.1.6)

T Lip s ssre < O(s3)e®(e? + 51/_1%) <eipl, (11.1.7)
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Applying Proposition [7.3.1] we get

L= (1+ENP(o) @ 0, — J(ho + 0")]P (). (11.1.8)
where, as in ((7.3.5)), (7.1.4)),
DV 52
Ay :=—+R Ry =11 =—8B 11.1.9
0 1+€2)\+ (I 0 0, 0 1+52)\ ; ( )
and the coupling term o satisfies (7.3.7)), i.e.
|0F Lip.+.s < C(8)(e" + [reLip,4.) - (11.1.10)
By (3.3.35)) and ((7.1.6) we have
| Rolvip+s = [Tooluip,+.s < C(s)e”. (11.1.11)
We want to apply Proposition to the operator
. P (p)g
- + 5 _

namely with the substitutions Ay ~ Ay, Ry = Ilpo, p ~ o7 and g ~ §. First of all
Lemma proves that Ag is an admissible split operator in the class C(C1, ¢q, ¢). Then,
by (TT.1.10), (6.1.26), (TT.1.11), (TT.1.6)-(I1.1.7), we verify that

|Q+|Lip,+,sl S 537
|R0|Lip,+,52 + |Q+|Lip,+,sz S 5_1 ’ (11113)

V(’RO|Lip,+733+2 + |Q+|Lip,+,53+2) <€’ )

for v small depending on s3 (for the last estimate we use the first inequality in (11.1.7))),
which implies the conditions required in (8.2.2) and (8.2.5) with s3 ~» s3 + 2. Notice also

that the function g defined in (11.1.12)) satisfies, by ([7.3.3)) and (3.3.8)), the estimate
[19llLip.s < C()llgllLip,s s Vs = s1,

and therefore, by (11.1.2)), the function ¢ satisfies the assumption

9

lluiner < 2C0)Y, [Fllupsse < Clss)?v < 2(Csp)v) ™

required in (8.2.5) with v ~» C(s1)v and s3 ~ s3 + 2, for v small depending on s3. Note
also that, since v € (0,£%?), we have C(s;)v € (0,¢), as required in Proposition [8.2.1]
Therefore Proposition applies and there are closed subsets (independent of ¢)

A(e;n,3) = Alg;m, Ao, 07) C Ay, 1/2<1n<5/6, (11.1.14)
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satisfying the properties 1-3 listed in Proposition with A = Az, and an operator

Sgppm = Sgppm ., such that the function
h = Loorond h:Ae;5/6,3) — H3+2 N HE
satisfies with s3 ~~ s3 + 2, i.e.
hllipsr Son €5, DllLipsssz S 20710, (11.1.15)

and, see (8.2.7), (8.2.8),

(@ 0p— J(ho+ 0 Nh =G +7 with [[F|lLips, S €207 . (11.1.16)
Set )

-1 . — —1
Lapp'r T 1+52)\ ( )’Qapprom (90)7 h = ( )h ‘Capprg (11117)

By (11.1.16)-(11.1.17) and (I1.1.§), (11.1.12) we get
L,h—g=(1+&N)P(p)F. (11.1.18)
By (11.1.17), (7.3.3), (3.3.§), (I1.1.18) we get

1hllips = IP(@)hllLips < C() 1 Allvip,s
1£uh = gllLip.s = 11+ *AN)P(@)F[Lip.s < C(5)[1FllLip,s

and, from the estimates of b and # in (T1.1.15), (11.1.16), we deduce (I1.1.3), (11.1.4).
Furthermore the estimate follows by (11.1.17)), (7.3.3), (3.3.8) and ({8.2.9).

Let us finally prove that the sets A(e;n,J) defined in ((11.1.14)) satisfy the properties 1-3
listed in the statement of the Proposition Items 1-2 are immediate consequences the
corresponding ones in Proposition . For proving item 3, first notice that, o (deﬁned

in (7.1.4)), Ry = Ilpp and hence Ay (defined in (11.1.9)) do not depend on the torus J at

which we linearize. Then, if ||J — 3|5, 42 < § < %2, we have

|AG — Aol s + 10" — (@) |15 = 10" = (07) |45
(7.3.8)
581 ‘IE - r/s|+,81
(6.1.28) 9 3
€ HZ _lesl—‘rQ S €20 S 537

so that condition ({8.2.3) of Proposition is satisfied. Hence, by the property 3 (see
(8.2.4)) in Proposition | and the 1nclus1on Ae;n — 65.3) C Alein — (626)3,3), we
have

Ay N [A(e;n, )] N A0 = 05,3)] < (£20)5 .
This proves property 3 for the sets A(e;n,J) in Proposition [11.1.1, m
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11.2 Nash-Moser iteration

In Chapter [5| we observed that the nonlinear operator F defined in (5.1.2)) evaluated at the
trivial torus ig(p) := (p,0,0) satisfies (see ((5.1.7)))

| F (N d0) |Lip.s < C(s)e? on A, Vs> s, (11.2.1)

and, in Lemma we have defined, for all A € A, a torus embedding 7;(¢) such that (see
(6-3.5))
[F N 31) |Lips < C(s)e* on A, Vs> sg. (11.2.2)

In this section we define a sequence of torus embeddings (i, (¢))n>2, n > 2, defined for A
belonging to a decreasing sequence of subsets A,, C A which converges, for all A belonging
to the intersection N,>2A,, to a solution in(¢) of F(A;is) = 0.

Fixing v; = C(s1)e? such that || F(i1)||Lip.s, < %01 (see (11.2.2))), we define the decreas-
ing sequence (v,),>1 by

n—1 3
Uy, = V? 7 Upi1 = I/qu? q:= = — 0y, (1123)

for some o, € (0,1/4). Theorem will be a consequence of the following result.
Theorem 11.2.1. (Nash-Moser) Let w. € RS pe (71, 71)-Diophantine and satisfy prop-

erty (NR)%T1 in Definition with vy, fized in (1.2.28). Assume (8.2.1) and sy —s1 >

T+2, 8 >5)+2+71+Q, where T is the loss of derivatives defined in Proposition
and Q' :=2(7' 4+ ¢s1) + 3 is defined in Proposition .

Then, there exists s3 large enough, a constant o, := o.(s3) > 0, satisfying o,(s3) — 0 as
S3 — 400, and g9 > 0, such that, defining the sequence (v,) by , for all 0 < e < g,
for alln > 1, there exist

1. a subset A, C A,,_1, Ay := Ag := A, satisfying

e—

(11.2.4)
A1\ A, <vie,, VYn >3,
where o, = a/4 and o > 0 is the exponent in ,
2. a torus i,(¢) = (¢,0,0) + T, (p), defined for all X € A,,, satisfying
[TnllLipsie2 < Cls1)e”, [ Tnlluipsatre <€, | TnllLipsste < 627/;% ; (11.2.5)
i = in—1llLip.si+2 < C(51)Vn-1 + a%fjf* ,n>2, (11.2.6)
lin — inrlluinssss < 05 ,, n>2, (11.2.7)

such that
‘|F<in)|’Lip,s1 S 527/71 . (1128)
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The rest of this section is devoted to the proof of Theorem [11.2.1]

First step. For n = 1 the torus i;(¢) defined in Lemma , for all A € A = A, satisfies
(5.3.4) and (5.3.5), which imply (11.2.5) and (11.2.8) at n = 1, for € small enough (recall
that v, = O(s1)e?).
Iteration. We now proceed by induction. Assume that we have already defined subsets
A, C A, C ... C A satisfying (11.2.4), and n tori i,...,4,, of the form i,(¢) =
(¢,0,0) + T, (), satisfying (11.2.5)-(11.2.7) and such that holds. We are going to
define a subset A, 1 C A, and, for all A € A,,.1, the subsequent better approximate torus
embedding 4,1 which satisfies (11.2.5))-(11.2.7) and at order n + 1.

We shall define 7,,,1 by a Nash-Moser type iterative scheme, using Propositions [6.1.1

and [[T.111

e Notation. From now, o denotes an arbitrarily small, strictly positive, constant. In
the sequel, when it appears in some inequality (at the exponent), it means that for
any o > 0, if s3 has been chosen large enough and v, is small enough (depending on
s3 and o), the inequality holds. In particular, since v, < v; < C(s;)e?, the inequality
holds for € small enough (depending on s3).

Step 1. Regularization. We first consider the regularized approximate torus
in() = (£,0,0) + Ju() . T 1=y, 3, (11.2.9)

where [l is the Fourier projector defined in (4.1.11]) and

3 __3
N, € [un R P 1] . (11.2.10)

Lemma 11.2.2. The torus i,(¢) := (,0,0) + J,(p) satisfies

_4_,

Tnlluipsirz < C(s)e”, Tnlluipante <& | Tnlluipsssrss <vn® °,  (11.2.11)
_4

Hln - inHLip,51+2 < 52”2 ) ”Zn - \ZJn||Lip,S3+2 S 627/71 ° ) (11212)
_4_

H}—(in)”Limﬁ < 252Vna H‘F(in)||Lip783+2+z < &%y Gv (11.2.13)

where o > 0 can be taken arbitrarily small taking s3 — s, large enough.

PrROOF. The first two estimates in ((11.2.11)) follow by (11.2.5) and (4.1.13)). The third
estimate in (11.2.11]) follows by

i
n||Lip,s3+7+6 = n n||Lip,s3+2
13l < NHITal
[Z0),[29)  _aesn
< C

4
py —F—0
vp 37 g%, 5 < E2u, 0
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for 3(r+4)/(s3 — s1) < 0.
Proor or (|11.2.12). We have

lin = Talluipasiv2 = 1715, Jnllvipas+2

N30 T, | nip g2

(11.2.10),(11.2.5] 3 9 4
<

~s3 V€ Un °

which implies the first bound in ((11.2.12). Similarly (11.2.9)), (4.1.13]) and (11.2.5)) imply
the second estimate in ((11.2.12)).

PRrOOF OF ([11.2.13)). Recalling the definition of the operator F in ({5.1.2)), and using Lemma
13.5.5 (11.2.5)), (11.2.11]), we have

| F ) Inipess < IF Go)lLip.sy + C(81)lin — ZnlLip.sy 42
[z3) (21
< 2¢%u,

proving the first inequality in (11.2.13)). Finally Lemma and (|11.2.11)) imply

| F ()| Lip,ss+217 < [IF(i0) |Lip,ss+24x + C(83)|Tnl|Lip,ss +a+r

D@ ) a, y 4o
553 €+€Vn5 SgynS

for € small, proving the second inequality in (11.2.13]). m

Step 2. Isotropic torus. We associate to the regularized torus 7, defined in :11.2.9) the
isotropic torus 4, ; defined by Proposition with ¢ = 7,. Notice that, by (11.2.11)), the
torus 7, satisfies the assumption ([6.1.4)) required in Proposition The torus 4, is an

approximate solution “essentially as good” as i, (compare ((11.2.8) and (11.2.16])).

Lemma 11.2.3. The isotropic torus i,s(p) = (¢,0,0) + J,5(p) defined by Proposition
0.1.1 with i = 1, satisfies

Hin,cs - in||Lip,80+2 Seo 52Vn ) ||in,5 - in||Lip751+4 < €2V$_J , (11.2.14)

_4_ _4_
Hin,é - inHLip,53+4 < 527/71 5% ) Hjn,z?HLip,53+4 < 527/71 % ) (11215)

and ' )
||]:<Zn,5)||Lip,80 Sso € Vn s
| F (i) [1ip,s1+2 < €27 (11.2.16)

Fl(i - < 2y
| F (in6) lip,sate < €°Vn
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PROOF.

ProOF oF (|11.2.14). Since sq+ 2 + 7 < 51, we have by (11.2.11]),
19 lLip,so+2+7 < C(s1)e”.

Hence by (6.1.6]) (with s = s + 2), we have

2
Hin,é - inHLip,SOJrQ Sso ”F(in)HLip,80+2+z Seo H]:(in)HLipm Sso € Vn (11.2.17)

which is the first estimate in (11.2.14]). Similarly, since s; + 2 + 7 < s9, we have by the
second estimate in ((11.2.11]),

1T lleipstare < ITnlliipsere < €.
Hence by (6.1.6]) (with s = s; +4),
lins — Ballipr 54 Sou 1) i 5 (11.2.15)

Now, by the interpolation inequality ((3.5.10) we have

IF ) lipsitatr Sss IF @i 00 IF (T | ss (11.2.19)
where A Ay
f=1- "L 1-9g.="-TL (11.2.20)
S3 — S1 83 — S1

Therefore (T1.2.19), (T1.2.13), (T1.2.20) imply

4o,
||]:(in)||Lip751+4+z Ses (52Vn)6(52yn 5 )1_6 < 52”711_0 (11-2-21)

for s3 — s; large enough and v, small. Inequalities (11.2.18)) and (11.2.21]) prove the second
estimate in ([11.2.14)).

PrROOF OF ([11.2.15). By (/6.2.6) we have

N 9 v 21D , 4 9
||Jn,5 - Jn”Lip,sg—&—éL 553 ||Jn||Lip,53+5 EVn

for v, small enough, proving the first inequality in (11.2.15). The second inequality in
(11.2.15]) follows as a consequence of the first one and the third estimate in (11.2.11]).

PROOF OF (|11.2.16)). Recalling the definition of the operator F in (5.1.2)) and using Lemma
B.5.5, (I1.2.11), we have

IF (ins)llip.s < 1F (@) llLip,s + C(8)llins — Tnllvip,s+2
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both for s = sg and s = s; + 2, and therefore

[T.2.13)(T1.2.14)
| (#n.5) | Lip.so Seo eV
({1.2.21) ([I1.2.14)
([ F (i, 5) | Lip,s1+2 < ey, 7,

proving the first two estimates in (11.2.16[). Finally

||‘F(in,5)“Lip»83+2 S H‘F(iO)HLip,83+2 + H-/T'.(Znﬁ) — ‘F(iO)HLiP,Ss-I-Q
,Lemma
583 82 + Hjn,é“Lip,53+4

(TT.2.18) 4o,
<

ey ® (11.2.22)
for v, small, which is the third inequality in (11.2.16). m

Step 3. Symplectic diffeomorphism. We apply the symplectic change of variables G,
defined in (6.1.9) with (6(¢), ys(¢), 2(¢)) = in,s(¢), which transforms the isotropic torus i, s

into (see (6.1.10)) .
G slins(p)) = (,0,0). (11.2.23)

It conjugates the Hamiltonian vector field X associated to K defined in ([2.2.7)), with the
Hamiltonian vector field (see (6.1.13))

X, = (DG, 5) ' Xk 0 Gps where K, :=KoG,s. (11.2.24)

Denote by u := (¢, ¢, w) the symplectic coordinates induced by the diffeomorphism G, s in
(6.1.9). Under the symplectic map G, 5, the nonlinear operator F in (5.1.2) is transformed

into

Fa(u(9)) = w-0,u(p) — X, (u(0) = (DGrs(u(9))) " F(Guslu(p)).  (11.2:25)
By ((11.2.25)) and (11.2.23)) (see also (6.1.15])) we have that
Fr(,0,0) = (w,0,0) — Xg, (¢,0,0) = (DGy5(,0,0)) " F(ins(¢)) - (11.2.26)

Hence by ((6.1.11]), for s > s,

17 (2, 0,0)[|Lip,s Ss [[F (9n.6)lLip,s + [|TnllLip,st2ll F (4n.6) | Lip,so
(i12.10) y )
Se N F(ns)llLip,s + [[TnllLipste €°vn - (11.2.27)

By ([1.2.27), (T1.2.16) and (TT.2.11), we have
||F7’L(907 Oa O)”Lip780 580 82Vn

[Fn (0, 0,0)[[Lips1+2 < %17 (11.2.28)

Fo(,0,0) |ipssss < 20 s
|| n(@, ) )||L1p753+2 S € Un
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Step 4. Approximate solution of the linear equation associated to a Nash-Moser
step in new coordinates. In order to look for a better approximate zero

Upt1 (()0) = (907 07 O) + hn+1 ((P) (11229)
of the operator F,(u) defined in (11.2.25]), we expand
Fr(Wps1) = Fu(p,0,0) 4+ (w-0, — duXx, (¢,0,0))hpr1 + Qulhpyr) (11.2.30)

where Q),,(h,4+1) is a quadratic remainder, and we want to solve (approximately) the linear
equation
Fr(¢,0,0) + (w0, — duXx, (,0,0))h,41 = 0. (11.2.31)

This is the goal of the present step. Notice that the operator w-0d, — dyXx,(®,0,0) is
provided by (6.1.21)), and we decompose it as

w-0, — dyXx, (¢,0,0) =D, + Ry, (11.2.32)
where D), is the operator in (6.1.22) with i replaced by 7,, i.e.
w- 0,6 — K (0)C = K] (0)D
= [w-0,¢ (11.2.33)
8w — T ()

Dy,

) Ny

with £ = L,(%,) (see (6.1.23)), the functions Kgé)(go), Kﬁ)(cp) are the Taylor coefficients
in (6.1.14]) of the Hamiltonian X,,, and

0K ()]
= | Duokiy ()[0] + [O6K1G ()] TC + (0K ()] @ | - (11.2.34)
—J{0:Ks; () (01}

In the next proposition we define h, | as an approximate solution of the linear equation
Fn(®,0,0) + Dyh,q = 0.

Rz

n

)

Proposition 11.2.4. (Approximate right inverse of D,,) For all A in the set

A1 = AN AED,Tn) . m=1/2, 0y =11+ yf_l, n>2, (11.2.35)
where A(g;n,3) is defined in Proposition there exists h, 1 satisfying
IBosillipense So v+ 7 It liperse < 2 027 (11.2.36)
such that
Tt = Fn(9,0,0) + Dy hyg (11.2.37)
satisfies

3_6o
|1t l|Lip,s; < Sz . (11.2.38)
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PrOOF. Recalling ([11.2.33]) we look for an approximate solution h,,; = (gg, E, w) of

O\ (w00 —Kg (- KT (@D) (£
Dy || =|w-0.C = (11.2.39)
@) \LDD - JKY (9)C £

where (£, £ £} .= —F,(,0,0). Since Xy, is a reversible vector field, its components

f §”), fgn), fgn) satisfy the reversibility property

() = £ (—¢), 15(p) = —£5"(—0), £5%(p) = —(St{)(—p).  (11.2.40)

We solve approximately in a triangular way.
STEP 1. APPROXIMATE SOLUTION OF THE SECOND EQUATION IN ([1.2.39), i.e. w-8,( =
fé”). We solve the equation

w-0,¢ = Iy, £5" () (11.2.41)

where NN, is defined in ((11.2.10]) and the projector /Iy, applies to functions depending only
on the variable ¢ as in (9.3.9). Notice that w is a Diophantine vector by (6.2.1]) for all

A € A, and that, by (11.2.40]), the ¢-average of Hanén) is zero. The solutions of (|11.2.41|)

are

C=C+[C, [(=w-8,) "My, £", eRS (11.2.42)

where (w-9,) " is defined in (1.6.1)) and (o is a free parameter that we fix below in (TT.2.54).
By (11.2.42)), (6.2.1)), (2.3.7), we have

~
11 eips S N 25 [ipstns < NIIES |wip.s (11.2.43)

(72 = 70/4 is considered as a fixed constant). Therefore, using (11.2.43)), (11.2.28)), (11.2.10)),
and taking s3 — s; large enough, we have for v, small enough (depending on s3)

=~ _ 30 o~ 4 45
IS lipsr+2 < €7 (¢ lLipsa sz < €% ® (11.2.44)
STEP 2. APPROXIMATE SOLUTION OF THE THIRD EQUATION IN ([11.2.39)), i.e.
L% = £ + JrW G + JKVC (11.2.45)
For some v € (0,¢2) such that
|3 | Lipyssra < ev710 (11.2.46)

and which will be chosen later in ((11.2.58]), we consider the operator E;plpr’l, defined in Propo-

sition |11.1.1| (with J ~ ﬁn) Notice that, by (11.2.11]), also the assumption H’jnHLip,sﬁz <e
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required in Proposition [11.1.1| with J ~» J,, holds. Moreover £} satisfies (I1.1.5) (inde-
pendently of v). We define the approximate solution w of (11.2.45]),

@ = Lo, (25 + T [C) + Lo, JE o (11.2.47)

appr,v appr,v

STEP 3. APPROXIMATE SOLUTION OF THE FIRST EQUATION IN ([11.2.39)). With ((11.2.47)),
the first equation in (11.2.39) can be written as

w - Dot = Tlo + gn (11.2.48)
where (m) | () (n)
T, = Koo + [Kn ]T‘C;plpr‘]Kll ) (11 9 49)
g =1 +KQ[C) + K] Lok, (557 + TK{P[C)) -

We have to choose the constant a) e RBl such that the right hand side in (I1.2.48) has zero
average. By (6.1.17)), the matrix

(n)y . _ (9 \~IS] (n)
) =m0 [ Ko

is close to the invertible twist matrix e2.¢7 (see (1.2.12))) and therefore by (1.2.12)) there is
a constant C' such that

S| < ce2. (11.2.50)
By (11.2.49) the operator (T},) : {, € RFI— (T1,¢o) € RFl is decomposed as
(T) = (&5)) + (K] Lo, JKIY) (11.2.51)

Now, for ¢, € RS,

(KT Lo L, TR GV en < KT Lok, TKE Collipso

L([{T2110)

< 2L TR Collips

S

.1.20)]

=
=
=
ot

0(31)52HK§?)C0HLip,soJrQ’
0(81)84(|C0|Lip + ”ﬁn”Lip,SoJrIJrQ/|<0‘Lip)

C(s1)e'Colvip (11.2.52)

= S

. [ .
|/\H I/\! IN:

= ©

= ©

using the fact that so + 7+ Q" < s1. By (11.2.51)), (11.2.50)), (11.2.52)), we deduce that, for
e small enough, (7},) is invertible and

KT~ < 2Ce72. (11.2.53)
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Thus, in view of (11.2.48]), we define

Co == —(T) " H{gn) € R, (11.2.54)

We now estimate the function g, defined in (11.2.49). By (6.1.18]), (6.1.20), (11.2.11])),
(11.1.5), and using that s; > so + Q' + 7,

1gnlltimso < NES eipso + K56 [CllIipso + KT Lk, (£ 4+ TRV lwipso

-~

oo 1€ Mipso + €211 nimso + 2 (15 timsorer + KT [ |Lipsorer) -

Hence by (11.2.44)), (6.1.19)), (11.2.11)),

1gnltipso Soo IE [Lipso + €023 4+ 2 (JI£5 |Lipsoror + £12737)
(11.2.28)
< 821/” +€4V7£73cr —|—82 (821/71;20 —|—€4V$730)

~S1

v, + vt (11.2.55)

~oS1

Then the constant Q/“\o defined in ([11.2.54)) satisfies, by (11.2.53]), (11.2.55)),

Coluip Sou v + 201757, (11.2.56)
Using ([1.2.28), (6.1.19), (T1.2.50), (T1.2.44) and (TT.2.11), we have

15 [ips: + [ TK Colluipsy + 1K [ llips; < 201757,

o~ ~ ,é75
15 [ipssst2 + TR Collipss+2 + 1K [ |ipss sz < €20 ®

(11.2.57)

for v,, small enough.

We now choose the constant v in ((11.2.46|) as
V= (11.2.58)

so that v € (0, g3/ %) and, by the third inequality in , condition is satisfied,
provided o is chosen small enough (and hence s3 is large enough). We apply Proposition
With g= fé") + JK?})@ + JKYIL) [a (and J ~~ J,,) noting that implies
with v defined in , again provided o is chosen small enough. As a consequence, by
the function @ defined in satisfies (for v, small enough)

41— 4_
”@“Lipm < 0(51)527/7?(1 39) < e2uB 30,

P T
|| Lip,s34+2 < 0(33)52,/” 16 (1-30)

. (11.2.59)
S EQV;ﬁ‘F?)U )
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By (11.2.59)) and interpolation inequality (3.5.10]), arguing as above ({11.2.21]), we obtain
~ 2 2 40
||U)||Lip751+2 S 3 Vf:’ s (11260)
for s3 large enough and v, small enough (depending on s3). Moreover, by (11.1.4),
L% — (£57 + JKD G + JKDC) = top (11.2.61)

where v, satisfies

3(1_3g 3_5,
[tnst i, < Clsp)e2 ) < 227> (11.2.62)

Now, since a) has been chosen in ((11.2.54]) so that Tna) + g, has zero mean value, the
equation (|11.2.48)) has the approximate solution

¢ = (w-0,) " My, (TuCo + gn) - (11.2.63)

Recalling the definition of g, and 7,, in we have
gn + TG = £ + K¢+ KV 7@ (11.2.64)

where @ is defined in . By we estimate
ma@m

G + TuCollips: 15 | ipsss + C(51)22 (1< I ipsr + 1D ipyss )

(T228). (249) ((T250). ((0259) |, | ) ) 13 , 30
< ey 2 + Cs1)* (vn + %0 7 + %0 )
2 %—30’
< (11.2.65)

and, similarly, by (6.1.18]), (6.1.20]),(11.2.11)), (11.2.28)), (11.2.44)), (11.2.56)), (11.2.59)), we
get

19 + TnColltipss < €7 [tipss + C(53)e (1] Lipiss + 18| 1ipss)
+ C(53)e2]| Tnlltipss 2 (1] Lipuso + @ |Lipso)
,%4,30- —30

9 —5—30 2 P
< ey + C(s3)evn + C(s3)e’vn ® v

)
)

1

<ev, . (11.2.66)

The function ¢ defined in 11.2.63)) satisfies by (6.2.1)), (2.3.7), (#.1.13), (11.2.10)), for s3—s;
large enough, and ((11.2.65)), (11.2.66)),

{0}

o~ §,4 ~ ,Q,
1DllLipsy < 25, |PllLipsssa < 2vn ™ . (11.2.67)
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Using again the interpolation inequality (3.5.10)), we deduce by (|[11.2.67]), the estimate

" 2 50
[0]lLipsi42 < €20, (11.2.68)

for s3 large enough and v,, small enough. Moreover the remainder

" = I (Tao + gn) (11.2.69)
satisfies
. e EAnY X
Hti(’) JrUHLiP,Sl S Nn (s3 51)HTnCO + gnHLip,Sg, S 521/7% . (11270)

STEP 4. CONCLUSION. We set h, 1y := (¢,(, @) defined in (T1.2.63), ((1.2.42), (T1.2.54)
and (11.2.47). The estimates in follow by (11.2.67)-(11.2.68)), (11.2.44), (11.2.56),
11.2.59)-(11.2.60) and recalling that v, < v; = C(s1)e”. Finally, by (11.2.39), (11.2.42),
11.2.54)), (11.2.61]), we have that

() (e
Do (¢ =[] = | m (11.2.71)
) £{™ Tt

where t§”+1) is defined in (11.2.69) and v,y in ((11.2.61)). The estimate ((11.2.38]) follows by
(11.2.71)), (11.2.70]), the bound

(11.2.10),(11.2.28) 9 %

X
113 £5 [ 1ipss N =025 | Lip.ss < £ vn

and ((11.2.62)). m

The function h,,;; defined in Proposition [11.2.4]is an approximate solution of equation
(11.2.31)), according to the following corollary.

Corollary 11.2.5. The function
.1 = Fa(p,0,0) + (w-0, — duXx, (¢, 0,0))hpis (11.2.72)

satisfies
8o

(11.2.73)

3_
||I‘fn+1 ||Lip,51 < 52V172,

PROOF. The term r,,, in (I1.2.72) is, by (1.2.32) and (11.2.37),

I‘;L_H =Tnti + RZnhn—f—l . (11.2.74)
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By the expression of Ry, in (11.2.34)), using the tame estimate (3.5.1)) for the product of
functions and (6.2.13]), we get

IRz Bt ips Sor (K55 — @llnipssst + [KSD [nipss1 + 106KS0 ipss 1) B [[Lipsy

(6.1.16)),(11.2.11)
581 ||Fn(90’070)”Lip,81+1+1“hn+1“Lip,Sl (11‘2‘75)

having used that s; + 1+ 7 < s, and the estimate ||jn||Lip,32 < e in (11.2.11)). Now, by
(11.2.28)) and the interpolation inequality (3.5.10)), we get, for s3 — s; large enough,

HFn(SO, Oa O)HLip,s1+1+1 < 52Vib_3a . (11276)

So we derive, by (11.2.75)), (11.2.76]) and (11.2.36]), the estimate

2-8
HR‘Znhn-‘f-lHLip,sl < 527/7? 7 .

In conclusion (11.2.74), (11.2.38), (11.2.77) imply (11.2.73). m

Step 5. Approximate solution i,,;. Finally, for all A\ in the set A, ; introduced
in (|11.2.35)), we define the new approximate solution of the Nash-Moser iteration in the
original coordinates as

(11.2.77)

int1 = Ings + Pnt1s  Pngr = DGrs(p,0,0)h,41 , (11.2.78)

where 1,5 is the isotropic torus defined in Lemma [11.2.3| and h,,; is the function defined
in Proposition [11.2.4, By (6.1.11), (11.2.11]) coupled with the inequality s; +4 < s9 + 2

and (|11.2.36[), we have

4 50

|t [Lip,si2 St Rt ipsi+2 Ssy Vn + 2uf (11.2.79)
i [Lipss+2 Soo st [ipwsas2 + 1Tl Lipss+a Bt [ Lipwso < 2y 1077 (11.2.80)
for v,, small enough.
Lemma 11.2.6. The term
Oni1 = Fling) + diF (ins)hnia (11.2.81)
satisfies
lonsaluips, < 22" (11.2.82)

ProoF. Differentiating the identity (see (11.2.25))

DG 5(u())Fn(u(p)) = F(Gns(u(e))) (11.2.83)
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we obtain

DGl s5(u(9) [, Fu(u(e))] + DGy s(u())duFn (u(e)) ]
= diF(Gns(u())) DG s(ulp))[h] .
For u(y) = (,0,0) and h = h,; this gives, recalling (11.2.23), (11.2.78)),

D2Gn,5(907 07 O) [hn—l—la Fn(% 07 0)] + DGnﬁ(@? 07 O)dan((pu 07 0) [hn+1]
= A (i) e
By (11.2.83)) we have F(i,s) = DGy (¢, 0,0)F,(¢,0,0) and therefore, by (11.2.84)),
F(imé) + dif(in75)hn+1
= DG, 5(,0,0) (Fn(% 0,0) + duFn(p,0,0) [hn—i-l]) + DZGn,J(SO’ 0,0)[hny1, Fu(p, 0,0)]
EERLED DG, 5, 0,0)5 4 + D2Gr(2,0,0) b, Fal,0,0)]

(11.2.84)

In conclusion the term g, in ([11.2.81)) satisfies

||Qn+1 ||Lip,81 < ||DG71,5(907 Oa O)r;z—&-l ||Lip781 + ||D2Gn,5(§07 07 0) [hn-i-lv Fn(@? 07 O)] ||L1P781
merm
S (U 1Tlluipsic2) 17 i lip,s:
+ (1 + ||jn||Lip,S1+3> ||hn+1 ||Lip,81 ”Fn(@a 0, O) ||Lip781

(11.2.11)
§51 ||r/n+1||Lip,81 + ||hn+1||Lip,81 ||Fn(<p7 0, 0) ||Lip751 (11‘2‘85)

where we use that s; +3 < s9 + 2. Hence by (11.2.85)), (11.2.73)), (11.2.36)), (11.2.28]), we
get

3_84 4_
HQn+1||Lip,sl 581 527/7% + (Vn + 52V1’?
which gives ((11.2.82). m
3
Lemma 11.2.7. || F(iyi1)||ip.s < €204
Proor. By (11.2.78) we have
Flint1) = Flins + hng1) = Fling) + diF (ins)hni1 + Q(ins, i) (11.2.86)

—100

and, by the form of F in (5.1.2]),
QUing, hn1) = Fling + hng1) = Fling) = diF (ing)hnia

1
= [ Q= DD s + sl s dr
0
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where F is the “nonlinear part” of F defined as

—*(0,R)(i(¢), £)
F(i) = e*(DpR)(i(p), €)
—£%(0, (VoR)(i(). €))

and R is the Hamiltonian defined in (2.2.8)) and (2.2.9). We have

||Q(in,6v hn-&-l)HLip,sl 531 52(1 + ||jn,5||Lip,S1 + ||hn+1||Lip,S1) ||hn+1||iip,sl
[2T), (2T)
551 52|’hn+1”%ip,s1
(11.2.79) 8
<. g

~oS1

The lemma follows by (11.2.86)), Lemma|11.2.6{and (11.2.87)). m

Step 6. End of the Induction. We are now ready to prove that the approximate solution
iny1 defined in (11.2.78]) for all A in the set A,,.1 C A, introduced in (([11.2.35)) satisfies the

estimates (11.2.5)-(11.2.7) and (11.2.8) at step n + 1. By Lemma [11.2.7) and (11.2.3) we

obtain

100

(11.2.87)

. 2-10
||f(ln+1)||Lip,sl S 52”7% 7 = 821/71—1—1

with
o, = 100, (11.2.88)

proving ((11.2.8)),,+1. Moreover we have

||in+1 - Z'n||Li1E>,S1—i-2 < ||in+1 - in75||Lip,S1+2 + ||in,5 - in||Lip,S1+2 + H\in - in||Lip,S1+2

11.2.78),(11.2.79),(11.2.14])),(11.2.12
<

4
=—b0 _
Un + %05 T + &%)

~oS1
1_60
< CO(s)vp + 25" (11.2.89)
proving ([11.2.6)),,+1 since o, := 100. Similarly we get
lint1 = TnllLip,ss+2 < llint1 = dnsllLipss+2 + [lins — TnllLip,ss+2
(1T.2.78),[11.2.80), (11.2.15) 1y
< e, 10 (11.2.90)
[11.2:3),(11.2.88) _4
v, 5 (11.2.91)
and, by (11.2.91) and (11.2.12)),
_4
Hin—f—l - Z.n”Lip,S:s—I—? < ||in+1 - inHLivaa-i-? + Hin - Z.nHLip,Sa-i-? < 52’/71-51 (11-2-92)

provided o is chosen small enough.
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The bound (11.2.7)),,41 for ||in4+1 — inl|Lips, follows by interpolation: setting

— 89— 2 2—
Sog+2=0s+(1—0)s3, 9:&, 1_g:u,
§3 — 51 S3 — 81
we have, using v, = O(g?),
. . . AR —_
||Z”+1 - Z"HLip»52+2 5151783 ”ZnJrl - ZnHLip,sl ”ZnJrl - Zn”Lip,Sg
(2.2 . .
581783 (max{un,e%g 60})9(821/” 5 40)1 2]
1 g 1
Sorss (E20d) (2 0T T < B0 (11.2.93)

for s3 large enough. The bounds for J,,, 1 follow by a telescoping argument. Using the first

estimate in (11.2.5)); and (11.2.6)); for all 1 < k <n+ 1 we get

n+1

4_
1Tt ipsnsz < 1Tt lipsisz + D 1Tk1 = TillLipsi 42 Son € + 207
k=1

O x

< O(sy)e?
since v, = C(s1)e?. This proves the first inequality in (11.2.5)),41. Moreover

1Fsrlleipssrz < NTnlipss2 + lintt = Zallipss+2

(2290 , 1, T
< EVn° +evp

, —u_y, @23 , s
< 2y, 1° < e (11.2.94)

which is the third estimate in (11.2.5)),,1. The second estimate in (11.2.5),.1 follows
similarly by (5.3.4) and (11.2.7)), for all £ <n 4+ 1.

In order to complete the proof of Theorem [11.2.1] it remains to prove the measure

estimates (11.2.4]).

Lemma 11.2.8. The sets A,, defined iteratively in (11.2.35)) with Ay := A, satisfy (11.2.4]).

PROOF. The estimate |A; \ Az| < b(e) with liH(l) b(e) = 0 follows by item [2| of Proposition
e—

11.1.1)with Ay = A5 = A. In order to prove ([11.2.4) for n > 3 notice that, by the definition
of Apq1 (and A,) in ((11.2.35]), we have

1%

A\ Apr = Ay [V A(E D1, Tot) (A (e 00, T, n> 2. (11.2.95)
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In addition, for all A € A,,, we have, for § := %,

X e 29 ~ X
n — Jdn—1|[s14+2 — Npdn — LIN, In—1||s1+2
135 = Jn| 1IN, T — 1N, T |
< HHNn (jn - jnfl>||81+2 + ||HNn (jnfl - jnfl)||51+2
ET)

< NﬁHZn - in71||81 + ||Z.n71 - inleS1+2

[120),([[1213) __s s
< vn (O (s1) v + 2205 1) + 202
> n 1)¥n—1 n—1 n—1

<V’ <er, Wn>2, (11.2.96)

1 2

since v, 1 < C(s1)e®. Now by (11.2.35), we have 0, — 17,1 = v, > 1/351. Hence
the estimates (11.1.1) and (11.2.96)) imply that the set of (11.2.95)) satisfies the measure

estimate
3 4
|An \ An+1| < ng{ < Va/

n—1>

which proves ((11.2.4]). m
Proof of Theorem The torus embedding

oo 1= o + (i1 —d0) + > _(in — in1)

n>2

is defined for all A in C := Ny>1 A, and, by (5.3.4) and (11.2.6))-(11.2.7)), it is convergent

in || ||Lip,s; and || ||Lip,s,-norms with

||7'oo - 7:0||Lip,sl S 0(81)627 ||7'oo - Z'0||Lip,52 S g,
proving (5.1.9)). By (11.2.8)) we deduce that
YA€ Coo = MusiAn,  F(Nis(N) = 0.

Finally, by (11.2.4)) we deduce (5.1.8)), i.e. that C is a set of asymptotically full measure.

Remark 11.2.9. The previous result holds if the nonlinearity g(x,u) and the potential
V(z) in (1.1.1) are of class C? for some q large enough, depending on ss.

11.3 (C* solutions

In this section we prove the last statement of Theorem about C*° solutions.

By Proposition and a simple modification of the proof of Proposition [11.1.1| which
substitutes any s > s3 to s3 (see Remark [11.1.2)), we obtain the following result.
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Proposition 11.3.1. Same assumptions as in Proposition|11.1.1. From (11.1.1)), the con-

clusion can be modified in the following way: for any s > s3, there is v(s) such that the
following holds. , .
For any v € (0,62)N(0,7(s)) such that |J||Lip.s+a < v~ 10, there exists a linear operator
Lo = Loy such that, for any function g : Ay — H* N Hg satisfying
_9
I9llLips: < €5 Nglluips < €710, (11.3.1)

the function h := L h:A(g;5/6,3) — H* N Hy satisfies
4 1
5

Al < Cls)e™vs  Nhlluipsa < Cls)e?v ™0, (11.3.2)

-1
apprg;

=

o

and, setting L, := L,(1), we have

3
2

“Ewh - gHLip,s1 S 0(81)82V

(11.3.3)

Furthermore, setting Q' = 2(7" 4+ ¢s1) + 3 (where ¢ = 1/10 and 7' are given by Proposition
, for all g € H® ™9 N H,

1L | Lipsso0 o1 91 Lipusotcr - (11.3.4)

Note that in Proposition the sets A(g;5/6,J) do not depend on s and are the
same as in Proposition [[1.1.1]

Thanks to Proposition [11.3.1] we can modify the Nash-Moser scheme in order to keep
along the iteration the control of higher and higher Sobolev norms. This new scheme relies
on the following result, which is used in the iteration. We recall that the sequence (v,) is

defined in ([11.2.3)), and the sequence (7,) in (11.2.35).

Proposition 11.3.2. For any s > s3, there is U'(s) > 0 with the following property.
Assume that for some n such that v, < V'(s), there is a map Jp, : X — T, (N\), defined for A
m some set A, such that,

_4
1TnllLipsic2 < C(s1)e? . 1 Tnlluipsatre <€ 0 [ TnllLipste < v ® (11.3.5)

and
”]:(in)HLipm < 52Vn where Zn(SO) = (SO, 0, 0) + jn(@)-

Let

3

N __3 b
Nps€ |vn ™ =1L +1| and J,,:= Iy, J,. (11.3.6)

Then there ezists a map A — J,11(AN), defined for X € A, N A(e; 1, ’jms), which satisfies

4_ 1
lins1 = inllLipsivz < Clsi)vn + %087, linsr — tnlluipse < €%, (11.3.7)

_4
||jn+1||Lip,s+3 S EQanl (1138)
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and
||‘F(in+1)||L1p,s1 < 52Vn+17

where o, 1s chosen as in Theorem|[11.2.1|.

PrROOF. The proof follows exactly the steps of the inductive part in the proof of Theorem

11.2.1) with N, s ~ v, A and with the same small exponent o. We have just to observe
that in Step 1 (regularization)

.
||jn||Lipﬂs+z+7 < NT%“J ||L1p8+2
(11.3.6),(11.3-5) ,3(z+5) _4 _g_a
S C(S)Vn o 5 S 2 )

for 3(t +5)/(s3 — s1) < o and v, small enough (depending on s). As a result

13, <yt
n||Lip,s+14+74+6 = n 3

i.e. in the third estimate of ((11.2.11)) in Lemma [11.2.2] s + 1 can be substituted to ss.

From this point, we use the substitution s3 ~» s+ 1 in all the estimates of the induction

where s3 appears, except the second estimate of (11.2.12)) and (11.2.92)), where we keep s3.
Note that these last two estimates are useful only to obtain the bound ((11.2.93)) on the

norm ||4n4+1 — inl|Lip,ss+2 by an interpolation argument. All the estimates where we apply
the substitution s3 ~» s+ 1 hold provided that v, is smaller than some possibly very small,
but positive constant, depending on s. In particular, the analogous of Proposition

uses Proposition [11.3.1] and the second estimate of (11.2.36)) is replaced by
bt |Lip.sis < €%vn ©

To prove m, we use ((11.2.94) with the substitution s3 ~» s + 1. Note that in this
estimate we need only a bound for ||J,||Lip.sr3, 10t for || T, ||Lip.sss. ®

We now consider a non-decreasing sequence (p,,) of integers with the following properties:
() pr =0 and lim p, = o0 ;
(i) Yn > 1, v <V(s3+pn) ;

(i) Yn > 1, ppi1 = Pn O Ppy1 =P+ 1.

The sequence (p,) can be defined iteratively in the following way: p; := 0, so that property
(ii) is satisfied for n = 1, provided ¢ is small enough (the smallness condition depending on
s3). Once p, is defined (satisfying (ii)), we choose

{pn +1 if v <V(sz+pat1)
Pny1 = .
Dn otherwise .
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Then property (ii) is satisfied at step n + 1 in both cases, because (1) is decreasing. The
sequence (p,,) satisfies (i) because lim v, = 0 (so that the sequence cannot be stationary)
n—oo
and (iii) by definition.
Starting, as in section [11.2, with the torus i;(¢) defined in Lemma forall A € A =
A and using repeatedly Proposition [11.3.2] we obtain the following theorem.

Theorem 11.3.3. (Nash-Moser C®) Let @. € Rl be (v, 7)-Diophantine and satisfy
property (NR)_ _in Definition |4.1.4| with v, 71 fized in (1.2.28). Assume (8.2.1) and
T

So—81 >T+2, 8 > So+2+17+Q ere T s the loss of derivatives defined in Proposition

and Q' :=2(7" 4+ ¢s1) + 3 is defined in Proposition |10.2.1]

Then, for all 0 < e < ey small enough, for all n > 1, there exist

1. a subset A, C A,,_1, Ay := Ag := A, satisfying
e=0 (11.3.9)
A1 \An| <vry, Yn >3,

where a, = a/4 and « > 0 is the exponent in (11.1.1)),
2. a torus i,(¢) = (¢,0,0) + T, (p), defined for all X € A,,, satisfying

1TnllLipss < C(s1)e”, 1 Tnlltipsate <&y 1 TnllLipsstpntz < 52%7% , (11.3.10)

in = in—1llLip.si2 < C(81)Vn-1 + i > 2, (11.3.11)

[in = in-1lLip,so < evf_l, n>2, (11.3.12)
and

I F (i) Lip,sr < €%V (11.3.13)

As said at the end of section (11.3.11)) and (11.3.12)) imply that the sequence (i,)

converges in || ||Lip,s; and || |Lip,s, ROrms to a map i : A — iso(A), defined on
Coo - ﬂnZlAna

which satisfies
VA ECs, F(Nin(N)=0.

There remains to justify that
||jOO||LiP,S = ||ZOO - 7:(]HLip,s < 00, Vs > So .

For a given s > s, let us fix n large enough, so that

3 1
s < 1—131—1—15 with §:=s3+ps+2. (11.3.14)
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Then, by (11.3.10)), for all £ > 7 + 1,
_4
135 = Fe-rlltips < 1 Telluips + 1 Tn-1lluips < 26%0, 7 (11.3.15)

Hence, by interpolation,

([IERE)
9% = Tnallips = 1Tk = Tl 30105
< CONTk = Tn-allfips 1Tk — Tn-alliips
EmEED s, 1 s
< CEw v, > <vlo ™ (11.3.16)

using that v, = 1] |, with q < 3/2, see (11.2.3). Moreover, recalling that 5 := s3 + py + 2
(see (11.3.14))), we deduce by (11.3.10]) that

|37 /|Lips < o0 (11.3.17)
In conclusion, ([11.3.17) and ([11.3.16]), imply, since (3/10) — o, > 0, that

1Fnllips + D 1Tk = Tt lluips < 00,
k>n+1

and the sequence (J,),>n converges in H x H; x (H*N Hg) t0 Joo = ine — io. Since s is
arbitrary, we conclude that i, (A) is C* for any A € Cy.



Chapter 12

Genericity of the assumptions

The aim of this Chapter is to prove the genericity result stated in Theorem [1.2.3]

12.1 Genericity of non-resonance and non-degeneracy
conditions

We fix s > d/2, so that we have the compact embedding H*(T%) < C°(T%). We denote by
B(w,r) the open ball of center w and radius 7 in H*(T%).
Recalling Definition of C'*°-dense open sets, it is straightforward to check the

following lemma.

Lemma 12.1.1. The following properties hold:
1. a finite intersection of C*°-dense open subsets of U is C*-dense open in U;
2. a countable intersection of C°-dense open subsets of U is C*°-dense in U;

3. given three open subsets W C V C U of H*(T?) (resp. H*(T?) x H*(T)), if W is
C*-dense in'V and V is C*-dense in U, then W is C*-dense in U.

Moreover we have the following useful result.

Lemma 12.1.2. Let U be a connected open subset of H*(T%) and let f : U — R be a real
analytic function. If f £ 0, then

Z(f)={welU : flw)#0}

1s a C'°-dense open subset of U.

281
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PROOF. Since f : U — R is continuous, Z(f)¢ is an open subset of U. Arguing by
contradiction, we assume that Z(f)° is not C*°-dense in U. Then there are wy € U,
s’ > s and € > 0 such that: for all h € C°°(T%) satisfying ||h||y+ < €, we have that
f(wo + h) = 0. Let p > 0 be such that the ball B(wy,p) C U. We claim that f vanishes
on B(wg, p) N C(T?). Indeed, if h € C*(T?) satisfies ||h|lzs < p we have the segment
[wo, wo + h] C U, and the map ¢ : t — f(wo + th) is real analytic on an open interval of R
which contains [0, 1]. Moreover o(t) vanishes on the whole interval [¢t| < €||h] I_{l, Hence ¢
vanishes everywhere, and f(wy + h) = ¢(1) = 0.

Now, by the fact that C°°(T%) is a dense subset of H*(T?), and f is continuous, we
conclude the f vanishes on the whole ball B(wy, p).

Let

V.= {w € U : f vanishes on some open neighborhood of w} :

From the previous argument, V' is not empty, and it is by definition an open subset of U.
Let us prove that it is closed in U too. Assume that the sequence (w,) H®-converges to
some w and satisfies: w, € V for all n. Then there is » > 0 such that, for n large enough,
the ball B(w,,r) contains w and is included in U. Using the same argument as before
(with w,, instead of wy), we can conclude that f vanishes on the whole ball B(w,,r), hence
welV.

Since U is connected, we finally obtain V' = U, which contradicts the hypothesis f Z 0.

The proof of Theorem [1.2.3] uses results and arguments provided by Kappeler-Kuksin
[89] that we recall below. We first introduce some preliminary information. For a real
valued potential V' € H*(T?%), we denote by (A\;j(V)),en the sequence of the eigenvalues
of the Sturm-Liouville operator —A + V' (z), written in increasing order and counted with
multiplicity

These eigenvalues are Lipschitz-continuous functions of the potential, namely

A (V1) = Ai(Va)] < [[Vi = Val[peo(ra) S [[V2 = V2

Step 1. The construction of Kappeler-Kuksin [89]. For J C N, define the set of
potentials V := V() in H*(T%) such that the eigenvalues \;(V), j € J, of —A + V(z) are
simple, i.e.

E; = {V € H*(T?) : \;(V) is a simple eigenvalue of — A+ V(z), Vj € J} :

The set Ejnj will be simply denoted by Ey. Since the eigenvalues \;(V) of —A + V (x)
are simple on Fj, it turns out that each function

N:E; R, jeJ,



CHAPTER 12. GENERICITY OF THE ASSUMPTIONS 283

is real analytic. Moreover the corresponding eigenfunctions ¥; := W;(V'), normalized with
| W, |lL2 = 1, can locally be expressed as real analytic functions of the potential V' € E;.
By [89], Lemma 2.2, we have that, for any J C N finite,

1. Ej is an open, dense and connected subset of H*(T?),

2. H°(TY)\E; is a real analytic variety. This implies that for all V' € H*(T%)\Ej, there
are 7 > 0 and real analytic functions fi,..., fs on the open ball B(V,r) such that

() BV.NE,cJFM0) i) VielLs], fisn 20, (12.12)

i=1
Recalling Definition we prove this further lemma.

Lemma 12.1.3. Let P be the set defined in (1.2.36). The subset E; NP C H*(T?) is
connected and C*-dense open in P.

Proor. We first prove that £; NP is C*°-dense open in P. By (|12.1.2))
(BV.r)\f7'(0) C B(V,r)NE;. (12.1.3)
i=1

By Lemma [12.1.2) each set B(V,r)\f;*(0),i=1,...,s, is C*-dense open in B(V,r) (since
fary Z0), as well as their intersection, and therefore implies that B(V,r) N E;
is C*°-dense in B(V,r). Thus E; is C*°-dense open in H*(T¢). Finally, since P is an open
subset of H*(T?%), the set £; NP is C*°-dense open in P.

There remains to justify that E; NP is connected. Let V5, Vi € E;NP. Since Ej is
an open connected subset of H*(T?), it is arcwise connected: there is a continuous path
v :[0,1] — E; such that v(0) = V4, v(1) = V;. Notice that, if V € E;, then, for all m € R,
the potential V' +m € E;. Let \o(t) be the smallest eigenvalue of —A + ~(¢). The map
t — Ao(t) is continuous. Since Vy, Vi € P, we have A\o(0) > 0, A\o(1) > 0. Choose any
continuous map g : [0,1] —]0, +oo[ such that p(0) = Ag(0) and (1) = Ag(1) and define
m : [0,1] — R by m(t) := p(t) — Mo(t). Then ~ + m is a continuous path in E; NP
connecting V4 and V;. In conclusion, E; NP is arcwise connected. m

We have the following result, which is Lemma 2.3 in [89], with some new estimates on
the eigenfunctions, i.e. items (ii)-(iv).

Lemma 12.1.4. Fiz J C N, J finite. There is a sequence (g, )nen of C™ positive potentials
with the following properties:

(i) Vn € N, the potential q, is in E;. More precisely, for each j € J, the sequence of
eigenvalues (An;)n = (Aj(qn))n converges to some \; > 0, with \; # X\ if j,k € J,
j#k.
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(11) Let £, ; be the eigenfunctions of —A + ¢, (z) with ||V, ;|12 = 1. For each j € J,
the sequence (U, ), — ¥, weakly in H*(T?), hence strongly in L*(T%), where the
functions ¥; € L>®(TY) have disjoint essential supports.

(iii) For each j € J, the sequence (V,, ), — ¥, strongly in LY(T?) for any q > 2.
(i) For any p € L=(T%), Vj, k € J,

lim p(x) V5 (2)V? (x) do = 5%/ p(x)Vj(x) dx

n—oo Td Td
where (52 1s the Kronecker delta with values (5i =0, ifk#7, and (55-' = 1.

PrOOF. Let M € N be such that J C [0, M]. It is enough to prove the lemma for
J = [0, M]. We recall the construction in Lemma 2.3 of [89]. Choose disjoints open balls
B, = B(xj,1;),0 < j < M, of decreasing radii 7y > ... > r), in such a way that, denoting
by A; the smallest Dirichlet eigenvalue of —A on Bj, it results

Ao < ... <Ay <A

where )\((]2) is the second Dirichlet eigenvalue of —A on B;. Define a sequence of C'™ positive
potentials such that

M
, Yz eTN\| | B, _ '
qn(T) = " ! \ZLJO with lime, =0, 0<¢g,<n.

n—oo
0, Vze& B(z,r—e€),

It is proved in [89], Lemma 2.3, that properties () — (i) hold with functions ¥;, 5 € [0, M],
in H'(T?), satisfying suppess(¥,) = B; and such that VB, € H,(B;) is an eigenfunction
of —A associated to the eigenvalue \;. Such functions ¥; are in L°°(T%) because they are
smooth in each ball B; and vanish outside.

To prove (ii7), it is sufficient to prove the L” bounds

Vj c [[O, M]] s \le Z 2, sup ||\Pn’j||Lp(’]1‘d) S ij < +00. (1214)

Indeed, since (¥, ;), converges to ¥, in L*(T?) by item (i), the bound (12.1.4), the fact
that W; € L>®(T%), and Holder inequality, imply that the sequence (¥, ;),, converges to
in L7(T?) for any q.

We fix 0 < j < M and, for simplicity, we write ¥,, ; = ¥,, in what follows. To prove
(12.1.4]) we perform a bootstrap argument for the L” norms of the solutions of the elliptic
eigenvalue equation

—AV,(z) + ¢u(2) ¥, () = AV, (2). (12.1.5)
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Remark that the eigenfunctions W, are in C*(T%), but we shall not perform Schauder
estimates because we want bounds independent of the potentials ¢, (x) which are unbounded

in Sobolev spaces. We multiply (12.1.5) by |¥,|" "2, r > 2, and integrate by parts on T,
obtaining

VU, () - V(U (2)] 2T, (2)) + qu(2) |V, (2)|" dz = A, /’JI‘d |V, (2)]"dx.  (12.1.6)

Td

Now r
VU, - V(|| 0,) = (r - 1)|\Dn|r_2|v\11n‘2 = (r— 1)||\Ijn|§_1v\1}n‘2

= K,|Vz,|?
where
Koo=4r2(r—=1), 2= 20(2) == |Uu(2)|2 70, (2).

Hence, by (12.1.6)) and since ¢, > 0,
K, | |Vzu(2)]Pdx < / KV, (2) ] + qu(@)]20(2) ] < )\n/ |20 (2)|? d
T4 Td Td

which gives
lzallen < (K A0+ 1)V 20l 12 < Ozl 12

because the sequence (A,), is bounded, see item (7). The continuous Sobolev embedding

HY(T?) — L% (T?) with d, = 5 implies that ||z, || < C||zn|l 12, €.

d—

IVl g < CollWnllzr (12.1.7)

d—2 T

Iterating (and starting from r = 2), we obtain that the sequence (||U,|1r), is
bounded for any p. Note that if d < 2, we obtain in one step only since in this case
H' is continuously embedded in L? for any p.

(iv) is a straightforward consequence of the convergence of the sequence (¥, ;), to ¥;
in L*(T?) for all j > M and of the fact that the functions ¥; (0 < j < M) have disjoint
essential supports. m

As a corollary we deduce the following lemma.

Lemma 12.1.5. (Lemma 2.3 in [89]) There is a C* potential q(x) such that all the
eigenvalues A;j(q), j € S, are simple (therefore q is in Es), and the corresponding L?-
normalized eigenfunctions V;(q), j € S, have the property that (\If?(q))jeg are linearly
independent.

Consider the real analytic map

A:Es — RS AWV) = (A\(V))jes -
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Lemma 12.1.6. There is a |S|-dimensional linear subspace E of C*(T?) such that
Ngf” ={V € Es : d\N(V) is an isomorphism} (12.1.8)
is a C™-dense open subset of Es, thus of H*(T?).

PROOF. We follow [89]. For any V € H*(T%) we have that the differential
dM@)[V] = (V. ¥])12) -

Since the \Iff(q) are linearly independent by Lemma [12.1.5] dA(q) is onto, and there is a

|S|-dimensional linear subspace E of C*(T?) such that dA(g)z is an isomorphism. Let
(g1,---,9s)) be a basis of E. For any V' € Eg, denote by Ay the [S| x |S|-matrix whose
columns are given by dA(V)[g;], so that

Ns(l) = {V € Bs : dA(V)g is an isomorphism} = {V € Es : det Ay # 0} )

FEs is a connected open subset of H*(T%) and the map V + det Ay is real analytic on Es

and does not vanish at q. Hence Lemma [12.1.2] implies that ./\/S(l) is a (C°-dense open
subset of Fs. m

For any V € P, defined in (1.2.36]), all the eigenvalues \; of —A + V() are strictly
positive, and therefore we deduce the following lemma:

Lemma 12.1.7. The map
1
prEsNP = RELG(V) = (1(V))jes = (A (V) s+ (12.1.9)

1s real analytic and, for any V € Nél), the differential dii(V')|g is an isomorphism onto
RIS,

Remark 12.1.8. More generally, for any finite J C N, there is a (C°°-dense open subset
/\/'}1) of H*(T%) such that, for all V € /\/’}1 NP, the linear map (du;(V));es : H*(T?) — R/
is onto. m

The |S|-dimensional linear subspace E of C*(T%) defined in Lemma [12.1.6]is the same
subspace that appears in the statement of Theorem [1.2.3
Step 2. Genericity of the twist condition (|1.2.12))

Our aim is to prove that the twist matrix o/ defined in is invertible for (V,a)
belonging to some C™-dense open subset of Eg x H*(T?). Note that &7 is invertible if and
only if det G # 0 where the matrix G := (G%(V, a)), res is defined in (T.2.10). The matrix G
depends linearly on the function a(x), and nonlinearly on the potential V' (zx), through the
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eigenfunctions ¥; := W;(V) defined in (1.1.5). By previous considerations, the functions
\IIJQ(x), J €S, where the eigenfunctions ¥;(x) are normalized by the condition ||¥;|2 = 1,
depend analytically on the potential V' € Es, and so each map

Gl . H*(T?) x H*(TY) — R,
(12.1.10)

. 3 ‘
(V,a) — G1(V,a) = 1(2 —6) (3, a¥3) 2, Vi k€S,

is real analytic on Es x H*(T%), as well as the map (V, a) — det G(V, a).

Lemma 12.1.9. The set
NP = {V € Es : detG(V,1) # 0}
1s a C-dense open subset of Es.

PrOOF. Consider the sequence (g,), of C* potentials provided by Lemma |[12.1.4] with
J =S. By property (iv) of that lemma, taking the limit for n — oo in (12.1.10]), we get

' . 3
Jim G (qn, 1) = Z(Si(\pi, )2

and therefore

lim det G(gn, 1) = (3/4)° H/ W) de =2 p £ 0. (12.1.11)

n—00 '
jes

In particular, there is a potential ¢,(z) in Es such that det G(g,1) # 0. Since the map
V + det G(V, 1) is real analytic on the open and connected subset Eg of H*(T%), Lemma

12.1.2[implies that NS(2) is C*°-dense open in Fs. m
We deduce the following corollary.

Corollary 12.1.10. The set
G® :={(V,a) € Bs x H*(T%) : detG(V,a) # 0} (12.1.12)
is a C™-dense open subset of Es x H*(T%), thus of H*(T?) x H*(T%).

PROOF. By Lemma|12.1.9, for each potential V' € NS(Q), we have that det G(V, 1) # 0 and,
since the function (V,a) — det G(V,a) is real analytic on the open and connected subset
Eg x H*(T?), Lemma [12.1.2) implies that G® is a C*-dense open subset of Es x H*(T%). m

Remark 12.1.11. With similar arguments we deduce that, for each potential V &€ NS(Q),
the set {a € H*(T?) : detG(V,a) # 0} is a C™-dense open subset of H*(T?).
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Step 3. Genericity of the non-degeneracy conditions (1.2.21))-(1.2.22)
Let M € N such that SUF C [0, M]. We define

Gy = {(V, a) € (EsNP) x H*(T?) : the following conditions hold (12.1.13)
2. (det o p; — [Betfil;) + (det of y — (Bl fili) # 0Vj, k €S, jk < M }

where &7 = o/ (V,a), B := B(V,a) are the Birkhoff matrices introduced in ([1.2.9)) and
where 7% denotes the comatrix of 7. Notice that

for any (V,a) € G? | defined in (12.1.12) , &' = &%/ det o7 (12.1.14)

so that conditions 1, 2, above imply the non-degeneracy conditions (1.2.21))-(1.2.22)) for
SUTF c [0, M].

Proposition 12.1.12. The set Gy defined by (12.1.13) s a C°-dense open subset of
P x H¥(T?Y). As a result, Gy NG? is a C®-dense open subset of P x H*(T%) and, for any
(V,a) € Gy NGP, the conditions (1.2.21)-(1.2.22) hold, provided that SUTF C [0, M].

PROOF OF PROPOSITION 12.1.12 Define
Tu = {0, k,0) € ([0, M]NS)* x {#1} : j#koro=1},
and, for any (j, k, o) € Ty, the real function Fjj, on P x H*(T?) by
Fipo(Via) = (det o p; — [B*);) + o(det o py, — (B [il,) . (12.1.15)
Lemma 12.1.13. The set
Ny :={VeEuNP : ¥(j, ko) €Ty, Fir.(V,1)#0} (12.1.16)
is an open and C*°-dense subset of P.
PrROOF. It is enough to prove that
for each (4, k,0) € I, there exists V € Ey NP such that F;;,(V,1) #0. (12.1.17)

Indeed, since, for all (j,k,0) € Zy, the function Fjj (-, 1) is real analytic on the open
connected subset Fy; NP of H® (Td), by , Lemma and the finiteness of Z,,,
we conclude that /\/'57 m is C-dense open in Ej; NP. Hence, since Eyy NP is C-dense
open in P, the set N is C*-dense open in P.
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To prove ([12.1.17)), we consider the sequence (g,) of potentials provided by Lemma
12.1.4} with J = [0, M]. In particular, g, € Eyy NP. By Lemma [12.1.4}(i) we get

Vi€ [0, M], pin; "= ;= /A >0 with g, # py, for j# k. (12.1.18)

Moreover, by Lemma [12.1.4t(7)-(éi), for all & € S, j € [0, M] N'S°, the matrix elements
(recall (1.2.9)), (1.2.10) and that j # k)

3
[%(qn, 1)]]€ = 5!%;(‘1’72”; lI!ik)Lz,u;}€ —0 asn— +00. (12.1.19)

In addition, by (1.2.9)), (12.1.11]) and (12.1.18]), we have

det o7 (g, 1) <H,unj> det G(gn, 1 A <Huj ) p=:p1>0. (12.1.20)

j€eSs j€esS

Therefore (Fj o (qn, 1)) defined in (12.1.15)) converges to pi(j; + o), and since (115) jefo,m
are distinct and strictly positive, p1(p;+opy) # 0 for (j, k, o) € Iy, This implies (12.1.17)).
[

We have the following corollary.

Corollary 12.1.14. For each potential V(z) € N5 (defined in (12.1.16]) ), the set

Gvsm = ﬂ {a € H>(T7) : Firo(Via) # 0}

(jvkﬂ)EZM
is C™-dense in H*(T?).

PrROOF. By Lemma m for each potential V' € Nsy, for each (j,k,0) € Iy, we
have that Fj;,(V,1) # 0. Since the function a + Fj,(V,a) is real analytic on H*(T?),
Lemma |12.1.2 and the fact that Z,, is finite, imply that Gys,m is a C°-dense open subset
of H*(T%). m

PROOF OF PROPOSITION [12.1.12] CONCLUDED. The set Gy defined in ([12.1.13)) is clearly
open. Moreover Gy is C*°-dense in (Es NP) x H*(T?), by Corollary d because
Ns s is C*-dense in Fs N P. Hence Gy is a C™-dense open subset of (Fs N P) x H*(T%).
Since Es is C*-dense open in P, the set Gy is a C°°-dense open subset of P x H*(T?). By
Corollary , sois Gy NGP, and by , we deduce the last claim of Proposition
u

Step 4. Genericity of finitely many first and second Melnikov conditions (1.2.7)),
([.2.16)-(T.2.19)

Let L, M € N with S C [0, M]. Consider the following Conditions:
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(C1) - l+pu; #0, VY e€Z° (| < L,jeES",
(02) ﬂ€+uj_uk7é07 v<€7]7k)7£<07]7j) EZSX ([[O,M]]QSC) x §° 7‘6’ SL,

(O3) fi-l+pj+ e 20, Y, 5,k) € Z° x ([0, M] NS?) x S, 4| < L.

Note that (C1), (C2), (C3) correspond to the Melnikov conditions (1.2.7)), (1.2.16])-(1.2.19).

We denote by Ef), respectively ESJ)VI, & 23}4, the set of potentials V' € Es NP satisfying

conditions (C'1), respectively (C2), (C3).

Lemma 12.1.15. Let L, M € N. The set of potentials
o =ENNETNED, ={VeBnP . (C1),(2),(C3) hold} (12.1.21)
is a C'°-dense open subset of Es NP, thus of P.

Proor. First note that for any potential ¢ € P, Weyl asymptotic formula about the
distribution of the eigenvalues of —A + ¢(x) implies that

Cijt? <y < Cyjt?, Vi eN, (12.1.22)

for some positive constants Cy,Cy, which is uniform on some open neighborhood B, of
q. Hence Condition (C'1) above may be violated by some V € B, for j < C(|a|L)
only. Similarly, Conditions (C2) and (C3) may be violated by some V' € B, for k <
C(M + (|a|L)%) only. Hence the inequalities in Conditions (C'1)-(C'3) above are locally
finitely many so that it enough to check that for any ¢ € ZF!, j € S¢, k € S°, the sets

Ele)::{VeESmP Dl £ 0}
m ={VeENP : gL+ p;—p#0} with £#£0or j #k, (12.1.23)
gejk'—{VGESQIP : ﬂ-f—l—uj—i—uk?éO}

are (C*-dense open in Es NP. The sets in ((12.1.23)) are open since each p; depends

continuously on V' € EsNP. We now prove the C'°°-density of SM L, with (4,7, k) # (0, 4, 7).
Notice that the map

Ykt Bsogyopg NP — REF2 Vs 150 (V) = (1, 1y )

is real analytic and, by remark [12.1.8] the differential dY;; (V) is onto for any V' belonging

to some (C'*°-dense open subset ./\/'SU{ otk Of H*(T%). Hence the map V = fi- £ + j1; — g
is real analytic on the connected open set Egygjyuqxy NP and does not vanish everywhere

for (¢,7,k) # (0,4,7). Therefore Lemma [12.1.2] implies that Eﬁ)k is C*-dense open in
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Esugiyugey NP, hence also in EsN'P. The same arguments can be applied to 515(,1]') and Se(i)k
[ |

Step 5. Genericity of the Diophantine conditions (|1.2.6), (1.2.8), of the first
Melnikov conditions ((1.2.7) and the second Melnikov conditions ([1.2.16)-(1.2.19)

Consider the set of (V,a) defined by

¢9 = (MY nP) x H(T%)) (6P (12.1.24)

where ./\/S(l) is the set of potentials defined in (12.1.8) and G is the set of (V, a) defined in
(12.1.12)) (for which the twist condition ([1.2.12]) holds).

Lemma 12.1.16. G® is o C*°-dense open subset of P x H*(T?).

Proor. By Lemma [12.1.6|and Corollary [12.1.10| m
We also remind that the map

fi:EsnP —RE Vs (V) = (1(V))jes

defined in ([12.1.9)) is real analytic, and, by Lemma , for any V' € /\/S(l), the differential
dii(V) g is an isomorphism, where E is the |S|-dimensional subspace of C*(T?) defined in
Lemma T2.7.6

We fix some (V,a) € G® and, according to the decomposition

HY(TY)=E®F, where F:=FE"2nH(TY),

we write uniquely
V=uv1+7v,, 11 eFE, v9€ I,

i.e. 7y is the projection of V on E and @5 is the projection of V on F.

Lemma 12.1.17. (i) There are open balls By C E (the subspace E ~ RS) B, ¢ F ¢
H*(T%), centered respectively at v, € E, vy € F, such that, for all vy € By, the map

Uy, : Bi CE =R vy uy, (v1) = (v + v2)
is a C* diffeomorphism from By onto its image [i( By +vs) =: O,, which is an open bounded

subset of R, the closure of which is included in (0, +00)5.
(ii) There is a constant Ky > 0 such that the inverse functions

u () : 0, CRFI = B

are Ky -Lipschitz continuous.
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(i4i) There is an open ball B C H*(T%) centered at a such that (possibly after reducing
By and By) the neighborhood Uy 5 = (By + By) x B of (V,a) has closure contained in G®,
and there is a constant Cy ; > 0 such that

lallz= (1 + [|7) < Cya, V(Via) € Uy s, (12.1.25)

where o is the Birkhoff matriz in (1.2.9)-(1.2.10]).

PROOF. Since V = 0,4+, is in J\/'S(l), the differential dfi(v, +v;) g is an isomorphism and the
local inversion theorem implies item (i) of the lemma. Items (ii)-(ii7) are straightforward
taking B; and B, small enough. m

In the sequel we shall always restrict to the neighborhood Uy ; of (V,a)eg ®) provided

by Lemma [12.1.17}(ii).

For any j € N, vy € By, we consider the C! function

20, CRE SR wies Z(w) i= py(uy (w) +vy). (12.1.26)

v2
Note that, for any j € S, it results Z;(w) = w;,.

Lemma 12.1.18. There is a constant K := Ky > 0 such that, for any potential vy € By C
F c H*(T%), each function =; defined in (12.1.26]) s K-Lipschitz continuous. Moreover
there are constants C,C" > 0, such that, for all vy € By,

Ol < =Z5(w) < 'Y, VjeEN, weO,,. (12.1.27)
Proor. By (12.1.1)), \; = ,uJQ-, and the fact that
a:= inf infpu;(V) >0

VeB1+Bs jeN

we get that

1
WV € Bit By, (V) = (V)] < o IV =Vl (12.1.28)

Since, by Lemma [12.1.17| the functions u;; are Ky-Lipschitz continuous, ((12.1.28]) implies

K_
that the function =; defined in (12.1.26]) is 2—V-Lipschitz continuous. The bound (|12.1.27))
@
follows by (12.1.22). =
Notice that, in view of (7.1.8), the set M := My, C N\S associated to (V,a) in Lemma

has an upper bound C(V, a) that depends only on ||« || and [|a]|~. Hence M can
be taken constant for all (V,a) in a neighborhood of (V';a), namely, by (12.1.25)),

M € N such that, V(V,a) €Uy,, My,USC [0, M]. (12.1.29)
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Lemma 12.1.19. Fiz an integer L > 4K where the constant K is defined in Lemma
and let M € N be as in (12.1.29). Given a potential v, € By C F C H*(T?), we
define, for any v > 0, the subset of potentials G(v,v2) C By C E C C™ of all the v; € By
such that, for V.= v; + vq, the following Diophantine conditions hold:

0> e e ZP\{o};

e g

=

0 ISLIS|+1)
, Y(n,p) €EZ XL "z 0};
PR (n,p) \ {0}

2. ‘714' Z Dijlhitts| =
i,j€S,i<]

Y
(&)

8.\l ] > VeeZBS |(|>L, jeS :=N\S;

4.
m-ew—mz#,vmkngx([[o,MﬂnSﬂxsa
(6’]71{:)#(0’]7])7 |€| 2E7
- € g+ el > 0 V(e G k) € 29 x ([0, M] NS°) x §°,

() 0ot (12.1.31)

(12.1.30)

Then the measure (on the finite dimensional subspace E ~ R'S‘)

‘Bl\< U Q(’y,vg)> ) ~0. (12.1.32)

PrROOF. In this lemma we denote by my., the Lebesgue measure in RIS,
i) Let 77, be the set of the Diophantine frequency vectors w € O,, such that
w -l > # e e 7\ {0} . (12.1.33)
It is well known that, for 7o > [S| — 1, mpen(Ou, \Fi1,4) = O(7).
ii) Let F3., be the set of the frequency vectors w € O,, such that

[SIS|+1)

> . Y(np)eZxZ = \{0}. (12.1.34)

‘n—i— Z DijwiW;

ijesi<i )™

Arguing as in Lemma we deduce that mpen(Oy, \Fay) = O(7), see also Lemma 6.3 in
[22].
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iii) Let F3., be the set of the frequency vectors w € O,, such that

w - €+ E;(w)] zﬁ Veezs | || > L, jese. (12.1.35)
Let us prove that mpep(Oy, \Fs,) = O(7). Define on O,, the map f (w) :=w -l + =;(w).
By (12:1:27), there is a constant C' > 0 such that if j > C|¢|?, then f,; > 1 on O,,.
Assume j < C|€|d. Since =Z; is K-Lipschitz continuous by Lemma , we have, for
(| > L > 4K,
l 31¢]

Qu(w L+ Z0) = Il + 1 - L5 ) 2 7.

¢
1
Hence, for |¢| > L,

. c v v gl
mie({w €0, + €S, |fi5w)| < WO}) < Ol s < Crprrma

Hence

mLeb(ng \fS,'y) S C il 077

e | |’T0+1 d —

[l

provided that 75 > d + [S| — 1.
iv) Let Fy., resp. Fs,, be the set of the frequency vectors w € O,, such that

lw - £+ Z5(w) — Sp(w)] = o, V(L 5, k) € Z x ([0, /] NS x S,

(¢ > i (12.1.36)
(¢,5,k) #(0,5,4), || > L,

respectively

. - g
|- C+ Ej(w) + Ex(w)] 2 :
’ (e (12.1.37)

V(¢ 5, k) € Z5 x ([0, M] N'S) x S, |¢| > L.

Define on O,, the map fy;r(w) :=w - £+ Zj(w) — Zx(w). By (12.1.27)), there is a constant
C such that, if j < M and k > C(|¢|* + M), then fg]k > 1 on O,,. Moreover, since Z;, Zj,
are K-Lipschitz continuous by Lemma [12.1.18] we deduce that, for |¢| > L > 4K,

4 _ _ l _ 14 10|

_ . = — = — —_ = - . =) > —

o £ Z5) = El) = A+ 7 DE0) — 7r-Eale) 2
Therefore, for [¢| > L,

mLeb({w €0y, 1 3(j,k) € ([0, M] NS x S, |feju(w)] < @;0})
gl

O

< CM(|e|" + M)

< C’(M)W.
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Hence, as in iii), mpen(Oy, \F1,) < C, provided that 7o > d+ [S| — 1. We have the similar
estimate mypen(Oy, \Fs4) < C.

We have proved that mpen(Oy,\Fiy) = O(7) for i = 1,...,5. We conclude that F(v) :=
M?_, F;. satisfies

Mreb (O, \F (7)) < Z mLeb<Ov2\]:i,“/) =0(y) = M (O'UQ\ U ]:(7» =0.

v>0

Finally, since by Lemma [12.1.17-(7) the map w,, is a diffeomorphism between B; and O,,,
the measure

mien(BI\G(7,v2, @) = miep(uy, (O, \F(7))) = 0.

This completes the proof of the lemma. m

Step 6. Conclusion: Proof of Theorem (1.2.3
For any (V,a) € G©® (see (12.1.24), set introduced in (12.1.24)), we define

G a = (Epr x H(TY) (Gt [ \Ura (12.1.38)

where Uy ; C G is the neighborhood of (V,a) fixed in Lemma [12.1.17, and the sets Eans
Gir are defined respectively in (12.1.21)), (12.1.13]) with integers L, M, associated to (V,a),
that are fixed in Lemma [12.1.19| and (12.1.29)).

Lemma 12.1.20. The set Gy ; is C™-dense open in Uy ;.

Proor. By Lemma [12.1.15(and Proposition [12.1.12| =
Finally, we define the set G of Theorem [1.2.3| as

6= |J Gva (12.1.39)
(V,a)eg®
where G is defined in (12.1.24).
Lemma 12.1.21. G is a C*°-dense open subset of P x H*(T?).

PROOF. Since Gy ; is open and C™-dense in Uy ; by Lemma [12.1.20] the set G defined in
(12.1.39) is open and C*°-dense in

recall that Uy ; C emma |12.1.17]). Now emma (12.1. 1S a -dense
(recall that Uy, C G¥ by L 12.1.17). Now, by L 12.1.16, G® is a C™-d

open subset of P x H*(T?) and therefore G is a C*-dense open subset of P x H*(T?). m
The next lemma completes the proof of Theorem [1.2.3]
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Lemma 12.1.22. Let a € H*(T?), 5y, € B2 N H*(T?), where E is the finite dimensional
linear subspace of C*(T%) defined in Lemma|12.1.6. Then

‘{vl EE : (1 +7,0) € g\é}\ —0 (12.1.40)

where G is defined in (|1.2.37)).
Proor. We may suppose that
nga = {Ul cF : (Ul + ,172,6) € g} 75 @,

otherwise (12.1.40)) is trivial. Since G is open in H*(T?), the set Wi,z is an open subset of
E and, in order to deduce (|12.1.40)), it is enough to prove that, for any v; € W, 5, there is
an open neighborhood W%l C W,z of U1 such that

‘{vl EWL ¢ (v)+00,3) ¢ 5}‘ —0. (12.1.41)
Since (7) + 2,a) € G, by the definition of G in (12.1.39), there is (V,a) € G® such that
(01 +72,0) € Gy B (g x H(T) (VG (Vo

where
UV@ = (Bl + Bg) X B

is defined in Lemma [[2.1.171 Define
W%l = {Ul ck (Ul —1—52,6) € gf/@} C Bl .

Since Gy 5 is open, Wi, C Wy, 5 is an open neighborhood of 7, € Wy, 5.
Now for all (V,a) € Gy 4, the twist condition (1.2.12)) and the non-degeneracy properties

(1.2.21)-(1.2.22)) hold and, by the definition of £ y; in (12.1.21)) and by (12.1.29), there is
Y = Y0(V,a) > 0 such that (1.2.7) and (1.2.16)-(1.2.19) for all |¢| < L. Thus, recalling the

definition of the sets G(7,72) in Lemma [12.1.19/and G in ((1.2.37)), and (12.1.29), we have
gf/,a ﬂ < U g(7752)> C Gva

>0

so that
{v eWL + (1, +700,0) ¢G) C Bl\< U g(%@)> .

>0

Hence, by (12.1.32)), the measure estimate (12.1.41]) holds. This completes the proof of
(12.1.40). m



Appendix A

Hamiltonian and Reversible PDEs

In this Appendix we first introduce the concept of Hamiltonian and/or reversible vector
field. Then we shortly review the Hamiltonian and/or Reversible structure of some classical
PDE.

A.1 Hamiltonian and Reversible vector fields

Let E be a real Hilbert space with scalar product ( , ). Endow E with a constant exact
symplectic 2-form

Qz,w) = (Jz,w), Vz,weE,

where J : E — FE is a non-degenerate, antisymmetric linear operator. Then, given a
Hamiltonian function H : D(H) C E — R, we associate the Hamiltonian system

u = Xpg(u) where dH(u)[-] = —=Q(Xg(u), ) (A.1.1)

formally defines the Hamiltonian vector field Xg. The vector field Xy : Fy C E — E is,
in general, well defined and smooth only on a dense subspace Fy C E. A continuous curve
[to,t1] Dt +— u(t) € E is a solution of (A.1.1)) if it is C" as a map from [to, ;] — E; and

w(t) = Xu(u(t)) in £, Vt € [to,ta].
If, for all u € Ey, there is a vector V,H(u) € E such that the differential writes
dH(u)[h] = (V,H(u),h), VheE, (A.1.2)

(since Fj is in general not a Hilbert space with the scalar product (, ) then (A.1.2) does
not follow by the Riesz theorem), then the Hamiltonian vector field Xp : By — E writes

Xy =JV,H, J=—J". (A.1.3)

297
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In PDE applications that we shall review below, usually £ = L? and the dense subspace
E; belongs to the Hilbert scale formed by the Sobolev spaces of periodic functions

1= {ulw) = 3 we™ : Jull} = 3 PO+ 1) < +oof
jeza jezZ
for s > 0, or by the spaces of analytic functions
1 = Lulw) = 3w e ¢ ulll, o= 3 27 (14 [5) < oo
jezd Jjezd

for o > 0. For s > d/2 the spaces H* and H* are an algebra with respect to the product
of functions. We refer to [05] for a general functional setting of Hamiltonian PDEs on scales
of Hilbert spaces.

Reversible vector field. A vector field X is reversible if there exists an involution S of
the phase space, i.e a linear operator of F satisfying S? = Id, such that

XoS=-50X. (A.1.4)
Such condition is equivalent to the relation
P oS =So0d"

for the flow ®° associated to the vector field X. For a reversible equation it is natural to
look for “reversible” solutions u(t) of u; = X (u), namely such that

u(—t) = Su(t) .

If S is antisymplectic, i.e. S*Q = —Q, then a Hamiltonian vector field X = Xj is reversible
if and only if the Hamiltonian H satisfies

HoS=H.

Remark A.1.1. The possibility of developing KAM theory for reversible systems was first
observed for finite dimensional systems by Moser in [99], see [110] for a complete presen-
tation. In infinite dimension, the first KAM results for reversible PDEs have been obtained
in [119).

We now present some examples of Hamiltonian and/or Reversible PDE.
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A.2 Nonlinear wave and Klein-Gordon equations
We consider the Nonlinear wave equation (NLW)
yu — Ay +V(x)y = f(z,y), =eT:=(R/21Z)", yeR, (A2.1)

with a real valued multiplicative potential V(z) € R. If V(z) = m is constant, (A.2.1) is
also called a nonlinear Klein-Gordon equation.
The NLW equation (|A.2.1]) can be written as the first order Hamiltonian system

%(%) N ( Ay = V(x)y + f(z,y) ) - ( —(}d 151 ) ( gzggzgg )

where V,H, V,H denote the L?(T%)-gradient of the Hamiltonian

i)

2
D 1
H(y,p) = /d >+ 5((Vgcy)2 + V(z)y®) + F(z,y) dz (A.2.2)
T
y
with potential density F(z,y) := —/ f(z,2z)dz and V,y := (0n,y,...,0z,y). Thus for

0
the NLW equation F = L* x L? with L? := L*(T? R), the symplectic matrix

. 0 Id
J_J_<—Id 0)

and (, ) is the L? real scalar product. The variables (y, p) are “Darboux coordinates”.
Remark A.2.1. The transposed operator J' = —J (with respect to {,)) and J* = J".

The Hamiltonian H is properly defined on the subspaces F, := H®* x H®, s > 2, so that
the Hamiltonian vector field is a map

IV H: H°x H* = H 2 x H 2 C L?> x L*.

Note that the loss of two derivatives is only due to the Laplace operator A and that the
Hamiltonian vector field generated by the nonlinearity is bounded, because the composition
operator

y(x) = f(z,y(z)) (A.2.3)

is a map of H® into itself. For such a reason the PDE is semi-linear.

If the nonlinearity f(z,u) is analytic in the variable u, and H*°, sy > d/2, in the space
variable z, then the composition operator is analytic from H*° in itself. It is only
finitely many times differentiable on H** if the nonlinearity f(z,u) is only (sufficiently)
many times differentiable with respect to u.
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Remark A.2.2. The regularity of the vector field is relevant for KAM theory: for finite
dimensional systems, it has been rigorously proved that, if the vector field is not sufficiently
smooth, then all the invariant tori could be destroyed and only discontinuous Aubry-Mather
invariant sets survive, see e.g. [82)].

If the potential density F(z,y, V,y) in (A.2.2]) depends also on the first order derivative
V.y, we obtain a quasi-linear wave equation. For simplicity we write explicitly only the
equation in dimension d = 1. Given the Hamiltonian

2
p 1

we derive the Hamiltonian wave equation

Yt — Yoz + V()Y = f(2,Y, Y, Yoz)

with nonlinearity (denoting by (x,y, () the independent variables of the potential density
(z,y,¢) = F(z,y,()) given by

£ e ) = —(0,F) ., ,0) + - { (O F) (7,992}
= —(8yF)(JZ,y, yw) + (ach)(xv yvyx) + (aCyF)(Ia yayx)ya: + <8CCF)(1" y7y:c)ym: .

Note that f depends on all the derivatives vy, y., ¥y, but it is linear in the second order
derivatives y,., i.e. f is quasi-linear. The nonlinear composition operator

y(@) = f(2,y(2), Yo (), Yau (7))
maps H® — H* 2 i.e. loses two derivatives.

DERIVATIVE WAVE EQUATIONS. If the nonlinearity f(z,y,y,) depends only on first order
derivatives, then the Hamiltonian structure of the wave equation is lost (at least the usual
one). However such equation can admit a reversible structure. Consider the derivative
wave, or, better called, derivative Klein-Gordon equation

Yt — You + My = f(2,9,Y2,9), x €T,

where the nonlinearity depends also on the first order space and time derivatives (y., y:),
and write it as the first order system

(1) = oo )
Its vector field X is reversible (see (A.1.4))) with respect to the involution

S:(y,p) = (y,—p),  resp. S:(y(z),p(x)) = (y(—z), —p(-=)),
assuming the reversibility condition

f(x7y7yx7 _p) = f(x7y7y$7p)7 resp. f(x7y7 _yxvp) = f(_x7y7y2?7 _p> .

KAM results have been obtained for reversible derivative wave equations in [I§].
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A.3 Nonlinear Schrodinger equation

Consider the Hamiltonian Schrédinger equation

u, — Au+V(z)u= f(zr,u), €T ueC, (A.3.1)
where f(z,u) = 0zF (z,u) and the potential F'(z,u) € R, Vu € C, is real valued. The NLS
equation (|A.3.1) can be written as the infinite dimensional complex Hamiltonian equation

u =1VgH(u), H(u):= /Td |Vul? + V(z)|u|* — F(z,u) dx.

Actually (A.3.7)) is a real Hamiltonian PDE. In the variables (a,b) € R?, real and imaginary
part of
u=a+ib,

denoting the real valued potential W (a,b) := F(z,a + ib) so that
1
Oz F(z,a+1b) := 5(8(1 +1i0,)W(a,b),
the NLS equation (A.3.1]) reads

1
£(0)- (e ) n ) (Be)

with real valued Hamiltonian H(a,b) := H(a+ib) and V,, V; denote the L*-real gradients.
The variables (a,b) are “Darboux coordinates”.

A simpler Hamiltonian pseudo-differential model equation often studied is
i, — Au+V xu=0F(z,u), €T’ ueC, (A.3.2)

where the convolution potential V' * u is the Fourier multipliers operator
u(z) = Z u;e? s Vku:= Z Viusel "
jezZ jezZ
with real valued Fourier multipliers V; € R. The Hamiltonian of (A.3.2)) is
Hu):= [ |Vu*+ (V*u)a— F(r,u)dr.
Td
Also for the NLS equation ({A.3.1f), the Hamiltonian vector field loses two derivatives because

of the Laplace operator A. On the other hand the nonlinear Hamiltonian vector field

10z F'(x,u) is bounded, so that the PDE (A.3.1)), as well as (A.3.2)), is a semi-linear equation.
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If the nonlinearity depends also on first and second order derivatives, we have, respec-
tively, derivative NLS (DNLS) and fully-non-linear (or quasi-linear) Schrodinger equations.
For simplicity we present the model equations only in dimension d = 1. For the DNLS
equation

i + Uy = fz,u,uy) (A.3.3)

the Hamiltonian structure is lost (at least the usual one). However (A.3.3)) is reversible

with respect to the involution
S:ur—u

(see ({A.1.4])) if the nonlinearity f satisfies the condition
f(xa u, a:c) - f(-ra U, uac) :

KAM results for DNLS have been proved in [I19]. On the other hand, fully nonlinear, or
quasi-linear, perturbed NLS equations like

iut = Ugy + gf(Wt> Ty Uy Ug, umc)

may be both reversible or Hamiltonian. They have been considered in [62].

A.4 Perturbed KdV equations

An important class of equations which arises in fluid mechanics concerns nonlinear pertur-
bations
Uy + Ugpe + Optt® + N (2, U, Uy, Ugg, Upge) =0, 1 €T, (A.4.1)

of the KdV equation
Up + Uggy + Opti® = 0. (A.4.2)

Here the unknown u(z) € R is real valued. If the nonlinearity N (x, u, ty, Uz, Upyy) does
not depend on u,,, such equation is semilinear. The most general Hamiltonian (local)
nonlinearity is

N (@, U, Uy U, Ug) = =0y [(Ouf) (@, 0, u) — Oy (Do, f) (2, 1, 1y))] (A.4.3)
which is quasi-linear. In this case (A.4.1) is the Hamiltonian PDE

u? ol
up = 0,V H(u), H(u) = / 73” Y + f(z,u,u,) de, (A.4.4)
T

where V,H denotes the L*(T,) gradient.
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The “mass” / u(z) dx is a prime integral of (A.4.1)-(A.4.3) and a natural phase space
. T
is

E@CEJ::<&Kx)EJ¥%TJR):(/

: u(x)dr = ()} .

Thus for the Hamiltonian PDE (A.4.4]) we have

E:LamRy:{ueL%mR);/

and ( , ) is the L? real scalar product. Note that J = —J ' = 9, see (A.1.3). The
nonlinear Hamiltonian vector field is defined and smooth on the subspaces £y = H;(T),
s > 3, because

u(m)dw:O}, J=-0",

N (2, U, Uy, U, U = HE(T) v HZ3(T) € L3(T) .
Note that, if the Hamiltonian density f = f(x,u) does not depend on the first order
derivative u,, the nonlinearity in (A.4.3)) reduces to N' = —0,[(9.f)(z,u)] and so the PDE
(A.4.1)-(A.4.3)) is semilinear.

BIRKHOFF COORDINATES. The KdV equation has very special algebraic properties:
it possesses infinitely many analytic prime integrals in involution, i.e. pairwise commuting,
and it is integrable in the strongest possible sense, namely it possesses global analytic action-
angle variables, called the Birkhoff coordinates. The whole infinite dimensional phase space
is foliated by quasi-periodic and almost-periodic solutions. The quasi-periodic solutions are
called the “finite gap” solutions. Kappeler and collaborators (see for example [90] and
references therein) proved that there exists an analytic symplectic diffeomorphism

WD) = By (]) % By (R).

from the Sobolev spaces H)Y (T) := H™(T) N L(T), N > 0, to the spaces of coordinates
(x,y) € K?VJF%(R) X E?\,Jr%(R) equipped with the canonical symplectic form ZnZIdzpn A dyp,
where

(R) := {x = (Zp)nen, Tn € R : ZRZIxinQS < —|—oo} :
such that, for N = 1, the KdV Hamiltonian

ur ol
Hyay U):/—m——dJU;
( T 2 3

expressed in the new coordinates, i.e. K := Hpqy o ¥, depends only on z2 + 2, n > 1
(actions). The KdV equation appears therefore, in these new coordinates, as an infinite
chain of anharmonic oscillators, whose frequencies

wo(I) =0, K(I), I=(L,I...), I,=(a2+y2)/2
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depend on their amplitudes in a nonlinear and real analytic fashion. This is the basis for
studying perturbations of the finite gap solutions of KdV.

Remark A.4.1. The existence of Birkhoff coordinates is much more than what is needed
for local KAM perturbation theory. As noted by Kuksin in [9]|]-[95)] it is sufficient that
the unperturbed torus is reducible, namely that the linearized equation at the quasi-periodic
solution have, in a suitable set of coordinates, constant coefficients.

Other integrable Hamiltonian PDEs which possess Birkhoff coordinates are the mKdV
equation, see [91],
U+ Uggw + Opu®> =0, x €T, (A.4.5)

and the cubic 1-d NLS equation, see [74],

i = Upe + |ul*u, x€T. (A.4.6)



Appendix B

Multiscale Step

In this Appendix we provide the proof of the multiscale Step Proposition proved in
[23], which is used to prove Proposition {4.3.4]

e Notation. In this Appendix we use the notation of [23], in particular be aware that
the Definitions[B.2.1} [B.2.2} |B.2.3|below of N-good/bad matrix, regular /singular sites,
and (A, N)-good/bad site are different with respect to those introduced in section
which are used in the Monograph.

In order to give a self-contained presentation we first prove the properties of the decay
norms introduced in [23], recalled in section

B.1 Matrices with off-diagonal decay

Let e; = ¢!“#490) for i .= (¢, 5) € Z° := 7" x Z°. In the vector-space H* = H*(T” x T4 C")
defined in (3.3.2) with v = |S|, we consider the basis

er = eieq, ki=(i,a) €2 x7J, (B.1.1)

where e, :=(0,..., 1 ,...,00 € C",a=1,...,r, denote the canonical basis of C", and
a—th

Then we write any u € H® as

U= Z uger, up € C.

keZbxJ

305
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For B C Z° x J, we introduce the subspace
Hy = {UG’HS : uk:OifkgéB}.
When B is finite, the space H} does not depend on s and will be denoted Hp. We define
g : H* — Hp

the L%-orthogonal projector onto Hp.
In what follows B, C, D, E are finite subsets of Z” x 7.
We identify the space £Z of the linear maps L : Hp — Hc with the space of matrices

ME = {M = (M Yweppec, ME €C}
according to the following usual definition.
Definition B.1.1. The matriz M € ME represents the linear operator L € L5, if
Vi = (i',d) € B, k= (i,a) € C, TLey = MF ey,

where ey, are defined in (B.1.1) and MF € C.

ExaMPLE. The multiplication operator for

(p(%fv) q(p, ) ) |

q(p, ) plp,)

acting in H*(T" x T¢; C?), is represented by the matrix

i ;! Pi—i Qi
T:= (T} );w where T = _ B.1.2
(1) e (L o) (B.12)

and p;, ¢; denote the Fourier coefficients of p(p, x),q(p,z). With the above notation, the
set J = {1,2} and

(@1 _ (i'2) _ ("1 _ o (1) _
T(z',l) = Pi—i" T(i,l) = qi—i’ T(i,g) - <Q)i7i’ ) T(@Q) = Di—i -
NOTATION. For any subset B of Z® x J, we denote by

B := proj, B (B.1.3)

the projection of B in Z°.
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Given B C B/, C € (' C Z'xJ and M € M&, we can introduce the restricted matrices

ME =TecMpy,, Mce:=UcM, MP:=Mpy,. (B.1.4)
If D C proj,B', E C proj;C’, then we define
ME as ME where B:=(DxJ3)nB, C:=(ExJI)NC. (B.1.5)
In the particular case D = {i'}, E := {i}, i,7' € Z", we use the simpler notation
M; := My (it is either a line or a group of 2,...,r lines of M), (B.1.6)
M?" = MY} (it is either a column or a group of 2, ..., columns of M), (B.1.7)
and . §

M =M (B.1.8)
it is a mxm’-complex matrix, where m € {1,...,r} (resp. m' € {1,...,r}) is the cardinality
of C' (resp. of B) defined in (B.1.5) with E := {i} (resp. D = {i'}).

We endow the vector-space of the m x m', m,m’ € {1,...,r}, complex matrices with a
norm | | such that
[UW] <|U[W],

whenever the dimensions of the matrices make their multiplication possible, and |U| < |V/|
it U is a submatrix of V.

Remark B.1.2. The notation in (B.1.5)), (B.1.6), (B.1.7)), (B.1.8)), may be not very specific,
but it is deliberate: it is convenient not to distinguish the index a € J, which is irrelevant
in the definition of the s-norms, in Definition[B.1.3

We also set the L*-operatorial norm

MEh
IMBlo = sup 1MShlo (B.1.9)
ners.hzo  ||Pllo
where || o := | ||z
Definition B.1.3. (s-norm) The s-norm of a matriz M € M5 is defined by
M = 37 (M)A (B.1.10)
nezb
where (n) := max(|n|, 1),
max | M| if neC—-B
[M(n)] — { i—i'=nieC,i’eB o (Blll)
0 if n¢C—-B,

with B := projy B, C := proj;»C (see (B.1.3)).
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It is easy to check that | |, is a norm on M5. It verifies | |, < | |y, Vs < &', and
YMeME, vBCB,Cc cC, |ME|, <|M|.

The s-norm is designed to estimate the off-diagonal decay of matrices similar to the Toplitz
matrix which represents the multiplication operator for a Sobolev function.

Lemma B.1.4. The matriz T in (B.1.2) with (p,q) € H*(T" x T% C?) satisfies

Tls S g p)lls- (B.1.12)

Proor. By (B.1.11)), (B.1.2)) we get

[T(n)] :== max

i—i'=n

Di—it qi—y ’ <
—_— ~ n + ni -
( Qi—it  Pi—i ) |p | |q |

Hence, the definition in (B.1.10)) implies
712 =Y [T@P)* <Y (Ipal + ) *(0)* S (0, 9)12

nezb nezb

and (B.1.12) follows. m

In order to prove that the matrices with finite s-norm satisfy the interpolation inequal-
ities (B.1.15)), and then the algebra property (B.1.16)), the guiding principle is the analogy

between these matrices and the T6pliz matrices which represent the multiplication opera-
tor for functions. We introduce the set H. of the trigonometric polynomials with positive
Fourier coefficients

Hy = {h =3 heye et with hy; #0
for a finite number of (¢, j) only and hy; € R+} :

Note that the sum and the product of two functions in H, remain in H, .

Definition B.1.5. Given M € M5, h € H,, we say that M is dominated by h, and we
write M < h, if
[M(n)] < h,, YneZ’, (B.1.13)

in other words if |Mf/| < hi_y , Vi’ € projp B, i € proj;C.

It is easy to check (B and C' being finite) that

M|, :min{||h||s CheH,, M= h} and
JheHy , Vs >0, M, = ||kl

(B.1.14)
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Lemma B.1.6. For M; € M$,, My € ME, My € M, we have

M1-<h1,M2-<h2,M3-<h3 —
M+ M3 < hy +hs and MM, < hihs,.

PROOF. Property My + Ms < hy + hs is straightforward. For ¢ € proj,D, i € proj, B,
we have

Qo) =| 3 GaiOR)| < I (0L)]
qEé::pronbC qeC
< Y (h)ig(ha)gs
qeC
< Y (h)ig(ha)gmir = (haha)i_y
qEeZb

implying M; M, < hihy by Definition n
We deduce from (B.1.14)) and Lemma the following interpolation estimates.
Lemma B.1.7. (Interpolation) For all s > so > (d+v)/2, there is C(s) > 1, such that,
for any finite subset B,C, D C Z° x 3, for all matrices M, € M%, My € M5,
|M1M2’s S O(SO)|M1|50|MQ|S + C(S)|M1|5|M2|So ) (B115)
in particular,
’M1M2|5 S C(S)lMl‘slMQ‘s . (B116)
Note that the constant C(s) in Lemma is independent of B, C, D.

Lemma B.1.8. For all s > sy > (d + v)/2, there is C(s) > 1, such that, for any finite
subset B,C, D C 7' x 3, for all M, € M$, My € M5B, we have

| My Mals, < C(50)[Milse|Mals, (B.1.17)
and, YM € ME, vn > 1,

M1y < (Cls)" M, B
271, < O (Cs0))™ M3 M ¥s = s, -

PrOOF. The first estimate in (B.1.18) follows by (B.1.16) with s = sy and the second
estimate in (B.1.18)) is obtained from (B.1.15]), using C'(s) > 1. m

The s-norm of a matrix M € MJ controls also the Sobolev H*norm. Indeed, we

identify Hp with the space MJ{BO} of column matrices and the Sobolev norm || ||5 is equal
to the s-norm | |, i.e.

Yw € Hp, ||w|s=|wls, Vs>0. (B.1.19)
Then Mw € He and the next lemma is a particular case of Lemma [B.1.7]
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Lemma B.1.9. (Sobolev norm) Vs > s there is C(s) > 1 such that, for any finite subset
B,C C7Z)x73, for any M € ME, w € Hsp,

[Mwlls < Cls0)| M5, [|wls + C(s)[M]s[[w]]s, - (B.1.20)

The following lemma is the analogue of the smoothing properties of the projection
operators.

Lemma B.1.10. (Smoothing) Let M € MZ5. Then, Vs’ > s >0,
M'=0,Vi-i/|<N = |M|,<N M, (B.1.21)
and, for N > Ny,

’M|S’ < NS/_slM’s

B.1.22
M|, < N ] (5122

M'=0,Vi-d|>N — {

Proor. Estimate (B.1.21)) and the first bound of (B.1.22) follow from the definition of
the norms | |;. The second bound of (B.1.22)) follows by the first bound in (B.1.22)), noting

that |M?| < || M||o, Vi,
[ M| < N°[Mlo < N°\/(2N + 1P| M [lo < N***|[M |

for N > Ny. m

In the next lemma we bound the s-norm of a matrix in terms of the (s+ b)-norms of its
lines.

Lemma B.1.11. (Decay along lines) Let M € MEZ. Then, ¥s > 0,
(M|, max  [Mgy s (B.1.23)

iEpronb
(we could replace the index b with any o > b/2).
PROOF. For all i € C := proj,C, i’ € B := projB, Vs > 0,

[Mlsts . m(s+b)

i/
|Mi | < <Z _ Z">S+b — <Z _ i’>5+b

where m(s 4 b) := max |M{;|s+5. As a consequence
ieC

Ml = ( ) (M[n])2<n>25>1/2 <m(s+ b)( Z(m‘?b) i

neC—B nezb

implying (B.1.23). =

The L?-norm and sg-norm of a matrix are related.
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Lemma B.1.12. Let M € M$. Then, for sy > (d +v)/2,
[Mllo Sso [M]s, - (B.1.24)

PROOF. Let m € H, be such that M < m and |M|; = ||m]|s for all s > 0, see (B.1.14)).
Also for H € ng}, there is h € H, such that H < h and |H|s = ||h]|s, Vs > 0. Lemma
implies that M H < mh and so

0
IMH|o < |[mhllo < |m|=||hllo Sso [m]lsollRllo = [M|so|Hlo, VH € ME.

Then (B.1.24)) follows (recall (B.1.19)). =

In the sequel we use the notion of left invertible operators.

Definition B.1.13. (Left Inverse) A matrizt M € ME is left invertible if there exists
N € M$ such that NM =1dg. Then N is called a left inverse of M.

Note that M is left invertible if and only if M (considered as a linear map) is injective
(then dim He > dim Hp). The left inverses of M are not unique if dim He > dim Hp: they
are uniquely defined only on the range of M.

We shall often use the following perturbation lemma for left invertible operators. Note
that the bound (B.1.25)) for the perturbation in sg-norm only, allows to estimate the inverse
(B.1.28)) also in s > sg norm.

Lemma B.1.14. (Perturbation of left invertible matrices) If M € M5 has a left
inverse N € MS, | then there exists 6(so) > 0 such that,

VP e ME  with  |N|y|Pls, < 6(s0), (B.1.25)

the matriz M + P has a left inverse Np that satisfies

[Nplsy < 2[N|s, (B.1.26)
and, Vs > sq,
INpls < (1+ C()|N|sy|Plsy) IN|s + C ()| N2 | Pl (B.1.27)
Ss |N[s + N2 |P|s - (B.1.28)
Moreover,
VP e ME  with  |N|o|Pllo <1/2, (B.1.29)

the matriz M + P has a left inverse Np that satisfies

INpllo < 2[|N|lo- (B.1.30)
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PROOF.
Proof of (B.1.26). The matrix Np = AN with A € M5 is a left inverse of M + P if and
only if

Ig=AN(M + P)=A(Ig+ NP),

i.e. if and only if A is the inverse of Iz + NP € M%. By (B.1.17) and (B.1.25) we have,
taking d(sp) > 0 small enough,

INP|s, < C(50)|Nlso| Plsy < C(80)0(s0) < 1/2. (B.1.31)
Hence the matrix Igp + NP is invertible and
Np=AN = (Iz+ NP)"'N =Y (~1)’(NP)’N (B.1.32)
p=0

is a left inverse of M + P. Estimate (B.1.26|) follows by (B.1.32)) and (B.1.31)).
Proof of . For all s > sg, Vp > 1,

((NPY"Nls Ss o [N[oo[(NP)Pls + N[ |(N PP,

B118)
Ss N1y (C(50)|[NPlsy )P~ NPl + [N[5(C(s0) [N Pl )P

L) B

Ss o 277(IN]so|Plso| Nls + INI5, 1P (B.1.33)
We derive by
(B139)
[Npls < IN[s+ ) [(NPPN],
p=1

(B33

3)
< |N|S+C<S)(|N|80|P|SO|N|S+|N|§O|P|S)‘

Finally (B.1.30) follows from (B.1.29) as (B.1.26) because the operatorial L?-norm (see
(B.1.9)) satisfies the algebra property | NP|lo < ||N||ol|P]lo. m

B.2 Multiscale step Proposition

This section is devoted to prove the multiscale step Proposition

In the whole section ¢ € (0, 1) is fixed and 7" > 0, © > 1 are real parameters, on which
we shall impose conditions in Proposition

Given Q,Q C E C Z' x J we define

i FE) = — K 0.Q):= inf — K
diam(E) k,skl’lgE‘k K, Q@)= f [k-F],
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where, for k = (i,a), k' := (i, a’) we set

1 ifi=1i,a#d,
|k —K|:=X0 ifi=1i,a=d,
=i if § £

Definition B.2.1. (N-good/bad matrix [23]) The matriz A € ME, with E C Z" x 7,
diam(F) < 4N, is N-good if A is invertible and

Vs € [so, 1], |ATY, < N7+ (B.2.1)
Otherwise A is N-bad.

Definition B.2.2. (Regular/Singular sites [23]) The index k := (i,a) € Z° x J is
REGULAR for A if |A¥| > ©. Otherwise k is SINGULAR.

Definition B.2.3. ((A, N)-good/bad site [23]) For A € ME, we say thatk € E C Z°xJ
18

e (A, N)-REGULAR if there is F' C E such that diam(F') < 4N, d(k, E\F) > N and
AE is N-good.

e (A, N)-coop if it is reqular for A or (A, N)-reqular. Otherwise we say that k is
(A, N)-BAD.

Let us consider the new larger scale
N’ = Nx (B.2.2)
with x > 1.
For a matrix A € M% we define Diag(A) := (6w AX e wer-
Proposition B.2.4. (Multiscale step [23]) Assume
c€(0,1/2), 7 >21+b+1, C; > 2, (B.2.3)
and, setting k := 7 + b+ s,

X(T/ — 27 — b) > 3(/‘3? + (5’0 + b)01> , XS > Cl , (B24)
s1> 3k 4+ x(7+b) + C1s0 . (B.2.5)

For any given T > 0, there exist © := (Y, s1) > 0 large enough (appearing in Definition

[B.2.3), and No(Y, O, s1) € N such that:
VN > No(T,0,s,), VE C Z° x J with diam(E) < 4N’ = 4N* (see (B.2.2)), if A € M%
satisfies
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e (H1) |A—Diag(A)ls, <Y
o (H2) A7 o < (V')
e (H3) There is a partition of the (A, N)-bad sites B = U, with
diam(Q,) < N9, d(Q,Q5) > N? | Va # 3, (B.2.6)
then A is N'-good. More precisely
Vs lsonl, |47 < JV)7 (V)7 + [A-Diag(4)L), (B2
and, for all s > sy,
A7, < O(s)(N')” ((N')** + | A — Diag(A)],) (B.2.8)

The above proposition says, roughly, the following. If A has a sufficient off-diagonal
decay (assumption (H1) and (B.2.5))), and if the sites that can not be inserted in good
“small” submatrices (of size O(N)) along the diagonal of A are sufficiently separated (as-
sumption (H3)), then the L?-bound (H2) for A~ implies that the “large” matrix A (of size
N’ = NX with x as in ) is good, and A™! satisfies also the bounds in s-norm
for s > s;. Notice that the bounds for s > s; follow only by informations on the N-good
submatrices in s;-norm (see Definition plus the s-decay of A. The link between the
various constants is the following:

e According to the exponent Y, which measures the new scale N’ > N, is large
with respect to the size of the bad clusters €2, i.e. with respect to C;. The intuitive
meaning is that, for y large enough, the “resonance effects” due to the bad clusters
are ‘negligible” at the new larger scale.

e The constant © > 1 which defines the regular sites (see Definition |B.2.2|) must be large
enough with respect to T, i.e. with respect to the off diagonal part 7 := A —Diag(A),
see (H1) and Lemma [B.2.5

e Note that x in (B.2.4)) can be taken large independently of 7, choosing, for example,
7= 371 + 2b.

e The Sobolev index s; has to be large with respect to x and 7, according to (B.2.5)).
This is also natural: if the decay is sufficiently strong, then the “interaction” between
different clusters of N-bad sites is weak enough.

e In (B.2.6) we have fixed the separation N? between the bad clusters just for definite-
ness: any separation N*, p > 0, would be sufficient. Of course, the smaller > 0 is,
the larger the Sobolev exponent s; has to be.
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The proof of Proposition [B.2.4]is divided in several lemmas. In each of them we shall
assume that the hypotheses of Proposition are satisfied. We set

H1

(H1)
T := A—Diag(4), |T], < T. (B.2.9)

Call G (resp. B) the set of the (A, N)-good (resp. bad) sites. The partition

E=BUG
induces the orthogonal decomposition
He =Hp ®Ha
and we write
u=ug -+ ug where up := lpu, ug :=Igu.

We shall denote by I, resp. Ip, the restriction of the identity matrix to H¢, resp. Hg,
according to (B.1.4]).

The next Lemmas and say that the system Au = h can be nicely reduced
along the good sites G, giving rise to a (non-square) system A'ug = Zh, with a good control
of the s-norms of the matrices A’ and Z. Moreover A™! is a left inverse of A'.

Lemma B.2.5. (Semi-reduction on the good sites) Let O 'Y < c¢y(s1) be small
enough. There exist M € Mg, N € ME satisfying, if N > Ny(Y) is large enough,

Mgy <eN®, [N <cO7'T, (B.2.10)

for some ¢ :=¢(s1) >0, and, Vs > sy,

(M]s < C(s)N* (N7 + N7Tsss)

b (B.2.11)
|N|s < C(S)NH(NS_SO + N~ |T|s+b) )
such that
Au=h — UGZNUB+Mh.
Moreover
ug =Nup + Mh = Vkregular, (Au)y = hy. (B.2.12)

ProoOF. It is based on “resolvent identity” arguments.
Step I. There exist I', L € ME satisfying

ICls < Co(51)07' T, |Ls < N®, (B.2.13)
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and, Vs > s,
IT]s < C(s)N*(N* " + N°|T|s4s), |L|s < C(s)N*FTo7%0 (B.2.14)

such that
Au=h = wug+Tu=1Lh. (B.2.15)

Fix any k € G (see Definition . If k is regular, let F' := {k}, and, if k is not regular
but (A, N)-regular, let F' C E such that d(k, E\F) > N, diam(F) < 4N, AL is N-good.
We have

(B.2.16)
= up + Qupp = (AL) ' hp
where
Q= (AD)TADY = (AD TPV e MPY (B.2.17)
The matrix @) satisfies
EL) Ez).5Z9 ,
Qs < Cl)(AR) o [Tl — < Cls)NTFY (B.2.18)

(the matrix A% is N-good). Moreover, Vs > sq, using (B.1.15)) and diam(F) < 4N,

|Q|8+b Ss |(A11::)_1|5+b|7|50 + |(A§)_1|50|T|5+b

(B.1.22)
So NTTNAR) o Tl + 1AR) ™ sol Tl

~S

<, N(s—Dso (Ns+b+7' T 4 NS0 |7-‘s+b) ) (B.2.19)

Applying the projector Iy in (B.2.16)), we obtain

Au=h — Uk + Z Fl]z’uk, = Z Lzlhk/ (B220)

k'eE k'eE
that is (B.2.15)) with
QY if K eF\F,
LF e {[(Ag)—l]’,g’ if k' eF

ot {o if K¥eF

(B.2.21)

0 it K eE\F
If k is regular then F' = {k}, and, by Definition [B.2.2]

|AF| > ©. (B.2.22)
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Therefore, by (B.2.21)) and (B.2.17)), the k-line of ' satisfies

1 @223 B2
Tklsors < 1A Talsors Sso O Y. (B.2.23)

If k is not regular but (A, N)-regular, since d(k, E\F) > N we have, by (B.2.21), that
I'¥ =0 for |k — k'| < N. Hence, by Lemma [B.1.10

(B.1.21) (s1—50—b) 1 ( b)
Cilsorn < N7V, < ' Nl Qs

(B.2.18)

~oS1

(S (B.2.24)

TNT’+so+b—(1—§)81

Nsl

for N > Ny(O) large enough. Indeed the exponent 7"+ sg +b— (1 —¢)s; < 0 because s is
large enough according to (B.2.5) and ¢ € (0,1/2) (recall k := 7" + sg + b). In both cases
(B.2.23)-(B.2.24) imply that each line I'y decays like

Tilsgsnr Soy 7', VEEG.

Hence, by Lemma we get

U5, < C'(51)07'T,
which is the first inequality in (B.2.13)). Likewise we prove the second estimate in (B.2.13]).
Moreover, Vs > sq, still by Lemma [B.1.11]
b
|F|5 5 2112 |Fk|s+b S, |Q|s+b Ss NH(NS_SO + N~ |T|s+b)
S

where k := 7' + 5o+ b and for N > Ny(7T).

The second estimate in (B.2.14}) follows by |L|s, < N* (see (B.2.13)) and (B.1.22)) (note

that by (B.2.21)), since diamF < 4N, we have L’,jl =0 for all |k — k| > 4N).
Step 11. By (B.2.15) we have
Au=h = (Ig+T%ug=Lh—Tug. (B.2.25)

By (B.2.13), if © is large enough (depending on T, namely on the potential V;), we have
h

IT%,, < 1/2. Hence, by Lemma 4| I + T is invertible and

Gre1 b
(I + 1%, 2, (B.2.26)

and, Vs > sg

Gy\—1 G K S—50 -b
I+, S 1409 S NE(NV 4 N T]s) (B.2.27)
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By (B.2.25), we have
Au=h = ug=Mh+Nug

with
M= (Ig+T9 7L,
N = —(Ig+T%7'T",
and estimates (B.2.10)-(B.2.11)) follow by Lemma [B.1.7, (B.2.26])-(B.2.27) and (B.2.13))-
(B.2.14)).

Note that

(B.2.28)

ug+Tu=Lh <= ug=Mh+Nug. (B.2.29)
As a consequence, if ug = Mh + Nup then, by (B.2.21)), for & regular,

up 4+ (AR A = (Af)
k' £k

hence (Au) = hg, proving (B.2.12)). m
Lemma B.2.6. (Reduction on the bad sites) We have

Au=h = Aup=27h

where
A= AB 4 AN e ME,
o s (B.2.30)
Z:IE—A M GME7
satisfy
|A'ls, < ¢(©),
, 3 i (B.2.31)
|A'ls < C(s,0)N"(N*7% + N7°|Ts1s) ,
and
| Z]sg < eN™,
(B.2.32)

|Z]s < O(s, 0)N* (N*7* + N7|T 1)

Moreover (A1) is a left inverse of A'.

PROOF. By Lemma [B.2.5]

ACue + ABug =h
uag :NUB +Mh
—  (A°N + ABYug =h— A°Mh,

Au=h = {

i.e. Alug = Zh. Let us prove estimates (B.2.31))-(B.2.32)) for A" and Z.
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Step 1. Vk regular we have A}, =0, Z; = 0.
By (B.2.12), for all £ regular,
Vh, Yup € Hy, (AG(NuB + Mh) + ABuB)k — Iy
1.e. (A/UB)k = (Zh)k,
which implies A}, = 0 and Z;, = 0.

Step II. Proof of (B.2.31)-(B.2.34).

Call R C E the regular sites in E. For all k € E\R, we have |Af| < © (see Definition
B.2.2). Then (B.2.9) implies

A rlse <O+ [Tls < c(©),
|AE\R|S S ) + |T|Sv Vs Z So -

By Step I and the definition of A" in (B.2.30) we get

Al = [Alpygls < [AE gls + [AZ N s -

(B.2.33)

Therefore Lemma [B.1.7 (B.2.33)), (B.2.10), (B.2.11), imply

|A'|, < C(s, ©O)N"(N* + N_b|T|3+b) and |A'|,, <¢(O),

proving (B.2.31]). The bound (B.2.32|) follows similarly.
Step IIL. (A™) 5 is a left inverse of A'.
By
ATTA = ATHAB 4 ACN) = 15+ IEN
we get
(A YA = (A A g =15 —~0=15
proving that (A™1)p is a left inverse of A’. m

Now A’ € M and the set B is partitioned in clusters Q, of size O(N"), far enough
one from another, see (H3). Then, up to a remainder of very small so-norm (see (B.2.37)),
A" is defined by the submatrices (A')gz where Q/ is some neighborhood of €2, (the distance
between two distinct 2, and Q2 remains large). Since A’ has a left inverse with L*-norm
O(N'"), so have the submatrices (A’ )Q, . Since these submatrices are of size O(N'), the
s-norms of their inverse will be estimated as O(N*N'7) = O(N"™"X ) gee (B.2.43).

By Lemma [B.1.14] provided Y is chosen large enough, A’ has a left inverse V' with s-norms
satisfying (B.2.34). The details are given in the following lemma.




APPENDIX B. MULTISCALE STEP 320

Lemma B.2.7. (Left inverse with decay) The matriz A" defined in Lemma [B.2.6 has
a left inverse V' which satisfies

Vs > sg ’V’ N2x~r+n+2(so+b)C’1 (NCIS + ‘T’erb) ' (B.2.34)

PROOF. Define ¢ € ME by

Nk : ! /
C/’j/ :: (A )k, 1.f (k,k/) € Ua(Qq X Q/a) (B.2.35)
0 i (k, K) & Ug(Qa x Q)
where
Q,={keE : d(k,Q,) < N?/4}. (B.2.36)

Step 1. € has a left inverse W € M% with |[W|lo < 2(N')".
We define R := A’ — (. By the definition (B.2.35)-(B.2.36)), if d(k’, k) < N?/4 then R}, =0
and so

1
| |80 45T N~ (sl—b—so)|R|Sl_b < 451N—2(s1—b—sg)|Al|81_b
m?’r\‘;l- N—2(51—b—so)Nn(N51—b—so + N_bT)
Sey N#721 (B.2.37)

for N > Ny(7) large enough. Therefore
L, BB
K—S INT
IRI A al S REolA0 — Se N*(N)
" 0(31)N2H751+x7
(B23)
<

1/2 (B.2.38)

for N > N(s;). Since (A™')p € MZ% is a left inverse of A’ (see Lemma [B.2.6)), Lemma
IB.1.14| and (B.2.38)) imply that ¢ = A" — R has a left inverse W € MZ%, and

(12)
IWilo < 2[l(A )sllo < 2[[A7 o < 2(N)". (B.2.39)

Step II. W, € ME defined by

, ’ if (k. K o(Q, x O
(W = eI ,)6 Hafda ‘j) (B.2.40)
0 if (b K) € Ug(Q x QL)

is a left inverse of ¢ and |[Wy|, < C(s)NETIOTXT g > .
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Since W ({ = Ig, we prove that W, is a left inverse of ( showing that
(W —=Wy)¢=0. (B.2.41)
Let us prove (B.2.41)). For k € B = U,(2,, there is « such that k € €, and
VK € B, (W —Wo)Q); = > (W — Wi (B.2.42)
qEe,

since (W —Wy)i =0if g € Q, see the Definition (B.2.40)).
CaSE LI: k' € Q. Then ¢! = 0 in (B.2.42) and so (W — Wy)¢)f = 0.
Case II: k&' € Qg for some 3 # «. Then, since Céf/ = 0 if ¢ ¢ Qj, we obtain by (B.2.42)

that
(W= Wo)O)f = 3= (W — wy)ach BED ™ pprack
qEQ’B qEQ%
SOWEE = WO = ()} = 0.
keE

Since diam(€2,) < 2N, definition (B.2.40) implies (Wy)¥ = 0 for all [k — k/| > 2N,
Hence, Vs > 0,

(B239)
Wols s NUPIO W, |l S, NG, (B.2.43)

Step II1. A’ has a left inverse V' satisfying (B.2.3/)).
Now A" =+ R, Wy is a left inverse of ¢, and

EZD). 2 ez
[Wolso|R|so < C’(Sl)N(30+b)Cl+XT+QH—S1 < 1/2
(we use also that x > C) by (B.2.4)) for N > N(s;) large enough. Hence, by Lemma

B.1.14, A" has a left inverse V with

VI < 2[Wol, < CN#GHr (B.2.44)
and, Vs > s,
(B.1.26)) ) )
|V|s Ss |WO|S + |WO 50|R|s 58 |W0|s + |W0 50|A,|s
Ezm), [z
55 N2X7+Ii+2(so+b)01 (NCls + ‘T|s+b)

proving (B.2.34). m
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PROOF OF PROPOSITION COMPLETED. Lemmata [B.2.5] [B.2.6] [B.2.7 imply

A — R {uG—Mh+NuB

up =VZh

whence

(A7)p=V2 (B.2.45)
(A Ne=M+NVZ=M+N(A;. -

Therefore, Vs > s,

|(A )Bls Ss |V|S|Z|SO+|V|80|Z|S

(B234),(5.2.32),(5.2.9),(5.2.44)

N2H+2XT+2(So+b)C1 (NC'15 + |T|s+b)

~JS

S (N ((N)** +[Ts)

~oS

using | T s < C(s)(N)?T|s (by (B.1.22)) and defining
ap =27+ b+2x "k + Ci(so+ b)), ag:=x""C;. (B.2.46)

We obtain the same bound for [(A™1)g|s. Notice that by (B.2.4) and (B.2.3)), the exponents
a1, g in (B.2.46|) satisfy

a; <7, s <cg. (B.2.47)

Hence, for all s > s,

|A™ s < A DBl + (A Nals < C)(N)™ (NN +[Ts) (B.2.48)
C)VY” (V)" + |4 = Ding(4)].)

which is (B.2.8). Moreover, for N > N(s;) large enough, we have
Vs € [so,51], C(s)(N)™ <

— N/ T
— j( ) )
and by (B.2.48]) we deduce (B.2.7).



Appendix C

Normal form close to an isotropic
torus

In this Appendix we report the results in [24], which are used in Chapter @ Theorem
provides, in a neighborhood of an isotropic invariant torus for an Hamiltonian vector field
Xk, symplectic variables in which the Hamiltonian K assumes the normal form (C.1.22]).
It is a classical result of Herman [81], [64] that an invariant torus, densily filled by a quasi-
periodic solution, is isotropic, see Lemma and Lemma for a more quantitative
version. In view of the Nash-Moser iteration we need to perform an analogous construction
for an only “approximately invariant” torus. The key step is Lemma[C.2.5 which constructs
near an “approximately invariant” torus an isotropic torus. This Appendix is written with
a self-contained character.

C.1 Symplectic coordinates near an invariant torus
We consider the toroidal phase space
P:=T"xR"xE  where T":=R"/(21Z)"

is the standard flat torus and E is a real Hilbert space with scalar product (, ). We denote
by u := (6,y, z) the variables of P. We call (0,y) the “action-angle” variables and z the
“normal” variables. We assume that E' is endowed with a constant exact symplectic 2-form

Qp(z,w) = (Jz,w), Vz,weE, (C.1.1)

where J : E — E is an antisymmetric bounded linear operator with trivial kernel. Thus P
is endowed with the symplectic 2-form

W= (dyNdb) & Qg (C.1.2)

323
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which is exact, namely
W = dsx (C.1.3)

where d denotes the exterior derivative and s is the Liouville 1-form on P defined by

X(6,y,2) - R” x R x B — R,

L N N (C.1.4)
Hoy)0,9,2] =y 0+ §<Jz,z> , V(0,9,2) e R xR” x F,
and the dot “-” denotes the usual scalar product of R”.

Given a Hamiltonian function K : D C P — R, we consider the Hamiltonian system

u = X (u) where  dK(u)[-] = —W(Xk(u), -) (C.1.5)

formally defines the Hamiltonian vector field Xk. For infinite dimensional systems (i.e.
PDEs) the Hamiltonian K is, in general, well defined and smooth only on a dense subset
D =T"xR"x E; C P where F; C E is a dense subspace of E. We require that, for all
(0,y) € TV x R”, Vz € E;, the Hamiltonian K admits a gradient V, K, defined by

d.K(0,y,2)[h] = (V,K(0,y,2),hy, VheE, (C.1.6)

and that V_K(0,y,2) € E is in the space of definition of the (possibly unbounded) operator
J := —J ', Then by (C.1.5), (C.1.1), (C.1.2), (C.1.6) the Hamiltonian vector field Xy :
TV x RY x B} — RY x R” x E writes

Xx = (0,K,—0pK, JV.K), J=—J1'.

A continuous curve [ty, t1] 3 t — u(t) € T” x R” x E is a solution of the Hamiltonian system
if it is C' as a map from [tg, ;] to T x R” x Ey and wu,(t) = Xg (u(t)), ¥t € [to, t1].
For PDEs, the flow map ®% may not be well-defined everywhere. The next arguments,
however, will not require to solve the initial value problem, but only a functional equation

in order to find quasi-periodic solutions, see (C.1.11]).
We suppose that ((C.1.5)) possesses an embedded invariant torus

@ = i(p) = (0(p), y(9), 2(¢)) (C.1.7)
i€ CHT",P)NnC*(T",PNT" xR" x E}), (C.1.8)

which supports a quasi-periodic solution with non-resonant frequency vector w € R”, more

precisely
ioU!, =dt oi, VteR, (C.1.9)

where ®. denotes the flow generated by Xy and

UhT =T, U (p):=p+wt, (C.1.10)
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is the translation flow of vector w on T”. Since w € R” is non-resonant, namely
w-l£0, Yez"\{0},

each orbit of (V') is dense in T”. Note that only requires that the flow ®% is well
defined and smooth on the compact manifold 7 := i(T") C P and (®% )7 =io ¥} oi "
This remark is important because, for PDEs, the flow could be ill-posed in a neighborhood
of 7. From a functional point of view is equivalent to the equation

w - 0yi(p) — Xk (i(p)) =0. (C.1.11)

Remark C.1.1. In the sequel we will formally differentiate several times the torus embed-
ding i, so that we assume more regqularity than (C.1.8]). In the framework of a Nash-Moser
scheme, the approrimate torus embedding solutions i are indeed regularized at each step.

We require that 6 : TV — T" is a diffeomorphism of T" isotopic to the identity. Then
the embedded torus 7 :=i(T") is a smooth graph over T". Moreover the lift on R” of @ is
a map

0:R”"=R", 0(p) =9+, (C.1.12)

where ¥(p) is 2m-periodic in each component ¢;, i = 1,...,v, with invertible Jacobian
matrix DO(¢) = Id + DI(p), Yo € T". In the usual applications D? is small and w is a
Diophantine vector, namely

w0 > ﬁ Ve e Z2\ {0}.
The torus 7T is the graph of the function (see (C.1.7) and (C.1.12)))
ji=iof ', j:T" =T xR xE, j):=(0,5),z0)), (C.1.13)

namely

T = {(9,@(9),2(«9)) 0 e T”}, where ¥ ::goQA? z

=z007". (C.1.14)

We first prove the isotropy of an invariant torus as in [81], [64], i.e. that the 2-form W
vanishes on the tangent space to i(T") C P,

0 =W = i*dsc = d(i* ) , (C.1.15)
or equivalently the 1-form ¢3¢ on T" is closed.

Lemma C.1.2. The invariant torus i(T") is isotropic.
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Proor. By (C.1.9)) the pullback
(i o UL YW = (BL 0 i)W = i*W. (C.1.16)

For smooth Hamiltonian systems in finite dimension (C.1.16)) is true because the 2-form W
is invariant under the flow map @ (i.e. (®%)*W = W). In our setting, the flow (®% ) may
not be defined everywhere, but @ is well defined on i(T") by the assumption ((C.1.9), and
still preserves W on the manifold i(T"), see the proof of Lemma for details. Next,
denoting the 2-form

(W) (@) =D Aiil)dpi A dp;
i<j
we have
: t\* _ t \* ¥ _ . ) )
(1oW, )W = (V)" 0i™ W = ZK]A”(@ + wt)dp; A dp;
and so ((C.1.16|) implies that
Azg(@ + Wt) = AU(()O) , Vit e R.

Since the orbit {¢ + wt} is dense on T” (w is non-resonant) and each function A;; is
continuous, it implies that

Aij(p) = ¢y, Yo e T, de W= Zchijd% A dg;

is constant. But, by (C.1.3), the 2-form "W = i*d» = d(i*») is also exact. Thus each
¢;j = 0 namely W =0. m
We now consider the diffeomorphism of the phase space

0 6 0(¢) )
y | =G| ¢ | = yo)+Do() ¢ [Dx(6(6)] Tw (C.1.17)
z w z2(¢) +w

where 2(6) := (z0607')(#), see (C.1.14). The transposed operator [DZ(@)}T :E— R is
defined by the duality relation

[D2(0)] w0 = (w, DE(O)[0]), YweE, R
Lemma C.1.3. Let ¢ be an isotropic torus embedding. Then G is symplectic.

Proof. We may see GG as the composition GG := G4 o G of the diffeomorphisms

0 ¢ 0(¢
y | =G| ¢ | =1 (Do) ¢

z w
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0 0 0
( Y ) = G ( y ) 1= ( 3(0) +y — [Dz(0)] ' J= ) (C.1.18)
< 2 z(0) + z

where § := y o 0 z2:=z2007" see (C.1.14). We claim that both Gy, Go are symplectic,
whence the lemma follows.

and

(G 1S SYMPLECTIC. Since G is the identity in the third component, it is sufficient to check
that the map

(6,C) = (8(8), [DO(8)]"C)

is a symplectic diffeomorphism on T” x R”, which is a direct calculus.
Go 1S SYMPLECTIC. We prove that G5sc — 5 is closed and so (see (C.1.3)))

GW = Gidn = dGixe = dx =W .
By (C.1.18)) and the definition of pullback we have

Therefore (recall (C.1.4)))

((G32)(0.9.2) — #0.,2)) [0, 8, 2] =

~—
<2
—~
D
S~—
|
IS
—~
>
N—
—_
N
N
N—
>
+
DN | —
—
kSH
—
>
N—
N>
~

+
N =

N — <
I

(JDZ(0)[A], 2) (C.1.19)

+

having used that J' = —J. We first note that the 1-form

(0,9, 2) = (JZ(8), 2) + (JD(9)[], =) = d((JZ(9), 2))[6. . 2] (C.1.20)

is exact. Moreover

5(0) -8+ 3 (T6), DO = (7* )l (©1.21)
(recall (C-1.4)) where j :=i 06 " see (C.1.13). Hence (C.1.19), (C-1:20), (C-1.21)) imply
(JZ(0), 2))

| —

(G259)0.2) = #(0.p5) = T (77 )0,,5) + d(
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where 7 : T x R” x F — T" is the canonical projection.
Since the torus j(T") = i(T") is isotropic the 1-form 5% on T" is closed (as i*s, see
(C.1.15))). This concludes the proof. O

Since G is symplectic the transformed Hamiltonian vector field
G*Xg:=(DG) 'oXgoG =Xy, K:i=KoG,

is still Hamiltonian. By construction (see (C.1.17))) the torus {¢ = 0,w = 0} is invariant
and (C.1.11)) implies

Xx(¢,0,0) = (w,0,0)
(see also Lemma [C.2.6). As a consequence, the Taylor expansion of the transformed Hamil-
tonian K in these new coordinates assumes the normal form

K=const+w-(+ %A((ﬁ){ C+(C(o)C, w) + %(B(qﬁ)w,%@ + O03(¢, w) (C.1.22)

where A(¢) € Mat(v x v) is a real symmetric matrix, B(¢) is a self-adjoint operator of E,
C(¢) € L(R”, E), and O3(¢,w) collects all the terms at least cubic in ((, w).
We have proved the following theorem:

Theorem C.1.4. [24] (Normal form close to an invariant isotropic torus) Let
T =i(T") be an embedded torus, see —, which is a smooth graph over T", see
(C.1.13)-(C.1.14)), invariant for the Hamiltonian vector field Xy, and on which the flow is
conjugate to the translation flow of vector w, see ((C.1.9)-(C.1.10). Assume moreover that
T is ISOTROPIC, a property which is automatically verified if w is non-resonant.

Then there ezist symplectic coordinates (¢, ,w) in which T is described by

T x {0} x {0}
and the Hamiltonian assumes the normal form (C.1.22)), i.e. the torus
T =G(T” x {0} x {0})

where G 1s the symplectic diffeomorphism defined in (C.1.17), and the Hamiltonian K o G
has the Taylor expansion (C.1.22)) in a neighborhood of the invariant torus.

The normal form ((C.1.22)) is relevant in view of a Nash-Moser approach, because it
provides a control of the linearized equations in the normal bundle of the torus. The
linearized Hamiltonian system associated to K at the trivial solution (¢, (,w)(t) = (wt,0,0)
is

¢ — Awt) — [C(wt)]Tw =0

(=0
W — J(B(wt)w + C(wt)¢) =0
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and note that the second equation is decoupled from the others. Inserting its constant
solution ((t) = (o in the third equation we are reduced to solve the quasi-periodically
forced Hamiltonian linear equation in w,

wy — JB(whw = g(wt), g(wt) = JC(wt)(p -

This linear system may be studied with both the reducibility and the multiscale techniques
presented in sections and [1.4, In particular, if the reducibility approach outlined in
subsection applies, there is a symplectic change of variable which makes B(¢) constant.

C.2 Symplectic coordinates near an approximately in-
variant torus

In this section we report a construction of suitable symplectic coordinates near a torus
which is only approximately invariant, analogous to the one in the previous section.
For that, we first report a basic fact about 1-forms on a torus. We regard a 1-form

a= Z a;(p)dy; equivalently as the vector field a(p) = (a1(¢), ..., a.(@)).
Gii:Vlen a function g : TV — R with zero average, we denote by
ui=A"yg
the unique solution of Au = g with zero average.

Lemma C.2.1. (Helmotz decomposition) A smooth vector field a on T" may be de-
composed as the sum of a conservative and a divergence-free vector field:

a=VU+c+p, U:T"—=R, ceR”, divp=0, /pdgpzo. (C.2.1)
Tv

The above decomposition is unique if we impose that the mean value of U vanishes. We
have that
U=A"!(diva),

the components of p are

pip) = AT 0, Aki(0), Ak =005 — O a, (C.2.2)
k=1

and
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Proof. Notice that div(d — VU) = 0 if and only if diva = AU. This equation has the
solution U := A~!(diva) (note that div a has zero average). Hence (C.2.1)) is achieved with
p:=a— VU — c. By taking the p-average we get that each

o= m) [ ale)de.
Let us now prove the expression (C.2.2)) of p;. We have
Opi0j = Op; Pk = Op 0 — Oy ar =2 Ay

because

0y, 0, U — 0, 0,,U = 0.
For each j = 1,...,v we differentiate d,,p; — 0, pr = Ag; With respect to ¢, and we sum
in k, obtaining

Dp; =D Oppypre = Y 0 Ass
k=1 k=1

Since ,
Z Opro; Pk = 0,;divp =0
k=1
then Ap; = Y, Ay; and (C2.2) follows. O
k=1

Corollary C.2.2. Any closed 1-form on T" has the form a(p) = ¢+ dU for some ¢ € R”.
Corollary C.2.3. Let a(p) be a 1-form on T", and let p be defined by (C.2.2). Then
a — Z 1pj(<,0)dg0j is closed.

=

We quantify how an embedded torus i(T") is approximately invariant for the Hamilto-
nian vector field X in terms of the “error function”

Z(p) = F(1) = (w - 9,1) () = Xk (i) - (C.2.3)
Consider the pullback 1-form on T" (see (C.1.4))

(i*32) () = Y ar(p)don (C.2.4)
where
(o) = [[D86e)] ule) + 5D T2(e)]
- 20 1, oz -
= Q(w)'a—gpk( )+ 5¢ 2(90%6—%(90)% (C.2.5)
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and the 2-form (recall (C.1.3)))

W = d(i" ») Z Ak;] Ydpr N dep;
Ak]( ) = asﬂkaj( ) - aapjak((p)'

We call the coeflicients (Ay;) the “lack of isotropy” of the torus embedding ¢ — i(¢p).
In Lemma below we quantify their size in terms of the error function Z defined in
(C.2.3]). We first recall that the Lie derivative of a k-form £ with respect to the vector field
Y is

(C.2.6)

d
L =
vp 7

where ®!, denotes the flow generated by Y.
Given a function g(p) with zero average, we denote by u := (w - 9,) 'g the unique
solution of w - d,u = ¢g with zero average.

[(@3)°8]

Lemma C.2.4. The “lack of isotropy” coefficients Ay; satisfy, Vo € T,
(w - 0,)Ak;() = W(DZ(p)ey, Di(p)e;) + W(Di(p)ey, DZ(p)e;) (C.2.7)

where (eq,...,e,) denotes the canonical basis of R”. Thus, since each Ag; has zero mean
value, if the frequency vector w € R” is non-resonant, then

Agi(p) = (w- 0,) " (W(DZ(p)ey, Di(p)e;) + W (Di(p)ey, DZ(p)e;)) - (C.2.8)
Proof. We use Cartan’s formula
L,(iW) = d((i*W)(w, ")) + (W) (w, ).
Since d(i*W) = i*dW = 0 by we get
L,(i"W) = d((i*W)(w, )) . (C.2.9)
Now we compute, for gg e R”

(I*W)(w, 8) = W(Di(p)w, Di(¢)o) = W(Xk(i(0)) + Z(¢), Di(¢)d)
= —dK(i())[Di()d] + W(Z (), Di()$) .
We obtain
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Hence, by (C.2.9), the Lie derivative

Lo(i"W) = Bij(@)dpi A dg; (C.2.10)
k<j
with
b b
Bij(e) = 50(0) = 8—;(@
J
0 0

= a—%(W(Z(sO), Di(p)e;)) — a—%(W(Z(w), Di(p)ey))
=WI(DZ(p)er, Di(p)e;) + W(Di(p)ey, DZ(p)e;) - (C.2.11)

Recalling (C.1.10|) and ((C.2.6|) we have, Vp € T,

WL (W) (@) = iW(p+wt) = 3 Ay + wt)diy A dy; .

k<j
Hence the Lie derivative
Lo(EW) () = D _(w - 0pAk;) (@) depr A dip; . (C.2.12)
k<j
Comparing (C.2.10)-(C.2.11)) and (C.2.12)) we deduce (C.2.7)). O

The previous lemma provides another proof of Lemma For an invariant torus
embedding i(y) the “error function” Z(¢) = 0 (see (C.2.3))) and so each Aj; = 0. We now
prove that near an approximate isotropic torus there is an isotropic torus.

Lemma C.2.5. (Isotropic torus) The torus embedding is(¢) = (6(¢), ys(p), 2(¢)) defined
by
us() = y(e) = DB ple) . pyi= A7 (Y 05, A5(9)) (C.2.13)
k=1

1S 1s0tropic.

Proof. By Corollary the 1-form i3 — p is closed with p; defined in (C.2.13)), see also
(€.2.2), (C.2.4). Actually

Vit — p=isx
is the pullback of the 1-form s under the modified torus embedding ¢5 defined in (C.2.13]),
see ((C.2.5). Thus the torus is(T") is isotropic. O
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In analogy with Theorem we now introduce a symplectic set of coordinates (¢, ¢, w)
near the isotropic torus 75 := is(T") via the symplectic diffeomorphism

0 ¢ 0(¢)
y | =Gs| ¢ )= o)+ DO)] ¢~ [DZ(8(6)] Tw (C-2.14)
? w () +w

where 2 := z067'. The map Gy is symplectic by Lemma because 15 is isotropic
(Lemma|C.2.5)). In the new coordinates (¢, ,w) the isotropic torus embedding is is trivial,
namely

25(¢) = G5(¢7 07 O) :
Under the symplectic change of variable (C.2.14]), the Hamiltonian vector field X changes

into

Xg = G3; Xk = (DGs) ' Xg 0 Gs where K:=KoGs. (C.2.15)

The Taylor expansion of the new Hamiltonian K : RY x R” x £ — R at the trivial torus

(¢,0,0) is
= Koo(¢) + K10(6) - ¢ + (Kor(¢), w)

+ 5K(B)C -+ (Knn(9)G,w) + 5 {Ka(6)u, ) + Ko (€, w)

(C.2.16)

where K>3 collects all the terms at least cubic in the variables (¢, w). The Taylor coefficients
of K are Kopo(¢) € R, Kio(¢p) € R”, Kp1(¢) € E, Koo(¢) € Mat(v x v) is a real symmetric
matrix, Koa(¢) is a self-adjoint operator of £ and Ky1(¢) € L(R”, E).

As seen in Theorem |C.1.4] if i5 were an invariant torus embedding, the coefficient
Koo(¢) = const, Ki9(¢) = w and Ko1(¢) = 0. We now express these coefficients in terms of
the error function Zs := F(is).

Lemma C.2.6. The vector field

Kio(9) w
Xi(9,0,0) = [ —05Ko0() | = [ 0| = (DGs(¢,0,0) " Zs(9). (C.2.17)
JKo1 () 0

Proof. By (C215) and is(¢) = Gs(6,0,0), we have

Xk(¢,0,0) = DGs(6,0,0) " X (is(¢))
= DG5(9,0,0) " (w - 0,i5(¢) — Z5())

and (C.2.17) follows because DG(¢,0,0) *Dis(¢)[w] = (w,0,0). O
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We finally write the expression of the coefficients Ki1(¢), Kao(¢) in terms of K, which is
used in Chapter [6]

Lemma C.2.7. The coefficients

Ki(¢) = Dy V. K (i5(¢))[Dbo(¢)] ™" + J(DoZ)(80(¢)) (D, K)(i5(¢)) [Dbo(¢)] ™" (C.2.18)
Kao() = [D0(¢)]™" (DK (i5(¢))[Do()] " - (C.2.19)

Proof. Formulas (C.2.18))(C.2.19) follow differentiating K = K o Gs. O
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