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Preface

Many Partial Differential Equations (PDEs) arising in physics can be seen as infinite di-
mensional Hamiltonian systems

∂tz = J(∇zH)(z) , z ∈ E , (0.0.1)

where the Hamiltonian function H : E → R is defined on an infinite dimensional Hilbert
space E of functions z := z(x), and J is a non-degenerate antisymmetric operator.

Main examples are the nonlinear wave equation (NLW)

utt −∆u+ V (x)u+ g(x, u) = 0 , (0.0.2)

the nonlinear Schrödinger equation (NLS), the beam equation, and the higher dimensional
membrane equation, the water waves equations, i.e. the Euler equations of Hydrodynamics
describing the evolution of an incompressible irrotational fluid under the action of grav-
ity and surface tension, as well as its approximate models like the Korteweg de Vries
(KdV) equation, the Boussinesq, Benjamin-Ono, Kadomtsev-Petviashvili (KP) equations,
. . . , among many others. We refer to [95] for a general introduction to Hamiltonian PDEs.

In this Monograph we shall adopt a “Dynamical Systems” point of view, regarding the
nonlinear wave equation (0.0.2), equipped with periodic boundary conditions x ∈ Td :=
(R/2πZ)d, as an infinite dimensional Hamiltonian system, and we shall prove the existence
of Cantor families of finite dimensional invariant tori, filled by quasi-periodic solutions of
(0.0.2). The first results in this direction are due to Bourgain [40]. The search of invariant
sets for the flow is an essential change of paradigm in the study of hyperbolic equations,
with respect to the more traditional pursuit of the initial value problem. This perspective
has allowed to find many new results, inspired by finite dimensional Hamiltonian systems,
for Hamiltonian PDEs.

When the space variable x belongs to a bounded domain like a compact interval x ∈ [0, π]
(with Dirichlet boundary conditions), or x ∈ Td (periodic boundary conditions), or, more
generally, x belongs to a compact manifold, the dynamics of a Hamiltonian PDE (0.0.1),
like (0.0.2), is expected to have a “recurrent” behaviour in time, with many periodic and
quasi-periodic solutions, i.e. solutions (defined for all times) of the form

u(t) = U(ωt) ∈ E where Tn 3 ϕ 7→ U(ϕ) ∈ E (0.0.3)
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is 2π-periodic in the angular variables ϕ := (ϕ1, . . . , ϕn) and the frequency vector ω ∈ Rn

is nonresonant, namely ω · ` 6= 0, ∀` ∈ Zn \{0}. When n = 1 the solution u(t) is periodic in
time, with period 2π/ω. If U(ωt) is a quasi-periodic solution then, since the orbit {ωt}t∈R
is dense on Tn, the torus-manifold U(Tn) ⊂ E is invariant under the flow of (0.0.1).

Notice that all the solutions of the linear wave equation (0.0.2) with g = 0,

utt −∆u+ V (x)u = 0 , x ∈ Td , (0.0.4)

are of this form. Indeed the self-adjoint operator −∆ + V (x) possesses a complete L2-
orthonormal basis of eigenfunctions Ψj(x), j ∈ N, with eigenvalues λj → +∞,

(−∆ + V (x)) Ψj(x) = λj Ψj(x) , j ∈ N . (0.0.5)

Supposing for simplicity that −∆+V (x) > 0, the eigenvalues λj = µ2
j , µj > 0, are positive,

and all the solutions of (0.0.4) are∑
j∈N

αj cos(µjt+ θj)Ψj(x) , αj, θj ∈ R , (0.0.6)

which, according to the resonance properties of the linear frequencies µj = µj(V ), are
periodic, quasi-periodic, or almost-periodic in time (i.e. quasi-periodic with infinitely many
frequencies).

What happens to these solutions under the effect of the nonlinearity g(x, u) ?

There exist special nonlinear equations for which all the solutions are still periodic, quasi-
periodic or almost-periodic in time, for example the sine-Gordon equation, KdV, 1d cubic-
NLS, . . . . These are completely integrable PDEs. However, for generic nonlinearities, one
expects, in analogy with the celebrated Poincaré non-existence theorem of prime integrals
for nearly integrable Hamiltonian systems, that this is not the case.

On the other hand, for sufficiently small Hamiltonian perturbations of a non degenerate
integrable system in Tn × Rn, the classical KAM –Kolmogorov-Arnold-Moser– theorem
proves the persistence of quasi-periodic solutions with Diophantine frequency vector ω ∈ Rn,
i.e. satisfying for some γ > 0 and τ ≥ n− 1, the non-resonance condition

|ω · `| ≥ γ

|`|τ
, ∀` ∈ Zn \ {0} . (0.0.7)

Such frequencies form a Cantor set of Rn of positive measure if τ > n − 1. These quasi-
periodic solutions (which densely fill invariant Lagrangian tori) were constructed by Kol-
mogorov [92] and Arnold [2] for analytic systems using an iterative Newton scheme, then
modified by Moser [97]-[98] with the introduction of smoothing operators in order to deal
with merely differentiable perturbations. This scheme then gave rise to abstract Nash-
Moser implicit function theorems like the ones due to Zehnder in [117, 118], see also [100],
[80].

What happens for infinite dimensional systems like PDEs?
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• The central question of KAM theory for PDEs is: do “most” of the periodic, quasi-
periodic, almost-periodic solutions of an integrable PDE (linear or nonlinear) persist,
just slightly deformed, under the effect of a nonlinear perturbation?

KAM theory for Partial Differential Equations started a bit more than thirty years ago
with the pioneering works of Kuksin [93] and Wayne [115], about existence of quasi-periodic
solutions for semilinear perturbations of 1-dimensional linear wave and Schrödinger equa-
tions in the interval [0, π]. These results are based on an extension of the KAM perturbative
approach developed for the search of lower dimensional tori in finite dimensional systems,
see [99], [53], [102], and relies on the verification of the so called second order Melnikov
non-resonance conditions.

Nowadays KAM theory for 1-d partial differential equations has reached a satisfactory
level of comprehension, including bifurcation of small amplitude solutions [96], [104], [16],
perturbations of large finite gap solutions [94], [95], [32], [90], [28], extension to periodic
boundary conditions [51], [34], [45], [67], use of weak non-degeneracy conditions [11], non-
linearities with derivatives [86], [119], [18] up to quasi-linear ones [6]-[8], [62], including
water-waves equations [30], [5], applications to quantum harmonic oscillator [77], [9]-[10].
We describe these developments more in detail in section 1.3.

On the other hand, KAM theory for multidimensional PDEs still contains few results
and a satisfactory picture is under construction. If the space dimension d is 2 or more,
major difficulties are the following:

1. the eigenvalues µ2
j of the Sturm-Liouville operator −∆ + V (x) in (0.0.5) appear in

huge clusters of increasing size. For example, if V (x) = 0, and x ∈ Td, they are

µj = |j|2 = j2
1 + . . .+ j2

d , j = (j1, . . . , jd) ∈ Zd.

2. The eigenfunctions Ψj(x) may be “not localized” with respect to the exponentials,
i.e., roughly speaking, the elements (Ψj, e

ik·x)L2 of the matrix which expresses the
change of basis between (Ψj) and (eik·x), do not decay rapidly to zero as the distance
||k| − j| → +∞.

The first existence result of time periodic solutions for the nonlinear wave equation

ytt −∆y +my = y3 + h.o.t. , x ∈ Td , d ≥ 2 ,

has been proved by Bourgain in [35], extending the Craig-Wayne approach [51], origi-
nally developed if x ∈ T. Further existence results of periodic solutions have been proved
in Berti-Bolle [21] for merely differentiable nonlinearities, Berti-Bolle-Procesi [25] for Zoll
manifolds, Gentile-Procesi [71] using Lindstedt series techniques, and Delort [52] for NLS
using paradifferential calculus.
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The first breakthrough result about existence of quasi-periodic solutions for space mul-
tidimensional PDEs was due to Bourgain [37] for analytic Hamiltonian NLS equations of
the form

iut = ∆u+Mσu+ ε∂ūH(u, ū) (0.0.8)

with x ∈ T2, where Mσ = Op(σj) is a Fourier multiplier supported on finitely many sites
S ⊂ Z2, i.e. σj = 0, ∀j ∈ Zd \ S. The σj, j ∈ S, play the role of external parameters used
to verify suitable non-resonance conditions. Notice that the eigenfunctions of ∆ + Mσ are
the exponentials eij·x and so the above mentioned problem 2 is non present.

Later on, using tools of sub-harmonic analysis previously developed for quasi-periodic
Anderson localization theory, in Bourgain-Goldstein-Schlag [41], [39], Bourgain [40] was
able to extend this result in any space dimension d, and also for analytic nonlinear wave
equations of the form

ytt −∆y +Mσy + εF ′(y) = 0 , x ∈ Td . (0.0.9)

We also mention the existence results of quasi-periodic solutions of Bourgain-Wang [42]-[43]
for NLS and NLW under a random perturbation. The stochastic case is a priori easier than
the deterministic one because it is simpler to verify the non-resonance conditions with a
random variable.

The main analysis for proving the existence of quasi-periodic solutions of (0.0.9) concerns
finite dimensional restrictions of the quasi-periodic operators obtained linearizing (0.0.9) at
each step of the Newton iteration,

ΠN

(
(ω · ∂ϕ)2 −∆ +Mσ + εb(ϕ, x)

)
|HN

, (0.0.10)

where ϕ ∈ Tν (ν is the number of frequencies) and ΠN denotes the projection on the finite
dimensional subspace

HN :=
{
h =

∑
|(`,j)|≤N

h`,je
i(`·ϕ+jx) , ` ∈ Zν , j ∈ Zd

}
.

The matrix which represents (0.0.10) in the exponential basis is a perturbation of the

diagonal matrix Diag(−(ω · `)2 + |j|2 +σj) with off-diagonal entries ε(̂b`−`′,j−j′) which decay
exponentially to zero as |(` − `′, j − j′)| → +∞. The goal is to prove that such matrix
is invertible, for most values of the parameters, and that its inverse has an exponential or
Gevrey off-diagonal decay. It is not difficult to impose lower bounds for the eigenvalues
of the self-adjoint operator (0.0.10) for most values of the parameters. These “first order
Melnikov” non-resonance conditions are essentially the minimal assumptions for proving
the persistence of quasi-periodic solutions of (0.0.9), and provide estimates of the inverse
of the operator (0.0.10) in L2 norm. In order to prove fast off-diagonal decay estimates for
the inverse matrix, Bourgain’s technique is a “multiscale” inductive analysis based on the
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repeated use of the “resolvent identity”. An essential ingredient is that the “singular” sites

(`, j) ∈ Zν × Zd such that | − (ω · `)2 + |j|2 + σj| ≤ 1 (0.0.11)

are separated into clusters which are sufficiently distant from one another (otherwise the
bounds on the inverse operators would not be good enough to allow the convergence of
the Newton scheme). However, the information (0.0.11) about just the linear frequencies
of (0.0.9) is not sufficient (unlike for time-periodic solutions [35]) and also finer properties
of non-resonance at each scale along the induction are verified. We describe the multiscale
approach in section 1.4 and we prove novel multiscale results in Chapter 4.

These techniques have been extended in the recent work of Wang [114] for the nonlinear
Klein-Gordon equation

ytt −∆y + y + yp+1 = 0 , p ∈ N , x ∈ Td ,
that, unlike (0.0.9), is parameter independent. A key step is to verify that suitable non-
resonance conditions are fulfilled for most “initial data”. We refer to [113] for a correspond-
ing result for NLS.

Another stream of important results for multidimensional PDEs have been inaugurated
in the breakthrough paper [58] of Eliasson-Kuksin for the NLS equation (0.0.8). In this
paper the authors are able to block diagonalize, and reduce to constant coefficients, the
quasi-periodic Hamiltonian operator obtained at each step of the iteration. This KAM
reducibility approach extends the perturbative theory developed for 1d-PDEs, by verifying
the so called second order Melnikov non-resonance conditions. It allows to prove directly
also the linear stability of the quasi-periodic solutions. Other results in this direction have
been proved for the 2d-cubic NLS by Geng-Xu-You [70], by Procesi-Procesi [106], [107]
in any space dimension and arbitrary polynomial nonlinearities, by Geng-You [68] and
Eliasson-Grébert-Kuksin [55] for beam equations. Unfortunately, the second order Melnikov
conditions are strongly violated for nonlinear wave equations for which an analogous result
does not hold. We describe the KAM reducibility approach with PDEs applications in
section 1.3.

We now present more in detail the goal of this research Monograph. The main result
is the existence of small amplitude time quasi-periodic solutions for autonomous nonlinear
wave equations

utt −∆u+ V (x)u+ g(x, u) = 0 , x ∈ Td , g(x, u) = a(x)u3 +O(u4) , (0.0.12)

in any space dimension d ≥ 1, where V (x) is a smooth multiplicative potential such that
−∆ + V (x) > 0, and the nonlinearity g(x, u) is C∞. Given a finite set S ⊂ N (tangential
sites) the quasi-periodic solutions u(ωt, x) that we construct have |S|-independent frequen-
cies (ωj)j∈S, and have the form

u(ωt, x) =
∑
j∈S

αj cos(ωjt)Ψj(x) + r(ωt, x) , ωj = µj +O(|α|) , (0.0.13)
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with α := (αj)j∈S and a remainder r(ϕ, x) which is o(|α|)-small in some Sobolev space.
The solutions (0.0.13) are thus a small deformation of linear solutions (0.0.6), supported
on the “tangential” space spanned by the eigenfunctions (Ψj(x))j∈S, with a much smaller
component in the normal subspace. These quasi-periodic solutions of (0.0.12) exist for
generic potentials V (x), functions a(x) and “most” small values of the amplitudes (αj)j∈S.
The precise statement is given in Theorem 1.2.1 and Theorem 1.2.3.

The proof of this result requires various mathematical methods which this book aims
to present in a systematic and self-contained way. A complete outline of the steps of
proof is presented in section 1.5. Here we just mention that we shall use a Nash-Moser
iterative scheme in scales of Sobolev spaces for the search of an invariant torus embedding
supporting quasi-periodic solutions, with a frequency ω to be determined. One key step is
to establish the existence of an approximate inverse for the operators obtained by linearizing
the nonlinear wave equation at any approximate quasi-periodic solution u(ωt, x), and to
prove that such approximate inverse satisfies tame estimates in Sobolev spaces, with loss
of derivatives due to the small divisors. These are linear operators of the form

h 7→ (ω · ∂ϕ)2h−∆h+ V (x)h+ (∂ug)(x, u(ωt, x))h

with coefficients depending on x ∈ Td and ϕ ∈ T|S|. The construction of an approximate
inverse requires several steps. After writing the wave equation as a Hamiltonian system in
infinite dimension, the first step is to use a symplectic change of variable to approximately
decouple the tangential and normal components of the linearized operator. It is a rather
general procedure for autonomous PDEs, which reduces the problem to the search of an
approximate inverse for a quasi-periodic Hamiltonian linear operator acting in the subspace
normal to the torus, see Chapter 6 and Appendix C.

In order to avoid the difficulty posed by the violation of the second order Melnikov
non-resonance conditions required by a KAM reducibility scheme, we develop a multiscale
inductive approach à la Bourgain, which is particularly delicate since the eigenfunctions
Ψj(x) of −∆+V (x) defined in (0.0.5) are not localized near the exponentials. In particular
the matrix elements (Ψj, a(x)Ψj′)L2 representing the multiplication operator with respect
to the basis of the eigenfunctions Ψj(x) do not decay, in general, as j−j′ →∞. In Chapter
4 we provide the complete proof of the multiscale proposition (which is fully self-contained
together with the Appendix B) which we shall use in Chapters 9-10. These results extend
the multiscale analysis developed for forced NLW and NLS in [22]-[23].

The presence of a multiplicative potential V (x) in (0.0.12) makes also difficult to control
the variations of the tangential and normal frequencies due to the effect of the nonlinearity
a(x)u3 + O(u4) with respect to parameters. In this Monograph, after a careful bifurcation
analysis of the quasi-periodic solutions, we are able to use just the frequency length |ω| as
an internal parameter to verify all the non-resonance conditions along the iteration. The
frequency is constrained to a fixed direction, see (1.2.24)-(1.2.25). The measure estimates
are obtained relying on positivity arguments for the variation of parameter dependent
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families of self-adjoint matrices, see section 4.8, that we verify of the linearized operators
obtained along the iteration, see (8.1.8).

The genericity of the non-resonance and non-degeneracy conditions that we require on
the potential V (x) and the function a(x) in the nonlinearity a(x)u3 + O(u4), are finally
verified in Chapter 12.

The techniques developed above for the NLW equation (0.0.12) would certainly apply to
prove a corresponding result for nonlinear Schrödinger equations. However we have decided
to focus on NLW because, as explained above, there are less results available. This context
seems to make appear more evident the advantages of the present approach with respect
to that of reducibility.

A feature of the Monograph is to present the proofs, techniques and ideas developed
in a self-contained and expanded manner, with the hope to enhance further developments.
We also aim to describe the connections of this result with previous works in the literature.
The techniques developed in this Monograph have deep connections with those used in
Anderson localization theory and we hope that the detailed presentation in this manuscript
of all technical aspects of proof, will allow a deeper interchange between the scientific
communities of Anderson-localization and “KAM for PDEs”.

Massimiliano Berti, Philippe Bolle,
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Chapter 1

Introduction

1.1 Main result and historical context

We consider autonomous nonlinear wave equations (NLW)

utt −∆u+ V (x)u+ g(x, u) = 0 , x ∈ Td := Rd/(2πZ)d , (1.1.1)

in any space dimension d ≥ 1, where V (x) ∈ C∞(Td,R) is a real valued multiplicative
potential and the nonlinearity g ∈ C∞(Td × R,R) has the form

g(x, u) = a(x)u3 +O(u4) (1.1.2)

with a(x) ∈ C∞(Td,R). We require that

−∆ + V (x) > β Id , β > 0 . (1.1.3)

Condition (1.1.3) is satisfied, in particular, if the potential V (x) ≥ 0 and V (x) 6≡ 0.

In this Monograph we prove the existence of small amplitude time quasi-periodic so-
lutions of (1.1.1). We remind that a solution u(t, x) of (1.1.1) is time quasi-periodic with
frequency vector ω ∈ Rν , ν ∈ N+, if it has the form

u(t, x) = U(ωt, x)

where U : Tν × Td → R is a continuous function and ω ∈ Rν is a nonresonant vector,
namely

ω · ` 6= 0 , ∀` ∈ Zν \ {0} .
If ν = 1 a solution of this form is time-periodic with period 2π/ω.

Small amplitude solutions of (1.1.1) will be close to solutions of the linear wave equation

utt −∆u+ V (x)u = 0 , x ∈ Td . (1.1.4)

1
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The Sturm-Liouville operator −∆+V (x) admits an L2-orthonormal basis of eigenfunctions
{Ψj}j∈N,

(−∆ + V (x))Ψj(x) = µ2
jΨj(x) , (1.1.5)

with positive eigenvalues

0 < β ≤ µ2
0 ≤ µ2

1 ≤ . . . ≤ µ2
j ≤ . . . , µj > 0 , (µ2

j)→ +∞ ,

written in increasing order and with multiplicities, and therefore the solutions of the linear
wave equation (1.1.4) are given by the linear superpositions of normal modes oscillations,∑

j∈N

αj cos(µjt+ θj)Ψj(x) , αj , θj ∈ R . (1.1.6)

All the solutions (1.1.6) of (1.1.4) are periodic, or quasi-periodic, or almost periodic in
time, with linear frequencies of oscillations µj, according to the resonance properties of
µj (which depend on the potential V (x)) and how many normal mode amplitudes αj are
not zero. In particular, if αj = 0 for any index j except a finite set S (tangential sites),
and the frequency vector µ̄ := (µj)j∈S is nonresonant, then the linear solutions (1.1.6) are
quasi-periodic in time.

The main question we pose is the following:

• Do small amplitude quasi-periodic solutions of the nonlinear wave equation (1.1.1)
exist?

The main result presented in this Monograph (Theorem 1.2.1) actually proves that small
amplitude quasi-periodic solutions (1.1.6) of the linear wave equation (1.1.4), which are sup-
ported on finitely many indices j ∈ S, persist, slightly deformed, as quasi-periodic solutions
of the nonlinear wave equation (1.1.1), with a frequency vector ω close to µ̄, for “generic”
potentials V (x) and coefficients a(x) (Theorem 1.2.3) and “most” amplitudes (αj)j∈S.

The potentials V (x) and the functions a(x) such that Theorem 1.2.1 holds are generic
in a very strong sense; in particular they are C∞-dense, according to Definition 1.2.2, in
the set (

P ∩ C∞(Td)
)
× C∞(Td)

where P :=
{
V (x) ∈ Hs(Td) : −∆ + V (x) > 0

}
, see (1.2.38).

Theorem 1.2.1 is a KAM (Kolmogorov-Arnold-Moser) type perturbative result. We
construct recursively an embedded invariant torus which supports quasi-periodic solutions
of (1.1.1) with frequency vector ω (to be determined), by a modified Nash-Moser iterative
scheme for the search of zeros

F(λ; i) = 0
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of a nonlinear operator F acting on scales of Sobolev spaces of functions i, depending on
a suitable parameter λ, see Chapter 5. As in a Newton scheme, the core of the problem
consists in the analysis of the linearized operators

diF(λ; i)

at any approximate solution i at each step of the iteration, and proving its approximate
invertibility, for most values of the parameters, with quantitative tame estimates for the
approximate inverse in high Sobolev norms. The approximate inverse will be unbounded,
i.e. it loses derivatives, due to the presence of small divisors. As we shall describe in
detail in section 1.5, the construction of an approximate inverse for the linearized operators
obtained from (1.1.1) is a subtle problem due to complicated resonance phenomena between
the frequency vector ω of the expected quasi-periodic solutions and the multiple normal
mode frequencies of oscillations, shifted by the nonlinearity, and the fact that the normal
mode eigenfunctions Ψj(x) are not “localized close to the exponentials”.

We now make a short historical introduction to KAM theory for partial differential
equations, that we shall expand in section 1.3. As we already mentioned in the preface,
in these small divisors problems for PDEs, as (1.1.1), the space dimension d = 1 or d ≥ 2
makes a fundamental difference, due to the very different properties of the eigenvalues and
eigenfunctions of the Sturm-Liouville operator −∆ + V (x) on Td for d = 1 and d ≥ 2.

The first KAM existence results of quasi-periodic solutions were proved by Kuksin [93],
see also [95], and Wayne [115] for 1-d wave and Schrödinger (NLS) equations on the interval
x ∈ [0, π] with Dirichlet boundary conditions and analytic nonlinearities, see (1.3.22)-
(1.3.23). These pioneering theorems were limited to Dirichlet boundary conditions because
the eigenvalues µ2

j of the Sturm-Liouville operator −∂xx + V (x) had to be simple. Indeed
the KAM scheme in [95], [115], see also [103], reduces the linearized equations along the
iteration to a diagonal form, with coefficients constant in time, requiring “second-order
Melnikov” non-resonance conditions, which concern lower bounds for differences among the
linear frequencies. In these papers the potential V (x) is used as a parameter to impose non-
resonance conditions. Once the linearized PDEs obtained along the iteration are reduced to
diagonal, constant in time, form, it is easy to prove that the corresponding linear operators
are invertible, for most values of the parameters, with good estimates of their inverses in
high norms (with of course loss of derivatives). We refer to section 1.3 for a more detailed
explanation of the KAM reducibility approach.

Subsequently these results have been extended by Pöschel [104] for parameter inde-
pendent nonlinear Klein-Gordon equations like (1.3.31), and by Kuksin-Pöschel [96] for
NLS equations like (1.3.30), using Birkhoff normal form techniques to verify (weak) non-
resonance conditions among the perturbed frequencies, tuning the amplitudes of the solu-
tions as parameters.

In the case x ∈ T, the eigenvalues of the Sturm-Liouville operator −∂xx + V (x) are
asymptotically double, and therefore the previous second order Melnikov non-resonance
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conditions are violated. In this case the first existence results were obtained by Craig-
Wayne [51] for time periodic solutions of analytic nonlinear Klein-Gordon equations (see
also [49] and [19] for completely resonant wave equations), and then extended by Bour-
gain [34] for time quasi-periodic solutions. The proofs are based on a Lyapunov-Schmidt
bifurcation approach and a Nash-Moser implicit function iterative scheme. The key point
of these papers is to renounce to diagonalize the linearized equations at each step of the
Nash-Moser iteration. The advantage is to require only minimal non-resonance conditions
which are easily verified for PDEs also in presence of multiple frequencies (the second order
Melnikov non-resonance conditions are not used). On the other hand, a difficulty of this
approach is that, since the linearized equations obtained along the iteration are variable
coefficients PDEs, it is hard to prove that the corresponding linear operators are invertible
with estimates of their inverses in high norms, sufficient to imply the convergence of the
iterative scheme. Relying on a “resolvent” type analysis inspired by the work of Frölich-
Spencer [66] in the context of Anderson localization, Craig-Wayne [51] were able to solve
this problem for time periodic solutions in d = 1, and Bourgain in [34] also for quasi-periodic
solutions. Key properties of this approach are:

(i) “separation properties” between singular sites, namely the Fourier indices (`, j) of the
small divisors |(ω · `)2 − j2| ≤ C in the case of (NLW);

(ii) “localization” of the eigenfunctions of the Sturm-Liouville operator −∂xx+V (x) with re-
spect to the exponential basis (eikx)k∈Z, namely that the Fourier coefficients (Ψ̂j)k converge
rapidly to zero when ||k| − j| → ∞. This property is always true if d = 1.

Property (ii) implies that the matrix which represents, in the eigenfunction basis, the
multiplication operator for an analytic (resp. Sobolev) function has an exponentially (resp.
polynomially) fast decay off the diagonal. Then the “separation properties” (i) imply a
very “weak interaction” between the singular sites. If the singular sites were “too many”
the inverse operator would be “too unbounded” to prevent the convergence of the iterative
scheme. This approach is particularly inspiring in presence of multiple normal mode fre-
quencies and it stands at the basis of the present Monograph. We describe it in more detail
in section 1.4.

Later on, Chierchia-You [45] were able to extend the KAM reducibility approach to
prove existence and stability of small amplitude quasi-periodic solutions of 1-d NLW on T
with an external potential. We also mention the KAM reducibility results in Berti-Biasco-
Procesi [17]-[18] for 1-d derivative wave equations.

In the case the space dimension d is ≥ 2 major difficulties are:

1. the eigenvalues µ2
j of −∆ + V (x) in (1.1.5) may be highly degenerate, or not suffi-

ciently separated from each other in a suitable quantitative sense, required by the
perturbation theory developed for 1-d-PDEs;
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2. the eigenfunctions Ψj(x) of −∆ + V (x) may be not “localized” with respect to the
exponentials, see [61].

As discussed in the preface, if d ≥ 2, the first KAM existence result for nonlinear
wave equations has been proved for time periodic solutions by Bourgain [35], see also the
extensions in [21], [25], [71]. Concerning quasi-periodic solutions in d ≥ 2, the first existence
result was proved by Bourgain in Chapter 20 of [40], for wave type equations of the form

utt −∆u+Mσu+ εF ′(u) = 0

where Mσ = Op(σj) is a Fourier multiplier supported on finitely many sites S ⊂ Z2, i.e.
σj = 0, ∀j ∈ Zd \ S. The σj, j ∈ S, are used as a parameter, and F is a polynomial
nonlinearity. Notice that the linear equation utt − ∆u + Mσu = 0 is diagonal in the
exponential basis eij·x, j ∈ Zd, unlike the linear wave equation (1.1.4). We also mention the
paper by Wang [113] for the completely resonant NLS (1.3.39) and the Anderson localization
result of Bourgain-Wang [42] for time quasi-periodic random linear Schrödinger and wave
equations.

As already mentioned, a major difficulty of this approach is that the linearized equations
obtained along the iteration are PDEs with variable coefficients. A key property which
plays a fundamental role in [40] (as well as in previous papers as [37] for NLS) for proving
estimates for the inverse of linear operators

ΠN

(
(ω · ∂ϕ)2 −∆ +Mσ + εb(ϕ, x)

)
|HN

,

(see (0.0.10)) is that the matrix which represents the multiplication operator for a smooth
function b(x) in the exponential basis {eij·x}, j ∈ Zd, has a sufficiently fast off-diagonal
decay. Indeed the multiplication operator is represented in Fourier space as a convolution
operator with a Töplitz matrix (b̂j−j′)j,j′∈Zd , with entries given by the Fourier coefficients

b̂J of the function b(x), constant on the diagonal j − j′ = J . The smoother the function
b(x) is, the faster is the decay of b̂j−j′ as |j − j′| → +∞. We refer to section 1.4 for more
explanations.

Weaker forms of this property, as for example those required in Berti-Corsi-Procesi
[26], [31] may be sufficient for dealing with the eigenfunctions of −∆ on compact Lie
groups. However, any possible off-diagonal decay-property may lack for the matrix elements
(Ψj, b(x)Ψj′)L2 representing the multiplication operator with respect to the basis of the
eigenfunctions Ψj(x) defined in (1.1.5) of −∆ + V (x) on Td, d ≥ 2. This was proved by
Feldman, Knörrer, Trubowitz in [61] and it is the difficulty mentioned in item 2. We remark
that weak properties of localization have been proved by Wang [112] in d = 2 for potentials
V (x) which are trigonometric polynomials.

In the present Monograph we shall not use any kind of localizations properties of the
eigenfunctions Ψj(x), that actually might not be true. A major reason why we are able
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to avoid the use of such properties is that our Nash-Moser iterative scheme requires only
very weak tame estimates for the approximate inverse of the linearized operators as (1.4.6)
see the end of subsection 1.4.3. Such conditions are close to the optimal ones, as a famous
counterexample of Lojiaciewitz-Zehnder in [87] shows.

The properties of the exponential basis eij·x, j ∈ Zd, play a key role also for developing
the KAM perturbative diagonalization/reducibility techniques, and, indeed, no reducibility
results are available so far for multidimensional PDEs in presence of a multiplicative poten-
tial which is not small. Concerning higher space dimensional PDEs we refer to the results in
Eliasson-Kuksin [58] for the NLS equation (1.3.37) with a convolution potential on Td, used
as a parameter, Geng-You [68] and Eliasson-Grébert-Kuksin [56] for beam equations with
a constant mass potential, Procesi-Procesi [106] for the completely resonant NLS (1.3.39),
Grébert-Paturel [75] for the Klein-Gordon equation (1.3.40) on Sd and Grébert-Paturel [76]
for multidimensional harmonic oscillators.

On the other hand, no reducibility results for NLW on Td are known so far. Actually a
serious difficulty which appears is the following: the infinitely many second order Melnikov
non-resonance conditions required by the KAM-diagonalization approach are strongly vio-
lated yet by the linear unperturbed frequencies of oscillations of the Klein-Gordon equation
utt −∆u + mu = 0, see [55]. A key difference with respect to the Schrödinger equation is
that the linear frequencies of the wave equations are ∼ |j|, j ∈ Zd, while for NLS, and beam
equation, are ∼ |j|2, respectively ∼ |j|4, and |j|2, |j|4 are integer. Also for the multidimen-
sional harmonic oscillator the linear frequencies are, up to a translation, integer numbers.
Although no reducibility results are known so far for NLW, a result of “almost” reducibility
for linear quasi-periodically forced Klein-Gordon equations has been presented in [54], [55].

Existence of Sobolev quasi-periodic solutions for wave equations on Td with a time-quasi
periodic differentiable forcing nonlinearity

utt −∆u+ V (x)u = εf(ωt, x, u) , x ∈ Td , (1.1.7)

has been proved in Berti-Bolle [22] extending the multiscale approach of Bourgain [40].
The forcing frequency vector ω, which in [22] is constrained to a fixed direction ω = λω̄,
λ ∈ [1/2, 3/2], plays the role of an external parameter. In [26] a corresponding result has
been extended for NLW on compact Lie groups, in [33] for Zoll manifolds, in [29] for general
flat tori, and in [48] for forced Kirkhoff equations.

Existence of quasi-periodic solutions for autonomous non-linear Klein Gordon equations

utt −∆u+ u+ up+1 + h.o.t. = 0 , p ∈ N , x ∈ Td , (1.1.8)

have been recently presented by Wang [114], relying on a bifurcation analysis to study the
modulation of the frequencies induced by the nonlinearity up+1, and multiscale methods
of [40] for implementing a Nash-Moser iteration. The result proves the continuation of
quasi-periodic solutions supported on “good” tangential sites.
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The papers [22]-[23] for forced NLW and NLS are the closest background of the present
Monograph. The passage to prove KAM results for autonomous nonlinear wave equations
with a multiplicative potential as (1.1.1) is a non trivial task, since it requires a bifurcation
analysis which distinguishes the tangential directions where the major part of the oscillation
of the quasi-periodic solutions takes place, and the normal ones, see the form (1.2.33) of the
quasi-periodic solutions proved in Theorem 1.2.1. When the multiplicative potential V (x)
changes, both the tangential and the normal frequencies vary simultaneously in an intricate
way (unlike the case of the convolution potential). This makes difficult to verify the non-
resonance conditions required by the Nash-Moser iteration. In particular, the choice of the
parameters adopted in order to fulfill all these conditions is relevant. In this Monograph we
choose any finite set S ⊂ N of tangential sites, we fix the potential V (x) and the function
a(x) appearing in the nonlinearity (1.1.2) (in such a way that generic non-resonance and
non-degeneracy conditions hold, see Theorem 1.2.3) and then we prove, in Theorem 1.2.1,
the existence of quasi-periodic solutions of (1.1.1) for most values of the one dimensional
internal parameter λ introduced in (1.2.24), which amounts just to a time rescaling of the
frequency vector ω. This also implies a density result for the frequencies of the quasi-
periodic solutions close to the unperturbed vector µ̄. We shall explain more in detail the
choice of this parameter in section 1.5.

1.2 Rigorous statement

In this section we state precisely the main result of this Monograph, which is Theorem
1.2.1.

Under the rescaling u 7→ εu, ε > 0, the equation (1.1.1) is transformed into the nonlinear
wave equation

utt −∆u+ V (x)u+ ε2g(ε, x, u) = 0 (1.2.1)

with the C∞ nonlinearity

g(ε, x, u) := ε−3g(x, εu) = a(x)u3 +O(εu4) . (1.2.2)

We choose arbitrarily a finite set of indices S ⊂ N, called the “tangential sites”. We denote
by |S| ∈ N the cardinality of S and we order the tangential sites by S = {j1, . . . , j|S|}.
We look for quasi-periodic solutions of (1.2.1) which are perturbations of normal modes
oscillations supported on j ∈ S. We denote by

µ̄ := (µj)j∈S = (µj1 , . . . , µj|S|) ∈ R|S| , µj > 0 , (1.2.3)

the frequency vector of the quasi-periodic solutions∑
j∈S

µ
−1/2
j

√
2ξj cos(µjt)Ψj(x) , ξj > 0 , (1.2.4)
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of the linear wave equation (1.1.4). The components of µ̄ are called the unperturbed
tangential frequencies. We shall call the indices in the complementary set Sc := N \ S, the
“normal” sites, and the corresponding µj, j ∈ Sc, the unperturbed “normal” frequencies.

Since (1.2.1) is an autonomous PDE, the frequency vector ω ∈ R|S| of its expected quasi-
periodic solutions u(ωt, x) is an unknown, that we introduce as an explicit parameter in
the equation, looking for solutions u(ϕ, x), ϕ = (ϕ1, . . . , ϕ|S|) ∈ T|S|, of

(ω · ∂ϕ)2u−∆u+ V (x)u+ ε2g(ε, x, u) = 0 . (1.2.5)

The frequency vector ω ∈ R|S| of the expected quasi-periodic solutions of (1.2.1) will be
O(ε2)-close to the unperturbed tangential frequency µ̄ in (1.2.3), see precisely (1.2.24)-
(1.2.25).

Since the nonlinear wave equation (1.2.1) is time-reversible (see Appendix A), it makes
sense to look for solutions of (1.2.1) which are even in t. Since (1.2.1) is autonomous, more
general solutions are obtained from these even solutions by time translation. Thus we look
for solutions u(ϕ, x) of (1.2.5) even in ϕ. This induces a small simplification in the proof,
see remark 5.1.1.

In order to prove, for ε small enough, existence of solutions of (1.2.1) close to the solu-
tions (1.2.4) of the linear wave equation (1.1.4), we first require non-resonance conditions
for the unperturbed linear frequencies µj, j ∈ N, which will be verified by generic potentials
V (x), see Theorem 1.2.3.

Diophantine and 1-th order Melnikov non-resonance conditions. We assume that

• the tangential frequency vector µ̄ in (1.2.3) is Diophantine, i.e. for some constants
γ0, τ0 > 0,

|µ̄ · `| ≥ γ0

〈`〉τ0
, ∀` ∈ Z|S| \ {0} , 〈`〉 := max{1, |`|} , (1.2.6)

where |`| := max{|`1|, . . . , |`|S||}. Notice that (1.2.6) implies, in particular, that the
unperturbed tangential frequencies µj, j ∈ S, are simple.

• the unperturbed “first order Melnikov” non-resonance conditions hold:

|µ̄ · `+ µj| ≥
γ0

〈`〉τ0
, ∀` ∈ Z|S| , j /∈ S . (1.2.7)

The non-resonance conditions (1.2.6), (1.2.7) imply, in particular, that the linear equation
(1.1.4) has no other quasi-periodic solutions with frequency µ̄, even in t, except the trivial
ones (1.2.4).

In order to prove “separation properties” of the small divisors as required by the mul-
tiscale analysis that we perform in Chapter 4, we require, as in [22], that
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• the tangential frequency vector µ̄ in (1.2.3) satisfies the quadratic Diophantine con-
dition ∣∣∣n+

∑
i,j∈S,i<j

pijµiµj

∣∣∣ ≥ γ0

〈p〉τ0
, ∀(n, p) ∈ Z× Z

|S|(|S|+1)
2 \ {0} . (1.2.8)

The non-resonance conditions (1.2.6), (1.2.7) and (1.2.8) amount to assumptions on the
potential V (x), which are “generic” in the sense of Kolmogorov measure, see [89] where
(1.2.6), (1.2.7) are proved to hold for most potentials. Genericity results are stated in
Theorem 1.2.3, proved in Chapter 12.

We underline that along the Monograph the constant γ0 > 0 in (1.2.6), (1.2.7), (1.2.8)
is regarded as fixed, and we shall often omit to track its dependence in the estimates.

Birkhoff matrices. We are interested in quasi-periodic solutions of (1.2.1) which bifurcate
for small ε > 0 from a solution of the form (1.2.4) of the linear wave equation. In order to
prove their existence, it is important to know precisely how the tangential and the normal
frequencies change with respect to the unperturbed actions (ξj)j∈S, under the effect of the
nonlinearity ε2a(x)u3 +O(ε3u4). This is described in terms of the “Birkhoff” matrices

A := (µ−1
k Gj

kµ
−1
j )j,k∈S , B := (µ−1

j Gk
jµ
−1
k )j∈Sc,k∈S , (1.2.9)

where

Gj
k := Gj

k(V, a) :=

{
(3/2)(Ψ2

j , a(x)Ψ2
k)L2 , j 6= k ,

(3/4)(Ψ2
j , a(x)Ψ2

j)L2 , j = k
(1.2.10)

and Ψj(x) are the eigenfunctions of −∆+V (x) introduced in (1.1.5). Notice that the matrix
(Gj

k) depends on the function a(x) and the eigenfunctions Ψj, thus on the potential V (x).
The |S|×|S| symmetric matrix A is called the “twist”-matrix. The matrices A ,B describe
the shift of the tangential and normal frequencies induced by the nonlinearity a(x)u3 as
they appear in the fourth order Birkhoff normal form of (1.1.1)-(1.1.2). Actually, we prove
in section 5.2 that, up to terms O(ε4), the tangential frequency ω of a small amplitude
quasi-periodic solution of (1.1.1)-(1.1.2) close to (1.2.4) is given by the action-to-frequency
map

ξ 7→ µ̄+ ε2A (ξ) , ξ ∈ R|S|+ . (1.2.11)

On the other hand the perturbed normal frequencies are shifted by the matrix B as de-
scribed in Lemma 7.3.2. We assume that

• (Twist condition)
det A 6= 0 , (1.2.12)

and therefore the action-to-frequency map in (1.2.11) is invertible. The non-degeneracy, or
“twist”-condition (1.2.12), is generically satisfied by choosing the potential V (x) and the
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function a(x), as stated in Theorem 1.2.3 (see in particular Corollary 12.1.10 and remark
12.1.11).

Second order Melnikov non-resonance conditions. We also assume second order
Melnikov non-resonance conditions which concern only finitely many unperturbed normal
frequencies. We have first to introduce an important decomposition of the normal indices
j ∈ Sc. Note that, since µj → +∞, the indices j ∈ Sc such that µj − (BA −1µ̄)j < 0 are
finitely many. Denoting

−g := min
{
µj − (BA −1µ̄)j , j ∈ Sc

}
, (1.2.13)

we split the normal indices as

Sc = F ∪G , G := Sc \ F , (1.2.14)

where
F :=

{
j ∈ Sc : |µj − (BA −1µ̄)j| ≤ g

}
,

G :=
{
j ∈ Sc : µj − (BA −1µ̄)j > g

}
.

(1.2.15)

The set F is always finite, and it is empty if g < 0. The relevance of the decomposition
(1.2.14) of the normal sites, concerns the variation of the normal frequencies with respect
to the length of the tangential frequency vector, as we describe in (1.5.24) below, see also
Lemma 7.1.1. If all the µj − (BA −1µ̄)j (j ∈ Sc) were positive, then, by (1.5.24), one could
directly rely on positivity arguments as in [22], [23], used in the forced case to verify the
measure estimates. In general g > 0 and we shall be able to decouple, for most values of the
parameter λ, the linearized operators obtained at each step of the nonlinear Nash-Moser
iteration, acting in the normal subspace H⊥S , along HF and its orthogonal H⊥F = HG. We
discuss the relevance of this decomposition in section 1.5.

We assume the following

• unperturbed “second order Melnikov” non-resonance conditions:

|µ̄ · `+ µj − µk| ≥
γ0

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × F× Sc , (`, j, k) 6= (0, j, j) , (1.2.16)

|µ̄ · `+ µj + µk| ≥
γ0

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × F× Sc . (1.2.17)

Note that (1.2.16) implies, in particular, that the finitely many normal frequencies
µj, j ∈ F, are simple (clearly all the other eigenvalues µj, j /∈ F, could be highly degenerate).

In order to verify a key positivity property for the variations of the restricted linearized
operator with respect to λ (Lemma 9.3.8), we assume further
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• unperturbed “second order Melnikov” non-resonance conditions:

|µ̄ · `+ µj − µk| ≥
γ0

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × (M \ F)× Sc , (1.2.18)

(`, j, k) 6= (0, j, j) ,

|µ̄ · `+ µj + µk| ≥
γ0

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × (M \ F)× Sc , (1.2.19)

where
M :=

{
j ∈ Sc : |j| ≤ C1

}
(1.2.20)

and the constant C1 := C1(V, a) > 0 is taken large enough such that F ⊂ M and
(7.1.8) holds. Notice that the set M depends on (V, a), but can be chosen to be
locally constant in (V, a); it will be fixed in Lemma 7.1.1.

Clearly the conditions (1.2.16)-(1.2.17) and (1.2.18)-(1.2.19) could have been written to-
gether, requiring such conditions for j ∈ M, without distinguishing the cases j ∈ F and
j ∈ M \ F. However, for conceptual clarity, in view of their different role in the proof, we
prefer to state them separately. The above conditions (1.2.16)-(1.2.19) on the unperturbed
frequencies allow to perform one step of averaging and so to diagonalize, up to O(ε4), the
normal frequencies supported on M, see Proposition 7.3.1. This is the only step where
conditions (1.2.18)-(1.2.19) play a role. Conditions (1.2.16)-(1.2.17) are used also in the
splitting step of Chapter 9, see Lemma 9.3.3.

Conditions (1.2.16)-(1.2.19) depend on the potential V (x) and also on a(x), because the
constant C1 in (1.2.20) (hence the set M) depends on a(x), actually on ‖a‖L∞ and ‖A−1‖.
Given (V0, a0) such that the matrix A defined in (1.2.9) is invertible and s > d/2, the set
M can be chosen constant in some open neighborhood U of (V0, a0) for the Hs-norm. In U ,
conditions (1.2.16)-(1.2.19) are generic in V (x), as it is proved in Chapter 12 (see Theorem
1.2.3).

Non-degeneracy conditions. We also require the following finitely many

• non-degeneracy conditions:

(µj − [BA −1µ̄]j)− (µk − [BA −1µ̄]k) 6= 0 , ∀j, k ∈ F , j 6= k , (1.2.21)

(µj − [BA −1µ̄]j) + (µk − [BA −1µ̄]k) 6= 0 , ∀j, k ∈ F , (1.2.22)

where A and B are the Birkhoff matrices defined in (1.2.9).

Such assumptions are similar to the non-degeneracy conditions required for the continuation
of elliptic tori for finite dimensional systems in [53], [102] and for PDEs in [96], [104], [16].
Notice that the finitely many non-degeneracy conditions (1.2.21) depend on the potential
V (x) and the nonlinearity a(x)u3 and we prove in Theorem 1.2.3 that they are generic in
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(V, a).

Parameter. We now introduce the 1-dimensional parameter that we shall use to perform
the measure estimates.

In view of (1.2.11) the frequency ω has to belong to the cone of the “admissible”

frequencies µ̄+ ε2A (R|S|+ ), more precisely we require that ω belongs to the image

A := µ̄+ ε2A
([1

2
, 4
]|S|)

⊂ R|S| (1.2.23)

of the compact set of actions ξ ∈ [1/2, 4]|S| under the approximate action-to-frequency map
(1.2.11). Then, in view of the method that we shall use for the measure estimates for the
linearized operator, we look for quasi-periodic solutions with frequency vector

ω = (1 + ε2λ)ω̄ε , λ ∈ Λ := [−λ0, λ0] , (1.2.24)

constrained to a fixed admissible direction

ω̄ε := µ̄+ ε2ζ , ζ ∈ A ([1, 2]|S|) , (1.2.25)

(notice that in general we can not take ω̄ε = µ̄, because ζ = 0 might not belong to
A ([1, 2]|S|)). We fix ζ below so that the Diophantine conditions (1.2.29)-(1.2.30) hold.

In (1.2.24) there exists λ0 > 0 small, independent of ε > 0 and of ζ ∈ A ([1, 2]|S|), such
that,

∀λ ∈ Λ := [−λ0, λ0] , ω = (1 + ε2λ)ω̄ε ∈ A (1.2.26)

are still admissible (see (1.2.23)) and, using (1.2.25),

(1 + ε2λ)ω̄ε = µ̄+ ε2A (ξ) ⇐⇒
ξ := ξ(λ) = (1 + ε2λ)A −1ζ + λA −1µ̄ .

(1.2.27)

We shall use the 1-dimensional “parameter” λ ∈ Λ := [−λ0, λ0] in order to verify all the
non-resonance conditions required for the frequency vector ω in the proof of Theorem 1.2.1.

For ε small fixed, we take the vector ζ such that the direction ω̄ε in (1.2.25) still verifies
Diophantine conditions like (1.2.6), (1.2.8) with the different exponents

γ1 := γ0/2 , τ1 := 3τ0 + |S|(|S|+ 1) + 5 > τ0 , (1.2.28)

namely

|ω̄ε · `| ≥
γ1

〈`〉τ1
, ∀` ∈ Z|S| \ {0} , (1.2.29)∣∣∣n+

∑
1≤i≤j≤|S|

pij(ω̄ε)i(ω̄ε)j

∣∣∣ ≥ γ1

〈p〉τ1
, ∀(n, p) ∈ Z× Z

|S|(|S|+1)
2 \ {0} . (1.2.30)
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This is possible by Lemma 2.3.1. Actually the vector ω̄ε = µ̄+ε2ζ satisfies (1.2.29)-(1.2.30)
for all ζ ∈ A ([1, 2]|S|) except a small set of measure O(ε). In (1.2.30), we denote, for
i = 1, . . . , |S|, the i-component (ω̄ε)i = µji + ε2ζi, where j1, . . . , j|S| are the tangential sites
ordered according to (1.2.3).

Main result. We may now rigorously state the main result of this Monograph, concerning
existence of quasi-periodic solutions of the nonlinear wave equation (1.1.1). Let us define
the Sobolev spaces

Hs := Hs(T|S| × Td;R)

:=
{
u(ϕ, x) :=

∑
(`,j)∈Z|S|×Zd

u`,je
i(`·ϕ+j·x) : ‖u‖2

s :=
∑

i∈Z|S|+d
|ui|2〈i〉2s <∞ ,

u−i = ūi , ∀ i := (`, j) ∈ Z|S| × Zd
} (1.2.31)

where
〈i〉 := max(|`|, |j|, 1) , |j| := max{|j1|, . . . , |jd|} .

We look for solutions of the equation (1.2.5) in Hs for some

s ≥ s0 > (|S|+ d)/2 , (1.2.32)

so that Hs(T|S|+d) ↪→ C0(T|S|+d) and Hs is an algebra.

Theorem 1.2.1. (Quasi-periodic solutions for the nonlinear wave equation (1.1.1)).
Fix finitely many tangential sites S ⊂ N. Take the multiplicative potential V (x) ∈ C∞(Td,R)
such that the positivity condition (1.1.3) holds, the unperturbed frequency vector µ̄ ∈ R|S| in
(1.2.3) satisfies the Diophantine conditions (1.2.6), (1.2.8), and such that the unperturbed
first and second order Melnikov non-resonance conditions (1.2.7), (1.2.16)-(1.2.19) hold.
Assume also the twist condition (1.2.12) and the finitely many non-degeneracy conditions
(1.2.21)-(1.2.22). Fix ω̄ε := µ̄+ ε2ζ, ζ ∈ A ([1, 2]|S|), as in (1.2.25) such that the Diophan-
tine conditions (1.2.29)-(1.2.30) hold. There exist s̄ > s0 and a Cantor like set Gε,ζ ⊂ Λ
(the set Λ is fixed in (1.2.26)) with asymptotically full measure, i.e.

|Λ \ Gε,ζ | → 0 as ε→ 0 ,

such that, for all λ ∈ Gε,ζ, there exists a solution uε,λ ∈ C∞ of (1.2.5), even in ϕ, with
frequency vector

ω = (1 + ε2λ)ω̄ε , ω̄ε = µ̄+ ε2ζ ,

of the form

uε,λ(ϕ, x) =
∑
j∈S

µ
−1/2
j

√
2ξj cos(ϕj)Ψj(x) + rε(ϕ, x) , (1.2.33)
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where ξ := ξ(λ) ∈ [1/2, 4]|S| is given in (1.2.27) and ‖rε‖s̄ → 0 as ε → 0. As a conse-
quence εuε,λ(ωt, x) is a quasi-periodic solution of the nonlinear wave equation (1.1.1) with
frequencies ω = (1 + ε2λ)ω̄ε.

Theorem 1.2.1 is a direct consequence of Theorem 5.1.2.
Let us make some comments on the result.

1. (Measure estimate of Gε,ζ) The speed of convergence of |Λ \ Gε,ζ | to 0 does not
depend on ζ. More precisely (γ0, γ1, τ0, τ1 being fixed) there is a map ε 7→ b(ε),
satisfying lim

ε→0
b(ε) = 0, such that, for all ζ ∈ A ([1, 2]|S|) so that the vector ω̄ε = µ̄+ε2ζ

satisfies the Diophantine conditions (1.2.29)-(1.2.30), we have the measure estimate
|Λ \ Gε,ζ | ≤ b(ε).

2. (Density) Integrating in λ along all possible admissible directions ω̄ε in (1.2.25),
we deduce the existence of quasi-periodic solutions of (1.1.1) for a set of frequency
vectors ω of positive measure. More precisely, defining the convex subsets of R|S|,

C2 := µ̄+ R+C1 ,

C1 := A ([1, 2]|S|) + Λµ̄ :=
{
ζ + λµ̄ ; ζ ∈ A ([1, 2]|S|) , λ ∈ Λ

}
,

(1.2.34)

the set Ω of the frequency vectors ω of the quasi-periodic solutions of (1.1.1) provided
by Theorem 1.2.1 has Lebesgue density 1 at µ̄ in C2, i.e.

lim
r→0+

|Ω ∩ C2 ∩B(µ̄, r)|
|C2 ∩B(µ̄, r)|

= 1 (1.2.35)

(see the proof below Theorem 5.1.2). Moreover, we restrict ourself to ζ ∈ A ([1, 2]|S|)
just to fix the ideas, and we could replace this condition by ζ ∈ A ([r, R]|S|), for any
0 < r < R (at the cost of stronger smallness conditions for λ0 and ε if r is small and

R is large). Therefore we could obtain a similar density result with C ′2 := µ̄+A (R|S|+ )
instead of C2.

3. (Regularity) Theorem 1.2.1 also holds if the nonlinearity g(x, u) and the potential
V (x) in (1.1.1) are of class Cq for some q large enough, proving the existence of a
solution uε,λ in Hs̄, see remark 11.2.9.

4. (Lipschitz dependence) The solution uε,λ is a Lipschitz function of λ ∈ Gε,ζ with
values in any Hs, s ≥ s̄.

Theorem 1.2.3 below proves that, for any choice of finitely many tangential sites S ⊂ N,
all the non-resonance and non-degeneracy assumptions required in Theorem 1.2.1 are gener-
ically verified varying the potential V (x) and the function a(x) present in the nonlinearity
g(x, u) = a(x)u3 + O(u4) in (1.1.2). In order to state a precise result we anticipate the
following definition.
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Definition 1.2.2. (C∞-dense open) Given an open subset U of Hs(Td) (resp. Hs(Td)×
Hs(Td)) a subset V of U will be called C∞-dense open in U if

1. V is open for the topology defined by the Hs(Td)-norm,

2. V is C∞-dense in U , in the sense that, for any w ∈ U , there is a sequence (hn) ∈
C∞(Td) (resp. C∞(Td)× C∞(Td)) such that w + hn ∈ V, for all n ∈ N, and hn → 0
in Hr for any r ≥ 0.

Let s > d/2 and define the subset of potentials

P :=
{
V ∈ Hs(Td) : −∆ + V (x) > 0

}
(1.2.36)

which is open in Hs(Td) and convex, thus connected. Fixed a finite subset S ⊂ N of

tangential sites, consider the set G̃ of potentials V (x) and functions a(x) such that the
conditions required in Theorem 1.2.1 hold, namely

G̃ :=
{

(V (x), a(x)) ∈ P ×Hs(Td) : there are τ0, γ0 > 0 such that

(1.2.6)-(1.2.8), (1.2.12), (1.2.16)-(1.2.19), (1.2.21)-(1.2.22) hold
}
.

(1.2.37)

Given a subspace E of L2(Td) we denote by E⊥L2 its orthogonal with respect to the L2

scalar product.

Theorem 1.2.3. (Genericity) Let s > d/2. The set

G̃
⋂(

C∞(Td)× C∞(Td)
)

is C∞−dense in
(
P ∩ C∞(Td)

)
× C∞(Td) (1.2.38)

where P ⊂ Hs(Td) is the open and connected set of potentials V (x) defined in (1.2.36).
More precisely, there is a C∞-dense open subset G of P×Hs(Td) and a |S|-dimensional

linear subspace E of C∞(Td) such that, for all v2(x) ∈ E⊥L2 ∩Hs(Td), a(x) ∈ Hs(Td), the
Lebesgue measure (on the finite dimensional space E ' R|S|)∣∣{v1 ∈ E : (v1 + v2, a) ∈ G \ G̃

}∣∣ = 0 . (1.2.39)

Theorem 1.2.3 is proved in Chapter 12.

In order to introduce the reader to the topic, we first provide a non technical survey
about the main methods and results in KAM theory for PDEs.

As already mentioned, in a Newton-Nash-Moser iterative scheme, a key step for the
existence proof of quasi-periodic solutions consists in the analysis of the linearized operators
obtained at each step of the iteration, and proving its approximate invertibility, for most
values of suitable parameters, with quantitative estimates for the inverse in high norms.
For achieving this task two main approaches have been developed:

1. the “reducibility” approach, that we describe in section 1.3;

2. the “multiscale” approach, presented in section 1.4.

In section 1.5, we shall provide a detailed account of the proof of Theorem 1.2.1.
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1.3 The reducibility approach to KAM for PDEs

The goal of this section is to present the perturbative reducibility approach for a time
quasi-periodic linear operator (subsection 1.3.1) and then describe its main applications to
KAM theory for PDEs (subsection 1.3.2).

Transformation laws. Consider a quasi-periodically time dependent linear system

ut + A(ωt)u = 0 , u ∈ H , (1.3.1)

where, for any ϕ ∈ Tν , ν ∈ N, A(ϕ) is a linear operator acting on a phase space H,
which may be a finite or infinite dimensional Hilbert space with scalar product 〈 , 〉, and
ω ∈ Rν\{0} is the frequency vector. We suppose that ω is a nonresonant vector, i.e.
ω · ` 6= 0, ∀` ∈ Zν \ {0}, thus the linear flow {ωt}t∈R densily fills the torus Tν . Under a
quasi-periodically time dependent transformation

u = Φ(ωt)[v] (1.3.2)

where Φ(ϕ) : H → H, ϕ ∈ Tν , are invertible linear operators of the phase space (or of
dense subspaces), system (1.3.1) transforms into

vt +B(ωt)v = 0 (1.3.3)

with the new linear operator

B(ϕ) = Φ−1(ϕ)(ω · ∂ϕΦ)(ϕ) + Φ(ϕ)−1A(ϕ)Φ(ϕ) . (1.3.4)

Remark 1.3.1. Suppose that H is endowed with a symplectic form Ω defined by Ω(u, v) :=
〈J−1u, v〉, ∀u, v ∈ H, where J is an antisymmetric, non-degenerate operator. If A(ωt) is
Hamiltonian, namely A(ωt) = JS(ωt) where S(ωt) is a (possibly unbounded) self-adjoint
operator, and Φ(ωt) is symplectic, then the new operator B(ωt) is Hamiltonian as well, see
Lemma 3.2.3.

Reducibility. If the operator B in (1.3.3) is a diagonal, time independent operator, i.e.

B(ωt) = B = Diagj(bj) (1.3.5)

in a suitable basis of H, then (1.3.3) reduces to the decoupled scalar linear ordinary differ-
ential equations

v̇j + bjvj = 0 (1.3.6)

where (vj) denote the coordinates of v in the basis of eigenvectors of B. Then (1.3.3) is
integrated in a straightforward way,

vj(t) = e−bjtvj(0) ,

and all the solutions of system (1.3.1) are obtained via the change of variable (1.3.2). We
say that (1.3.1) has been reduced to constant coefficients by the change of variable Φ.
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Remark 1.3.2. If all the bj in (1.3.6) are purely imaginary, then the linear system (1.3.1)
is stable (in the sense of Lyapunov), otherwise, it is unstable.

We shall also say that system (1.3.1) is reducible if B is a constant coefficient block-
diagonal operator, i.e. bj in (1.3.5)-(1.3.6) are finite dimensional matrices, constant in time.
The spectrum of each matrix bj determines the stability/instability properties of the system
(1.3.1).

If ω ∈ R (time-periodic forcing) and the phase space H is finite dimensional, the classical
Floquet theory proves that any time periodic linear system (1.3.1) is reducible, see e.g. [59],
Chapter I. On the other hand, if ω ∈ Rν , ν ≥ 2, it is known that there exist pathological
non reducible linear systems, see e.g. [44]-Chapter 1.

If A(ωt) is a small perturbation of a constant coefficient operator, perturbative algo-
rithms for reducibility can be implemented. In the next subsection we describe this strategy
in the simplest setting. This approach was systematically adopted by Moser [99] for devel-
oping finite dimensional KAM theory (in a much more general context).

1.3.1 Perturbative reducibility

Consider a quasi-periodic operator

ω · ∂ϕ + A(ϕ) where A(ϕ) = D +R(ϕ) , ϕ ∈ Tν , (1.3.7)

is a perturbation of a diagonal operator

D = Diag(idj)j∈Z = Op(idj) , dj ∈ R , (1.3.8)

where the eigenvalues idj are simple and constant in ϕ. The ϕ-dependent family of operators
R(ϕ) acting on H is a small perturbation of D.

Remark 1.3.3. We suppose that the dj are real because this is the common situation arising
for PDEs, i.e. u = 0 is an elliptic equilibrium for the linear system ut + Du = 0. On
the other hand, if some Im dj 6= 0, then there are hyperbolic directions which do not create
resonance phenomena, and perturbative reducibility theory is easier. For nonlinear systems,
this case corresponds to the search of whiskered tori, see e.g. [73] for finite dimensional
systems, and [65] for PDEs.

We look for a transformation Φ(ϕ), ϕ ∈ Tν , of the phase space H, as in (1.3.2) which
removes from R(ϕ) the angles ϕ up to terms of size ∼ O(|R|2). We present below only the
algebraic aspect of the reducibility scheme, without specifying the norms.

For computational purposes, it is convenient to transform the linear system (1.3.1) under
the flow ΦF (ϕ, τ) generated by an auxiliary linear equation

∂τΦF (ϕ, τ) = F (ϕ)ΦF (ϕ, τ) , ΦF (ϕ, 0) = Id , (1.3.9)
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generated by a linear operator F (ϕ) to be chosen (which could also be τ -dependent). This
amounts to computing the Lie derivative of A(ϕ) in the direction of the vector field F (ϕ).
Notice that, if F (ϕ) is bounded, then the flow (1.3.9) is well posed. This is always the case
for a finite dimensional system, but it may be an issue for infinite dimensional systems.

Given a linear operator A0(ϕ), the conjugated operator under the flow ΦF (ϕ, τ) gener-
ated by (1.3.9),

A(ϕ, τ) := ΦF (ϕ, τ)A0(ϕ)ΦF (ϕ, τ)−1 ,

satisfies the Heisenberg equation{
∂τA(ϕ, τ) = [F (ϕ), A(ϕ, τ)]

A(ϕ, τ)|τ=0 = A0(ϕ)
(1.3.10)

where [A,B] := A ◦B−B ◦A denotes the commutator between two linear operators A,B.
Then, by a Taylor expansion, using (1.3.10), we obtain the formal Lie expansion

A(ϕ, τ)|τ=1 = A0(ϕ) + AdFA0 +
1

2
Ad2

FA0 + . . . (1.3.11)

where AdF [ · ] := [F, · ]. One may expect this expansion to be certainly convergent if F and
A0 are bounded and F is small, in suitable norms, because the adjoint action produces, in
such a case, bounded operators AdkF [A0], k ∈ N, with smaller and smaller size.

Conjugating (1.3.7) under the flow generated by (1.3.9) we then obtain an operator of
the form

ω · ∂ϕ +D − ω · ∂ϕF (ϕ) + [F (ϕ), D] +R(ϕ) + smaller terms . . . . (1.3.12)

We want to choose F (ϕ) in such a way to solve the “homological” equation

−ω · ∂ϕF (ϕ) +R(ϕ) + [F (ϕ), D] = [R] (1.3.13)

where

[R] := Diagj(R̂
j
j(0)) , R̂j

j(0) :=
1

(2π)ν

∫
Tν
Rj
j(ϕ) dϕ , (1.3.14)

is the normal form part of the operator R(ϕ), independent of ϕ, that we can not eliminate.
Representing the linear operators F (ϕ) = (F j

k (ϕ))j,k∈Z andR(ϕ) = (Rj
k(ϕ))j,k∈Z as matrices,

and computing the commutator with the diagonal operator D in (1.3.8) we obtain that
(1.3.13) is represented as

−ω · ∂ϕF j
k (ϕ) +Rj

k(ϕ) + i(dj − dk)F j
k (ϕ) = [R]jk ,

and, performing the Fourier expansion in ϕ,

F j
k (ϕ) =

∑
`∈Zν

F̂ j
k (`)ei`·ϕ , Rj

k(ϕ) =
∑
`∈Zν

R̂j
k(`)e

i`·ϕ ,
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it reduces to the infinitely many scalar equations

−iω · ` F̂ j
k (`) + R̂j

k(`) + i(dj − dk)F̂ j
k (`) = [R]jkδ`,0 , j, k ∈ Z , ` ∈ Zν , (1.3.15)

where δ`,0 := 1 if ` = 0 and zero otherwise. Assuming the so called second-order Melnikov
non-resonance conditions

|ω · `+ dj − dk| ≥
γ

〈`〉τ
, ∀(`, j, k) 6= (0, j, j) , (1.3.16)

for some γ, τ > 0, we can define the solution of the homological equations (1.3.15) (see
(1.3.14))

F̂ j
k (`) :=


−R̂j

k(`)

i(−ω · `+ dj − dk)
∀(`, j, k) 6= (0, j, j)

0 ∀(`, j, k) = (0, j, j) .

(1.3.17)

Therefore the transformed operator (1.3.12) becomes

ω · ∂ϕ +D+ + smaller terms (1.3.18)

where
D+ := D + [R] = (idj + [R]jj)j∈Z (1.3.19)

is the new diagonal operator, constant in ϕ. We can iterate this step to reduce also the
small terms of order O(|R|2γ−1) which are left in (1.3.18), and so on. Notice that, if R(ϕ) is
a bounded operator and depends smoothly enough on ϕ, then F (ϕ) defined in (1.3.17), with
the denominators satisfying (1.3.16), is bounded as well and thus (1.3.9) certainly defines
a flow by standard Banach space ODE techniques. On the other hand the loss of time
derivatives induced on F (ϕ) by the divisors in (1.3.16) can be recovered by a smoothing
procedure in the angles ϕ, like a truncation in Fourier space.

Remark 1.3.4. If the operator A(ϕ) in (1.3.7) is Hamiltonian, as defined in remark 1.3.1
(with a symplectic form J which commutes with D), then F (ϕ) is Hamiltonian, its flow
ΦF (ϕ, τ) is symplectic, and the new operator in (1.3.18) is Hamiltonian as well.

In order to continue the iteration one also needs to impose non-resonance conditions
as in (1.3.16) at each step and therefore we need information about the perturbed normal
form D+ in (1.3.19), in particular the asymptotic of [R]jj. If these steps work, then, after
an infinite iteration, one could conjugate the quasi-periodic operator (1.3.7) to a diagonal,
constant in ϕ, operator of the form

ω · ∂ϕ + Diagj(id
∞
j ) , id∞j = idj + [R]jj + . . . . (1.3.20)
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At this stage, imposing the first order Melnikov non-resonance conditions

|ω · `+ d∞j | ≥
γ

〈`〉τ
, ∀`, j ,

the diagonal linear operator (1.3.20) is invertible with an inverse which loses τ time-
derivatives. Verifying that all the changes of coordinates that have been constructed it-
eratively to conjugate (1.3.7) to (1.3.20) map spaces of high regularity in itselfs, this ap-
proach finally enables to prove the existence of an inverse of the initial quasi-periodic linear
operator (1.3.7) which satisfies tame estimates in high norms (with loss of τ derivatives).

This is the essence of the Newton-Nash-Moser-KAM perturbative reducibility scheme,
that has been used for proving KAM results for 1d NLW and NLS equations with Dirichlet
boundary conditions in [93], [115], [103], as we shall describe in the next section.

The following questions arise naturally:

1. What happens if the eigenvalues dj are multiple ? This is the common situation for
1-d PDEs with periodic boundary conditions or in higher space dimensions. In such
a case it is conceivable to reduce ω · ∂ϕ +A(ϕ) to a block-diagonal normal form linear
system of the form (1.3.20) where dj∞ are finite dimensional matrices.

2. What happens if the operator R(ϕ) in (1.3.7) is unbounded ? This is the common
situation for PDEs with nonlinearities which contain derivatives. In such a case also
the operator F (ϕ) defined in (1.3.17) is unbounded and therefore (1.3.9) could not
define a flow.

3. What happens if, instead of the Melnikov non-resonance conditions (1.3.16), we have
only

|ω · `+ dj − dk| ≥
γ

〈`〉τ 〈j〉d〈k〉d
, ∀(`, j, k) 6= (0, j, j) , (1.3.21)

for some d > 0, which induce a loss of space derivatives ? This is the common
situation when the dispersion relation dj ∼ jα, α < 1, has a sublinear growth. Also
in this situation the operator F (ϕ) defined in (1.3.17) would be unbounded. This
situation appears for example for pure gravity water waves equations.

We describe below some answers to the above questions.

1.3.2 Reducibility results

We now present the main results about KAM theory for PDEs based on the reducibility
scheme described in the previous section.
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KAM for 1d NLW and NLS with Dirichlet boundary conditions

The iterative reducibility scheme outlined in section 1.3.1 has been effectively implemented
by Kuksin [93] and Wayne [115] for proving existence of quasi-periodic solutions of 1-d
semilinear wave

ytt − yxx + V (x)y + εf(x, y) = 0 , y(0) = y(π) = 0 , (1.3.22)

and Schrödinger equations

iut − uxx + V (x)u+ εf(|u|2)u = 0 , u(0) = u(π) = 0 , (1.3.23)

with Dirichlet boundary conditions. These equations are regarded as a perturbation of the
linear PDEs

ytt − yxx + V (x)y = 0 , iut − uxx + V (x)u = 0 , (1.3.24)

which depend on the potential V (x), used as a parameter.
The linearized operators obtained at an approximate quasi-periodic solution are, for

NLS,
h 7→ iω · ∂ϕh− hxx + V (x)h+ εq(ϕ, x)h+ εp(ϕ, x)h̄ (1.3.25)

with q(ϕ, x) ∈ R, p(ϕ, x) ∈ C, and, for NLW,

y 7→ (ω · ∂ϕ)2y − yxx + V (x)y + εa(ϕ, x)y , (1.3.26)

with a(ϕ, x) ∈ R, that, in the complex variable

h = D
1
2
V y + iD

− 1
2

V yt , DV :=
√
−∆ + V (x) ,

assumes the form

h 7→ ω · ∂ϕh+ iDV h+ i
ε

2
D
− 1

2
V a(ϕ, x)D

− 1
2

V (h+ h̄) . (1.3.27)

Coupling these equations with their complex conjugated component, we have to invert the

quasi-periodic operators, acting on

(
h
h̄

)
, given, for NLS, by

ω · ∂ϕ +

(
i∂xx − iV (x) 0

0 −i∂xx + iV (x)

)
− ε

(
iq(ϕ, x) ip(ϕ, x)
−ip̄(ϕ, x) −iq(ϕ, x)

)
(1.3.28)

and, for NLW,

ω · ∂ϕ +

(
iDV 0

0 −iDV

)
+ i

ε

2
D
− 1

2
V

(
a(ϕ, x) a(ϕ, x)
−a(ϕ, x) −a(ϕ, x)

)
D
− 1

2
V (1.3.29)
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which have the form (1.3.7) with an operator R(ϕ) which is bounded. Actually notice that
for NLW the perturbative term in (1.3.29) is also 1-smoothing. Moreover the eigenvalues
µ2
j , j ∈ N\{0}, of the Sturm-Liouville operator −∂xx + V (x) with Dirichlet boundary

conditions are simple and the quasi-periodic operators (1.3.28) and (1.3.29) take the form
(1.3.7)-(1.3.8), where the eigenvalues of D are

±iµ2
j , µ

2
j ∼ j2, for NLS , ±iµj , µj ∼ j , for NLW .

Then it is not hard to impose second order Melnikov non-resonance conditions as in (1.3.16).
In view of these observations, it is possible to implement the KAM reducibility scheme
presented above to prove the existence of quasi-periodic solutions for (1.3.22)-(1.3.23) (ac-
tually the KAM iteration in [93], [115] is a bit different but the previous argument catches
its essence).

Later on these results have been extended in Kuksin-Pöschel [96] to parameter indepen-
dent Schrödinger equations{

iut = uxx + f(|u|2)u ,

u(0) = u(π) = 0 ,
where f(0) = 0 , f ′(0) 6= 0 , (1.3.30)

and in Pöschel [104] to nonlinear Klein-Gordon equations

ytt − yxx +my = y3 + h.o.t , y(0) = y(π) = 0 . (1.3.31)

The main new difficulty of these equations is that the linear equations

iut = uxx , ytt − yxx +my = 0 ,

have resonant invariant tori. Actually all the solutions of the first equation,

u(t, x) =
∑
j∈Z

uj(0)eij2teijx , (1.3.32)

are 2π-periodic in time (for this reason (1.3.30) is called a completely resonant PDE) and

the Klein-Gordon linear frequencies
√
j2 +m may be resonant for several values of the

mass m. The new key idea in [104], [96] is to compute precisely how the nonlinearity in
(1.3.30)-(1.3.31) modulates the tangential and normal frequencies of the expected quasi-
periodic solutions. In particular, a Birkhoff normal form analysis enables to prove that
the tangential frequencies vary diffeomorphically with the “amplitudes” of the solutions.
This non-degeneracy property allows then to prove that the Melnikov non-resonance con-
ditions are satisfied for most amplitudes. We notice however the following difficulty for the
equations (1.3.30)-(1.3.31) which is not present for (1.3.22)-(1.3.23): the frequency vector
ω may satisfy only a Diophantine condition (1.2.6) with a constant γ0 which tends to 0 as
the solution tends to 0 (the linear frequencies in (1.3.32) are integers), and similarly for the
second order Melnikov conditions (1.3.16). Notice that the remainders in (1.3.18) have size
O(|R|2γ−1) and, as a consequence, careful estimates have to be performed to overcome this
“singular” perturbation issue.
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Periodic boundary conditions x ∈ T
The above results do not apply for periodic boundary conditions x ∈ T because two eigen-
values of −∂xx + V (x) coincide (or are too close), and thus the second order Melnikov non
resonance conditions (1.3.16) are violated. This is the first instance where the difficulty
mentioned in item 1 appears.

Historically this difficulty was first solved by Craig-Wayne [51] and Bourgain [34] de-
veloping a multiscale approach, based on repeated use of the “resolvent identity” in the
spirit of the work [66] by Frölich-Spencer for Anderson localization. This approach does
not require the second order Melnikov non-resonance conditions. We describe it in section
1.4. Developments of this multiscale approach are the basis of the present Monograph.

The KAM reducibility approach was extended later by Chierchia-You [45] for semi-
linear wave equations like (1.3.22) with periodic boundary conditions. Because of the
near resonance between pairs of frequencies, the linearized operators (1.3.26)-(1.3.27) are
reduced to a diagonal system of 2 × 2 self-adjoint matrices, namely of the form (1.3.20)
with d∞j ∈ Mat(2 × 2;C), by requiring at each step second-order Melnikov non-resonance
conditions of the form

|ω · `+ dj − dk| ≥
γ

〈`〉τ
, ∀(`, j, k) 6= (0, j,±j) . (1.3.33)

Notice that we do not require in (1.3.33) non-resonance conditions for ` = 0 and k = ±j.
Since NLW is a second order equation, the nonlinear perturbative part of its Hamiltonian
vector field is regularizing of order 1 (it gains one space derivative), see (1.3.29), and this is
sufficient to prove that the perturbed frequencies of (1.3.29) satisfy an asymptotic estimate
like

µj(ε) = µj +O(ε|j|−1) = |j|+O(|j|−1)

as |j| → +∞, where µ2
j denote the eigenvalues of the Sturm-Liouville operator −∂xx+V (x).

Thanks to this asymptotic expansion it is sufficient to impose, for each ` ∈ Zν , only finitely
many second order Melnikov non-resonance conditions as (1.3.33), by requiring first order
Melnikov conditions like

|ω · `+ h| ≥ γ〈`〉−τ , (1.3.34)

for all (`, h) ∈ (Zν × Z) \ (0, 0). Indeed, if |j|, |k| > C|`|τγ−1, for an appropriate constant
C > 0, we get

|ω · `+ µj(ε)− µk(ε)| ≥ |ω · `+ |j| − |k|| −O(1/min(|k|, |j|))
(1.3.34)

≥ γ〈`〉−τ −O(1/min(|k|, |j|)) ≥ γ

2
〈`〉−τ (1.3.35)

noting that |j| − |k| is an integer. Moreover if ||k| − |j|| ≥ C|`| for another appropriate
constant C > 0 then |ω · ` + µj(ε) − µk(ε)| ≥ |`|. Hence, under (1.3.34), for ` given, the
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second order Melnikov conditions with time-index ` are automatically satisfied for all (j, k)
except a finite number.

Remark 1.3.5. If the Hamiltonian nonlinearity does not depend on the space variable x,
the equations (1.3.30)-(1.3.31) are invariant under space translations and therefore possess
a prime integral by Noether Theorem. Geng-You [67], [69] were the first to exploit such
conservation law, which is preserved along the KAM iteration, to fulfill the non-resonance
conditions. The main observation is that such symmetry enables to prove that many mono-
mials are a-priori never present along the KAM iteration. In particular, this symmetry
removes the degeneracy produced by the multiple normal frequencies.

For semilinear Schrödinger equations like (1.3.23), (1.3.30), the nonlinear vector field
is not smoothing. Correspondingly, notice that in the linearized operator (1.3.28) the
remainder R(ϕ) is a matrix of multiplication operators. In such a case the basic perturbative
estimate for the eigenvalues gives

µj(ε) = µ2
j +O(ε) ,

which is not sufficient to verify second order Melnikov non resonance conditions like (1.3.33),
in particular

|ω · `+ µj(ε)− µ−j(ε)| ≥
γ

〈`〉τ
, ∀` ∈ Zν \ {0} , j ∈ N ,

for most values of the parameters.
The first KAM reducibility result for NLS with x ∈ T has been proved by Eliasson-

Kuksin in [58] as a particular case of a much more general result valid for tori Td of any
space dimension d ≥ 1, that we discuss below. The key point is to extract, using the notion
of Töplitz-Lipschitz matrices, the first order asymptotic expansion of the perturbed eigen-
values. For perturbations 1-dimensional Schrödinger equations another recent approach to
obtain the improved asymptotics of the perturbed frequencies, i.e.

µj(ε) = j2 + c+O(ε/|j|) ,

for some constant c independent of j, which allows to verify the second order Melnikov
non-resonance conditions (1.3.33), is developed in Berti-Kappeler-Montalto [28] via a reg-
ularization technique based on pseudo-differential ideas, that we explain below. The ap-
proach in [28] applies to semilinear perturbations (also x-dependent) of any large “finite
gap” solution of

iut = −∂xxu+ |u|2u+ εf(x, u) , x ∈ T .

Let us explain the term “finite gap” solutions. The 1d-cubic NLS

iut = −∂xxu+ |u|2u , x ∈ T , (1.3.36)
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possesses global analytic action-angle variables, in the form of Birkhoff coordinates, see [74],
and the whole infinite dimensional phase space is foliated by quasi-periodic -called “finite
gap” solutions- and almost-periodic solutions. The Birkhoff coordinates are a cartesian
smooth version of the action-angle variables to avoid the singularity when one action com-
ponent vanishes, i.e. close to the elliptic equilibrium u = 0. This situation generalizes what
happens for a finite dimensional Hamiltonian system in R2n which possesses n-independent
prime integrals in involution. According to the celebrated Liouville-Arnold theorem (see
e.g. [4]), in suitable local symplectic angle-action variables (θ, I) ∈ Tn×Rn, the integrable
Hamiltonian H(I) depends only on the actions and the dynamics is described by

θ̇ = ∂IH(I) , İ = 0 .

Thus the phase space is foliated by the invariant tori Tn × {ξ}, ξ ∈ Rn, filled by the quasi-
periodic solutions θ(t) = θ0 + ω(ξ)t, I(t) = ξ, with frequency vector ω(ξ) = (∂IH)(ξ). The
analogous construction close to an elliptic equilibrium, where the action-angle variables
become singular, is provided by the Rüssmann-Vey-Ito theorem [109], [111], [83], see [90]
for an introduction.

Other integrable PDEs which possess Birkhoff coordinates are KdV [90] and mKdV [91],
see Appendix A.4.

Remark 1.3.6. The Birkhoff normal form construction of [96] discussed for the NLS equa-
tion (1.3.30) provides, close to u = 0, an approximation of the global Birkhoff coordinates
of the 1d-cubic NLS.

Space multidimensional PDEs

For space multidimensional PDEs the reducibility approach has been first worked out for
semilinear Schrödinger equations

−iut = −∆u+ V ∗ u+ ε∂ūF (x, u, ū) , x ∈ Td , (1.3.37)

with a convolution potential by Eliasson-Kuksin [58], [57]. This is a much more difficult
situation with respect to the 1-d-case because the eigenvalues of −∆ + V (x) appear in
clusters of unbounded size. This is the difficulty mentioned in item 1. In such a case
the reducibility result that one could look for is to block-diagonalize the quasi-periodic
Schrödinger linear operator

h 7→ iω · ∂ϕh−∆h+ V ∗ h+ εq(ϕ, x)h+ εp(ϕ, x)h̄ ,

i.e. to obtain an operator as (1.3.20) with finite dimensional blocks d∞j , which are self-
adjoint matrices of increasing dimension as j → +∞. The convolution potential V plays
the role of “external parameters”. Eliasson-Kuksin introduced in [58] the notion of Töplitz-
Lipschitz matrices in order to extract asymptotic information on the eigenvalues, and so
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verify the second order Melnikov non resonance conditions. The quasi-periodic solutions of
(1.3.37) obtained in [58] are linearly stable.

Remark 1.3.7. The reducibility techniques in [58] enable to prove a stability result for all
the solutions of the linear Schrödinger equation

iut = ∆u+ εV (ωt, x) , x ∈ Td ,

with a small quasi-periodic analytic potential V (ωt, x). For all frequencies ω ∈ Rν, except
a set of measure tending to 0 as ε→ 0, the Sobolev norms of any solution u(t, ·) satisfy

‖u(t, ·)‖Hs(Td) ∼ ‖u(0, ·)‖Hs(Td) , ∀t ∈ R .

Subsequently for the cubic NLS equation

iut = −∆u+ |u|2u , x ∈ T2 , (1.3.38)

which is parameter independent and completely resonant, Geng-Xu-You [70] proved a KAM
result using a Birkhoff normal form analysis. We remark that the Birkhoff normal form of
(1.3.38) is not-integrable, unlike in space dimension d = 1, causing additional difficulties
with respect to [96].

For completely resonant NLS equations in any space dimension and a polynomial non-
linearity

iut = −∆u+ |u|2pu , p ∈ N , x ∈ Td , (1.3.39)

Procesi-Procesi [105] realized a systematic study of the resonant Birkhoff normal form and,
using the notion of quasi-Töplitz matrices developed in Procesi-Xu [108], proved in [106],
[107], the existence of reducible quasi-periodic solutions of (1.3.39).

Remark 1.3.8. The resonant Birkhoff normal form of (1.3.38) is exploited in [46], [79],
to construct chaotic orbits with a growth of the Sobolev norm. This “norm inflation” phe-
nomenon is an analogue of the Arnold diffusion problem [3] for finite dimensional Hamil-
tonian systems. Similar results for the NLS equation (1.3.39) have been proved in [78].

KAM results have been proved for parameter dependent beam equations by Geng-
You [68] and, more recently, in Eliasson-Grébert-Kuksin [56] for multidimensional beam
equations like

utt + ∆2u+mu+ ∂uG(x, u) = 0 , x ∈ Td , u ∈ R .

We also mention the work [75] of Grébert-Paturel concerning the existence of reducible
quasi-periodic solutions of Klein-Gordon equations on the sphere Sd,

utt −∆u+mu+ δMρu+ εg(x, u) = 0 , x ∈ Sd , u ∈ R , (1.3.40)

where ∆ is the Laplace-Beltrami operator and Mρ is a Fourier multiplier.
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On the other hand, if x ∈ Td, the infinitely many second order Melnikov conditions,
required to block-diagonalize the quasi-periodic linear wave operator

(ω · ∂ϕ)2 −∆ + V ∗ + εa(ϕ, x) , x ∈ Td ,

are violated for d ≥ 2, and no reducibility results are available so far. Nevertheless, results
of “almost” reducibility have been announced in Eliasson [54], Eliasson-Grébert-Kuksin
[55].

Before concluding this subsection, we also mention the KAM result by Grébert-Thomann
[77] for smoothing nonlinear perturbations of the 1-d harmonic oscillator and Grébert-
Paturel [76] in higher space dimension.

1-d quasi and fully nonlinear PDEs

Another situation where the reducibility approach that we described in subsection 1.3.1
encounters a serious difficulty is when the non-diagonal remainder R(ϕ) is unbounded. This
is the difficulty mentioned in item 2. In such a case, the auxiliary vector field F (ϕ) defined
in (1.3.17) is unbounded as well. Therefore it could not define a flow, and the iterative
reducibility scheme described in subsection 1.3.1 would formally produce remainders which
accumulate more and more derivatives.

KAM for semilinear PDEs with derivatives. The first KAM results for PDEs with
an unbounded nonlinearity have been proved by Kuksin [94] and, then, Kappeler-Pöschel
[90], for perturbations of finite-gap solutions of

ut + uxxx + ∂xu
2 + ε∂x(∂uf)(x, u) = 0 , x ∈ T . (1.3.41)

The corresponding quasi-periodic linearized operator at an approximate quasi-periodic so-
lution u has the form

h 7→ ω · ∂ϕh+ ∂xxxh+ ∂x(2uh) + ε∂x(ah) , a := (∂uuf)(x, u) .

The key idea in [94] is to exploit the fact that the frequencies of KdV grow asymptotically
as ∼ j3 as j → +∞, and therefore one can impose second order Melnikov non-resonance
conditions like

|ω · `+ j3 − i3| ≥ γ(j2 + i2)/〈`〉τ , i 6= j ,

which gain 2 space derivatives (outside the diagonal i = j), sufficient to compensate the
loss of one space derivative produced by the vector field ε∂x(∂uf)(x, u). On the diagonal
` 6= 0, i = j, one renounces to solve the homological equations, with the consequence that
the KAM normal form is ϕ-dependent and one uses the so called Kuksin Lemma to invert the
corresponding quasi-periodic scalar operator. Subsequently, developing an improved version
of the Kuksin Lemma, Liu-Yuan in [86] proved KAM results for semilinear perturbations
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of Hamiltonian derivative NLS and Benjiamin-Ono equations and Zhang-Gao-Yuan [119]
for the reversible derivative NLS equation

iut + uxx = |ux|2u , u(0) = u(π) = 0 .

These PDEs are more difficult than KdV because the linear frequencies grow like ∼ j2 and
not ∼ j3, and therefore one gains only 1 space derivative when solving the homological
equations.

These methods do not apply for derivative wave equations where the dispersion relation
is asymptotically linear. Such a case has been addressed more recently by Berti-Biasco-
Procesi [17]-[18] who proved the existence and the stability of quasi-periodic solutions of
autonomous derivative Klein-Gordon equations

ytt − yxx +my = g(x, y, yx, yt) (1.3.42)

satisfying reversibility conditions which rule out nonlinearities like y3
t , y

3
x, for which no pe-

riodic nor quasi-periodic solutions exist (with these nonlinearities all the solutions dissipate
to zero). The key point in [17]-[18] was to adapt the notion of quasi-Töplitz vector field
introduced in [108] to obtain the higher order asymptotic expansion of the perturbed normal
frequencies

µj(ε) =
√
j2 +m+ a± +O(1/j) , as j → ±∞ ,

for suitable constants a± (of the size a± = O(ε) of the solution y = O(ε)). Thanks to
this asymptotic expansion it is sufficient to verify, for each ` ∈ Zν , that only finitely many
second order Melnikov non-resonance conditions hold. Indeed, using an argument as in
(1.3.35), infinitely many conditions in (1.3.33) are already verified by imposing only first
order Melnikov conditions like

|ω · `+ h| ≥ γ〈`〉−τ , |ω · `+ (a+ − a−) + h| ≥ γ〈`〉−τ ,

for all (`, h) ∈ Zν ×Z such that ω · `+ h and ω · `+ (a+− a−) + h do not vanish identically.

KAM for quasi-linear and fully nonlinear PDEs

All the above results still concern semi-linear perturbations, namely when the number of
derivatives which are present in the nonlinearity is strictly lower than the order of the linear
differential operator. The first existence results of quasi-periodic solutions for quasi-linear
PDEs have been proved by Baldi-Berti-Montalto in [6] for fully nonlinear perturbations of
the Airy equation

ut + uxxx + εf(ωt, x, u, ux, uxx, uxxx) = 0 , x ∈ T , (1.3.43)

and in [8] for quasi-linear autonomous perturbed KdV equations

ut + uxxx + ∂xu
2 +N (x, u, ux, uxx, uxxx) = 0 (1.3.44)
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where the Hamiltonian nonlinearity

N (x, u, ux, uxx, uxxx) := −∂x
[
(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))

]
(1.3.45)

vanishes at the origin as O(u4), see [72] when N vanishes only quadratically.

The main new tool which has been introduced to solve this problem is a systematic use
of pseudo-differential calculus. The key point is to reduce to constant coefficients the linear
PDE

ut + (1 + a3(ωt, x))uxxx + a2(ωt, x)uxx + a1(ωt, x)ux + a0(ωt, x)u = 0 (1.3.46)

which is obtained linearizing (1.3.43) at an approximate quasi-periodic solution u(ωt, x).
The coefficients ai(ωt, x) = O(ε), i = 0, . . . , 3. Instead of trying to diminish the size of the
variable-dependent terms in (1.3.46), as in the scheme outlined in subsection 1.3.1 –the big
difficulty 2 would appear–, the aim is to conjugate (1.3.46) to a system like

ut +m3uxxx +m1ux +R0(ωt)u = 0 (1.3.47)

where m3 = 1 + O(ε), m1 = O(ε) are constants and R0(ωt) is a zero order operator, still
time dependent. To do this, (1.3.46) is conjugated with a time quasi-periodic change of
variable (as in (1.3.2))

u = Φ(ωt)[v] = v(t, x+ β(ωt, x)) , (1.3.48)

induced by the composition with a diffeomorphism x 7→ x + β(ϕ, x) of Tx ( requiring
|βx| < 1). The conjugated system (1.3.3)-(1.3.4) is

vt + Φ−1(ωt)((1 + a3(ωt, x))(1 + βx(ωt, x))3)vxxx(t, x) + lower order operators = 0

and therefore one chooses a periodic function β(ϕ, x) such that

(1 + a3(ϕ, x))(1 + βx(ϕ, x))3 = m3(ϕ)

is independent of x. Since βx(ϕ, x) has zero space average, this is possible with

m3(ϕ) =
( 1

2π

∫
T

dx

(1 + a3(ϕ, x))
1
3

)−3

.

The ϕ dependence of m3(ϕ) can also be eliminated at the highest order using a quasi-
periodic reparametrization of time and, using other pseudo-differential transformations,
we can reduce also the lower order terms to constant coefficients obtaining (1.3.47). The
reduction (1.3.47) implies the accurate asymptotic expansion of the perturbed frequencies

µj(ε) = −im3j
3 + im1j +O(ε)
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and therefore now it is possible to verify the second order Melnikov non-resonance conditions
required by a KAM reducibility scheme (as outlined in subsection 1.3.1) to diagonalize
R0(ωt), completing the reduction of (1.3.47), thus (1.3.46).

These techniques have been then employed by Feola-Procesi [62] for quasi-linear forced
perturbations of Schrödinger equations and in [47], [63] for the search of analytic solutions
of autonomous PDEs. These kind of ideas have been also successfully generalized for un-
bounded perturbations of harmonic oscillators by Bambusi [9], [10] and Bambusi-Montalto
[13].

The KdV and the NLS equation are partial differential equations and the pseudo-
differential tools required are essentially commutators of multiplication operators and Fourier
multipliers. On the other hand, for the water waves equations, that we now present, the
theory of pseudo-differential operators has to be used in full strength.

Water waves equations

The water waves equations for a perfect, incompressible, inviscid, irrotational fluid occupy-
ing the time dependent region

Dη :=
{

(x, y) ∈ T× R : −h < y < η(t, x)
}
, T := Tx := R/2πZ , (1.3.49)

under the action of gravity, and possible capillary forces at the free surface, are the Euler
equations of hydrodynamics combined with conditions at the boundary of the fluid:

∂tΦ +
1

2
|∇Φ|2 + gη = κ∂x

( ηx√
1 + η2

x

)
at y = η(t, x)

∆Φ = 0 in Dη
∂yΦ = 0 at y = −h
∂tη = ∂yΦ− ∂xη∂xΦx at y = η(t, x)

(1.3.50)

where g is the acceleration of gravity and κ is the surface tension coefficient. The unknowns
of the problem (1.3.50) are the free surface y = η(t, x) and the velocity potential Φ : Dη →
R, i.e. the irrotational velocity field of the fluid v = ∇x,yΦ. The first equation in (1.3.50)
is the Bernoulli condition according to which the jump of pressure across the free surface is
proportional to the mean curvature. The second equation in (1.3.50) is the incompressibility
property div v = 0. The third equation expresses the impermeability of the bottom of the
ocean. The last condition in (1.3.50) means that the fluid particles on the free surface
y = η(x, t) remain forever on it along the fluid evolution.

Following Zakharov [116] and Craig-Sulem [50], the evolution problem (1.3.50) may be
written as an infinite-dimensional Hamiltonian system in the unknowns (η(t, x), ψ(t, x))
where ψ(t, x) = Φ(t, x, η(t, x)) is, at each instant t, the trace at the free boundary of the
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velocity potential. Given η(t, x) and ψ(t, x) there is a unique solution Φ(t, x, y) of the
elliptic problem 

∆Φ = 0 in {−h < y < η(t, x)}
∂yΦ = 0 on y = −h
Φ = ψ on {y = η(t, x)} .

System (1.3.50) is then equivalent to the Zakharov-Craig-Sulem system
∂tη = G(η)ψ

∂tψ = −gη − ψ2
x

2
+

1

2(1 + η2
x)

(
G(η)ψ + ηxψx

)2
+ κ∂x

( ηx√
1 + η2

x

) (1.3.51)

where G(η) := G(η;h) is the Dirichlet-Neumann operator defined as

G(η)ψ :=
(
Φy − ηxΦx

)
|y=η(t,x)

(1.3.52)

which maps the Dirichlet datum ψ into the (normalized) normal derivative G(η)ψ at the
top boundary. The operator G(η) is linear in ψ, self-adjoint with respect to the L2 scalar
product, positive-semidefinite, and its kernel contains only the constant functions. The
Dirichlet-Neumann operator depends smoothly with respect to the wave profile η, and it is
a pseudo-differential operator with principal symbol D tanh(hD).

Furthermore the equations (1.3.51) are the Hamiltonian system

∂tη = ∇ψH(η, ψ) , ∂tψ = −∇ηH(η, ψ) (1.3.53)

where ∇ denotes the L2-gradient, and the Hamiltonian

H(η, ψ) =
1

2

∫
T
ψG(η, h)ψ dx+

g

2

∫
T
η2 dx+ κ

∫
T

√
1 + η2

x dx (1.3.54)

is the sum of the kinetic, potential and capillary energies expressed in terms of the variables
(η, ψ).

The water waves system (1.3.51)-(1.3.53) exhibits several symmetries. First of all, the
mass ∫

T
η(x) dx

is a first integral of (1.3.51). Moreover (1.3.51) is invariant under spatial translations and
Noether’s theorem implies that the momentum∫

T
ηx(x)ψ(x) dx
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is a prime integral of (1.3.53). In addition, the subspace of functions that are even in x,

η(x) = η(−x) , ψ(x) = ψ(−x) , (1.3.55)

is invariant under (1.3.51). In this case also the velocity potential Φ(x, y) is even and 2π-
periodic in x and so the x-component of the velocity field v = (Φx,Φy) vanishes at x = kπ,
for all k ∈ Z. Hence there is no flow of fluid through the lines x = kπ, k ∈ Z, and a solution
of (1.3.51) satisfying (1.3.55) describes the motion of a liquid confined between two vertical
walls.

We also notice that the water waves system (1.3.51)-(1.3.53) is reversible with respect
to the involution S : (η, ψ) 7→ (η,−ψ), i.e. the Hamiltonian H in (1.3.54) is even in ψ, see
Appendix A. As a consequence it is natural to look for solutions of (1.3.51) satisfying

u(−t) = Su(t) , i.e. η(−t, x) = η(t, x) , ψ(−t, x) = −ψ(t, x) ∀t, x ∈ R . (1.3.56)

Solutions of the water waves equations (1.3.51) satisfying (1.3.55) and (1.3.56) are called
standing water waves.

The phase space of (1.3.51) is (a dense subspace) of

(η, ψ) ∈ H1
0 (T)× Ḣ1(T) where Ḣ1(T) := H1(T)/∼

is the homogeneous space obtained by the equivalence relation ψ1(x) ∼ ψ2(x) if and only
if ψ1(x) − ψ2(x) = c is a constant, and H1

0 (T) is the subspace of H1(T) of zero average
functions. For simplicity of notation we denote the equivalence class [ψ] by ψ. Note that
the second equation in (1.3.51) is in Ḣ1(T), as it is natural because only the gradient of
the velocity potential has a physical meaning.

Linearizing (1.3.51) at the equilibrium (η, ψ) = (0, 0) we get{
∂tη = G(0)ψ,

∂tψ = −gη + κηxx
(1.3.57)

where G(0) = D tanh(hD) is the Dirichlet-Neumann operator at the flat surface η = 0.
The linear frequencies of oscillations of (1.3.57) are

ωj =
√
j tanh(hj)(g + κj2) , j ∈ Z , (1.3.58)

which, in the phase space of even functions (1.3.55), are simple. Also notice that

if κ > 0 (capillary − gravity waves) =⇒ ωj ∼ |j|3/2 as |j| → ∞ ,

if κ = 0 (pure gravity waves) =⇒ ωj ∼ |j|1/2 as |j| → ∞ .

KAM for water waves. The first existence results of small amplitude time-periodic
gravity standing wave solutions for bi-dimensional fluids has been proved by Plotinkov and
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Toland [101] in finite depth and by Iooss, Plotnikov and Toland in [84] in infinite depth.
More recently, the existence of time periodic gravity-capillary standing wave solutions in
infinite depth has been proved by Alazard-Baldi [1].

The main result in [30] proves that most of the standing wave solutions of the linear
system (1.3.57), which are Fourier supported on finitely many space Fourier modes, can be
continued to standing wave solutions of the nonlinear water-waves system (1.3.51) for most
values of the surface tension parameter κ ∈ [κ1, κ2].

A key step is the reducibility to constant coefficients of the quasi-periodic operator Lω
obtained linearizing (1.3.51) at a quasi-periodic approximate solution. After the introduc-
tion of a linearized Alinhac good unknown, and using in a systematic way pseudo-differential
calculus, it is possible to transform Lω into a complex quasi-periodic linear operator of the
form

(h, h̄) 7→
(
ω · ∂ϕ + im3|D|

1
2 (1− κ∂xx)

1
2 + im1|D|

1
2

)
h+R(ϕ)[h, h̄] (1.3.59)

where m3, m1 ∈ R are constants satisfying m3 ≈ 1, m1 ≈ 0, and the remainder R(ϕ) is a small
bounded operator. Then a KAM reducibility scheme completes the diagonalization of the
linearized operator Lω. The required second order Melnikov non-resonance conditions are
fulfilled for most values of the surface tension parameter κ generalizing ideas of degenerate
KAM theory for PDEs [11], exploiting that the linear frequencies ωj in (1.3.58) are analytic
and non degenerate in κ, and the sharp asymptotic expansion of the perturbed frequencies
obtained by the regularization procedure.

In the case of pure gravity water waves, i.e. κ = 0, the linear frequencies of oscillation
are (see (1.3.58))

ωj := ωj(h) :=
√
gj tanh(hj) , j ≥ 1 , (1.3.60)

and three major further difficulties in proving the existence of time quasi-periodic solutions
are:

(i) The nonlinear water waves system (1.3.51) (with κ = 0) is a singular perturbation of
(1.3.57) (with κ = 0) in the sense that the quasi-periodic linearized operator assumes
the form

ω · ∂ϕ + i|D|
1
2 tanh

1
2 (h|D|) + V (ϕ, x)∂x

and the term V (ϕ, x)∂x is now a singular perturbation of the linear dispersion rela-

tion operator i|D|
1
2 tanh

1
2 (h|D|) (on the contrary, for the gravity-capillary case the

transport term V (ϕ, x)∂x is a lower order perturbation of |D|
3
2 , see (1.3.59)).

(ii) The dispersion relation (1.3.60) is sublinear, i.e. ωj ∼
√
j for j → ∞, and therefore

it is only possible to impose second order Melnikov non-resonance conditions as in
(1.3.21) which lose space derivatives.



CHAPTER 1. INTRODUCTION 34

(iii) The linear frequencies ωj(h) in (1.3.60) vary with h of just exponentially small quan-
tities.

The main result in Baldi-Berti-Haus-Montalto [5] proves the existence of pure gravity
standing water waves solutions.

The difficulty (i) is solved proving a straightening theorem for a quasi-periodic transport
operator: there is a quasi-periodic change of variables of the form x 7→ x + β(ϕ, x) which
conjugates

ω · ∂ϕ + V (ϕ, x)∂x

to the constant coefficient vector field ω · ∂ϕ, for V (ϕ, x) small. This perturbative rectifi-
cation result is a classical small divisor problem, solved for perturbations of a Diophantine
vector field at the beginning of KAM theory, see e.g. [117, 118]. Notice that, despite the
fact that ω ∈ Rν is Diophantine, the constant vector field ω · ∂ϕ is resonant on the higher
dimensional torus Tνϕ × Tx. We exploit in a crucial way the symmetry induced by the
reversible structure of the water waves equations, i.e. V (ϕ, x) is odd in ϕ. This problem
amounts to prove that all the solutions of the quasi periodically time-dependent scalar
characteristic equation ẋ = V (ωt, x), x ∈ T, are quasi-periodic in time with frequency ω.

The difficulty (ii) is overcome performing a regularizing procedure which conjugates
the linearized operator, obtained along the Nash-Moser iteration, to a diagonal, constant
coefficient linear one, up to a sufficiently smoothing operator. In this way the subsequent
KAM reducibility scheme converges also in presence of very weak Melnikov non-resonance
conditions as in (1.3.21) which lose space derivatives. This regularization strategy is in prin-
ciple applicable to a broad class of PDEs where the second order Melnikov non-resonance
conditions lose space derivatives.

The difficulty (iii) is solved by an improvement of the degenerate KAM theory for PDEs
in Bambusi-Berti-Magistrelli [11], which allows to prove that all the Melnikov non-resonance
are fulfilled for most values of h.

Remark 1.3.9. We can introduce the space wavelength 2πς as an internal free parameter
in the water waves equations (1.3.51). Rescaling properly time, space and amplitude of the
solution (η(t, x), ψ(t, x)) we obtain system (1.3.51) where the gravity constant g = 1 and
the depth parameter h depends linearly on ς. In this way [5] proves existence results for a
fixed equation, i.e. a fixed depth h, for most values of the space wavelength 2πς.

1.4 The multiscale approach to KAM for PDEs

We present now some key ideas about another approach developed for analyzing linear
quasi-periodic systems, in order to prove KAM results for PDEs, started with the seminal
paper of Craig-Wayne [51] and strongly extended by Bourgain [34]-[40]. This set of ideas
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and techniques -referred as “multiscale analysis”- is at the basis of the present Monograph.
For this reason we find convenient to present it in some detail.

For definiteness we consider a quasi-periodic linear wave operator

(ω · ∂ϕ)2 −∆ +m+ εb(ϕ, x) , ϕ ∈ Tν , x ∈ Td , (1.4.1)

where m > 0 and b(ϕ, x) is a smooth function, that is obtained linearizing a nonlinear wave
equation at a smooth approximate quasi-periodic solution.

Remark 1.4.1. The choice of the parameters in (1.4.1) makes a significant difference. If
(1.4.1) arises linearizing a quasi-periodically forced NLW as (1.1.7), the frequency vector ω
can be regarded as a free parameter belonging to a subset of Rν, independent of ε. On the
other hand, if (1.4.1) arises linearizing an autonomous NLW like (1.1.1), or (1.1.8), the
frequency ω and ε are linked. In particular ω has to be ε2-close to some frequency vector
((|ji|2 +m)1/2)i=1,...,ν (actually ω has to belong to the region of “admissible” frequencies as
in (1.2.23)). This difficulty is present in this Monograph as well as in [114].

In the exponential basis {ei(`·ϕ+j·x)}`∈Zν ,j∈Zd the linear operator (1.4.1) is represented by
the self-adjoint matrix

A := D + εT ,

D := Diag(`,j)∈Zν×Zd
(
− (ω · `)2 + |j|2 +m

)
, T = (T `

′,j′

`,j ) := (̂b`−`′,j−j′) ,
(1.4.2)

where b̂`−`′,j−j′ are the Fourier coefficients of the function b(ϕ, x) that decay rapidly to zero
as |(`− `′, j − j′)| → +∞, exponentially fast, if b(ϕ, x) is analytic, polynomially, if b(ϕ, x)
is a Sobolev function. Notice that the matrix T is Töplitz, namely it has constant entries
on the diagonals (`− `′, j − j′) = (L, J) ∈ Zν × Zd.

Remark 1.4.2. The analytic/Gevrey setting has been considered in [34]-[40] and the Sobolev
case in [21]-[26]. The Sobolev regularity of b(ϕ, x) has to be large enough, see remark 1.4.6.
In KAM for PDE applications this requires that the nonlinearity (thus the solution) is
sufficiently many times differentiable. For finite dimensional Hamiltonian systems, it has
been rigorously proved that, otherwise, all the invariant tori could be destroyed and only
discontinuous Aubry-Mather invariant sets survive, see e.g. [82].

The infinite set of the eigenvalues of the diagonal operator D,

−(ω · `)2 + |j|2 +m, ` ∈ Zν , j ∈ Zd ,

accumulate to zero (small divisors) and therefore the matrix T in (1.4.2), which represents
in Fourier space the multiplication operator for the function b(ϕ, x), is a “singular” pertur-
bation of D. As a consequence is not obvious at all that the self-adjoint operator D + εT
has still pure point spectrum with a basis of eigenfunctions with exponential/polinomial
decay, for ε small, for most values of the frequency vector ω ∈ Rν . This is the main problem
addressed in Anderson localization theory.
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Remark 1.4.3. If a quasi-periodic operator iω · ∂ϕ + S(ϕ) where S(ϕ) is self-adjoint, is
reduced to constant coefficients as we discussed in section 1.3 with a quasi-periodic change
of variables Φ(ωt) which acts between Sobolev spaces, then it is pure point.

Actually, for the convergence of a Nash-Moser scheme in applications to KAM for PDEs,
it is sufficient to prove, for most values of the parameters, the invertibility of its finite
dimensional restrictions,

LN := ΠN

(
(ω · ∂ϕ)2 −∆ +m+ εb(ϕ, x)

)
|HN

, (1.4.3)

for any N large, where ΠN denotes the projection on the finite dimensional subspace

HN :=
{
h(ϕ, x) =

∑
|(`,j)|≤N

h`,je
i(`·ϕ+j·x)

}
, (1.4.4)

and prove that the inverse satisfies, for some µ > 0, s1 > 0, tame estimates as

‖L−1
N h‖s ≤ C(s)Nµ

(
‖h‖s + ‖b‖s‖h‖s1

)
, ∀h ∈ HN , ∀s ≥ s1 , (1.4.5)

where ‖ ‖s denotes the Sobolev norm in (1.2.31). Notice that µ > 0 represents a “loss of
derivatives” due to the small divisors. Since the multiplication operator h 7→ bh satisfies
a tame estimate like (1.4.5) with µ = 0, the estimate (1.4.5) means that L−1

N acts, on the
Sobolev scale Hs, somehow as an unbounded differential operator of order µ.

Also weaker tame estimates as

‖L−1
N h‖s ≤ C(s)N τ ′

(
(N ςs + ‖b‖s)‖h‖s1 +N ςs1‖h‖s

)
, ∀h ∈ HN , ∀s ≥ s1 , (1.4.6)

for ς < 1, are sufficient for the convergence of the Nash-Moser scheme. Notice that such
conditions are much weaker than (1.4.5) because the loss of derivatives τ ′ + ςs increases
with s. Conditions like (1.4.6) are essentially optimal for the convergence, compare with
Lojasiewicz-Zehnder [87].

Remark 1.4.4. It would be also sufficient to prove the existence of a right inverse of the
operator [L]2NN := ΠN

(
(ω · ∂ϕ)2 − ∆ + m + εb(ϕ, x)

)
|H2N

satisfying (1.4.5) or (1.4.6), as

we do in section 4.6. We remind that a linear operator acting between finite dimensional
vector spaces admits a right inverse if it is surjective, see Definition 3.3.11.

In the time periodic setting, i.e. ν = 1, we achieve the stronger tame estimates (1.4.5)
while, in the time quasi-periodic setting, i.e. ν ≥ 2, we prove the weaker tame estimates
(1.4.6). Actually, in the present Monograph, as in [22]-[23], we shall prove that the approx-
imate inverse satisfies tame estimates of the weaker form (1.4.6).

In order to achieve (1.4.5) or (1.4.6) there are two main steps:
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1. (L2-estimates) Impose lower bounds for the eigenvalues of the self-adjoint operator
(1.4.3), for most values of the parameters. These “first order Melnikov” non-resonance
conditions provide estimates of the inverse of L−1

N in L2-norm.

2. (Hs-estimates) Prove the estimates (1.4.5) or (1.4.6) in high Sobolev norms. In the
language of Anderson localization theory, this amounts to prove polynomially fast
off-diagonal decay estimates for the inverse matrix L−1

N .

In the forced case when the frequency vector ω ∈ Rν provides independent parameters,
item 1 is not a too difficult task, using results about the eigenvalues of self-adjoint ma-
trices depending on parameters, as Lemmata 4.8.1 and 4.8.2. On the other hand, in the
autonomous case, for the difficulties discussed in remark 1.4.1, this is a more delicate task
(that we address in this Monograph).

In the sequel we concentrate on the analysis of item 2. An essential ingredient is the
decomposition into “singular” and “regular” sites, for some ρ > 0,

S :=
{

(`, j) ∈ Zν × Zd such that | − (ω · `)2 + |j|2 +m| < ρ
}

R :=
{

(`, j) ∈ Zν × Zd such that | − (ω · `)2 + |j|2 +m| ≥ ρ
}
.

(1.4.7)

It is clear, indeed, that, in order to achieve (1.4.5), conditions that limit the quantity of
singular sites have to be fulfilled, otherwise the inverse operator L−1

N would be “too big” in
any sense and (1.4.6) would be violated.

Remark 1.4.5. If in (1.4.1) the constant m is replaced by a (not small) multiplicative
potential V (x) (this is the case considered in the present Monograph), it is natural to define
the singular sites as | − (ω · `)2 + |j|2 +m| < Θ for some Θ large depending on V (x).

We first consider the easier case ν = 1 (time-periodic solutions).

1.4.1 Time periodic case ν = 1

Existence of time periodic solutions for NLW on Td have been first obtained in [35]. In
the exposition below we follow [21]. The following “separation properties” of the singular
sites (1.4.7) are sufficient for proving (1.4.5): the singular sites S in the box [−N,N ]1+d are
partitioned into disjoint clusters Ωα,

S ∩ [−N,N ]1+d =
⋃
α

Ωα , (1.4.8)

satisfying

• (H1) (Dyadic) Mα ≤ 2mα, ∀α, where Mα := max
(`,j)∈Ωα

|(`, j)| and mα := min
(`,j)∈Ωα

|(`, j)|;
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• (H2) (Separation at infinity) There is δ = δ(d) > 0 (independent of N) such that

d(Ωα,Ωβ) := min
(`,j)∈Ωα,(`′,j′)∈Ωσ

|(`, j)− (`′, j′)| ≥ (Mα +Mσ)δ , ∀α 6= σ . (1.4.9)

Notice that in (H2) the clusters Ωα of singular sites are “separated at infinity”, namely
the distance between distinct clusters increases when the Fourier indices tend to infinity.
A partition of the singular sites as (1.4.8), satisfying (H1)-(H2), has been proved in [21]
assuming that ω2 is Diophantine.

Remark 1.4.6. We require that the function b(ϕ, x) in (1.4.1) has the same (high) regular-
ity in (ϕ, x), i.e. ‖b‖s <∞ for some large Sobolev index s, because the clusters Ωα in (1.4.9)
are separated in time-space Fourier indices only. This implies, in KAM applications, that
the solutions that we obtain will have the same high Sobolev regularity in time and space.

We have to solve the linear system

LNg = h , g, h ∈ HN . (1.4.10)

Given a subset Ω of [−N,N ]1+d ⊂ Z × Zd we denote by HΩ the vector space spanned
by {ei(`ϕ+j·x), (`, j) ∈ Ω} and by ΠΩ the corresponding orthogonal projector. With this
notation the subspace HN in (1.4.4) coincides with H[−N,N ]1+d . Given a linear operator L

of HN and another subset Ω′ ⊂ [−N,N ]1+d we denote LΩ
Ω′ := ΠHΩ′

L|HΩ
. For simplicity we

also set LΩ
Ω′ := ΠHΩ′

(LN)|HΩ
.

According to the splitting of the indices [−N,N ]1+d = S ∪ R, where for simplicity of
notation we still denote by S,R the sets of the singular and regular sites (1.4.7) intersected
with the box [−N,N ]1+d, we decompose in orthogonal subspaces

HN = HS ⊕HR .

Writing the unique decomposition g = gS + gR, gR ∈ HR, gS ∈ HS, and similarly for h, the
linear system (1.4.10) then amounts to{

LRRgR + LSRgS = hR

LRS gR + LSSgS = hS .

Notice that, by (1.4.2), the coupling terms LSR = εT SR , LRS = εTRS , have polynomial off-
diagonal decay.

By standard perturbative arguments, the operator LRR, which is the restriction of LN to
the regular sites, is invertible for ερ−1 � 1, and therefore, solving the first equation in gR,
and inserting the result in the second one, we are reduced to solve(

LSS − LRS (LRR)−1LSR
)
gS = hS − LRS (LRR)−1hR .
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Thus the main task is now to invert the self-adjoint matrix

U := LSS − LRS (LRR)−1LSR , U : HS → HS .

This reduction procedure is sometimes referred as a resolvent identity.
According to (1.4.8) we have the orthogonal decomposition HS = ⊕αHΩα which induces

a block decomposition for the operator

U = (UΩα
Ωσ

)α,σ , UΩα
Ωσ

:= LΩα
Ωσ
− LRΩσ(LRR)−1LΩα

R .

Then we decompose U in block-diagonal and off-diagonal parts:

U = D +R , D := DiagαU
Ωα
Ωα
, R := (UΩα

Ωσ
)α 6=σ . (1.4.11)

Since the matrix T has off-diagonal decay (see (1.4.2) and recall that the function b(ϕ, x)
is smooth enough) and the matrices with off-diagonal decay form an algebra (with interpo-
lation estimates) it easily results an off-diagonal decay of the matrix R like

‖UΩα
Ωσ
‖L(L2) ≤

εC(s)

d(Ωα,Ωσ)s−
1+d

2

, α 6= σ . (1.4.12)

In the simplest case that the ω are independent parameters (forced case), it is not too
difficult to impose that each self-adjoint operator UΩα

Ωα
is invertible for most parameters and

that
‖(UΩα

Ωα
)−1‖L(L2) ≤M τ

α , ∀α ,

for some τ large enough. Since, by (H1), each cluster Ωα is dyadic, this L2-estimate implies
also a Hs-Sobolev bound: for all h ∈ HΩα ,

‖(UΩα
Ωα

)−1h‖s ≤M s
α‖(UΩα

Ωα
)−1h‖L2 ≤M s

αM
τ
α‖h‖L2 ≤ M s

α

ms
α

M τ
α‖h‖s

≤ 2sN τ‖h‖s

by (H1) and Mα ≤ N . As a consequence the whole operator D defined in (1.4.11) is
invertible with a Sobolev estimate

‖D−1h‖s ≤ C(s)N τ‖h‖s , ∀h ∈ HN .

Finally, using the off-diagonal decay (1.4.12) and the “separation at infinity” property
(1.4.9), the operator D−1R is bounded in L2, and it is easy to reproduce a Neumann-series
argument to prove the invertibility of U = D(I+D−1R) with tame estimates for the inverse
U−1 in Sobolev norms, implying (1.4.5).
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1.4.2 Quasi-periodic case ν ≥ 2

In the quasi-periodic setting, i.e. ν ≥ 2, the proof that the operator LN defined in (1.4.3)
is invertible and its inverse satisfies the tame estimates (1.4.6) is more difficult. Indeed the
‘separation at infinity” property (H2) never holds in the quasi-periodic case, neither for
finite dimensional systems. For example, the operator ω · ∂ϕ, is represented in the Fourier
basis as the diagonal matrix Diag`∈Zν (iω ·`). If the frequency vector ω ∈ Rν is Diophantine,
then the singular sites ` ∈ Zν such that

|ω · `| ≤ ρ

are “uniformly distributed” in a neighborhood of the hyperplane ω · ` = 0, with nearby
indices at distance O(ρ−α) for some α > 0. Therefore, unlike in the time periodic case, the
decomposition (1.4.7) into singular and regular sites of the unperturbed linear operator is
not sufficient, and a finer analysis has to be performed.

In the sequel we follow the exposition of [22]. Let

A = D + εT , D := Diag(`,j)∈Zν×Zd(−(ω · `)2 + |j|2 +m) , T := (̂b`−`′,j−j′) ,

be the self-adjoint matrix in (1.4.2) that represents the second order operator (1.4.1). We
suppose (forced case) that ω and ε are unrelated and that ω is constrained to a fixed
Diophantine direction

ω = λω̄ , λ ∈
[1

2
,
3

2

]
, |ω̄ · `| ≥ γ0

|`|τ0
, ∀` ∈ Zν \ {0} . (1.4.13)

A way to overcome the difficulty mentioned above, concerning the lack of “separation
properties at infinity” of the singular sites, is to implement inductive arguments which prove,
for most parameters, off-diagonal decay estimates for the inverses A−1

Nn
of the restrictions

ANn := ΠNnA|HNn , (1.4.14)

at an increasing sequence of scales

Nn =
[
Nχn

0

]
, n ≥ 0 , (1.4.15)

for some N0 and χ large enough, relying on information about the invertibility and the
off-diagonal decay of “most” inverses A−1

Nn−1,`0,j0
of submatrices

ANn−1,`0,j0 := A|`−`0|≤Nn−1,|j−j0|≤Nn−1

of size Nn−1. This program motivates the name ‘multiscale analysis”.
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In order to give a precise statement we first introduce decay norms. Given a matrix
M = (M i′

i )i′∈B,i∈C , where B,C are subsets of Zν+d, we define its s-norm

|M |2s :=
∑

n∈Zν+d

[M(n)]2〈n〉2s where 〈n〉 := max(1, |n|) ,

and

[M(n)] :=

{
max

i−i′=n,i∈C,i′∈B
|M i′

i | if n ∈ C −B

0 if n /∈ C −B .

Remark 1.4.7. The norm |T |s of the matrix which represents the multiplication operator
for the function b(ϕ, x) is equal to |T |s = ‖b‖s. Product of matrices (when it makes sense)
with finite s-norm satisfy algebra and interpolation inequalities, see Appendix B.1.

We now outline how to prove that the finite dimensional matrices ANn in (1.4.14) are
invertible for “most” parameters λ ∈ [1/2, 3/2] and satisfy, for all n ≥ 0,

|A−1
Nn
|s ≤ C(s)N τ ′

n

(
N ςs
n + ‖b‖s

)
, ς ∈ (0, 1/2) , τ ′ > 0 , ∀s > s0 . (1.4.16)

Such estimates imply the off-diagonal decay of the entries of the inverse matrix

|(A−1
Nn

)ii′ | ≤ C(s)
N τ ′
n (N ςs

n + ‖b‖s)
〈i− i′〉s

, |i|, |i′| ≤ Nn ,

and Sobolev tame estimates as (1.4.6) (by Lemma B.1.9), assuming that ‖b‖s1 ≤ C.

In order to prove (1.4.16) at the initial scale N0 we impose that, for most parameters,
the eigenvalues of the diagonal matrix D satisfy

| − (ω · `)2 + |j|2 +m| ≥ N−τ0 , ∀|(`, j)| ≤ N0 ,

and, then, for ε small enough, we deduce, by a direct Neumann argument, the invertibility
of AN0 = DN0 + εTN0 and the decay of the inverse A−1

N0
.

In order to proceed at the higher scales, we use a multiscale analysis.

L2-bounds. The first step is to show that, for “most” parameters, the eigenvalues of ANn
are in modulus bounded from below by O(N−τn ) and so the L2-norm of the inverse satisfies

‖A−1
Nn
‖0 = O(N τ

n) where ‖ ‖0 := ‖ ‖L(L2). (1.4.17)

The proof is based on eigenvalue variation arguments. Recalling (1.4.13), dividing ANn by
λ2, and setting ξ := 1/λ2, we observe that the derivative with respect to ξ satisfies

∂ξ(ξANn) = Diag|(`,j)|≤Nn(|j|2 +m) +O
(
ε‖T‖0 + ε‖∂λT‖0

)
≥ c > 0 , (1.4.18)
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for ε small, i.e. it is positive definite. So, the eigenvalues µ`,j(ξ) of the self-adjoint matrix
ξANn satisfy (see Lemma 4.8.1)

∂ξµ`,j(ξ) ≥ c > 0 , ∀|(`, j)| ≤ Nn ,

which implies (1.4.17) except in a set of λ’s of measure O(N−τ+d+ν
n ).

Remark 1.4.8. Monotonicity arguments for proving lower bounds for the moduli of the
eigenvalues of (huge) self-adjoint matrices have been also used in [58], [23], [22]. Notice
that the eigenvalues could be degenerate for some values of the parameters. This approach to
verify “large deviation estimates” is very robust and the measure estimates that we perform
at each step of the iteration are not inductive, as those in [40].

Multiscale Step. The bounds (1.4.16) for the decay norms of A−1
Nn

follow by an inductive
application of the multiscale step proposition B.2.4, that we now describe. A matrix A ∈
ME

E, E ⊂ Zν+d, with diam(E) ≤ 4N is called N-good if it is invertible and

|A−1|s ≤ N τ ′+ςs , ∀s ∈ [s0, s1] ,

for some s1 := s1(d, ν) large. Otherwise we say that A is N -bad.
The aim of the multiscale step is to deduce that a matrix A ∈ME

E with

diam(E) ≤ N ′ := Nχ with χ� 1 , (1.4.19)

is N ′-good, knowing

• (H1) (Off-diagonal decay) |A−Diag(A)|s1 ≤ Υ where Diag(A) := (δi,i′A
i′

i )i,i′∈E;

• (H2) (L2-bound) ‖A−1‖0 ≤ (N ′)τ where we set ‖ ‖0 := ‖ ‖L(L2);

and suitable assumptions concerning the N -dimensional submatrices along the diagonal of
A. We define an index i ∈ E to be (A,N)-regular if there is F ⊂ E containing i such
that diam(F ) ≤ 4N , d(i, E\F ) ≥ N/2 and AFF is N -good. A site i is (A,N)-bad if it is
singular (i.e. |Aii| < ρ) and (A,N)-regular.

We suppose the following “mild” separation properties for the (A,N)-bad sites.

• (H3) (Separation properties) There is a partition of the (A,N)-bad sites B =
∪αΩα with

diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (1.4.20)

for some C1 := C1(d, ν) ≥ 2.
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The multiscale step proposition B.2.4 deduces that A is N ′-good and (1.4.16) holds at the
new scale N ′, by (H1)-(H2)-(H3), with suitable relations between the constants χ, C1, ς,
s1, τ . Roughly, the main conditions on the exponents are

C1 < ςχ and s1 � χ τ .

The first means that the size NC1 of any bad cluster Ωα is small with respect to the size
N ′ := Nχ of the matrix A. The second means that the Sobolev regularity s1 is large enough
to “separate” the resonance effects of two nearby bad clusters Ωα, Ωβ.

Separation properties. We apply the multiscale step Proposition B.2.4 to the matrix
ANn+1 . The key property to verify is (H3). A first key ingredient is the following co-variance
property: consider the family of infinite dimensional matrices

A(θ) := D(θ) + εT , D(θ) := diag(`,j)∈Zν×Zd

(
− (ω · `+ θ)2 + |j|2 +m

)
,

and its (2N + 1)ν+d-restrictions AN,`0,j0(θ) := A|`−`0|≤N,|j−j0|≤N(θ) centered at any (`0, j0) ∈
Zν × Zd. Since the matrix T in (1.4.2) is Töplitz we have the co-variance property

AN,`0,j0(θ) = AN,j0,0(θ + ω · `0) . (1.4.21)

In order to deduce (H3), it is sufficient to prove the “separation properties” (1.4.20) for the
Nn-bad sites of A, namely the indices (`0, j0) which are singular

| − (ω · `0)2 + |j0|2 +m| ≤ ρ , (1.4.22)

and for which there exists a site (`, j), with |(`, j)− (`0, j0)| ≤ N , such that ANn,`,j is Nn-
bad. Such separation properties are obtained for all the parameters λ which are Nn-good,
namely such that

∀ j0 ∈ Zd , BNn(j0;λ) :=
{
θ ∈ R : ANn,0,j0(θ) is Nn − bad

}
⊂

⋃
q=1,...,N

C(d,ν)
n

Iq where Iq are intervals with |Iq| ≤ N−τn .
(1.4.23)

We first use the covariance property (1.4.21) and the “complexity” information (1.4.23) to
bound the number of “bad” time-Fourier components. Indeed

ANn,`0,j0 is Nn-bad ⇐⇒ ANn,0,j0(ω · `0) is Nn-bad ⇐⇒ ω · `0 ∈ BNn(j0;λ) .

Then, using that ω is Diophantine, the complexity bound (1.4.23) implies that, for each
fixed j0, there are at most O(NC(d,ν)

n ) sites (`0, j0) in the larger box |`0| ≤ Nn+1, which are
Nn-bad.
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Next, we prove that a N2
n-“chain” of singular sites, i.e. a sequence of distinct integer

vectors (`1, j1), . . . , (`L, jL) satisfying (1.4.22) and |`q+1 − `q| + |jq+1 − jq| ≤ N2
n , for any

q = 1, . . . , L, which are also Nn-bad, has a “length” L bounded by L ≤ NC1(d,ν)
n . This

implies a partition of the (ANn+1 , Nn)-bad sites as in (1.4.20) at order Nn. In this step we
require that ω ∈ Rν satisfies the quadratic Diophantine condition∣∣∣n+

∑
1≤i≤j≤ν

ωiωjpij

∣∣∣ ≥ γ2

|p|τ2
, ∀p := (pij) ∈ Z

ν(ν+1)
2 , ∀n ∈ Z , (p, n) 6= (0, 0) , (1.4.24)

for some positive γ2, τ2.

Remark 1.4.9. The singular sites (1.4.22) are integer vectors close to a “cone” and
(1.4.24) can be seen as an irrationality condition on its slopes. For NLS, (1.4.24) is not
required, because the corresponding singular sites (`, j) satisfy |ω · ` + |j|2| ≤ C, i.e. they
are close to a paraboloid. We refer to [29] to avoid the use of (1.4.24) for NLW.

Measure and “complexity” estimates. In order to conclude the inductive proof we
have to verify that “most” parameters λ are Nn-good, according to (1.4.23). We prove
first that, except a set of measure O(N−1

n ), all parameters λ ∈ [1/2, 3/2] are Nn-good in a
L2-sense, namely

∀ j0 ∈ Zd , B0
Nn(j0;λ) :=

{
θ ∈ R : ‖A−1

Nn,0,j0
(θ)‖0 > N τ

n

}
⊂

⋃
q=1,...,N

C(d,ν)
n

Iq where Iq are intervals with |Iq| ≤ N−τn .
(1.4.25)

The proof is again based on eigenvalue variation arguments as in (1.4.18), using that−∆+m
is positive definite.

Finally, the multiscale Proposition step B.2.4, and the fact that the separation properties
of the Nn-bad sites of A(θ) hold uniformly in θ ∈ R, imply inductively that the parameters
λ which are Nn-good in L2-sense, are actually Nn-good, i.e. (1.4.23) holds, concluding the
inductive argument.

1.4.3 The multiscale analysis of Chapter 4

In this Monograph we consider autonomous nonlinear wave equations (1.1.1). As a conse-
quence the analysis of the quasi-periodic linear operator

(ω · ∂ϕ)2 −∆ + V (x) + ε2(∂ug)(x, u(ϕ, x)) , ϕ ∈ Tν , x ∈ Td , (1.4.26)

obtained linearizing (1.2.1) at an approximate quasi-periodic solution, acting in a subspace
orthogonal to the unperturbed linear ‘tangential” solutions (see (1.2.33)){∑

j∈S

αj cos(ϕj)Ψj(x) , αj ∈ R
}
⊂ Ker

(
(µ̄ · ∂ϕ)2 −∆ + V (x)

)
,
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is a much more difficult task than in the previous section. First of all, in (1.4.26), as
discussed in remark 1.4.1, the frequency vector ω and the small parameter ε are linked. In
particular ω has to be ε2-close to the unperturbed frequency vector µ̄ = (µj)j∈S in (1.2.3).
More precisely ω varies approximately according to the frequency-to-action map (1.2.11),
and thus it has to belong to the region of admissible frequencies (1.2.23). Moreover the
multiplicative function

(∂ug)(x, u(ϕ, x)) = 3a(x)(u(ϕ, x))2 + . . .

in (1.4.26) (recall the form of the nonlinearity (1.2.2)) depends itself on ω, via the approxi-
mate quasi-periodic solution u(ϕ, x), and, as the tangential frequency vector ω changes, also
the normal frequencies undergo a significant modification. At least for finitely many modes,
the shift of the normal frequencies due to the effect of 3a(x)(u(ϕ, x))2 can be approximately
described in terms of the Birkhoff matrix B in (1.2.9) as µj + ε2(Bξ)j (see (1.5.22)). Be-
cause of all these constraints, positivity properties like (1.4.18) in general fail, see (1.5.24)
and remark 1.5.3. This implies difficulties for imposing non-resonance conditions and for
proving suitable complexity bounds.

An additional difficulty in (1.4.26) is the presence of the multiplicative potential V (x),
which is not diagonal in the Fourier basis.

In this Monograph we shall still be able to use positivity arguments for imposing non-
resonance conditions and proving complexity bounds along the multiscale analysis. This re-
quires to write (1.2.1) as a first order Hamiltonian system and to perform a block-reduction
of the corresponding first order quasi-periodic linear operator acting in the normal sub-
space. We refer to the next section 1.5 for an explanation about this procedure and here
we limit ourselves to describe the resulting quasi-periodic operators that we shall analyze
in Chapter 4 with multiscale techniques.

The multiscale Proposition 4.1.5 of Chapter 4 provides the existence of a right inverse
of finite dimensional restrictions of self-adjoint linear operators of the form:

1. for ω = (1 + ε2λ)ω̄ε, λ ∈ Λ̃ ⊂ Λ,

Lr = Jω · ∂ϕ +DV + r(ε, λ, ϕ) acting on h ∈ (L2(T|S| × Td,R))2 , (1.4.27)

where DV :=
√
−∆ + V (x), J is the symplectic matrix

J =

(
0 Id
−Id 0

)
,

and r(ε, λ, ϕ) is a self-adjoint operator with polynomial off-diagonal decay;

2. for ω = (1 + ε2λ)ω̄ε, λ ∈ Λ̃ ⊂ Λ,

Lr,µ = Jω · ∂ϕ +DV + µ(ε, λ)JΠG + r(ε, λ, ϕ)

acting on h ∈ (L2(T|S| × Td,R))4 ,
(1.4.28)
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where J h := JhJ and the left/right action of J on R4 are defined in (4.1.3), (4.1.4),
µ(ε, λ) is a scalar, ΠG is the projector on the infinite dimensional subspace

HG := H⊥S∪F , HS∪F :=
{ ∑
j∈S∪F

(Qj, Pj)Ψj(x) , (Qj, Pj) ∈ R2
}

(the set G ⊂ N is defined in (1.2.15)) and r(ε, λ, ϕ) is a self-adjoint operator with
polynomial off-diagonal decay.

The operators (1.4.27), (1.4.28) are defined for all λ belonging to a subset Λ̃ ⊂ Λ (which
may shrink during the Nash-Moser iteration).

Notice that (1.4.27), (1.4.28) are first order vector valued quasi-periodic operators, unlike
(1.4.26) which is a second order scalar quasi-periodic operator (it acts in “configuration
space”). Since (1.4.27) arises (essentially) by writing the linear wave operator (1.4.26) as
a first order system as in (1.3.27), where the non-diagonal vector field is 1-smoothing, it is
natural to require that the operators r = r(ε, λ, ϕ) in (1.4.27), (1.4.28) satisfy the decay
condition

|r|+,s1 := |D
1
2
mrD

1
2
m|s1 = O(ε2) where Dm :=

√
−∆ +m (1.4.29)

for some m > 0.
A key property of the operators Lr and Lr,µ, that we shall be able to verify at each step

of the Nash-Moser iteration, is the monotonicity property in item 3 of Definition 4.1.2. For
Lr it is

dλ

(DV + r

1 + ε2λ

)
≤ −c ε2Id , c > 0 , (1.4.30)

where we use the notation, given a family of linear self-adjoint operators A(λ),

dλA(λ) ≤ −c Id ⇐⇒ A(λ2)− A(λ1)

λ2 − λ1

≤ −c Id , ∀λ1 6= λ2 , (1.4.31)

and A ≤ −c Id means as usual (Aw,w)L2 ≤ −c‖w‖2
L2 . The condition for Lr,µ is similar.

Such property allows to prove the measure estimates stated in Properties 1-3 of Proposition
4.1.5.

All the precise assumptions on the operators Lr in (1.4.27) and Lr,µ in (1.4.28) are
stated in Definition 4.1.2 (we neglect in (1.4.27), (1.4.28) the projector cΠS which has a
purely technical role, see remark 4.1.3).

Remark 1.4.10. We shall use the results of the multiscale Proposition 4.1.5 about the
approximate invertibility of the operator Lr in (1.4.27) in Chapter 10, and, for the operator
Lr,µ defined in (1.4.28), in Chapter 9. In the next section 1.5 we shall describe their role
in the proof of Theorem 1.2.1.
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The application of multiscale techniques to the operators (1.4.27), (1.4.28) is more
involved than for the second order quasi-periodic operator (1.4.1) described in the previous
section. For definiteness we consider Lr,µ. In the Fourier exponential basis, the operator
Lr,µ is represented by a self-adjoint matrix

A = Dω + T (1.4.32)

with a diagonal part (see (4.2.4))

Dω = Diag(`,j)∈Z|S|+d


〈j〉m − µ iω · ` 0 0
−iω · ` 〈j〉m − µ 0 0

0 0 〈j〉m + µ iω · `
0 0 −iω · ` 〈j〉m + µ

 , (1.4.33)

where 〈j〉m :=
√
|j|2 +m for some m > 0 and µ := µ(ε, λ). The matrix T in (1.4.32) is

T := (T`
′,j′

`,j )(`,j)∈Z|S|+d,(`′,j′)∈Z|S|+d ,

T
`′,j′

`,j := (DV −Dm)j
′

j − µ[JΠS∪F]j
′

j + r`
′,j′

`,j ∈ Mat(4× 4) .

The matrix T is Töplitz in `, namely T
`′,j′

`,j depends only on the indices `− `′, j, j′.
The infinitely many eigenvalues of the matrix Dω are√

|j|2 +m± µ± ω · ` , j ∈ Zd , ` ∈ Z|S| .

By Proposition 3.4.1 and Lemma 3.3.8, the matrix T satisfies the off-diagonal decay, see
(4.2.6),

|T|+,s1 := |D1/2
m TD1/2

m |s1 < +∞ . (1.4.34)

We introduce the index a ∈ I := {1, 2, 3, 4} to distinguish each component in the 4 × 4
matrix (1.4.33). Then the singular sites (`, j, a) ∈ Z|S| × Zd × I of Lr,µ are those integer
vectors such that, for some choice of the signs σ1(a), σ2(a) ∈ {−1, 1},∣∣√|j|2 +m+ σ1(a)µ+ σ2(a)ω · `

∣∣ < Θ√
|j|2 +m

. (1.4.35)

In (1.4.35) the constant Θ := Θ(V ) is chosen large enough depending on the multiplicative
potential V (x) (which is not small). Note that, if (`, j, a) is singular, then we recover the
second order bound ∣∣|j|2 +m− (σ1(a)µ+ σ2(a)ω · `)2

∣∣ ≤ CΘ ,

similarly to (1.4.22).
The invertibility of the restricted operator Lr,µ,N := ΠN(Lr,µ)|HN and the proof of the

off-diagonal decay estimates (4.1.23) is obtained in section 4.7 by an inductive application
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of the multiscale step Proposition 4.3.4, which is deduced by the corresponding Proposition
B.2.4. On the other hand, section 4.6 contains the proof of the existence of a right inverse
of [Lr,µ]2NN := ΠN(Lr,µ)|H2N

satisfying (4.1.20) at the small scales N < N(ε) (notice that
the size of N depends on ε).

In view of the multiscale proof, we consider the family of operators

Lr,µ(θ) := Jω · ∂ϕ +DV + iθJ + µJΠG + r , θ ∈ R , (1.4.36)

which is represented, in Fourier basis, by a self-adjoint matrix denoted A(θ).
The monotonicity assumption in item 3 of Definition 4.1.2, see (1.4.30), allows to obtain

effective measure estimates and complexity bounds similar to (1.4.25). Notice however that
by (1.4.30) the eigenvalues of Lr,µ,N vary in λ with only a O(ε2)-speed, creating further
difficulties with respect to the previous section.

The verification of assumption (H3) of the multiscale step Proposition 4.3.4, concerning
separation properties of the N -bad sites, is a key part of the analysis. The new notion
of N -bad site is introduced in Definition 4.4.2, according to the new definition of N -good
matrix introduced in Definition 4.3.1 (the difference is due to the fact that the singular
sites are defined as in (1.4.35) and (1.4.34) holds).

Then, in section 4.4, we prove that a Γ-chain of singular sites is not too long, under the
bound (4.4.9) for its time components, see Lemma 4.4.8. Finally in Lemma 4.4.15 we are
able to conclude, for the parameters λ which are N -good, i.e.

∀ j0 ∈ Zd , BN(j0;λ) :=
{
θ ∈ R : AN,0,j0(θ) is N -bad

}
⊂

⋃
q=1,...,NC(d,|S|,τ0)

Iq ,

where Iq are intervals with measure |Iq| ≤ N−τ ,

(1.4.37)

(Definition 4.4.4) an upper bound L ≤ NC3 (see (4.4.40)) for the length L of a N2-chain of
N -bad sites. This result implies the partition of the N -bad sites into clusters separated by
N2, according to the assumption (H3) of the multiscale step Proposition 4.3.4.

We remark that Lemma 4.4.15 requires a significant improvement with respect to the
arguments in [22], described in the previous section: the exponent τ in (1.4.37) is large, but
independent of χ, which defines the new scale N ′ = Nχ in the multiscale step, see remark
4.4.6. This improvement is required by the fact that by (1.4.30) the eigenvalues of Lr,µ,N
vary in λ with only a O(ε2)-speed.

We finally comment why the multiscale analysis works also for operators Lr, Lr,µ of the
form (1.4.27), (1.4.28), where DV is not a Fourier multiplier. The reason is similar to [23],
[22]. In Lemma 4.7.3 we have to prove that all the parameters λ ∈ Λ are N -good (Definition
4.4.4) at the small scales N ≤ N0. We proceed as follows. We regard the operator Lr,µ(θ)
in (1.4.36) as a small perturbation of the operator

L0,µ(θ) = Jω · ∂ϕ +DV + iθJ + µJΠG
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which is ϕ-independent. Thus a lower bound on the modulus of the eigenvalues of its
restriction to HN implies an estimate in L2 norm of its inverse, and, thanks to separation
properties of the eigenvalues |j|2 of −∆, also a bound of its s-decay norm as O(N τ ′+ςs).
By a Neumann perturbative argument this bound also persists for ΠNLr,µ(θ)|HN , taking ε
small enough, up to the scales N ≤ N0. The proof is done precisely in Lemmata 4.7.2-4.7.3.
The set of θ such that the spectrum of ΠNL0,µ(θ)|HN is at a distance O(N−τ ) from 0 is
contained into a union of intervals like (1.4.37), implying the claimed complexity bounds.
The proof at higher scales follows by the induction multiscale process.

1.5 Outline of proof of Theorem 1.2.1

In this section we present in detail the plan of proof of Theorem 1.2.1, which occupies
Chapters 2-11. This section is a road map through the technical aspects of proof.

In Chapter 2 we first write the second order wave equation (1.2.1) as the first order
Hamiltonian system (2.1.13)-(2.1.14),{

qt = DV p

pt = −DV q − ε2D
− 1

2
V g(ε, x,D

− 1
2

V q) ,
(1.5.1)

where DV :=
√
−∆ + V (x) is defined spectrally in (2.1.11), and the variables (q, p) belong

to a dense subspace of
H = L2(Td,R)× L2(Td,R) .

We prove polynomial off-diagonal decay of DV in section 3.4.
Fixed finitely many tangential sites S ⊂ N, we decompose (see (2.2.2)) the canonical

variables
(q, p) =

∑
j∈S

(qj, pj)Ψj(x) + (Q,P ) , (qj, pj) ∈ R2 ,

into “tangential” and “normal” components, where Ψj(x) are the eigenfunctions of the
Sturm-Liouville operator −∆ + V (x) defined in (1.1.5), and (Q,P ) belong to the subspace
H⊥S , called the normal subspace, L2-orthogonal of

HS :=
{∑

j∈S
(qj, pj)Ψj(x) , (qj, pj) ∈ R2

}
. (1.5.2)

The dynamics of (1.5.1) on the symplectic subspaces HS and H⊥S is handled quite differently.
On the subspace HS we introduce action-angle variables (θ, I), by setting (see (2.2.3))

(qj, pj) :=
√

2Ij
(

cos θj,− sin θj
)
, ∀j ∈ S .
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In these new coordinates the solutions (1.2.4) of the linear wave equation (1.1.4) are de-
scribed as the continuous family of quasi-periodic solutions

θ(t) = µ̄t , I(t) = ξ , Q(t) = P (t) = 0 , ξ ∈ R|S|+ , (1.5.3)

with frequency vector µ̄ = (µj)j∈S, which is independent of the unperturbed actions ξ ∈ R|S|+ .
Notice that, by the assumption (1.2.6), the unperturbed tangential frequency vector µ̄ is
Diophantine. Introducing the translated action variable y by setting

I = ξ + y , y ∈ R|S| ,

the quasi-periodic solutions (1.5.3) densely fill the invariant torus

T|S|θ × {0}y × {(0, 0)}(Q,P ) .

In the variables (θ, y,Q, P ) the Hamiltonian system (1.5.1) assumes the form
θ̇ − µ̄− ε2∂yR(θ, y,Q, ξ) = 0

ẏ + ε2∂θR(θ, y,Q, ξ) = 0(
∂t − JDV

)
(Q,P )− ε2

(
0,∇QR(θ, y,Q, ξ)

)
= 0 ,

(1.5.4)

see (2.2.12), where J is the symplectic matrix

J =

(
0 Id
−Id 0

)
,

and R(θ, y,Q, ξ) is the Hamiltonian in (2.2.8).
The goal is now to look, for ε sufficiently small, for quasi-periodic solutions(

ωt+ ϑ(ωt), y(ωt), Q(ωt), P (ωt)
)

(1.5.5)

of the nonlinear Hamiltonian system (1.5.4), with a frequency vector ω ∈ R|S|, O(ε2)-close
to µ̄, to be determined, and where the function

ϕ 7→ (ϑ(ϕ), y(ϕ), Q(ϕ), P (ϕ)) ∈ R|S| × R|S| ×H⊥S
is periodic in the variable ϕ = (ϕj)j∈S ∈ T|S|, and close to (0, 0, 0, 0).

We shall be able to constrain the frequency vector ω in (1.5.5) to a fixed “admissible”
direction ω̄ε, as stated in (1.2.24)-(1.2.25), namely

ω = (1 + ε2λ)ω̄ε , λ ∈ Λ = [−λ0, λ0] , (1.5.6)

where ω̄ε ∈ R|S| satisfies the Diophantine conditions (1.2.29) and (1.2.30). In Lemma 2.3.1
we prove that these conditions are actually satisfied by “most” vectors ω̄ε = µ̄ + ε2ζ close
to µ̄. We shall use the 1-dimensional parameter λ, which corresponds to a time-rescaling,
in order to impose all the non-resonance conditions required by our KAM construction, in
particular along the multiscale analysis of the linearized operator. Notice that λ has to be
considered as an “internal” parameter of the wave equation (1.1.1).
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Remark 1.5.1. The existence of quasi-periodic solutions with tangential frequencies con-
strained along a fixed direction had been proved, for finite dimensional autonomous Hamil-
tonian systems, by Eliasson [53] and Bourgain [36], and for 1-d nonlinear autonomous
wave and Schr̈odinger equations in [16]. Results in the easier case of quasi-periodically
forced PDEs, where ω is an external parameter constrained to a fixed direction, have been
obtained in [23] for NLS, [22] for NLW, [6] for KdV.

The search of an embedded invariant torus

ϕ 7→ i(ϕ) = (ϕ, 0, 0) + (ϑ(ϕ), y(ϕ), (Q,P )(ϕ)) ,

of the Hamiltonian system (1.5.4), supporting quasi-periodic solutions with frequency ω =
(1 + ε2λ)ω̄ε as in (1.5.6), amounts to solve the functional equation F(λ; i) = 0 where F is
the nonlinear operator defined in (5.1.2),

F(λ; i) =

 ω ·∂ϕϑ(ϕ) + ω − µ̄− ε2(∂yR)(i(ϕ), ξ)
ω ·∂ϕy(ϕ) + ε2(∂θR)(i(ϕ), ξ)

ω ·∂ϕ(Q,P )(ϕ)− JDV (Q,P )(ϕ)− ε2
(
0, (∇QR)(i(ϕ), ξ)

)
 . (1.5.7)

The operator F acts on the Sobolev scale of spaces

(ϑ(ϕ), y(ϕ), (Q,P )(ϕ)) ∈ Hs
ϕ(T|S|,R|S|)×Hs

ϕ(T|S|,R|S|)× (Hs(T|S| × Td,R2) ∩H⊥S ) ,

for s ≥ s0, losing one (ϕ, x)-derivative due to the unbounded operators ω ·∂ϕ and DV .
We have that

F(λ;ϕ, 0, 0, 0) = O(ε2) , ∀λ ∈ Λ .

Then, in section 5.3, using the unperturbed first order Melnikov non-resonance condition
(1.2.7), we are able to construct the first approximate solution i1(ϕ) such that

F(λ; i1(ϕ)) = O(ε4) , ∀λ ∈ Λ .

Next, in Theorem 5.1.2, which contains the core of the result, we construct, by means of
a Nash-Moser implicit function iterative scheme, for “most” values of λ ∈ Λ, a solution
i∞(λ;ϕ) of the equation

F(λ; i∞(λ;ϕ)) = 0 ,

thus an invariant torus of (1.5.4) with frequency ω = (1+ε2λ)ω̄ε. The iteration is performed
in Chapter 11. In particular, in Theorem 11.2.1 we construct a sequence of approximate
solutions in(λ;ϕ) which converges to i∞(λ;ϕ) for λ in a set of large measure. The key point
is to prove the approximate invertibility of the linearized operators

diF(λ; in(λ;ϕ)) ,
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obtained at any approximate quasi-periodic solution in := in(λ;ϕ) along the Nash-Moser
iteration, for a large set of λ’s, together with suitable tame estimates for the approximate
inverse in high Sobolev norms, with of course loss of derivatives, due to the small divisors.
This is achieved by the analysis performed in Chapters 6-10.

In Chapter 6 we implement the general strategy proposed in [24] where, instead of
(approximately) inverting diF(λ; in), where all the (ϑ, y,Q, P ) components are coupled by
the differential of the nonlinear term (−∂yR, ∂θR, 0,−∇QR) in (1.5.7), we introduce suitable
symplectic coordinates

(φ, ζ, w) ∈ T|S| × R|S| ×H⊥S
in which it is sufficient to (approximately) invert the linear operator D(in) defined in
(6.1.22). The advantage is that the components of the operator D(in) can be inverted
in a triangular way, that is, first one inverts the operator in the tangential action compo-
nent ζ̂, then the normal one for ŵ ∈ H⊥S , and finally the operator for the tangential angles

φ̂. This construction is implemented in detail in Chapter 6, completed with the results
reported in Appendix C.

Remark 1.5.2. The above decomposition is deeply related to the Nash-Moser approach for
isotropic tori of finite dimensional Hamiltonian systems in Herman-Fejoz [64]. A related
construction for reversible PDEs is performed in [47].

After this transformation, the main issue is reduced to prove the approximate invertibil-
ity of the linear operator Lω(in) defined in (6.1.23) which acts on functions h : T|S| → H⊥S
with values in the normal subspace H⊥S . As proved in Lemma 6.1.2, this operator has the
form

Lω(in) = ω · ∂ϕ − J(DV + ε2B(ϕ) + rε(ϕ)) , DV =
√
−∆ + V (x) , (1.5.8)

where B(ϕ) is the self-adjoint operator defined in (6.1.25) and rε(ϕ) is a self-adjoint re-
mainder of size O(ε4), more precisely it satisfies the quantitative bounds (6.1.26)-(6.1.27).
Notice that J(DV + ε2B(ϕ) + rε(ϕ))w is a linear Hamiltonian vector field and that the cor-
responding quasi-periodic operator (1.5.8) is a small deformation of the operator obtained
linearizing the normal component of F , defined in (1.5.7), at an approximate solution. A
quasi-periodic operator as (1.5.8) is called Hamiltonian, see Definition 3.2.1.

Chapters 7-10 are devoted to prove the existence of an approximate right inverse of
Lω(in), as stated in Proposition 11.1.1, for “most” values of λ ∈ Λ. This is obtained in
several steps.

Remark 1.5.3. We cannot directly apply to the operator
1

1 + ε2λ
Lω(in) the approach devel-

oped for the quasi-periodically forced NLW and NLS in [23], [22], [26], described in section

1.4.2. Actually, since ∂λB(ϕ) = O(1) the operator ∂λ(
1

1 + ε2λ
Lω(in)) is not positive or
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negative definite, posing a serious difficulty for verifying that the eigenvalues of its finite
dimensional restrictions are in modulus bounded away from zero for most values of the
parameter λ. In order to overcome this problem we perform the splitting of the normal
subspace that we describe below.

In Chapter 7, using the unperturbed second order Melnikov conditions (1.2.16)-(1.2.19),

we first apply an averaging procedure to conjugate
1

1 + ε2λ
Lω(in) to the Hamiltonian op-

erator (7.3.4)-(7.3.5) which has the form

ω̄ε · ∂ϕ − J(A0 + %+) (1.5.9)

where A0 is split admissible according to Definition 8.1.1 (see Lemma 8.1.2) and the coupling
operator %+ has size O(ε4) in the | |+,s1-norm defined in (1.4.29) (more precisely it satisfies
|%+|Lip,+,s1 = O(ε4) where the norm | |Lip,+,s1 is introduced in Definition 3.3.4). The main
feature of a split-admissible operator is to be self-adjoint and block diagonal with respect
to the orthogonal splitting

H⊥S = HF ⊕HG ,

HF :=
{∑

j∈F
(qj, pj)Ψj(x) , (qj, pj) ∈ R2

}
,

HG :=
{∑

j∈G
(qj, pj)Ψj(x) , (qj, pj) ∈ R2

}
,

(1.5.10)

i.e. of the form

A0 =

(
D0(ε, λ) 0

0 V0(ε, λ, ϕ)

)
, (1.5.11)

and, in the basis of the eigenfunctions {(Ψj, 0), (0,Ψj)}j∈F, D0(ε, λ) is a diagonal operator

D0(ε, λ) = Diagj∈F µj(ε, λ)Id2 , µj(ε, λ) ∈ R , (1.5.12)

with eigenvalues µj(ε, λ) = µj + O(ε2) (the µj are defined in (1.1.5)) satisfying the non-
degeneracy conditions (8.1.5)-(8.1.7) and, for all j ∈ F, the monotonicity property{

dλ
(
V0(ε, λ) + µj(ε, λ)Id

)
≤ −c1ε

2

dλ
(
V0(ε, λ)− µj(ε, λ)Id

)
≤ −c1ε

2
(1.5.13)

where we use the notation (1.4.31).
The subsets F and G of the normal sites Sc in (1.5.10) are defined in (1.2.15). Recall

that
F ∪G = Sc , F ∩G = ∅ .
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It is for proving Lemma 8.1.2, i.e. that A0 is a split-admissible operator, that we need the
precise knowledge of how the tangential and normal frequencies are shifted by the nonlin-
earity a(x)u3 + O(u4) (via the Birkhoff matrices A ,B in (1.2.9)), we use the additional
second order Melnikov non-resonance conditions (1.2.18)-(1.2.19), the specific definition
(1.2.15) of the subsets F and G, and the non-degeneracy conditions (1.2.21)-(1.2.22). More
precisely we use (1.2.18)-(1.2.19) and (1.2.15) to prove the monotonicity property (1.5.13),
and the non-degeneracy conditions (1.2.21)-(1.2.22) to prove (8.1.5)-(8.1.7). The properties
(8.1.5)-(8.1.8) allow to prove that the non-resonance conditions required along the multi-
scale analysis of the linearized operator are fulfilled for a large set of values of the parameter
λ. We comment about this issue below, around (1.5.27).

The quasi-periodic Hamiltonian operator ω̄ε · ∂ϕ − J(A0 + %+) in (1.5.9) is in a suitable
form to apply Proposition 8.2.1, in order to prove that it admits an approximate right
inverse. Proposition 8.2.1 is proved in Chapters 9 and 10.

In Chapter 9 we block-diagonalize ω̄ε · ∂ϕ− J(A0 + %+), according to the splitting H⊥S =
HF⊕HG, up to a very small coupling term, see Corollary 9.1.2. More precisely, we conjugate,
via symplectic transformations, the Hamiltonian operator ω̄ε · ∂ϕ − J(A0 + %+) in (1.5.9),
where the block non-diagonal term %+ has size O(ε4) in | |+,s1 norm, to the quasi-periodic
Hamiltonian operator in (9.1.34),

ω̄ε · ∂ϕ − J(An + ρn) , (1.5.14)

where the operator An is split admissible, thus of the form (1.5.11), with

An =

(
Dn(ε, λ) 0

0 Vn(ε, λ, ϕ)

)
,

‖Dn −D0‖0 = o(ε2) , ‖Vn − V0‖0 = o(ε2) ,

(1.5.15)

(the norm ‖ ‖0 = ‖ ‖L(L2) is the operatorial L2 norm) and the block non-diagonal self-adjoint
term ρn is super-exponentially small, i.e. satisfies (9.1.33),

|ρn|+,s1 = O
(
(ε3)−( 3

2
)n−1)

. (1.5.16)

The proof of the splitting Corollary 9.1.2 is based on an iterative application of the ‘splitting
step” Proposition 9.1.1 which block diagonalizes a Hamiltonian operator of the form

ω̄ε · ∂ϕ − J(A0 + ρ) where
ρ(ϕ) =

(
ρ1(ϕ) ρ2(ϕ)∗

ρ2(ϕ) 0

)
∈ L(H⊥S ) ,

ρ1(ϕ) = ρ∗1(ϕ) ∈ L(HF) , ρ2(ϕ) ∈ L(HF, HG) ,

into a new Hamiltonian operator ω̄ε · ∂ϕ − J(A+
0 + ρ+) where A+

0 is block-diagonal with
respect to HF ⊕HG and the coupling remainder ρ+ is much smaller than the previous one,
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i.e. ρ+ = O(ρ3/2) (compare the size of ρ in (9.1.2) and that of ρ+ in (9.1.11)). The iteration
is based on a super-convergent Nash-Moser scheme, to compensate the loss of derivatives
due to the small divisors.

In this decoupling procedure (Proposition 9.1.1) a central role is played by the possibility
of solving approximately the homological equations, see (9.2.5)-(9.2.6),

Jω̄ε · ∂ϕd+D0d+ JdJD0 = Jρ1 , (1.5.17)

Jω̄ε · ∂ϕa− JV0Ja+ JaJD0 = Jρ2 . (1.5.18)

where d(ϕ) ∈ L(HF) is self-adjoint, and a(ϕ) ∈ L(HF, HG), for all ϕ ∈ T|S|.
For solving the homological equation (1.5.17) (Lemma 9.3.2), we need the second order

Melnikov non-resonance conditions (9.3.6), which concern only the finitely many normal
modes in F. Then we use the non-degeneracy properties (8.1.5)-(8.1.7) to prove that they
are fulfilled for most values of λ’s (see the measure estimate of Lemma 9.3.3).

On the other hand we use the monotonicity property (1.5.13) to solve (approximately)
the homological equation (1.5.18) for most values of λ’s. This is a difficult step where we
use the multiscale techniques of Chapter 4. Let us try to indicate some key aspects of our
approach. We have to solve, approximately, each equation

Tj(a
j) = Jρj2 , ∀j ∈ F ,

where
aj(ϕ) := (a(ϕ))|Hj , ρj2(ϕ) := (ρ2(ϕ))|Hj ∈ L(Hj, HG) ,

∀ϕ ∈ T|S| Hj :=
{

(qj, pj)Ψj(x) , (qj, pj) ∈ R2
}
,

and Tj is the linear operator (see (9.3.33))

Tj(a
j) := Jω̄ε · ∂ϕaj − JV0Ja

j + µj(ε, λ)JajJ . (1.5.19)

We solve approximately (1.5.19) by applying the multiscale Proposition 4.1.5 to the ex-
tended operator (see (9.3.39)),

(1 + ε2λ)T ]j , T ]j :=

Jω̄ε · ∂ϕ +
DV

1 + ε2λ
+

c

1 + ε2λ
ΠS 0

0 Tj

 , (1.5.20)

which acts on ϕ-dependent functions with values in L(Hj, H) = L(Hj, HS∪F)⊕L(Hj, HG),
see (9.3.36). The operator ΠS is the L2 projector on the subspace HS in (1.5.2) and c is a
positive constant. Identifying (see (3.2.6))

L(Hj, H) ∼ H ×H ∼ (L2(Td,R))4
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the operator T ]j can be regarded to act on (dense subspaces of) the whole (L2(T|S|×Td,R))4

and not only in subspaces of ϕ-dependent functions with values in the normal subspace
H⊥S ×H⊥S . The self-adjoint operator T ]j has the form (9.3.37), thus as in Definition 4.1.2-

(ii). We can apply the multiscale Proposition 4.1.5 to T ]j . The monotonicity property

(1.5.13) implies, in Lemma 9.3.8, the sign condition dλT
]
j ≤ −cε2 required in Definition

4.1.2-item 3.

Notice that, by (1.5.20), the subspaces HS and H⊥S are invariant for the action of the
extended operator T ]j and therefore estimates for the approximate inverse of T ]j (obtained
by the multiscale analysis with the exponential basis) provide also estimates for the ap-
proximate inverse of Tj and thus for the approximate solution of (1.5.19).

We now explain the relevance of the decomposition Sc = F ∪ G of the normal sites
introduced in (1.2.14)-(1.2.15), and why we are able to obtain, in the splitting Corollary
9.1.2, a block-diagonal operator as in (1.5.14)-(1.5.15), with an error like (1.5.16), with
respect to the splitting (1.5.10). The decomposition Sc = F ∪ G of the normal sites is
important for the proof of the ‘splitting step” Proposition 9.1.1.

As we prove in section 5.2, under the effect of the nonlinearity a(x)u3 + O(u4), the
tangential frequency vector of the expected quasi-periodic solutions of (1.5.4) is, up to
terms of O(ε4),

µ̄+ ε2A ξ (1.5.21)

where A is the twist matrix defined in (1.2.9). Moreover, as proved in Lemma 7.3.2,
the perturbed normal frequencies of the Hamiltonian linear operator (1.5.9), with normal
indices in a large finite set M ⊂ Sc, admit the expansion, up to O(ε4),

µj + ε2(Bξ)j , ∀j ∈M , (1.5.22)

where B is the Birkhoff matrix defined in (1.2.9). Thus the Hamiltonian linear operator
(1.5.9), restricted to HM, is in diagonal form, up to terms O(ε4). The set M contains F and
it is fixed in Lemma 7.1.1 large enough so that the sign condition (7.1.9) holds. Notice that,
in order to get the expansion (1.5.22) for all the indices j ∈M, and not just in F, we have
assumed the further second order Melnikov conditions (1.2.18)-(1.2.19), and performed the
averaging Proposition 7.3.1. Expressing ξ in terms of ω by inverting the relation

ω = µ̄+ ε2A ξ , ω = (1 + ε2λ)ω̄ε ,

(the twist matrix A is invertible by (1.2.12)), the shifted normal frequencies (1.5.22) become

µj − [BA −1µ̄]j + [BA −1ω]j =

µj − [BA −1µ̄]j + (1 + ε2λ)[BA −1ω̄ε]j =: Ωj(ε, λ) .
(1.5.23)

Then we divide (1.5.23) by 1 + ε2λ and we consider the derivative

d

dλ

Ωj(ε, λ)

1 + ε2λ
=

−ε2

(1 + ε2λ)2
(µj − [BA −1µ̄]j) , ∀j ∈M . (1.5.24)
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In order to decouple the Hamiltonian linear operator (1.5.9) with respect to HF and HG,
the first naive idea suggests to impose second order Melnikov non-resonance conditions like

|ω · `+ Ωj(ε, λ)± Ωk(ε, λ)| ≥ γ

〈`〉τ
, ∀` ∈ Z|S| , j ∈ G , k ∈ F , (1.5.25)

or equivalently,

|f`,j,k(λ)| ≥ γ

〈`〉τ
where f`,j,k(λ) := ω̄ε · `+

Ωj(ε, λ)

1 + ε2λ
± Ωk(ε, λ)

1 + ε2λ
. (1.5.26)

Thanks to (1.5.24), for j ∈ G, k ∈ F, by the definition of F and G in (1.2.15),

∂λf`,j,k(λ) =
−ε2

(1 + ε2λ)2
(µj − [BA −1µ̄]j)∓

ε2

(1 + ε2λ)2
(µk − [BA −1µ̄]k)

≤ − ε2

1 + ε2λ
g (1.5.27)

is negative for all λ, allowing to prove that (1.5.26) is fulfilled for most values of λ. This
explains the relevance of the splitting (1.2.14)-(1.2.15) on the normal indices Sc.

Actually G is an infinite set and we can not impose (1.5.25) for all the j ∈ G, since we
have only the expansion (1.5.22) for finitely many j ∈M. The homological equation to be
solved, in order to decouple HF and HG, is indeed (1.5.18), i.e. (1.5.19).

On the other hand we take M large enough as in Lemma 7.1.1 in order to prove that
the operator A0 in (1.5.9) is split-admissible, see Lemma 8.1.2, and so the operator An in
(1.5.14)-(1.5.15). Indeed, for M large enough, the infinite dimensional operator

∂λA0
Mc

Mc = ∂λA
Mc

Mc , where A :=
DV + ε2B(ϕ)

1 + ε2λ
(see (1.5.8)) ,

is strongly negative definite (see (7.1.9)) and, jointly with (1.5.24), this allows to prove the
sign conditions (1.5.13). As already mentioned, this property allows to use monotonicity
arguments for families of self-adjoint matrices to verify that the non-resonance conditions
required to solve the homological equation (1.5.19) are fulfilled for most values of the pa-
rameter λ.

Once the linear operator (1.5.9) has been approximately block-diagonalized, accord-
ing to the decomposition HF ⊕ HG, obtaining, as in (1.5.14), (1.5.15), the quasi-periodic
Hamiltonian operator

ω̄ε · ∂ϕ − J(An + ρn) , (1.5.28)

where ρn is a very small coupling term according to (1.5.16), we prove in Chapter 10 that
it admits an approximate inverse, for most values of λ’s, applying once more the multiscale
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Proposition 4.1.5. More precisely we first find in section 10.2 an approximate inverse of the
block-diagonal operator

ω̄ε · ∂ϕ − JAn , An =

(
Dn(ε, λ) 0

0 Vn(ε, λ, ϕ)

)
,

applying the multiscale Proposition 4.1.5 to an extension of the self-adjoint operator

Jω̄ε · ∂ϕ + Vn(ε, λ, ϕ)

acting on a dense subspace of the whole H, and not just H⊥S , see (10.2.26)-(10.2.27). The
extended operator has the form Lr in (1.4.27), see Definition 4.1.2-(i), and satisfies the sign
condition

dλ(Lr(1 + ε2λ)−1) ≤ −cε2 .

This allows to verify lower bounds for the moduli of the eigenvalues of finite dimensional
restrictions of Lr, for most values of λ’s. These lower bounds amount to first order Melnikov
type non-resonance conditions.

Finally, once we have constructed an approximate inverse of the block-diagonal operator
ω̄ε · ∂ϕ − JAn, we obtain an approximate inverse of ω̄ε · ∂ϕ − J(An + ρn) in (1.5.28), taking
into account the small residual coupling term ρn, which satisfies (1.5.16), by a Neumann
perturbative argument, see section 10.3.

In conclusion, after all this analysis, going back to the original coordinates, we finally
prove, in Proposition 11.1.1, the existence of an approximate right inverse of the quasi-
periodic Hamiltonian operator Lω(in) in (1.5.8), and thus of diF(λ; in), for most values of
λ’s, satisfying tame estimates. This enables to implement a Nash-Moser iterative scheme
(Chapter 11) which proves Theorem 5.1.2 and therefore Theorem 1.2.1.

Sobolev regularity thresholds. Along the Monograph we shall use four Sobolev indices

s0 � s1 � s2 � s3 .

The first index
s0 > (|S|+ d)/2

is fixed in (1.2.32) to have the algebra and interpolation properties for all the Sobolev spaces
Hs, s ≥ s0, defined in (1.2.31). We prove these properties in section 3.5. The index

s1 � s0

is the one required for the multiscale Proposition 4.1.5 (see hypothesis 1 in Definition 4.1.2)
to have the sufficient off-diagonal decay to apply the multiscale step Proposition 4.3.4, see
in particular (4.3.6) and assumption (H1). It is the Sobolev threshold which defines the
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“good” matrices in Definition 4.3.1. Another condition of the type s1 � s0 appears in the
proof of Lemma 10.2.6.

Then the Sobolev index
s2 � s1

is used in the splitting step Proposition 9.1.1, see (8.2.1). This proposition is based on a
Nash-Moser iterative scheme where s2 represents a ‘high-norm”, see (8.2.2).

The largest index
s3 � s2

is finally used for the convergence of the Nash-Moser nonlinear iteration in Chapter 11.
Notice that in Theorem 11.2.1 the divergence of the approximate solutions in in the high
norm ‖ ‖Lip,s3 is under control. We require in particular (8.2.1) and, in section 11.2, also
stronger largeness conditions for s3 − s2. Along the iteration we shall verify (impose) that
the Sobolev norms of the approximate quasi-periodic solutions remain bounded in ‖ ‖Lip,s1

and ‖ ‖Lip,s2 norms (so that the assumptions of Propositions 4.1.5, 8.2.1 and 9.1.1 are
fulfilled).
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1.6 Basic Notation

For s ∈ R we denote the Sobolev spaces

Hs := Hs(T|S| × Td;Cr)

:=
{
u(ϕ, x) :=

∑
(`,j)∈Z|S|×Zd

u`,je
i(`·ϕ+j·x) : ‖u‖2

s :=
∑

i∈Z|S|+d
|ui|2〈i〉2s ,

i := (`, j) , 〈i〉 := max(|`|, |j|, 1) , |j| := max{|j1|, . . . , |jd|
}

and we use the same notation Hs also for the subspace of real valued functions. Moreover
we denote by Hs := Hs

x the Sobolev space of functions u(x) in Hs(Td,C) and Hs
ϕ the

Sobolev space of functions u(ϕ) in Hs(T|S|,C). We denote by b := |S|+ d.

Let E be a Banach space. Given a continuous map u : T|S| → E, ϕ 7→ u(ϕ), we denote
by û(`) ∈ E, ` ∈ Z|S|, its Fourier coefficients

û(`) :=
1

(2π)|S|

∫
T|S|

u(ϕ)e−i`·ϕ dϕ ,

and its average

〈u〉 := û(0) :=
1

(2π)|S|

∫
T|S|

u(ϕ) dϕ

Given an irrational vector ω ∈ R|S|, i.e. ω · ` 6= 0, ∀` ∈ Z|S| \ {0}, and a function g(ϕ) ∈ R|S|
with zero average, we define the solution h(ϕ) of ω · ∂ϕh = g, with zero average,

h(ϕ) = (ω · ∂ϕ)−1g :=
∑

`∈Z|S|\{0}

ĝ(`)

iω · `
ei`·ϕ . (1.6.1)

Let E be a Banach space with norm ‖ ‖E. Given a function f : Λ := [−λ0, λ0] ⊂ R → E
we define its Lipschitz norm

‖f‖Lip := ‖f‖Lip,Λ := ‖f‖Lip,E := sup
λ∈Λ
‖f‖E + |f |lip ,

|f |lip := |f |lip,Λ := |f |lip,E := sup
λ1,λ2∈Λ,λ1 6=λ2

‖f(λ2)− f(λ1)‖E
|λ2 − λ1|

.
(1.6.2)

If a function f : Λ̃ ⊂ Λ → E is defined only on a subset Λ̃ of Λ we shall still denote by
‖f‖Lip := ‖f‖Lip,Λ̃ := ‖f‖Lip,E the norm in (1.6.2) where the sup-norm and the Lipschitz

seminorm are intended in Λ̃, without specifying explicitly the domain Λ̃.
If the Banach space E is the Sobolev space Hs then we denote more simply ‖ ‖Lip,Hs =

‖ ‖Lip,s. If E = R then ‖ ‖Lip,R = ‖ ‖Lip.
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If A(λ) is a function, operator, . . . , which depends on a parameter λ, we shall use the
following notation for the partial quotient

∆A

∆λ
:=

A(λ2)− A(λ1)

λ2 − λ1

, ∀λ1 6= λ2 . (1.6.3)

Given a family of functions, or linear self-adjoint operators A(λ) on a Hilbert space H,

defined for all λ ∈ Λ̃, we shall use the notation

dλA(λ) ≥ βId ⇐⇒ ∆A

∆λ
≥ βId , ∀λ1, λ2 ∈ Λ̃ , λ1 6= λ2 , (1.6.4)

where, for a self-adjoint operator, A ≥ βId means as usual (Aw,w)H ≥ β‖w‖2
H , ∀w ∈ H.

Given linear operators A,B we denote their commutator by

AdAB := [A,B] := AB −BA . (1.6.5)

We define by DV :=
√
−∆ + V (x) and Dm :=

√
−∆ +m for some m > 0.

• Given x ∈ R we denote by dxe the smallest integer greater or equal to x, and by [x]
the integer part of x, i.e. the greatest integer smaller or equal to x;

• Given L ∈ N, we denote by [[0, L]] the integers in the interval [0, L];

• We use the notation a .s b to mean a ≤ C(s)b for some positive constant C(s), and
a ∼s b means that C1(s)b ≤ a ≤ C2(s)b for positive constants C1(s), C2(s);

• Given functions a, b : (0, ε0)→ R we write

a(ε)� b(ε) ⇐⇒ lim
ε→0

a(ε)

b(ε)
= 0 . (1.6.6)

In the Monograph we denote by S, F, G, M subsets of the natural numbers N, with

N = S ∪ Sc , F ∪G = Sc , F ∩G = ∅ , F ⊂M .

We refer to Chapter 3 for the detailed notation of operators, matrices, decay norms, . . .



Chapter 2

Hamiltonian formulation

In this Chapter we write the nonlinear wave equation (1.2.1) as a first order Hamiltonian
system in action-angle and normal variables. These coordinates are convenient for the proof
of Theorem 1.2.1. In section 2.3 we provide estimates about the measure of the admissible
Diophantine directions ω̄ε of the frequency vector ω = (1 + ε2λ)ω̄ε of the quasi-periodic
solutions of Theorem 1.2.1.

2.1 Hamiltonian form of NLW

We write the second order nonlinear wave equation (1.2.1) as the first order system{
ut = v

vt = ∆u− V (x)u− ε2g(ε, x, u)
(2.1.1)

which is the Hamiltonian system

∂t(u, v) = XH(u, v) , XH(u, v) := J∇L2H(u, v) , (2.1.2)

where

J :=

(
0 Id
−Id 0

)
, (2.1.3)

is the symplectic matrix, and H is the Hamiltonian

H(u, v) :=

∫
Td

v2

2
+

(∇u)2

2
+ V (x)

u2

2
+ ε2G(ε, x, u) dx

with primitive

G(ε, x, u) :=

∫ u

0

g(ε, x, s) ds , (∂uG)(ε, x, u) = g(ε, x, u) . (2.1.4)

62
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For the sequel it is convenient to highlight also the fourth order term of the nonlinearity
g(x, u) in (1.1.2), i.e. writing

g(x, u) = a(x)u3 + a4(x)u4 + g≥5(x, u) , g≥5(x, u) = O(u5) , (2.1.5)

so that the rescaled nonlinearity g(ε, x, u) in (1.2.2) has the expansion

g(ε, x, u) := ε−3g(x, εu) = a(x)u3 + εa4(x)u4 + ε2r(ε, x, u) ,

r(ε, x, u) := ε−5g≥5(x, εu) ,
(2.1.6)

and its primitive in (2.1.4) has the form

G(ε, x, u) =
1

4
a(x)u4 +

ε

5
a4(x)u5 + ε2R(ε, x, u) (2.1.7)

where (∂uR)(ε, x, u) = r(ε, x, u).
The phase space of (2.1.2) is a dense subspace of the real Hilbert space

L2(Td)× L2(Td) , L2(Td) := L2(Td,R) ,

endowed with the standard constant symplectic 2-form

Ω((u, v), (u′, v′)) := (J(u, v), (u′, v′))L2×L2 = (v, u′)L2 − (u, v′)L2 . (2.1.8)

Notice that the Hamiltonian vector field XH is characterized by the relation

Ω(XH , ·) = −dH .

System (2.1.1) is reversible with respect to the involution

S(u, v) := (u,−v) , S2 = Id , (2.1.9)

namely (see Appendix A.1)

XH ◦ S = −S ◦XH , equivalently H ◦ S = H .

Notice that the above equivalence is due to the fact that the involution S is antisymplectic,
namely the pull-back

S∗Ω = −Ω .

Let us write (2.1.1) in a more symmetric form. Under the symplectic transformation

q = D
1
2
V u , p = D

− 1
2

V v , (2.1.10)
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where DV :=
√
−∆ + V (x) is the linear (unbounded) operator defined on the orthonormal

basis {Ψj(x), j ∈ N} of L2(Td) formed by the eigenfunctions of −∆ + V (x) in (1.1.5), by
setting

DV Ψj :=
√
−∆ + V (x)Ψj := µjΨj , ∀j ∈ N , (2.1.11)

the Hamiltonian system (2.1.1) becomes{
qt = DV p

pt = −DV q − ε2D
− 1

2
V g(ε, x,D

− 1
2

V q) ,
(2.1.12)

which is the Hamiltonian system

∂t(q, p) = J∇L2K(q, p) (2.1.13)

with transformed Hamiltonian

K(q, p) :=

∫
Td

(D
1
2
V p)

2

2
+

(D
1
2
V q)

2

2
+ ε2G(ε, x,D

− 1
2

V q) dx . (2.1.14)

This Hamiltonian system is still reversible with respect to S defined in (2.1.9), i.e. K◦S = K,
i.e. K is even in p.

2.2 Action-angle and “normal” variables

We look for quasi-periodic solutions of the Hamiltonian system (2.1.13) which are mainly
Fourier supported on the tangential sites S ⊂ N. Thus we decompose

L2(Td,R)× L2(Td,R) = HS ⊕H⊥S ,

HS :=
{

(q(x), p(x)) =
∑
j∈S

(qj, pj)Ψj(x) , (qj, pj) ∈ R2
}

(2.2.1)

splitting the canonical variables (q, p) into tangential and normal components

(q, p) =
∑
j∈S

(qj, pj)Ψj(x) + (Q,P ) (2.2.2)

where (qj, pj) ∈ R2 and (Q,P ) ∈ H⊥S . Then we introduce usual action-angle variables on
the tangential sites by setting

(qj, pj) :=
√

2Ij
(

cos θj,− sin θj
)
, ∀j ∈ S . (2.2.3)

The symplectic form (2.1.8) then becomes (recall that Ψj(x) are L2-orthonormal)

W := (dI ∧ dθ) ⊕ Ω (2.2.4)
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where, for simplicity, we still denote by Ω := Ω|H⊥S the restriction of the 2-form Ω, defined

in (2.1.8), to the symplectic subspace H⊥S .
By (2.2.2), (2.2.3), the Hamiltonian in (2.1.14) then becomes, recalling that µ̄ ∈ R|S| is

the unperturbed tangential frequency vector defined in (1.2.3),

K(θ, I, Q, P ) = µ̄ · I +
1

2

∫
Td

(D
1
2
VQ)2 + (D

1
2
V P )2 dx (2.2.5)

+ ε2

∫
Td
G
(
ε, x,

∑
j∈S

µ
− 1

2
j

√
2Ij cos θjΨj(x) +D

− 1
2

V Q
)
dx .

For ε = 0, the Hamiltonian system generated by (2.2.5) admits the continuous family of
quasi-periodic solutions

θ(t) = θ0 + µ̄t , I(t) = ξ , Q(t) = P (t) = 0 ,

parametrized by the unperturbed tangential “actions” ξ := (ξj)j∈S, ξj > 0. The aim is to
prove their persistence, being just slightly deformed, for ε small enough, for “most” values
of ξ, and with a frequency close to µ̄.

Then we introduce nearby coordinates by the symplectic transformation

I = ξ + y , (2.2.6)

and, substituting in (2.2.5), we are reduced to study the parameter dependent family of
Hamiltonians (that for simplicity we denote with the same letter K)

K(θ, y,Q, P, ξ) = c+ µ̄ · y +
1

2
(DVQ,Q)L2 +

1

2
(DV P, P )L2 + ε2R(θ, y,Q, ξ) (2.2.7)

where

R(θ, y,Q, ξ) :=

∫
Td
G
(
ε, x, v(θ, y, ξ) +D

− 1
2

V Q
)
dx (2.2.8)

and

v(θ, y, ξ) :=
∑
j∈S

µ
− 1

2
j

√
2(ξj + yj) cos θjΨj(x) . (2.2.9)

The phase space of (2.2.7) is now

T|S| × R|S| ×H⊥S 3 (θ, y, z) , z := (Q,P ) ∈ H⊥S ,

endowed with the symplectic structure (see (2.2.4))

W := (dy ∧ dθ) ⊕ Ω , (2.2.10)
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so that the Hamilton equations generated by (2.2.7) have the form
θ̇ = ∂yK(θ, y, z, ξ)

ẏ = −∂θK(θ, y, z, ξ)

ż = J∇zK(θ, y, z, ξ)

(2.2.11)

or, in expanded form,
θ̇ − µ̄− ε2∂yR(θ, y,Q, ξ) = 0

ẏ + ε2∂θR(θ, y,Q, ξ) = 0(
∂t − JDV

)
(Q,P ) + ε2

(
0,∇QR(θ, y,Q, ξ)

)
= 0 .

(2.2.12)

By (2.2.8) and (2.1.4), we have that ∂yR := (∂ymR)m=1,...,|S| ∈ R|S| has components

∂ymR(θ, y,Q, ξ) =

∫
Td
g(ε, x, v(θ, y, ξ) +D

− 1
2

V Q)
µ
− 1

2
m√

2(ξm + ym)
cos(θm)Ψm(x) dx (2.2.13)

and
∇QR(θ, y,Q, ξ) = D

− 1
2

V g
(
ε, x, v(θ, y, ξ) +D

− 1
2

V Q
)
. (2.2.14)

We note that the 2-form W in (2.2.10) is exact, i.e. W = dκ where κ is the Liouville
1-form

κ(θ,y,z)[θ̂, ŷ, ẑ] =
∑

j=1,...,|S|

yj θ̂j +
1

2
(Jz, ẑ)L2

x
. (2.2.15)

The Hamiltonian system (2.2.11) is reversible with respect to the involution

S̃(θ, y,Q, P ) := (−θ, y,Q,−P ) (2.2.16)

which is nothing but (2.1.9) in the variables (2.2.2)-(2.2.3). This means that

K ◦ S̃ = K , K(−θ, y,Q,−P ) = K(θ, y,Q, P ) ,

and the Hamiltonian R in (2.2.8) satisfies

R(−θ, y,Q, ξ) = R(θ, y,Q, ξ) . (2.2.17)

2.3 Admissible Diophantine directions ω̄ε

As explained in the introduction, we look for quasi-periodic solutions of (2.2.11)-(2.2.12)
with frequency vector

ω = (1 + ε2λ)ω̄ε

restricted to a fixed line, spanned by ω̄ε = µ̄ + ε2ζ (see (1.2.24)-(1.2.25)), which has to
satisfy the Diophantine conditions (1.2.29)-(1.2.30). We now prove that for “most” vector
ζ ∈ R|S| these conditions are satisfied.
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Lemma 2.3.1. Assume (1.2.6) and (1.2.8). Then there exists a subset Bε ⊂ A ([1, 2]|S|)
(where A is the invertible twist matrix in (1.2.9)) with measure |Bε| ≤ ε, such that all the
vectors

ω̄ε = µ̄+ ε2ζ , ζ ∈ A ([1, 2]|S|) \Bε ,

satisfy the Diophantine conditions (1.2.29)-(1.2.30) with γ1, τ1 defined in (1.2.28).

Proof. We first verify that most vectors ω̄ε = µ̄ + ε2ζ, ζ ∈ A ([1, 2]|S|), satisfy (1.2.29).
Since µ̄ is (γ0, τ0)-Diophantine, i.e. (1.2.6) holds, then, for all ` ∈ Z|S| \ {0},

|(µ̄+ ε2ζ) · `| ≥ γ0

〈`〉τ0
− ε2C|`| ≥ γ0

2〈`〉τ0
, ∀|`| ≤

( γ0

2Cε2

)1/(τ0+1)

.

Then it remains to estimate the measure of

Bε :=
⋃
|`|>
(

γ0
2Cε2

)1/(τ0+1)R` (2.3.1)

where
R` :=

{
ζ ∈ A ([1, 2]|S|) : |(µ̄+ ε2ζ) · `| ≤ γ1

〈`〉τ1
, γ1 =

γ0

2

}
.

Since the derivative
`

|`|
· ∂ζ
(
(µ̄ + ε2ζ) · `

)
= ε2|`|, then the measure |R`| .

γ0

ε2〈`〉τ1+1
.

Therefore

|Bε| .
γ0

ε2

∑
|`|>
(

γ0
2Cε2

)1/(τ0+1)

1

〈`〉τ1+1
≤ C(γ0)ε

2
(τ1+1−|S|)
τ0+1

−2 ≤ ε

by (1.2.28).
We now consider the quadratic Diophantine condition (1.2.30). Let M := Mp be the

(|S| × |S|)−symmetric matrix such that∑
1≤i≤j≤|S|

ωiωjpij = Mω · ω , ∀ω ∈ R|S| .

The symmetric matrix M has coefficients

Mij :=
pij
2

(1 + δij) , ∀1 ≤ i ≤ j ≤ |S| , and Mij = Mji . (2.3.2)

We want to prove that for most ζ ∈ A ([1, 2]|S|) the vector ω̄ε = µ̄ + ε2ζ satisfies the
non-resonance condition∣∣n+Mω̄ε · ω̄ε

∣∣ ≥ γ1〈p〉−τ1 , ∀(n, p) ∈ Z× Z
|S|(|S|+1)

2 \ {(0, 0)} .
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Then we write

n+Mω̄ε · ω̄ε = n+Mµ̄ · µ̄+ 2ε2Mζ · µ̄+ ε4Mζ · ζ . (2.3.3)

We first note that, by (1.2.8) and |Mij| . 〈p〉 by (2.3.2), then, for all |ζ| ≤ 1,∣∣n+Mµ̄ · µ̄+ 2ε2Mζ · µ̄+ ε4Mζ · ζ
∣∣ ≥ |n+Mµ̄ · µ̄| − ε2C〈p〉 ≥ γ0/2

〈p〉τ0

if
( γ0

2ε2C

)1/(τ0+1)

≥ |p|. Thus we erase values of ζ ∈ A ([1, 2]|S|) only when

|p| >
( γ0

2ε2C

)1/(τ0+1)

. (2.3.4)

Since M is symmetric there is an orthonormal basis V := (v1, . . . , vk) of eigenvectors of M
with real eigenvalues λk := λk(p), i.e. Mvk = λkvk. Under the isometric change of variables
ζ = V y we have to estimate

|Rn,p| =
∣∣∣{y ∈ R|S| , |y| ≤ 1 :∣∣∣n+Mµ̄ · µ̄+ 2ε2V y ·Mµ̄+ ε4

∑
1≤i≤|S|

λky
2
k

∣∣∣ < γ0

2〈p〉τ1
}∣∣∣ . (2.3.5)

Since M2vk = λ2
kvk, ∀k = 1, . . . , |S|, we get

|S|∑
k=1

λ2
k = Tr(M2) =

|S|∑
i,j=1

M2
ij

(2.3.2)

≥ |p|2

2
.

Hence there is an index k0 ∈ {1, . . . , |S|} such that |λk0 | ≥ |p|/
√

2|S| and the derivative∣∣∣∂2
yk0

(
n+Mµ̄ · µ̄+ 2ε2V y ·Mµ̄+ ε4

∑
1≤i≤|S|

λky
2
k

)∣∣∣ = ε4|2λk0|

≥ ε4
√

2 |p|/
√
|S| .

(2.3.6)

As a consequence of (2.3.5) and (2.3.6) we deduce the measure estimate

|Rn,p| . ε−2

√
γ0

〈p〉τ1+1
.

Recalling (2.3.4), and since Rn,p = ∅ if |n| ≥ C〈p〉, we have∣∣∣ ⋃
n,p∈Z

|S|(|S|+1)
2 \{0}

Rn,p

∣∣∣ . ∑
|p|>
(

γ0
2ε2C

)1/(τ0+1)

ε−2〈p〉
√

γ0

〈p〉τ1+1
.γ0 ε

[
τ1−1
τ0+1

− |S|(|S|+1)
τ0+1

−2
]

≤ ε

for ε small, by (1.2.28).
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Remark 2.3.2. The measure of the set |Bε| ≤ ε is smaller than εp, for any p, at the expense
of taking a larger Diophantine exponent τ1. We have written |Bε| ≤ ε for definiteness.

We finally notice that, for ω = (1 + ε2λ)ω̄ε with a Diophantine vector ω̄ε satisfying
(1.2.29), for any zero average function g(ϕ) we have that the function (ω · ∂ϕ)−1g, defined
in (1.6.1), satisfies

‖(ω · ∂ϕ)−1g‖Lip,s ≤ Cγ−1
1 ‖g‖Lip,s+τ1 . (2.3.7)



Chapter 3

Functional setting

In this Chapter we collect all the properties of the phase spaces, linear operators, norms, in-
terpolation inequalities used through the Monograph. Of particular importance for proving
Theorem 1.2.1 is the result of section 3.4.

3.1 Phase space and basis

The phase space of the nonlinear wave equation (2.1.12) is a dense subspace of the real
Hilbert space

H := L2(Td)× L2(Td) , L2(Td) := L2(Td,R) . (3.1.1)

In the Monograph we shall denote for convenience an element of H either as h = (h(1), h(2))

a row, either as a column h =

(
h(1)

h(2)

)
with components h(l) ∈ L2(Td), l = 1, 2.

In the exponential basis any function of H can be decomposed as

(q(x), p(x)) =
∑
j∈Zd

(qj, pj)e
ij·x , q−j = q̄j , p−j = p̄j . (3.1.2)

We will also use the orthonormal basis

{Ψj(x), j ∈ N}

of L2(Td) formed by the eigenfunctions of −∆ + V (x) defined in (1.1.5) with eigenvalues
µ2
j . We then consider the Hilbert spaces

Hsx :=
{
u :=

∑
j∈N

ujΨj : ‖u‖2
Hsx

:=
(
(−∆ + V (x))su, u

)
L2 =

∑
j∈N

µ2s
j |uj|2 <∞

}
. (3.1.3)

70
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Clearly H0
x = L2. Actually, for any s ≥ 0, the “spectral” norm ‖u‖Hsx is equivalent to the

usual Sobolev norm

‖u‖Hsx 's ‖u‖Hs
x

:=
(
(−∆)su, u

)
L2 + (u, u)L2

) 1
2 . (3.1.4)

For s ∈ N, the equivalence (3.1.4) can be directly proved noting that V (x) is a lower
order perturbation of the Laplacian −∆. Then, for s ∈ R \ N, [s] < s < [s] + 1, the
equivalence (3.1.4) follows by the classical interpolation result stating that the Hilbert
space Hsx in (3.1.3), respectively the Sobolev space Hs

x, is the interpolation space between
H[s]
x and H[s]+1

x , respectively between H [s]
x and H [s]+1

x , and the equivalence (3.1.4) for integers
s.

Tangential and normal subspaces. Given the finite set S ⊂ N, we consider the
L2-orthogonal decomposition of the phase space in tangential and normal subspaces as in
(2.2.1),

H = HS ⊕H⊥S ,

where
HS =

{
(q(x), p(x)) =

∑
j∈S

(qj, pj)Ψj(x) , (qj, pj) ∈ R2
}
.

In addition, recalling the disjoint splitting

N = S ∪ F ∪G

where F,G ⊂ N are defined in (1.2.14)-(1.2.15), we further decompose the normal subspace
H⊥S as

H⊥S = HF ⊕HG (3.1.5)

where
HG :=

{
(Q(x), P (x)) ∈ H : (Q,P )⊥HS , (Q,P )⊥HF

}
,

HF :=
{

(Q(x), P (x)) ∈ H : (Q,P )⊥HS , (Q,P )⊥HG

}
.

(3.1.6)

Thus
H = HS ⊕H⊥S = HS ⊕HF ⊕HG = HS∪F ⊕HG . (3.1.7)

Accordingly we denote by ΠS, ΠF, ΠG, ΠS∪F, the orthogonal L2-projectors on HS, HF, HG,
HS∪F. We define

Π⊥S := Id− ΠS = ΠN\S

and similarly for the other subspaces.
Decomposing the finite dimensional space

HF = ⊕j∈FHj , (3.1.8)
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we denote by Πj the L2-projectors onto Hj. In each real subspace Hj, j ∈ F, we take the
basis (Ψj(x), 0) , (0,Ψj(x)), namely we represent

Hj =
{
q(Ψj(x), 0) + p(0,Ψj(x)) , q, p ∈ R

}
. (3.1.9)

Thus Hj is isometrically isomorphic to R2.

Symplectic operator J. We define the linear symplectic operator J ∈ L(H) as

J

(
Q(x)
P (x)

)
:=

(
P (x)
−Q(x)

)
, J =

(
0 Id
−Id 0

)
. (3.1.10)

The symplectic operator J leaves invariant the symplectic subspaces HS, H
⊥
S , HF, HG. For

simplicity of notation we shall still denote by J the restriction of the symplectic operator

J := J|HS ∈ L(HS) , J := J|H⊥S ∈ L(H⊥S ) , J := J|HF ∈ L(HF) , J := J|HG ∈ L(HG) .

The symplectic operator J is represented, in the basis of the exponentials (see (3.1.2)){
(eij·x, 0), (0, eij·x) , j ∈ Zd

}
,

by the matrix

J = Diagj∈Zd

(
0 1
−1 0

)
.

Note also that the symplectic operator J leaves invariant each subspace Hj, j ∈ F, and it

is represented, in the eigenfunction basis (3.1.9), by the same symplectic matrix

(
0 1
−1 0

)
.

3.2 Linear operators and matrix representation

According to the decomposition H⊥S = HF ⊕HG in (3.1.5) a linear operator A of H⊥S can
be represented by a matrix of operators as(

AF
F AG

F
AF

G AG
G

)
,

AF
F := ΠFA|HF , A

G
F := ΠFA|HG , A

F
G := ΠGA|HF , A

G
G := ΠGA|HG .

(3.2.1)

Moreover the decomposition (3.1.8) induces the splitting

L(HF, H) = ⊕j∈FL(Hj, H) , (3.2.2)

namely a linear operator A ∈ L(HF, H) can be written as

A = (aj)j∈F , aj := A|Hj ∈ L(Hj, H) . (3.2.3)
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In each space L(Hj, H) we define the scalar product

〈a, b〉0 := Tr(b∗a) , a, b ∈ L(Hj, H) , (3.2.4)

where b∗ ∈ L(H,Hj) denotes the adjoint of b with respect to the scalar product in H. Note
that b∗a ∈ L(Hj, Hj) is represented, in the basis (3.1.9), by the 2 × 2 real matrix whose
elements are L2 scalar products(

(b(Ψj, 0), a(Ψj, 0))H (b(Ψj, 0), a(0,Ψj))H
(b(0,Ψj), a(Ψj, 0))H (b(0,Ψj), a(0,Ψj))H

)
. (3.2.5)

Using the basis (3.1.9), the space of linear operators L(Hj, H) can be identified with H×H,

L(Hj, H) ' H ×H = (L2(Td,R))4 , (3.2.6)

identifying a ∈ L(Hj, H) with the vector

(a(1), a(2), a(3), a(4)) ∈ H ×H
a(Ψj, 0) =: (a(1), a(2)) ∈ H , a(0,Ψj) =: (a(3), a(4)) ∈ H ,

(3.2.7)

so that

a
(
q(Ψj, 0) + p(0,Ψj)

)
= q(a(1), a(2)) + p(a(3), a(4)) , ∀(q, p) ∈ R2 . (3.2.8)

With this identification and (3.2.5) the scalar product (3.2.4) takes the form

〈a, b〉0 := Tr(b∗a) =
4∑
l=1

(a(l), b(l))L2 (3.2.9)

and the induced norm

〈a, a〉0 = Tr(a∗a) =
4∑
l=1

‖a(l)‖2
L2(Td) . (3.2.10)

By the identification (3.2.7) and taking in H the exponential basis (3.1.2), a linear operator
a ∈ L(Hj, H) can be also identified with the sequence of 2× 2 matrices (ajk)k∈Zd ,

ajk :=

(
â

(1)
k â

(3)
k

â
(2)
k â

(4)
k

)
∈ Mat2(C) , a(l) =

∑
k∈Zd

â
(l)
k e

ik·x , l = 1, 2, 3, 4 ,

so that, by (3.2.8),

a
(
q(Ψj, 0) + p(0,Ψj)

)
=
∑
k∈Zd

ajk(q, p)e
ikx , ∀(q, p) ∈ R2 .
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Similarly, using the basis {Ψj(x)}j∈N a linear operator a ∈ L(Hj, H) can be also identified
with the sequence of 2× 2 matrices (ajk)k∈N,

a
j
k :=

(
a

(1)
k a

(3)
k

a
(2)
k a

(4)
k

)
, a

(l)
k := (Ψk, a

(l))L2 , l = 1, 2, 3, 4 , (3.2.11)

so that, by (3.2.8),

a
(
q(Ψj, 0) + p(0,Ψj)

)
=
∑
k∈N

a
j
k(q, p)Ψk(x) , ∀(q, p) ∈ R2 . (3.2.12)

In addition, if a ∈ L(Hj, H) is identified with the vector (a(1), a(2), a(3), a(4)) ∈ H × H as
in (3.2.7), then, Ja ∈ L(Hj, H) where J is the symplectic operator in (3.1.10), can be
identified with

Ja = (a(2),−a(1), a(4),−a(3)) , (3.2.13)

and aJ ∈ L(Hj, H) with

aJ = (a(1), a(2), a(3), a(4))J = (−a(3),−a(4), a(1), a(2)) . (3.2.14)

Each space L(Hj, H) admits the orthogonal decomposition

L(Hj, H) = L(Hj, HS∪F)⊕ L(Hj, HG) , (3.2.15)

defined, for any aj ∈ L(Hj, H), by

aj = ΠS∪Fa
j + ΠGa

j , ΠS∪Fa
j ∈ L(Hj, HS∪F), ΠGa

j ∈ L(Hj, HG) (3.2.16)

where ΠS∪F and ΠG are the L2-orthogonal projectors respectively on the subspaces HS∪F =
HF ⊕HS and HG, see (3.1.5).

A (possibly unbounded) linear operator A acting on the Hilbert space

(i) H := H = (L2(Td))2 , (ii) H := H ×H = (L2(Td))4 (3.2.17)

can be represented in the Fourier basis of L2(Td) by a matrix (Ajj′)j,j′∈Zd with Ajj′ ∈
Mat2×2(C) in case (i), respectively Mat4×4(C) in case (ii), by the relation

A
(∑
j∈Zd

hje
ij·x
)

=
∑
j′∈Zd

(∑
j∈Zd

Ajj′hj

)
eij′·x

with hj ∈ C2 in case (i), respectively hj ∈ C4 in case (ii).

We decompose the space of 2× 2-real matrices

Mat2(R) = M+ ⊕M− (3.2.18)
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where M+, respectively M−, is the subspace of the 2× 2-matrices which commute, respec-
tively anti-commute, with the symplectic matrix J . A basis of M+ is formed by

M1 := J =

(
0 1
−1 0

)
, M2 := Id2 =

(
1 0
0 1

)
, (3.2.19)

and a basis of M− is formed by

M3 :=

(
1 0
0 −1

)
M4 :=

(
0 1
1 0

)
. (3.2.20)

Notice that the matrices {M1,M2,M3,M4} form also a basis for the 2×2-complex matrices
Mat2(C).

We shall denote by π+, π− the projectors on M+, respectively M−. We shall use that,
for a 2× 2 real symmetric matrix

M =

(
a b
b c

)
, π+(M) =

a+ c

2
Id2 =

Tr(M)

2
Id2 . (3.2.21)

ϕ-dependent families of functions and operators. In this Monograph we often identify
a function

h ∈ L2(T|S|, L2(Td)) , h : ϕ 7→ h(ϕ) ∈ L2(Td) ,
with the function h(ϕ, ·)(x) = h(ϕ, x) of time-space, i.e.

L2(T|S|, L2(Td)) ≡ L2(T|S| × Td) .

Correspondingly, we regard a ϕ-dependent family of (possibly unbounded) operators

A : T|S| → L(H1, H2) , ϕ 7→ A(ϕ) ∈ L(H1, H2) ,

acting between Hilbert spaces H1, H2, as an operator A which acts on functions h(ϕ, x) ∈
L2(T|S|, H1) of space-time. When H1 = H2 = L2(Td) we regard A as the linear operator
A : L2(T|S| × Td)→ L2(T|S| × Td) defined by

(Ah)(ϕ, x) := (A(ϕ)h(ϕ, ·))(x) .

For simplicity of notation we still denote such operator by A.
Given a, b : T|S| → L(Hj, H) we define the scalar product

〈a, b〉0 :=

∫
T|S|

Tr
(
b∗(ϕ)a(ϕ)

)
dϕ , (3.2.22)

that, with a slight abuse of notation, we denote with the same symbol (3.2.4). Using (3.2.7)
we may identify a, b : T|S| → L(Hj, H) with a, b : T|S| → H ×H defined by

a(ϕ) = (a(1), a(2), a(3), a(4))(ϕ) , b(ϕ) = (b(1), b(2), b(3), b(4))(ϕ) ,
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and, by (3.2.22) and (3.2.9), (3.2.10),

〈a, b〉0 =

∫
T|S|

Tr(a(ϕ)∗b(ϕ)) dϕ =
4∑
l=1

(a(l), b(l))L2(T|S|×Td) , (3.2.23)

‖a‖2
0 = 〈a, a〉0 =

∫
T|S|

Tr(a(ϕ)∗a(ϕ)) dϕ =
4∑
l=1

‖a(l)‖2
L2(T|S|×Td) . (3.2.24)

We identify a ϕ-dependent family of linear operators A(ϕ) acting on ϕ-dependent family of
functions with values in the Hilbert space H defined in (3.2.17), with the infinite dimensional
matrix (A`,j`′,j′)(`,j),(`′,j′)∈Z|S|+d , with A`,j`′,j′ ∈ Mat2×2(C) in case (i), respectively Mat4×4(C) in
case (ii), defined by the relation

A
( ∑

(`,j)∈Z|S|+d
h`,je

i(`·ϕ+j·x)
)

=
∑

(`′,j′)∈Z|S|+d

( ∑
(`,j)∈Z|S|+d

A`,j`′,j′h`,j

)
ei(`′·ϕ+j′·x) (3.2.25)

where h`,j ∈ C2 in case (3.2.17)-(i), respectively h`,j ∈ C4 in case (3.2.17)-(ii).
Taking in (L2(T|S|×Td))2 the basis {ei`·ϕ(Ψj(x), 0), ei`·ϕ(0,Ψj(x))}j∈N we identify A with

the matrix (A`,j`′,j′)(`,j),(`′,j′)∈Z|S|×N by the relation

A
( ∑

(`,j)∈Z|S|×N

h`,je
i`·ϕΨj(x)

)
=

∑
(`′,j′)∈Z|S|×N

( ∑
(`,j)∈Z|S|×N

A`,j`′,j′h`,j

)
ei`′·ϕΨj′(x) (3.2.26)

where h`,j ∈ C2.

Normal form. We consider a ϕ-dependent family of linear operators A(ϕ) acting in H⊥S .
According to the decomposition H⊥S = HF⊕HG, each A(ϕ) can be represented by a matrix
as in (3.2.1)

A(ϕ) =

(
[A(ϕ)]FF [A(ϕ)]GF
[A(ϕ)]FG [A(ϕ)]GG

)
. (3.2.27)

We denote by ΠDA the operator of H⊥S represented by the matrix

ΠDA(ϕ) =

(
D+(AF

F) 0
0 [A(ϕ)]GG

)
(3.2.28)

where, in the basis {(Ψj, 0), (0,Ψj)}j∈F of HF,

D+(AF
F) := Diagj∈F

(
π+[Âjj(0)]

)
(3.2.29)

and π+ : Mat2(R) → M+ denotes the projector on M+, see (3.2.18), and Âjj(0) is the
ϕ-average

Âjj(0) :=
1

(2π)|S|

∫
T|S|

Ajj(ϕ) dϕ .



CHAPTER 3. FUNCTIONAL SETTING 77

We define also
ΠOA := A− ΠDA . (3.2.30)

We remark that, along the Monograph, the functions and the operators may depend on a
one-dimensional parameter λ ∈ Λ̃ ⊂ Λ in a Lipschitz way, with norm defined as in (1.6.2).

Hamiltonian and symplectic operators. Along the paper we shall preserve the Hamil-
tonian structure of the vector fields.

Definition 3.2.1. A ϕ-dependent family of linear operators X(ϕ) : D(X) ⊂ H → H,
defined on a dense subspace D(X) of H independent of ϕ ∈ T|S|, is Hamiltonian if

X(ϕ) = JA(ϕ)

for some real linear operator A(ϕ) which is self-adjoint with respect to the L2 scalar product.
We also say that ω · ∂ϕ − JA(ϕ) is Hamiltonian.

In the Monograph we mean that A is self-adjoint if its domain of definition D(A) is
dense in H, and (Ah, k) = (h,Ak), for all h, k ∈ D(A).

Definition 3.2.2. A ϕ-dependent family of linear operators Φ(ϕ) : H → H, ∀ϕ ∈ T|S|, is
symplectic if

Ω(Φ(ϕ)u,Φ(ϕ)v) = Ω(u, v) , ∀u, v ∈ H , (3.2.31)

where the symplectic 2-form Ω is defined in (2.1.8). Equivalently

Φ∗(ϕ)JΦ(ϕ) = J , ∀ϕ ∈ T|S| .

A Hamiltonian operator transforms into an Hamiltonian one under a symplectic trans-
formation.

Lemma 3.2.3. Let Φ(ϕ), ϕ ∈ T|S|, be a family of linear symplectic transformations and
A∗(ϕ) = A(ϕ), for all ϕ ∈ T|S|. Then

Φ−1(ϕ)
(
ω · ∂ϕ − JA(ϕ)

)
Φ(ϕ) = ω · ∂ϕ − JA+(ϕ)

where A+(ϕ) is self-adjoint. Thus ω · ∂ϕ − JA+(ϕ) is Hamiltonian.

Proof. We have that

Φ−1(ϕ)
(
ω · ∂ϕ − JA(ϕ)

)
Φ(ϕ) = ω · ∂ϕ + Φ−1(ϕ)(ω · ∂ϕΦ)(ϕ)− Φ−1(ϕ)JA(ϕ)Φ(ϕ)

= ω · ∂ϕ − JA+(ϕ)

with

A+(ϕ) = JΦ−1(ϕ) (ω · ∂ϕΦ)(ϕ)− JΦ−1(ϕ)JA(ϕ)Φ(ϕ)

= JΦ−1(ϕ) (ω · ∂ϕΦ)(ϕ) + Φ∗(ϕ)A(ϕ)Φ(ϕ) (3.2.32)
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using that Φ(ϕ) is symplectic. Since A(ϕ) is self-adjoint, the last operator in (3.2.32) is
clearly self-adjoint. In order to prove that also the first operator in (3.2.32) is self-adjoint
we notice that, since Φ(ϕ) is symplectic,

Φ∗(ϕ)J(ω · ∂ϕΦ)(ϕ) + (ω · ∂ϕΦ)∗(ϕ)JΦ(ϕ) = 0 . (3.2.33)

Thus, using that Φ(ϕ) is symplectic,(
JΦ−1(ϕ)(ω · ∂ϕΦ)(ϕ)

)∗
= −(ω · ∂ϕΦ)∗(ϕ) (Φ∗)−1(ϕ)J

= −(ω · ∂ϕΦ)∗(ϕ) JΦ(ϕ)

(3.2.33)
= Φ∗(ϕ)J(ω · ∂ϕΦ)(ϕ) = JΦ−1(ϕ)(ω · ∂ϕΦ)(ϕ) .

We have proved that A+(ϕ) is self-adjoint.

3.3 Decay norms

Let b := |S|+ d. For B ⊂ Zb we introduce the subspace

Hs
B :=

{
u =

∑
i∈Zb

uiei ∈ Hs : ui ∈ Cr , ui = 0 if i /∈ B
}

(3.3.1)

where ei := ei(`·ϕ+j·x), i = (`, j) ∈ Z|S| × Zd, and Hs is the Sobolev space

Hs := Hs(T|S| × Td;Cr) :=
{
u =

∑
i∈Zb

uiei : ‖u‖2
s :=

∑
i∈Zb
|ui|2〈i〉2s

}
. (3.3.2)

Clearly H0 = L2(T|S| × Td;Cr), and, for s > b/2, we have the continuous embedding
Hs ⊂ C0(T|S| × Td;Cr).

For a Lipschitz family of functions f : Λ 7→ Hs, λ 7→ f(λ), we define, as in (1.6.2),

‖f‖Lip,s := sup
λ∈Λ
‖f‖s + sup

λ1,λ2∈Λ,λ1 6=λ2

‖f(λ2)− f(λ1)‖s
|λ2 − λ1|

. (3.3.3)

Remark 3.3.1. In Chapter 4 we shall distinguish the components of the vector ui =
(ui,a)a∈I ∈ Cr where I = {1, 2} if r = 2, and I = {1, 2, 3, 4} if r = 4. In this case we
also write an element of Hs as

u =
∑

i,a∈Zb×I

ui,aei,a , ui,a ∈ C , ei,a := eaei ,

where ea := (0, . . . , 1︸︷︷︸
a−th

, . . . , 0), a ∈ I, denotes the canonical basis of Cr.
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When B is finite, the space Hs
B does not depend on s and will be denoted HB. For

B,C ⊂ Zb finite, we identify the space LBC of the linear maps L : HB → HC with the space
of matrices

MB
C :=

{
M = (M i′

i )i′∈B,i∈C , M
i′

i ∈ Mat(r × r;C)
}

(3.3.4)

identifying L with the matrix M with entries

M i′

i = (M i′,a′

i,a )a,a′∈I ∈ Mat(r × r,C) , M i′,a′

i,a := (Lei′,a′ , ei,a)0 ,

where ( , )0 := (2π)−b( , )L2 denotes the normalized L2-scalar product.
Following [23] we shall use s-decay norms which quantify the polynomial decay off the

diagonal of the matrix entries.

Definition 3.3.2. (s-norm) The s-norm of a matrix M ∈MB
C is defined by

|M |2s :=
∑
n∈Zb

[M(n)]2〈n〉2s

where 〈n〉 := max(|n|, 1) (see (3.3.2)),

[M(n)] :=

 sup
i−i′=n

|M i′

i | if n ∈ C −B

0 if n /∈ C −B ,

where | | denotes a norm of the matrices Mat(r × r,C).

We shall use the above definition also if B or C are not finite (with the difference that
|M |s may be infinite).

The s-norm is modeled on matrices which represent the multiplication operator. The
(Töplitz) matrix T which represents the multiplication operator

Mg : Hs(T|S| × Td;C)→ Hs(T|S| × Td;C) , h 7→ gh ,

by a function g ∈ Hs(T|S| × Td;C), s ≥ s0, satisfies

|T |s ∼ ‖g‖s , |T |Lip,s ∼ ‖g‖Lip,s . (3.3.5)

The s-norm satisfies algebra and interpolation inequalities and control the higher Sobolev
norms as in (3.3.7) below: as proved in [23], for all s ≥ s0 > b/2

|AB|s .s |A|s0|B|s + |A|s|B|s0 , (3.3.6)

and for any subset B,C ⊂ Zb, ∀M ∈MB
C , w ∈ HB we have

‖Mw‖s .s |M |s0‖w‖s + |M |s‖w‖s0 , (3.3.7)

‖Mw‖Lip,s .s |M |Lip,s0‖w‖Lip,s + |M |Lip,s‖w‖Lip,s0 . (3.3.8)
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The above inequalities can be easily obtained from the definition of the norms | |s and the
functional interpolation inequality

∀u, v ∈ Hs , ‖uv‖s .s ‖u‖s0‖v‖s + ‖u‖s‖v‖s0 . (3.3.9)

Actually, (3.3.9) can be slightly improved to obtain (see Lemma 3.5.1)

‖uv‖s ≤ C0‖u‖s0‖v‖s + C(s)‖u‖s‖v‖s0 (3.3.10)

where only the second constant may depend on s and C0 depends only on s0 (we recall that
s0 is fixed once for all). From (3.3.10) can be derived the following slight improvements of
(3.3.6) and (3.3.8), which will be used in Chapter 10:

|AB|s ≤ C0|A|s0|B|s + C(s)|A|s|B|s0 (3.3.11)

and
‖Mw‖Lip,s ≤ C0|M |Lip,s0‖w‖Lip,s + C(s)|M |Lip,s‖w‖Lip,s0 . (3.3.12)

We also notice that, denoting by A∗ the adjoint matrix of A, we have

|A|s = |A∗|s , |A|Lip,s = |A∗|Lip,s . (3.3.13)

The following lemma is the analogue of the smoothing properties of the projection operators.
See Lemma 3.6 of [23], and Lemma B.1.10.

Lemma 3.3.3. (Smoothing) Let M ∈MB
C . Then, ∀s′ ≥ s ≥ 0,

M i′

i = 0 , ∀|i− i′| < N =⇒ |M |s ≤ N−(s′−s)|M |s′ , (3.3.14)

and similarly for the Lipschitz norm | |Lip,s.

We now define the decay norm for an operator A : E → F defined on a closed subspace
E ⊂ L2 with range in a closed subset of L2.

Definition 3.3.4. Let E,F be closed subspaces of L2 ≡ L2(T|S| × Td,Cr). Given a linear

operator A : E → F , we extend it to a linear operator Ã : L2 → L2 acting on the whole
L2 = E ⊕ E⊥, with image in F , by defining

Ã|E⊥ := 0 . (3.3.15)

Then, for s ≥ 0 we define the (possibly infinite) s-decay norm

|A|s := |Ã|s , (3.3.16)

and
|A|+,s := |D

1
2
mÃD

1
2
m|s (3.3.17)
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where Dm is the Fourier multiplier operator

Dm :=
√
−∆ +m, Dm(eij·x) :=

√
|j|2 +meij·x , j ∈ Zd , (3.3.18)

and m > 0 is a positive constant.
For a Lipschitz family of operators A(λ) : E → E, λ ∈ Λ, we associate the Lipschitz

norms |A|Lip,s, |A|Lip,+,s, accordingly to (1.6.2).

The norm (3.3.17) is stronger than (3.3.16), actually, since 1 .m (|j|2 +m)
1
4 (|j′|2 +m)

1
4 ,

we have
|A|s .m |A|+,s , |A|Lip,s .m |A|Lip,+,s . (3.3.19)

Lemma 3.3.5. (Tame estimates for composition) Let A,B : E → E be linear opera-
tors acting on a closed subspace E ⊂ L2. Then, the following tame estimates hold: for all
s ≥ s0 > (|S|+ d)/2,

|AB|s .s |A|s0 |B|s + |A|s|B|s0 (3.3.20)

|AB|Lip,s .s |A|Lip,s0|B|Lip,s + |A|Lip,s|B|Lip,s0 , (3.3.21)

more precisely
|AB|Lip,s ≤ C0|A|Lip,s0|B|Lip,s + C(s)|A|Lip,s|B|Lip,s0 (3.3.22)

and

|AB|+,s + |BA|+,s .s |A|s0+ 1
2
|B|+,s + |A|s+ 1

2
|B|+,s0 (3.3.23)

|AB|Lip,+,s + |BA|Lip,+,s .s |A|Lip,s0+ 1
2
|B|Lip,+,s + |A|Lip,s+ 1

2
|B|Lip,+,s0 . (3.3.24)

Notice that in (3.3.23), resp. (3.3.24), the operator A is estimated in | |s+ 1
2

norm, resp.

| |Lip,s+ 1
2
, and not in | |+,s, resp. | |Lip,+,s.

Proof. Notice first that the operation introduced in (3.3.15) of extension of an operator
commutes with the composition: if A,B : E → E are linear operators acting in E, then
ÃB = Ã B̃. Thus (3.3.20)-(3.3.21) and (3.3.22) follow by the interpolation inequalities
(3.3.6) and (3.3.11).

In order to prove (3.3.23)-(3.3.24) we first show that, given a linear operator acting on
the whole L2,

|D−
1
2

m AD
1
2
m|s , |D

1
2
mAD

− 1
2

m |s .s |A|s+ 1
2
. (3.3.25)

We prove (3.3.25) for

D
1
2
mAD

− 1
2

m = A+ [D
1
2
m, A]D

− 1
2

m .
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Since |D−
1
2

m |s ≤ C(m), ∀s, it is sufficient to prove that |[D
1
2
m, A]|s .s |A|s+ 1

2
. Since, ∀i, j ∈

Zd, ∣∣(|j|2 +m)1/4 − (|i|2 +m)1/4
∣∣ =∣∣|j| − |i|∣∣(|j|+ |i|)(

(|j|2 +m)1/4 + (|i|2 +m)1/4
)
((|j|2 +m)

1
2 + (|i|2 +m)

1
2 )

≤ |j − i|(
(|j|2 +m)1/4 + (|i|2 +m)1/4

) ≤√|j − i| ,
the matrix elements of the commutator [D

1
2
m, A]ij satisfy

|[D
1
2
m, A]ij| = |Aij|

∣∣(|j|2 +m)1/4 − (|i|2 +m)1/4
∣∣ ≤ |Aij|√|j − i|

and therefore (3.3.25) follows.

We now prove the estimates (3.3.23)-(3.3.24). We consider the extended operator ÃB =

ÃB̃ and write
D

1
2
mÃBD

1
2
m =

(
D

1
2
mÃD

− 1
2

m

)(
D

1
2
mB̃D

1
2
m

)
.

Hence (3.3.23)-(3.3.24) follow, recalling (3.3.17), by (3.3.6) and (3.3.25).

By iterating (3.3.21) we deduce that, there exists C(s) ≥ 1, non decreasing in s ≥ s0,
such that

|Ak|Lip,s ≤ (C(s))k|A|k−1
Lip,s0
|A|Lip,s , ∀k ≥ 1 . (3.3.26)

Lemma 3.3.6. Let A : E → E be a linear operator acting on a closed subspace E ⊂ L2.
Then its operatorial norm satisfies

‖A‖0 .s0 |A|s0 .s0 |A|+,s0 . (3.3.27)

Proof. Let Ã be the extended operator in L2 defined in (3.3.15). Then, using Lemma 3.8

in [23] (see Lemma B.1.12), and (3.3.16), we get ‖A‖0 ≤ ‖Ã‖0 .s0 |Ã|s0 = |A|s0 .s0 |A|+s0
by (3.3.19).

We shall also use the following elementary inequality: given a matrix A ∈ MB
C where

B and C are included in [−N,N ]b, then

|A|s . N |D−
1
2

m AD
− 1

2
m |s . (3.3.28)

We shall use several times the following simple lemma.
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Lemma 3.3.7. Let g(λ, ϕ, x), χ(λ, ϕ, x) be a Lipschitz family of functions in Hs(T|S|×Td,C)
for s ≥ s0. Then the operator L defined by

L[h](ϕ, x) :=
(
h(ϕ, ·), g(ϕ, ·)

)
L2
x
χ(ϕ, x) , ∀h ∈ H0(T|S| × Td,C) ,

satisfies
|L|Lip,s .s ‖g‖Lip,s0‖χ‖Lip,s + ‖g‖Lip,s‖χ‖Lip,s0 . (3.3.29)

Proof. We write L = MχP0Mg as the composition of the multiplication operators Mχ,Mg

for the functions χ, g respectively, and the mean value projector P0 defined as

P0h(ϕ) :=
1

(2π)d

∫
Td
h(ϕ, x) dx , ∀h ∈ H0 .

For i = (j, `), i′ = (j′, `′) ∈ Zd × Z|S|, its entries are (P0)i
′

i = δ0
j δ
j′

0 δ
`′

` , and therefore

|P0|Lip,s = |P0|s ≤ 1 , ∀s . (3.3.30)

We derive (3.3.29) by (3.3.5), (3.3.30) and the tame estimates (3.3.6) for the composition
of operators.

Now, given a finite set M ⊂ N, we estimate the s-decay norm of the L2-orthogonal
projector ΠM on the subspace of L2(Td,R)× L2(Td,R) defined by

HM :=
{

(q(x), p(x)) :=
∑
j∈M

(qj, pj)Ψj(x) , qj, pj ∈ R
}
. (3.3.31)

In the next lemma we regard ΠM as an operator acting on functions h(ϕ, x).

Lemma 3.3.8. (Off-diagonal decay of ΠM) Let M be a finite subset of N. Then, for all
s ≥ 0, there is a constant C(s) := C(s,M) > 0 such that

|ΠM|+,s = |ΠM|Lip,+,s ≤ C(s) . (3.3.32)

In addition, setting Π⊥M := Id− ΠM = ΠMc, we have

|ΠM|Lip,s ≤ C(s) , |ΠMc |Lip,s = |Π⊥M|Lip,s ≤ C(s) . (3.3.33)

Proof. To prove (3.3.32) we have to estimate |Π⊥M|Lip,+,s = |D1/2
m Π⊥MD

1/2
m |Lip,s. For any

h = (h(1), h(2)) ∈
(
L2(T|S| × Td)

)2
we have

(D
1
2
mΠ⊥MD

1
2
mh)(ϕ, x) =

∑
j∈M

(
(h(1)(ϕ, ·), D

1
2
mΨj)L2

x

(h(2)(ϕ, ·), D
1
2
mΨj)L2

x

)
D

1
2
mΨj . (3.3.34)

Now, using Lemma 3.3.7, the fact that each Ψj(x) is in C∞ and M is finite, we deduce, by
(3.3.34), the estimate (3.3.32). The first estimate in (3.3.33) is trivial because |ΠM|Lip,s .
|ΠM|Lip,+,s. The second estimate in (3.3.33) follows by ΠM + Π⊥M = Id and |Id|Lip,s = 1.
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Lemma 3.3.9. Given a ϕ-dependent family of linear operators A(ϕ) acting in H⊥S , the
operators ΠDA and ΠOA defined respectively in (3.2.28) and (3.2.30) satisfy

|ΠDA|Lip,+,s + |ΠOA|Lip,+,s ≤ C(s)|A|Lip,+,s . (3.3.35)

Proof. We consider the extension of the operator ΠDA defined in (3.2.28)-(3.2.29), acting

on
(
L2(T|S| × Td)

)2
, defined as A1 + A2 where the operators A1 and A2, are

A1 := ΠGAΠG , (3.3.36)

and, for any h = (h(1), h(2)) ∈
(
L2(T|S| × Td)

)2
,

(A2h)(ϕ, x) :=
∑
j∈F

π+Â
j
j(0)

(
(h(1)(ϕ, ·),Ψj)L2

x

(h(2)(ϕ, ·),Ψj)L2
x

)
Ψj(x) . (3.3.37)

We remark that, for j ∈ F, Âjj(0) is the 2× 2 matrix

Âjj(0) =

(
(A(Ψj, 0), (Ψj, 0))0 (A(0,Ψj), (Ψj, 0))0

(A(Ψj, 0), (0,Ψj))0 (A(0,Ψj), (0,Ψj))0

)
(3.3.38)

where ( , )0 is the (normalized) L2 scalar product in
(
L2(T|S| × Td)

)2
.

By Definition 3.3.4, we have |ΠDA|Lip,+,s = |A1 + A2|Lip,+,s. By (3.3.36), (3.3.24) and
(3.3.33) (with Mc = G) we get

|A1|Lip,+,s .s |ΠG|2Lip,s+ 1
2
|A|Lip,+,s .s |A|Lip,+,s . (3.3.39)

For A2, we apply Lemma 3.3.7. Using that, by (3.3.37),

(D
1
2
mA2D

1
2
mh)(ϕ, x) =

∑
j∈F

π+Â
j
j(0)

(
(h(1)(ϕ, ·), D

1
2
mΨj)L2

x

(h(2)(ϕ, ·), D
1
2
mΨj)L2

x

)
D

1
2
mΨj

with Âjj(0) given in (3.3.38), that Ψj ∈ C∞(Td) and F is finite, we deduce by (3.3.29) that

|A2|Lip,+,s = |D
1
2
mA2D

1
2
m|Lip,s .s max

j∈F
‖A‖Lip,0 . (3.3.40)

Finally (3.3.39), (3.3.40) imply

|ΠDA|Lip,+,s ≤ |A1|Lip,+,s + |A2|Lip,+,s ≤ C(s)|A|Lip,+,s

and
|ΠOA|Lip,+,s = |A− ΠDA|Lip,+,s ≤ |A|Lip,+,s + |ΠDA|Lip,+,s ≤ C(s)|A|Lip,+,s .
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Thus (3.3.35) is proved.

We now mention some norm equivalences and estimates that shall be used in the Mono-
graph.

Let us consider a ϕ-dependent family of operators ρ(ϕ) ∈ L(H⊥S ), that, according to
the splitting (3.2.1), have the form

ρ(ϕ) =

(
ρ1(ϕ) ρ2(ϕ)∗

ρ2(ϕ) 0

)
∈ L(H⊥S ) , ρ1(ϕ) ∈ L(HF) , ρ2(ϕ) ∈ L(HF, HG) .

Recalling (3.2.3), we can identify each ρl(ϕ), l = 1, 2, with

ρl(ϕ) = (ρl,j(ϕ))j∈F , where ρl,j(ϕ) := (ρl)|Hj ∈

{
L(Hj, HF) if l = 1

L(Hj, HG) if l = 2 .

Moreover, according to (3.2.7), we can identify each operator ρl,j(ϕ) with the vector

(ρ
(1)
l,j (ϕ), ρ

(2)
l,j (ϕ), ρ

(3)
l,j (ϕ), ρ

(4)
l,j (ϕ)) ∈

{
HF ×HF if l = 1

HG ×HG if l = 2 ,
(3.3.41)

where (
ρ

(1)
l,j

ρ
(2)
l,j

)
:= ρl

(
Ψj

0

)
,

(
ρ

(3)
l,j

ρ
(4)
l,j

)
:= ρl

(
0

Ψj

)
. (3.3.42)

We define the Sobolev norms of each ρl(ϕ), l = 1, 2, as

‖ρl‖2
s = max

j∈F

( 4∑
k=1

‖ρ(k)
l,j ‖

2
s

)
, (3.3.43)

and ‖ρl‖Lip,s according to (1.6.2).

Lemma 3.3.10. We have

|ρ1|Lip,+,s ∼s |ρ1|Lip,s ∼s ‖ρ1‖Lip,s , (3.3.44)

|ρ2|Lip,+,s .s |ρ2|Lip,s+ 1
2
, |ρ2|Lip,s ∼s ‖ρ2‖Lip,s . (3.3.45)

Proof.

Step1. We first justify that, for l = 1, 2,

|ρl|Lip,s ∼s ‖ρl‖Lip,s . (3.3.46)
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By Definition 3.3.4, the s-norm |ρl|Lip,s = |ρlΠF|Lip,s. Now, recalling (3.3.42), the extended
operator ρlΠF has the form, for any h(ϕ) = (h(1)(ϕ), h(2)(ϕ)) ∈ H,

(ρlΠFh)(ϕ) =
∑
j∈F

(h(1)(ϕ),Ψj)L2
x

(
ρ

(1)
l,j (ϕ)

ρ
(2)
l,j (ϕ)

)
+ (h(2)(ϕ),Ψj)L2

x

(
ρ

(3)
l,j (ϕ)

ρ
(4)
l,j (ϕ)

)
. (3.3.47)

Using that Ψj ∈ C∞(Td), for all j ∈ F, and that F is finite, we derive, from (3.3.47) and
Lemma 3.3.7, the estimate |ρ|Lip,s .s ‖ρl‖Lip,s.

The reverse inequality ‖ρl‖Lip,s .s |ρl|Lip,s follows by (3.3.42), (3.3.8), and that fact that
Ψj ∈ C∞(Td). This concludes the proof of (3.3.46) and so of the second equivalences in
(3.3.44)-(3.3.45).

Step 2. We now prove that
|ρ1|Lip,+,s .s ‖ρ1‖Lip,s . (3.3.48)

By Definition 3.3.4, the norm |ρ1|Lip,+,s = |D
1
2
mρ1ΠFD

1
2
m|Lip,s and, by (3.3.47),

(D
1
2
mρ1ΠFD

1
2
mh)(ϕ) =

∑
j∈F

(h(1)(ϕ), D
1
2
mΨj)L2

x

(
D

1
2
mρ

(1)
1,j(ϕ)

D
1
2
mρ

(2)
1,j(ϕ)

)

+
∑
j∈F

(h(2)(ϕ), D
1
2
mΨj)L2

x

(
D

1
2
mρ

(3)
1,j(ϕ)

D
1
2
mρ

(4)
1,j(ϕ)

)
. (3.3.49)

Now, applying Lemma 3.3.7, we deduce by (3.3.49) and the fact that Ψj are C∞ (and
independent on λ) and F is finite, that

|ρ1|Lip,+,s = |D
1
2
mρ1ΠFD

1
2
m|Lip,s .s max

j∈F,k=1,...,4
‖D

1
2
mρ

(k)
1,j‖Lip,s (3.3.50)

Now, by (3.3.41), each ρ
(k)
1,j , k = 1, . . . , 4, is a function of the form u(ϕ) =

∑
j∈F

uj(ϕ)Ψj. We

claim that, for functions of this form, ‖D
1
2
mu‖Lip,s ∼s ‖u‖Lip,s. Indeed

‖u‖Lip,s ∼s
∑
j∈F

‖uj‖Lip,Hs(T|S|) ,

because F is finite and Ψj is C∞ (and independent on λ). Similarly,

‖D
1
2
mu‖Lip,s =

∥∥∥∑
j∈F

uj(ϕ)D
1
2
mΨj

∥∥∥
Lip,s
∼s
∑
j∈F

‖uj‖Lip,Hs(T|S|) ,

and the claim follows. Applying this property to u = ρ
(k)
1,j we deduce, by (3.3.50), that

|ρ1|Lip,+,s .s max
j∈F,k=1,...,4

‖ρ(k)
1,j‖Lip,s
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and thus (3.3.48). Finally, by (3.3.46) and (3.3.19) we have ‖ρ1‖Lip,s .s |ρ1|Lip,+,s and thus
we deduce the first equivalence in (3.3.44).

Step 3. We finally check
|ρ2|Lip,+,s .s |ρ2|Lip,s+ 1

2
, (3.3.51)

which is the first estimate in (3.3.44). We have

|ρ2|Lip,+,s = |ρ2ΠF|Lip,+,s

(3.3.24)

.s |ρ2|Lip,s+ 1
2
|ΠF|Lip,+,s

(3.3.32)

.s |ρ2|Lip,s+ 1
2

(applied with M = F).

We also remind a standard perturbation lemma for operators which admit a right inverse.

Definition 3.3.11. (Right Inverse) A matrix M ∈ MB
C has a right inverse, that we

denote by M−1 ∈MC
B, if MM−1 = IdC.

Note thatM has a right inverse if and only ifM (considered as a linear map) is surjective.
The following lemma is proved as in Lemma 3.9 of [23] (see also Lemma B.1.14) by a
Neumann series argument.

Lemma 3.3.12. There is a constant c0 > 0 such that, for any C,B ⊂ Zb, for any M ∈MB
C

having a right inverse M−1 ∈ MC
B, for any P in MB

C with |M−1|s0|P |s0 ≤ c0 the matrix
M + P has a right inverse that satisfies

|(M + P )−1|s0 ≤ 2|M−1|s0
|(M + P )−1|s .s |M−1|s + |M−1|2s0|P |s , ∀s ≥ s0 .

(3.3.52)

Finally, we report the following lemma (related to Lemma 2.1 of [25]) which will be used
in Chapter 10.

Lemma 3.3.13. Let E be a closed subspace of H0 = L2(T|S| × Td) and let Es := E ∩ Hs

for s ≥ s0. Let R : E → E be a linear operator, satisfying, for some s ≥ s1 ≥ s0, α ≥ 0,

∀v ∈ Es1 , ‖Rv‖s1 ≤
1

2
‖v‖s1 (3.3.53)

∀v ∈ Es , ‖Rv‖s ≤
1

2
‖v‖s + α‖v‖s1 . (3.3.54)

Then Id +R is invertible as an operator of Es1, and

∀v ∈ Es1 , ‖(Id +R)−1v‖s1 ≤ 2‖v‖s1 (3.3.55)

∀v ∈ Es , ‖(Id +R)−1v‖s ≤ 2‖v‖s + 4α‖v‖s1 . (3.3.56)
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Moreover, assume that R depends on the parameter λ ∈ Λ̃ and satisfies also

∀v(λ) ∈ Es1 , ‖Rv‖Lip,s1 ≤
1

2
‖v‖Lip,s1 (3.3.57)

∀v(λ) ∈ Es , ‖Rv‖Lip,s ≤
1

2
‖v‖Lip,s + α‖v‖Lip,s1 . (3.3.58)

Then

∀v(λ) ∈ Es1 , ‖(Id +R)−1v‖Lip,s1 ≤ 2‖v‖Lip,s1 (3.3.59)

∀v(λ) ∈ Es , ‖(Id +R)−1v‖Lip,s ≤ 2‖v‖Lip,s + 4α‖v‖Lip,s1 . (3.3.60)

Proof. Since E is a closed subspace of H0, each space Es = E ∩Hs, s ≥ 0, is complete.
By (3.3.53) the operator Id + R is invertible in Es1 and (3.3.55) holds. In order to prove
(3.3.56), let k = (Id +R)−1v so that k = v −Rk. Then

‖k‖s ≤ ‖v‖s + ‖Rk‖s
(3.3.54)

≤ ‖v‖s +
1

2
‖k‖s + α‖k‖s1

(3.3.55)

≤ ‖v‖s +
1

2
‖k‖s + α2‖v‖s1

and we deduce ‖k‖s ≤ 2(‖v‖s + α2‖v‖s1) which is (3.3.56). The proof of (3.3.59) and
(3.3.60) when we assume (3.3.57) and (3.3.58) follows the same line.

3.4 Off-diagonal decay of
√
−∆ + V (x)

The goal of this section is to provide a direct proof of the fact that the matrix which
represents the operator

DV =
√
−∆ + V (x) ,

defined in (2.1.11), in the exponential basis {eij·x}j∈Zd has off-diagonal decay. This is
required by the multiscale analysis performed in Chapter 4. We compare DV to the Fourier
multiplier Dm =

√
−∆ +m defined in (3.3.18).

Proposition 3.4.1. (Off-diagonal decay of DV −Dm) There exists a positive constant

Υs := Υs(‖V ‖Cns ), where ns := ds+
d

2
e+ 1 ∈ N, such that

∣∣DV −Dm

∣∣
+,s

=
∣∣D 1

2
m

(
DV −Dm

)
D

1
2
m

∣∣
s
≤ Υs . (3.4.1)

The rest of this section is devoted to the proof of Proposition 3.4.1. In order to prove
that the matrix (Aji )i,j∈Zd which represents, in the exponential basis {eij·x}j∈Zd a linear
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operator A acting on a dense subspace of L2(Td), has polynomial off-diagonal decay, we
shall use the following criterium. Since the operator Adn∂xk

A, where

Ad∂xk := [∂xk , · ]

denotes the commutator with the partial derivative ∂xk , is represented by the matrix(
in(ik − jk)nAji

)
i,j∈Zd ,

it is sufficient that A and the operators Adn∂xk
A, k = 1, . . . , d, for n large enough, extend

to bounded operators in L2(Td).
We shall use several times the following abstract lemma.

Lemma 3.4.2. Let (H, 〈 , 〉) be a separable Hilbert space with norm ‖u‖ := 〈u, u〉
1
2 . Let

B : D(B) ⊂ H → H be an unbounded symmetric operator with a dense domain of definition
D(B) ⊂ H, satisfying:

(H1) There is β > 0 such that 〈Bu, u〉 ≥ β‖u‖2, ∀u ∈ D(B).

(H2) B is invertible and B−1 ∈ L(H) is a compact operator.

Let A : D(A) ⊂ H → H be a symmetric linear operator, such that:

(H3) D(A), respectively in addition D(B
1
2AB

1
2 ), contains D(Bp) for some p ≥ 1.

Moreover we assume that:

(H4) There is ρ ≥ 0 such that |〈Au,Bu〉| ≤ ρ‖u‖2, ∀u ∈ D(A) ∩ D(B).

Then A, respectively B
1
2AB

1
2 , can be extended to a bounded operator of H (still denoted by

A, respectively B
1
2AB

1
2 ) satisfying

‖A‖L(H) ≤ ρ/β , respectively ‖B
1
2AB

1
2‖L(H) ≤ ρ . (3.4.2)

Proof. The operator B−1 ∈ L(H) is compact and symmetric, and therefore there is
an orthonormal basis (ψk)k≥1 of H of eigenfunctions of B−1, i.e. B−1ψk = λkψk, with
eigenvalues λk ∈ R\{0}, (λk)→ 0. Each ψk is an eigenfunction of B, i.e.

Bψk = νkψk with eigenvalue νk := λ−1
k , (νk)→∞ .

By assumption (H1), each νk ≥ β > 0. Clearly each eigenfunction ψk belongs to the domain
D(Bp) of Bp for any p ≥ 1.

For any N ≥ 1, we consider the N -dimensional subspace EN := Span(ψ1, . . . , ψN) of
H, and we denote by ΠN the corresponding orthogonal projector on EN . We have that
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EN ⊂ D(Bp) for any p ≥ 1, and therefore assumption (H3) implies that EN ⊂ D(A).

Proof of ‖A‖L(H) ≤ ρ/β. The operator AN := ΠNA|EN is a symmetric operator on the
finite dimensional Hilbert space (EN , 〈 , 〉) and

‖AN‖L(EN ) = max{|λ| ; λ eigenvalue of AN} . (3.4.3)

Let λ be an eigenvalue of AN and u ∈ EN\{0} be an associated eigenvector, i.e. ANu = λu.
Since B(EN) ⊂ EN , the vector Bu is in EN , and we have

λ〈u,Bu〉 = 〈ANu,Bu〉 = 〈ΠNAu,Bu〉 = 〈Au,Bu〉 . (3.4.4)

Since 〈u,Bu〉 is positive by (H1), by (3.4.4) and using assumption (H4) (notice that u is
in EN ⊂ D(A) ∩ D(B)), we get

|λ|〈u,Bu〉 = |〈Au,Bu〉| ≤ ρ‖u‖2 ,

and, by assumption (H1), we deduce that |λ| ≤ ρ/β. By (3.4.3) we conclude that, for any
N ≥ 1,

‖AN‖L(EN ) ≤ ρ/β . (3.4.5)

Defining the subspace E :=
⋃
N≥1

EN of D(A), we deduce by (3.4.5) that

∀(u, v) ∈ E × E , 〈Au, v〉 ≤ ρβ−1‖u‖‖v‖ . (3.4.6)

Moreover, since E is dense in H (the (ψk)k≥1 are an orthonormal basis of H), the inequality
(3.4.6) holds for all (u, v) ∈ E×H, in particular for all (u, v) ∈ E×D(A). Therefore, since
A is symmetric, we obtain that

∀u ∈ E , ∀v ∈ D(A) , 〈u,Av〉 ≤ ρβ−1‖u‖‖v‖ . (3.4.7)

By the density of E in H, the inequality (3.4.7) holds for all (u, v) ∈ H × D(A), and we
conclude that

∀v ∈ D(A) , ‖Av‖ ≤ ρβ−1‖v‖ . (3.4.8)

By continuity and (3.4.8), the operator A can be extended to a bounded operator on the
closure D(A) = H (that we still denote by A) with operatorial norm ‖A‖L(H) ≤ ρ/β,
proving the first estimate in (3.4.2).

Proof of ‖B
1
2AB

1
2‖L(H) ≤ ρ. The linear operator B

1
2 is defined on the basis (ψk)k≥1 by

setting
B

1
2ψk :=

√
νkψk .

Notice that, since in assumption (H3) we also require that, for some p ≥ 1, we have

D(Bp) ⊆ D(B
1
2AB

1
2 ), we have the inclusion EN ⊂ D(B

1
2AB

1
2 ). Since B

1
2 (EN) ⊂ EN ,
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and the operators B
1
2 , A are symmetric on EN ⊂ D(A), then A′N := B

1
2 ΠNAB

1
2

|EN is

a symmetric operator of EN . Let λ′ be an eigenvalue of A′N and u′ ∈ EN\{0} be an

associated eigenvector, i.e. A′Nu
′ = λ′u′. Using that y := B

1
2u′ ∈ EN and By ∈ EN , we

obtain (recall that AN = ΠNA|EN )

λ′〈u′, Bu′〉 = 〈B
1
2ANB

1
2u′, Bu′〉 = 〈B

1
2ANy,B

1
2y〉

= 〈ANy,By〉 = 〈Ay,By〉 . (3.4.9)

Since 〈u′, Bu′〉 is positive by (H1), by (3.4.9) and assumption (H4) (notice that u′ is in
EN ⊂ D(A) ∩ D(B)), we get

|λ′|〈u′, Bu′〉 ≤ ρ‖y‖2 = ρ〈B
1
2u′, B

1
2u′〉 = ρ〈u′, Bu′〉 . (3.4.10)

Since 〈u′, Bu′〉 > 0 by (H1), we deduce by (3.4.10) that |λ′| ≤ ρ and thus ‖A′N‖L(EN ) ≤ ρ.

Since B
1
2 and ΠN commute and EN ⊂ D(B

1
2AB

1
2 ), we have

A′N = ΠN(A′)|EN , A′ := B
1
2AB

1
2 ,

and arguing by density as to prove (3.4.8) for A, we deduce that for all v ∈ D(A′), ‖A′v‖ ≤
ρ‖v‖. Hence A′ can be extended to a bounded linear operator of H with norm ‖A′‖L(H) ≤ ρ.
This proves the second estimate in (3.4.2).

In the sequel we shall apply Lemma 3.4.2 with Hilbert space H = L2(Td) and an
operator B ∈ {B1, B2, B3} among

B1 := Dm , B2 := DV , B3 := Dm +DV , (3.4.11)

with dense domain
D(Bi) := H1(Td) .

Notice that each operator Bi, i = 1, 2, 3, satisfies assumption (H1) (recall (1.1.3)) and B−1
i

sends continuously L2(Td) into H1(Td) (note that ‖DV u‖L2 ' ‖u‖H1
x

by (3.1.3)-(3.1.4)).

Moreover, since H1(Td) is compactly embedded into L2(Td), each B−1
i is a compact operator

of H = L2(Td), and hence also assumption (H2) holds.

Lemma 3.4.3. (L2-bounds of DV −Dm) Consider the linear operators

A0 := DV −Dm, (3.4.12)

A′0 := D
1
2
m(DV −Dm)D

1
2
m (3.4.13)

with domains D(A0) := H1(Td), D(A′0) := H2(Td). Then A0 and A′0 can be extended to
bounded linear operators of L2(Td) satisfying

‖A0‖L(L2), ‖A′0‖L(L2) ≤ C(‖V ‖L∞) . (3.4.14)
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Proof. Since D2
m = −∆ +m. and D2

V = −∆ + V (x), we have

DV (DV −Dm) + (DV −Dm)Dm = D2
V −D2

m = Op(V (x)−m) ,

where Op(a) denotes the multiplication operator by the function a(x). Hence, for all
u ∈ H2(Td),∣∣(DV (DV −Dm)u, u)L2 + ((DV −Dm)Dmu, u)L2

∣∣ = |((V (x)−m)u, u)L2|
≤ (‖V ‖L∞ +m)‖u‖2

L2 ,

which gives, by the symmetry of DV and DV −Dm that

∀u ∈ H2(Td) , |((DV −Dm)u, (DV +Dm)u)L2| ≤ (‖V ‖L∞ +m)‖u‖2
L2 . (3.4.15)

Actually (3.4.15) holds for all u ∈ H1(Td), by the density of H2(Td) in H1(Td) and the
fact that DV and Dm send continuously H1(Td) into L2(Td): setting A0 = DV −Dm as in
(3.4.12) and B3 = DV +Dm as in (3.4.11), we have

∀u ∈ H1(Td) , |(A0u,B3u)L2| ≤ (‖V ‖L∞ +m)‖u‖2
L2 . (3.4.16)

Thus the assumption (H4) of Lemma 3.4.2 holds with A = A0, B = B3, Hilbert space
H = L2(Td) and ρ = ‖V ‖L∞ + m. Applying Lemma 3.4.2 to A0 and B3 (also assumption
(H3) holds since D(A0) = D(B3) = H1(Td)) we conclude that A0 can be extended to a
bounded operator of L2(Td) with norm

‖A0‖L(L2) ≤ C(‖V ‖L∞) (3.4.17)

(depending also on the constants m and β > 0 in (1.1.3)). This proves the first bound in
(3.4.14). Then, recalling the definitions of A0, B1, B3 in (3.4.12), (3.4.11), using (3.4.16)
and (3.4.17), we also deduce that

∀u ∈ H1(Td) , |(A0u,B1u)L2 | = 1

2
|(A0u, (B3 − A0)u)L2| ≤ C ′(‖V ‖L∞)‖u‖2

L2 .

Thus the assumption (H4) of Lemma 3.4.2 holds with A = A0, B = B1. Also assumption

(H3) holds since D(A0) = D(B1) = H1(Td) and D(B
1
2
1 A0B

1
2
1 ) ⊃ H2(Td) = D(B2

1). There-

fore Lemma 3.4.2 implies that A′0 = B
1
2
1 A0B

1
2
1 can be extended to a bounded operator of

L2(Td), with operatorial norm ‖A′0‖L(L2) ≤ C(‖V ‖L∞). This proves the second bound in
(3.4.14).

Let [A′0]ji = (|i|2 + m)1/4[DV −Dm]ji (|j|2 + m)1/4, i, j ∈ Zd, denote the elements of the

matrix representing the operator A′0 = D
1
2
m(DV − Dm)D

1
2
m in the exponential basis. By

Lemma 3.4.3 we have that

|[A′0]ji | ≤ ‖A′0‖L(L2) ≤ C(‖V ‖L∞) , ∀i, j ∈ Zd . (3.4.18)
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In order to prove also a polynomial off-diagonal decay for [A′0]ji , i 6= j, we notice that, for
n ≥ 1,

Adn∂xk
A′0 is represented by the matrix

(
in(ik − jk)n[A′0]ji

)
i,j∈Zd

(3.4.19)

and then prove that Adn∂xk
A′0 extends to a bounded operator in L2(Td) .

Lemma 3.4.4. (L2-bounds of Adn∂xk
DV ) For any n ≥ 1, k = 1, . . . , d the operators

Adn∂xk
DV and D

1
2
m(Adn∂xk

DV )D
1
2
m can be extended to bounded operators of L2(Td): there

exist positive constants Cn and C ′n depending on ‖V ‖Cn such that∥∥Adn∂xk
DV

∥∥
L(L2)

≤ Cn , (3.4.20)∥∥D 1
2
m(Adn∂xk

DV )D
1
2
m

∥∥
L(L2)

≤ C ′n . (3.4.21)

Proof. We shall use the following algebraic formulas: given linear operators L1, L2 we
have

Ad∂xk (L1L2) = (Ad∂xkL1)L2 + L1(Ad∂xkL2) , (3.4.22)

Adn∂xk
(L1L2) =

n∑
n1=0

(
n
n1

)(
Adn1

∂xk
L1

)(
Adn−n1

∂xk
L2

)
. (3.4.23)

We split the proof in two steps.

1st step. We prove by iteration that, for all n ≥ 1, there are constants Cn, C
′′
n > 0 such

that

‖(Adn∂xk
DV )DV +DV (Adn∂xk

DV )‖L(L2) ≤ C ′′n (3.4.24)

‖Adn∂xk
DV ‖L(L2) ≤ Cn . (3.4.25)

Clearly the estimates (3.4.25) are (3.4.20).

Initialization: proof of (3.4.24)-(3.4.25) for n = 1. Applying (3.4.22) with L1 =
L2 = DV and since D2

V = −∆ + V (x), we get

(Ad∂xkDV )DV +DV (Ad∂xkDV ) = Ad∂xk (−∆ + V (x)) = Op(Vxk(x)) (3.4.26)

where Op(Vxk) is the multiplication operator by the function Vxk(x) := (∂xkV )(x). Hence
(3.4.24) for n = 1 holds with C ′′1 = ‖V ‖C1 . In order to prove (3.4.25) for n = 1 we apply
Lemma 3.4.2 to the operators A1 := Ad∂xkDV and B2 = DV . Assumption (H3) holds

because D(A1) = H2(Td) = D(B2
2). Note that, because of the L2-antisymmetry of the
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operator ∂xk , if L is L2-symmetric then so is Ad∂xkL. Hence A1 = Ad∂xkDV is symmetric.
Also assumption (H4) holds because

∀u ∈ H2(Td) , |(A1u,B2u)L2| = |(Ad∂xkDV u,DV u)L2| (3.4.27)

=
1

2

∣∣((Ad∂xkDV )DV +DV (Ad∂xkDV )u, u
)
L2

∣∣
≤ C ′′1

2
‖u‖2

L2 .

by (3.4.24) for n = 1. Therefore Lemma 3.4.2 implies that (3.4.25) holds for n = 1, for
some constant C1 depending on ‖V ‖C1 .

Iteration: proof of (3.4.24)-(3.4.25) for n > 1. Assume by induction that (3.4.24)-
(3.4.25) have been proved up to rank n − 1. We now prove them at rank n. Applying
(3.4.23) with L1 = L2 = DV and since D2

V = −∆ + V (x), we get

(
Adn∂xk

DV

)
DV +DV

(
Adn∂xk

DV

)
+

n−1∑
n1=1

(
n
n1

)(
Adn1

∂xk
DV

)(
Adn−n1

∂xk
DV

)
= Adn∂xk

(−∆ + V (x)) = Op((∂nxkV )) . (3.4.28)

Let Tn :=
(
Adn∂xk

DV

)
DV +DV

(
Adn∂xk

DV

)
. By (3.4.28) and using the inductive assumption

(3.4.25) at rank n− 1, we obtain

‖Tn‖L(L2(Td)) ≤ ‖V ‖Cn +
n−1∑
n1=1

(
n
n1

)
‖Adn1

∂xk
DV ‖L(L2)‖Adn−n1

∂xk
DV ‖L(L2) ≤ C ′′n (3.4.29)

where the constant C ′′n depends on ‖V ‖Cn . We have that

∀u ∈ Hn+1(Td) , |(Adn∂xk
DV u,DV u)L2| = 1

2
|(Tnu, u)L2|

(3.4.29)

≤ C ′′n
2
‖u‖2

L2 . (3.4.30)

We now apply Lemma 3.4.2 to An := Adn∂xk
DV and B2 = DV . Assumption (H3) holds

because D(An) = Hn+1(Td) = D(Bn+1
2 ) by (3.1.4). Assumption (H4) holds by (3.4.30).

Therefore the first inequality in (3.4.2) implies that ‖An‖L(L2(Td)) ≤ Cn(‖V ‖Cn). This proves
(3.4.25) at rank n.

2nd step. Proof of (3.4.21) for any n ≥ 1. In order to prove that the operator

D
1
2
m

(
Adn∂xk

DV

)
D

1
2
m extends to a bounded operator of L2(Td) we use Lemma 3.4.2 with

A = An = Adn∂xk
DV and B = Dm. Assumption (H3) holds because D(An) = Hn+1(Td) =

D(Dn+1
m ) and D(D

1
2
mAnD

1
2
m) ⊃ Hn+2(Td) = D(Dn+2

m ). Also Assumption (H4) holds because,
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by (3.4.30), and the fact that An and Dm−DV are bounded operators of L2(Td) by (3.4.25)
and Lemma 3.4.3, we get

∀u ∈ Hn+1(Td) , |(Anu,Dmu)L2 | ≤ |(Anu,DV u)L2|+ |(Anu,Dmu−DV u)L2|
≤ ρn‖u‖2

L2 ,

where ρn depends on ‖V ‖Cn . Then the second inequality in (3.4.2) implies (3.4.21).

Proof of Proposition 3.4.1 concluded. Recalling (3.4.18) the entries of the matrix

([A′0]ji )i,j∈Zd , which represents the operator A′0 := D
1
2
m(DV − Dm)D

1
2
m in the exponential

basis, are bounded. Furthermore, since each ∂xk , k = 1, . . . , d, commutes with Dm and D
1
2
m,

we have that, for any n ≥ 1,

Adn∂xk
A′0 = D

1
2
m(Adn∂xk

DV )D
1
2
m .

By Lemma 3.4.4, this operator can be extended to a bounded operator on L2(Td) satisfying
(see (3.4.21))

‖Adn∂xk
A′0‖L(L2(Td)) ≤ C ′n(‖V ‖Cn) . (3.4.31)

By (3.4.18), (3.4.19), (3.4.31) we deduce that

∀n ≥ 0 , ∀k = 1, . . . , d , ∀(i, j) ∈ Zd × Zd ,
|ik − jk|n|[A′0]ji | ≤ ‖Adn∂xk

A′0‖L(L2(Td)) ≤ C ′n(‖V ‖Cn)

with the convention Ad0
∂xk

:= Id. Hence, for s ≥ 0 and ns := ds +
d

2
e + 1 ≥ s +

d

2
+ 1, we

deduce that the s-decay norm of A′0 satisfies

|A′0|2s ≤ K2
0 +

∑
`∈Zd\{0}

K2
ns

|`|2ns
|`|2s ≤ K2

ns

∑
`∈Zd

1

〈`〉d+2
=: Υ2

s

for some constant Υs depending on s and ‖V ‖Cns only. The proof of Proposition 3.4.1 is
complete.

With the same methods we also obtain the following propositions.

Proposition 3.4.5. |D
1
2
V −D

1
2
m|s ≤ C(s, ‖V ‖Cns ) where ns := ds+

d

2
e+ 1.

Proof. Since the proof closely follows Lemmata 3.4.3 and 3.4.4 we shall indicate just the

main steps. One first proves that D
1
2
V −D

1
2
m can be extended to a bounded operator of L2,

arguing as in Lemma 3.4.3. Writing

D
1
2
V (D

1
2
V −D

1
2
m) + (D

1
2
V −D

1
2
m)D

1
2
m = DV −Dm ,
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using the symmetry of D
1
2
V and D

1
2
V −D

1
2
m, that DV −Dm is bounded on L2 by Lemma 3.4.3

(see (3.4.14)), and the density of H1 in H
1
2 , we deduce that

∀u ∈ H
1
2 (Td) , |((D

1
2
V −D

1
2
m)u, (D

1
2
V +D

1
2
m)u)L2 | ≤ C(‖V ‖L∞)‖u‖2

L2 .

Then, arguing as in Lemma 3.4.3, Lemma 3.4.2 implies that D
1
2
V −D

1
2
m can be extended to

a bounded operator of L2 satisfying

‖D
1
2
V −D

1
2
m‖L(L2) ≤ C(‖V ‖L∞) . (3.4.32)

Next one proves that, for all n ≥ 1, k = 1, . . . , d, the operators Adn∂xk
D

1
2
V can be extended

to bounded operators on L2 satisfying∥∥Adn∂xk
D

1
2
V

∥∥
L(L2)

≤ Cn(‖V ‖Cn) . (3.4.33)

It is sufficient to argue as in Lemma 3.4.4, applying (3.4.22)-(3.4.23) to L1 = L2 = D
1
2
V and

D
1
2
VD

1
2
V = DV , and using that Adn∂xk

DV are bounded operators of L2 satisfying (3.4.20). The

Proposition follows by (3.4.32) and (3.4.33) as in the conclusion of the proof of Proposition
3.4.1.

Proposition 3.4.6. |D
1
2
mD

− 1
2

V |s, |D
− 1

2
V D

1
2
m|s ≤ C(s, ‖V ‖Cns ).

Proof. Writing

D
− 1

2
V D

1
2
m = Id−D−

1
2

V (D
1
2
V −D

1
2
m) ,

D
1
2
mD

− 1
2

V = Id− (D
1
2
V −D

1
2
m)D

− 1
2

V ,

Proposition 3.4.6 follows by Proposition 3.4.5, (3.3.6), and

|D−
1
2

V |s ≤ C(s, ‖V ‖Cns ) . (3.4.34)

The estimate (3.4.34) follows, as in the conclusion of the proof of Proposition 3.4.1, by the

fact that D
− 1

2
V is a bounded operator of L2 and∥∥Adn∂xk

D
− 1

2
V

∥∥
L(L2)

≤ Cn(‖V ‖Cn) , ∀n ≥ 1 , k = 1, . . . , d . (3.4.35)

The estimates (3.4.35) can be proved applying (3.4.22)-(3.4.23) to L1 = L2 = D
1
2
V and

D
1
2
VD

− 1
2

V = Id. For example, applying (3.4.22), we get(
Ad∂xkD

− 1
2

V

)
= −D−

1
2

V

(
Ad∂xkD

1
2
V

)
D
− 1

2
V

which is a bounded operator on L2 satisfying (3.4.33), and D
− 1

2
V ∈ L(L2). By iteration, the

estimate (3.4.35) follows for any n ≥ 1.
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3.5 Interpolation inequalities

We conclude this Chapter with useful interpolation inequalities for the Sobolev spaces Hs

defined in (3.3.2).
For any s ≥ s0 > (|S|+ d)/2, we have the tame estimate for the product

‖fg‖Lip,s .s ‖f‖Lip,s‖g‖Lip,s0 + ‖f‖Lip,s0‖g‖Lip,s . (3.5.1)

Actually we directly prove the improved tame estimate (3.5.2) below, used in [23], [25].

Lemma 3.5.1. Let s ≥ s0 > (|S|+ d)/2. Then

‖uv‖Lip,s ≤ C0‖u‖Lip,s‖v‖Lip,s0 + C(s)‖u‖Lip,s0‖v‖Lip,s (3.5.2)

where the constant C0 > 0 is independent of s ≥ s0.

Proof. Denoting y := (ϕ, x) ∈ Tb, b = |S|+ d, we expand in Fourier series

u(y) =
∑
m∈Zb

um e
im·y , v(y) =

∑
m∈Zb

vm e
im·y .

Thus

‖u v‖2
s =

∑
m∈Zb

∣∣∣∑
k∈Zb

ukvm−k

∣∣∣2〈m〉2s ≤ ∑
m∈Zb

(∑
k∈Zb
|uk||vm−k|

)2

〈m〉2s ≤ S1 + S2 (3.5.3)

where

S1 := 2
∑
m∈Zb

( ∑
|m|<|k|21/s

|uk||vm−k|
)2

〈m〉2s

S2 := 2
∑
m∈Zb

( ∑
|m|≥|k|21/s

|uk||vm−k|
)2

〈m〉2s .

The indices in the sum S1 are restricted to |m| < |k|21/s, thus (〈m〉/〈k〉)s ≤ 2, and, using
Cauchy-Schwarz inequality, we deduce

S1 = 2
∑
m∈Zb

∑
|m|<|k|21/s

(
|uk|〈k〉s|vm−k|〈m− k〉s0

〈m〉s

〈k〉s〈m− k〉s0
)2

≤ 2
∑
m∈Zb

(∑
k∈Zb
|uk|2〈k〉2s|vm−k|2〈m− k〉2s04

)(∑
k∈Zb

1

〈m− k〉2s0
)

≤ C(s0)‖u‖2
s‖v‖2

s0
. (3.5.4)
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On the other hand, the indices in the sum S2 are restricted to |k| ≤ |m|2−1/s, and therefore

|m− k| ≥ |m| − |k| ≥ |m|(1− 2−1/s)

and (〈m〉/〈m− k〉)s ≤ c(s). As a consequence

S2 = 2
∑
m∈Zb

∑
|k|≤|m|2−1/s

(
|uk|〈k〉s0|vm−k|〈m− k〉s

〈m〉s

〈k〉s0〈m− k〉s
)2

≤ 2
∑
m∈Zb

(∑
k∈Zb
|uk|2〈k〉2s0|vm−k|2〈m− k〉2sc(s)2

)(∑
k∈Zb

1

〈k〉2s0
)

≤ C(s)‖u‖2
s0
‖v‖2

s . (3.5.5)

By (3.5.3) and the estimates (3.5.4)-(3.5.5) we deduce

‖u v‖s ≤ C(s0)‖u‖s‖v‖s0 + C(s)‖u‖s0‖v‖s .

Recalling (3.3.3), the estimate (3.5.2) follows.

In the case when 0 ≤ s ≤ s0, the estimate of ‖uv‖s can be simplified.

Lemma 3.5.2. Let s0 > (|S|+ d)/2 and 0 ≤ s ≤ s0. Then

‖uv‖Lip,s ≤ C(s0)‖u‖Lip,s0‖v‖Lip,s . (3.5.6)

Proof. Denoting b = (|S|+ d)/2, we have, as in the proof of Lemma 3.5.1,

‖uv‖2
s ≤

∑
m∈Zb

(∑
k∈Zb
〈m〉s|uk||vm−k|

)2

≤
∑
m∈Zb

(∑
k∈Zb
|uk|〈k〉s0|vm−k|〈m− k〉s

〈m〉s

〈k〉s0〈m− k〉s
)2

≤
∑
m∈Zb

(∑
k∈Zb
|uk|2〈k〉2s0 |vm−k|2〈m− k〉2s

)(∑
k∈Zb

〈m〉2s

〈k〉2s0〈m− k〉2s
)

(3.5.7)

by the Cauchy-Schwarz inequality. We now use the following inequality: for 0 ≤ s ≤ s0,

∀m ∈ Zb , ∀k ∈ Zb ,
〈m〉s

〈m− k〉s〈k〉s0
≤ 2s

( 1

〈k〉s0
+

1

〈m− k〉s0
)
. (3.5.8)

To prove (3.5.8), we distinguish two cases: if 〈m − k〉 ≥ 〈m〉/2 then (3.5.8) is trivial. If
〈m− k〉 < 〈m〉/2, then 〈k〉 > 〈m〉/2 > 〈m− k〉 and, since s0 − s ≥ 0,

〈m〉s ≤ 2s〈k〉s = 2s
〈k〉s0
〈k〉s0−s

≤ 2s
〈k〉s0

〈m− k〉s0−s
,
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which implies (3.5.8). By (3.5.8) we deduce that, for any m ∈ Zb,∑
k∈Zb

〈m〉2s

〈k〉2s0〈m− k〉2s
.s
∑
k∈Zb

1

〈k〉2s0
+
∑
k∈Zb

1

〈m− k〉2s0
≤ C(s0)

and therefore, by (3.5.7), we obtain

‖uv‖s ≤ C(s0)‖u‖s0‖v‖s . (3.5.9)

Recalling (3.3.3), the estimate (3.5.6) is a consequence of (3.5.9).

As in any scale of Sobolev spaces with smoothing operators, the Sobolev norms ‖ ‖s
defined in (3.3.2) admit an interpolation estimate.

Lemma 3.5.3. For any s1 < s2, s1, s2 ∈ R, and θ ∈ [0, 1], we have

‖h‖Lip,s ≤ 2‖h‖θLip,s1
‖h‖1−θ

Lip,s2
, s := θs1 + (1− θ)s2 . (3.5.10)

Proof. Recalling the definition of the Sobolev norm in (3.3.2), we deduce, by Hölder
inequality,

‖h‖2
s =

∑
i∈Zb
|hi|2〈i〉2s =

∑
i∈Zb

(|hi|2〈i〉2s1)θ(|hi|2〈i〉2s2)1−θ

≤
(∑
i∈Zb
|hi|2〈i〉2s1

)θ(∑
i∈Zb
|hi|2〈i〉2s2

)1−θ

= ‖h‖2θ
s1
‖h‖2(1−θ)

s2
.

Thus ‖h‖s ≤ ‖h‖θs1‖h‖
1−θ
s2

, and, for a Lipschitz family of Sobolev functions, see (3.3.3), the
inequality (3.5.10) follows.

As a corollary we deduce the following interpolation inequality.

Lemma 3.5.4. Let α ≤ a ≤ b ≤ β such that a+ b = α + β. Then

‖h‖Lip,a‖h‖Lip,b ≤ 4‖h‖Lip,α‖h‖Lip,β . (3.5.11)

Proof. Write a = θα + (1− θ)β and b = µα + (1− µ)β, where

θ =
a− β
α− β

, µ =
b− β
α− β

, θ + µ = 1 .

By the interpolation Lemma 3.5.3, we get

‖h‖Lip,a ≤ 2‖h‖θLip,α‖h‖1−θ
Lip,β, ‖h‖Lip,b ≤ 2‖h‖µLip,α‖h‖

1−µ
Lip,β ,

and (3.5.11) follows multiplying these inequalities.
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We finally recall the following Moser tame estimates for the composition operator

(u1, . . . , up) 7→ f(u1, . . . , up)(ϕ, x) := f(ϕ, x, u1(ϕ, x), . . . , up(ϕ, x)) (3.5.12)

induced by a smooth function f .

Lemma 3.5.5. (Composition operator) Let f ∈ C∞(T|S| × Td × Rp,R). Fix s0 >
(d + |S|)/2, s0 ∈ N. Given real valued functions ui, 1 ≤ i ≤ p, satisfying ‖ui‖Lip,s0 ≤ 1,
then, ∀s ≥ s0,

‖f(u1, . . . , up)‖Lip,s ≤ C(s, f)
(

1 +

p∑
i=1

‖ui‖Lip,s

)
. (3.5.13)

Assuming also that ‖vi‖Lip,s0 ≤ 1, 1 ≤ i ≤ p, then

‖f(v1, . . . , vp)− f(u1, . . . , up)‖Lip,s .s,f

p∑
i=1

‖vi − ui‖Lip,s+ (3.5.14)

( p∑
i=1

‖ui‖Lip,s + ‖vi‖Lip,s

) p∑
i=1

‖vi − ui‖Lip,s0 .

Proof. Let y := (ϕ, x) ∈ Tb, b = |S|+ d. For simplicity of notation we consider only the
case p = 1 and denote (u1, . . . , up) = u1 = u.

Step 1. For any s ≥ 0, for any function f ∈ C∞, for all ‖u‖s0 ≤ 1,

‖f(u)‖s ≤ C(s, f)
(
1 + ‖u‖s

)
. (3.5.15)

This estimate was proved by Moser in [98]. We propose here a different proof, following
[20]. Note that it is enough to prove (3.5.15) for u ∈ C∞(Tb).
Initialization: (3.5.15) holds for any s ∈ [0, s0]. For a multi-index α = (α1, . . . , αb) ∈ Nb,
we denote ∂αy = ∂α1

y1
. . . ∂αbyb and we set |α| := α1 + . . .+ αb. Recalling that s0 is an integer,

by the formula for the derivative of a composition of functions, we estimate the Sobolev
norm ‖f(u)‖s0 by

C(s0) max
{
‖(∂βy ∂quf)(·, u)(∂α

(1)

y u) . . . (∂α
(q)

y u)‖0 ; 0 ≤ q ≤ s0 , |α(1) + . . .+ α(q) + β| ≤ s0

}
where α(1), . . . , α(q), β ∈ Nb. By the Sobolev embedding ‖u‖L∞(Tb) .s0 ‖u‖s0 we have

‖(∂βy ∂quf)(y, u(y))‖L∞(Tb) ≤ C(f, ‖u‖s0) .

Hence, in order to prove the bound ‖f(u)‖s0 .f 1 + ‖u‖s0 , it is enough to check that, for
any 0 ≤ q ≤ s0, |α(1) + . . .+ α(q)| ≤ s0, the function

v := (∂α
(1)

y u) . . . (∂α
(q)

y u) satisfies ‖v‖0 ≤ C(s0)‖u‖qs0 . (3.5.16)
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Expanding in Fourier u(y) =
∑
k∈Zb

uke
ik·y, we have

‖v‖2
0 =

∑
k∈Zb

∣∣∣ ∑
k1+...+kq=k

(ik1)α
(1)

. . . (ikq)
α(q)

uk1 . . . ukq

∣∣∣2 , (3.5.17)

where, for w ∈ Cb and α ∈ Nb, we use the multi-index notation wα :=
b∏
l=1

wαll . Since

|α(1)|+ . . .+ |α(1)| ≤ s0, the iterated Young inequality implies

|(ik1)α
(1)

. . . (ikq)
α(q)| ≤ |k1||α

(1)| . . . |kq||α
(q)| ≤ 〈k1〉s0 + . . .+ 〈kq〉s0 ,

and therefore by (3.5.17) we have

‖v‖2
0 .q

q∑
i=1

Si with Si :=
∑
k∈Zb

( ∑
k1+...+kq=k

〈ki〉s0|uk1| . . . |ukq |
)2

.

An application of the Cauchy-Schwarz inequality, using∑
k2,...,kq∈Zb

〈k2〉−2s0 . . . 〈kq〉−2s0 <∞ ,

provides the bound S1 .s0 ‖u‖2q
s0

. The bounds for the other Si are obtained similarly. This
proves (3.5.16) and therefore (3.5.15) for s = s0. As a consequence, (3.5.15) trivially holds
also for any s ∈ [0, s0]: in fact, for all ‖u‖s0 ≤ 1, we have

‖f(u)‖s ≤ ‖f(u)‖s0 ≤ C(f) ≤ C(f)(1 + ‖u‖s) .

Induction: (3.5.15) holds for s > s0. We proceed by induction. Given some integer k ≥ s0,
we assume that (3.5.15) holds for any s ∈ [0, k], and for any function f ∈ C∞. We are
going to prove (3.5.15) for any s ∈]k, k + 1]. Recall that

‖u‖2
s =

∑
k∈Zb
|uk|2〈k〉2s ∼s ‖u‖2

L2 + max
i=1,...,b

‖∂yiu‖2
s−1 . (3.5.18)

Then

‖f(u)‖s
(3.5.18)∼s ‖f(y, u(y))‖L2 + max

i=1,...,b
‖∂yi(f(y, u(y)))‖s−1

.s,f 1 + max
i=1,...,b

(
‖(∂yif)(y, u(y))‖s−1 + ‖(∂uf)(y, u(y))(∂yiu)(y)‖s−1

)
. (3.5.19)

By the inductive assumption,

‖(∂yif)(y, u(y))‖s−1 ≤ C(f)(1 + ‖u‖s−1) . (3.5.20)

To estimate ‖(∂uf)(y, u(y))(∂yiu)(y)‖s−1, we distinguish two cases:
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• 1st case: k = s0. Thus s ∈ (s0, s0 + 1]. Since s − 1 ∈ (s0 − 1, s0] we apply Lemma
3.5.2 obtaining

‖(∂uf)(y, u(y))(∂yiu)(y)‖s−1 .s0 ‖(∂uf)(y, u(y))‖s0‖∂yiu‖s−1 .f ‖u‖s . (3.5.21)

• 2nd case: k ≥ s0 + 1. For any s ∈ (k, k+ 1] we have s− 1 ≥ s0, and, by Lemma 3.5.1
and the inductive assumption, we obtain

‖(∂uf)(y, u(y))(∂yiu)(y)‖s−1 .s,f (1 + ‖u‖s−1)‖u‖s0+1 + ‖u‖s .

By the interpolation inequality ‖u‖s−1‖u‖s0+1 ≤ ‖u‖s‖u‖s0 (Lemma 3.5.4), and s ≥
s0 + 1, we conclude that

‖(∂uf)(y, u(y))(∂yiu)(y)‖s−1 .s,f ‖u‖s . (3.5.22)

Finally, by (3.5.19), (3.5.20), (3.5.21), (3.5.22), the estimate (3.5.15) holds for all s ∈
]k, k + 1]. This concludes the iteration and the proof of (3.5.15).

Step 2. Proof of (3.5.13). In order to prove the Lipschitz estimate we write

f(v)(y)− f(u)(y) = f(y, v(y))− f(y, u(y))

=

∫ 1

0

(∂uf)(y, u(y) + τ(v − u)(y))(v − u)(y)dτ . (3.5.23)

Then

‖f(v)− f(u)‖s ≤
∫ 1

0

‖(∂uf)(y, u+ τ(v − u))(v − u)‖sdτ (3.5.24)

(3.5.1)

.s

∫ 1

0

‖(∂uf)(y, u+ τ(v − u))‖s‖v − u‖s0 + ‖(∂uf)(y, u+ τ(v − u))‖s0‖v − u‖sdτ .

Specializing (3.5.24) for v = u(λ2) and u = u(λ1), using (3.5.15) and ‖u‖Lip,s0 ≤ 1, we
deduce

‖f(u(λ2))− f(u(λ1)‖s .s,f ‖u‖Lip,s|λ2 − λ1| , ∀λ1, λ2 ∈ Λ . (3.5.25)

The estimates (3.5.15) and (3.5.25) imply (3.5.13).

Step 3. Proof of (3.5.14). By (3.5.23),

‖f(v)− f(u)‖Lip,s ≤
∫ 1

0

‖(∂uf)(y, u+ τ(v − u))(v − u)‖Lip,sdτ

(3.5.1)

.s

∫ 1

0

‖(∂uf)(y, u+ τ(v − u))‖Lip,s‖v − u‖Lip,s0

+ ‖(∂uf)(y, u+ τ(v − u))‖Lip,s0‖v − u‖Lip,s dτ

and, using (3.5.13) and ‖u‖Lip,s0 , ‖v‖Lip,s0 ≤ 1, we deduce (3.5.14) for p = 1.
Estimates (3.5.13) and (3.5.14) for p ≥ 2 can be obtained exactly in the same way.



Chapter 4

Multiscale Analysis

The main result of this Chapter is the abstract multiscale Proposition 4.1.5, which provides
invertibility properties of finite dimensional restrictions of the Hamiltonian operator Lr,µ
defined in (4.1.9) for a large set of parameters λ ∈ Λ. This multiscale Proposition 4.1.5 will
be used in Chapters 9 and 10.

4.1 Multiscale proposition

Let H := L2(Td,R)× L2(Td,R) and consider the Hilbert spaces

(i) H := H , (ii) H := H ×H . (4.1.1)

Any vector h ∈ H can be written as

(i) h = (h1, h2) , (ii) h = (h1, h2, h3, h4) , hi ∈ L2(Td,R) .

On H, we define the linear operator J as

J(h1, h2) := (h2,−h1) in case (i) (4.1.2)

J(h1, h2, h3, h4) := (h2,−h1, h4,−h3) in case (ii) . (4.1.3)

Moreover, in case (ii), we also define the right action of J on H as

hJ = (h1, h2, h3, h4)J := (−h3,−h4, h1, h2) . (4.1.4)

Remark 4.1.1. The motivation for defining (4.1.3), (4.1.4) is the following. Identifying
a ∈ L(Hj, H) with (a(1), a(2), a(3), a(4)) ∈ H×H as in (3.2.6)-(3.2.7), the operators Ja, aJ ∈
L(Hj, H), where J is the symplectic operator in (3.1.10), i.e. (4.1.2), are identified with
the vectors in H ×H in (3.2.13), (3.2.14), i.e. (4.1.3), (4.1.4).

103
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We denote by ΠS∪F the L2-orthogonal projection on the subspace HS∪F in H defined in
(3.3.31) or the analogous one in H ×H. Note that ΠS∪F commutes with the left (and right
in case (4.1.4)) action of J . We also denote

Π⊥S∪F := Id− ΠS∪F = ΠG ,

see (1.2.14). We fix a constant c ∈ (0, 1) such that

|µ̄ · `+ µj + c| ≥ γ0

〈`〉τ0
, ∀` ∈ Z|S| , j ∈ S . (4.1.5)

By standard arguments, condition (4.1.5) is fulfilled by all c ∈ (0, 1) except a set of measure
O(γ0). We explain the purely technical role of the term cΠS in (4.1.6)-(4.1.7) below, in
remarks 4.1.3 and 4.6.3 .

Definition 4.1.2. Given positive constants C1, c2 > 0, we define the class C(C1, c2) of
L2-self-adjoint operators acting on H, of the form, according to the cases (i)-(ii) in (4.1.1),

(i) Xr := Xr(ε, λ, ϕ) = DV + cΠS + r(ε, λ, ϕ) (4.1.6)

(ii) Xr,µ := Xr,µ(ε, λ, ϕ) = DV + cΠS + µ(ε, λ)JΠ⊥S∪F + r(ε, λ, ϕ) (4.1.7)

defined for λ ∈ Λ̃ ⊂ Λ, where DV :=
√
−∆ + V (x), µ(ε, λ) ∈ R, J is the self-adjoint

operator
J : H ×H → H ×H , h 7→ J h := JhJ , (4.1.8)

(recall (4.1.3)-(4.1.4)) and such that

1. |r|Lip,+,s1 ≤ C1ε
2, for some s1 > s0,

2. |µ(ε, λ)− µk|Lip ≤ C1ε
2 for some k ∈ F (set defined in (1.2.15)),

3. dλ

( Xr,µ

1 + ε2λ

)
≤ −c2ε

2Id, see the notation (1.6.4).

We assume that the non-resonance conditions (1.2.7), (1.2.16)-(1.2.17), (4.1.5) hold.
For simplicity of notation, in the sequel we shall denote by Xr,µ also the operator Xr in

(4.1.6), understanding that Xr = Xr,µ does not depend on µ, i.e. J = 0.

Notice that the operator J defined in (4.1.8) and Π⊥S∪F = ΠG commute.

Remark 4.1.3. The form of the operators Xr, Xr,µ in (4.1.6), (4.1.7) is motivated by the
application of the multiscale Proposition 4.1.5 to the operator Lr in (10.2.30) acting on H,
and the operator Lr,µ in (9.3.44) acting on H×H. We add the term cΠS in (4.1.6), (4.1.7)
as a purely technical trick to prove Lemma 4.6.2, see remark 4.6.3.
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In the next proposition we prove invertibility properties of finite dimensional restrictions
of the operator

Lr,µ := Jω · ∂ϕ +Xr,µ(ε, λ) , ω = (1 + ε2λ)ω̄ε , (4.1.9)

for a large set of λ ∈ Λ. For N ∈ N we define the subspace of trigonometric polynomials

HN :=
{
u(ϕ, x) =

∑
|(`,j)|≤N

u`,je
i(`·ϕ+j·x) , u`,j ∈ Cr

}

where r :=

{
2 in case (4.1.1)-(i)

4 in case (4.1.1)-(ii) ,

(4.1.10)

and we denote by ΠN the corresponding L2-projector:

u(ϕ, x) =
∑

(`,j)∈Z|S|×Zd
u`,je

i(`·ϕ+j·x) 7→ ΠNu :=
∑

|(`,j)|≤N

u`,je
i(`·ϕ+j·x) . (4.1.11)

The projectors ΠN satisfy the usual smoothing estimates in Sobolev spaces: for any s, β ≥ 0,

‖ΠNu‖s+β ≤ Nβ‖u‖s , ‖Π⊥N u‖s ≤ N−β‖u‖s+β (4.1.12)

‖ΠNu‖Lip,s+β ≤ Nβ‖u‖Lip,s , ‖Π⊥N u‖Lip,s ≤ N−β‖u‖Lip,s+β . (4.1.13)

We shall require that ω satisfies the following quadratic Diophantine non-resonance
condition.

Definition 4.1.4. (NR)γ,τ Given γ ∈ (0, 1), τ > 0, a vector ω ∈ R|S| is (NR)γ,τ non-
resonant, if, for any non zero polynomial P (X) ∈ Z[X1, . . . , X|S|] of the form

P (X) = n+
∑

1≤i≤j≤|S|

pijXiXj , n, pij ∈ Z , (4.1.14)

we have
|P (ω)| ≥ γ〈p〉−τ , 〈p〉 := max

i,j=1,...,|S|
{1, |pij|} . (4.1.15)

The main result of this section is the following proposition. Set

ς := 1/10 . (4.1.16)

For simplicity of notation, in the next proposition Lr,µ also denotes Jω · ∂ϕ + Xr, under-
standing that Xr = Xr,µ in (4.1.6) does not depend on µ.
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Proposition 4.1.5. (Multiscale) Let ω̄ε ∈ R|S| be (γ1, τ1)-Diophantine and satisfy prop-
erty (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 defined in (1.2.28). Then there are ε0 > 0,

τ ′ > 0, s̄1 > s0, N̄ ∈ N (not depending on Xr,µ but possibly on the constants C1, c2, γ0, τ0,
γ1, τ1) and τ ′0 > 0 (depending only on τ0) such that the following holds:

assume s1 ≥ s̄1 and take an operator Xr,µ in C(C1, c2) as in Definition 4.1.2, which

is defined for all λ ∈ Λ̃. Then for any ε ∈ (0, ε0), there are N(ε) ∈ N, closed subsets

Λ(ε; η,Xr,µ) ⊂ Λ̃, η ∈ [1/2, 1], satisfying

1. Λ(ε; η,Xr,µ) ⊆ Λ(ε; η′, Xr,µ), for all 1/2 ≤ η ≤ η′ ≤ 1;

2. the complementary set Λ(ε; 1/2, Xr,µ)c := Λ \ Λ(ε; 1/2, Xr,µ) satisfies

|Λ(ε; 1/2, Xr,µ)c ∩ Λ̃| . ε ; (4.1.17)

3. if |r′ − r|+,s1 + |µ′ − µ| ≤ δ ≤ ε2, then, for (1/2) +
√
δ ≤ η ≤ 1,

|Λ(ε; η,Xr′,µ′)
c ∩ Λ(ε; η −

√
δ,Xr,µ) ∩ Λ̃′| . δα ; (4.1.18)

such that,

1. ∀N̄ ≤ N < N(ε), λ ∈ Λ̃, the operator

[Lr,µ]2NN := ΠN(Lr,µ)|H2N
(4.1.19)

has a right inverse
(
[Lr,µ]2NN

)−1
: HN → H2N satisfying, for all s ≥ s0,∣∣∣( [Lr,µ]2NN

1 + ε2λ

)−1∣∣∣
Lip,s

≤ C(s)N τ ′0+1
(
N ςs + |r|Lip,+,s

)
. (4.1.20)

Moreover, for all λ ∈ Λ̃ ∩ Λ̃′, we have∣∣([Lr,µ]2NN
)−1 −

(
[Lr′,µ′ ]2NN

)−1∣∣
s1
.s1 N

2(τ ′0+ςs1)+1
(
|µ− µ′|N2 + |r − r′|+,s1

)
(4.1.21)

where µ, µ′, r, r′ are evaluated at fixed λ.

2. ∀N ≥ N(ε), λ ∈ Λ(ε; 1, Xr,µ), the operator

Lr,µ,N := ΠN

(
Jω · ∂ϕ +Xr,µ(ε, λ)

)
|HN

, ω = (1 + ε2λ)ω̄ε , (4.1.22)

is invertible and, for all s ≥ s0,∣∣∣( Lr,µ,N
1 + ε2λ

)−1∣∣∣
Lip,s
≤ C(s)N2(τ ′+ςs1)+3

(
N ς(s−s1) + |r|Lip,+,s

)
. (4.1.23)

Moreover for all λ ∈ Λ̃ ∩ Λ̃′,∣∣L−1
r,µ,N − L

−1
r′,µ′,N

∣∣
s1
≤ C(s1)N2(τ ′+ςs1)+1

(
|µ− µ′|N2 + |r − r′|+,s1

)
(4.1.24)

where µ, µ′, r, r′ are evaluated at fixed λ.
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Remark 4.1.6. The measure of the set Λ(ε; 1/2, Xr,µ)c is smaller than εp, for any p, at
the expense of taking a larger constant τ ′, see remark 4.8.17. We have written ε in (4.1.17)
for definiteness.

Remark 4.1.7. Properties 1-3 for the sets Λ(ε; η,Xr,µ) are stable under finite intersection:
if

(Λ(1)(ε; η,Xr,µ)), . . . , (Λ(p)(ε; η,Xr,µ))

are families of closed subsets of Λ satisfying 1-3, then the family (
⋂

1≤k≤p

Λ(k)(ε; η,Xr,µ)) still

satisfies these properties.

The proof of Proposition 4.1.5 is based on the multiscale analysis of the papers [22], [23],
[26] for quasi-periodically forced nonlinear wave and Schrödinger equations, but it is more
complicated in the present autonomous setting. The proof of the multiscale Proposition
4.1.5 is given in the next sections 4.2-4.8.

4.2 Matrix representation

We decompose the operator Lr,µ in (4.1.9), with Xr,µ as in (4.1.7) or (4.1.6) (in such a case
we mean that J = 0), as

Lr,µ = Dω + T ,
Dω := Jω · ∂ϕ +Dm + µJ ,
T := DV −Dm − µJΠS∪F + r + cΠS

(4.2.1)

where DV :=
√
−∆ + V (x) is defined in (2.1.11), Dm :=

√
−∆ +m in (3.3.18), and ω =

(1 + ε2λ)ω̄ε. By Proposition 3.4.1 the matrix which represents the operator DV − Dm in
the exponential basis has off-diagonal decay.

In what follows we identify a linear operator A(ϕ), ϕ ∈ T|S|, acting on functions h(ϕ, x),
with the infinite dimensional matrix (A`,j`′,j′){(`,j),(`′,j′)∈Zb} of 2 × 2 matrices A`,j`′,j′ in case
(4.1.1)-(i), respectively 4 × 4 in case (4.1.1)-(ii), defined by the relation (3.2.25). In this
way, the operator Lr,µ in (4.2.1) is represented by the infinite dimensional Hermitian matrix

A(ε, λ) := A(ε, λ; r) := Dω + T , (4.2.2)

of 2 × 2 matrices in case (i), resp. 4 × 4 matrices in case (ii), where the diagonal part is,
in case (i),

Dω = Diagi∈Zb

(
〈j〉m iω · `
−iω · ` 〈j〉m

)
,

i := (`, j) ∈ Zb := Z|S| × Zd , 〈j〉m :=
√
|j|2 +m.

(4.2.3)
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In case (ii), recalling the definition of J in (4.1.8), of the left and right action of J in
(4.1.3)-(4.1.4), and choosing the basis of C4

{f1, f2, f3, f4} := {e3 − e2, e1 + e4, e1 − e4, e2 + e3} ,
ea := (0, . . . , 1︸︷︷︸

a−th

, . . . , 0) ∈ C4 ,

we have

Dω = Diag(`,j)∈Zb


〈j〉m − µ iω · ` 0 0
−iω · ` 〈j〉m − µ 0 0

0 0 〈j〉m + µ iω · `
0 0 −iω · ` 〈j〉m + µ

 . (4.2.4)

The off-diagonal matrix

T := (Ti
′

i )i∈Zb,i′∈Zb , b = |S|+ d , Ti
′

i := (DV −Dm)j
′

j − µ[JΠS∪F]j
′

j + ri
′

i , (4.2.5)

where Ti
′

i are 2 × 2, resp. 4 × 4 matrices, satisfies, by (3.4.1), Lemma 3.3.8, property 1 of
Definition 4.1.2,

|T|+,s1 ≤ C(s1) . (4.2.6)

Note that (Ti
′

i )∗ = Tii′ . Moreover, since the operator T = T (ϕ) in (4.2.1) is a ϕ-dependent
family of operators acting on H (as r defined in (4.1.6)-(4.1.7) which is the only ϕ-dependent

operator), the matrix T is Töplitz in `, namely Ti
′

i = T
`′,j′

`,j depends only on the indices
`− `′, j, j′. We introduce a further index a ∈ I where

I := {1, 2} in case (4.1.1)-(i) , I := {1, 2, 3, 4} in case (4.1.1)-(ii) , (4.2.7)

to distinguish the matrix elements of each 2× 2, resp. 4× 4, matrix

Ti
′

i :=
(
T
i′,a′

i,a

)
a,a′∈I .

Under the unitary change of variable (basis of eigenvectors)

U := Diag(`,j)∈Zb
1√
2

(
1 1
i −i

)
(4.2.8)

the matrix Dω in (4.2.3) becomes completely diagonal

Dω := U−1DωU = Diag(`,j)∈Zb

(
〈j〉m − ω · ` 0

0 〈j〉m + ω · `

)
(4.2.9)

and, under the unitary transformation

U := Diag(`,j)∈Zb
1√
2


1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

 , (4.2.10)
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the matrix in (4.2.4) becomes completely diagonal

Dω := U−1DωU = Diag(`,j)∈Zb
〈j〉m − µ− ω · ` 0 0 0

0 〈j〉m − µ+ ω · ` 0 0
0 0 〈j〉m + µ− ω · ` 0
0 0 0 〈j〉m + µ+ ω · `

 . (4.2.11)

Under the unitary change of variable U in (4.2.8) in case (4.1.1)-(i), (4.2.10) in case (4.1.1)-
(ii), the hermitian matrix A in (4.2.2) transforms in the hermitian matrix

A(ε, λ) := A := U−1AU = Dω + T , T i
′

i := U−1Ti
′

i U , (4.2.12)

where the off-diagonal term T satisfies, by (4.2.6),

|T |+,s1 ≤ C(s1) . (4.2.13)

We introduce the one-parameter family of infinite dimensional matrices

A(ε, λ, θ) := A(ε, λ) + θY := Dω + θ Y + T , θ ∈ R , (4.2.14)

where

Y := Diagi∈Zb

(
−1 0
0 1

)
in case (4.1.1)−(i) ,

Y := Diagi∈Zb


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 in case (4.1.1)−(ii) .

(4.2.15)

The reason for adding θY is that, translating the time Fourier indices

(`, j) 7→ (`+ `0, j)

in A(ε, λ), gives A(ε, λ, θ) with θ = ω ·`0. Note that the matrix T remains unchanged under
translation because it is Töplitz with respect to `.

Remark 4.2.1. The matrix A(ε, λ, θ) := A(ε, λ, θ; r) in (4.2.14) represents the L2-self-
adjoint operator

Lr,µ(θ) := Jω · ∂ϕ + iθJ +DV + µJΠ⊥S∪F + cΠS + r . (4.2.16)

In section 4.7 we shall denote by Ă(ε, λ, θ) := A(ε, λ, θ; 0) the matrix which represents

L0,µ(θ) := Jω · ∂ϕ + iθJ +DV + µJΠ⊥S∪F + cΠS . (4.2.17)

Notice that L0,µ(θ) is independent of ϕ, thus Ă(ε, λ, θ) is diagonal in ` ∈ Z|S|.
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The eigenvalues of the 2 × 2 matrix Dω + θY , with Dω in (4.2.9) and Y defined in
(4.2.15)-case (i), resp. 4× 4 matrix with Dω in (4.2.11) and Y defined in (4.2.15)-case (ii),
are

di,a(θ) =

{
〈j〉m − (ω · `+ θ) if a = 1

〈j〉m + (ω · `+ θ) if a = 2 ,
(4.2.18)

and, in the second case,

di,a(θ) =


〈j〉m − µ− (ω · `+ θ) if a = 1

〈j〉m − µ+ (ω · `+ θ) if a = 2

〈j〉m + µ− (ω · `+ θ) if a = 3

〈j〉m + µ+ (ω · `+ θ) if a = 4 .

(4.2.19)

The main goal of the following sections is to prove polynomial off-diagonal decay for
the inverse of the |I|(2N + 1)b-dimensional (where |I| = 2, resp. 4, in case (4.1.1)-(i), resp.
(4.1.1)-(ii)) sub-matrices of A(ε, λ, θ) centered at (`0, j0) denoted by

AN,`0,j0(ε, λ, θ) := A|`−`0|≤N,|j−j0|≤N(ε, λ, θ) (4.2.20)

where
|`| := max{|`1|, . . . , |`|S||} , |j| := max{|j1|, . . . , |jd|} . (4.2.21)

If `0 = 0 we use the simpler notation

AN,j0(ε, λ, θ) := AN,0,j0(ε, λ, θ) . (4.2.22)

If also j0 = 0, we simply write

AN(ε, λ, θ) := AN,0(ε, λ, θ) , (4.2.23)

and, for θ = 0, we denote

AN,j0(ε, λ) := AN,j0(ε, λ, 0) , AN(ε, λ) := AN,0(ε, λ, 0) . (4.2.24)

Remark 4.2.2. The matrix AN(ε, λ) in (4.2.24) represents the truncated self-adjoint op-
erator

ΠN(Lr,µ)|HN = ΠN(Jω · ∂ϕ +Xr,µ)|HN = ΠN(Jω · ∂ϕ +DV + µJΠ⊥S∪F + r)|HN

where HN is defined in (4.1.10) and ΠN in (4.1.11).

We have the following crucial covariance property

AN,`1,j1(ε, λ, θ) = AN,j1(ε, λ, θ + ω · `1) . (4.2.25)
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4.3 Multiscale step

The main result of this section is the multiscale step Proposition 4.3.4 which is a variant of
that proved in [23]. The constant ς ∈ (0, 1) is fixed and τ ′ > 0, Θ ≥ 1 are real parameters,
on which we shall impose some condition in Proposition 4.3.4.

Given Ω,Ω′ ⊂ E ⊂ Zb × I, where I is defined in (4.2.7), we define

diam(E) := sup
k,k′∈E

|k − k′| , d(Ω,Ω′) := inf
k∈Ω,k′∈Ω′

|k − k′| ,

where, for k = (i, a), k′ := (i′, a′) ∈ Zb × I, we set

|k − k′| :=


1 if i = i′ , a 6= a′ ,

0 if i = i′ , a = a′ ,

|i− i′| if i 6= i′ .

Notation: Given a matrix A ∈ ME
E, when writing the matrix D1/2

m AD1/2
m ∈ ME

E, we
understand that we apply the diagonal matrix D1/2

m : E → E to the right/left of A.

Definition 4.3.1. (N-good/bad matrix) The matrix A ∈ ME
E, with E ⊂ Zb × I,

diam(E) ≤ 4N , is N-good if A is invertible and

∀s ∈ [s0, s1] , |D−1/2
m A−1D−1/2

m |s ≤ N τ ′+ςs . (4.3.1)

Otherwise A is N-bad.

The above definition is different with respect to that of [23]: the matrix A is N -good
according to Definition 4.3.1 if and only if D1/2

m AD1/2
m is N -good according to Definition

B.2.1.

Definition 4.3.2. (Regular/Singular sites) The index k := (i, a) = (`, j, a) ∈ Zb × I
(where I is defined in (4.2.7)) is regular for A if

|Akk| ≥ Θ〈j〉−1 .

Otherwise k is singular.

Also the above definition is different with respect to that of [23]: the index k is regular
for A according to Definition 4.3.2 if and only if k is regular for D1/2

m AD1/2
m according to

Definition B.2.2 with Θ replaced by c(m)Θ (because of the equivalence (|j|2+m)1/2 ∼m 〈j〉).
The constant Θ := Θ(V ) will be chosen large enough depending on the potential V (x)

in order to apply the multiscale proposition (as in [23], [22]).

Definition 4.3.3. ((A,N)-good/bad site) For A ∈ME
E, we say that k ∈ E ⊂ Zb × I is
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• (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(k,E\F ) ≥ N and
AFF is N-good.

• (A,N)-good if it is regular for A or (A,N)-regular. Otherwise we say that k is
(A,N)-bad.

Note that a site k is (A,N)-good according to Definition 4.3.3 if and only if k is
(D1/2

m AD1/2
m , N)-good according to [23].

Let us consider the new larger scale

N ′ = Nχ (4.3.2)

with χ > 1.

For a matrix A ∈ME
E we define Diag(A) := (δkk′A

k′

k )k,k′∈E.

Proposition 4.3.4. (Multiscale step) Assume

ς ∈ (0, 1/2) , τ ′ > 2τ + b+ 1 , C1 ≥ 2 , (4.3.3)

and, setting κ := τ ′ + b+ s0,

χ(τ ′ − 2τ − b) > 3(κ+ (s0 + b)C1) , (4.3.4)

χς > C1 , (4.3.5)

s1 > 3κ+ χ(τ + b) + C1s0 . (4.3.6)

For any given Υ > 0, there exist Θ := Θ(Υ, s1) > 0 large enough (appearing in Definition
4.3.2), and N0(Υ,Θ, s1) ∈ N such that:

∀N ≥ N0(Υ,Θ, s1), ∀E ⊂ Zb × I with diam(E) ≤ 4N ′ = 4Nχ (see (4.3.2)), if A ∈ ME
E

satisfies

• (H1) (Off-diagonal decay) |A−Diag(A)|+,s1 ≤ Υ

• (H2) (L2-bound) ‖D−1/2
m A−1D−1/2

m ‖0 ≤ (N ′)τ

• (H3) (Separation properties) There is a partition of the (A,N)-bad sites B =
∪αΩα with

diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (4.3.7)

then A is N ′-good. More precisely

∀s ∈ [s0, s1] , |D−1/2
m A−1D−1/2

m |s ≤
1

4
(N ′)τ

′(
(N ′)ςs + |A−Diag(A)|+,s

)
, (4.3.8)

and, for all s ≥ s1,

|D−1/2
m A−1D−1/2

m |s ≤ C(s)(N ′)τ
′(

(N ′)ςs + |A−Diag(A)|+,s
)
. (4.3.9)
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Remark 4.3.5. The main difference with respect to the multiscale Proposition 4.1 in [23]
is that, since the Definition 4.3.2 of regular sites is weaker than that in [23], we require the
stronger assumption (H1) concerning the off-diagonal decay of A in | |+,s1 norm defined in
(3.3.17), while in [23] we only require the off-diagonal decay of A in | |s1 norm. Another
difference is that we prove (4.3.8) (with the constant 1/4) for s ∈ [s0, s1], and not in a
larger interval [s0, S] for some S ≥ s1. For larger s ≥ s1 we prove (4.3.9) with C(s).

Proof of Proposition 4.3.4. The multiscale step Proposition 4.3.4 follows by Propo-
sition 4.1 in [23], that we report in the Appendix B.2, see Proposition B.2.4. Set

T := A−Diag(A) , |T |+,s1
(H1)

≤ Υ , (4.3.10)

and consider the matrix

A+ := D1/2
m AD1/2

m = Diag(A+) + T (4.3.11)

where
Diag(A+) := D1/2

m Diag(A)D1/2
m , T := D1/2

m T D1/2
m . (4.3.12)

We apply the multiscale Proposition B.2.4 to the matrix A+. By (H2) the matrix A+ is
invertible and

‖A−1
+ ‖0

(4.3.11)
= ‖D−1/2

m A−1D−1/2
m ‖0

(H2)

≤ (N ′)τ .

Moreover, the decay norm

|T |s1
(4.3.12)

= |D1/2
m T D1/2

m |s1
(3.3.17)

= |T |+,s1
(4.3.10)

≤ Υ .

Finally the (A+, N)-bad sites according to Definition B.2.3 coincide with the (A,N)-bad
sites according to Definition 4.3.3 (with a Θ replaced by c(m)Θ). Hence by (H3) also the
separation properties required to apply Proposition B.2.4 hold, and we deduce that

∀s ∈ [s0, s1] , |A−1
+ |s ≤

1

4
(N ′)τ

′(
(N ′)ςs + |A+ −Diag(A+)|s

)
,

that, recalling (4.3.11), (4.3.10), (4.3.12), implies (4.3.8). The more general estimate (4.3.9)
follows by (B.2.8).

4.4 Separation properties of bad sites

The aim of this section is to verify the separation properties of the bad sites required in
the multiscale step Proposition 4.3.4.

Let A := A(ε, λ, θ) be the infinite dimensional matrix defined in (4.2.14). Given N ∈ N
and i = (`0, j0), recall that the submatrix AN,i is defined in (4.2.20).
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Definition 4.4.1. (N-regular/singular site) A site k := (i, a) ∈ Zb × I is:

• N-regular if AN,i is N-good (Definition 4.3.1).

• N-singular if AN,i is N-bad (Definition 4.3.1).

We also define the N -good/bad sites of A.

Definition 4.4.2. (N-good/bad site) A site k := (i, a) ∈ Zb × I is:

• N-good if

k is regular (Def. 4.3.2) or all the sites k′with d(k′, k) ≤ N areN − regular . (4.4.1)

• N-bad if

k is singular (Def. 4.3.2) and ∃ k′with d(k′, k) ≤ N , k′ isN−singular . (4.4.2)

Remark 4.4.3. A site k which is N-good according to Definition 4.4.2, is (AEE, N)-good
according to Definition 4.3.3, for any set E = E0 × I containing k where E0 ⊂ Zb is a
product of intervals of length ≥ N .

Let
BN(j0;λ) :=

{
θ ∈ R : AN,j0(ε, λ, θ) is N − bad

}
. (4.4.3)

Definition 4.4.4. (N-good/bad parameters) A parameter λ ∈ Λ is N-good for A if

∀ j0 ∈ Zd , BN(j0;λ) ⊂
⋃

q=1,...,Nα−d−|S|

Iq , α := 3d+ 2|S|+ 4 + 3τ0 , (4.4.4)

where Iq are intervals with measure |Iq| ≤ N−τ . Otherwise, we say that λ is N-bad. We
define the set of N-good parameters

GN :=
{
λ ∈ Λ̃ : λ is N − good for A(ε, λ)

}
. (4.4.5)

The main result of this section is Proposition 4.4.5 which enables to verify the assump-
tion (H3) of Proposition 4.3.4 for the submatrices AN ′,j0(ε, λ, θ).

Proposition 4.4.5. (Separation properties of N-bad sites) Let τ1, γ1, τ2, γ2 be fixed
as in (1.2.28) and (4.5.9), depending on the parameters τ0, γ0 which appear in proper-
ties (1.2.6)-(1.2.8), (1.2.16)-(1.2.19). Then there exist C1 := C1(d, |S|, τ0) ≥ 2, τ ? :=
τ ?(d, |S|, τ0), and N̄ := N̄(|S|, d, γ0, τ0,m,Θ) such that, if N ≥ N̄ and

• (i) λ is N-good for A,
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• (ii) τ ≥ τ ?,

• (iii) ω̄ε satisfies (1.2.29) and ω = (1+ε2λ)ω̄ε satisfies (NR)γ2,τ2 (see Definition 4.1.4),

then, ∀θ ∈ R, the N-bad sites k = (`, j, a) ∈ Z|S| × Zd × I of A(ε, λ, θ) admit a partition
∪αΩα in disjoint clusters satisfying

diam(Ωα) ≤ NC1(d,|S|,τ0) , d(Ωα,Ωβ) > N2 , ∀α 6= β . (4.4.6)

We underline that the estimates (4.4.6) are uniform in θ.

Remark 4.4.6. Hypothesis (ii) in Proposition 4.4.5 just requires that the constant τ is
larger than some τ ?(d, |S|, τ0). This is important in the present autonomous setting for the
choice of the constants in section 4.5. On the contrary in the corresponding propositions in
the papers [22], [23], the constant τ was required to be large with the exponent χ in (4.3.2).

The rest of this section is devoted to the proof of Proposition 4.4.5. In some parts of
the proof, we may point out the dependence of some constants on parameters such as τ2, τ1,
which, by (1.2.28) and (4.5.9), amounts to a dependence on τ0.

Definition 4.4.7. (Γ-chain) A sequence k0, . . . , kL ∈ Z|S| × Zd × I of distinct integer
vectors satisfying

|kq+1 − kq| ≤ Γ , ∀q = 0, . . . , L− 1 ,

for some Γ ≥ 2, is called a Γ-chain of length L.

We want to prove an upper bound for the length of a Γ-chain of θ-singular integer vectors,
i.e. satisfying (4.4.8) below. In the next lemma we obtain the upper bound (4.4.10) under
the assumption (4.4.9). Define the functions of signs

σ1, σ2 : I→ {−1,+1}
σ1(1) := σ1(2) := σ2(1) := σ2(3) := −1 ,

σ1(3) := σ1(4) := σ2(2) := σ2(4) := 1 .

(4.4.7)

Lemma 4.4.8. (Length of Γ-chain of θ-singular sites) Assume that ω satisfies the non-
resonance condition (NR)γ2,τ2

(Definition 4.1.4). For Γ ≥ Γ̄(d,m,Θ, γ2, τ2) large enough,

consider a Γ-chain (`q, jq, aq)q=0,...,L ⊂ Z|S|×Zd×I of singular sites for the matrix A(ε, λ, θ),
namely

∀q = 0, . . . , L,
∣∣〈jq〉m(〈jq〉m + σ1(aq)µ+ σ2(aq)(ω · `q + θ)

)∣∣ < Θ , (4.4.8)

with σ1, σ2 defined in (4.4.7), such that, ∀̃ ∈ Zd, the cardinality

|{(`q, jq, aq)q=0,...,L : jq = ̃}| ≤ K . (4.4.9)
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Then there is C2 := C2(d, τ2) > 0 such that its length is bounded by

L ≤ (ΓK)C2 . (4.4.10)

Moreover, if ` is fixed (i.e. `q = `, ∀q = 0, . . . , L) the same result holds without assuming
that ω satisfies (NR)γ2,τ2

.

The proof of Lemma 4.4.8 is a variant of Lemma 4.2 in [22]. We split it in several steps.
First note that it is sufficient to bound the length of a Γ-chain of singular sites when

θ = 0. Indeed, suppose first that θ = ω · ¯̀ for some ¯̀ ∈ Z|S|. For a Γ-chain of θ-singular
sites (`q, jq, aq)q=0,...,L, see (4.4.8), the translated Γ-chain (`q + ¯̀, jq, aq)q=0,...,L, is formed by
0-singular sites, namely∣∣〈jq〉m(〈jq〉m + σ1(aq)µ+ σ2(aq)(ω · (`q + ¯̀))

)∣∣ < Θ .

For any θ ∈ R, we consider an approximating sequence ω · ¯̀
n → θ, ¯̀

n ∈ Z|S|. Indeed, by
Assumption (1.2.29), ω = (1 + ε2λ)ω̄ε is not colinear to an integer vector, and therefore the
set {ω · ` , ` ∈ Z|S|} is dense in R. A Γ-chain of θ-singular sites (see (4.4.8)), is, for n large
enough, also a Γ-chain of ω · ¯̀n-singular sites. Then we bound its length arguing as in the
above case.

We first prove Lemma 4.4.8 in a particular case.

Lemma 4.4.9. Assume that ω satisfies (NR)γ2,τ2
(Definition 4.1.4). Let (`q, jq, aq)q=0,...,L

be a Γ-chain of integer vectors of Z|S| × Zd × I satisfying, ∀q = 0, . . . , L,∣∣√|jq|2 +m+ σ2(aq)ω · `q
∣∣ ≤ Θ

〈jq〉
, in case (i) of Def. 4.1.2 , (4.4.11)∣∣√|jq|2 +m+ σ1(aq)µ+ σ2(aq)ω · `q
∣∣ ≤ Θ

〈jq〉
, in case (ii) of Def. 4.1.2 , (4.4.12)

where σ1, σ2 are defined in (4.4.7). Suppose, in case (4.4.12), that the product of the signs
σ1(aq)σ2(aq) is the same for any q ∈ [[0, L]]. Then, for some constant C1 := C1(d, τ2) and
C := C(m,Θ, γ2, d, τ2), its length L is bounded by

L ≤ C(ΓK)C1 (4.4.13)

where K is defined in (4.4.9).
Moreover, if ` is fixed (i.e. `q = `, ∀q), the lemma holds without assuming that ω

satisfies (NR)γ2,τ2
.

Proof. We make the proof when (4.4.12) holds, since (4.4.11) is a particular case of
(4.4.12) setting µ = 0 (notice that, in the case (4.4.11), the conclusion of the lemma follows
without conditions on the signs σ2(aq), see remark 4.4.11).
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We introduce the quadratic form Q : R× Rd → R defined by

Q(x, y) := −x2 + |y|2 (4.4.14)

and the associated bilinear symmetric form Φ : (R× Rd)2 → R defined by

Φ
(
(x, y), (x′, y′)

)
:= −xx′ + y · y′ . (4.4.15)

Note that Φ is the sum of the bilinear forms

Φ = −Φ1 + Φ2

Φ1

(
(x, y), (x′, y′)

)
:= xx′ , Φ2

(
(x, y), (x′, y′)

)
:= y · y′ .

(4.4.16)

Lemma 4.4.10. For all q, q0 ∈ [[0, L]],∣∣Φ((xq0 , jq0), (xq − xq0 , jq − jq0)
)∣∣ ≤ CΓ2|q − q0|2 + C(Θ) , (4.4.17)

where xq := ω · `q.

Proof. Set for brevity σ1,q := σ1(aq) and σ2,q := σ2(aq). First note that by (4.4.12) we
have ∣∣|jq|2 +m− (σ1,qµ+ σ2,qω · `q)2

∣∣ ≤ CΘ .

Therefore ∣∣− (ω · `q)2 + |jq|2 − 2σ1,q σ2,q µω · `q
∣∣ ≤ C ′ , C ′ := CΘ +m+ µ2 ,

and so, recalling (4.4.14), for all q = 0, . . . , L,

|Q(xq, jq)− 2σ1,qσ2,q µxq| ≤ C ′ where xq := ω · `q . (4.4.18)

By the hypothesis of Lemma 4.4.9,

σ1,qσ2,q = σ1,q0σ2,q0 , ∀q, q0 ∈ [[0, L]] ,

and, by bilinearity, we get

Q(xq, jq)− 2σ1,qσ2,qµxq = Q(xq0 , jq0)

+ 2Φ
(
(xq0 , jq0), (xq − xq0 , jq − jq0)

)
+Q(xq − xq0 , jq − jq0)

− 2σ1,q0σ2,q0µxq0 − 2σ1,qσ2,qµ(xq − xq0) . (4.4.19)

Recalling (4.4.14) and the Definition 4.4.7 of Γ-chain we have, ∀q, q0 ∈ [[0, L]],∣∣Q(xq − xq0 , jq − jq0)− 2σ1,qσ2,qµ(xq − xq0)
∣∣ ≤ CΓ2|q − q0|2 . (4.4.20)

Hence (4.4.19), (4.4.18), (4.4.20) imply (4.4.17).
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Remark 4.4.11. In the case (4.4.11), the conclusion of Lemma 4.4.10 follows without
conditions on the signs σ2(aq). This is why Lemma 4.4.9 holds without condition on the
signs σ2(aq).

Proof of Lemma 4.4.9 continued. We introduce the subspace of Rd+1

G := SpanR

{
(xq − xq′ , jq − jq′) : 0 ≤ q, q′ ≤ L

}
= SpanR

{
(xq − xq0 , jq − jq0) : 0 ≤ q ≤ L

} (4.4.21)

and we call g ≤ d + 1 the dimension of G. Introducing a small parameter δ > 0, to be
specified later (see (4.4.38)), we distinguish two cases.

Case I. ∀q0 ∈ [[0, L]],

SpanR
{

(xq − xq0 , jq − jq0) : |q − q0| ≤ Lδ , q ∈ [[0, L]]
}

= G . (4.4.22)

We select a basis of G ⊂ Rd+1 from (xq − xq0 , jq − jq0) with |q − q0| ≤ Lδ, say

fs := (xqs − xq0 , jqs − jq0) = (ω ·∆s`,∆sj) , s = 1, . . . , g , (4.4.23)

where (∆s`,∆sj) := (`qs − `q0 , jqs − jq0) satisfies, by the Definition 4.4.7 of Γ-chain,

|(∆s`,∆sj)| ≤ CΓ|qs − q0| ≤ CΓLδ . (4.4.24)

Hence
|fs| ≤ C ΓLδ , ∀s = 1, . . . , g . (4.4.25)

Then, in order to derive from (4.4.17) a bound on (xq0 , jq0) or its projection onto G, we
need a nondegeneracy property for Q|G. The following lemma states it.

Lemma 4.4.12. Assume that ω satisfies (NR)γ2,τ2
. Then the matrix

Ω := (Ωs′

s )gs,s′=1 , Ωs′

s := Φ(fs′ , fs) , (4.4.26)

is invertible and
|(Ω−1)s

′

s | ≤ C(ΓLδ)C3(d,τ2) , ∀s, s′ = 1, . . . , g , (4.4.27)

where the multiplicative constant C depends on γ2.

Proof. According to the splitting (4.4.16) we write Ω as

Ω :=
(
− Φ1(fs′ , fs) + Φ2(fs′ , fs)

)
s,s′=1,...,g

= −S +R (4.4.28)

where, by (4.4.23),

Ss
′

s := Φ1(fs′ , fs) = (ω ·∆s′`)(ω ·∆s`) ,

Rs′

s := Φ2(fs′ , fs) = ∆s′j ·∆sj .
(4.4.29)
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The matrix R = (R1, . . . , Rg) has integer entries (the Ri ∈ Zg denote the columns). The
matrix S := (S1, . . . , Sg) has rank 1 since all its columns Ss ∈ Rg are colinear:

Ss = (ω ·∆s`)(ω ·∆1`, . . . , ω ·∆g`)
> , s = 1, . . . g . (4.4.30)

We develop the determinant

P (ω) := det Ω
(4.4.28)

= det(−S +R)

= det(R)− det(S1, R2, . . . , Rg)− . . .− det(R1, . . . , Rg−1, Sg)

= det(R)−
∑

1≤s≤g

(−1)g+sSs · (R1 ∧ . . . ∧Rs−1 ∧Rs+1 ∧ . . . ∧Rg) (4.4.31)

using that the determinant of matrices with 2 columns Si, Sj, i 6= j, is zero. By (4.4.30), the
expression in (4.4.31) is a polynomial in ω of degree 2 of the form (4.1.14) with coefficients

|(n, p)|
(4.4.29),(4.4.24)

≤ C(ΓLδ)2s ≤ C(ΓLδ)2(d+1) . (4.4.32)

If P 6= 0 then the non-resonance condition (NR)γ2,τ2
implies

|det Ω| = |P (ω)|
(4.1.15)

≥ γ2

〈p〉τ2
(4.4.32)

≥ γ2

C(ΓLδ)2τ2(d+1)
. (4.4.33)

In order to conclude the proof of the lemma, we have to show that P (ω) is not identically
zero in ω. We have that

P (iω) = det
(
Φ1(fs′ , fs) + Φ2(fs′ , fs)

)
s,s′=1,...g

= det(fs′ · fs)s,s′=1,...g > 0

because (fs)1≤s≤g is a basis of G. Thus P is not the zero polynomial.
By (4.4.33), the Cramer rule, and (4.4.25) we deduce (4.4.27).

Remark 4.4.13. As recently proved in [29] the same result holds also assuming just that
ω is Diophantine, instead of the quadratic non-resonance condition (NR)γ2,τ2

.

Proof of Lemma 4.4.9 continued. We introduce

G⊥Φ :=
{
z ∈ Rd+1 : Φ(z, f) = 0 , ∀f ∈ G

}
.

Since Ω is invertible (Lemma 4.4.12), Φ|G is nondegenerate, hence

Rd+1 = G⊕G⊥Φ

and we denote by PG : Rd+1 → G the corresponding projector onto G.
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We are going to estimate

PG(xq0 , jq0) =

g∑
s′=1

as′fs′ . (4.4.34)

For all s = 1, . . . , g, and since fs ∈ G, we have

Φ
(
(xq0 , jq0), fs

)
= Φ

(
PG(xq0 , jq0), fs

) (4.4.34)
=

g∑
s′=1

as′Φ(fs′ , fs)

that we write as the linear system

Ωa = b , a :=

 a1
...
ag

 , b :=


Φ
(

(xq0 , jq0), f1

)
...

Φ
(

(xq0 , jq0), fg

)
 (4.4.35)

with Ω defined in (4.4.26).

Lemma 4.4.14. For all q0 ∈ [[0, L]] we have

|PG(xq0 , jq0)| ≤ C(ΓLδ)C4(d,τ2) , (4.4.36)

where C depends on γ2,Θ.

Proof. We have

|b|
(4.4.35)

. max
1≤s≤g

∣∣∣Φ((xq0 , jq0), fs

)∣∣∣ (4.4.23),(4.4.17)

≤ C(Θ)Γ2 max
1≤s≤g

|qs − q0|2 ≤ C(Θ)(ΓLδ)2 ,

recalling that, by (4.4.22), the indices (qs)1≤s≤g were selected such that |qs − q0| ≤ Lδ.
Hence, by (4.4.35) and (4.4.27),

|a| = |Ω−1b| ≤ C(γ2,Θ)(ΓLδ)C (4.4.37)

for some constant C := C(d, τ2). We deduce (4.4.36) by (4.4.34), (4.4.37) and (4.4.25).

We now complete the proof of Lemma 4.4.9 when case I holds. As a consequence of
Lemma 4.4.14, for all q1, q2 ∈ [[0, L]], we have

|(xq1 , jq1)− (xq2 , jq2)| =
∣∣PG((xq1 , jq1)− (xq2 , jq2)

)∣∣ ≤ C(ΓLδ)C4(d,τ2)

where C depends on γ2,Θ. Therefore, for all q1, q2 ∈ [[0, L]], we have |jq1−jq2 | ≤ C(ΓLδ)C4(d,τ2),
and so

diam{jq ; 0 ≤ q ≤ L} ≤ C(ΓLδ)C4(d,τ2) .
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Since all the jq are in Zd, their number (counted without multiplicity) does not exceed
C(ΓLδ)C4(d,τ2)d, for some other constant C which depends on γ2, τ2, d. Thus we have ob-
tained the bound

]{jq : 0 ≤ q ≤ L} ≤ C(ΓLδ)C4(d,τ2)d .

By assumption (4.4.9), for each q0 ∈ [[0, L]], the number of q ∈ [[0, L]] such that jq = jq0 is
at most K, and so

L ≤ C(ΓLδ)C5(d,τ2)K , C5(d, τ2) := C4(d, τ2)d .

Choosing δ > 0 such that
δC5(d, τ2) < 1/2 , (4.4.38)

we get L ≤ C(ΓC5(d,τ2)K)2, for some multiplicative constant C that may depend on γ2,Θ, d.
This proves (4.4.13).

Case II. There is q0 ∈ [[0, L]] such that

dim SpanR
{

(xq − xq0 , jq − jq0) : |q − q0| ≤ Lδ , q ∈ [[0, L]]
}
≤ g − 1 ,

namely all the vectors (xq, jq) stay in a affine subspace of dimension less than g − 1. Then
we repeat on the sub-chain (`q, jq), |q− q0| ≤ Lδ, the argument of case I, to obtain a bound
for Lδ (and hence for L).

Applying at most (d + 1)-times the above procedure, we obtain a bound for L of the
form L ≤ C(ΓK)C(d,τ2). This concludes the proof of (4.4.13) of Lemma 4.4.9.

To prove the last statement of Lemma 4.4.9, notice that, if ` is fixed, then (4.4.17)
reduces just to |jq · (jq − jq0)| ≤ CΓ2|q − q0|2 and the conclusion of the lemma follows as
above, see also Lemma 5.2 in [23] (actually it is the same argument for NLS in [37]).

Proof of Lemma 4.4.8. Consider a general Γ-chain (kq)q=0,...,L = (`q, jq, aq)q=0,...,L of
singular sites satisfying (4.4.12). To fix ideas assume σ1(a0)σ2(a0) > 0. Then the integer
vectors kq along the chain with the same sign σ1(aq)σ2(aq) > 0, say kqm , satisfy

qm+1 − qm ≤ C(ΓK)C1 ,

by Lemma 4.4.9 applied to each subchain of consecutive indices with σ1(aq)σ2(aq) < 0.
Hence we deduce that all such kqm form a Γ′ := CΓ(ΓK)C1-chain and all of them have
the same sign σ1(aqm)σ2(aqm) > 0. It follows, again by Lemma 4.4.9, that their length is
bounded by

C(Γ′K)C1 = C
(
CΓ(ΓK)C1K

)C1 = C ′(ΓK)C1(C1+1) .

Hence the length of the original Γ-chain (kq)q=0,...,L = (`q, jq, aq)q=0,...,L satisfies

L ≤ C(ΓK)C1C ′(ΓK)C1(C1+1) ≤ (ΓK)C2
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where C2 := C2(d, τ2) = C1(C1 + 2) + 1, and provided Γ is large enough, depending on
m,Θ, γ2, τ2, d. This proves (4.4.10).

Finally, the last statement of Lemma 4.4.8 follows as well by the last statement of
Lemma 4.4.9.

We fix
τ ? := τ1(2 + C2(3 + α)) + 1 (4.4.39)

where τ1 is the Diophantine exponent of ω̄ε in (1.2.29), C2 is the constant defined in Lemma
4.4.8, and α is defined in (4.4.4).

The next lemma proves an upper bound for the length of a chain of N -bad-sites.

Lemma 4.4.15. (Length of Γ-chain of N-bad sites) Assume (i)-(iii) of Proposition
4.4.5 with τ ? defined in (4.4.39). Then, for N large enough (depending on m,Θ, γ2, τ2, γ1, τ1),
any N2-chain (`q, jq, aq)q=0,...,L of N-bad sites of A(ε, λ, θ) (see Definition 4.4.2) has length

L ≤ N (3+α)C2 (4.4.40)

where C2 is defined in Lemma 4.4.8 and α in (4.4.4).

Proof. Arguing by contradiction we assume that

L > l := N (3+α)C2 . (4.4.41)

We consider the subchain (`q, jq, aq)q=0,...,l of N -bad sites, which, recalling (4.4.2), are
singular sites. Then, for N large enough, the assumption (4.4.9) of Lemma 4.4.8 with
Γ = N2, and L replaced by l, can not hold with K < N1+α, otherwise (4.4.10) would imply
l < (N2N1+α)C2 = N (3+α)C2 , contradicting (4.4.41). As a consequence there exists ̃ ∈ Zd,
and distinct indices qi ∈ [[0, l]], i = 0, . . . ,M := [Nα+1/4], such that

0 ≤ qi ≤ l and jqi = ̃ , ∀i = 0, . . . ,M :=
[Nα+1

4

]
. (4.4.42)

Since the sites (`qi , ̃, aqi)i=0,...,M belong to a N2-chain of length l, the diameter of the set
E := {`qi , aqi}i=0,...,M ⊂ Z|S| × I satisfies

diam(E) ≤ N2l .

Moreover, each site (`qi , ̃, aqi) is N -bad, and therefore, recalling (4.4.2) it is in a N -
neighborhood of some N -singular site. Let K be the number of N -singular sites (`, j, a)
such that |j − ̃| ≤ N and d(E, (`, a)) ≤ N . Then the cardinality |E| ≤ CN |S|K. Moreover
there is ̃′ ∈ Zd with |̃′ − ̃| ≤ N such that there are at least K/(CNd) N -singular sites
(`, ̃′, a) with distance d(E, (`, a)) ≤ N . Let

E ′ :=
{

(`′, a′) ∈ Z|S| × I : (`′, ̃′, a′) is N−singular and d(E, (`′, a′)) ≤ N
}
.
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By what preceeds the cardinality

|E ′| ≥ |E|
CNd+|S| ≥

Nα+1−d−|S|

C
> Nα−d−|S| ,

and diam(E ′) ≤ N2l + 2N .

(4.4.43)

Recalling Definition 4.4.1 and the covariance property (4.2.25),

∀(`′, a′) ∈ E ′ , AN,`′,̃′(ε, λ) = AN,̃′(ε, λ, ω · `′) is N−bad ,

and, recalling (4.4.3),
∀(`′, a′) ∈ E ′ , ω · `′ ∈ BN(̃′;λ) . (4.4.44)

Since λ in N -good (Definition 4.4.4), (4.4.4) holds and therefore

BN(̃′;λ) ⊂
⋃

q=0,...,Nα−d−|S|

Iq where Iq are intervals with measure |Iq| ≤ N−τ . (4.4.45)

By (4.4.44), (4.4.45) and since, by (4.4.43), the cardinality |E ′| ≥ Nα−d−|S|, there are two
distinct integer vectors `1, `2 ∈ E ′ such that ω · `1 , ω · `2 belong to the same interval Iq.
Therefore

|ω · (`1 − `2)| = |ω · `1 − ω · `2| ≤ |Iq| ≤ N−τ . (4.4.46)

Moreover, since by (1.2.29) the frequency vectors ω = (1+ε2λ)ω̄ε, ∀λ ∈ Λ, are Diophantine,
namely

|ω · `| ≥ γ1

2|`|τ1
, ∀` ∈ Z|S| \ {0} ,

we also deduce

|ω · (`1 − `2)| ≥ γ1

|`1 − `2|τ1
≥ γ1

(diam(E ′))τ1

(4.4.43)

≥ γ1

(N2l +N)τ1

(4.4.41)

≥ γ1

(2N2+(3+α)C2)τ1
. (4.4.47)

The conditions (4.4.46)-(4.4.47) contradict, for N large enough, the assumption that τ ≥ τ ?

where τ ? is defined in (4.4.39).

Proof of Proposition 4.4.5 completed. We introduce the following equivalence
relation in the set

SN :=
{
k = (`, j, a) ∈ Z|S| × Zd × I : k isN - bad forA(ε, λ, θ)

}
.
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Definition 4.4.16. We say that x ≡ y if there is a N2-chain {kq}q=0,...,L in SN connecting
x to y, namely k0 = x, kL = y.

This equivalence relation induces a partition of the N -bad sites of A(ε, λ, θ), in disjoint
equivalent classes ∪αΩα, satisfying, by Lemma 4.4.15,

d(Ωα,Ωβ) > N2 , diam(Ωα) ≤ N2N (3+α)C2 = NC1 (4.4.48)

with C1 := C1(d, |S|, τ0) := 2 + (3 + α)C2. This proves (4.4.6).

4.5 Definition of the sets Λ(ε; η,Xr,µ)

In order to define the sets Λ(ε; η,Xr,µ) ⊂ Λ̃ appearing in the statement of Proposition 4.1.5,
we first fix the values of some constants.

1. Choice of τ . First we fix τ satisfying

τ > max
{
τ ?, 9d+ 8|S|+ 5s0 + 5

}
, (4.5.1)

where the constant τ ? is defined in (4.4.39). Thus (4.5.1) implies hypothesis (ii)
of Proposition 4.4.5 about the separation properties of the bad sites. The second
condition on τ arises in the measure estimates of section 4.8 (see Lemma 4.8.16).
Moreover the condition (4.5.1) on τ is also used in the proof of Proposition 4.6.1, see
(4.6.47).

2. Choice of χ̄. Then we choose a constant χ̄ such that

χ̄ς > C1 , χ̄ > τ + s0 + d , (4.5.2)

where ς := 1/10 is fixed as in (4.1.16) and the constant C1 ≥ 2 is defined in Proposition
4.4.5. The constant χ̄ is the exponent which enters in the definition in (4.5.11) of the
scales Nk+1 = [N χ̄

k ] along the multiscale analysis. Notice that the first inequality
in (4.5.2) is condition (4.3.5) in the multiscale step Proposition 4.3.4. The second
condition on χ̄ arises in the measure estimates of section 4.8 (see Lemma 4.8.13).

3. Choice of τ ′. Subsequently we choose τ ′ large enough so that the inequalities (4.3.3)-
(4.3.4) hold for all χ ∈ [χ̄, χ̄2]. This is used in the multiscale argument in the proof
of Proposition 4.7.6. We also take

τ ′ > τ̃ ′ + (|S|/2) (4.5.3)

where τ̃ ′ > τ is the constant provided by Lemma 4.6.5 associated to τ̃ = τ .
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4. Choice of s1. Finally we choose the Sobolev index s1 large enough so that (4.3.6)
holds for all χ ∈ [χ̄, χ̄2].

We define the set of L2-(N, η)-good/bad parameters.

Definition 4.5.1. (L2-(N, η)-good/bad parameters) Given N ∈ N, η ∈ (0, 1], let

B0
N(j0;λ, η) :=

{
θ ∈ R : ‖D−1/2

m A−1
N,j0

(ε, λ, θ)D−1/2
m ‖0 > ηN τ

}
(4.5.4)

=
{
θ ∈ R : ∃ an eigenvalue of D1/2

m AN,j0(ε, λ, θ)D1/2
m

with modulus less than η−1N−τ
}

where ‖ ‖0 is the operatorial L2-norm, and define the set of L2-(N, η)-good parameters

G0
N,η :=

{
λ ∈ Λ̃ : ∀ j0 ∈ Zd , B0

N(j0;λ, η) ⊂
⋃

q=1,...,N2d+|S|+4+3τ0

Iq (4.5.5)

where Iq are intervals with measure |Iq| ≤ N−τ
}
.

Otherwise we say that λ is L2-(N, η)-bad.

Given N ∈ N, η ∈ (0, 1], we also define

G0
N,η :=

{
λ ∈ Λ̃ : ‖D−1/2

m A−1
N (ε, λ)D−1/2

m ‖0 ≤ ηN τ
}
. (4.5.6)

Notice that the sets G0
N,η, G

0
N,η are increasing in η, namely

η < η′ ⇒ G0
N,η ⊂ G0

N,η′ , G0
N,η ⊂ G0

N,η′ . (4.5.7)

We also define the set

G̃ :=
{
λ ∈ Λ : ω = (1 + ε2λ)ω̄ε satisfies (NR)γ2,τ2

}
(4.5.8)

(recall Definition 4.1.4) with

γ2 :=
γ1

2
=
γ0

4
, τ2 :=

|S|(|S| − 1)

2
+ 2(τ1 + 2) . (4.5.9)

and γ1, τ1 defined in (1.2.28).
Fix N0 := N0(ε) such that

1 ≤ ε2N τ+s0+d
0 ≤ 2 (4.5.10)

and define the increasing sequence of scales

Nk =
[
N χ̄k

0

]
, k ≥ 0 . (4.5.11)
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Remark 4.5.2. Condition (4.5.10) is used in Lemma 4.7.2, see (4.7.9), and in the proof of
Proposition 4.6.1, see (4.6.47). The first inequality ε−2 ≤ N τ+s0+d

0 in (4.5.10) is also used
in Lemma 4.8.6.

Finally we define, for η ∈ [1/2, 1], the sets

Λ(ε; η,Xr,µ) :=
⋂
k≥1

G0
Nk,η

⋂
N≥N2

0

G0
N,η

⋂
G̃ (4.5.12)

where G0
N,η is defined in (4.5.5), the set G0

N,η is defined in (4.5.6), and G̃ in (4.5.8). These are

the sets Λ(ε; η,Xr,µ) ⊂ Λ̃ appearing in the statement of Proposition 4.1.5. By (4.5.7) these
sets clearly satisfy the property 1 listed in Proposition 4.1.5. We shall prove the measure
properties 2 and 3 in section 4.8.

Remark 4.5.3. The second intersection in (4.5.12) is restricted to the indices N ≥ N2
0 for

definiteness: we could have set N ≥ N
α(τ)
0 for some exponent α(τ) which increases linearly

with τ . Indeed, the right invertibility properties of ΠN [Lr,µ]|H2N
at the scales N ≤ N2

0

are deduced in section 4.6 by the unperturbed Melnikov non-resonance conditions (1.2.7),

(1.2.16)-(1.2.17), (4.1.5) and a perturbative argument which holds for N ≤ N
α(τ)
0 with α(τ)

linear in τ , see (4.6.47).

4.6 Right inverse of [Lr,µ]2NN for N̄ ≤ N < N 2
0

The goal of this section is to prove the following proposition, which implies item 1 of
Proposition 4.1.5 with N(ε) := N2

0 and N0 = N0(ε) satisfying (4.5.10).

Proposition 4.6.1. There are N̄ and ε0 > 0 such that, for all ε ∈ (0, ε0), for all N̄ ≤ N <
N2

0 (ε), the operator
[Lr,µ]2NN = ΠN [Lr,µ]|H2N

,

which is defined for all λ ∈ Λ̃, has a right inverse
(
[Lr,µ]2NN

)−1
: HN → H2N satisfying, for

all s ≥ s0, ∣∣∣( [Lr,µ]2NN
1 + ε2λ

)−1∣∣∣
Lip,s
≤ C(s)N τ ′0+1

(
N ςs + |r|Lip,+,s

)
(4.6.1)

where τ ′0 is a constant depending only on τ0. Moreover (4.1.21) holds.

The proof of Proposition 4.6.1 is given in the rest of this section.
We decompose the operator Lr,µ in (4.1.9), with Xr,µ defined in (4.1.6)-(4.1.7), as

Lr,µ = Ld + ρ(ε, λ, ϕ) (4.6.2)
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with

Ld := Jµ̄ · ∂ϕ +DV + µkJΠ⊥S∪F + cΠS (4.6.3)

ρ(ε, λ, ϕ) := J(ω − µ̄) · ∂ϕ + (µ− µk)JΠ⊥S∪F + r(ε, λ, ϕ) . (4.6.4)

Notice that the operator Ld is independent of (ε, λ) and ϕ, and ρ is small in ε since

ω = (1 + ε2λ)ω̄ε = µ̄+ ε2(ζ + λµ̄+ ε2ζλ) = µ̄+O(ε2) , |ω|lip = O(ε2) , (4.6.5)

where µ̄ is the vector defined in (1.2.3) (see (1.2.25)),

µ = µk +O(ε2) for some k ∈ F , |µ|lip = O(ε2) , (4.6.6)

by item 2 of Definition 4.1.2, and |r|Lip,+,s1 = O(ε2) by item 1 of Definition 4.1.2.
In order to prove Proposition 4.6.1 we shall first find a right inverse of [Ld]2NN , thanks

to the non-resonance conditions (1.2.7), (1.2.16)-(1.2.17), (4.1.5), and we shall prove that
it has off-diagonal decay estimates, see (4.6.43). Then we shall deduce the existence of a
right inverse for [Lr,µ]2NN by a perturbative Neumann series argument.

Notice that the space ei`·ϕH, where H is defined in (4.1.1), is invariant under Ld and

D1/2
m LdD1/2

m (ei`·ϕh) = ei`·ϕ(M`h) , ∀h = h(x) ∈ H , (4.6.7)

where M` is the operator, acting on functions h(x) ∈ H of the space variable x only, defined
by

M` := D1/2
m

(
iµ̄ · ` J +DV + µkJΠ⊥S∪F + cΠS

)
D1/2
m . (4.6.8)

Lemma 4.6.2. (Invertibility of M`) For all ` ∈ Z|S|, |`| < N2
0 , the self-adjoint operator

M` of H is invertible and
‖M−1

` ‖0 . γ−1
0 〈`〉τ0 . (4.6.9)

Proof. We write M` = D1/2
m M ′

`D
1/2
m where

M ′
` := iµ̄ · `J +DV + µkJΠ⊥S∪F + cΠS , (4.6.10)

and we remind that, in case (i) of (4.1.1), M` acts on H, and we have set J = 0 (see
(4.1.6)), while in case (ii), M` acts on H ×H and J (h1, h2, h3, h4) = (−h4, h3, h2,−h1), by
(4.1.8), (4.1.3), (4.1.4).

In case (i) of (4.1.1), M ′
` is represented, in the Hilbert basis ((Ψj, 0), (0,Ψj))j∈N of

H = H, by the block-diagonal matrix Diagj∈NM
′
`,j where

M ′
`,j :=

(
µj + cδjS iµ̄ · `
−iµ̄ · ` µj + cδjS

)
and δjS :=

{
1 if j ∈ S
0 if j /∈ S .
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The eigenvalues of M ′
`,j are {

±µ̄ · `+ µj + c if j ∈ S
±µ̄ · `+ µj if j /∈ S .

In case (ii) of (4.1.1), M ′
` is represented, in the Hilbert basis((

0,−Ψj√
2
,

Ψj√
2
, 0
)
,
(Ψj√

2
, 0, 0,

Ψj√
2

)
,
(Ψj√

2
, 0, 0,−Ψj√

2

)
,
(

0,
Ψj√

2
,

Ψj√
2
, 0
))

j∈N

of H = H ×H, by the block-diagonal matrix Diagj∈NM
′
`,j, where

M ′
`,j :=
µj + cδjS − µkδ

j
(S∪F)c iµ̄ · ` 0 0

−iµ̄ · ` µj + cδjS − µkδ
j
(S∪F)c 0 0

0 0 µj + cδjS + µkδ
j
(S∪F)c iµ̄ · `

0 0 −iµ̄ · ` µj + cδjS + µkδ
j
(S∪F)c


and, in this case, the eigenvalues of M ′

`,j are
±µ̄ · `+ µj + c if j ∈ S ,
±µ̄ · `+ µj if j ∈ F ,
±µ̄ · `+ µj ± µk if j /∈ S ∪ F .

(4.6.11)

By (4.1.5), (1.2.7), (1.2.16)-(1.2.17), in both cases we have ‖(M ′
`,j)
−1‖ ≤ γ−1

0 〈`〉τ0 for all

j ∈ N. Hence M ′
` defined in (4.6.10) is invertible and ‖(M ′

`)
−1‖0 ≤ γ−1

0 〈`〉τ0 . In conclusion
M` = D1/2

m M ′
`D

1/2
m is invertible and (4.6.9) holds, by the bound ‖D−1/2

m ‖0 ≤ C(m).

Remark 4.6.3. The role of the term cΠS in (4.1.6), (4.1.7) is precisely to prove Lemma
4.6.2. Otherwise, if c = 0, then some of the eigenvalues ±µ̄ · ` + µj, j ∈ S, would vanish.
We have some flexibility in defining the extended operators Lr, Lr,µ in the complementary
subspace HS∪F: the important point is to define a positive definite operator leaving HS∪F
invariant.

Let HN be the finite dimensional subspace of H in (4.1.1),

HN :=
{
h(x) =

∑
|j|≤N

uje
ij·x; uj ∈ Cr

}
⊂ H , r :=

{
2 in case (4.1.1)-(i)

4 in case (4.1.1)-(ii)
(4.6.12)

and denote by ΠN the corresponding L2
x-projector.
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Notice that, since the space HN is not invariant under the operator M`, the invertibil-
ity of the infinite dimensional operator M` does not imply the invertibility of the finite
dimensional restriction ΠNM`|HN

. However, in the next lemma we prove that, for N large
enough, the operator

M`,N := [M`]
2N
N := ΠN(M`)|H2N

: H2N → HN (4.6.13)

has a right inverse.
We shall use the following decomposition of the operator M` in (4.6.8):

M` = D1/2
m

(
iµ̄ · ` J +Dm + µkJ + R̄

)
D1/2
m , (4.6.14)

where the operator iµ̄ · ` J +Dm + µkJ is diagonal in the exponential basis {eij·x, j ∈ Zd},
and the self-adjoint operator

R̄ := DV −Dm − µkJΠS∪F + cΠS (4.6.15)

satisfies, by (3.4.1) and Lemma 3.3.8, the off-diagonal estimate

|R̄|+,s < C(s) < +∞ , ∀s ≥ s0 . (4.6.16)

Lemma 4.6.4. (Right inverse of M`,N) Let M∗
`,N : HN → H2N denote the adjoint

operator of M`,N . For all N ≥ N̄ large enough, |`| ≤ N < N2
0 , the operator M`,NM

∗
`,N :

HN → HN is invertible and

‖
(
M`,NM

∗
`,N

)−1‖0 . N2τ0 . (4.6.17)

As a consequence, the operator B`,N defined in (4.6.13) has the right inverse

M−1
`,N := M∗

`,N(M`,NM
∗
`,N

)−1
: HN → H2N , (4.6.18)

which satisfies

‖M−1
`,N‖0 . N τ0 , |M−1

`,N |s0 . N τ0+s0+ d
2 . (4.6.19)

Proof. Since M` = M∗
` , M∗

`,N = Π2N(M∗
` )|HN

= Π2N(M`)|HN
. Using (4.6.14)-(4.6.15),

we have

‖M∗
`,N − (M`)|HN

‖0 = ‖Π⊥2N(M`)|HN
‖0

(4.6.14)
= ‖Π⊥2N(D1/2

m R̄D1/2
m )|HN

‖0

. |Π⊥2N(D1/2
m R̄D1/2

m )|HN
|s0

(3.3.14)

.s N−(s−s0)|R̄|+,s
(4.6.16)

≤ C(s)N−(s−s0) . (4.6.20)
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For all |`| ≤ N < N2
0 , we get, by (4.6.9), that, for any h ∈ HN ,

‖M`h‖0 & γ0〈`〉−τ0‖h‖0 & γ0N
−τ0‖h‖0 . (4.6.21)

Choosing s > s0 + τ0 + 2 in (4.6.20), we deduce by (4.6.21) that, for N ≥ N̄ large enough,
∀h ∈ HN ,

‖M∗
`,Nh‖0 ≥ ‖M`h‖0 −

∥∥(M∗
`,N − (M`)|HN

)
h
∥∥

0

≥ γ0cN
−τ0‖h‖0 − C(s)N−τ0−2‖h‖0

& γ0N
−τ0‖h‖0

and therefore
(M`,NM

∗
`,Nh, h)0 = ‖M∗

`,Nh‖2
0 & γ2

0N
−2τ0‖h‖2

0 .

Since HN is of finite dimension, we conclude that M`,NM
∗
`,N is invertible and (4.6.17) holds

(we do not track anymore the dependence with respect to the constant γ0).
It is clear that M−1

`,N defined in (4.6.18) is a right inverse of M`,N . Moreover, for all
h ∈ HN ,

‖M−1
`,Nh‖

2
0 =

(
M`,NM

∗
`,N(M`,NM

∗
`,N)−1h, (M`,NM

∗
`,N)−1h

)
0

=
(
h, (M`,NM

∗
`,N)−1h

)
0

≤ ‖(M`,NM
∗
`,N)−1‖0‖h‖2

0

and (4.6.17) implies that ‖M−1
`,N‖0 . N τ0 . The second inequality of (4.6.19) is an obvious

consequence of the latter.

Our aim is now to obtain upper bounds of the | |s-norms, for s ≥ s0, of the right inverse
operator M−1

`,N defined in (4.6.18). We write

M`,N = ΠN(M`)|H2N
=
(
ΠNM`ΠN + ΠNM`Π

⊥
N)|H2N

= DN +R1 +R2

(4.6.22)

where, recalling (4.6.14),

DN := ΠND|HN
, D := D1/2

m

(
iµ̄ · `J +Dm + µkJ

)
D1/2
m , (4.6.23)

R1 := ΠN(D1/2
m R̄D1/2

m ΠN)|H2N

R2 := ΠN(D1/2
m R̄D1/2

m )|H⊥N∩H2N
= ΠN(D1/2

m R̄D1/2
m Π⊥N)|H2N

.

By (4.6.16) we have

|R1|s ≤ C(s) , |R2|s ≤ C(s) , ∀s ≥ s0 . (4.6.24)
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We decompose accordingly the adjoint operator as

M∗
`,N = Π2N(M`)|HN

= ΠN(M`)|HN
+ Π⊥NΠ2N(M`)|HN

= DN +R∗1 +R∗2 .
(4.6.25)

By (4.6.23), (3.3.13), (4.6.24), M∗
`,N satisfies the estimate

|M∗
`,N |s ≤ |DN |s + |R∗1|s + |R∗2|s ≤ CN2 + C(s) .s N

2 . (4.6.26)

Thus the right inverse M−1
`,N defined in (4.6.18), satisfies, by (3.3.6) and (4.6.26),

|M−1
`,N |s .s |M

∗
`,N |s0|(M`,NM

∗
`,N)−1|s + |M∗

`,N |s|(M`,NM
∗
`,N)−1|s0

.s N
2|(M`,NM

∗
`,N)−1|s . (4.6.27)

In Lemma 4.6.6 below we shall bound |(M`,NM
∗
`,N)−1|s by a multi-scale argument. Without

any loss of generality, we consider the case (ii) of (4.1.1). We first give a general result which
is a reformulation of the multiscale step Proposition 4.1 of [23], with stronger assumptions.
Here I := {1, 2, 3, 4}.

Lemma 4.6.5. Given ς ∈ (0, 1/2), C1 ≥ 2, τ̃ > 0, there are τ̃ ′ > τ̃ (depending only on τ̃
and d), s∗ > s0, η > 0, Ñ ≥ 1 with the following property. For any N ≥ Ñ , for any finite

Ẽ ⊂ Zd × I with diam(Ẽ) ≤ N , for any A = D +R ∈MẼ
Ẽ

with D diagonal, assume that

i) (L2-bound) ‖A−1‖0 ≤ N τ̃ ,

ii) (Off-diagonal decay) |R|s∗ ≤ η,

iii) (Separation properties of the singular sites) There is a partition of the singular

sites Ω := {i ∈ Ẽ : |Di
i| < 1/4} ⊂ ∪αΩα with

diam(Ωα) ≤ NC1ς/(C1+1) , d(Ωα,Ωβ) ≥ N2ς/(C1+1) , ∀α 6= β .

Then
|A−1|s ≤ C(s)N τ̃ ′(N ςs + |R|s) , ∀s ≥ s0 . (4.6.28)

As usual, what is interesting in bound (4.6.28) is its “tamed” dependence with respect
to N (ς < 1); the constant C(s) may grow very strongly with s, but it does not depend on
N .

Lemma 4.6.6. There exist t0, depending only on τ0, and N̄ such that for all N̄ ≤ N < N2
0 ,

|`| ≤ N , we have that, ∀s ≥ s0,

|(M`,NM
∗
`,N)−1|s ≤ C(s)N t0+ςs . (4.6.29)
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Proof. We identify the operator DN in (4.6.23) with the diagonal matrix

Diagj∈[−N,N ]dD
j
j

where each Djj is in L(C4) (we are in case (ii) of (4.1.1)). Using the unitary basis of C4

defined in (4.2.10), we identify each Djj with the 4× 4 diagonal matrix (see (4.2.11))

Djj = Diag(D(j,a)
(j,a))a∈{1,2,3,4} , D(j,a)

(j,a) := 〈j〉m
(
〈j〉m + σ1(a)µk + σ2(a)µ̄ · `

)
(4.6.30)

with signs σ1(a), σ2(a) defined as in (4.4.7).
Notice that the singular sites of M` are those in (4.4.8) with ω = µ̄, µ = µk, θ = 0 and

` fixed.
By Lemma 4.4.8, which we can apply with K = 4 (` being fixed), for Γ ≥ Γ̄(Θ), every

Γ-chain of singular sites for M` is of length smaller than (4Γ)C2 . Let us take

C1 = 2C2 + 3 , Γ = N2/χ with χ = ς−1(C1 + 1) . (4.6.31)

As a consequence, arguing as at the end of section 4.4, we deduce that, for N large enough
(depending on Θ), the set Ω of the singular sites for M`,N can be partitioned as

Ω = ∪αΩα , with diam(Ωα) ≤ (4Γ)C2 × Γ ≤ NC1/χ , d(Ωα,Ωβ) > N2/χ . (4.6.32)

We now multiply

M`,NM
∗
`,N

(4.6.22),(4.6.25)
= D2

N +DNR∗1 +R1DN +R1R
∗
1 +R2R

∗
2 (4.6.33)

(notice that DNR∗2, R2DN , R1R
∗
2, R2R

∗
1 are zero) in both sides by the diagonal matrix

d−1
Θ,N := (|DN |+ ΘIdN)−1 where

|DN | := Diag|j|≤N,a∈I(|D
j,a
j,a|)|j|≤N , IdN := ΠN Id|HN

.
(4.6.34)

We write
P`,N := d−1

Θ,NM`,NM
∗
`,Nd

−1
Θ,N = D̃N + %Θ,N (4.6.35)

where, by (4.6.33),

D̃N := d−1
Θ,ND

2
Nd
−1
Θ,N , %Θ,N := d−1

Θ,N

(
DNR∗1 +R1DN +R1R

∗
1 +R2R

∗
2

)
d−1

Θ,N . (4.6.36)

We apply the multiscale Lemma 4.6.5 to P`,N with C1 defined in (4.6.31) and τ̃ := 2τ0 + 5.
Let us verify its assumptions. The operator P`,N defined in (4.6.35) is invertible as M`,NM

∗
`,N
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(Lemma 4.6.4) and, by the definition of dΘ,N in (4.6.34) and (4.6.30), for N2
0 > N ≥ N̄

large enough (depending on Θ), for all |`| ≤ N , and using (4.6.17), we obtain

‖P−1
`,N‖0 =

∥∥dΘ,N

(
M`,NM

∗
`,N

)−1
dΘ,N

∥∥
0

. N4
∥∥(M`,NM

∗
`,N

)−1∥∥
0

≤ N2τ0+5 = N τ̃ (4.6.37)

by the definition of τ̃ := 2τ0 + 5. Thus Assumption i) of Lemma 4.6.5 holds.
Then we estimate the | |s-decay norm of the operator %Θ,N in (4.6.36). By (3.3.20),

(4.6.24) and |d−1
Θ,N |s ≤ Θ−1, |d−1

Θ,NDN |s ≤ 1 which directly follow by the definition (4.6.34),
we get, for all s ≥ s0,

|%Θ,N |s .s |d−1
Θ,NDN |s|R1|s|d−1

Θ,N |s + |d−1
Θ,N |

2
s

(
|R1|s0|R1|s + |R2|s0|R2|s

)
.s Θ−1 .

(4.6.38)

In particular, provided that Θ has been chosen large enough (depending on ς, C1, τ0), As-
sumption ii) of Lemma 4.6.5 is satisfied.

To check Assumption iii) it is enough to notice that, by the definition of D̃N in (4.6.36),
and of d−1

Θ,N in (4.6.34), for all i ∈ [−N,N ]d × I, we have

D̃ii =
|Dii|2

(|Dii|+ Θ)2
, and |Dii| ≥ Θ ⇐⇒ |D̃ii| ≥ 1/4 .

As a consequence, the separation properties for the singular sites of M`,N proved in (4.6.32)
(with χ = ς−1(C1 + 1)), imply that Assumption iii) of Lemma 4.6.5 is satisfied, provided
that N is large enough (depending only on Θ). Lemma 4.6.5 implies that there is t0,
depending only on τ0, such that (see (4.6.28))

|P−1
`,N |s .s N

t0
(
N ςs + |%Θ,N |s

)
,

which gives, using (4.6.35), (3.3.20), |d−1
Θ,N |s ≤ 1,

|(M`,NM
∗
`,N)−1|s = |d−1

Θ,NP
−1
`,Nd

−1
Θ,N |s .s |d

−1
Θ,N |

2
s|P−1

`,N |s
.s N

t0(N ςs + |%Θ,N |s) .
(4.6.39)

Finally, estimate (4.6.29) follows by (4.6.39) and (4.6.38).

Proof of Proposition 4.6.1 concluded. Recalling the decomposition (4.6.2), the
first goal is to define a right inverse of the operator

Ld,N : H2N → HN , Ld,N := ΠND
1/2
m LdD1/2

m |H2N
, (4.6.40)
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where Ld is defined in (4.6.3). Recalling (4.6.7), (4.6.13) and Lemma 4.6.4, the linear
operator L−1

d,N : HN → H2N defined by

L−1
d,N(ei`·ϕg) = ei`·ϕM−1

`,N(g) , ∀` ∈ [−N,N ]|S| , ∀g ∈ HN ,

is a right inverse of Ld,N . Using that L−1
d,N is diagonal in time it results

|L−1
d,N |s ≤ N |S|/2 max

|`|≤N
|M−1

`,N |s . (4.6.41)

By (4.6.27) and Lemma 4.6.6, we have the bound

|M−1
`,N |s .s N

t0+ςs+2 , ∀s ≥ s0 . (4.6.42)

Therefore, by (4.6.41), (4.6.42) and the second estimate in (4.6.19), we get

|L−1
d,N |s .s N

|S|
2

+t0+ςs+2 , ∀s ≥ s0 , |L−1
d,N |s0 . N

b
2

+τ0+s0 , b = d+ |S| . (4.6.43)

Finally we use a perturbative Neumann series argument to prove the existence of a right
inverse of

L+
r,µ,N := D1/2

m [Lr,µ]2NN D1/2
m

(4.1.19)
= ΠND

1/2
m Lr,µ(ε, λ)D1/2

m |H2N

(4.6.2),(4.6.40)
= Ld,N + ρN

(4.6.44)

where
ρN := ΠND

1/2
m ρ(ε, λ, ϕ)D1/2

m |H2N
(4.6.45)

satisfies, by (4.6.4), (4.6.5), (4.6.6), Lemma 3.3.8, and item 1 of Definition 4.1.2,

|ρN |Lip,s .s ε
2N2 + |r|Lip,+,s , |ρN |Lip,s1 .s1 ε

2N2 . (4.6.46)

Using the second estimates in (4.6.43) and (4.6.46), N ≤ N2
0 , (4.5.10) and (4.5.1), we get

|L−1
d,N |s0|ρN |Lip,s0 .s1 N

b
2

+τ0+s0+2ε2 ≤ N b+2τ0+2s0+4
0 ε2 � 1 . (4.6.47)

Hence IdHN + ρNL−1
d,N is invertible and the operator L+

r,µ,N in (4.6.44) has the right inverse

(L+
r,µ,N)−1 = D−1/2

m ([Lr,µ]2NN )−1D−1/2
m := L−1

d,N

(
IdHN + ρNL−1

d,N

)−1
(4.6.48)

which satisfies the following tame estimates (see Lemma 3.3.12) for all s ≥ s0,

|(L+
r,µ,N)−1|Lip,s .s |L−1

d,N |Lip,s + |L−1
d,N |

2
Lip,s0
|ρN |Lip,s . (4.6.49)

Since L−1
d,N does not depend on λ, |L−1

d,N |Lip,s = |L−1
d,N |s, and (4.6.48), (4.6.49), (4.6.43),

(4.6.46) imply

|D−1/2
m ([Lr,µ]2NN )−1D−1/2

m |Lip,s .s N
τ ′0
(
N ςs + |r|Lip,+,s

)
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where
τ ′0 := max

{
(|S|/2) + t0 + 2, b+ 2s0 + 2τ0 + 4

}
and, using (3.3.28), the estimate (4.6.1) follows.

Let us now prove (4.1.21). Calling ρ′ the operator defined in (4.6.4) associated to (µ′, r′)
we have ρ− ρ′ = (µ− µ′)JΠ⊥S∪F + r − r′ and, by (4.6.48),

D−1/2
m

(
([Lr,µ]2NN )−1 − ([Lr′,µ′ ]2NN )−1

)
D−1/2
m

= L−1
d,N

[(
IdHN + ρNL−1

d,N

)−1 −
(
IdHN + ρ′NL−1

d,N

)−1
]

= L−1
d,N

(
IdHN + ρNL−1

d,N

)−1
(ρ′N − ρN)L−1

d,N

(
IdHN + ρ′NL−1

d,N

)−1

= (L+
r,µ,N)−1(ρ′N − ρN)(L+

r′,µ′,N)−1 . (4.6.50)

In conclusion, by (4.6.50) (3.3.20), (4.6.49), and |L−1
d,N |s0|ρN |Lip,s1 ≤ 1, we get∣∣D−1/2

m

(
([Lr,µ]2NN )−1 − ([Lr′,µ′ ]2NN )−1

)
D−1/2
m

∣∣
s1
.s1 |L−1

d,N |
2
s1
|ρN − ρ′N |s1

.s1N
2(τ ′0+ςs1)

(
|µ− µ′|N2 + |r − r′|+,s1

)
which, using (3.3.28), implies (4.1.21). This completes the proof of Proposition 4.6.1.

Remark 4.6.7. In this section we have proved directly the Lipschitz estimate of ([Lr,µ]2NN )−1

instead of arguing as in Proposition 4.7.6, because for a right inverse we do not have the
formula (4.7.23).

4.7 Inverse of Lr,µ,N for N ≥ N 2
0

In Proposition 4.6.1 we proved item 1 of Proposition 4.1.5. The aim of this section is
prove item 2 of Proposition 4.1.5, namely that for all N ≥ N2

0 and λ ∈ Λ(ε; 1, Xr,µ) the
operator Lr,µ,N defined in (4.1.22) is invertible and its inverse L−1

r,µ,N has off-diagonal decay,
see Proposition 4.7.6. The proof is based on inductive applications of the multiscale step
Proposition 4.3.4, thanks to Proposition 4.4.5 about the separation properties of the bad
sites.

The set Λ(ε; 1, Xr,µ) is good at any scale

We first prove the following proposition.

Proposition 4.7.1. The Λ(ε; 1, Xr,µ) in (4.5.12) satisfies

Λ(ε; 1, Xr,µ) ⊂
⋂

N≤N0

GN
⋂
k≥1

GNk (4.7.1)

where GN are defined in (4.4.5).
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We first consider the small scales N ≤ N0.

Lemma 4.7.2. Let Ă(ε, λ, θ) be the matrix in (4.2.14) corresponding to r = 0, see remark

4.2.1. There is N̄ such that for all N̄ ≤ N ≤ N0 ≤ (2ε−2)
1

τ+s0+d (see (4.5.10)), ∀λ ∈ Λ̃,
∀j0 ∈ Zd, θ ∈ R,

‖D−1/2
m Ă−1

N,j0
(ε, λ, θ)D−1/2

m ‖0 ≤ N τ =⇒
|D−1/2

m A−1
N,j0

(ε, λ, θ)D−1/2
m |s ≤ N τ ′+ςs , ∀s ∈ [s0, s1] ,

(4.7.2)

namely the matrix AN,j0(ε, λ, θ) is N-good according to Definition 4.3.1.

Proof. For brevity, the dependence of the operators with respect to (ε, λ) is kept implicit.

Step 1. We first prove that there is N̄ such that ∀N ≥ N̄ , ∀j0 ∈ Zd, ∀θ ∈ R,

‖D−1/2
m Ă−1

N,j0
(θ)D−1/2

m ‖0 ≤ N τ =⇒
|D−1/2

m Ă−1
N,j0

(θ)D−1/2
m |s ≤ C(s)N τ ′1+ςs , ∀s ≥ s0 ,

(4.7.3)

where τ ′1 := τ̃ ′ + (|S|/2) and τ̃ ′ > τ is the constant provided by Lemma 4.6.5 associated to
τ̃ = τ .

Recall that the matrix Ă(θ) represents the L2-self-adjoint operator L0,µ(θ) defined in
(4.2.17), which is independent of ϕ. For all ` ∈ Z|S|, h ∈ H, we have that

D1/2
m L0,µ(θ)D1/2

m (ei`·ϕh) = ei`·ϕM`(θ)h , M`(θ) = D`(θ) + Tµ ,

where
D`(θ) := i(ω · `+ θ)JDm +D2

m + µJDm ,

Tµ := D1/2
m

(
DV −Dm − µJΠS∪F + cΠS

)
D1/2
m .

Note that, by (3.4.1), Lemma 3.3.8, and since µ = O(1) (item 2 of Definition 4.1.2), it
results

|Tµ|s ≤ C(s) , ∀s ≥ s0 . (4.7.4)

In order to prove (4.7.3), since

|D−1/2
m Ă−1

N,j0
(θ)D−1/2

m |s ≤ N |S|/2 max
|`|≤N

|(M`(θ))
−1
N,j0
|s , (4.7.5)

it is sufficient to bound the | |s-norms of (M`(θ))
−1
N,j0

. We apply the multiscale Lemma 4.6.5.

We identify as usual the operator D`(θ) with the diagonal matrix Diagj((D`(θ))
j
j) where

(D`(θ))jj = Diag([D`(θ)](j,a)
(j,a))a∈{1,2,3,4} ,

[D`(θ)](j,a)
(j,a) := 〈j〉m

(
〈j〉m + σ1(a)µ+ σ2(a)(ω · `+ θ)

)
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with signs σ1(a), σ2(a) defined as in (4.4.7). Notice that the singular sites of D`(θ) are those
in (4.4.8) with ` fixed. By Lemma 4.4.8, which we use with K = 4, ` being fixed, there is
C2 (independent of Θ) such that, for Γ > Γ̄(Θ), any Γ-chain of singular sites has length
L ≤ (4Γ)C2 . As in (4.6.31), we can apply this result with C1 = 2C2 + 3, χ = ς−1(C1 + 1)
and Γ = N2/χ (for any N ≥ N̄ large enough), and we find that the operator Θ−1(M`(θ))N,j0
satisfies Assumption iii) of Lemma 4.6.5, where we take τ̃ = τ . Assumption ii) is also
satisfied, provided that Θ has been chosen large enough, more precisely Θ ≥ η−1C(s∗),
with the constant C(s∗) of (4.7.4).

By Lemma 4.6.5, there is τ̃ ′ > τ such that ∀N ≥ N̄ , ∀j0 ∈ Zd, ∀θ ∈ R, ∀` ∈ Z|S|,

‖(M`(θ))
−1
N,j0
‖0 ≤ N τ =⇒ ∀s ≥ s0 , |(M`(θ))

−1
N,j0
|s .s N τ̃ ′

(
N ςs + |Tµ|s

)
. (4.7.6)

Since
‖D−1/2

m Ă−1
N,j0

(θ)D−1/2
m ‖0 = max

|`|≤N
‖(M`(θ))

−1
N,j0
‖0 ,

the premise in (4.7.3) implies the premise in (4.7.6) and therefore (4.7.5), (4.7.6), (4.7.4)
imply (4.7.3) since τ ′1 := τ̃ ′ + |S|/2.

Step 2. We now apply a perturbative argument to the operator

D1/2
m AN,j0(θ)D1/2

m = D1/2
m ĂN,j0(θ)D1/2

m + ρN,j0 , (4.7.7)

where ρ is the matrix which represents D1/2
m rD1/2

m , and, by item 1 of Definition 4.1.2,

|ρN,j0|s1 ≤ |r|+,s1 ≤ C1ε
2 . (4.7.8)

If ‖D−1/2
m Ă−1

N,j0
(θ)D−1/2

m ‖0 ≤ N τ then

|D−1/2
m Ă−1

N,j0
(θ)D−1/2

m |s0 |ρN,j0|s1 . N τ+s0+(d/2)ε2 . N
τ+s0+(d/2)
0 ε2 � 1 (4.7.9)

since N0 ≤ (2ε−2)
1

τ+s0+d (see (4.5.10)). Then Lemma 3.3.12 implies that D1/2
m AN,j0(θ)D1/2

m

in (4.7.7) is invertible, and ∀s ∈ [s0, s1]

|D−1/2
m A−1

N,j0
(θ)D−1/2

m |s .s1 |D−1/2
m Ă−1

N,j0
(θ)D−1/2

m |s + |D−1/2
m Ă−1

N,j0
(θ)D−1/2

m |2s0|ρN,j0 |s1
(4.7.9)

.s1 |D−1/2
m Ă−1

N,j0
(θ)D−1/2

m |s
(4.7.3)

.s1 N τ ′1+ςs ≤ N τ ′+ςs ,

because τ ′ > τ ′1 = τ̃ ′ + (|S|/2) (see (4.5.3)) and for N̄ large enough.

At small scales N ≤ N0, any λ ∈ Λ̃ is N -good.

Lemma 4.7.3. (Initialization) For all N ≤ N0 and ε small, the set GN defined in (4.4.5)

is GN = Λ̃.
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Proof. Lemma 4.7.2 implies that ∀λ ∈ Λ̃, ∀j0 ∈ Zd, the set BN(j0;λ) defined in (4.4.3)
satisfies

BN(j0;λ) ⊂ B̆0
N :=

{
θ ∈ R : ‖D−1/2

m Ă−1
N,j0

(ε, λ, θ)D−1/2
m ‖0 > N τ/2

}
. (4.7.10)

Thus, in order to prove that GN = Λ̃, it is sufficient to show that the set B̆0
N in (4.7.10)

satisfies the complexity bound (4.4.4). Note that, since ‖D−1/2
m ‖0 ≤ m−1/4, we have

B̆0
N ⊂

{
θ ∈ R : ‖Ă−1

N,j0
(ε, λ, θ)‖0 > CN τ , C :=

√
m/2

}
(4.7.11)

=
{
θ ∈ R : ∃ an eigenvalue of ĂN,j0(ε, λ, θ) with modulus less than N−τ/C

}
.

Let ΠN,j0 denote the L2-projector on the subspace

HN,j0 :=
{

(q(x), p(x)) =
∑

|j−j0|≤N

(qj, pj)e
ij·x
}
.

Since ĂN,j0(ε, λ, θ) represents the operator L0,µ(θ) in (4.2.17) which does not depend on ϕ

(see remark 4.2.1), the spectrum of ĂN,j0(ε, λ, θ) is formed by

±(ω · `+ θ)− βj , j = 1, . . . , (2N + 1)d , ` ∈ Z|S|,
βj eigenvalue of ΠN,j0

(
DV + µJΠ⊥S∪F + cΠS

)
ΠN,j0 ,

and, by (4.7.11), we have

B̆0
N ⊂

⋃
|`|≤N,j=1,...,(2N+1)d,σ=±

Rσ
`,j ,

Rσ
`,j :=

{
θ ∈ R : |σ(θ + ω · `)− βj| ≤ N−τ/C

}
.

(4.7.12)

It follows that B̆0
N is included in the union of N |S|+d+1 intervals Iq of length 2N−τ/C. By

eventually dividing the intervals Iq we deduce that B̆0
N is included in the union of Nd+2+|S|

intervals Iq of length N−τ .

Lemma 4.7.4. For all k ≥ 0 we have

GNk
⋂
G0
Nk+1,1

⋂
G̃ ⊂ GNk+1

(4.7.13)

where the set GN is defined in (4.4.5), G0
N,η in (4.5.5) and G̃ in (4.5.8).

Proof. Let λ ∈ GNk ∩ G0
Nk+1,1

∩ G̃. In order to prove that λ ∈ GNk+1
(Definition 4.4.4),

since λ ∈ G0
Nk+1,1

(set defined in (4.5.5)), it is sufficient to prove that the sets BNk+1
(j0;λ)

in (4.4.4) and B0
Nk+1

(j0;λ, 1) in (4.5.4) satisfy:

∀j0 ∈ Zd , BNk+1
(j0;λ) ⊂ B0

Nk+1
(j0;λ, 1) ,
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or equivalently, that

‖D−1/2
m A−1

Nk+1,j0
(ε, λ, θ)D−1/2

m ‖0 ≤ N τ
k+1 =⇒

|D−1/2
m A−1

Nk+1,j0
(ε, λ, θ)D−1/2

m |s ≤ N τ ′+ςs
k+1 , ∀s ∈ [s0, s1] .

(4.7.14)

We prove (4.7.14) applying the multiscale step Proposition 4.3.4 to the matrix ANk+1,j0 . By
(4.2.13) the assumption (H1) holds. The assumption (H2) is the premise in (4.7.14). Let
us verify (H3). By remark 4.4.3, a site

k ∈ E :=
(

(0, j0) + [−Nn+1, Nn+1]b
)
× I , (4.7.15)

which is Nk-good for A(ε, λ, θ) := Lr,µ + θY (see Definition 4.4.2 with A = A(ε, λ, θ)) is
also

(ANn+1,j0(ε, λ, θ), Nk)− good

(see Definition 4.3.3 with A = ANn+1,j0(ε, λ, θ)). As a consequence we have the inclusion{
(ANn+1,j0(ε, λ, θ), Nk)−bad sites

}
⊂{

Nk−bad sites of A(ε, λ, θ) with |`| ≤ Nk+1

} (4.7.16)

and (H3) is proved if the latter Nk-bad sites (in the right hand side of (4.7.16)) are contained
in a disjoint union ∪αΩα of clusters satisfying (4.3.7) (with N = Nk). This is a consequence
of Proposition 4.4.5 applied to the infinite dimensional matrix A(ε, λ, θ). Since λ ∈ GNk
then assumption (i) of Proposition 4.4.5 holds with N = Nk. Assumption (ii) holds by
(4.5.1). Assumption (iii) of Proposition 4.4.5 holds because λ ∈ G̃, see (4.5.8). Therefore
the Nk-bad sites of A(ε, λ, θ) satisfy (4.4.6) with N = Nk, and therefore (H3) holds.

Then the multiscale step Proposition 4.3.4 applied to the matrix ANk+1,j0(ε, λ, θ) implies
that if

‖D−1/2
m A−1

Nk+1,j0
(ε, λ, θ)D−1/2

m ‖0 ≤ N τ
k+1

then

|D−1/2
m A−1

Nk+1,j0
(ε, λ, θ)D−1/2

m |s ≤
1

4
N τ ′

k+1

(
N ςs
k+1 + |T |+,s

)
(4.2.13)

≤ N τ ′+ςs
k+1 , ∀s ∈ [s0, s1] , (4.7.17)

proving (4.7.14).

Corollary 4.7.5. For all n ≥ 1 we have

n⋂
k=1

G0
Nk,1

⋂
G̃ ⊂ GNn . (4.7.18)
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Proof. For n = 1 the inclusion (4.7.18) follows by (4.7.13) at k = 0 and the fact that

GN0 = Λ̃ by Lemma 4.7.3. Then we argue by induction. Supposing that (4.7.18) holds at
the step n then

n+1⋂
k=1

G0
Nk,1

⋂
G̃ = G0

Nn+1,1

⋂( n⋂
k=1

G0
Nk,1

⋂
G̃
) (4.7.18)n⊂ G0

Nn+1,1

⋂
GNn

⋂
G̃

(4.7.13)n⊂ GNn+1

proving (4.7.18) at the step n+ 1.

Proof of proposition 4.7.1 concluded. Corollary 4.7.5 implies that⋂
k≥1

G0
Nk,1

⋂
G̃ ⊂

⋂
n≥1

GNn . (4.7.19)

Then we conclude that the set Λ(ε; 1, Xr,µ) defined in (4.5.12) satisfies

Λ(ε; 1, Xr,µ) =
⋂
k≥1

G0
Nk,1

⋂
N≥N2

0

G0
N,1

⋂
G̃

(4.7.19)
⊂

⋂
n≥1

GNn

proving (4.7.1), since GN = Λ̃, for all N ≤ N0, by Lemma 4.7.3.

Inverse of Lr,µ,N for N ≥ N2
0

We can finally prove the following proposition.

Proposition 4.7.6. For all N ≥ N2
0 , λ ∈ Λ(ε; 1, Xr,µ), the operator Lr,µ,N defined in

(4.1.22) is invertible and satisfies (4.1.23). Moreover (4.1.24) holds.

Proof. Let λ ∈ Λ(ε; 1, Xr,µ). For all N ≥ N2
0 there is M ∈ N such that N = Mχ, for

some χ ∈ [χ̄, χ̄2] and λ ∈ GM . In fact

1. If N ≥ N1, then N ∈ [Nn+1, Nn+2] for some n ∈ N, and we have N = Nχ
n for some

χ ∈ [χ̄, χ̄2]. Moreover if λ ∈ Λ(ε; 1, Xr,µ) then λ ∈ GNn by (4.7.1).

2. If N2
0 ≤ N < N1, it is enough to write N = M χ̄ for some integer M < N0. Moreover

if λ ∈ Λ(ε; 1, Xr,µ) then λ ∈ GM by (4.7.1).

We now apply the multiscale step Proposition 4.3.4 to the matrix AN(ε, λ) (which
represents Lr,µ,N as stated in remark 4.2.2), for N ≥ N2

0 , with E = [−N,N ]b × I and
N ′  N , N  M . The assumptions (4.3.3)-(4.3.6) hold, for all χ ∈ [χ̄, χ̄2], by the
choice of the constants χ̄, τ ′, s1 at the beginning of section 4.5. Assumption (H1) holds by
(4.2.13). Assumption (H2) holds because λ ∈ Λ(ε; 1, Xr,µ) ⊂ G0

N,1 for N ≥ N2
0 , see (4.5.12).

Moreover, arguing as in Lemma 4.7.4 -for the matrix A(ε, θ, λ) with θ = 0, j0 = 0-, the
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hypothesis (H3) of Proposition 4.3.4 holds. Then the multiscale step Proposition 4.3.4
implies that, ∀λ ∈ Λ(ε; 1, Xr,µ) ⊂ GM ∩ G0

N,1, we have

|D−1/2
m A−1

N D−1/2
m |s

(4.3.9)

≤ C(s)N τ ′
(
N ςs + ε2|r|+,s

)
≤ C(s)N τ ′

(
N ςs + |r|+,s

)
. (4.7.20)

We claim the following direct consequence: on the set Λ(ε; 1, Xr,µ) we have∣∣∣D−1/2
m

( Lr,µ,N
1 + ε2λ

)−1

D−1/2
m

∣∣∣
Lip,s

≤ C(s)N2(τ ′+ςs1+1)
(
N ς(s−s1) + |r|Lip,+,s

)
. (4.7.21)

For all λ in the set Λ(ε; 1, Xr,µ), the operator

U(ε, λ) := D−1/2
m

( Lr,µ,N
1 + ε2λ

)−1

D−1/2
m

satisfies, by (4.7.20) and |r|+,s1 ≤ C1ε
2 (see item 1 of Definition 4.1.2), the estimates

|U(ε, λ)|s ≤ C(s)N τ ′(N ςs + |r|+,s) , |U(ε, λ)|s1 ≤ C(s1)N τ ′+ςs1 . (4.7.22)

Moreover, for all λ1, λ2 ∈ Λ(ε; 1, Xr,µ), we write (using that
ω

1 + ε2λ
is independent of λ)

U(λ2)− U(λ1)

λ2 − λ1

= −U(λ2)
U−1(λ2)− U−1(λ1)

λ2 − λ1

U(λ1)

= −U(λ2)D1/2
m

1

λ2 − λ1

(Xr,µ,N(λ2)

1 + ε2λ2

− Xr,µ,N(λ1)

1 + ε2λ1

)
D1/2
m U(λ1) (4.7.23)

where Xr,µ,N := ΠN(Xr,µ)|HN . Decomposing

1

λ2 − λ1

(Xr,µ,N(λ2)

1 + ε2λ2

− Xr,µ,N(λ1)

1 + ε2λ1

)
=
Xr,µ,N(λ2)−Xr,µ,N(λ1)

(λ2 − λ1)(1 + ε2λ2)
− ε2Xr,µ,N(λ1)

(1 + ε2λ2)(1 + ε2λ1)

we deduce by (4.7.23), (4.7.22) and µ = O(1), |µ|lip = O(ε2), |r|+,s1 , |r|lip,+,s1 ≤ C1ε
2, the

estimates
|U |lip,s .s N2(τ ′+ςs1+2)(N ς(s−s1) + |r|+,s + |r|lip,+,s) ,
|U |lip,s1 .s1 N2(τ ′+ςs1+1) .

(4.7.24)

Finally (4.7.22) and (4.7.24) imply (4.7.21). The inequalities (3.3.28) and (4.7.21) imply
(4.1.23).

We finally prove (4.1.24). Denoting A′N the matrix which represents Lr′,µ′,N as in remark
4.2.2 we have that AN −A′N represents ΠN((µ− µ′)JΠ⊥S∪F + r− r′)|HN . Then it is enough
to write ∣∣D−1/2

m

(
A−1
N − (A′N)−1

)
D−1/2
m

∣∣
s1

.s1 |D−1/2
m A−1

N D−1/2
m |s1|AN − A′N |+,s1|D−1/2

m (A′N)−1D−1/2
m |s1

.s1 N
2(τ ′+ςs1)

(
|µ− µ′|N2 + |r − r′|+,s1

)
using (4.7.20) at s = s1 and the bounds |r|+,s1 , |r′|+,s1 . ε2. This estimate and (3.3.28)
imply (4.1.24).
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4.8 Measure estimates

The aim of this section is to prove the measure estimates (4.1.17)-(4.1.18) in Proposition
4.1.5.

Preliminaries

We first give several lemmas on basic properties of eigenvalues of self-adjoint matrices,
which are a consequence of their variational characterization.

Lemma 4.8.1. Let A(ξ) be a family of self-adjoint matrices in ME
E, E finite, defined for

ξ ∈ Λ̃ ⊆ R, satisfying, for some β > 0,

dξA(ξ) ≥ βId

(recall the notation (1.6.4)). We list the eigenvalues of A(ξ) in non decreasing order

µ1(ξ) ≤ . . . ≤ µq(ξ) ≤ . . . ≤ µ|E|(ξ)

according to their variational characterization

µq(ξ) := inf
F∈Fq

max
y∈F,‖y‖0=1

〈A(ξ)y, y〉0 (4.8.1)

where Fq is the set of all subspaces F of C|E| of dimension q. Then

dξµq(ξ) ≥ β > 0 , ∀q = 1, . . . , |E| . (4.8.2)

Proof. By the assumption dξA(ξ) ≥ βId, we have, for all ξ2 > ξ1, ξ1, ξ2 ∈ Λ̃, y ∈ F ,
‖y‖0 = 1, that

〈A(ξ2)y, y〉0 > 〈A(ξ1)y, y〉0 + β(ξ2 − ξ1) .

Therefore
max

y∈F,‖y‖0=1
〈A(ξ2)y, y〉0 ≥ max

y∈F,‖y‖0=1
〈A(ξ1)y, y〉0 + β(ξ2 − ξ1)

and, by (4.8.1), for all q = 1, . . . , |E|,

µq(ξ2) ≥ µq(ξ1) + β(ξ2 − ξ1) .

Hence dξµq(ξ) ≥ β.

Lemma 4.8.2. i) Let A(ξ) be a family of self-adjoint matrices in ME
E, E finite, Lipschitz

with respect to ξ ∈ Λ̃ ⊆ R, satisfying, for some β > 0,

dξA(ξ) ≥ βId .
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Then there are intervals (Iq)1≤q≤|E| in R such that{
ξ ∈ Λ̃ : ‖A−1(ξ)‖0 ≥ α−1

}
⊆

⋃
1≤q≤|E|

Iq , |Iq| ≤ 2αβ−1 , (4.8.3)

and in particular the Lebesgue measure∣∣∣{ξ ∈ Λ̃ : ‖A−1(ξ)‖0 ≥ α−1
}∣∣∣ ≤ 2|E|αβ−1 . (4.8.4)

ii) Let A(ξ) := Z + ξW be a family of self-adjoint matrices in ME
E, Lipschitz with respect

to ξ ∈ Λ̃ ⊆ R, with W invertible and

β1Id ≤ Z ≤ β2Id

with β1 > 0. Then there are intervals (Iq)1≤q≤|E| such that{
ξ ∈ Λ̃ : ‖A−1(ξ)‖0 ≥ α−1

}
⊆

⋃
1≤q≤|E|

Iq , |Iq| ≤ 2αβ2β
−1
1 ‖W−1‖0 . (4.8.5)

Proof. Proof of i). Let (µq(ξ))1≤q≤|E| be the eigenvalues of A(ξ) listed as in Lemma
4.8.1. We have{

ξ ∈ Λ̃ : ‖A−1(ξ)‖0 ≥ α−1
}

=
⋃

1≤q≤|E|

{
ξ ∈ Λ̃ : µq(ξ) ∈ [−α, α]

}
.

By (4.8.2) each

Iq :=
{
ξ ∈ Λ̃ : µq(ξ) ∈ [−α, α]

}
is included in an interval of length less than 2αβ−1.

Proof of ii). Let U := W−1Z and consider the family of self-adjoint matrices

Ã(ξ) := A(ξ)U = (Z + ξW )U = ZW−1Z + ξZ .

We have the inclusion{
ξ ∈ Λ̃ : ‖A−1(ξ)‖0 ≥ α−1

}
⊂
{
ξ ∈ Λ̃ : ‖Ã−1(ξ)‖0 ≥ (α‖U‖0)−1

}
. (4.8.6)

Since dξÃ(ξ) ≥ β1Id we derive by item i) that{
ξ ∈ Λ̃ : ‖Ã−1(ξ)‖0 ≥ (α‖U‖0)−1

}
⊂

⋃
1≤q≤|E|

Iq (4.8.7)

where Iq are intervals with measure

|Iq| ≤ 2α‖U‖0β
−1
1 ≤ 2α‖W−1‖0‖Z‖0β

−1
1 ≤ 2α‖W−1‖0β2β

−1
1 . (4.8.8)

Then (4.8.6), (4.8.7), (4.8.8) imply (4.8.5).

The variational characterization of the eigenvalues also implies the following lemma.
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Lemma 4.8.3. Let A, A1 be self adjoint matrices ME
E, E finite. Then their eigenvalues,

ranked in nondecreasing order, satisfy the Lipschitz property

|µq(A)− µq(A1)| ≤ ‖A− A1‖0 , ∀q = 1, . . . , |E| .

We finish this section stating a simple perturbative lemma, proved by a Neumann series
argument.

Lemma 4.8.4. Let B,B′ ∈ME
E with E := [−N,N ]b × I, and assume that

‖D−1/2
m B−1D−1/2

m ‖0 ≤ K1 , ‖B′ −B‖0 ≤ α . (4.8.9)

If 4(N2 +m)1/2αK1 ≤ 1, then

‖D−1/2
m (B′)−1D−1/2

m ‖0 ≤ K1 + 4(N2 +m)1/2αK2
1 . (4.8.10)

Measure estimate of Λ \ G̃

We estimate the complementary set Λ \ G̃ where G̃ is the set defined in (4.5.8).

Lemma 4.8.5. |Λ \ G̃| ≤ ε2.

Proof. Since ω̄ε := ω̄ satisfies (1.2.30) we have∣∣n+ (1 + ε2λ)2
∑

1≤i≤j≤|S|

pijω̄iω̄j
∣∣ ≥ ∣∣n+

∑
1≤i≤j≤|S|

pijω̄iω̄j
∣∣− C|λ|ε2|p|

≥ γ1

〈p〉τ1
− C ′ε2|p| ≥ γ1/2

〈p〉τ1

for all |p| ≤
( γ1

2C ′ε2

) 1
τ1+1 . Moreover, if n = 0 then, for all λ ∈ Λ, we have

∣∣(1 + ε2λ)2
∑

1≤i≤j≤|S|

pijω̄iω̄j
∣∣ ≥ (1− cε2)2 γ1

〈p〉τ1
.

As a consequence, recalling the definition of G̃ in (4.5.8), Definition 4.1.4 and γ2 := γ1/2,
we have

Λ \ G̃ ⊂
⋃

(n,p)∈N

Rn,p , N :=
{
n 6= 0 , |p| >

( γ1

2C ′ε2

) 1
τ1+1

, |n| ≤ C|p|
}
, (4.8.11)

where

Rn,p :=
{
λ ∈ Λ : |fn,p(λ)| < 2γ2

〈p〉τ2
}
, fn,p(λ) :=

n

(1 + ε2λ)2
+

∑
1≤i≤j≤|S|

pijω̄iω̄j .
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Since ∂λfn,p(λ) := − 2nε2

(1 + ε2λ)3
, if |n| 6= 0, we have |Rn,p| . ε−2γ2〈p〉−τ2 and by (4.8.11)

|Λ \ G̃| .γ0

∑
|p|>
(

γ1
2C′ε2

) 1
τ1+1

|p| ε
−2

|p|τ2
.γ0 ε

−2

∫ +∞(
γ1

2C′ε2

) 1
τ1+1 ρ

−τ2+ 1
2
|S|(|S|−1)dρ

.γ0 ε
2(τ2−(|S|(|S|−1)/2)−2−τ1)

τ1+1 ≤ ε2

for τ2 large with respect to τ1, i.e. τ2 defined as in (4.5.9), and ε small.

Measure estimate of Λ̃ \ G0
N, 1

2
for N ≥ N2

0

We estimate the complementary set Λ̃ \ G0
N, 1

2
where G0

N,η is defined in (4.5.6).

Lemma 4.8.6. If N ≥ N2
0 then

|Λ̃ \ G0
N, 1

2
| ≤ ε−2N−τ+d+|S|+1 ≤ N−

τ
2

+2d+|S|+s0 . (4.8.12)

Proof. By (4.5.6) we have the inclusion

Λ̃ \ G0
N, 1

2
⊂
{
λ ∈ Λ̃ : ‖P−1

N (λ)‖0 > N τ/4
}

where (see remark 4.2.2)

PN(λ) := D1/2
m

AN(ε, λ)

1 + ε2λ
D1/2
m = D1/2

m ΠN

[
Jω̄ε · ∂ϕ +

Xr,µ(ε, λ)

1 + ε2λ

]
|HN

D1/2
m .

By assumption 3 of Definition 4.1.2, the matrix PN(λ) satisfies dλPN(λ) ≤ −cε2 with
c := c2

√
m. The first inequality in (4.8.12) follows by Lemma 4.8.2-i) (in particular (4.8.4))

applied to −PN(λ) with E = [−N,N ]d+|S| × I, α = 4N−τ , β = cε2, taking N large. The
second inequality in (4.8.12) follows because, by (4.5.10),

ε−2 ≤ N τ+d+s0
0 ≤ N

τ+d+s0
2

for N ≥ N2
0 .

Measure estimate of Λ̃ \ G0
Nk,

1
2

for k ≥ 1

We estimate the complementary set Λ̃ \ G0
Nk,

1
2

where G0
N,η is defined in (4.5.5).
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Proposition 4.8.7. For all N ≥ N1 := N χ̄
0 the set B0

N, 1
2

:= Λ̃ \ G0
N, 1

2
has measure

|B0
N, 1

2
| ≤ N−1 . (4.8.13)

We first obtain complexity estimates for the set B0
N(j0;λ, 1/2) defined in (4.5.4). We

argue differently for |j0| ≥ 3(1 + |µ̄|)N and |j0| < 3(1 + |µ̄|)N .

Lemma 4.8.8. For all λ ∈ Λ̃, for all |j0| ≥ 3(1 + |µ̄|)N , we have

B0
N(j0;λ, 1/2) ⊂

Nd+|S|+1⋃
q=1

Iq (4.8.14)

where |Iq| are intervals with length |Iq| ≤ N−τ .

Proof. Recalling (4.2.22), (4.2.14) and (4.2.15), we have

D1/2
m AN,j0(ε, λ, θ)D1/2

m = D1/2
m AN,j0(ε, λ)D1/2

m + θ D1/2
m YN,j0D

1/2
m . (4.8.15)

We claim that, if |j0| ≥ 3(1 + |µ̄|)N and N ≥ N̄(V, d, |S|) is large, then

|j0|2

10
Id ≤ D1/2

m AN,j0(ε, λ)D1/2
m ≤ 4|j0|2Id . (4.8.16)

Indeed by (4.2.12), (4.2.18)-(4.2.19) the eigenvalues ν`,j of AN,j0(ε, λ) satisfy

ν`,j = δ±`,j +O(‖D1/2
m TN,j0(ε, λ)D1/2

m ‖0) where δ±`,j := 〈j〉m
(
〈j〉m ± ω · `± µ) . (4.8.17)

Since |`| ≤ N and |j| ≥ |j0| − N we see that, for |j0| ≥ 3(1 + |µ̄|)N , for N ≥ N̄(V, d, |S|)
large enough,

2|j0|2

9
≤ δ±`,j ≤ 3|j0|2 . (4.8.18)

Hence (4.8.17), (4.8.18) and (4.2.13) imply (4.8.16). As a consequence, Lemma 4.8.2-ii)
applied to the matrix in (4.8.15) with Z = D1/2

m AN,j0(ε, λ)D1/2
m , α = 2N−τ , β1 = |j0|2/10,

β2 ≤ 4|j0|2, W = D1/2
m YN,j0D

1/2
m , ‖W−1‖0 ≤ C, imply that

B0
N(j0;λ, 1/2) ⊂

4(2N+1)d+|S|⋃
q=1

Iq with |Iq| ≤ CN−τ .

Dividing further these intervals we obtain (4.8.14).

We now consider the case |j0| ≤ 3(1 + |µ̄|)N . We can no longer argue directly as in
Lemma 4.8.8. In this case the aim is to bound the measure of

B0
2,N(j0;λ) :=

{
θ ∈ R : ‖D−1/2

m A−1
N,j0

(ε, λ, θ)D−1/2
m ‖0 > N τ/4

}
. (4.8.19)
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The continuity property of the eigenvalues (Lemma 4.8.3) allows then to derive a complexity
estimate for B0

N(j0;λ, 1/2) in terms of the measure |B0
2,N(j0;λ)| (Lemma 4.8.10). Lemma

4.8.11 is devoted to the estimate of the bi-dimensional Lebesgue measure∣∣∣{(λ, θ) ∈ Λ̃× R : θ ∈ B0
2,N(j0;λ)

}∣∣∣ .
Such an estimate is then used in Lemma 4.8.12 to justify that the measure of the section
|B0

2,N(j0;λ)| has an appropriate bound for “most” λ (by a Fubini type argument).

We first show that, for |j0| ≤ 3(1 + |µ̄|)N , the set B0
2,N(j0;λ) is contained in an interval

of size O(N) centered at the origin.

Lemma 4.8.9. ∀|j0| < 3(1 + |µ̄|)N , ∀λ ∈ Λ̃, we have

B0
2,N(j0;λ) ⊂ IN :=

(
− 5(1 + |µ̄|)N, 5(1 + |µ̄|)N

)
.

Proof. The eigenvalues ν`,j(θ) of D1/2
m AN,j0(ε, λ, θ)D1/2

m satisfy

ν`,j(θ) = δ±`,j(θ) +O(|T |+,s1)

where δ±`,j := 〈j〉m
(
〈j〉m ± (ω · `+ θ)± µ) .

(4.8.20)

If |θ| ≥ 5(1 + |µ̄|)N then, using also (4.2.13), each eigenvalue satisfies |ν`,j(θ)| ≥ 1, and
therefore θ belongs to the complementary of the set B0

2,N(j0;λ) defined in (4.8.19).

Lemma 4.8.10. ∀|j0| ≤ 3(1 + |µ̄|)N , ∀λ ∈ Λ̃, we have

B0
N(j0;λ, 1/2) ⊂

⋃
q=1,...,[Ĉ MNτ+1]

Iq

where Iq are intervals with |Iq| ≤ N−τ and M := |B0
2,N(j0;λ)|.

Proof. Suppose that θ ∈ B0
N(j0;λ, 1/2) where B0

N(j0;λ, η) is defined in (4.5.4). Then
there exists an eigenvalue of D1/2

m AN,j0(ε, λ, θ)D1/2
m with modulus less than 2N−τ . Now, by

(4.8.15), and since |j0| ≤ 3(1 + |µ̄|)N , we have

‖D1/2
m

(
AN,j0(ε, λ, θ + ∆θ)− AN,j0(ε, λ, θ)

)
D1/2
m ‖0 = |∆θ|‖D1/2

m YN,j0D
1/2
m ‖0

≤ |∆θ| 5(1 + |µ̄|)N .

Hence, by Lemma 4.8.3, if 5(1 + |µ̄|)N |∆θ| ≤ N−τ then θ + ∆θ ∈ B0
2,N(j0;λ) because

AN,j0(ε, λ, θ + ∆θ) has an eigenvalue with modulus less than 4N−τ . Hence

[θ − cN−(τ+1), θ + cN−(τ+1)] ⊂ B0
2,N(j0;λ) .
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Therefore B0
N(j0;λ, 1/2) is included in an union of intervals Jm with disjoint interiors,

B0
N(j0;λ, 1/2) ⊂

⋃
m

Jm ⊂ B0
2,N(j0;λ), with length |Jm| ≥ 2cN−(τ+1) (4.8.21)

(if some of the intervals [θ − cN−(τ+1), θ + cN−(τ+1)] overlap, then we glue them together).
We decompose each Jm as an union of (non overlapping) intervals Iq of length between
cN−(τ+1)/2 and cN−(τ+1). Then, by (4.8.21), we get a new covering

B0
N(j0;λ, 1/2) ⊂

⋃
q=1,...,Q

Iq ⊂ B0
2,N(j0;λ)

with cN−(τ+1)/2 ≤ |Iq| ≤ cN−(τ+1) ≤ N−τ

and, since the intervals Iq do not overlap,

QcN−(τ+1)/2 ≤
Q∑
q=1

|Iq| ≤ |B0
2,N(j0;λ)| =: M .

As a consequence Q ≤ Ĉ MN τ+1, proving the lemma.

In the next lemma we use the crucial sign condition assumption 3 of Definition 4.1.2.

Lemma 4.8.11. ∀|j0| < 3(1 + |µ̄|)N , the set

B0
2,N(j0) := B0

2,N(j0; ε) :={
(λ, θ) ∈ Λ̃× R :

∥∥∥D−1/2
m A−1

N,j0
(ε, λ, θ)D−1/2

m

∥∥∥
0
> N τ/4

} (4.8.22)

has measure
|B0

2,N(j0)| ≤ Cε−2N−τ+d+|S|+1 . (4.8.23)

Proof. By Lemma 4.8.9, the set B0
2,N(j0) ⊂ Λ̃ × IN . In order to estimate the “bad”

(λ, θ) where at least one eigenvalue of D1/2
m AN,j0(ε, λ, θ)D1/2

m has modulus less than 4N−τ ,
we introduce the variable

ϑ :=
θ

1 + ε2λ
where ϑ ∈ 2IN , (4.8.24)

and we consider the self adjoint matrix (recall that ω = (1 + ε2λ)ω̄ε)

PN,j0(λ) := D1/2
m

AN,j0(ε, λ, θ)

1 + ε2λ
D1/2
m

= D1/2
m

(
Jω̄ε · ∂ϕ +

[Xr,µ(ε, λ)]N,j0
1 + ε2λ

+ ϑYN,j0

)
D1/2
m .

(4.8.25)
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By the assumption 3 of Definition 4.1.2 we get

dλPN,j0(λ) ≤ −cε2 , c := c2

√
m.

By Lemma 4.8.2-i), for each fixed ϑ, the set of λ ∈ Λ̃ such that at least one eigenvalue is
≤ 4N−τ has measure at most O(ε−2N−τ+d+|S|). Then, integrating on ϑ ∈ IN , whose length
is |IN | = O(N), we deduce (4.8.23).

As a consequence of Lemma 4.8.11 for “most” λ the measure of B0
2,N(j0;λ) is “small”.

Lemma 4.8.12. ∀|j0| < 3(1 + |µ̄|)N , the set

FN(j0) :=
{
λ ∈ Λ̃ : |B0

2,N(j0;λ)| ≥ ε−2Ĉ−1N−τ+2d+|S|+3
}

(4.8.26)

where Ĉ is the positive constant of Lemma 4.8.10, has measure

|FN(j0)| ≤ CN−d−2 . (4.8.27)

Proof. By Fubini theorem, recalling (4.8.22) and (4.8.19), we have

|B0
2,N(j0)| =

∫
Λ̃

|B0
2,N(j0;λ)| dλ . (4.8.28)

Let µ := τ − 2d− |S| − 3. By (4.8.28) and (4.8.23),

Cε−2N−τ+d+|S|+1 ≥
∫

Λ̃

|B0
2,N(j0;λ)| dλ

≥ ε−2Ĉ−1N−µ
∣∣∣{λ ∈ Λ̃ : |B0

2,N(j0;λ)| ≥ ε−2Ĉ−1N−µ
}∣∣∣

:= ε−2Ĉ−1N−µ|FN(j0)|

whence (4.8.27).

As a corollary we get

Lemma 4.8.13. Let N ≥ N1 := [N χ̄
0 ], see (4.5.11). Then ∀|j0| < 3(1+|µ̄|)N , ∀λ /∈ FN(j0),

we have
B0
N(j0;λ, 1/2) ⊂

⋃
q=1,...,N2d+|S|+5

Iq (4.8.29)

with Iq intervals satisfying |Iq| ≤ N−τ .

Proof. By the definition of FN(j0) in (4.8.26), for all λ /∈ FN(j0), we have

|B0
2,N(j0;λ)| < ε−2Ĉ−1N−τ+2d+|S|+3 .
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Then Lemma 4.8.10 implies that ∀|j0| < 3(1 + |µ̄|)N ,

B0
N(j0;λ, 1/2) ⊂

⋃
q=1,...,ε−2N2d+|S|+4

Iq .

For all N ≥ N1 = [N χ̄
0 ] we have

ε−2N2d+|S|+4
(4.5.10)

≤ N τ+s0+d
0 N2d+|S|+4 ≤ CN

τ+s0+d
χ̄

+2d+|S|+4 ≤ N2d+|S|+5

by (4.5.2). This proves (4.8.29).

Proof of Proposition 4.8.7 concluded. By Lemmata 4.8.8 and 4.8.13, for all N ≥
N1, λ ∈ Λ̃,

λ /∈
⋃

|j0|<3(1+|µ̄|)N

FN(j0) =⇒ λ ∈ G0
N, 1

2

(see the definition of G0
N, 1

2
in (4.5.5)) and therefore

B0
N, 1

2
⊆

⋃
|j0|<3(1+|µ̄|)N

FN(j0) . (4.8.30)

In conclusion, (4.8.30) and (4.8.27) imply that, for N ≥ N1,

|B0
N, 1

2
| ≤

∑
|j0|<3(1+|µ̄|)N

|FN(j0)| . NdN−d−2 ≤ N−1 .

Stability of the L2-good parameters under variation of Xr,µ

In order to prove (4.1.18) we prove the “stability” of the sets G0
N,η := G0

N,η(Xr,µ) and

G0
N,η := G0

N,η(Xr,µ) defined respectively in (4.5.6) and (4.5.5) with respect to small variations
of the operator Xr,µ.

Lemma 4.8.14. Assume |r′ − r|+,s1 + |µ′ − µ| ≤ δ.

i) If N τ+1
√
δ is small enough, then, for (1/2) +

√
δ ≤ η ≤ 1,

G0
N,η−

√
δ
(Xr,µ) ∩ Λ̃′ ⊂ G0

N,η(Xr′,µ′) . (4.8.31)

ii) If N τ+1
k

√
δ, k ≥ 1, is small enough, then, for (1/2) +

√
δ ≤ η ≤ 1,

G0
Nk,η−

√
δ
(Xr,µ) ∩ Λ̃′ ⊂ G0

Nk,η
(Xr′,µ′) . (4.8.32)
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Proof. Call AN(ε, λ), resp. A′N(ε, λ), the truncated operator associated to Lr,µ, resp.

Lr′,µ′ , see remark 4.2.2, defined for λ ∈ Λ̃, resp. λ ∈ Λ̃′. By assumption, for any λ ∈ Λ̃∩ Λ̃′

we have
‖AN(ε, λ)− A′N(ε, λ)‖0 . ‖r − r′‖0 + |µ− µ′| ≤ Cδ . (4.8.33)

Proof of i). Assume that λ ∈ G0
N,η−

√
δ
(Xr,µ) ∩ Λ̃′ where G0

N,η := G0
N,η(Xr,µ) is defined in

(4.5.6). Then

‖D−1/2
m A−1

N (ε, λ)D−1/2
m ‖0 ≤ (η −

√
δ)N τ . (4.8.34)

Now we apply Lemma 4.8.4 to B = AN(ε, λ), B′ = A′N(ε, λ). By (4.8.34), (4.8.33), the

assumption (4.8.9) holds with K1 = (η −
√
δ)N τ and α = Cδ. If δN τ+1 is small enough

then (4.8.10) applies, and we deduce

‖D−1/2
m (A′N)−1(ε, λ)D−1/2

m ‖0 ≤ (η −
√
δ)N τ + 4CδN2τ+1 ≤ ηN τ

provided that
√
δN τ+1 ≤ 1/(4C). Hence λ ∈ G0

N,η(Xr′,µ′), proving (4.8.31).

Proof of ii). Assume that λ ∈ G0
Nk,η−

√
δ
(Xr,µ) ∩ Λ̃′ where G0

N,η := G0
N,η(Xr,µ) is defined in

(4.5.5). Let B0
Nk

(j0;λ, η), resp. (B′Nk)
0(j0;λ, η), be the the set defined in (4.5.4) correspond-

ing to Xr,µ, resp. Xr′,µ′ , at N = Nk. Applying the same perturbative argument of item i)
to the matrices D−1/2

m ANk,j0(ε, λ, θ)D−1/2
m and D−1/2

m A′Nk,j0(ε, λ, θ)D−1/2
m , we prove that, if

N τ+1
k

√
δ is small enough, then, for all |j0| ≤ 3(1 + |µ̄|)Nk, we have the inclusion

(B′Nk)
0(j0;λ, η) ⊂ B0

Nk
(j0;λ, η −

√
δ) .

Hence, by Lemma 4.8.8, we have λ ∈ G0
Nk,η

(Xr′,µ′), proving (4.8.32).

Conclusion: proof of (4.1.17)-(4.1.18)

We finally prove that the sets Λ(ε; η,Xr,µ), η ∈ [1/2, 1], defined in (4.5.12) satisfy the
measure estimates (4.1.17)-(4.1.18).

Proof of (4.1.17). We have to estimate the measure of the complementary set

Λ(ε; 1/2, Xr,µ)c ∩ Λ̃ =
⋃
k≥1

B0
Nk,

1
2

⋃
N≥N2

0

(
G0
N, 1

2

)c⋃ G̃c ∩ Λ̃ (4.8.35)

where B0
Nk,

1
2

= Λ \ G0
Nk,

1
2

with G0
N,η defined in (4.5.5), the set G0

N,η is defined in (4.5.6), and

G̃ in (4.5.8).

Lemma 4.8.15.
∣∣∣ ⋃
k≥1

B0
Nk,

1
2

∣∣∣ ≤ ε2 .
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Proof. By Proposition 4.8.7 we have∣∣∣ ⋃
k≥1

B0
Nk,

1
2

∣∣∣ ≤∑
k≥1

N−1
k . N−1

1

(4.5.11)

. N−χ̄0

(4.5.10)

. ε
2χ̄

τ+s0+d ≤ ε2

since χ̄ is large according to the second inequality in (4.5.2).

Lemma 4.8.16.
∣∣∣ ⋃
N≥N2

0

(
G0
N, 1

2

)c ∩ Λ̃
∣∣∣ ≤ ε

3
.

Proof. By Lemma 4.8.6 we have∣∣∣ ⋃
N≥N2

0

(
G0
N, 1

2

)c ∩ Λ̃
∣∣∣ ≤ ∑

N≥N2
0

N−
τ
2

+2d+2|S|+s0 . N
−τ+4d+4|S|+2s0+2
0

(4.5.10)

. ε
2

(τ−4d−4|S|−2s0−2)
τ+s0+d

≤ ε

3

since τ is large according to (4.5.1).

By Lemmata 4.8.15, 4.8.16, 4.8.5 we deduce that the complementary set (4.8.35) has
measure

|Λ(ε; 1/2, Xr,µ)c ∩ Λ̃| ≤
∣∣∣ ⋃
k≥1

B0
Nk,

1
2

∣∣∣+
∣∣∣ ⋃
N≥N2

0

(
G0
N, 1

2

)c ∩ Λ̃
∣∣∣+ |G̃c ∩ Λ̃|

≤ 2ε2 +
ε

3
≤ ε

proving (4.1.17).

Remark 4.8.17. We could prove that the measure of Λ(ε; 1/2, Xr,µ)c is smaller than εp, for
any p, optimizing the choice of the constants. Indeed the measure of the set of Lemma 4.8.5,
respectively 4.8.15, decreases taking the constant τ2 in (4.5.9), respectively χ̄ in (4.5.2),
larger. The set in Lemma 4.8.16 has measure ε2−α as the constant τ defined in (4.5.1)

increases. If we had intersected in (4.5.12) for N ≥ N
α(τ)
0 , as explained in remark 4.5.3,

the new set in Lemma 4.8.16 would have arbitrarily small measure as well.

Proof of (4.1.18). Recalling the definition of the sets Λ(ε; η,Xr,µ), η ∈ [1/2, 1], in (4.5.12)

and Lemma 4.8.14, we have that, for N ≥ N̄ , (1/2) +
√
δ ≤ η ≤ 1,

N τ+2
√
δ < 1

(4.8.31)
=⇒ Λ(ε; η −

√
δ,Xr,µ) ∩ G0

N,η(Xr′,µ′)
c ∩ Λ̃′ = ∅

N τ+2
k

√
δ < 1

(4.8.32)
=⇒ Λ(ε; η −

√
δ,Xr,µ) ∩ G0

Nk,η
(Xr′,µ′)

c ∩ Λ̃′ = ∅ .
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Hence

Λ(ε; η −
√
δ,Xr,µ) ∩ Λ(ε; η,Xr′,µ′)

c ∩ Λ̃′

⊂
⋃
k≥1

(
Λ(ε; η −

√
δ,Xr,µ) ∩ G0

Nk,η
(Xr′,µ′)

c
)
∩ Λ̃′ (4.8.36)

⋃
N≥N2

0

(
Λ(ε; η −

√
δ,Xr,µ) ∩ G0

N,η(Xr′,µ′)
c
)
∩ Λ̃′

⊂
⋃

Nτ+2
k

√
δ≥1

G0
Nk,η

(Xr′,µ′)
c
⋃

Nτ+2
√
δ≥1

G0
N,η(Xr′,µ′)

c ∩ Λ̃′

⊂
⋃

Nτ+2
k

√
δ≥1

G0
Nk,

1
2
(Xr′,µ′)

c
⋃

Nτ+2
√
δ≥1

G0
N, 1

2
(Xr′,µ′)

c ∩ Λ̃′

by (4.5.7). Finally, by (4.8.36), Proposition 4.8.7 and Lemma 4.8.6 we deduce the measure
estimate

|Λ(ε; η −
√
δ,Xr,µ) ∩ Λ(ε; η,Xr′,µ′)

c ∩ Λ̃′| ≤ δ
1

2(τ+2) + δ
(τ/2)−2d+2|S|+4

2(τ+2)

≤ 2δ
1

2(τ+2)

by (4.5.1). This proves (4.1.18) for α < 1/(2(τ + 2)).



Chapter 5

Nash-Moser theorem

The goal of this Chapter is to state the Nash-Moser implicit function Theorem 5.1.2, which
proves the existence of a torus embedding ϕ 7→ i(ϕ) of the form (5.1.1) which is a zero
of the nonlinear operator F defined in (5.1.2). Theorem 5.1.2 implies, going back to the
original coordinates, Theorem 1.2.1.

5.1 Statement

In this section we state a Nash-Moser implicit function theorem (Theorem 5.1.2) which
proves the existence of a solution

ϕ 7→ i(ϕ) = (θ(ϕ), y(ϕ), z(ϕ)) = (ϕ+ ϑ(ϕ), y(ϕ), z(ϕ)) , (5.1.1)

with z(ϕ) = (Q(ϕ), P (ϕ)) ∈ H⊥S , ∀ϕ ∈ T|S|, of the nonlinear operator

F(i) := F(λ; i) := ω · ∂ϕi(ϕ)−XK(i(ϕ))

=

 ω ·∂ϕϑ(ϕ) + ω − µ̄− ε2(∂yR)(i(ϕ), ξ)
ω ·∂ϕy(ϕ) + ε2(∂θR)(i(ϕ), ξ)

ω ·∂ϕz(ϕ)− JDV z(ϕ)− ε2
(
0, (∇QR)(i(ϕ), ξ)

)
 (5.1.2)

which depends on the one dimensional parameter

λ ∈ Λ := [−λ0, λ0]

(the set Λ is fixed in (1.2.26)) through the frequency vector ω = (1+ε2λ)ω̄ε where ω̄ε ∈ R|S|
is introduced in (1.2.25), and the amplitudes ξ := ξ(λ) are defined in (1.2.27). A solution
i(ϕ) of (5.1.2) is an embedded invariant torus for the Hamiltonian system (2.2.11)-(2.2.12),
filled by quasi-periodic solutions with frequency ω.

154
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We look for reversible solutions of F(λ; i) = 0, namely satisfying S̃i(ϕ) = i(−ϕ) (the
involution S̃ is defined in (2.2.16)), i.e.

θ(−ϕ) = −θ(ϕ) , y(−ϕ) = y(ϕ) , z(−ϕ) = (Sz)(ϕ) . (5.1.3)

Remark 5.1.1. The reversibility property slightly simplifies the argument in Proposition
11.2.4 because the right hand side in (11.2.41) has zero average, and therefore the equation
(11.2.41) is directly solvable. Otherwise we would have to add a counterterm in the second
component of the operator F as in [24], [8].

The Sobolev norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ)− (ϕ, 0, 0) := (ϑ(ϕ), y(ϕ), z(ϕ)) , ϑ(ϕ) := θ(ϕ)− ϕ , (5.1.4)

is
‖I‖Lip,s := ‖ϑ‖Lip,Hs

ϕ
+ ‖y‖Lip,Hs

ϕ
+ ‖z‖Lip,s . (5.1.5)

The solutions of F(λ; i) = 0 will be found by a Nash-Moser iterative scheme. Evaluating
F at the trivial embedding

i0(ϕ) := (ϕ, 0, 0)

we have

F(i0) =

 ω − µ̄− ε2(∂yR)(ϕ, 0, 0, ξ)
ε2(∂θR)(ϕ, 0, 0, ξ)

−ε2
(
0,∇QR(ϕ, 0, 0, ξ)

)
 (5.1.6)

which satisfies, since ω is O(ε2)-close to µ̄,

‖F(i0)‖Lip,s ≤ C(s)ε2, ∀s ≥ s0 . (5.1.7)

In order to construct a better approximate solution we first compute in section 5.2 the
shifted tangential frequency vector induced by the nonlinearity, up to O(ε4). Then in section
5.3 we construct the first approximate solution i1(ϕ), defined for all λ ∈ Λ, by using the
unperturbed Melnikov non-resonance conditions (1.2.6)-(1.2.7) on the linear unperturbed
frequencies, in such a way that (see (5.3.5))

‖F(i1)‖Lip,s ≤ C(s)ε4 , ∀s ≥ s0 .

Subsequently, given an approximate solution in(ϕ), the main point is to construct a much
better approximate solution in+1(ϕ). We use an inductive Nash-Moser iterative scheme.
The key step concerns the approximate right invertibility properties of the linearized op-
erators diF(in) obtained along the iteration, that we obtain restricting the values of λ to
subsets Λn ⊂ Λ with large measure, see Theorem 11.2.1. The following theorem will be
proved in Chapter 11, relying on the results of Chapters 6-10 concerning the invertibility
properties of the linearized operator diF(in).
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Theorem 5.1.2. (Nash-Moser) Assume (1.1.3) and the non-resonance conditions (1.2.6)-
(1.2.8), (1.2.16)-(1.2.19). Assume also the twist condition (1.2.12) and the non-degeneracy
conditions (1.2.21)-(1.2.22). Fix a direction ω̄ε := µ̄ + ε2ζ, ζ ∈ A ([1, 2]|S|), as in (1.2.25)
such that the Diophantine conditions (1.2.29)-(1.2.30) hold. Define Λ = [−λ0, λ0] as in
(1.2.26). Then there are Sobolev indices s2 > s1 > s0, a constant ε0 > 0, and, for all
ε ∈ (0, ε0) there exist

1. a Cantor-like set C∞ ⊂ Λ of asymptotically full measure as ε→ 0, i.e.

lim
ε→0

|C∞|
|Λ|

= 1 , (5.1.8)

more precisely, there is a map ε 7→ b(ε), independent of ζ ∈ A ([1, 2]|S|) such that
the Diophantine conditions (1.2.29)-(1.2.30) hold, and satisfying |Λ \ C∞| ≤ b(ε),
lim
ε→0

b(ε) = 0;

2. a Lipschitz function

i∞(ϕ;λ)− (ϕ, 0, 0) = (ϑ∞, y∞, z∞) : C∞ → Hs2
ϕ ×Hs2

ϕ × (Hs2 ∩H⊥S )

satisfying

‖i∞ − (ϕ, 0, 0)‖Lip,s1 ≤ C(s1)ε2 , ‖i∞ − (ϕ, 0, 0)‖Lip,s2 ≤ ε , (5.1.9)

such that the torus i∞(ϕ;λ), λ ∈ C∞, is a solution of F(λ; i∞(λ)) = 0.

Moreover, for any λ ∈ C∞, the function i∞ − (ϕ, 0, 0) is of class C∞ in (ϕ, x), and
Lipschitz in λ as a map valued in Hs

ϕ ×Hs
ϕ × (Hs ∩H⊥S ), ∀s ≥ s2.

As a consequence the embedded torus ϕ 7→ i∞(ϕ;λ) is invariant for the Hamiltonian
system (2.2.11)-(2.2.12), and it is filled by quasi-periodic solutions with frequency ω =
(1 + ε2λ)ω̄ε.

Going back to the original coordinates via (2.1.10), (2.2.2), (2.2.3), (2.2.6), Theorem
5.1.2 implies the existence, for all λ ∈ C∞, of a quasi-periodic solution of the wave equation
(1.2.1) of the form

u(t, x) =
∑
j∈S

µ
− 1

2
j

√
2(ξj + (y∞)j(ωt)) cos

(
ωjt+ (ϑ∞)j(ωt)

)
Ψj(x) +D

− 1
2

V Q∞(ωt)

with frequency ω = (1 + ε2λ)ω̄ε. This proves Theorem 1.2.1 with Gε,ζ := C∞ and s̄ = s2.

The proof of Theorem 5.1.2 occupies the rest of the Monograph from section 5.2 until
Chapter 11.

We first prove, as a corollary of Theorem 5.1.2, the result (1.2.35) about the density,
close to µ̄, of the frequency vectors ω of the quasi-periodic solutions of (1.2.1) obtained in
Theorem 5.1.2.
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Proof of (1.2.35)

Let Ω be the set of the frequency vectors ω of the quasi-periodic solutions of (1.1.1) provided
by Theorem 1.2.1. Such frequency vectors have the form

ω = (1 + ε2λ)ω̄ε = µ̄+ ε2(ζ + λµ̄+ ε2λζ) , ζ ∈ A ([1, 2]|S|) , λ ∈ Λ , (5.1.10)

where

• ζ ∈ A ([1, 2]|S|) \ Bε (the set Bε is defined in Lemma 2.3.1), so that ω̄ε = µ̄ + ε2ζ
satisfies the Diophantine conditions (1.2.29)-(1.2.30);

• λ ∈ Λ \ Gε,ζ where Gε,ζ := C∞ is the set defined in Theorem 5.1.2.

We define
Bε :=

{
(ζ, λ) ∈ A ([1, 2]|S|)× Λ : ζ ∈ Bε or λ /∈ Gε,ζ

}
Gε := (A ([1, 2]|S|)× Λ) \Bε .

By Lemma 2.3.1 the Lebesgue measure of Bε satisfies |Bε| ≤ ε, and, using also the measure
estimate provided in item 1 of Theorem 5.1.2, we deduce that

|Bε| ≤ ε|Λ|+ b(ε)|A ([1, 2]|S|)| =: b1(ε) (5.1.11)

where lim
ε→0

b1(ε) = 0.

In view of (5.1.10), in order to prove (1.2.35), we have to estimate the measure of the
set

B′ε :=
{
β ∈ C1 := A ([1, 2]|S|) + Λµ̄ : 6 ∃(ζ, λ) ∈ Gε such that β = ζ +λµ̄+ ε2λζ

}
. (5.1.12)

Lemma 5.1.3. |B′ε| → 0 as ε→ 0.

Proof. Define the map

Ψε : A ([1, 2]|S|)× Λ→ R|S| × Λ , Ψε(ζ, λ) :=
(
ζ + λµ̄+ ε2λζ, λ

)
,

which is a diffeomorphism onto its image. Thus, recalling (5.1.11),

|Ψε(Bε)| . |Bε| . b1(ε) . (5.1.13)

For any β ∈ C1, let

Uβ,ε :=
{
λ ∈ Λ :

β − λµ̄
1 + ε2λ

∈ A ([1, 2]|S|)
}
, (5.1.14)

i.e. λ ∈ Uβ,ε if and only if (β, λ) is in the image Ψε(A ([1, 2]|S|)×Λ). Thus, recalling (5.1.12),
we deduce that

β ∈ B′ε , λ ∈ Uβ,ε =⇒ (β, λ) ∈ Ψε(Bε) .
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Therefore ∫
B′ε

|Uβ,ε|dβ ≤ |Ψε(Bε)|
(5.1.13)

. b1(ε) . (5.1.15)

Our aim is now to justify that the measure of Uβ,ε satisfies |Uβ,ε| ≥
√
b1(ε) for all β ∈

A ([1, 2]|S|) + Λµ̄ but a subset the measure of which vanishes as ε→ 0.
First note that A ([1, 2]|S|) is a convex subset of R|S|, with interior A ((1, 2)|S|). For

ε > 0, define

Vε :=
{
x ∈ R|S| : ∀λ ∈ Λ ,

x

1 + ε2λ
∈ A ((1, 2)|S|)

}
(5.1.16)

=
{
x ∈ R|S| :

[ 1

1 + ε2λ0

,
1

1− ε2λ0

]
· x ⊂ A ((1, 2)|S|)

}
⊂ A ((1, 2)|S|) .

Each set Vε is convex and open,

Vε′ ⊂ Vε , ∀ 0 < ε < ε′ and
⋃
ε>0

Vε = A ((1, 2)|S|) . (5.1.17)

Then, for any β ∈ C1 define

U ′β,ε :=
{
λ ∈ Λ : β − λµ̄ ∈ Vε

} (5.1.16),(5.1.14)
⊂ Uβ,ε .

Recalling (5.1.17) we have U ′β,ε′ ⊂ U ′β,ε, ∀0 < ε < ε′. At last define, for δ > 0,

Dε,δ :=
{
β ∈ C1 : |U ′β,ε| ≥ δ

}
. (5.1.18)

The following properties holds:

(i) For 0 < ε < ε′ and 0 < δ < δ′, we have Dε′,δ′ ⊂ Dε,δ.

(ii) Since the sets U ′β,ε are open (hence of strictly positive measure if nonempty),⋃
δ>0

Dε,δ =
{
β ∈ C1 : U ′β,ε 6= ∅

}
=: Dε .

Moreover Dε = Vε + Λµ̄.

(iii) By items (i)-(ii) and (5.1.17) we deduce⋃
ε>0

(⋃
δ>0

Dε,δ

)
=
⋃
ε>0

Dε = A ((1, 2)|S|) + Λµ̄ = C1 .
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Claim:
lim

ε→0+,δ→0+

∣∣C1\Dε,δ

∣∣ =
∣∣C1\(A ((1, 2)|S|) + Λµ̄)

∣∣ = 0 . (5.1.19)

The first equality follows by items (i)-(iii) above. To justify this last equality, let us intro-
duce the (|S| − 1)-dimensional linear subspace of R|S|, E := µ̄⊥. Let K be the orthogonal
projection of A ([1, 2]|S|) onto E; note that K is a convex compact subset of E of nonempty
interior in E. Moreover, since A ([1, 2]|S|) is convex, it can be decomposed as

A ([1, 2]|S|) =
⋃
x∈K

{
x+ [α−(x), α+(x)]µ̄

}
where the functions α+, α− : K → R are respectively concave and convex, with α−(x) ≤
α+(x), for all x ∈ K, and α−(x) < α+(x) for x ∈ int(K). Hence, since α± are continuous
on int(K),

A ((1, 2)|S|) = int(A ([1, 2]|S|)) =
{
x+ (α−(x), α+(x))µ̄ ; x ∈ int(K)

}
,

and

C1\(A ((1, 2)|S|) + Λµ̄) =
{
x+ λµ̄ :

(
x ∈ ∂K , λ ∈ [α−(x)− λ0, α+(x) + λ0]

)
or
(
x ∈ K , λ = α±(x)± λ0

)}
,

which gives
∣∣C1\(A ((1, 2)|S|) + Λµ̄)

∣∣ = 0.

Setting D′ε := D
ε,
√
b1(ε)

, where Dε,δ is defined in (5.1.18), the estimate (5.1.19) implies

lim
ε→0+

∣∣C1\D′ε
∣∣ = 0 . (5.1.20)

Moreover, by the definition of D′ε and the inclusion U ′β,ε ⊂ Uβ,ε, we deduce

∀β ∈ D′ε , |Uβ,ε| ≥
√
b1(ε) ,

and therefore

|B′ε ∩D′ε|
√
b1(ε) ≤

∫
B′ε∩D′ε

|Uβ|dβ
(5.1.15)

. b1(ε) . (5.1.21)

Finally, since B′ε ⊂ (B′ε∩D′ε)∪(C1\D′ε), we deduce, by (5.1.21) and (5.1.20), that lim
ε→0
|B′ε| =

0. Lemma 5.1.3 is proved.

Now, recalling (5.1.12) and (5.1.10), we have

µ̄+
⋃
ε>0

ε2(C1\B′ε) ⊂ Ω (5.1.22)
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where Ω is the set of the frequency vectors ω of the quasi-periodic solutions of (1.1.1)
provided by Theorem 1.2.1. Notice that, by (1.2.26), (1.2.25), (1.2.23), we get that

ζ + λµ̄+ λε2ζ ∈ A
([1

2
, 4
]|S|)

, ∀ζ ∈ A ([1, 2]|S|) , ∀λ ∈ Λ ,

and therefore C1 = A ([1, 2]|S|) + Λµ̄ does not contain 0. Moreover C1 is a compact convex
subset of R|S|, with nonempty interior, which implies that{

x ∈ R+C1 : R+x ∩ C1 is a singleton
}
⊂ ∂(R+C1) . (5.1.23)

Thus, given y ∈ R+C1, the measure
∣∣{r > 0 : y/r ∈ C1}

∣∣ > 0 except for y ∈ ∂(R+C1),
which is of zero measure. Using (5.1.23) and Lemma 5.1.3, we can obtain

lim
r→0+

∣∣∣(⋃ε>0 ε
2(C1\B′ε)

)
∩B(0, r)

∣∣∣∣∣∣R+C1 ∩B(0, r)
∣∣∣ = 1 . (5.1.24)

We omit the details. Recalling (5.1.22), (5.1.24) implies (1.2.35).

5.2 Shifted tangential frequencies up to O(ε4)

In this section we evaluate the average of the first component in (5.1.6):

ω − µ̄− ε2〈∂yR(ϕ, 0, 0, ξ)〉 (5.2.1)

where

〈f〉 :=
1

(2π)|S|

∫
T|S|

f(ϕ) dϕ . (5.2.2)

Evaluating (2.2.13) at (θ, y,Q) = (ϕ, 0, 0), we get, inserting the expression of g(ε, x, u) in
(2.1.6), that for each m = 1, . . . , |S|,

〈∂ymR(ϕ, 0, 0, ξ)〉 =
1

(2π)|S|

∫
T|S|

∫
Td
g(ε, x, v(ϕ, 0, ξ))

µ
−1/2
m√
2ξm

cosϕm Ψm(x) dx dϕ

= rm,3 + εrm,4 + ε2rm,5 (5.2.3)

where

rm,3 :=
1

(2π)|S|

∫
T|S|

∫
Td
a(x)

(
v(ϕ, 0, ξ)

)3 µ
−1/2
m√
2ξm

cosϕm Ψm(x) dx (5.2.4)

rm,4 :=
1

(2π)|S|

∫
T|S|

∫
Td
a4(x)

(
v(ϕ, 0, ξ)

)4 µ
−1/2
m√
2ξm

cosϕm Ψm(x) dx (5.2.5)

rm,5 :=
1

(2π)|S|

∫
T|S|

∫
Td

r(ε, x, v(ϕ, 0, ξ))
µ
−1/2
m√
2ξm

cosϕm Ψm(x) dx . (5.2.6)

We now compute the terms in (5.2.3).
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Lemma 5.2.1. rm,3 in (5.2.4) is

rm,3 = [A ξ]m (5.2.7)

where A := (A j
m)j,m∈S is the symmetric twist matrix defined in (1.2.9).

Proof. Using (2.2.9), we expand the integral (5.2.4) as

rm,3 =
∑

j1,j2,j3∈S

µ
−1/2
j1

µ
−1/2
j2

µ
−1/2
j3

µ−1/2
m

√
ξj1ξj2ξj3

2√
ξm

× 1

(2π)|S|

∫
T|S|

cosϕj1 cosϕj2 cosϕj3 cosϕmdϕ

×
∫
Td
a(x)Ψj1(x)Ψj2(x)Ψj3(x)Ψm(x) dx . (5.2.8)

The integral

∫
T|S|

cosϕj1 cosϕj2 cosϕj3 cosϕmdϕ does not vanish only if

1. j1 = j2 = j3 = m,

2. j1 = j2 6= j3 = m and permutation of the indices (3 times).

Hence, by (5.2.8),

r3,m = 2µ−2
m ξm

1

(2π)|S|

∫
T|S|

cos4 ϕmdϕ

∫
Td
a(x)Ψ4

m(x) dx

+ 3
∑
j1 6=m

µ−1
j1
µ−1
m ξj12

1

(2π)|S|

∫
T|S|

cos2 ϕj1 cos2 ϕmdϕ

∫
Td
a(x)Ψ2

j1
(x)Ψ2

m(x) dx

=
3

4
µ−2
m Tmm ξm +

3

2

∑
j 6=m

µ−1
j µ−1

m T jmξj

having set

T jm :=

∫
Td
a(x)Ψ2

j(x)Ψ2
m(x) dx , j,m ∈ S ,

and noting that

2

(2π)|S|

∫
T|S|

cos4 ϕmdϕ =
1

π

∫
T

cos4 ϕmdϕm =
3

4

6

(2π)|S|

∫
T|S|

cos2 ϕj1 cos2 ϕmdϕ =
6

(2π)2

(∫
T

cos2 θ dθ
)2

=
3

2
.

Recalling the definition of the twist matrix A := (A j
m)j,m∈S in (1.2.9)-(1.2.10) we deduce

(5.2.7).
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Lemma 5.2.2. For all m ∈ S, each rm,4 in (5.2.5) is rm,4 = 0.

Proof. Since the function v defined in (2.2.9) satisfies the symmetry

v(ϕ+ ~π, 0, ξ) = −v(ϕ, 0, ξ) , ~π := (π, . . . , π) ∈ R|S| , (5.2.9)

the function g(ϕ) := (v(ϕ, 0, ξ))4 cos(ϕm) satisfies g(ϕ + ~π) = −g(ϕ) and therefore its
integral ∫

T|S|
g(ϕ)dϕ =

∫
T|S|

g(ϕ+ ~π)dϕ = −
∫
T|S|

g(ϕ)dϕ

is equal to zero. Hence rm,4 = 0.

By (5.2.3), Lemmata 5.2.1 and 5.2.2 we deduce that

〈∂yR(ϕ, 0, 0, ξ)〉 = A ξ + ε2r5(ε, ξ) (5.2.10)

where A is the symmetric twist matrix defined in (1.2.9), and r5(ε, ξ) := (r5,m)m=1,...,|S| ∈
R|S|. As a consequence, the term (5.2.1) is O(ε4), more precisely, since ω = (1 + ε2λ)ω̄ε, it
results

ω − µ̄− ε2〈∂yR(ϕ, 0, 0, ξ)〉 = (1 + ε2λ)ω̄ε − µ̄− ε2A ξ − ε4r5(ε, ξ)

(1.2.27)
= −ε4r5(ε, ξ) . (5.2.11)

5.3 First approximate solution

We now define the first approximate torus embedding solution

i1(ϕ) =
(
θ1(ϕ), y1(ϕ), Q1(ϕ), P1(ϕ)

)
, θ1(ϕ) = ϕ+ ϑ1(ϕ) , (5.3.1)

in such a way that F(i1) = O(ε4). Given a function f : T|S| → R|S|, we denote by 〈f〉 ∈ R|S|
its average with respect to ϕ (as in (5.2.2)) and by [f ](ϕ) its zero mean part, so that

f(ϕ) = 〈f〉+ [f ](ϕ) . (5.3.2)

Lemma 5.3.1. (First approximate solution) Let ω = (1 + ε2λ)ω̄ε with ω̄ε = µ̄+ ε2ζ as
in (1.2.25) and define ξ := ξ(λ) as in (1.2.27). Then there exists a unique solution i1, with
the form in (5.3.1), with average 〈y1〉 = 0, independent of λ ∈ Λ, of the system

µ̄ · ∂ϕϑ1 − ε2
[
(∂yR)(ϕ, 0, 0, ξ)

]
= 0

µ̄ · ∂ϕy1 + ε2(∂θR)(ϕ, 0, 0, ξ) = 0(
µ̄ · ∂ϕ − JDV

)
(Q1, P1)− ε2

(
0, (∇QR)(ϕ, 0, 0, ξ)

)
= 0

(5.3.3)
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satisfying, for all s ≥ s0,

‖i1 − (ϕ, 0, 0)‖Lip,s = ‖i1 − (ϕ, 0, 0)‖s ≤ C(s)ε2 . (5.3.4)

It results
‖F(i1)‖Lip,s ≤ C(s)ε4 , ∀s ≥ s0 . (5.3.5)

Proof. Solution of the first equation in (5.3.3). Since µ̄ is a Diophantine vector
by (1.2.6), we solve the first equation in (5.3.3), finding

ϑ1 = ε2(µ̄ · ∂ϕ)−1
[
(∂yR)(ϕ, 0, 0, ξ)

]
(5.3.6)

where (µ̄ · ∂ϕ)−1 is defined as in (1.6.1) (with µ̄ instead of ω).

Solution of the second equation in (5.3.3). Since

(∂θR)(ϕ, 0, 0, ξ) = ∂ϕ
(
R(ϕ, 0, 0, ξ)

)
,

it has zero average in ϕ. Then, since µ̄ is Diophantine by (1.2.6), the second equation in
(5.3.3) admits the unique solution with zero average

y1 = −ε2(µ̄ · ∂ϕ)−1
[
(∂θR)(ϕ, 0, 0, ξ)

]
. (5.3.7)

Solution of the third equation in (5.3.3). The operator µ̄ ·∂ϕ−JDV is represented,
in the basis {ei`·ϕ(Ψj(x), 0), ei`·ϕ(0,Ψj(x))}j∈N (see (3.2.26)) by the diagonal matrix

Diag`∈Zν ,j∈N

(
iµ̄ · ` −µj
µj iµ̄ · `

)
,

and therefore, by the unperturbed first Melnikov condition (1.2.7), it is invertible. Moreover,
arguing as in the end of Lemma 7.2.2, it satisfies the estimate

‖
(
µ̄ · ∂ϕ − JDV

)−1
h‖s ≤ C(s)‖h‖s+τ0 . (5.3.8)

Then the third equation in (5.3.3) admits the unique solution

(Q1, P1) = ε2
(
µ̄ · ∂ϕ − JDV

)−1(
0, (∇QR)(ϕ, 0, 0, ξ)

)
. (5.3.9)

The estimate (5.3.4) follows by the definition of i1(ϕ) = (θ1(ϕ), y1(ϕ), z1(ϕ)) where z1(ϕ) :=
(Q1(ϕ), P1(ϕ)), in (5.3.6), (5.3.7), (5.3.9), using (5.3.8) and the Diophantine condition
(1.2.6). Finally, comparing (5.1.2) with system (5.3.3), we have

F(i1) =ω − µ̄− ε
2〈(∂yR)(i1(ϕ), ξ)〉+ (ω − µ̄) · ∂ϕϑ1(ϕ)− ε2

(
[∂yR(i1(ϕ), ξ)]− [∂yR(ϕ, 0, 0, ξ)]

)
(ω − µ̄) · ∂ϕy1(ϕ) + ε2

(
(∂θR)(i1(ϕ), ξ)− (∂θR)(ϕ, 0, 0, ξ)

)
(ω − µ̄) · ∂ϕz1(ϕ)− ε2

((
0, (∇QR)(i1(ϕ), ξ)

)
−
(
0, (∇QR)(ϕ, 0, 0, ξ)

)

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and (5.3.5) follows using the estimate (5.3.4), the fact that ω = (1+ε2λ)ω̄ε with ω̄ε = µ̄+ε2ζ,
and (5.2.11).

The successive approximate solutions in, n ≥ 2, of the functional equation F(i) = 0,
are defined through a Nash-Moser iterative scheme. The main point to define in+1 is the
construction of an approximate right inverse of the linearized operators diF(in) at the
approximate torus in, that we obtain in the next Chapters 6-10.



Chapter 6

Linearized operator at an
approximate solution

In order to implement a convergent Nash-Moser scheme (Chapter 11) that leads to a solu-
tion of F(λ, i) = 0 where F(λ, i) is the nonlinear operator defined in (5.1.2), the key step is
to prove the existence of an approximate right inverse of the linearized operator diF(λ; i)
in (6.1.2). The first step is Proposition 6.1.1 where we introduce suitable symplectic coor-
dinates which reduce the problem to the search of an approximate inverse of the operator
Lω in (6.1.23) acting in the normal components only. This will be studied in Chapters 7-10.

6.1 Symplectic approximate decoupling

We linearize F(λ, i) at an arbitrary torus

i(ϕ) = (θ(ϕ), y(ϕ), z(ϕ)) , (6.1.1)

obtaining
diF(λ; i)[̂ı] = ω ·∂ϕı̂− diXK(i(ϕ))[̂ı] . (6.1.2)

We denote by

I(ϕ) := i(ϕ)− (ϕ, 0, 0) := (ϑ(ϕ), y(ϕ), z(ϕ)) , ϑ(ϕ) := θ(ϕ)− ϕ , (6.1.3)

the periodic component of the torus ϕ 7→ i(ϕ) with norm as in (5.1.5). We assume the
following condition for i which is satisfied by any approximate solution obtained along the
Nash-Moser iteration performed in Chapter 11 (see precisely (11.2.11)):

• The map λ 7→ I(λ) is Lipschitz with respect to λ ∈ ΛI ⊂ Λ, and

‖I‖Lip,s1+2 ≤ C(s1)ε2 , ‖I‖Lip,s2 ≤ ε . (6.1.4)

165
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We implement the general strategy proposed in [24], used also in [8], [30], where, instead of
inverting diF(λ; i) (where all the (θ, y, z) components are coupled, see (5.1.2)) we invert the
linear operator D(i) in (6.1.22), which has a triangular form. The operator D(i) is found
by a natural geometrical construction. We define the “error function”

Z(ϕ) := (Z1, Z2, Z3)(ϕ) := F(λ; i)(ϕ) = ω · ∂ϕi(ϕ)−XK(i(ϕ)) . (6.1.5)

Notice that, if Z = 0 then the torus i is invariant for XK ; in general, we say that i is
“approximately invariant”, up to order O(Z). Given i(ϕ) satisfying (6.1.4) we first construct
an isotropic torus iδ(ϕ) which is close to i, see (6.1.6) and (6.2.6). By (6.1.7), F(iδ) is also
O(Z). Since the torus iδ is isotropic, the diffeomorphism (φ, ζ, w) 7→ Gδ(φ, ζ, w) defined in
(6.1.9) is symplectic. In these coordinates, the torus iδ reads (φ, 0, 0), and the transformed
Hamiltonian system becomes (6.2.12), where, by (6.1.15) the terms ∂φK00, K10 − ω, K01 are
O(Z). Neglecting such terms in the linearized operator (6.1.21) at (φ, 0, 0), we obtain the
linear operator D(i) in (6.1.22).

The main result of this section is the following Proposition.

Proposition 6.1.1. Let i(ϕ) be a torus of the form (6.1.1), defined for all λ ∈ ΛI, satisfying
(6.1.4). Then

• (isotropic torus) there is an isotropic torus iδ(ϕ) = (θ(ϕ), yδ(ϕ), z(ϕ)) satisfying,
for some τ := τ(|S|, τ1) > 0,

‖yδ − y‖Lip,s .s ‖Z‖Lip,s+τ + ‖Z‖Lip,s0+τ‖I‖Lip,s+τ (6.1.6)

‖F(iδ)‖Lip,s .s ‖Z‖Lip,s+τ + ‖Z‖Lip,s0+τ‖I‖Lip,s+τ . (6.1.7)

Given another i′ satisfying (6.1.4) we have

‖iδ(i)− iδ(i′)‖s1 .s1 ‖I− I′‖s1+1 . (6.1.8)

• (symplectic diffeomorphism) the change of variable Gδ : (φ, ζ, w) → (θ, y, z) of
the phase space T|S| × R|S| ×H⊥S defined byθy

z

 := Gδ

φζ
w

 :=

θ(φ)

yδ(φ) + [∂φθ(φ)]−>ζ −
[
(∂θz̃)(θ(φ))

]>
Jw

z(φ) + w

 (6.1.9)

where z̃(θ) := z(θ−1(θ)), is symplectic.

In the new coordinates (φ, ζ, w), the isotropic torus iδ is the trivial embedded torus
(ϕ, 0, 0), i.e.

iδ(ϕ) = Gδ(ϕ, 0, 0) . (6.1.10)
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The linearized diffeomorphism DGδ(ϕ, 0, 0) satisfies, for all s ≥ s0,

‖DGδ(ϕ, 0, 0)[ ı̂ ]‖Lip,s +
∥∥(DGδ(ϕ, 0, 0)

)−1
[ ı̂ ]
∥∥

Lip,s
.s ‖ ı̂ ‖Lip,s

+ ‖I‖Lip,s+2‖ ı̂ ‖Lip,s0

(6.1.11)

and

‖D2Gδ(ϕ, 0, 0)[̂ı1, ı̂2]‖Lip,s .s ‖ ı̂1‖Lip,s‖ ı̂2‖Lip,s0 + ‖ ı̂1‖Lip,s0‖ ı̂2‖Lip,s

+ ‖I‖Lip,s+3‖ ı̂1‖Lip,s0‖ ı̂2‖Lip,s0 .
(6.1.12)

• (Transformed Hamiltonian) Under the symplectic change of variables Gδ, the
Hamiltonian vector field XK (the Hamiltonian K is defined in (2.2.7)) transforms
into

XK = (DGδ)
−1XK ◦Gδ where K := K ◦Gδ . (6.1.13)

The Hamiltonian K is reversible, i.e. K ◦ S̃ = K. The 2-jets of the Taylor expansion of
the Hamiltonian K at the trivial torus (φ, 0, 0),

K(φ, ζ, w) = K00(φ) + K10(φ) · ζ + (K01(φ), w)L2(Tx) +
1

2
K20(φ)ζ · ζ

+
(
K11(φ)ζ, w

)
L2(Tx)

+
1

2

(
K02(φ)w,w

)
L2(Tx)

+ K≥3(φ, ζ, w) (6.1.14)

where K≥3 collects the terms at least cubic in the variables (ζ, w), satisfy the following
properties:

i) The vector field

XK(φ, 0, 0) =

 K10(φ)
−∂φK00(φ)
JK01(φ)

 =

ω0
0

− (DGδ(φ, 0, 0)
)−1

Zδ(φ) (6.1.15)

where Zδ(φ) := F(iδ)(φ). The functions K00 : T|S| → R, K01 : T|S| → R|S| and
K01 : T|S| → H⊥S , that we regard as an element of Hs(T|S| × Td,R2), satisfy the
estimate

‖∂φK00‖Lip,s + ‖K10 − ω‖Lip,s + ‖K01‖Lip,s .s ‖Z‖Lip,s+τ

+ ‖Z‖Lip,s0+τ‖I‖Lip,s+τ .
(6.1.16)

ii) The average 〈K20〉 := (2π)−|S|
∫
T|S|

K20(φ)dφ satisfies

‖〈K20〉 − ε2A ‖Lip . ε4 (6.1.17)
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where A is the twist matrix in (1.2.9), and

‖K20ζ‖Lip,s .s ε
2
(
‖ζ‖Lip,s + ‖I‖Lip,s+τ‖ζ‖Lip,s0

)
(6.1.18)

‖K11ζ‖Lip,s .s ε
2
(
‖ζ‖Lip,s + ‖I‖Lip,s+τ‖ζ‖Lip,s0

)
(6.1.19)

‖K>11w‖Lip,s .s ε
2
(
‖w‖Lip,s + ‖I‖Lip,s+τ‖w‖Lip,s0

)
. (6.1.20)

• (Linearized operator in the new coordinates) The linearized operator

ω ·∂ϕ − d(φ,ζ,w)XK(φ, 0, 0)

is φ̂ζ̂
ŵ

 7→
ω ·∂ϕφ̂− ∂φK10(φ)[φ̂ ]− K20(φ)ζ̂ − K>11(φ)ŵ

ω ·∂ϕζ̂ + ∂φφK00(φ)[φ̂] + [∂φK10(φ)]>ζ̂ + [∂φK01(φ)]>ŵ

ω ·∂ϕŵ − J{∂φK01(φ)[φ̂] + K11(φ)ζ̂ + K02(φ)ŵ}

. (6.1.21)

In order to find an approximate inverse of the linear operator in (6.1.21) it is sufficient
to invert the operator

D

φ̂ζ̂
ŵ

 := D(i)

φ̂ζ̂
ŵ

 :=

ω ·∂ϕφ̂− K20(φ)ζ̂ − K>11(φ)ŵ

ω ·∂ϕζ̂
ω ·∂ϕŵ − JK02(φ)ŵ − JK11(φ)ζ̂

 (6.1.22)

which is obtained by neglecting in (6.1.21) the terms ∂φK10, ∂φφK00, ∂φK00, ∂φK01, which
vanish if Z = 0 by (6.1.16). The linear operator D(i) can be inverted in a “triangular”
way. Indeed the second component in (6.1.22) for the action variable is decoupled from the
others. Then one inverts the operator in the third component, i.e. the operator

Lω := Lω(i) := Π⊥S
(
ω ·∂ϕ − JK02(φ)

)
|H⊥S

, (6.1.23)

and finally the first one. The invertibility properties of Lω will be obtained in Proposition
11.1.1 using the results of Chapters 7-10. We now provide the explicit expression of Lω(i).

Lemma 6.1.2. (Linearized operator in the normal directions) The linear operator
K02(φ) := K02(i;φ) has the form

K02(φ) = DV + ε2B(φ) + rε(φ) , (6.1.24)

where B := B(ε, λ) is the self-adjoint operator

B

(
Q
P

)
:=

(
Π⊥SD

−1/2
V

(
3a(x)(v(φ, 0, ξ))2 + ε4a4(x)(v(φ, 0, ξ))3)D

−1/2
V Q

)
0

)
(6.1.25)
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with the function v defined in (2.2.9), the functions a(x) and a4(x) are in (2.1.5), the vector
ξ = ξ(λ) ∈ [1, 2]|S| in (1.2.27), and rε := rε(I) is a self-adjoint remainder satisfying

|rε|Lip,+,s1 .s1 ε
4 , (6.1.26)

|rε|Lip,+,s .s ε
2(ε2 + ‖I‖Lip,s+2) . (6.1.27)

Moreover, given another torus i′ = (ϕ, 0, 0) + I′ satisfying (6.1.4), we have

|rε − r′ε|+,s1 .s1 ε2‖I− I′‖s1+2 . (6.1.28)

The next Chapters 7-10 will be devoted to obtain an approximate right inverse of Lω(i),
as stated in Proposition 11.1.1. In Chapter 7 we shall conjugate Lω(i) to an operator (see
(7.3.4)-(7.3.5) and (11.1.8)) which is in a suitable form to apply Proposition 8.2.1, and so
proving Proposition 11.1.1. Proposition 8.2.1 is proved in Chapters 9 and 10.

The rest of this Chapter is devoted to the proof of Proposition 6.1.1 and Lemma 6.1.2.

6.2 Proof of Proposition 6.1.1

By (1.2.29), for all λ ∈ Λ the frequency vector ω = (1 + ε2λ)ω̄ε satisfies the Diophantine
condition

|ω · `| ≥ γ2

〈`〉τ1
, ∀` ∈ Z|S| \ {0} , where γ2 = γ1/2 = γ0/4 . (6.2.1)

We recall that the constant γ0 in (1.2.6) depends only on the potential V (x), and it is
considered as a fixed O(1) quantity, and thus we shall not track its dependence in the
estimates.

An invariant torus i for the Hamiltonian vector field XK , supporting a Diophantine flow,
is isotropic (see e.g. Lemma 1 in [24] and Lemma C.1.2), namely the pull-back 1-form i∗κ
is closed, where κ is the Liouville 1-form defined in (2.2.15). This is equivalent to say that
the 2-form

i∗W = i∗dκ = d(i∗κ) = 0

vanishes, whereW = dκ is defined in (2.2.10). Given an “approximately invariant” torus i,
the 1-form i∗κ is only “approximately closed”. In order to make this statement quantitative
we consider

i∗κ =
∑

k=1,...,|S|

ak(ϕ)dϕk ,

ak(ϕ) :=
(
[∂ϕθ(ϕ)]>y(ϕ)

)
k

+
1

2
(∂ϕkz(ϕ), Jz(ϕ))L2(Tx)

(6.2.2)
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and we quantify how small is the pull-back 2-form

i∗W = d i∗κ =
∑

k,j=1,...,|S|,k<j

Akj(ϕ)dϕk ∧ dϕj ,

Akj(ϕ) := ∂ϕkaj(ϕ)− ∂ϕjak(ϕ) ,

(6.2.3)

in terms of the error function Z(ϕ) defined in (6.1.5).

Lemma 6.2.1. The coefficients Akj in (6.2.3) satisfy

‖Akj‖Lip,s .s ‖Z‖Lip,s+τ1+1 + ‖Z‖Lip,s0+1‖I‖Lip,s+τ1+1 . (6.2.4)

Proof. The coefficients Akj satisfy the identity (see [24], Lemma 5, and (C.2.7))

ω ·∂ϕAkj =W
(
∂ϕZ(ϕ)ek, ∂ϕi(ϕ)ej

)
+W

(
∂ϕi(ϕ)ek, ∂ϕZ(ϕ)ej

)
where ek denote the k-th vector of the canonical basis of R|S|. Then by (6.1.4) we get

‖ω ·∂ϕAkj‖Lip,s .s ‖Z‖Lip,s+1 + ‖Z‖Lip,s0+1‖I‖Lip,s+1 .

Notice that the functions Akj(ϕ) defined in (6.2.3) have zero mean value in ϕ, so that

Akj(ϕ) = (ω · ∂ϕ)−1
(
W
(
∂ϕZ(ϕ)ek, ∂ϕi(ϕ)ej

)
+W

(
∂ϕi(ϕ)ek, ∂ϕZ(ϕ)ej

))
.

Now, since ω is Diophantine according to (6.2.1), by (2.3.7) we have

‖(ω · ∂ϕ)−1g‖Lip,s ≤ C‖g‖Lip,s+τ1

where the constant γ2 = γ0/4 is included in C because it is considered a fixed constant
O(1). By the expression of W in (2.2.10), the tame estimate (3.5.1) and (6.1.4) we deduce
(6.2.4).

We now modify the approximate torus i to obtain an isotropic torus iδ = iδ(i) nearby,
which is still approximately invariant. We denote the Laplacian

∆ϕ :=
∑

k=1,...,|S|

∂2
ϕk
.

Lemma 6.2.2. (Isotropic torus) The torus iδ(ϕ) := (θ(ϕ), yδ(ϕ), z(ϕ)) defined by

yδ(ϕ) := y(ϕ)− [∂ϕθ(ϕ)]−Tρ(ϕ) , ρ = (ρj)j∈S , ρj(ϕ) := ∆−1
ϕ

∑
k=1,...,|S|

∂ϕkAkj(ϕ) (6.2.5)

is isotropic. There is τ := τ(|S|, τ1) such that (6.1.6)-(6.1.7) hold. Moreover

‖yδ − y‖Lip,s .s ‖I‖Lip,s+1 (6.2.6)

and (6.1.8) holds.
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Along the section we denote by τ := τ(|S|, τ1) possibly different (larger) “loss of deriva-
tives” constants.

Proof. The proof of the isotropy of the torus iδ is in Lemma 6 of [24], see Lemma
C.2.5. Let us prove the bounds (6.1.6)-(6.1.8) and (6.2.6). First notice that, since the map
A 7→ A−1 is C∞ on the open set of invertible matrices {A ∈ M|S|(R) : detA 6= 0}, we
derive from (6.1.4) and Lemma 3.5.5 that, for ε small, the map

Dθ−1 : ϕ 7→ [Dθ(ϕ)]−1

satisfies the tame estimates

‖Dθ−1‖Lip,s .s 1 + ‖I‖s+1 , ∀s ≥ s0 . (6.2.7)

Then (6.1.6) and (6.2.6) follow by (6.2.5), (6.2.7), (6.2.2), (6.2.3), (6.2.4) and (6.1.4). More-
over, we have that the difference

F(iδ)−F(i) =

 0
ω ·∂ϕ(yδ − y)

0

 + ε2
(
XR(iδ)−XR(i)

)
and (6.1.7) follows by (6.1.6), Lemma 3.5.5 and (6.1.4). Finally the bound (6.1.8) follows
by (6.2.5), (6.2.3), (6.2.2), (6.1.4).

It is proved in [24] (see Lemma C.1.3) that the diffeomorphism Gδ : (φ, ζ, w)→ (θ, y, z)
defined in (6.1.9) is symplectic because the torus iδ is isotropic (Lemma 6.2.2). By con-
struction, (6.1.10) holds. Since Gδ is symplectic the Hamiltonian system generated by K
transforms as in (6.1.13) into the Hamiltonian system with Hamiltonian K = K ◦ Gδ. By
(5.1.3) the transformation Gδ in (6.1.9) is also reversibility preserving and so the Hamilto-
nian K is reversible, i.e. K ◦ S̃ = K.

Lemma 6.2.3. The tame estimates (6.1.11) and (6.1.12) hold.

Proof. We write (6.1.9) as

Gδ

φζ
w

 :=


θ(φ)

yδ(φ) +M(φ)ζ −
|S|∑
j=1

(mj(φ), Jw)L2
x
ej

z(φ) + w


where (ej) denotes the canonical basis of R|S| and we set

M(φ) := [∂φθ(φ)]−> , mj(φ) := (∂θj z̃)(θ(φ)) = [(∂ϕθ)
−>(φ)∇z(φ)]j .
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The tame estimate (6.2.7) implies

‖M‖Lip,s .s 1 + ‖I‖Lip,s+1 (6.2.8)

and using (3.5.1) and (6.1.4) we have

‖mj‖Lip,s = ‖(∂θj z̃)(θ(φ))‖Lip,s .s ‖z‖Lip,s+1 + ‖z‖Lip,s0+1‖ϑ‖Lip,s+1

.s ‖I‖Lip,s+1 . (6.2.9)

Now

DGδ(ϕ, 0, 0)[̂ı(ϕ)] := DGδ(ϕ, 0, 0)

φ̂(ϕ)

ζ̂(ϕ)
ŵ(ϕ)

 =

â(ϕ)

b̂(ϕ)
ĉ(ϕ)


where

â := ∂ϕθ(ϕ)[φ̂] ,

b̂ := ∂ϕyδ(ϕ)[φ̂] +M(ϕ)[ζ̂]−
|S|∑
j=1

(mj(ϕ), Jŵ)L2
x
ej ,

ĉ := ∂ϕz(ϕ)[φ̂] + ŵ

(6.2.10)

and

D2Gδ(ϕ, 0, 0)[̂ı1(ϕ), ı̂2(ϕ)] =

α̂(ϕ)

β̂(ϕ)
γ̂(ϕ)


where

α̂ := ∂2
ϕθ[φ̂1, φ̂2] ,

β̂ := ∂2
ϕyδ[φ̂1, φ̂2] + ∂ϕM [φ̂1]ζ̂2 + ∂ϕM [φ̂2]ζ̂1

−
|S|∑
j=1

((
∂ϕmj[φ̂1], Jŵ2

)
L2
x

+
(
∂ϕmj[φ̂2], Jŵ1

)
L2
x

)
ej ,

γ̂ := ∂2
ϕz[φ̂1, φ̂2] .

(6.2.11)

The tame estimates (6.1.11) and (6.1.12) are a consequence of (6.2.10), (6.2.11), (3.5.1),
(6.1.4), (6.2.6) and (6.2.8), (6.2.9).

Then we consider the Taylor expansion (6.1.14) of the Hamiltonian K at the trivial torus
(φ, 0, 0). Notice that the Taylor coefficient K00(φ) ∈ R, K10(φ) ∈ R|S|, K01(φ) ∈ H⊥S , K20(φ) is
a |S|×|S| real matrix, K02(φ) is a linear self-adjoint operator of H⊥S and K11(φ) ∈ L(R|S|, H⊥S ).
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The Hamilton equations associated to (6.1.14) are
φ̇ = K10(φ) + K20(φ)ζ + K>11(φ)w + ∂ζK≥3(φ, ζ, w)

ζ̇ = −∂φK00(φ)− [∂φK10(φ)]>ζ − [∂φK01(φ)]>w

−∂φ
(1

2
K20(φ)ζ · ζ + (K11(φ)ζ, w)L2(Tx) +

1

2
(K02(φ)w,w)L2(Tx) + K≥3(φ, ζ, w)

)
ẇ = J

(
K01(φ) + K11(φ)ζ + K02(φ)w +∇wK≥3(φ, ζ, w)

)
(6.2.12)

where ∂φK
>
10 is the |S| × |S| transposed matrix and

∂φK
>
01(φ) , K>11(φ) : H⊥S → R|S| , ∀φ ∈ T|S| ,

are defined by the duality relation

(∂φK01[φ̂], w)L2
x

= φ̂ · [∂φK01]>w , ∀φ̂ ∈ R|S|, w ∈ H⊥S , (6.2.13)

where · denotes the scalar product in R|S|. The transposed operator K>11 is similarly defined
and it turns out to be the following operator: for all w ∈ H⊥S , and denoting ek the k-th
vector of the canonical basis of R|S|,

K>11(φ)w =
∑

k=1,...,|S|

(
K>11(φ)w · ek

)
ek =

∑
k=1,...,|S|

(
w, K11(φ)ek

)
L2(Tx)

ek ∈ R|S| . (6.2.14)

The terms ∂φK00, K10 − ω, K01 in the Taylor expansion (6.1.14) vanish if Z = 0.

Lemma 6.2.4. (6.1.15) and (6.1.16) hold.

Proof. Formula (6.1.15) is proved in Lemma 8 of [24] (see Lemma C.2.6). Then (6.1.4),
(6.1.6), (6.1.7), (6.1.11) imply (6.1.16).

Notice that, if F(i) = 0, namely i(ϕ) is an invariant torus for the Hamiltonian vector
field XK , supporting quasi-periodic solutions with frequency ω, then, by (6.1.15)-(6.1.16),
the Hamiltonian in (6.1.14) simplifies to the KAM (variable coefficients) normal form

K = const+ ω · ζ +
1

2
K20(φ)ζ · ζ +

(
K11(φ)ζ, w

)
L2(T)

+
1

2

(
K02(φ)w,w

)
L2(T)

+ K≥3 . (6.2.15)

We now estimate K20, K11 in (6.1.14).

Lemma 6.2.5. (6.1.17)-(6.1.20) hold.

Proof.
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Proof of (6.1.17)-(6.1.18). By Lemma 9 of [24] (see Lemma C.2.7) and the form of K
in (2.2.7), we have

K20(φ) = [∂φθ(φ)]−1∂yyK(iδ(φ))[∂ϕθ(φ)]−>

= ε2[∂φθ(φ)]−1∂yyR(iδ(φ))[∂φθ(φ)]−> (6.2.16)

= ε2∂yyR(i0(φ)) + r20 (6.2.17)

where i0(φ) = (φ, 0, 0) and

r20 := ε2
(

[∂φθ(φ)]−1∂yyR(iδ(φ))[∂φθ(φ)]−> − ∂yyR(iδ(φ))
)

+ ε2
(
∂yyR(iδ(φ))− ∂yyR(i0(φ))

)
.

By Lemma 3.5.5, (6.1.4), (6.2.6) we have

‖∂yyR(iδ(φ))− ∂yyR(i0(φ))‖Lip,s0 ≤ C(s1)ε2

and, using also ‖(∂φθ(φ))−1 − Id|S|‖Lip,s0 ≤ ‖I‖Lip,s0+1 .s1 ε
2, that

‖[∂φθ(φ)]−1∂yyR(iδ(φ))[∂φθ(φ)]−> − ∂yyR(iδ(φ))‖Lip,s0 ≤ C(s1)ε2 .

Therefore
‖r20‖Lip,s0 ≤ C(s1)ε4 . (6.2.18)

Moreover, by (6.2.16) and Lemma 3.5.5 the norm of K20 (which is the sum of the norms of
its |S| × |S| matrix entries) satisfies

‖K20‖Lip,s .s ε
2(1 + ‖I‖Lip,s+τ )

and (6.1.18) follows by the tame estimates (3.5.1) for the product of functions.
Next, recalling the expression of R in (2.2.8), with G as in (2.1.7), by computations

similar to those in section 5.2, it turns out that the average with respect to φ of ∂yyR(i0(φ))
is

〈∂yyR(i0(φ))〉 = A + r with ‖r‖Lip ≤ Cε2 (6.2.19)

where A is the twist matrix defined in (1.2.9) (in particular there is no contribution from
a4(x)u4).

The estimate (6.1.17) follows by (6.2.17), (6.2.18) and (6.2.19).

Proof of (6.1.19)-(6.1.20). By Lemma 9 of [24] (see Lemma C.2.7) and the form of K
in (2.2.7) we have

K11(φ) = ∂y∇zK(iδ(φ))[∂ϕθ(φ)]−> + J(∂θz̃)(θ(φ))(∂yyK)(iδ(φ))[∂ϕθ(φ)]−>

= ε2∂y∇zR(iδ(φ))[∂ϕθ(φ)]−> + ε2J(∂θz̃)(θ(φ))(∂yyR)(iδ(φ))[∂ϕθ(φ)]−> , (6.2.20)

and using (6.1.4), (6.2.6), we deduce (6.1.19). The bound (6.1.20) for K>11 follows by (6.2.14)
and (6.1.19).

Finally formula (6.1.21) is obtained linearizing (6.2.12).
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6.3 Proof of Lemma 6.1.2

We have to compute the quadratic term
1

2
(K02(φ)w,w)L2(Tx) in the Taylor expansion (6.1.14)

of the Hamiltonian K(φ, 0, w). The operator K02(φ) is

K02(φ) = ∂w∇wK(φ, 0, 0)

= ∂w∇w(K ◦Gδ)(φ, 0, 0) = DV + ε2∂w∇w(R ◦Gδ)(φ, 0, 0)
(6.3.1)

where the Hamiltonian K is defined in (2.2.7) and Gδ is the symplectic diffeomorphism
(6.1.9). Differentiating with respect to w the Hamiltonian

(R ◦Gδ)(φ, ζ, w) = R(θ(φ), yδ(φ) + L1(φ)ζ + L2(φ)w, z(φ) + w)

where, for brevity, we set

L1(φ) := [∂φθ(φ)]−T , L2(φ) := −[∂θz̃(θ(φ))]>J , z̃(θ) = z(θ−1(θ)) , (6.3.2)

(see (6.1.9)), we get

∇w(R ◦Gδ)(φ, ζ, w) = L2(φ)>∂yR(Gδ(φ, ζ, w)) +∇zR(Gδ(φ, ζ, w)) .

Differentiating such identity with respect to w, and recalling (6.1.10), we get

∂w∇w(R ◦Gδ)(φ, 0, 0) = ∂z∇zR(iδ(φ)) + r(φ) (6.3.3)

with a self adjoint remainder r(φ) := r1(φ) + r2(φ) + r3(φ) given by

r1(φ) := L2(φ)>∂yyR(iδ(φ))L2(φ) ,

r2(φ) := L2(φ)>∇z∂yR(iδ(φ)) ,

r3(φ) := ∂y∇zR(iδ(φ))L2(φ) .

(6.3.4)

Each operator r1, r2, r3 is the composition of at least one operator with “finite rank R|S| in
the space variable”, and therefore it has the “finite dimensional” form

rl(φ)[h] =
∑

j=1,...,|S|

(
h , g

(l)
j (φ, ·)

)
L2
x
χ

(l)
j (φ, ·) , ∀h ∈ H⊥S , l = 1, 2, 3 , (6.3.5)

for functions g
(l)
j (φ, ·), χ(l)

j (φ, ·) ∈ H⊥S . Indeed, writing the operator L2(φ) : H⊥S → R|S| as

L2(φ)[h] =
∑

j=1,...,|S|

(
h , L2(φ)>[ej]

)
L2
x
ej , ∀h ∈ H⊥S ,
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we get, by (6.3.4),

r1(φ)[h] =
∑

j=1,...,|S|

(
h , L2(φ)>[ej]

)
L2
x
A1[ej] , A1 := L2(φ)>∂yyR(iδ(φ)) , (6.3.6)

r2(φ)[h] =
∑

j=1,...,|S|

(
h,A>2 [ej]

)
L2
x
L2(φ)>[ej] , A2 := ∂z∂yR(iδ(φ)) , (6.3.7)

r3(φ)[h] =
∑

j=1,...,|S|

(
h, L2(φ)>[ej]

)
L2
x
A3[ej] , A3 := ∂y∇zR(iδ(φ)) = A>2 . (6.3.8)

Lemma 6.3.1. For all l = 1, 2, 3, j = 1, . . . , |S|, we have, for all s ≥ s0,

‖g(l)
j ‖Lip,s + ‖χ(l)

j ‖Lip,s .s 1 + ‖I‖Lip,s+1

min{‖g(l)
j ‖Lip,s, ‖χ(l)

j ‖Lip,s} .s ‖I‖Lip,s+1 .
(6.3.9)

Proof. Recalling the expression of L2 in (6.3.2) and (6.3.6)-(6.3.8) we have:

i) g
(1)
j (φ) = g

(3)
j (φ) = χ

(2)
j (φ) = L2(φ)>[ej] = J(∂θj z̃)(θ(φ)). Therefore by (6.2.9),

‖g(1)
j ‖Lip,s = ‖g(3)

j ‖Lip,s = ‖χ(2)
j ‖Lip,s .s ‖I‖Lip,s+1 .

ii) χ
(1)
j = L2(φ)>∂yyR(iδ(φ))[ej]. Then, recalling (6.3.2) and using Lemma 3.5.5, we have

‖χ(1)
j ‖Lip,s .s ‖∂θz̃(θ(φ))‖Lip,s(1 + ‖Iδ‖Lip,s0) + ‖∂θz̃(θ(φ))‖Lip,s0‖Iδ‖Lip,s

(6.1.4)(6.2.9)(6.2.6)

.s ‖I‖Lip,s+1 .

iii) χ
(3)
j = g

(2)
j = ∂yj∇zR(iδ((φ)). Then, using Lemma 3.5.5 and (6.2.6), we get

‖χ(3)
j ‖Lip,s = ‖g(2)

j ‖Lip,s.s 1 + ‖Iδ‖Lip,s .s 1 + ‖I‖Lip,s+1 .

Items i)− iii) imply the estimates (6.3.9).

We now use Lemmata 3.3.7 and 6.3.1 to derive bounds on the decay norms of the
remainders rl defined in (6.3.5). Recalling Definition 3.3.4, we have to estimate the norm
|rl|Lip,+,s = |D1/2

m rlΠ
⊥
SD

1/2
m |Lip,s of the extended operators, acting on the wholeH0 = L2(Td×

T|S|;C2), defined by

D1/2
m rlΠ

⊥
SD

1/2
m h :=

∑
j=1,...,|S|

(
Π⊥SD

1/2
m h , g

(l)
j

)
L2
x
(D1/2

m χ
(l)
j )

=
∑

j=1,...,|S|

(
h , D1/2

m g
(l)
j

)
L2
x
(D1/2

m χ
(l)
j ) , h ∈ H0 , (6.3.10)
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where we used that g
(l)
j ∈ H⊥S . Then the decay norm of r = r1 + r2 + r3 satisfies

|r|Lip,+,s . max
l=1,2,3

|D1/2
m rlΠ

⊥
SD

1/2
m |Lip,s

(6.3.10),(3.3.29)

.s max
l=1,2,3,j=1,...,|S|

‖D1/2
m g

(l)
j ‖Lip,s‖D1/2

m χ
(l)
j ‖Lip,s0 + ‖D1/2

m g
(l)
j ‖Lip,s0‖D1/2

m χ
(l)
j ‖Lip,s

(6.3.9),(6.1.4)

.s ‖I‖Lip,s+2 . (6.3.11)

Finally, by (6.3.1), (6.3.3) we have

K02(φ) = DV + ε2∂z∇zR(iδ(φ)) + ε2r(φ)

= DV + ε2∂z∇zR(φ, 0, 0) + ε2
(
∂z∇zR(iδ(φ))− ∂z∇zR(φ, 0, 0)

)
+ ε2r(φ)

= DV + ε2B + rε (6.3.12)

where B is defined in (6.1.25) and

rε := ε2∂z∇zR(φ, 0, 0)− ε2B + ε2
(
∂z∇zR(iδ(φ))− ∂z∇zR(φ, 0, 0)

)
+ ε2r(φ) . (6.3.13)

This is formula (6.1.24). We now prove that rε satisfies (6.1.27). In (6.3.11) we have yet
estimated |r|Lip,+,s. Recalling Definition 3.3.4, and the expression of R in (2.2.8) (see also
(2.2.14)) we have to estimate the decay norm of the extended operator, acting on the whole
H0 = L2(Td × T|S|;C2), defined as

∂z∇zR(iδ(φ))Π⊥S

(
h1

h2

)
:=(

Π⊥SD
− 1

2
V (∂ug)(ε, x, v(θ(φ), yδ(φ), ξ) +D

− 1
2

V Q(φ))D
−1/2
V Π⊥S h1

0

) (6.3.14)

where g(ε, x, u) = ∂uG(ε, x, u) is the nonlinearity in (1.2.2). Hence, by Proposition 3.4.6
and Lemma 3.3.8, we have

|∂z∇zR(iδ(φ))− ∂z∇zR(φ, 0, 0)|Lip,+,s .s∥∥(∂ug)(ε, x, v(θ(φ), yδ(φ), ξ) +D
−1/2
V Q(φ))− (∂ug)(ε, x, v(φ, 0, ξ))

∥∥
Lip,s

Lemma 3.5.5,(6.1.4)

.s ‖Iδ‖Lip,s

(6.2.6)

.s ‖I‖Lip,s+1 . (6.3.15)

Moreover, recalling (2.1.6) and the definition of B in (6.1.25), we have

|∂z∇zR(φ, 0, 0)− B|Lip,+,s .s ε
2 . (6.3.16)

In conclusion, the operator rε defined in (6.3.13) satisfies, by (6.3.16), (6.3.15), (6.3.11),
the estimate (6.1.27). In particular, (6.1.26) holds by (6.1.4).
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There remains to prove (6.1.28). Let i′ = (ϕ, 0, 0) + I′ be another torus embedding
satisfying (6.1.4) and let r′ε be the associated remainder in (6.3.13). We have

r′ε(φ)− rε(φ) = ε2
(
∂z∇zR(i′δ(φ))− ∂z∇zR(iδ(φ))

)
+ ε2(r′(φ)− r(φ)) .

By Lemma 3.5.5 and the expression (6.3.14) of ∂z∇zR,

|∂z∇zR(i′δ(φ))− ∂z∇zR(iδ(φ))|+,s1 .s1 ‖I′δ − Iδ‖s1
(6.1.8)

.s1 ‖I′ − I‖s1+1 . (6.3.17)

Moreover let g′
(l)
j and χ′

(l)
j be the functions obtained in (6.3.5)-(6.3.8) from i′. Using again

Lemma 3.5.5 as well as (6.1.8) and (6.2.6), we obtain, for any j = 1, 2, 3, j = 1, . . . , |S|,

‖g′(l)j − g
(l)
j ‖s + ‖χ′(l)j − χ

(l)
j ‖s .s ‖I

′ − I‖s+1 + ‖I‖s+1‖I′ − I‖s0+1 .

Hence, by Lemma 3.3.7, |r′ − r|+,s1 .s1 ‖I′ − I‖s1+2. With (6.3.17), this gives (6.1.28).



Chapter 7

Splitting of low-high normal
subspaces up to O(ε4)

The main result of this Chapter is Proposition 7.3.1. Its goal is to transform the linear
operator Lω in (6.1.23), into a form (see (7.3.5)) suitable to apply Proposition 8.2.1 in the
next Chapter, which will enable to prove the existence of an approximate right inverse of
Lω for most values of the parameter λ.

In the next section we fix the set M in the splitting H⊥S = HM ⊕H⊥M.

7.1 Choice of M
We first remind that, by Lemma 6.1.2, the linear operator Lω defined in (6.1.23), acting in
the normal subspace H⊥S , has the form

Lω = ω · ∂ϕ − J(DV + ε2B + rε) , ω = (1 + ε2λ)ω̄ε , (7.1.1)

where B = B(ε, λ) is the self-adjoint operator in (6.1.25) and the self-adjoint remainder
rε satisfies (6.1.26). Recalling (6.1.25), (2.2.9), (1.2.27), we derive, for ‖a4‖L∞ ≤ 1, the
following bounds for the L2-operatorial norm of B:

‖B‖0 ≤ C(‖a‖L∞ + ε) , ‖B‖lip,0 ≤ C(‖a‖L∞ + ε)‖A −1‖ (7.1.2)

where ‖A −1‖ is some norm of the inverse twist matrix A −1.
Dividing (7.1.1) by 1 + ε2λ we now consider the operator

Lω
1 + ε2λ

= ω̄ε · ∂ϕ − J
(
A +

rε

1 + ε2λ

)
,

A := A(λ) =
DV

1 + ε2λ
+

ε2B

1 + ε2λ
.

(7.1.3)

179
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We denote by % the self-adjoint operator

% :=
ε2B

1 + ε2λ
(7.1.4)

and, according to the splitting H⊥S = HM ⊕H⊥M, and taking in HM the basis

{(Ψj(x), 0) , (0,Ψj(x))}j∈M ,

we represent A as (recall that DV Ψj = µjΨj and the notation (3.2.1))

A =

Diagj∈M
µj

1 + ε2λ
Id2 0

0
DV

1 + ε2λ

+

(
%MM %M

c

M
%MMc %M

c

Mc

)
. (7.1.5)

Recalling (6.1.25), since the functions a, a4 ∈ C∞(Td), using (2.2.9), (1.2.27), and Proposi-
tion 3.4.6, we derive that the operator % defined in (7.1.4) satisfies

|%|Lip,+,s ≤ C(s)ε2 . (7.1.6)

In the next lemma we fix the subset of indices M. We recall the notation AM
c

Mc = ΠHMcA|HMc =
ΠH⊥M

A|H⊥M
.

Lemma 7.1.1. (Choice of M) Let

Ωj(ε, λ) := [BA −1ω̄ε]j +
µj − [BA −1µ̄]j

1 + ε2λ
, j ∈M , (7.1.7)

where A , B are the “Birkhoff” matrices defined in (1.2.9), (1.2.10), the µj are the un-
perturbed frequencies defined in (1.1.5), and the vectors µ̄, ω̄ε are defined respectively in
(1.2.3), (1.2.25). There is a constant C > 0 such that, if M ⊂ N contains the subset F
defined in (1.2.15), i.e. F ⊂M, and

min
j∈Mc

µj ≥ C
(
1 + ε2‖a‖L∞ + ‖a‖L∞‖A −1‖+ ε‖A −1‖

)
, (7.1.8)

then
∂λA

Mc

Mc ≤ −
(

max
j∈F
|∂λΩj|+ ε2

)
Id . (7.1.9)

Proof. Differentiating the expression of A in (7.1.3) we get

∂λA := − ε2DV

(1 + ε2λ)2
+

ε2∂λB

1 + ε2λ
− ε4B

(1 + ε2λ)2
.
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Then by (7.1.2) and the fact that [DV ]M
c

Mc ≥ min
j∈Mc

µj, we get

∂λA
Mc

Mc ≤ −
ε2

(1 + ε2λ)2
min
j∈Mc

µj + Cε4(‖a‖L∞ + ε) + Cε2(‖a‖L∞ + ε)‖A −1‖ . (7.1.10)

Now, recalling (7.1.7), we have

∂λΩj(ε, λ) =
−ε2

(1 + ε2λ)2

(
µj − [BA −1µ̄]j

)
(7.1.11)

and so (7.1.10) and (7.1.11) imply

∂λA
Mc

Mc + max
j∈F
|∂λΩj| ≤ −

ε2

(1 + ε2λ)2

(
min
j∈Mc

µj −max
j∈F

∣∣µj − [BA −1µ̄]j
∣∣)

+ Cε4(‖a‖L∞ + ε) + Cε2(‖a‖L∞ + ε)‖A −1‖ .

Thus (7.1.9) holds taking M large enough such that (recall that µj → +∞)

min
j∈Mc

µj ≥ max
j∈F

∣∣µj − [BA −1µ̄]j
∣∣+ C(1 + ε2‖a‖L∞ + ‖a‖L∞‖A −1‖+ ε‖A −1‖) . (7.1.12)

By (1.2.15), (1.2.13), the fact that µj ≥
√
β (see (1.1.5)), we get

max
j∈F

∣∣µj − [BA −1µ̄]j
∣∣ ≤ g = max

j∈Sc
{(BA −1µ̄)j − µj}

≤ C(‖a‖L∞‖A −1‖+ 1)
(7.1.13)

for some C := C(β, S), having used that (1.2.10) we have sup
k∈S
|Gj

k| ≤ C‖a‖L∞β. By (7.1.12)-

(7.1.13) and (7.1.8) we deduce (7.1.9).

In the sequel of the Monograph the subset M is kept fixed. Note that the condition
(7.1.8) can be fulfilled taking M large enough because µj → +∞ as j → +∞.

In the next part of the Chapter we perform one step of averaging to eliminate, as much
as possible, the terms of order O(ε2) of %MM, %M

c

M , %MMc in (7.1.5).

7.2 Homological equations

According to the splitting H = HM ⊕H⊥M we consider the linear map

S 7→ Jµ̄ · ∂ϕS + [JS, JDV ]

where µ̄ ∈ R|S| is the unperturbed tangential frequency vector defined in (1.2.3), and

S(ϕ) =

(
d(ϕ) a(ϕ)∗

a(ϕ) 0

)
∈ L(H⊥S ) , ∀ϕ ∈ T|S| ,

d(ϕ) = d∗(ϕ) ∈ L(HM) , a(ϕ) ∈ L(HM, H
⊥
M)

(7.2.1)
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is self-adjoint.
Since DV and J commute, we have

Jµ̄ · ∂ϕS + [JS, JDV ]

=

(
Jµ̄ · ∂ϕd +DV d + JdJDV Jµ̄ · ∂ϕa∗ +DV a

∗ + Ja∗JDV

Jµ̄ · ∂ϕa +DV a + JaJDV 0

)
.

(7.2.2)

Recalling the definition of ΠD in (3.2.28) (with F M) and of ΠO in (3.2.30) we decompose
the self-adjoint operator % = ε2B(1 + ε2λ)−1 defined in (7.1.4) as

% = ΠD%+ ΠO% . (7.2.3)

The term ΠO% has the form

ΠO%(ϕ) =

(
%1(ϕ) %2(ϕ)∗

%2(ϕ) 0

)
∈ L(H⊥S ) ,

%1(ϕ) ∈ L(HM) , %2(ϕ) ∈ L(HM, H
⊥
M) ,

(7.2.4)

where %1(ϕ) = %∗1(ϕ), and, recalling (3.2.29), (3.2.18), the ϕ-average

[%̂1]jj(0) =
1

(2π)|S|

∫
T|S|

(%̂1)jj(ϕ) dϕ ∈M− , ∀ j ∈M . (7.2.5)

The aim is to solve the “homological” equation

Jµ̄ · ∂ϕS + [JS, JDV ] = JΠO% (7.2.6)

which, recalling (7.2.2), (7.2.4), amounts to solve the decoupled pair of equations

Jµ̄ · ∂ϕd +DV d + JdJDV = J%1 (7.2.7)

Jµ̄ · ∂ϕa +DV a + JaJDV = J%2 . (7.2.8)

Note that, taking the adjoint equation of (7.2.8), multiplying by J on the left and the right,
and since J and DV commute, we obtain also the equation in top right in (7.2.6), see (7.2.2)
and (7.2.4).

The arguments of this section are similar to those developed in section 9.3, actually
simpler because the equation (7.2.8) has constant coefficients in ϕ, unlike the corresponding
equation (9.2.6) where the operator V0 depends on ϕ ∈ T|S|. Thus in the sequel we shall
often refer to section 9.3.

We first find a solution d of the equation (7.2.7). We recall that a linear operator d(ϕ) ∈
L(HM) is represented by a finite dimensional square matrix (dji (ϕ))i,j∈M with entries dji (ϕ) ∈
L(Hj, Hi) ' Mat2(R). To solve (7.2.7) we use the second order Melnikov non-resonance
conditions (1.2.16)-(1.2.19), that depend just on the unperturbed linear frequencies defined
by (1.1.5).
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Lemma 7.2.1. (Homological equation (7.2.7)) Assume the second order Melnikov non
resonance conditions (1.2.16)-(1.2.19). Then the equation (7.2.7) has a solution d(ϕ) =
(dji (ϕ))i,j∈M, d(ϕ) = d∗(ϕ), satisfying

‖dji‖Lip,Hs(T|S|) ≤ C‖(%1)ji‖Lip,Hs+2τ0 (T|S|) , ∀i, j ∈M . (7.2.9)

Proof. Since the symplectic operator J leaves invariant each subspace Hj and recalling
(2.1.11), the equation (7.2.7) is equivalent to

Jµ̄ · ∂ϕdji (ϕ) + µid
j
i (ϕ) + µjJd

j
i (ϕ)J = J(%1(ϕ))ji , ∀i, j ∈M , J =

(
0 1
−1 0

)
,

and, by a Fourier series expansion with respect to the variable ϕ ∈ T|S| writing

dji (ϕ) =
∑
`∈Z|S|

d̂ji (`)e
i`·ϕ , d̂ji (`) ∈ Mat2(C) , d̂ji (`) = d̂ji (−`) ,

to

i(µ̄ · `)J d̂ji (`) + µid̂
j
i (`) + µjJ d̂

j
i (`)J = J [%̂1]ji (`) , ∀i, j ∈M , ` ∈ Z|S| . (7.2.10)

Using the second order Melnikov non resonance conditions (1.2.16)-(1.2.19), and since, by
(7.2.5), the Fourier coefficients [%̂1]jj(0) ∈M−, the equations (7.2.10) can be solved arguing
as in Lemma 9.3.2 and the estimate (7.2.9) follows by standard arguments.

We now solve the equation (7.2.8) in the unknown a ∈ L(HM, H
⊥
M). We use again the

second order Melnikov non-resonance conditions (1.2.16)-(1.2.19).

Lemma 7.2.2. (Homological equation (7.2.8)) Assume the second order Melnikov non
resonance conditions (1.2.16)-(1.2.19). Then the homological equation (7.2.8) has a solution
a ∈ L2(T|S|,L(HM, H

⊥
M)) satisfying

|a|Lip,s ≤ C(s)‖%2‖Lip,s+2τ0 . (7.2.11)

Proof. Writing aj(ϕ) := a(ϕ)|Hj , %
j
2(ϕ) := (%2(ϕ))|Hj ∈ L(Hj, H

⊥
M) and recalling (2.1.11),

the equation (7.2.8) amounts to

Jµ̄ · ∂ϕaj(ϕ) +DV a
j(ϕ) + µjJa

j(ϕ)J = J%j2(ϕ) , ∀j ∈M . (7.2.12)

Writing, by a Fourier series expansion with respect to ϕ ∈ T|S|,

aj(ϕ) =
∑
`∈Z|S|

âj(`)ei`·ϕ , âj(`) =
1

(2π)|S|

∫
T|S|

aj(ϕ)e−i`·ϕ dϕ ,

%j2(ϕ) =
∑
`∈Z|S|

J%̂j2(`)ei`·ϕ ,
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the equation (7.2.12) amounts to

iµ̄ · `J âj(`) +DV â
j(`) + µjJ â

j(`)J = J%̂j2(`) , ∀j ∈M , ` ∈ Z|S| . (7.2.13)

According to the L2-orthogonal splitting H⊥M = ⊕j∈McHj the linear operator âj(`), which

maps Hj into the complexification of H⊥M and satisfies âj(`) = âj(−`), is identified (as in
(3.2.11)-(3.2.12) with index k ∈Mc) with a sequence of 2× 2 matrices

(âjk(`))k∈Mc , â
j
k(`) ∈ Mat2(C) , â

j
k(`) = â

j
k(−`) . (7.2.14)

Similarly %̂j2(`) ≡ ([%̂2]jk(`))k∈Mc . Thus (7.2.13) amounts to the following sequence of equa-
tions

iµ̄ · `J âjk(`) + µkâ
j
k(`) + µjJ â

j
k(`)J = J [%̂2]jk(`) ,

j ∈M , k ∈Mc , ` ∈ Z|S| , J =

(
0 1
−1 0

)
.

(7.2.15)

Note that the equation (7.2.15) is like (7.2.10). Since j 6= k (indeed j ∈M, k ∈Mc), by the
second order Melnikov non resonance conditions (1.2.16)-(1.2.19), each equation (7.2.15)
has a unique solution for any %2, the reality condition (7.2.14) holds, and

‖âjk(`)‖ ≤ C〈`〉τ0‖[%̂2]jk(`)‖ . (7.2.16)

We now estimate |a|s. By Lemma 3.3.10 we have |a|s 's ‖a‖s (we identify each aj ∈
L(Hj, H

⊥
M) with a function of H⊥M ×H⊥M as in (3.2.6), (3.2.7)). Given a function

u(ϕ, x) =
∑

`∈Z|S|,k∈Mc

u`,ke
i`·ϕΨk(x) ∈ H⊥M

the Sobolev norm ‖u‖s defined in (3.3.2) is equivalent, using (3.1.4), (3.1.3), to

‖u‖2
s 's ‖u‖2

L2
ϕ(Hs

x∩H⊥M ) + ‖u‖2
Hs
ϕ(L2

x∩H⊥M )

's
∑

`∈Z|S|,k∈Mc

(
µ2s
k + 〈`〉2s

)
|u`,k|2 . (7.2.17)

In conclusion (7.2.17) and (7.2.16) and the fact that by Young inequality

〈`〉2τ0µ2s
k ≤

〈`〉2τ0p

p
+
µ2sq
k

q
.s,τ0 〈`〉2(τ0+s) + µ

2(τ0+s)
k ,

p :=
2(τ0 + s)

2τ0

, q :=
2(τ0 + s)

2s
,

imply |a|s ≤ C(s)‖%2‖s+τ0 . The estimate (7.2.11) for the Lipschitz norm follows as usual.
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7.3 Averaging step

We consider the family of invertible symplectic transformations

P(ϕ) := eJS(ϕ) , P−1(ϕ) := e−JS(ϕ) , ϕ ∈ T|S| , (7.3.1)

where S := S(ϕ) is the self-adjoint operator in L(H⊥S ) of the form (7.2.1) with d(ϕ), a(ϕ)
defined in Lemmata 7.2.1, 7.2.2. By Lemma 3.3.10, the estimates (7.2.9), (7.2.11) and
(7.1.6) imply

|S|Lip,+,s .s |S|Lip,s+ 1
2
.s ‖%‖Lip,s+2τ0+1 ≤ C(s)ε2 (7.3.2)

and the transformation P(ϕ) in (7.3.1) satisfies, for ε small, the estimates

|P|Lip,s1 ≤ 2 , |P|Lip,s , |P−1|Lip,s ≤ C(s) , ∀s ≥ s1 . (7.3.3)

In the next proposition, which is the main result of this Chapter, we conjugate the whole

operator ω̄ε · ∂ϕ − J(A +
rε

1 + ε2λ
) defined in (7.1.3) by P(ϕ).

Proposition 7.3.1. (Averaging) Assume the second order Melnikov non resonance con-
ditions (1.2.16)-(1.2.19) where the set M is fixed in Lemma 7.1.1. Let P(ϕ) be the symplectic
transformation (7.3.1) of H⊥S , where S(ϕ) is the self-adjoint operator of the form (7.2.1)
with d(ϕ), a(ϕ) defined in Lemmata 7.2.1, 7.2.2. Then the conjugated operator

P−1(ϕ)
[
ω̄ε · ∂ϕ − J

(
A +

rε

1 + ε2λ

)]
P(ϕ) = ω̄ε · ∂ϕ − JA+ (7.3.4)

acting in the normal subspace H⊥S , has the following form, with respect to the splitting
H⊥S = HM ⊕H⊥M,

A+ = A0 + %+ , A0 :=
DV

1 + ε2λ
+ ΠD% =

(
D(ε, λ) 0

0 AM
c

Mc

)
, (7.3.5)

where, in the basis {(Ψj, 0), (0,Ψj)}j∈M of HM, the operator D(ε, λ) is represented by the
diagonal matrix

D(ε, λ) = Diagj∈MΩj(ε, λ)Id2 , Id2 =

(
1 0
0 1

)
(7.3.6)

with Ωj(ε, λ) defined in (7.1.7), A is defined in (7.1.3), and

|%+|Lip,+,s .s ε
4 + |rε|Lip,+,s . (7.3.7)

Moreover, given another self-adjoint operator r′ε satisfying (6.1.26), we have that

|%+ − (%+)′|+,s1 .s1 |rε − r′ε|+,s1 . (7.3.8)
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The rest of this Chapter is dedicated to prove Proposition 7.3.1. We first study the
conjugated operator

P−1(ϕ)(ω̄ε · ∂ϕ − JA)P(ϕ)

where A is defined in (7.1.3). We have the Lie series expansion

P−1(ϕ)(ω̄ε · ∂ϕ − JA)P(ϕ) = (ω̄ε · ∂ϕ − JA) + Ad(−JS)(X0) +
∑
k≥2

1

k!
Adk(−JS)(X0) (7.3.9)

where X0 := ω̄ε ·∂ϕ−JA. Recalling that A = (1+ε2λ)−1DV +% by (7.1.3)-(7.1.4), we expand
the commutator as

Ad(−JS)(X0) = ω̄ε · ∂ϕ(JS) + [JS, JA] (7.3.10)

= J(ω̄ε · ∂ϕS) + (1 + ε2λ)−1[JS, JDV ] + [JS, J%]

= J(µ̄ · ∂ϕS) + [JS, JDV ]− ε2λ(1 + ε2λ)−1[JS, JDV ] + [JS, J%]

+ J(ω̄ε − µ̄)·∂ϕS
(7.2.6),(1.2.25)

= JΠO%− ε2λ(1 + ε2λ)−1[JS, JDV ] + [JS, J%] + ε2(Jζ ·∂ϕ)S .

As a consequence of (7.3.9), (7.3.10), (7.2.3), (7.1.3)-(7.1.4) we deduce (7.3.4) with

A+ = A0 + %+ , A0 := (1 + ε2λ)−1DV + ΠD% (7.3.11)

and

−J%+ := −ε2λ(1 + ε2λ)−1[JS, JDV ] + [JS, J%] + ε2(Jζ ·∂ϕ)S (7.3.12)

− (1 + ε2λ)−1P−1JrεP +
∑
k≥2

1

k!
Adk(−JS)(X0) .

The estimate (7.3.7) for %+ follows by (7.3.2), (7.3.3), (7.1.6) and the same arguments used
in Lemmata 9.4.2-9.4.3. Similarly we deduce (7.3.8).

Now, recalling (3.2.28)-(3.2.29) (with F  M, G  Mc), and (7.1.3)-(7.1.4), we have
that the operator A0 in (7.3.11) can be decomposed, with respect to the splitting HM⊕HMc ,
as

A0 =
DV

1 + ε2λ
+ ΠD% =

(
D(ε, λ) 0

0 AM
c

Mc

)
,

where, taking in HM the basis {(Ψj(x), 0) , (0,Ψj(x))}j∈M, we have

D(ε, λ) =
[DV ]MM
1 + ε2λ

+ Diagj∈M
(
π+[%̂jj(0)]

)
(7.1.4)

=
1

1 + ε2λ
Diagj∈M

(
µj 0
0 µj

)
+ ε2Diagj∈M

(π+[B̂jj(0)]

1 + ε2λ

)
. (7.3.13)

We now prove that D(ε, λ) has the form (7.3.6).
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Lemma 7.3.2. (Shifted normal frequencies) The operator D(ε, λ) in (7.3.13) has the
form (7.3.6) with Ωj(ε, λ) defined in (7.1.7).

Proof. By (7.3.13) and recalling the definition of π+ in (3.2.21), the operator D(ε, λ) is

D(ε, λ) = Diagj∈M
µj + ε2bj

1 + ε2λ
Id2 , bj :=

1

2
Tr(B̂jj(0)) , (7.3.14)

and, by the definition of B in (6.1.25), we have

Tr(B̂jj(0)) =
3

(2π)|S|

∫
T|S|

(
Ψj, D

−1/2
V

(
a(x)(v(ϕ, 0, ξ))2D

−1/2
V Ψj

))
L2(Td)

dϕ , (7.3.15)

+
4ε

(2π)|S|

∫
T|S|

(
Ψj, D

−1/2
V

(
a4(x)(v(ϕ, 0, ξ))3D

−1/2
V Ψj

))
L2(Td)

dϕ . (7.3.16)

We first compute the term (7.3.15). Expanding the expression of v in (2.2.9) we get

(7.3.15) =
3

(2π)|S|

∫
T|S|+d

(D
−1/2
V Ψj(x))a(x)(v(ϕ, 0, ξ))2D

−1/2
V Ψj(x) dϕdx

=
3

(2π)|S|

∫
T|S|+d

Ψj(x)
√
µj

a(x)
(∑
k∈S

µ
−1/2
k

√
2ξk cosϕkΨk(x)

)2 Ψj(x)
√
µj

dϕdx

=
3

(2π)|S|

∑
k1,k2∈S

∫
T|S|+d

a(x) µ
−1/2
k1

µ
−1/2
k2

√
2ξk1

√
2ξk2 cosϕk1 cosϕk2

×Ψk1(x)Ψk2(x)
Ψ2
j(x)

µj
dϕdx

=
3

(2π)|S|

∑
k∈S

∫
Td
a(x) µ−1

k 2ξkΨ
2
k(x)Ψ2

j(x)µ−1
j dx

∫
T|S|

cos2 ϕk dϕ

=
6

(2π)|S|
µ−1
j

∑
k∈S

µ−1
k ξk

∫
Td
a(x) Ψ2

k(x)Ψ2
j(x)dx (2π)|S|−1

∫
T

cos2 θ dθ

= 3µ−1
j

∑
k∈S

µ−1
k (Ψ2

j , a(x)Ψ2
k)L2ξk = 2(Bξ)j (7.3.17)

using (1.2.9)-(1.2.10). On the other hand, the term in (7.3.16) is equal to zero, because

(7.3.16) =
4ε

(2π)|S|

∫
Td

∫
T|S|

Ψj(x)
√
µj

a4(x)
(
v(ϕ, 0, ξ)

)3 Ψj(x)
√
µj

dϕdx (7.3.18)

and, by (5.2.9), the integral∫
T|S|

(
v(ϕ, 0, ξ)

)3
dϕ =

∫
T|S|

(
v(ϕ+ ~π, 0, ξ)

)3
dϕ = −

∫
T|S|

(
v(ϕ, 0, ξ)

)3
dϕ ,
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is equal to zero.
In conclusion, we deduce by (7.3.14), (7.3.15), (7.3.16), (7.3.17), (7.3.18) that bj =

(Bξ)j, and, inserting the value ξ := ξ(λ) = ε−2A −1((1 + ε2λ)ω̄ε − µ̄) defined in (1.2.27),
we get that the eigenvalues of D(ε, λ) in (7.3.14), are equal to

µj + ε2bj

1 + ε2λ
= Ωj(ε, λ)

with Ωj(ε, λ) defined in (7.1.7).

The new operator ω̄ε · ∂ϕ − JA+ obtained in Proposition 7.3.1 is in a suitable form
to admit, for most values of the parameter λ, an approximate right inverse according to
Proposition 8.2.1 in the next Chapter.



Chapter 8

Approximate right inverse in normal
directions

The goal of this Chapter is to state the crucial Proposition 8.2.1 for the existence of an
approximate right inverse for a class of quasi-periodic linear Hamiltonian operators, acting
in the normal subspace H⊥S , of the form ω̄ε · ∂ϕ − J(A0 + ρ) where A0 and ρ are self-
adjoint operators, A0 is an admissible split operator according to Definition 8.1.1, and ρ is
“small”, see (8.2.2). We shall use Proposition 8.2.1 to construct the sequence of approximate
solutions along the iterative nonlinear Nash-Moser scheme of Chapter 11, more precisely to
prove Proposition 11.1.1.

8.1 Split admissible operators

We first define the following class of admissible split operators A0.

Definition 8.1.1. (Admissible split operators) Let C1, c1, c2 > 0 be constants. We
denote by C(C1, c1, c2) the class of self-adjoint operators

A0(ε, λ, ϕ) =
DV

1 + ε2λ
+R0(ε, λ, ϕ) , DV = (−∆ + V (x))1/2 , (8.1.1)

acting on H⊥S , defined for all λ ∈ Λ̃ ⊂ Λ, that satisfy

1. |R0|Lip,+,s1 ≤ C1ε
2,

2. A0 is block diagonal with respect to the splitting H⊥S = HF⊕HG, i.e. A0 has the form
(see (3.2.1))

A0 := A0(ε, λ, ϕ) =

(
D0(ε, λ) 0

0 V0(ε, λ, ϕ)

)
, (8.1.2)

189



CHAPTER 8. APPROXIMATE RIGHT INVERSE IN NORMAL DIRECTIONS 190

and, moreover, in the basis of the eigenfunctions {(Ψj, 0), (0,Ψj)}j∈F (see (3.1.9)),
the operator D0 is represented by the diagonal matrix

D0 := D0(ε, λ) = Diagj∈F µj(ε, λ)Id2 , µj(ε, λ) ∈ R . (8.1.3)

The eigenvalues µj(ε, λ) satisfy

|µj(ε, λ)− µj| ≤ C1ε
2 , (8.1.4)

where µj are defined in (1.1.5), and

dλ(µi − µj)(ε, λ) ≥ c2ε
2 or dλ(µi − µj)(ε, λ) ≤ −c2ε

2 , i 6= j , (8.1.5)

dλ(µi + µj)(ε, λ) ≥ c2ε
2 or dλ(µi + µj)(ε, λ) ≤ −c2ε

2 , (8.1.6)

∀j ∈ F ,
(
c2ε

2 ≤ dλµj(ε, λ) ≤ c−1
2 ε2 or − c−1

2 ε2 ≤ dλµj(ε, λ) ≤ −c2ε
2
)
, (8.1.7)

and, in addition, for all j ∈ F,{
dλ
(
V0(ε, λ) + µj(ε, λ)Id

)
≤ −c1ε

2

dλ
(
V0(ε, λ)− µj(ε, λ)Id

)
≤ −c1ε

2 .
(8.1.8)

We now verify that the operator A0 defined in (7.3.5) is an admissible split operator
according to Definition 8.1.1.

Lemma 8.1.2. (A0 is split admissible) There exist positive constants C1, c1, c2 such that
the operator A0 defined in (7.3.5)-(7.3.6) belongs to the class C(C1, c1, c2) of split admissible
operators introduced in Definition 8.1.1. Notice that A0 is defined for all λ ∈ Λ.

Proof. Remind that the decomposition in (7.3.5) refers to the splitting H⊥S = HM⊕HMc ,
where the finite set M ⊃ F has been fixed in Lemma 7.1.1, whereas the decomposition in
(8.1.2) concerns the splitting H⊥S = HF ⊕HG.

By (7.3.5) the operator A0 has the form (8.1.1) with R0 = ΠD% and (3.3.35), (7.1.6)
imply

|R0|Lip,+,s1 = |ΠD%|Lip,+,s1 ≤ C1ε
2 .

In addition, with respect to the splitting H⊥S = HF ⊕ HG, and taking in HF the basis
of the eigenfunctions {(Ψj, 0), (0,Ψj)}j∈F, the operator A0 in (7.3.5)-(7.3.6) has the form
(8.1.2)-(8.1.3) (recall that F ⊂M) with

D0(ε, λ) = Diagj∈FΩj(ε, λ)Id2 , µj(ε, λ) = Ωj(ε, λ) ,

and the operator V0, which acts in HG, admits the decomposition, with respect to the
splitting HG = HM\F ⊕ HMc , and taking in HM\F the basis of the eigenfunctions {(Ψj, 0),
(0,Ψj)}j∈M\F,

V0 =

(
Diagj∈M\FΩj(ε, λ)Id2 0

0 AM
c

Mc

)
. (8.1.9)
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By (7.1.7) and (1.2.25) we have, for all j ∈M, Ωj(ε, λ) = Ωj(0, λ)+O(ε2), where Ωj(0, λ) = µj
are the unperturbed linear frequencies defined in (1.1.5), and the derivative of the functions
Ωj(ε, λ) (which are defined for all λ ∈ Λ) is

∂λΩj(ε, λ) = − ε2

(1 + ε2λ)2
(µj − [BA −1µ̄]j), ∀j ∈M . (8.1.10)

Then, by (8.1.10) and the definition of F and G in (1.2.15), for any j ∈M\F ⊂ G, we have

∂λΩj + max
j∈F
|∂λΩj| = −

ε2

(1 + ε2λ)2

(
(µj − [BA −1µ̄]j)−max

j∈F
|µj − (BA −1µ̄)j|

)
< − ε2

(1 + ε2λ)2
c (8.1.11)

for some c > 0. By (8.1.11) (recall that µj(ε, λ) = Ωj(ε, λ)) and (7.1.9) we conclude that,
for ε small, property (8.1.8) holds for some c1 > 0. The other properties (8.1.5)-(8.1.7)
follow, for ε small, by (8.1.10) and the assumptions (1.2.21)-(1.2.22).

8.2 Approximate right inverse

The main result of this Chapter is the following proposition which provides an approximate
solution of the linear equation

Lh = g where L := ω̄ε · ∂ϕ − J(A0 + ρ) .

Proposition 8.2.1. (Approximate right inverse in normal directions) Let ω̄ε ∈ R|S|
be (γ1, τ1)-Diophantine and satisfy property (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed
in (1.2.28). Fix s1 > s0 according to Proposition 4.1.5 (more precisely Proposition 4.3.4),
and s1 < s2 < s3 such that

(i) s2 − s1 > 300(τ ′ + 3s1 + 3) , (ii) s3 − s1 ≥ 3(s2 − s1) (8.2.1)

where the constant τ ′ appears in the multiscale Proposition 4.1.5 and we assume that τ ′ >
2τ + 3.

Then there is ε0 > 0 such that, ∀ε ∈ (0, ε0), for each self-adjoint operator

A0 =
DV

1 + ε2λ
+R0

acting in H⊥S , belonging to the class C(C1, c1, c2) of admissible split operators (see Definition

8.1.1), for any self-adjoint operator ρ ∈ L2(T|S|,L(H⊥S )), defined in Λ̃ ⊂ Λ, satisfying

|ρ|Lip,+,s1 ≤ ε3 , |R0|Lip,+,s2 + |ρ|Lip,+,s2 ≤ ε−1 , (8.2.2)

there are closed subsets Λ(ε; η, A0, ρ) ⊂ Λ̃, 1/2 ≤ η ≤ 5/6, satisfying
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1. Λ(ε; η,A0, ρ) ⊆ Λ(ε; η′, A0, ρ), for all 1/2 ≤ η ≤ η′ ≤ 5/6,

2.
∣∣[Λ(ε; 1/2, A0, ρ)]c ∩ Λ̃

∣∣ ≤ b(ε) where lim
ε→0

b(ε) = 0,

3. if A′0 = (1 + ε2λ)−1DV +R′0 ∈ C(C1, c1, c2) and ρ′ satisfy

|R′0 −R0|+,s1 + |ρ′ − ρ|+,s1 ≤ δ ≤ ε3 , (8.2.3)

for all λ ∈ Λ̃ ∩ Λ̃′ ⊂ Λ, then, for all (1/2) + δ2/5 ≤ η ≤ 5/6,∣∣Λ̃′ ∩ [Λ(ε; η, A′0, ρ
′)]c ∩Λ(ε; η − δ2/5, A0, ρ)

∣∣ ≤ δα/3; (8.2.4)

and, for any ν ∈ (0, ε), there exists a linear operator

L−1
approx := L−1

approx,ν ∈ L(Hs3 ∩H⊥S )

such that, for any function g : Λ̃→ Hs3 ∩H⊥S satisfying

‖g‖Lip,s1 ≤ ε2ν , |R0|Lip,+,s3 + |ρ|Lip,+,s3 + ‖g‖Lip,s3 ≤ ε2ν−1 , (8.2.5)

the function h := L−1
approxg, h : Λ(ε; 5/6, A0, ρ)→ Hs3 ∩H⊥S satisfies

‖h‖Lip,s1 ≤ ε2ν
4
5 , ‖h‖Lip,s3 ≤ ε2ν−

11
10 , (8.2.6)

and
(ω̄ε · ∂ϕ − J(A0 + ρ))h = g + r (8.2.7)

with
‖r‖Lip,s1 ≤ ε2ν3/2 . (8.2.8)

Furthermore, setting Q′ := 2(τ ′ + ςs1) + 3 (where ς = 1/10 and τ ′ is given by Proposition
4.1.5), for all g ∈ Hs0+Q′ ∩H⊥S ,

‖L−1
approx g‖Lip,s0 .s1 ‖g‖Lip,s0+Q′ . (8.2.9)

The required bounds in (8.2.2)-(8.2.5) will be verified along the nonlinear Nash-Moser
scheme of Chapter 11. Proposition 8.2.1 will be applied to the operator ω̄ε ·∂ϕ−JA+ where
A+ = A0 + %+ is defined in Proposition 7.3.1, to prove Proposition 11.1.1. Notice that A0 is
split admissible by Lemma 8.1.2 and the coupling operator %+ satisfies |%+|Lip,+,s1 .s1 ε

4 ≤
ε3 by (7.3.7) and (6.1.26).

Proposition 8.2.1 is proved in Chapter 10 using the results of Chapters 4 and 9.

We remark that the value of ε0 given in Proposition 8.2.1 may depend on s3, because, in
the estimates of the proof, there are quantities of the form C(s3)εa, a > 0, and we choose ε
small so that C(s3)εa < 1. However, such terms appear by quantities C(s3)νa1 , a1 > 0, and
so we may require C(s3)νa1 < 1 assuming only ν small enough, i.e. ν ≤ ν̃(s3) (see Remark
10.4.1). As a result, the following more specific statement holds.
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Proposition 8.2.2. The conclusion of Proposition 8.2.1 can be modified from (8.2.4) in
the following way.

For any s ≥ s3, there is ν̃(s) > 0 such that: for any 0 < ν < min(ε, ν̃(s)), there exists
a linear operator

L−1
approx := L−1

approx,ν,s ∈ L(Hs ∩H⊥S )

such that, for any function g : Λ̃→ Hs ∩H⊥S satisfying

‖g‖Lip,s1 ≤ ε2ν , |R0|Lip,+,s + |ρ|Lip,+,s + ‖g‖Lip,s ≤ ε2ν−1 , (8.2.10)

the function h := L−1
approxg, h : Λ(ε; 5/6, A0, ρ)→ Hs ∩H⊥S satisfies

‖h‖Lip,s1 ≤ ε2ν
4
5 , ‖h‖Lip,s ≤ ε2ν−

11
10 , (8.2.11)

and
(ω̄ε · ∂ϕ − J(A0 + ρ))h = g + r (8.2.12)

with
‖r‖Lip,s1 ≤ ε2ν3/2 . (8.2.13)

Furthermore, setting Q′ := 2(τ ′ + ςs1) + 3 (where ς = 1/10 and τ ′ is given by Proposition
4.1.5), for all g ∈ Hs0+Q′ ∩H⊥S ,

‖L−1
approx g‖Lip,s0 .s1 ‖g‖Lip,s0+Q′ . (8.2.14)



Chapter 9

Splitting between low-high normal
subspaces

The main result of this Chapter is Corollary 9.1.2 below. Its goal is to block-diagonalize
a quasi-periodic Hamiltonian operator of the form ω̄ε · ∂ϕ − J(A0 + ρ) according to the
splitting H⊥S = HF ⊕ HG, up to a very small coupling term, see the conjugation (9.1.34)
where ρn is small according to (9.1.32).

9.1 Splitting step and corollary

The proof of Corollary 9.1.2 is based on an iterative application of the following Proposition.

Proposition 9.1.1. (Splitting step) Let ω̄ε ∈ R|S| be (γ1, τ1)-Diophantine and satisfy
property (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed in (1.2.28). Assume s2 − s1 >
120(τ ′ + 3s1 + 3), i.e. condition (8.2.1)-(i). Then, given C1 > 0, c1 > 0, c2 > 0, there is
ε0 > 0 such that, ∀ε ∈ (0, ε0), for each self-adjoint operator

A0 =
DV

1 + ε2λ
+R0 =

(
D0(ε, λ) 0

0 V0(ε, λ, ϕ)

)
belonging to the class C(C1, c1, c2) of admissible split operators of Definition 8.1.1 (see

(8.1.1)-(8.1.2)), defined in Λ̃, with

D0(ε, λ) = Diagj∈F µj(ε, λ)Id2 , µj(ε, λ) ∈ R ,

as in (8.1.3), there are

• closed subsets Λ(ε; η, A0) ⊂ Λ̃, 1/2 ≤ η ≤ 1, satisfying the properties

1. Λ(ε; η, A0) ⊆ Λ(ε; η′, A0) for all 1/2 ≤ η ≤ η′ ≤ 1,

194
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2.
∣∣[Λ(ε; 1/2, A0)]c ∩ Λ̃

∣∣ ≤ b(ε) where lim
ε→0

b(ε) = 0,

3. if A′0 = (1 + ε2λ)−1DV + R′0 ∈ C(C1, c1, c2) with |R′0 − R0|+,s1 ≤ δ ≤ ε5/2 for all

λ ∈ Λ̃ ∩ Λ̃′, then, for all (1/2) +
√
δ ≤ η ≤ 1,∣∣Λ̃′ ∩ [Λ(ε; η, A′0)]c ∩ Λ(ε; η −

√
δ, A0)

∣∣ ≤ δα , α > 0 , (9.1.1)

and, for each self-adjoint operator ρ acting in H⊥S , defined for λ ∈ Λ̃, satisfying

|ρ|Lip,+,s1 ≤ δ1 ≤ ε3 , δ1(|R0|Lip,+,s2 + |ρ|Lip,+,s2) ≤ ε , (9.1.2)

there exist

• a symplectic linear invertible transformation

eJS(ϕ) ∈ L(H⊥S ) , ϕ ∈ T|S| , (9.1.3)

defined for all λ ∈ Λ(ε; 1, A0), where S(ϕ) := S(ε, λ)(ϕ) is a self-adjoint operator in
L(H⊥S ), satisfying the estimates (9.1.7)-(9.1.8) below;

• a self-adjoint operator A+ of the form

A+ =
DV

1 + ε2λ
+R+

0 + ρ+ =

(
D+

0 (ε, λ) 0
0 V +

0 (ε, λ, ϕ)

)
+ ρ+ , (9.1.4)

defined for all λ ∈ Λ(ε; 1, A0), with

R+
0 , ρ

+ L2−self − adjoint , D+
0 (ε, λ) = Diagj∈F µ

+
j (ε, λ)Id2 , (9.1.5)

and µ+
j (ε, λ) ∈ R;

such that, for all λ ∈ Λ(ε; 1, A0),(
ω̄ε · ∂ϕ − JA0 − Jρ

)
eJS(ϕ) = eJS(ϕ)

(
ω̄ε · ∂ϕ − JA+

)
, (9.1.6)

and the following estimates hold:

• The self-adjoint operator S satisfies

|S|Lip,s1+1 ≤ δ
7
8
1 , |S|Lip,s2+1 ≤ δ

− 1
4

1

(
|R0|Lip,+,s2 + |ρ|Lip,+,s2

)
+ δ

− 3
4

1 , (9.1.7)

and more generally, for all s ≥ s2,

|S|Lip,s+1 ≤ C(s)
[
δ
− 1

4
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

− 3
4

1 δ
−3ς

s−s2
s2−s1

1

]
; (9.1.8)
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• The operators in (9.1.4)-(9.1.5) satisfy

|µ+
j (ε, λ)− µj(ε, λ)|Lip ≤ δ

3/4
1 = o(ε2) , (9.1.9)

‖V +
0 − V0‖Lip,0 ≤ δ

3/4
1 = o(ε2) , (9.1.10)

and

|R+
0 −R0|Lip,+,s1 ≤ δ

3/4
1 , |ρ+|Lip,+,s1 ≤ δ

3/2
1 /2 , (9.1.11)

|R+
0 |Lip,+,s2 + |ρ+|Lip,+,s2 ≤ δ

−1/4
1

(
|R0|Lip,+,s2 + |ρ|Lip,+,s2

)
+ δ

−3/4
1 (9.1.12)

(9.1.2)

≤ εδ
−3/2
1 , (9.1.13)

and, more generally, for all s ≥ s2,

|R+
0 |Lip,+,s + |ρ+|Lip,+,s .s δ

− 1
4

1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

− 3
4

1 δ
−3ς

s−s2
s2−s1

1 (9.1.14)

where ς = 1/10 is fixed in (4.1.16).

At last, given A′0 = (1 + ε2λ)−1DV + R′0 ∈ C(C1, c1, c2) and ρ′ satisfying (9.1.2), then, for
all λ ∈ Λ(ε; 1, A0) ∩ Λ(ε; 1, A′0), we have the estimates

|R′0
+ −R+

0 |+,s1 ≤ |R′0 −R0|+,s1 + C|ρ′ − ρ|+,s1 (9.1.15)

|ρ′+ − ρ+|+,s1 ≤ δ
1/2
1 |R′0 −R0|+,s1 + δ

−1/20
1 |ρ′ − ρ|+,s1 . (9.1.16)

Note that, according to (9.1.6), (9.1.4), (9.1.11), the new coupling term ρ+ is much
smaller than ρ, in low norm | |Lip,+,s1 . Moreover, by (9.1.13), the new ρ+ satisfies also

the second assumption (9.1.2) with δ
3/2
1 instead of δ1. Notice also that the Cantor sets

Λ(ε; η, A0) depend only on A0 and not on ρ. Finally we point out that (9.1.15)-(9.1.16) will
be used for the measure estimate of Cantor sets of “good” parameters λ, in relation with
property 3 (see (9.1.1)): for this application, an estimates of low norms | |+,s1 , without the
control of the Lipschitz dependence, is enough.

Applying iteratively Proposition 9.1.1 we deduce the following corollary.

Corollary 9.1.2. (Splitting) Let ω̄ε ∈ R|S| be (γ1, τ1)-Diophantine and satisfy property
(NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed in (1.2.28). Let

A0 =
DV

1 + ε2λ
+R0

be a self-adjoint operator in the class of admissible split operators C(C1, c1, c2) (see Definition

8.1.1) and ρ be a self-adjoint operator in L(H⊥S ), defined for λ ∈ Λ̃, satisfying (8.2.2). Then
there exist
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• closed sets Λ∞(ε; η, A0, ρ) ⊂ Λ̃, 1/2 ≤ η ≤ 5/6, satisfying the properties

1. Λ∞(ε; η, A0, ρ) ⊆ Λ∞(ε; η′, A0, ρ) for all 1/2 ≤ η ≤ η′ ≤ 5/6,

2.
∣∣[Λ∞(ε; 1/2, A0, ρ)

]c ∩ Λ̃
∣∣ ≤ b1(ε) where lim

ε→0
b1(ε) = 0,

3. if A′0 = (1 + ε2λ)−1DV +R′0 ∈ C(C1, c1, c2) and ρ′ satisfy

|R0 −R′0|+,s1 + |ρ− ρ′|+,s1 ≤ δ ≤ ε2 (9.1.17)

for all λ ∈ Λ̃ ∩ Λ̃′, then, for all (1/2) + δ2/5 ≤ η ≤ 5/6,∣∣Λ̃′ ∩ [Λ∞(ε; η, A′0, ρ
′)]c ∩ Λ∞(ε; η − δ2/5, A0, ρ)

∣∣ ≤ δα/2; (9.1.18)

• a sequence of symplectic linear invertible transformations

P0 := Id , Pn := Pn(ε, λ)(ϕ) = eJS1(ε,λ)(ϕ) . . . eJSn(ε,λ)(ϕ) , n ≥ 1 , (9.1.19)

defined for all λ ∈ Λ∞(ε; 5/6, A0, ρ), acting in H⊥S , satisfying, for

δ1 = ε3 , (9.1.20)

the estimates

for n ≥ 1, |P±1
n − P±1

n−1|Lip,+,s1 ≤ δ
( 3

2
)n−1 3

4
1 , |P±1

n − Id|Lip,+,s1 ≤ 2δ
3
4
1 , (9.1.21)

|P±1
n |Lip,+,s2 ≤ (C(s2))nδ

−(3/2)n−1 3
4

1

[
εδ
− 1

2
1 + 1

]
, (9.1.22)

and, more generally, for all s ≥ s2,

|P±1
n |Lip,+,s ≤ (C(s))nδ

−( 3
2

)n−1( 3
4

+α(s))

1

[
(|R0|Lip,+,s + |ρ|Lip,+,s)δ

1
2

+
2α(s)

3
1 + 1

]
(9.1.23)

where

α(s) := 3ς
s− s2

s2 − s1

; (9.1.24)

• a sequence of self-adjoint block diagonal operators of the form

An =
DV

1 + ε2λ
+Rn :=

(
Dn(ε, λ) 0

0 Vn(ε, λ, ϕ)

)
, n ≥ 1 , (9.1.25)

defined for λ ∈ Λ∞(ε; 5/6, A0, ρ), belonging to the class C(2C1, c1/2, c2/2) of admissible
split operators, with

Dn(ε, λ) = Diagj∈F µ
(n)
j (ε, λ)Id2 , (9.1.26)
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satisfying

|µ(n)
j (ε, λ)− µj(ε, λ)|Lip = O(δ

3/4
1 ) = o(ε2) , (9.1.27)

‖Vn − V0‖Lip,0 = O(δ
3/4
1 ) = o(ε2) , (9.1.28)

|Rn|Lip,+,s1 ≤ C1ε
2 + 2δ

3/4
1 ≤ 2C1ε

2 , (9.1.29)

|Rn|Lip,+,s2 � (C(s2))nδ
−( 3

2
)n−1 3

4
1

[
εδ
− 1

2
1 + 1

]
, (9.1.30)

and, more generally, for all s ≥ s2,

|Rn|Lip,+,s ≤ (C(s))nδ
−( 3

2
)n−1( 3

4
+α(s))

1

[(
|R0|Lip,+,s + |ρ|Lip,+,s

)
δ

1
2

+
2α(s)

3
1 + 1

]
(9.1.31)

where α(s) is defined in (9.1.24);

• a sequence of L2 self-adjoint operators ρn ∈ L(H⊥S ), n ≥ 1, defined for λ ∈ Λ∞(ε; 5/6, A0, ρ),
satisfying

|ρn|Lip,+,s1 ≤ δ
( 3

2
)n

1 , |ρn|Lip,+,s2 � (C(s2))nδ
−( 3

2
)n−1 3

4
1 [εδ

− 1
2

1 + 1] , (9.1.32)

and, more generally, for all s ≥ s2,

|ρn|Lip,+,s ≤ (C(s))nδ
−( 3

2
)n−1( 3

4
+α(s))

1

[
(|R0|Lip,+,s + |ρ|Lip,+,s)δ

1
2

+
2α(s)

3
1 + 1

]
(9.1.33)

where α(s) is defined in (9.1.24);

such that, for all λ ∈ Λ∞(ε; 5/6, A0, ρ),(
ω̄ε · ∂ϕ − JA0 − Jρ

)
Pn(ϕ) = Pn(ϕ)

(
ω̄ε · ∂ϕ − JAn − Jρn

)
. (9.1.34)

At last, given

A′0 =
DV

1 + ε2λ
+R′0 ∈ C(C1, c1, c2)

and a self-adjoint operator ρ′ ∈ L(H⊥S ) satisfying (8.2.2), if

|A′0 − A0|+,s1 + |ρ′ − ρ|+,s1 ≤ δ ≤ ε3 , ∀λ ∈ Λ̃ ∩ Λ̃′ , (9.1.35)

then, for all λ ∈ Λ∞(ε; 5/6, A0, ρ) ∩ Λ∞(ε; 5/6, A′0, ρ
′), for all n ∈ N,

|A′n − An|+,s1 ≤ δ4/5 . (9.1.36)
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Note that each operator An in (9.1.25) is block-diagonal according to the splitting H⊥S =
HF ⊕HG in (3.1.5), i.e. it has the same form as A0 in (8.1.2) but the coupling term ρn in
(9.1.34) is much smaller than ρ (in the low norm | |Lip,+,s1), compare the first inequality in
(9.1.32) (where δ1 = ε3 by (9.1.20)) and the first inequality in (8.2.2). The tame estimates
(9.1.23) and (9.1.33) for all s ≥ s2, will be used in the proof of Proposition 8.2.1, which
provides an approximate right inverse required in the Nash-Moser nonlinear iteration in
Chapter 11.

Proof. Let us define the sequences of real numbers (δn)n≥1 and (ηn)n≥0 by

δn := δ
( 3

2
)n−1

1 , δ1 = ε3 , and η0 := 0 , ηn+1 := ηn + δ
3
8
n+1 = ηn + δ

3
8

( 3
2

)n

1 . (9.1.37)

We shall prove by induction the following statements: for any n ∈ N

• (P)n there exist:

(i) symplectic linear invertible transformations P0, . . . ,Pn of the form (9.1.19), de-
fined respectively for λ in decreasing subsets

Λn(ε; 5/6, A0, ρ) ⊂ . . . ⊂ Λ1(ε; 5/6, A0, ρ) ⊂ Λ0 := Λ̃ ,

satisfying (9.1.21)-(9.1.23) at any order k = 0, . . . , n. The sets Λn(ε; η, A0, ρ),
1/2 ≤ η ≤ 5/6, are defined inductively by

Λ0 := Λ̃ and Λn(ε; η, A0, ρ) :=
n−1⋂
k=0

Λ(ε; η + ηk, Ak) , n ≥ 1 , (9.1.38)

where the sets Λ(ε; η + ηk, Ak) are those defined by Proposition 9.1.1. Notice
that, for ε small enough, ηk ≤ 1/6 for any k ≥ 0 (and so η + ηk ≤ 1).

(ii) Self-adjoint admissible split operators A0, . . . , An as in (9.1.25)-(9.1.26), in the
class C(2C1, c1/2, c2/2) (see Definition 8.1.1), satisfying (9.1.27)-(9.1.31) at any
order k = 0, . . . , n, and such that the conjugation identity (9.1.34) holds for all
λ in Λn(ε; 5/6, A0, ρ), with ρk satisfying (9.1.32)-(9.1.33) for k = 0, . . . , n.

(iii) Moreover we have, ∀n ≥ 1,

|An − An−1|Lip,+,s1 ≤ δ
3
4
n = δ

3
4

( 3
2

)n−1

1 on Λn(ε; 5/6, A0, ρ) . (9.1.39)

Initialization. The statement (P)0-(i) holds with P0 := Id, and (9.1.21)-(9.1.23) trivially
hold. The conjugation identity (9.1.34) at n = 0 trivially holds with ρ0 := ρ. Then, in order
to prove (P)0-(ii), it is sufficient to notice that the self-adjoint operator A0 ∈ C(C1, c1, c2)

has the form (9.1.25), (9.1.26) with µ
(0)
j (ε, λ) = µj(ε, λ), and (9.1.27)-(9.1.29) hold. The
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estimate (9.1.30) (which for n = 0 is |R0|Lip,+,s2 � δ
−1/2
1 [εδ

−1/2
1 + 1]) and (9.1.32) are

consequences of Assumption (8.2.2), since δ1 = ε3. Finally notice that (9.1.31) and (9.1.33)
are trivially satisfied.

Induction. Next assume that (P)n holds. In order to define Pn+1 and An+1 we apply the
“splitting step” Proposition 9.1.1 with A0, ρ replaced by An, ρn. In fact, by the inductive
assumption (P)n, the operator An in (9.1.25) belongs to the class C(2C1, c1/2, c2/2) of
admissible split operators, according to Definition 8.1.1. Moreover, by (9.1.32), (9.1.30),
we have

|ρn|Lip,+,s1 ≤ δ
( 3

2
)n

1

(9.1.37)
= δn+1 , δn+1

(
|Rn|Lip,+,s2 + |ρn|Lip,+,s2

)
≤ ε , (9.1.40)

which is (9.1.2) with ρn, Rn, δn+1 instead of ρ, R0, δ1.
We define, for 1/2 ≤ η ≤ 5/6, the set

Λn+1(ε; η, A0, ρ) := Λn(ε; η, A0, ρ) ∩ Λ
(
ε; η + ηn, An

)
. (9.1.41)

in agreement with (9.1.38) at n + 1.
By (9.1.40), Proposition 9.1.1 implies the existence of a self-adjoint operator Sn+1 ∈

L(H⊥S ), defined for λ ∈ Λn+1(ε; 5/6, A0, ρ) ⊂ Λ
(
ε; 1, An

)
, satisfying (see (9.1.7)-(9.1.8))

|Sn+1|Lip,s1+1 ≤ δ
7
8
n+1 = δ

7
8

( 3
2

)n

1 ,

|Sn+1|Lip,s2+1 ≤ δ
− 1

4
n+1

(
|Rn|Lip,+,s2 + |ρn|Lip,+,s2

)
+ δ

− 3
4

n+1 ,

|Sn+1|Lip,s+1 ≤ C(s)
[
δ
− 1

4
n+1

(
|Rn|Lip,+,s + |ρn|Lip,+,s

)
+ δ

− 3
4

n+1δ
−3ς

s−s2
s2−s1

n+1

]
,

(9.1.42)

such that, for any λ ∈ Λn+1(ε; 5/6, A0, ρ), we have(
ω̄ε · ∂ϕ − JAn − Jρn

)
eJSn+1 = eJSn+1

(
ω̄ε · ∂ϕ − JAn+1 − Jρn+1

)
(9.1.43)

where the operator

An+1 =
DV

1 + ε2λ
+Rn+1 (9.1.44)

is block-diagonal as in (9.1.25)-(9.1.26). By (9.1.11)-(9.1.13), (9.1.14), we have

|Rn+1 −Rn|Lip,+,s1 ≤ δ
3/4
n+1 = δ

3
4

( 3
2

)n

1 ,

|ρn+1|Lip,+,s1 ≤
1

2
δ

( 3
2

)n+1

1 ,

|Rn+1|Lip,+,s2 + |ρn+1|Lip,+,s2 ≤ δ
− 1

4
n+1

(
|Rn|Lip,+,s2 + |ρn|Lip,+,s2

)
+ δ

− 3
4

n+1 ,

|Rn+1|Lip,+,s + |ρn+1|Lip,+,s .s δ
− 1

4
n+1

(
|Rn|Lip,+,s + |ρn|Lip,+,s

)
+ δ

− 3
4

n+1δ
−3ς

s−s2
s2−s1

n+1 .

(9.1.45)
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In particular, we have the first bound in (9.1.32) at the step n + 1.

The symplectic transformation Pn+1. We define, for λ ∈ Λn+1(ε; 5/6, A0, ρ), the
symplectic linear invertible transformation

Pn+1 := Pne
JSn+1

(9.1.19)
= eJS1 . . . eJSneJSn+1 (9.1.46)

which has the form (9.1.19) at order n + 1. By the inductive assumption (P)n, the conju-
gation identity (9.1.34) holds for all λ ∈ Λn(ε; η, A0, ρ), and we deduce, by (9.1.43), that,
for all λ in the set Λn+1(ε; η, A0, ρ) defined in (9.1.41), we have(

ω̄ε · ∂ϕ − JA0 − Jρ
)
Pn+1

(9.1.46)
=

(
ω̄ε · ∂ϕ − JA0 − Jρ

)
Pne

JSn+1

(9.1.34)
= Pn

(
ω̄ε · ∂ϕ − JAn − Jρn

)
eJSn+1

(9.1.43)
= Pne

JSn+1
(
ω̄ε · ∂ϕ − JAn+1 − Jρn+1

)
(9.1.46)

= Pn+1

(
ω̄ε · ∂ϕ − JAn+1 − Jρn+1

)
which is (9.1.34) at the step n + 1.

We have Pn+1 − Pn = Pn(e
JSn+1 − Id). By (9.1.42), using (3.3.44)-(3.3.45) and the

definition of δn+1 in (9.1.37),

|eJSn+1 − Id|Lip,+,s1 . |JSn+1|Lip,+,s1 . |JSn+1|Lip,s1+1 . δ
7/8
n+1 . (9.1.47)

Moreover, by the second inequality of (9.1.21), |Pn|Lip,+,s1 ≤ 2. Hence

|Pn+1 − Pn|Lip,+,s1 ≤ δ
3/4
n+1

which is the first inequality in (9.1.21) at the step n + 1 (we obtain in the same way the
estimate for P−1

n+1). As a consequence,

|Pn+1 − Id|Lip,+,s1 ≤
n+1∑
k=1

δ
3/4
k ≤ 2δ

3/4
1

which is the second inequality in (9.1.21) at the step n + 1 (we obtain in the same way the
estimate for P−1

n+1). Estimates (9.1.22)-(9.1.23) at the step n + 1 are proved below.

An+1 in (9.1.44) is a split admissible operator in C(2C1, c1/2, c2/2), see Definition
8.1.1. By (9.1.45) we have

|An+1 − An|Lip,+,s1 = |Rn+1 −Rn|Lip,+,s1 ≤ δ
3
4
n+1 = δ

3
4

( 3
2

)n

1 on Λn+1(ε; 5/6, A0, ρ) ,

which is (9.1.39) at the step n + 1. As a consequence

|Rn+1 −R0|Lip,+,s1 = |An+1 − A0|Lip,+,s1 ≤
n+1∑
k=1

δ
3
4

( 3
2

)k−1

1 ≤ 2δ
3/4
1 (9.1.48)
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and (9.1.29) at order n + 1 follows: in fact, |R0|Lip,+,s1 ≤ C1ε
2 by item 1 of Definition 8.1.1

and
|Rn+1|Lip,+,s1 ≤ |R0|Lip,+,s1 + 2δ

3/4
1 ≤ C1ε

2 + 2ε9/4 ≤ 2C1ε
2

for ε small enough, since δ1 = ε3. Recalling (9.1.25), the estimate (9.1.28) at order n + 1 is
also a direct consequence of (9.1.48), as well as

‖Dn+1 −D0‖Lip,0 = O(δ
3/4
1 ) = o(ε2) ,

which implies (9.1.27) at order n + 1.
Now, since A0 ∈ C(C1, c1, c2) (Definition 8.1.1), either dλ(µi−µj)(ε, λ) ≥ c2ε

2 or dλ(µi−
µj)(ε, λ) ≤ −c2ε

2, see (8.1.5). Thus, by (9.1.27) at order n+ 1, we deduce that dλ(µ
(n+1)
i −

µ
(n+1)
j )(ε, λ) ≥ c2ε

2/2 in the first case and dλ(µ
(n+1)
i −µ(n+1)

j )(ε, λ) ≤ −c2ε
2/2 in the second

case, for ε small enough.
In a similar way (9.1.27) provides properties (8.1.6)-(8.1.7) with constant c2/2 instead

of c2 at order n + 1, and (9.1.27)-(9.1.28) provide (8.1.8) with constant c1/2 instead of c1

at order n + 1.

Estimates of |Rn+1|Lip,+,s and |ρn+1|Lip,+,s. We first consider the case s = s2. By (9.1.45)
and (9.1.30), (9.1.32), and recalling the definition of δn+1 in (9.1.37),

|Rn+1|Lip,+,s2 + |ρn+1|Lip,+,s2 ≤ δ
− 1

4
n+1

(
|Rn|Lip,+,s2 + |ρn|Lip,+,s2

)
+ δ

− 3
4

n+1

� (C(s2))n+1δ
− 3

4
n+1(εδ

− 1
2

1 + 1) ,

which gives (9.1.30) and the second bound in (9.1.32) at the step n + 1.
To estimate the s-norms for any s ≥ s2, let us introduce the notation

un(s) := |Rn|Lip,+,s + |ρn|Lip,+,s and α(s) := 3ς
s− s2

s2 − s1

as in (9.1.24) . (9.1.49)

By (9.1.45), we have the inductive bound

un+1(s) = |Rn+1|Lip,+,s + |ρn+1|Lip,+,s ≤ C ′(s)
[
δ
− 1

4
n+1un(s) + δ

− 3
4

n+1 δ
−α(s)
n+1

]
.

Then, since (9.1.31) and (9.1.33) hold at order n, we obtain

un+1(s) ≤ C ′(s)
[
δ
− 1

4
n+1(C(s))nδ

− 3
4
−α(s)

n

(
u0(s)δ

1
2

+
2α(s)

3
1 + 1

)
+ δ

− 3
4

n+1δ
−α(s)
n+1

]
≤ (C(s))n+1δ

− 3
4
−α(s)

n+1

(
u0(s)δ

1
2

+
2α(s)

3
1 + 1

)
for C(s) large enough, and using that δn+1 = δ3/2

n . Hence the estimates (9.1.31) and (9.1.33)
are proved also at order n + 1.
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Estimates of |P±1
n+1|Lip,+,s. We first consider the case s = s2. By (3.3.26) and the first

estimate in (9.1.42) we obtain

|eJSn+1|Lip,s2+1 ≤ 1 + C(s2)
∑
k≥1

(C(s2))k−1

k!
|Sn+1|k−1

Lip,s1
|Sn+1|Lip,s2+1

≤ 1 + C ′(s2)|Sn+1|Lip,s2+1 . (9.1.50)

Hence by (9.1.46) and (3.3.24), we get

|Pn+1|Lip,+,s2 ≤ C(s2)
(
|Pn|Lip,+,s2|eJSn+1|Lip,s1+1 + |Pn|Lip,+,s1|eJSn+1|Lip,s2+1

)
(9.1.47),(9.1.50)

≤ C(s2)
(
|Pn|Lip,+,s2 + |Pn|Lip,+,s1|Sn+1|Lip,s2+1

)
(9.1.51)

for some new constant C(s2). Therefore, by (9.1.51), properties (9.1.22), (9.1.21) at order
n, the second inequality in (9.1.42), and recalling the definition of δn in (9.1.37), we have

|Pn+1|Lip,+,s2 ≤ C(s2)
(

(C(s2))nδ
− 3

4
n (εδ

− 1
2

1 + 1) + 2δ
− 1

4
n+1

(
|Rn|Lip,+,s2 + |ρn|Lip,+,s2

)
+ δ

− 3
4

n+1

)
(9.1.30),(9.1.32)

≤ (C(s2))n+1δ
− 3

4
n+1(εδ

− 1
2

1 + 1)

provided the constant C(s2) is large enough, proving (9.1.22) at the step n + 1. We obtain
in the same way the estimate for P−1

n+1.
Now, for any s ≥ s2, we derive by the last inequality in (9.1.42), (9.1.49), (9.1.31),

(9.1.33),

|Sn+1|Lip,s+1 ≤ C(s)
[
δ
− 1

4
n+1un(s) + δ

− 3
4
−α(s)

n+1

]
≤ (C(s))n+1δ

− 3
4
−α(s)

n+1

(
u0(s)δ

1
2

+
2α(s)

3
1 + 1

)
. (9.1.52)

As in the case s = s2 (see (9.1.50)) we obtain

|eJSn+1|Lip,s+1 ≤ 1 + C(s)|Sn+1|Lip,s+1 .

Since Pn+1 = Pne
JSn+1 we derive the bound (9.1.23) on |P±1

n+1|Lip,+,s, exactly as in the case
s = s2, using the interpolation inequality (3.3.24), the inductive assumptions (9.1.23) and
(9.1.21), (9.1.52), and taking the constant C(s) of (9.1.23) large enough.

This completes the iterative proof of (Pn)n≥0.

The Cantor-like sets Λ∞(ε; η, A0, ρ). We define, for 1/2 ≤ η ≤ 5/6, the set

Λ∞(ε; η, A0, ρ) :=
∞⋂
n=0

Λn(ε; η, A0, ρ) =
∞⋂
k=0

Λ(ε; η + ηk, Ak) (9.1.53)
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where Λn(ε; η, A0, ρ) are defined in (9.1.38) and Λ(ε; η + ηk, Ak) are defined by Proposition
9.1.1. We recall that the sequence (ηk) is defined in (9.1.37).

The sets Λ∞(ε; η, A0, ρ) satisfy Property 1 of Corollary 9.1.2 as the sets Λ(ε; η+ ηk, Ak)
satisfy Property 1 of Proposition 9.1.1.

Proof of Property 2 for the sets Λ∞(ε; η, A0, ρ). The complementary set of
Λ∞(ε; η, A0, ρ) may be decomposed as (the sets Λn(ε; η, A0, ρ) in (9.1.38) are decreasing in
n)

Λ∞(ε; η,A0, ρ)c
(9.1.53)

=
∞⋃
n=0

Λn(ε; η, A0, ρ)c

Λ0=Λ̃
= Λ̃c ∪

∞⋃
k=0

(
Λk(ε; η, A0, ρ) ∩ Λk+1(ε; η, A0, ρ)c

)
(9.1.38)

= Λ̃c ∪
∞⋃
k=0

(
Λk(ε; η, A0, ρ) ∩

(
Λk(ε; η, A0, ρ) ∩ Λ(ε; η + ηk, Ak)

)c)
= Λ̃c ∪

∞⋃
k=0

(
Λk(ε; η,A0, ρ) ∩ Λ(ε; η + ηk, Ak)

c
)

Λ0=Λ̃
= Λ̃c ∪ Λ(ε; η, A0)c

∞⋃
k=1

(
Λk(ε; η, A0, ρ) ∩ Λ(ε; η + ηk, Ak)

c
)
. (9.1.54)

By Property 2 of Proposition 9.1.1 we have

|Λ(ε; 1/2, A0)c ∩ Λ̃| ≤ b(ε) with lim
ε→0

b(ε) = 0 . (9.1.55)

Moreover, for k ≥ 1, we have, by the definition of Λk(ε; η, A0, ρ) in (9.1.38),

Λk

(
ε; η, A0, ρ

)⋂
Λ
(
ε; η + ηk, Ak

)c
=

Λk

(
ε; η, A0, ρ

)⋂
Λ
(
ε; η + ηk, Ak

)c⋂
Λ
(
ε; η + ηk−1, Ak−1

)
. (9.1.56)

Now, since, for all k ≥ 1 we have |Ak − Ak−1|+,s1 ≤ δ
3/4
k on Λk (see (9.1.39)) and ηk =

ηk−1 +δ
3/8
k (see (9.1.37)), we deduce by (9.1.1) and (9.1.56) the Lebesgue measure estimate,∣∣∣Λk

(
ε;

1

2
, A0, ρ

)⋂
Λ
(
ε;

1

2
+ ηk, Ak

)c∣∣∣ ≤ δ
3α/4
k , ∀k ≥ 1 . (9.1.57)

In conclusion, by (9.1.54), (9.1.55), (9.1.57) we obtain, recalling (9.1.37),

|Λ∞(ε; 1/2, A0, ρ)c ∩ Λ̃| ≤ b(ε) +
∞∑
k=1

δ
3α
4

( 3
2

)k−1

1

≤ b(ε) + 2δ
3α
4

1 = b(ε) + 2ε
9α
4 =: b1(ε)
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since δ1 = ε3. Property 2 of Corollary 9.1.2 is proved.

Proof of (9.1.36). Actually we prove that, if A′0 ∈ C(C1, c1, c2), (R′0, ρ
′) satisfy (8.2.2) as

(R0, ρ) and (A′0, ρ
′) satisfy (9.1.35), then

|A′n − An|+,s1 ≤ δ4/5 , ∀λ ∈ Λn(ε; 5/6, A0, ρ) ∩ Λn(ε; 5/6, A′0, ρ
′) , (9.1.58)

where the sets Λn are defined in (9.1.38). Let

∆(1)
n := |R′n −Rn|+,s1 , ∆(2)

n := |ρ′n − ρn|+,s1 , ∆n := ∆(1)
n + ∆(2)

n . (9.1.59)

The assumption (9.1.35) means that ∆0 ≤ δ on Λ̃ ∩ Λ̃′. We recall that (An+1, ρn+1) (resp.
(A′n+1, ρ

′
n+1)) is built applying Proposition 9.1.1 to (An, ρn) (resp. (A′n, ρ

′
n)) instead of

(A0, ρ0) (resp. (A′0, ρ
′
0)). Hence, by (9.1.15)-(9.1.16) (with δ1 replaced by δn+1), for all

n ∈ N, for all λ ∈ Λn+1(ε; 5/6, A0, ρ)∩Λn+1(ε; 5/6, A′0, ρ
′), we have the iterative inequalities

∆
(1)
n+1 ≤ ∆(1)

n + C∆(2)
n and ∆

(2)
n+1 ≤ δ

1/2
n+1∆(1)

n + δ
−1/20
n+1 ∆(2)

n . (9.1.60)

As a consequence ∆n+1 ≤ δ
− 1

19
n+1 ∆n and, recalling the definition of δn in (9.1.37), we deduce

that, for any n ≥ 1, for all λ ∈ Λn(ε; η, A0, ρ) ∩ Λn(ε; η, A
′
0, ρ
′), we have

∆n ≤ (δn . . . δ1)−
1
19 ∆0 ≤ δ

− 1
19

(1+...+( 3
2

)n−1)

1 δ ≤ δ
− 2

19
( 3

2
)n

1 δ . (9.1.61)

Let n0 ≥ 1 be the integer such that

δ
( 3

2
)n0

1 < δ < δ
( 3

2
)n0−1

1 . (9.1.62)

Thus, by (9.1.61) and the second inequality in (9.1.62), we get

∀n ≤ n0 , ∆n ≤ δ
− 2

19
( 3

2
)n0

1 δ ≤ δ−
3
19 δ = δ

16
19 . (9.1.63)

On the other hand, recalling (9.1.59) we bound, using the first estimate in (9.1.32),

∀n ≥ n0 + 1 , ∆(2)
n ≤ |ρn|+,s1 + |ρ′n|+,s1 ≤ 2δ

( 3
2

)n

1 . (9.1.64)

Applying iteratively the first inequality in (9.1.60) we get, ∀n ≥ n0 + 1,

|A′n − An|+,s1 = ∆(1)
n ≤ ∆(1)

n0
+ C

(
∆(2)

n0
+ . . .+ ∆

(2)
n−1

)
(9.1.63),(9.1.64)

≤ δ
16
19 + 2C(δ

( 3
2

)n0

1 + . . .+ δ
( 3

2
)n−1

1 )

≤ δ
16
19 + 3Cδ

( 3
2

)n0

1

(9.1.62)

≤ δ
16
19 + 3Cδ ≤ δ

4
5 (9.1.65)
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for δ small enough. In conclusion (9.1.63) and (9.1.65) imply (9.1.58).

Proof of Property 3 for the sets Λ∞(ε; η, A0, ρ). By (9.1.54) (with A′0, ρ
′ instead

of A0, ρ) and (9.1.53) we deduce, for all (1/2) + δ2/5 ≤ η ≤ 5/6, the inclusion

M := Λ̃′ ∩ Λ∞(ε; η, A′0, ρ
′)c ∩ Λ∞(ε; η − δ2/5, A0, ρ) ⊂M0

⋃(⋃
n≥1

Mn

)
(9.1.66)

where
M0 := Λ̃′ ∩ Λ(ε; η, A′0)c ∩ Λ(ε; η − δ2/5, A0)

and

Mn :=

Λn(ε; η, A
′
0, ρ
′)
⋂

Λ(ε; η + ηn, A
′
n)
c
⋂

Λn(ε; η − δ2/5, A0, ρ)
⋂

Λ(ε; η + ηn − δ2/5, An) .

By the assumption (9.1.17) we have |R′0 − R0|+,s1 ≤ δ on Λ̃ ∩ Λ̃′, and therefore property 3
of Proposition 9.1.1 and the fact that δ1/2 ≤ δ2/5 imply that, for all (1/2) + δ2/5 ≤ η ≤ 5/6,

|M0| ≤ |Λ̃′ ∩ Λ(ε; η, A′0)c ∩ Λ(ε; η − δ1/2, A0)| ≤ δα . (9.1.67)

For n ≥ 1, we have, by (9.1.38), the inclusion

Mn ⊂ Λn(ε; η, A
′
0, ρ
′) ∩ Λ(ε; η + ηn−1, A

′
n−1) ∩ Λ(ε; η + ηn, A

′
n)
c .

and therefore, since |R′n −R′n−1|+,s1 = |A′n − A′n−1|+,s1 ≤ δ3/4
n on Λn(ε; η, A

′
0, ρ
′) by (9.1.39),

the estimate (9.1.1) and ηn = ηn−1 + δ3/8
n , imply

|Mn| ≤ δ3α/4
n . (9.1.68)

On the other hand, by (9.1.58), |An − A′n|+,s1 ≤ δ4/5 for any

λ ∈Mn ⊂ Λn(ε; η, A
′
0, ρ
′)
⋂

Λn(ε; η,A0, ρ)

and we deduce, by (9.1.1), the measure estimate

|Mn| ≤
∣∣Λ(ε; η + ηn, A

′
n)
c
⋂

Λ(ε; η + ηn − δ2/5, An)
∣∣ ≤ δ4α/5 . (9.1.69)

Finally (9.1.66), (9.1.67), (9.1.68), (9.1.69) imply the measure estimate

|M| ≤ δα +
∑
n≥1

min(δ3α/4
n , δ4α/5) ≤ δα/2

for δ small, proving (9.1.18). The proof of Corollary 9.1.2 is complete.

The rest of the Chapter is devoted to the Proof of Proposition 9.1.1.
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9.2 The linearized homological equation

We consider the linear map

S 7→ Jω̄ε · ∂ϕS + [JS, JA0]

where S := S(ϕ), ϕ ∈ T|S|, has the form

S(ϕ) =

(
d(ϕ) a(ϕ)∗

a(ϕ) 0

)
∈ L(H⊥S ) ,

d(ϕ) = d∗(ϕ) ∈ L(HF) , a(ϕ) ∈ L(HF, HG) ,

(9.2.1)

and it is self-adjoint.
Recalling (8.1.2) and using that D0 and J commute, J2 = −Id, we have

Jω̄ε · ∂ϕS + [JS, JA0] =(
Jω̄ε · ∂ϕd+D0d+ JdJD0 Jω̄ε · ∂ϕa∗ + Ja∗JV0 +D0a

∗

Jω̄ε · ∂ϕa− JV0Ja+ JaJD0 0

)
.

(9.2.2)

The key step in the proof of the splitting Proposition 9.1.1 (see section 9.4) is, given ρ(ϕ)
of the form

ρ(ϕ) =

(
ρ1(ϕ) ρ2(ϕ)∗

ρ2(ϕ) 0

)
∈ L(H⊥S ) ,

ρ1(ϕ) = ρ∗1(ϕ) ∈ L(HF) , ρ2(ϕ) ∈ L(HF, HG) ,

(9.2.3)

to solve (approximately) the “homological” equation

Jω̄ε · ∂ϕS + [JS, JA0] = Jρ . (9.2.4)

The equation (9.2.4) amounts to solve the pair of decoupled equations

Jω̄ε · ∂ϕd+D0d+ JdJD0 = Jρ1 , (9.2.5)

Jω̄ε · ∂ϕa− JV0Ja+ JaJD0 = Jρ2 . (9.2.6)

Note that, taking the adjoint equation of (9.2.6), multiplying by J on the left and the right,
since V0 and D0 are self-adjoint and JD0J = −D0, J∗ = −J , we obtain

Jω̄ε · ∂ϕa∗ + Ja∗JV0 +D0a
∗ = Jρ∗2 ,

which is the equation in the top right in (9.2.4), (9.2.2), (9.2.3).

Remark 9.2.1. We shall solve only approximately the homological equation (9.2.4) up
to terms which are Fourier supported on high frequencies. The main reason is that the
multiscale Proposition 4.1.5 provides tame estimates of the inverses of finite dimensional
restrictions of infinite dimensional operators. This is sufficient for proving Proposition
9.1.1.
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We shall decompose an operator ρ of the form (9.2.3), as well as S in (9.2.1), in the
following way. The operator ρ1 ∈ L(HF) can be represented as a finite dimensional self-
adjoint square matrix ((ρ1)ji )i,j∈F with entries (ρ1)ji ∈ L(Hj, Hi). Using in each subspace Hj,
j ∈ F, the basis ((Ψj, 0), (0,Ψj)), see (3.1.9), we identify each operator (ρ1)ji (ϕ) ∈ L(Hj, Hi)
with a 2× 2-real matrix that we still denote by (ρ1)ji (ϕ) ∈ Mat2(R). We shall also Fourier
expand

(ρ1)ji (ϕ) =
∑
`∈Z|S|

[ρ̂1]ji (`)e
i`·ϕ , [ρ̂1]ji (`) ∈ Mat2(C) , [ρ̂1]ji (`) = [ρ̂1]ji (−`) , (9.2.7)

where [ρ̂1]ji (0) is the average

[ρ̂1]ji (0) =
1

(2π)|S|

∫
T|S|

(ρ1)ji (ϕ) dϕ ∈ Mat2(R) . (9.2.8)

The operator ρ2 ∈ L(HF, HG) is identified, as in (3.2.3), with (ρj2)j∈F where ρj2 ∈ L(Hj, HG),
which, using in Hj the basis ((Ψj, 0), (0,Ψj)), can be identified with a vector of HG ×HG.

We also recall that, for a ϕ-dependent family of operators ρ(ϕ), ϕ ∈ T|S|, of the form
(9.2.3), we have the estimates (3.3.44)-(3.3.45).

The next lemma provides an approximate solution of the homological equation (9.2.4).

Lemma 9.2.2. (Homological equations) Given C1 > 0, c1 > 0, c2 > 0, there is ε1 > 0
such that ∀ε ∈ (0, ε1), for each admissible split operator A0 ∈ C(C1, c1, c2) (see Definition

8.1.1), defined for λ ∈ Λ̃, there are closed subsets Λ(ε; η,A0) ⊂ Λ̃, 1/2 ≤ η ≤ 1, satisfying
the properties 1-3 of Proposition 9.1.1, such that, if ρ ∈ L(H⊥S ) has the form (9.2.3), ρ is

L2-self-adjoint, defined for λ ∈ Λ̃, and satisfies

|ρ|Lip,+,s1 ≤ δ
9
10
1 , δ1 ≤ ε3 , δ

11
10
1 (|R0|Lip,+,s2 + |ρ|Lip,+,s2) ≤ ε , (9.2.9)

[ρ̂1]jj(0) ∈M− (recall (9.2.8), (3.2.18)), ∀j ∈ F , ∀λ ∈ Λ̃ , (9.2.10)

then there is a linear self-adjoint operator S := S(ε, λ)(ϕ) ∈ L(H⊥S ) of the form (9.2.1),
defined for all λ ∈ Λ(ε; 1, A0), satisfying (9.1.7)-(9.1.8), such that

|Jω̄ε · ∂ϕS + [JS, JA0]− Jρ|Lip,+,s1 ≤ δ
7
4
1 , (9.2.11)

|Jω̄ε · ∂ϕS + [JS, JA0]|Lip,+,s2 ≤ δ
− 1

4
1

(
|R0|Lip,+,s2 + |ρ|Lip,+,s2

)
+ δ

− 3
4

1 , (9.2.12)

and, more generally, for all s ≥ s2,

|Jω̄ε · ∂ϕS + [JS, JA0]|Lip,+,s ≤ C(s)
[
δ
− 1

4
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

− 3
4

1 δ
−3ς

s−s2
s2−s1

1

]
. (9.2.13)
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At last, denoting by SA0,ρ and SA′0,ρ′ the operators defined as above associated, respectively,
to (A0, ρ) and (A′0, ρ

′), we have, for all λ ∈ Λ(ε; 1, A0) ∩ Λ(ε; 1, A′0),

|SA0,ρ − SA′0,ρ′|+,s1 ≤ δ
3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1 , (9.2.14)

and ∣∣(Jω̄ε · ∂ϕSA0,ρ + [JSA0,ρ, JA0]− Jρ)− (Jω̄ε · ∂ϕSA′0,ρ′ + [JSA′0,ρ′ , JA0]− Jρ′)
∣∣
+,s1

≤ δ
3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1 . (9.2.15)

The proof of Lemma 9.2.2 is given in the next section.

9.3 Solution of homological equations: proof of Lemma

9.2.2

Step 1: approximate solution of the homological equation (9.2.5). We represent
a linear operator d(ϕ) ∈ L(HF) by a finite dimensional square matrix (dji (ϕ))i,j∈F with
entries dji (ϕ) ∈ L(Hj, Hi) ' Mat2(R). Since the symplectic operator J leaves invariant
each subspace Hj and

D0 = Diagj∈F µj(ε, λ)Id2

(see (8.1.3)), the equation (9.2.5) is equivalent to

Jω̄ε · ∂ϕdji (ϕ) + µi(ε, λ)dji (ϕ) + µj(ε, λ)Jdji (ϕ)J = J(ρ1)ji (ϕ) ,

∀i, j ∈ F where J =

(
0 1
−1 0

)
,

and, by a Fourier series expansion with respect to the variable ϕ ∈ T|S|, writing

dji (ϕ) =
∑
`∈Z|S|

d̂ji (`)e
i`·ϕ , d̂ji (`) ∈ Mat2(C) , d̂ji (`) = d̂ji (−`) , (9.3.1)

to
i(ω̄ε · `)Jd̂ji (`) + µi(ε, λ)d̂ji (`) + µj(ε, λ)Jd̂ji (`)J = J [ρ̂1]ji (`) ,

∀i, j ∈ F , ` ∈ Z|S| .
(9.3.2)

In order to solve (9.3.2) we have to study the linear operator

Tij` : Mat2(C)→ Mat2(C) , d 7→ iω̄ε · ` Jd + µi(ε, λ)d + µj(ε, λ)JdJ . (9.3.3)
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In the basis (M1,M2,M3,M4) of Mat2(C) defined in (3.2.19)-(3.2.20) the linear operator
Tij` is represented by the following self-adjoint matrix (recall that JMl = MlJ for l = 1, 2
and JMl = −MlJ for l = 3, 4, and JM1 = −M2, JM3 = −M4)

(µi − µj)(ε, λ) iω̄ε · ` 0 0
−iω̄ε · ` (µi − µj)(ε, λ) 0 0

0 0 (µi + µj)(ε, λ) iω̄ε · `
0 0 −iω̄ε · ` (µi + µj)(ε, λ)

 . (9.3.4)

As a consequence the eigenvalues of Tij` are

±ω̄ε · `+ µi(ε, λ)− µj(ε, λ) , ±ω̄ε · `+ µi(ε, λ) + µj(ε, λ) . (9.3.5)

To impose non-resonance conditions we define the sets, for 1/2 ≤ η ≤ 1,

Λ1(ε; η,A0) :=
{
λ ∈ Λ̃ : |ω̄ε · `± µj(ε, λ)± µi(ε, λ)| ≥ γ1

2η〈`〉τ
, (9.3.6)

∀(`, i, j) ∈ Z|S| × F× F , (`, i, j) 6= (0, j, j)
}

where the constant γ1 = γ0/2 (recall that γ0 is fixed in (1.2.6)) and

τ ≥ (3/2)τ1 + 3 + |S| (9.3.7)

where τ1 is defined in (1.2.28). The inequalities in (9.3.6) are second-order Melnikov non-
resonance concerning only a finite number of normal frequencies.

Remark 9.3.1. Since µj(ε, λ) > c0 > 0, for any j ∈ N, if γ1 ≤ 2c0, then the inequality

|ω̄ε · ` + µj(ε, λ) + µi(ε, λ)| ≥ γ1

2η〈`〉τ
in (9.3.6) holds for ` = 0 and j = i, for all λ ∈ Λ,

η ∈ [1/2, 1].

In the next lemma we find a solution dN of the projected homological equation

Jω̄ε · ∂ϕdN +D0dN + JdNJD0 = ΠNJρ1 (9.3.8)

where here the projector ΠN applies to functions depending only on the variable ϕ, namely

ΠN : h(ϕ) =
∑
`∈Z|S|

h`e
i`·ϕ 7→ (ΠNh)(ϕ) :=

∑
|`|≤N

h`e
i`·ϕ . (9.3.9)

Lemma 9.3.2. (Homological equation (9.2.5)) Let ρ be a self-adjoint operator of the

form (9.2.3), defined for λ ∈ Λ̃, satisfying (9.2.9), and assume that the average [ρ̂1]jj(0) ∈
M−, ∀j ∈ F, ∀λ, i.e. (9.2.10) holds. Let

N ∈
[
δ
− 3
s2−s1

1 − 1, δ
− 3
s2−s1

1 + 1
]
. (9.3.10)
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Then, for all λ ∈ Λ1(ε; 1, A0) (set defined in (9.3.6)) there exists dN := dN(λ;ϕ) ∈ L(HF),
dN = d∗N , satisfying

|dN |Lip,s1+1 � δ
7
8
1 , |dN |Lip,s+1 � δ

− 1
40

1 |ρ|Lip,s , ∀s ≥ s1 , (9.3.11)

which solves the projected homological equation (9.3.8), and which is an approximate solu-
tion of the homological equation (9.2.5) in the sense that

|Jω̄ε · ∂ϕdN +D0dN + JdNJD0 − Jρ1|Lip,s1 � δ
7/4
1 . (9.3.12)

At last, denoting by d′N the operator associated to D′0, ρ
′ as above, we have, for all λ ∈

Λ1(ε; 1, A′0) ∩ Λ1(ε; 1, A0),

|d′N − dN |s1 ≤ δ
7
8
1 |D′0 −D0|s1 + δ

− 1
40

1 |ρ′1 − ρ1|s1 (9.3.13)

and∣∣(Jω̄ε · ∂ϕd′N +D′0d
′
N + Jd′NJD

′
0 − Jρ′1

)
−
(
Jω̄ε · ∂ϕdN +D0dN + JdNJD0 − Jρ1

)∣∣
s1

≤ |ρ′1 − ρ1|s1 . (9.3.14)

Proof. We split the proof in some steps.

Step 1. For any (`, i, j) ∈ Z|S|×F×F, for all λ ∈ Λ1(ε; 1, A0), there exists a solution d̂ji (`)
of the equation (9.3.2), satisfying the reality condition (9.3.1) and

‖d̂ji (`)‖ ≤ C〈`〉τ‖[ρ̂1]ji (`)‖ (9.3.15)

where ‖ ‖ denotes some norm in Mat2(C).
Recalling (9.3.5) and the definition of Λ1(ε; 1, A0) in (9.3.6), we have that, for all λ ∈

Λ1(ε; 1, A0), the operators Tij` defined in (9.3.3) are isomorphisms of Mat2(C) for ` 6= 0 or
i 6= j, and

‖T−1
ij` ‖ ≤ C〈`〉τ (9.3.16)

where ‖ ‖ denotes some norm in L(Mat2(C)) and C := C(γ1). Hence, in this case, there

exists a unique solution d̂ji (`) = T−1
ij`

(
J [ρ̂1]ji (`) of the equation (9.3.2).

Let us consider the case ` = 0 and i = j. By (9.3.4), the linear operator Tjj0 is
represented, in the basis (M1,M2,M3,M4) of Mat2(C), by the matrix

2µj(ε, λ)

(
02 0
0 Id2

)
.

Moreover there is c0 > 0 such that µj(ε, λ) > c0 for any j ∈ N, ε ∈ (0, ε0), λ ∈ Λ. Hence the
range of Tjj0, is the subspace M− = Span(M3,M4) of Mat2(C) defined in (3.2.18), (3.2.20),
and

∀ρ̃ ∈M− , ∃ ! d̃ ∈M− solving Tjj0d̃ = ρ̃ with ‖d̃‖ . ‖ρ̃‖ ;
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with a little abuse of notation, we denote d̃ by T−1
jj0(ρ̃). By the assumption [ρ̂1]jj(0) ∈ M−

and the fact that M− is stable under the action of J , we have that J [ρ̂1]jj(0) is in M− and

there is a unique solution d̂jj(0) ∈M− of the equation (9.3.2).

To conclude the proof of Step 1, it remains to show that the matrices d̂ji (`) ∈ Mat2(C)
satisfy the reality condition (9.3.1). It is consequence of Tij(−`) = Tij`, the fact that [ρ̂1]ji (`)

satisfies the reality condition (9.2.7), and the uniqueness of the solutions of Tij`(d̂
j
i (`)) =

J [ρ̂1]ji (`) (with the condition dji (`) ∈M− if ` = 0 and i = j).

Step 2. Definition of dN and proof that dN = d∗N . We define dN := ΠNd(ϕ)
where ΠN is the projector defined in (9.3.9) and

d(ϕ) = (dji (ϕ))i,j∈F , dji (ϕ) =
∑
`∈Z|S|

d̂ji (`)e
i`·ϕ , d̂ji (`) = T−1

ij`

(
J [ρ̂1]ji (`) , (9.3.17)

is the unique solution of (9.2.5). Note that, taking the adjoint equation of (9.2.5), multi-
plying by J on the left and the right, since V0 and D0 are self-adjoint, the operators D0

and J commute, J∗ = −J , and using that ρ1 is self-adjoint, we obtain

Jω̄ε · ∂ϕd∗ +D0d
∗ + Jd∗JD0 = Jρ1 .

By uniqueness d∗ = d is the unique solution of (9.2.5). Then also d∗N = dN .

Step 3. Proof of (9.3.11). By (9.3.15) (and (3.3.44), (4.1.13)) we have

|dN |s+1 . N τ+1|ρ1|s . (9.3.18)

We claim also the estimate
|dN |lip,s+1 . N2τ+1|ρ1|Lip,s (9.3.19)

which implies, together with (9.3.18),

|dN |Lip,s+1 . N2τ+1|ρ1|Lip,s . (9.3.20)

To prove (9.3.19) notice that, by (9.3.16),

‖T−1
ij` (λ1)− T−1

ij` (λ2)‖ = ‖T−1
ij` (λ1)

(
Tij`(λ2)− Ti,j,`(λ1)

)
T−1
ij` (λ2)

)
‖

. 〈`〉2τ‖Tij`(λ2)− Tij`(λ1)‖ . 〈`〉2τε2|λ2 − λ1| (9.3.21)

recalling the definition of Tij` in (9.3.3), and (8.1.7). By (9.3.16) and (9.3.21) we estimate
the lip seminorm of dji (`) = T−1

ij`

(
[ρ̂1]jj(`)

)
as

‖dji (`)‖lip . 〈`〉2τε2‖[ρ̂1]jj(`)‖+ 〈`〉τ‖[ρ̂1]jj(`)‖lip
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and (9.3.19) follows. The estimates (9.3.20), (9.3.10) and (8.2.1)-(i), finally imply

|dN |Lip,s+1 ≤ CN2τ+1|ρ1|Lip,s � δ
− 1

40
1 |ρ1|Lip,s

which gives the second inequality in (9.3.11). By (9.2.9) we deduce

|dN |Lip,s1+1 � δ
− 1

40
1 δ

9
10
1 = δ

7
8
1

which is the first inequality in (9.3.11).

Step 4. Proof of (9.3.12). By the definition of dN we have

Jω̄ε · ∂ϕdN +D0dN + JdNJD0 − Jρ1 = −Π⊥N Jρ1 . (9.3.22)

Then, recalling (3.3.44),

|Jω̄ε · ∂ϕdN +D0dN + JdNJD0 − Jρ1|Lip,s1 = |Π⊥N Jρ1|Lip,s1

(4.1.13),(9.2.9)

.s2 N−(s2−s1)δ
− 11

10
1

(9.3.10)

.s2 δ3
1δ
− 11

10
1 � δ

7/4
1 .

Step 5. Proof of (9.3.13)-(9.3.14). We denote by T ′ij` the linear operator as in (9.3.3)
associated to A′0, i.e. with µ′j(ε, λ) instead of µj(ε, λ). Arguing as for (9.3.21) we get that,

if λ ∈ Λ1(ε; 1, A0) ∩ Λ1(ε; 1, A′0), then∥∥T−1
ij` − (T ′ij`)

−1
∥∥ ≤ C〈`〉2τ max

j∈F

∣∣µj(ε, λ)− µ′j(ε, λ)
∣∣ . (9.3.23)

Let us denote dN := dN,D0,ρ and d′N := dN,D′0,ρ′ where we highlight the dependence of dN
with respect to D0 and ρ. Using that dN depends linearly on ρ, actually only on ρ1, see
(9.3.17), we get

|dN,D0,ρ − dN,D′0,ρ′|s1 ≤ |dN,D0,ρ − dN,D′0,ρ|s1 + |dN,D′0,ρ−ρ′|s1
(9.3.23),(9.3.18)

. N2τ |ρ1|s1 max
j∈F
|µj(ε, λ)− µ′j(ε, λ)|+N τ+1|ρ1 − ρ′1|s1

and therefore, by (9.2.9), (9.3.10), (8.2.1)-(i), |ρ1|+,s ' |ρ1|s we conclude that

|dN,D0,ρ − dN,D′0,ρ′ |s1 ≤ δ
− 1

40
1 δ

9
10
1 |D0 −D′0|s1 + δ

− 1
40

1 |ρ1 − ρ′1|s1
≤ δ

4
5
1 |D0 −D′0|s1 + δ

− 1
40

1 |ρ1 − ρ′1|s1

proving (9.3.13). Finally (9.3.14) is an immediate consequence of (9.3.22).

We now prove measure estimates for the sets Λ1(ε; η, A0) defined in (9.3.6).
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Lemma 9.3.3. |[Λ1(ε; η,A0)]c ∩ Λ̃| ≤ ε for all 1/2 ≤ η ≤ 1.

Proof. For ` ∈ Z|S|, η ∈ [1/2, 1], we define the set

Λ1
`(ε; η, A0) :=

{
λ ∈ Λ̃ : |ω̄ε · `± µj(ε, λ)± µi(ε, λ)| ≥ γ1

2η〈`〉τ
,

∀(i, j) ∈ F× F with |`|+ |i− j| 6= 0
} (9.3.24)

where γ1 = γ0/2 and τ > τ1, see (9.3.7). By the unperturbed second order Melnikov non-
resonance conditions (1.2.16)-(1.2.17), the Diophantine property (1.2.29), since ω̄ε = µ̄+ε2ζ
(see (1.2.25)) and µj(ε, λ) = µj +O(ε2) (see (8.1.4)), we have

if ε2〈`〉τ0+1γ−1
0 ≤ c small enough ⇒ Λ1

`(ε; 1/2, A0) = Λ̃ .

Hence, for ε small enough,

Λ1(ε; η, A0) =
⋂
`∈Z|S|

Λ1
`(ε; η, A0) =

⋂
|`|>c1ε−2/τ0

Λ1
`(ε; η, A0) (9.3.25)

where c1 := (cγ0)1/τ0 . Now, using (8.1.5)-(8.1.6), we deduce that the complementary set

[Λ1
`(ε; η, A0)]c is included in the union of 4f2 intervals of length

γ1

η〈`〉τc2ε2
where f denotes

the cardinality of F. Hence its measure satisfies

|[Λ1
`(ε; η, A0)]c ∩ Λ̃| ≤ 4γ1f

2

η〈`〉τc2ε2
,

and, for any L > 0, 1/2 ≤ η ≤ 1, τ > |S|, we have∑
|`|≥L

∣∣[Λ1
`(ε; η, A0)]c

∣∣ ≤∑
|`|≥L

4γ1f
2

η〈`〉τc2ε2
≤ C

Lτ−|S|ε2
. (9.3.26)

The lemma follows by (9.3.25), (9.3.26) with L = c1ε
−2/τ0 and (9.3.7).

Remark 9.3.4. The measure of the set [Λ1(ε; η, A0)]c can be made smaller than εp as ε
tends to 0, for any p, if we take the exponent τ large enough. This is analogous to the
situation described in remark 4.8.17.

Lemma 9.3.5. Assume that |A′0−A0|+,s1 ≤ δ ≤ ε3 on Λ̃∩Λ̃′. Then, for η ∈ [(1/2)+
√
δ, 1],

we have

|Λ̃′ ∩ [Λ1(ε; η, A′0)]c ∩ Λ1(ε; η −
√
δ, A0)| ≤ δ

1
12 . (9.3.27)
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Proof. We first prove the estimate∣∣[Λ1(ε; η, A′0)]c
⋂

Λ1(ε; η −
√
δ, A0)

∣∣ . min(ε−2δ
1
2
− |S|

2τ , ε) . (9.3.28)

Denoting Λ1
`(ε; η,A

′
0) the set (9.3.24) associated to A′0, we claim that there exists c(s0) > 0

such that

[Λ1
`(ε; η, A

′
0)]c ∩ Λ1(ε; η −

√
δ, A0) = ∅ , if 〈`〉τ ≤ c(s0)γ1/(

√
δ) . (9.3.29)

Indeed, denoting by µ′j(ε, λ) ∈ R the eigenvalues of D′0 = ΠFA
′
0|HF , since ‖A′0 − A0‖0 ≤

C(s0)|A′0 − A0|+,s0 ≤ C(s0)δ (see (3.3.27)), we have

|µ′j(ε, λ)− µj(ε, λ)| ≤ C(s0)δ , ∀j ∈ F . (9.3.30)

If λ /∈ Λ1
`(ε; η, A

′
0) then, recalling (9.3.24), there exist i, j ∈ F (with i 6= j if ` = 0), signs

εi = ±1 and εj = ±1 such that

|ω̄ε · `+ εiµ
′
i(ε, λ) + εjµ

′
j(ε, λ)| < γ1

2η〈`〉τ

and so, by (9.3.30),

|ω̄ε · `+ εiµi(ε, λ) + εjµj(ε, λ)| < γ1

2η〈`〉τ
+ 2C(s0)δ <

γ1

2(η −
√
δ)〈`〉τ

,

for all (1/2)+
√
δ ≤ η ≤ 1, 〈`〉τ ≤ c(s0)γ1/

√
δ, for some c(s0) small enough, proving (9.3.29).

Hence

[Λ1(ε; η,A′0)]c
⋂

Λ1(ε; η −
√
δ, A0) ⊂

⋃
`∈Z|S|

[Λ1
`(ε; η,A

′
0)]c ∩ Λ1(ε; η −

√
δ, A0)

(9.3.29)
⊂

⋃
|`|≥(

c(s0)γ1√
δ

)1/τ

[Λ1
`(ε; η, A

′
0)]c

which implies (9.3.28) by (9.3.26) with L = (γ1/
√
δ)1/τ (applied to A′0) and Lemma 9.3.3.

Finally, by (9.3.7) and since τ1 ≥ |S|, we have |S|/2τ < 1/4 and so

min(ε−2δ
1
2
− |S|

2τ , ε) ≤ min(ε−2δ
1
4 , ε) ≤ δ

1
12 (9.3.31)

where the last inequality follows distinguishing the cases ε ≤ δ
1
12 and ε > δ

1
12 . By (9.3.28)

and (9.3.31), the estimate (9.3.27) is proved.

Step 2: approximate solution of the homological equation (9.2.6). We decompose
a ∈ L(HF, HG) as a = (aj)j∈F and ρ2 ∈ L(HF, HG) as ρ2 = (ρj2)j∈F where aj := a|Hj ∈
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L(Hj, HG) and ρj2 := (ρ2)|Hj ∈ L(Hj, HG). Recalling the form of D0 in (8.1.3), the equation
(9.2.6) is equivalent to

Tj(a
j) = Jρj2 , ∀j ∈ F , (9.3.32)

where we define Tj as the linear operator which maps aj : T|S| → L(Hj, HG) to

Tj(a
j) := Jω̄ε · ∂ϕaj − JV0Ja

j + µj(ε, λ)JajJ . (9.3.33)

We shall consider Tj as an unbounded linear operator from the space L2(T|S|,L(Hj, HG))
to itself.

In the sequel iG denotes the injection

iG : HG ↪→ H . (9.3.34)

Before applying the multiscale Proposition 4.1.5 we need to extend the linear operator Tj
defined in (9.3.33), which acts on L2(T|S|,L(Hj, HG)), to a linear operator T ]j acting on the

whole space L2(T|S|,L(Hj, H)) ' L2(T|S|, H ×H) (by (3.2.6)) and satisfying the properties
of Definition 4.1.2.

We define, for any aj ∈ L2(T|S|,L(Hj, H)), the operator

T ]j (a
j) :=

Jω̄ε · ∂ϕaj +
DV

1 + ε2λ
ΠS∪Fa

j +
c

1 + ε2λ
ΠSa

j − JiGV0ΠGJa
j + µj(ε, λ)JΠGa

jJ
(9.3.35)

where ΠS∪F,ΠG,ΠS are the L2-orthogonal projectors on the subspaces HS∪F, HG, HS and
c > 0 is a positive constant that we fix according to (4.1.5). Clearly T ]j is an extension of
Tj, i.e.

T ]j (a
j) = Tj(a

j) , ∀aj ∈ L2(T|S|,L(Hj, HG)) ⊂ L2(T|S|,L(Hj, H)) .

Recalling the decomposition (3.2.15)-(3.2.16), i.e.

L(Hj, H) = L(Hj, HS∪F)⊕ L(Hj, HG) ,

aj(ϕ) = ΠS∪Fa
j(ϕ) + ΠGa

j(ϕ) ,
(9.3.36)

we may write the operator T ]j in (9.3.35) as

T ]j (a
j) = Jω̄ε · ∂ϕaj +

DV

1 + ε2λ
aj + µj(ε, λ)JΠGa

jJ +
c

1 + ε2λ
ΠSa

j +Rja
j (9.3.37)

where, using that J commutes with DV and ΠG, J2 = −Id,

Rja
j := J

( DV

1 + ε2λ
− iGV0

)
ΠGJa

j = −JR0ΠGJa
j (9.3.38)
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and we used (8.1.1)-(8.1.2) to obtain the last equality. Notice that, according to the decom-
position (9.3.36), the operator T ]j is represented by the block-diagonal matrix of operators

T ]j =

Jω̄ε · ∂ϕ +
DV

1 + ε2λ
+

c

1 + ε2λ
ΠS 0

0 Tj

 , (9.3.39)

and, according to the further splitting

L(Hj, H) = L(Hj, HS)⊕ L(Hj, HF)⊕ L(Hj, HG) ,

aj(ϕ) = ΠSa
j(ϕ) + ΠFa

j(ϕ) + ΠGa
j(ϕ) ,

recalling (9.3.35), by the matrix of operators

T ]j = Jω̄ε · ∂ϕ +


DV

1 + ε2λ
+

c Id

1 + ε2λ
0 0

0
DV

1 + ε2λ
0

0 0 −JV0J + µj(ε, λ)J

 (9.3.40)

where J is defined in (4.1.8). Note also that

TjΠG = ΠGT
]
j . (9.3.41)

Now, given gj := Jρj2 : T|S| → L(Hj, HG) we define

g]j : T|S| → L(Hj, H) ' H ×H , g]j(ϕ) := iGg
j(ϕ) , (9.3.42)

(recall (3.2.6), (9.3.34)) and we look for an (approximate) solution a]j : T|S| → L(Hj, H) '
H ×H of the equation

T ]j (a
]
j) = g]j . (9.3.43)

As already said, T ]j is an (unbounded) operator on L2(T|S|,L(Hj, , H)) and an exten-

sion of Tj. It is important to notice that, since the subspaces L2(T|S|,L(Hj, HS∪F)) and

L2(T|S|,L(Hj, HG)) are invariant under the operator T ]j (see e.g. (9.3.39)), a solution of

(9.3.43) satisfies Tj(ΠGa
]
j) = g]j, by (9.3.41), and therefore aj := ΠGa

]
j solves equation

(9.3.32) for the non extended operator Tj. Actually in Lemma 9.3.9 we find an approxi-
mate solution of the equation (9.3.32).

In the sequel T ]j is regarded as an operator acting on L2(T|S|;H × H): in fact, us-
ing the basis ((Ψj, 0), (0,Ψj)) of Hj, see (3.1.9), we have the identification (3.2.6) and
L2(T|S|,L(Hj, H)) ' L2(T|S|;H × H). We will apply the multiscale Proposition 4.1.5 (in
case-(ii) in (4.1.1)) to the operator

Lr,µ = (1 + ε2λ)T ]j .
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Actually, recalling (9.3.37), ΠG = Π⊥F∪S, and the definition of J in (4.1.8), we have that

Lr,µ = (1 + ε2λ)T ]j = Jω · ∂ϕ +Xr,µ ,

Xr,µ = DV + cΠS + µJΠ⊥S∪F + r ,
(9.3.44)

has the form (4.1.9) with ω = (1 + ε2λ)ω̄ε and Xr,µ as in (4.1.7) with

µ = (1 + ε2λ)µj(ε, λ) , r = (1 + ε2λ)Rj
(9.3.38)

= −(1 + ε2λ)JR0ΠGJ . (9.3.45)

We now prove that Xr,µ in (9.3.44) satisfies the properties stated in Definition 4.1.2, begin-
ning with its self-adjointness.

Lemma 9.3.6. (Self-adjointness) The operator Xr,µ defined in (9.3.44)-(9.3.45) is self-
adjoint with respect to the scalar product 〈 , 〉0 in (3.2.22).

Proof. The self-adjointness of DV and ΠS with respect to 〈 , 〉0 directly follows by
the fact that DV and ΠS are L2- self-adjoint. Now let a := a(ϕ), b := b(ϕ) belong to
L2(T|S|,L(Hj, , H)). We obtain, using that Π⊥S∪F is L2-self-adjoint, that

〈a,JΠ⊥S∪Fb〉0
(4.1.8)

=

∫
T|S|

Tr((JΠ⊥S∪FbJ)∗a)dϕ

=

∫
T|S|

Tr(Jb∗Π⊥S∪FJa)dϕ =

∫
T|S|

Tr(Jb∗JΠ⊥S∪Fa)dϕ

because J and Π⊥S∪F commute. Thus, using that Tr(AB) = Tr(BA), we deduce that

〈a,JΠ⊥S∪Fb〉0 =

∫
T|S|

Tr(b∗JΠ⊥S∪FaJ)dϕ
(4.1.8),(3.2.22)

= 〈JΠ⊥S∪Fa, b〉0 .

Hence the operator JΠ⊥S∪F is self-adjoint with respect to 〈 , 〉0.
It remains to prove that the operator Rj in (9.3.38) is self-adjoint with respect to 〈 , 〉0.

Since R0 is self-adjoint and R0(HG) ⊂ HG, we deduce that B := R0ΠG is L2-self-adjoint,
i.e. it satisfies B∗ = B, and, recalling (9.3.38), we obtain

〈a,Rjb〉0 = −
∫
T|S|

Tr((JBJb)∗a)dϕ = −
∫
T|S|

Tr(b∗JBJa)dϕ = 〈Rja, b〉0 .

This completes the proof of the lemma.

Lemma 9.3.7. (Off-diagonal decay) The operator Rj defined in (9.3.38) satisfies

|Rj|Lip,s ≤ C(s)|R0|Lip,s , |Rj|Lip,+,s ≤ C(s)|R0|Lip,+,s , (9.3.46)

in particular |Rj|Lip,+,s1 ≤ C ′1ε
2 for some constant C ′1 depending only on C1.
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Proof. We identify a(ϕ) ∈ L(Hj, H) with the vector (a(1)(ϕ), a(2)(ϕ), a(3)(ϕ), a(4)(ϕ)) in
H ×H as in (3.2.7). Then, using (3.2.13), we have

Rja =
(
− JR0ΠG(a2,−a1),−JR0ΠG(a3,−a4)

)
.

Hence
|Rj|Lip,s ∼ |R0ΠG|Lip,s and |Rj|Lip,+,s ∼ |R0ΠG|Lip,+,s .

Lemmata 3.3.5 and 3.3.8 imply that

|R0ΠG|Lip,s

(3.3.21)

.s |ΠG|Lip,s|R0|Lip,s

(3.3.33)

.s |R0|Lip,s

|R0ΠG|Lip,+,s

(3.3.24)

.s |ΠG|Lip,s+ 1
2
|R0|Lip,+,s

(3.3.33)

.s |R0|Lip,+,s

proving (9.3.46). Since |R0|Lip,+,s1 ≤ C1ε
2 by Definition 8.1.1, the second estimate in

(9.3.46) implies |Rj|Lip,+,s1 ≤ C ′1ε
2.

Lemma 9.3.8. (Sign condition) The operator Xr,µ defined in (9.3.44) satisfies, for some
c > 0 depending on the constant c1 in (8.1.8),

dλ

( Xr,µ

1 + ε2λ

)
≤ −c ε2Id .

Proof. According to (9.3.40) the operator
Xr,µ

1 + ε2λ
is represented by the matrix of oper-

ators 
DV + c Id

1 + ε2λ
0 0

0
DV

1 + ε2λ
0

0 0 −JV0J + µj(ε, λ)J


where J a = JaJ . We clearly have

∂λ
DV + c Id

1 + ε2λ
= −ε

2(DV + c Id)

(1 + ε2λ)2
≤ − ε2DV

(1 + ε2λ)2
≤ −cε2Id (9.3.47)

for some c > 0. Then it is sufficient to prove that, for all a ∈ L2(T|S|,L(Hj, HG)), and for

all λ1, λ2 ∈ Λ̃ with λ1 6= λ2, using the notation (1.6.3),〈
− J∆V0

∆λ
Ja+

∆µj(ε, λ)

∆λ
JaJ, a

〉
0
≤ −cε2‖a‖2

0 ,



CHAPTER 9. SPLITTING BETWEEN LOW-HIGH NORMAL SUBSPACES 220

for the scalar product 〈 , 〉0 defined in (3.2.22). We have〈
− J∆V0

∆λ
Ja+

∆µj(ε, λ)

∆λ
JaJ, a

〉
0

=
〈∆V0

∆λ
Ja, Ja

〉
0
− ∆µj(ε, λ)

∆λ

〈
aJ, Ja

〉
0

≤
〈∆V0

∆λ
Ja, Ja

〉
0

+
∣∣∣∆µj(ε, λ)

∆λ

∣∣∣‖aJ‖0‖Ja‖0

=
〈∆V0

∆λ
Ja, Ja

〉
0

+
∣∣∣∆µj(ε, λ)

∆λ

∣∣∣‖Ja‖2
0 (9.3.48)

noting that ‖aJ‖0 = ‖Ja‖0 = ‖a‖0 from the definition (3.2.22) of the scalar product 〈 , 〉0.
Let

(Ja)(1)(ϕ) = Ja(ϕ)(Ψj, 0) , (Ja)(2)(ϕ) = Ja(ϕ)(0,Ψj) , (Ja)(i) ∈ L2(T|S|, HG) .

Using the notations 〈 , 〉0 and ‖ ‖0 for the scalar product and its associated norm both in
L2(T|S|,L(Hj, HG)) and in L2(T|S|;HG), we obtain by (9.3.48)〈

− J∆V0

∆λ
Ja+

∆µj(ε, λ)

∆λ
JaJ, a

〉
0

≤
2∑
i=1

〈∆V0

∆λ
(Ja)(i), (Ja)(i)

〉
0

+
∣∣∣∆µj(ε, λ)

∆λ

∣∣∣‖(Ja)(i)‖2
0 .

(9.3.49)

Now the assumption (8.1.8) implies that for all h ∈ L2(T|S|, HG)〈∆V0

∆λ
h, h
〉

0
+
∣∣∣∆µj(ε, λ)

∆λ

∣∣∣‖h‖2
0 ≤ −c1ε

2‖h‖2
0 . (9.3.50)

The estimates (9.3.47), (9.3.49) and (9.3.50) imply the lemma.

By Lemmata 9.3.6, 9.3.7, 9.3.8 we apply the multiscale Proposition 4.1.5 to the operator
Lr,µ = (1 + ε2λ)T ]j in (9.3.44) where r is given in (9.3.45). As a consequence there exist,
for any j ∈ F, closed subsets

Λ2
j(ε; η, A0) , 1/2 ≤ η ≤ 1 , satisfying Properties 1−3 of Proposition 9.1.1 , (9.3.51)

and N̄ ∈ N, such that, for all ∀N ≥ N̄ , for all λ ∈ Λ2
j(ε; 1, A0), there are operators (T ]j )

−1
N

defined in Proposition 4.1.5 as

i) the right inverse of ΠN(T ]j )|H2N
if N̄ ≤ N < N(ε) ,

ii) the inverse of ΠN(T ]j )|HN if N ≥ N(ε) ,
(9.3.52)

where HN are the finite dimensional subspaces defined in (4.1.10). By (4.1.20), (4.1.23),
(9.3.45)-(9.3.46) and |R0|Lip,+,s1 ≤ C1ε

2 by Definition 8.1.1, the operators (T ]j )
−1
N satisfy the
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following tame estimates: ∀s ≥ s0,

|(T ]j )−1
N |Lip,s1 ≤ C(s1)N2(τ ′+ςs1)+3 (9.3.53)

|(T ]j )−1
N |Lip,s ≤ C(s)N2(τ ′+ςs1)+3

(
N ς(s−s1) + |R0|Lip,+,s

)
. (9.3.54)

To justify that the sets Λ2
j(ε; η,A0) satisfy Property 3 of Proposition 9.1.1, we remark that

if the operators A0 and A′0 satisfy |R′0−R0|+,s1 ≤ δ ≤ ε5/2, then µ, µ′, r, r′ defined in (9.3.45)
satisfy

|r′ − r|+,s1 + |µ′ − µ| ≤ Cδ ≤ ε2 ,

and refer to (4.1.18) in Proposition 4.1.5 (note that the exponent α of Property 3 of Propo-
sition 9.1.1 may be taken slightly smaller than in (4.1.18)).

We now obtain an approximate solution of the homological equation (9.3.32), finding
an approximate solution of (9.3.43).

Lemma 9.3.9. (Homological equation (9.3.32)) Let

N ∈
[
δ
− 3
s2−s1

1 − 1, δ
− 3
s2−s1

1 + 1
]
. (9.3.55)

Then, for all j ∈ F, for all λ ∈ Λ2
j(ε; 1, A0) (set introduced in (9.3.51)), the function aj

defined as

aj := ΠGb
]
j , b]j := (T ]j )

−1
N g]j,N , g]j,N := ΠNg

]
j , g]j := iGg

j , gj = J(ρ2)|Hj (9.3.56)

(recall the notation (9.3.42), (9.2.3)), satisfies

|aj|Lip,s1+1 � δ
7
8
1 , (9.3.57)

|aj|Lip,s+1 .s δ
− 1

40
1

(
|ρ|Lip,s + |R0|Lip,+,s

)
+ δ

1
2
1 δ
−3ς

s−s2
s2−s1

1 , ∀s ≥ s2 , (9.3.58)

and it is an approximate solution of the homological equation (9.3.32) in the sense that

|Tjaj − gj|Lip,s1+1 � δ
7/4
1 . (9.3.59)

At last, denoting by aj := ajA0,ρ
and (aj)′ := ajA′0,ρ′

the operators defined as above associated

to (A0, ρ) and (A′0, ρ
′) respectively, for all λ ∈ Λ2(ε; 1, A0) ∩ Λ2(ε; 1, A′0), we have∣∣ajA0,ρ
− ajA′0,ρ′

∣∣
s1+1
� δ

4
5
1 |A0 − A′0|+,s1 + δ

− 1
40

1 |ρ− ρ′|+,s1 (9.3.60)

and∣∣(Tj,A0a
j
A0,ρ
− gjρ

)
−
(
Tj,A′0a

j
A′0,ρ

′ − gjρ′
)∣∣
s1+ 1

2

� δ
4
5
1 |A0 − A′0|+,s1 + δ

− 1
40

1 |ρ− ρ′|+,s1 . (9.3.61)
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Proof. The function b]j defined in (9.3.56) satisfies, by (9.3.52), the property

i) Π2Nb
]
j = b]j if N̄ ≤ N < N(ε)

ii) ΠNb
]
j = b]j if N ≥ N(ε) ,

(9.3.62)

and it is a solution of ΠNT
]
j b
]
j = ΠNg

]
j. Then, up to terms which are Fourier supported on

high harmonics, it is an approximate solution of the equation (9.3.43), more precisely,

T ]j b
]
j = ΠNT

]
j b
]
j + Π⊥N T

]
j b
]
j = ΠNg

]
j + Π⊥N T

]
j b
]
j = g]j + zN (9.3.63)

where
zN := −Π⊥N g

]
j + Π⊥N T

]
j b
]
j . (9.3.64)

Applying ΠG to both sizes in (9.3.63), we deduce, by (9.3.41) and (9.3.56), that aj := ΠGb
]
j

is an approximate solution of the homological equation (9.3.32), in the sense that

Tja
j − J(ρ2)|Hj = ΠGzN , J(ρ2)|Hj = Jρj2 = gj . (9.3.65)

We now prove (9.3.57)-(9.3.59).

Estimates of b]j. By (3.2.6) we identify the ϕ-dependent family of operators g]j =

iGJ(ρ2)|Hj in L2(T|S|,L(Hj, H)) defined in (9.3.56) with a function of L2(T|S|, H × H).
We have the equivalence of the norms

|g]j|s ∼s ‖g
]
j‖s . (9.3.66)

In fact, let us define, for all ϕ ∈ T|S|, the functions

g],1j (ϕ) := g]j(ϕ)
[
(Ψj, 0)

]
∈ H and g],2j (ϕ) := g]j(ϕ)

[
(0,Ψj)

]
∈ H .

We have to prove that |g]j|s ∼s ‖g
],1
j ‖s + ‖g],2j ‖s. By Definition 3.3.4, |g]j|s = |g̃]j|s, where the

operator g̃]j is defined on the whole L2(T|S|, H) by

g̃]j
[
(h(1), h(2))

]
:=

2∑
i=1

g],ij
(
h(i),Ψj

)
L2
x
.

Now, by Lemma 3.3.7,

|g̃]j|s ≤ C(s)
(
‖g],1j ‖s + ‖g],2j ‖s

)
.

Conversely

‖g],1j ‖s = ‖g̃]j
[
(Ψj, 0)

]
‖s .s |g̃]j|s‖Ψj‖s .s |g̃]j|s
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and similarly ‖g],2j ‖s .s |g̃
]
j|s. This proves the norm equivalence (9.3.66).

We have g]j,N = ΠNg
]
j,N , and (4.1.13), (9.3.56), (9.3.53), (9.2.9), imply

|b]j|Lip,s1+1 ≤ N |b]j|Lip,s1

.s1 N |(T
]
j )
−1
N |Lip,s1|g

]
j,N |Lip,s1

.s1 N
2(τ ′+ςs1+2)|ρ|Lip,s1 .s1 N

Qδ
9
10
1 (9.3.67)

having set
Q := 2(τ ′ + ςs1 + 2) with ς = 1/10 (as in (4.1.16)) . (9.3.68)

Similarly, for s ≥ s1, using (4.1.13), (9.3.56), the tame estimate (3.3.21), (9.3.53)-(9.3.54),
(9.2.9), we get

|b]j|Lip,s+1 ≤ N |b]j|Lip,s

.s N |(T ]j )−1
N |Lip,s|g]j,N |Lip,s1 +N |(T ]j )−1

N |Lip,s1 |g
]
j,N |Lip,s

.s N
Q
(
N ς(s−s1) + |R0|Lip,+,s

)
δ

9
10
1 +NQ|g]j,N |Lip,s

.s N
Q
(
N ς(s−s1)δ

9
10
1 + |R0|Lip,+,sδ

9
10
1 + |ρ|Lip,s

)
. (9.3.69)

Estimates of zN defined in (9.3.64). We first claim that

|Π⊥N T
]
jΠN |Lip,s ≤ |Π⊥N T

]
jΠ2N |Lip,s .s N + |R0|Lip,s . (9.3.70)

Indeed, recalling the expression (9.3.37) of T ]j , setting J (aj) := JajJ , and writing DV =
Dm + (DV −Dm), we get

Π⊥N T
]
jΠ2N = Π⊥N Jω̄ε · ∂ϕΠ2N +

1

1 + ε2λ

(
Π⊥NDmΠ2N + Π⊥N (DV −Dm)Π2N

)
+ µj(ε, λ)Π⊥NJΠGΠ2N + Π⊥NRjΠ2N + Π⊥N

c

1 + ε2λ
ΠSΠ2N .

(9.3.71)

In view of (9.3.71), Lemmas 3.3.8, 9.3.7 and Proposition 3.4.1 imply (9.3.70).
Then, by (9.3.64), (9.3.62), (9.3.56), (9.3.70), (3.3.20), |R0|Lip,s1 ≤ 1, we obtain

|zN |Lip,s ≤ |g]j|Lip,s + |Π⊥N T
]
j b
]
j|Lip,s

.s |ρ|Lip,s +N |b]j|Lip,s + (N + |R0|Lip,s)|b]j|Lip,s1

(9.3.69),(9.3.67)

.s NQ
(
|ρ|Lip,s + |R0|Lip,+,sδ

9
10
1 +N ς(s−s1)δ

9
10
1

)
. (9.3.72)
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By (9.3.64) we have ΠNzN = 0, and, using (9.3.72) and the assumption (9.2.9), we derive
that

|zN |Lip,s1+1 ≤ N−(s2−s1−1)|zN |Lip,s2

.s2 N
Q+1−(s2−s1)δ

− 11
10

1 +NQ+1−(1−ς)(s2−s1)δ
9
10
1 . (9.3.73)

Proof of (9.3.57)-(9.3.59). By the choice of N in (9.3.55), the condition (8.2.1)-(i), and
(9.3.68) we get

NQ+1 = o(δ
− 1

40
1 ) , (9.3.74)

NQ+1−(s2−s1)δ
− 11

10
1 = o(δ

7
4
1 ) , NQ+1−(1−ς)(s2−s1)δ

9
10
1 = o(δ

7
4
1 ) , (9.3.75)

∀s ≥ s2 , NQ+1+ς(s−s1)δ
9
10
1 = NQ+1+ς(s2−s1)δ

9
10
1 N ς(s−s2) ≤ δ

1
2
1 δ
−3ς

s−s2
s2−s1

1 . (9.3.76)

Then, by (9.3.67), (9.3.74) and (9.3.73), (9.3.75), for δ1 small enough, we deduce the bounds

|b]j|Lip,s1+1 � δ
7/8
1 , |zN |Lip,s1+1 � δ

7/4
1 . (9.3.77)

In addition, (9.3.69), (9.3.74), (9.3.76) imply the estimate in high norm

|b]j|Lip,s+1 ≤ δ
− 1

40
1

(
|ρ|Lip,s + |R0|Lip,+,s

)
+ δ

1
2
1 δ
−3ς

s−s2
s2−s1

1 . (9.3.78)

By Lemma 3.3.8, the function aj := ΠGb
]
j satisfies the same estimates as b]j in (9.3.77),

(9.3.78). In particular (9.3.57)-(9.3.58) hold and, by (9.3.65), Lemma 3.3.8, (9.3.77), we get

|Tjaj − gj|Lip,s1+1 = |ΠGzN |Lip,s1+1 � δ
7/4
1

proving (9.3.59).

Proof of (9.3.60)-(9.3.61). We denote by (aj)′, b]j
′

the functions obtained in (9.3.56) from

(A′0, ρ
′) instead of A0, ρ, and, similarly, by T ]j

′
the linear operator defined in (9.3.37) from

(A′0, ρ
′). Recall that to define T ]j we applied Proposition 4.1.5 with µ and r defined in

(9.3.45). In particular, we have

|µ− µ′| . |A0 − A′0|+,s1 , |r − r′|+,s1 . |R0 −R′0|+,s1 = |A0 − A′0|+,s1 .

Hence, by (4.1.21), (4.1.24) in Proposition 4.1.5, for any λ ∈ Λ2
j(ε; 1, A0) ∩ Λ2

j(ε; 1, A′0), we
have ∣∣(T ]j )−1

N − (T ]j
′
)−1
N

∣∣
s1
≤ N2(τ ′+ςs1)+3|A0 − A′0|+,s1 . (9.3.79)



CHAPTER 9. SPLITTING BETWEEN LOW-HIGH NORMAL SUBSPACES 225

By (9.3.56) and Lemma 3.3.8 we have

|(aj)′ − aj|s1+1 .s1 |b
]
j

′ − b]j|s1+1

(9.3.62),(3.3.20)

.s1 N
∣∣(T ]j ′)−1

N − (T ]j )
−1
N

∣∣
s1
|g]
′

j,N |s1 +N
∣∣(T ]j )−1

N

∣∣
s1
|g]
′

j,N − g
]
j,N |s1

(9.3.79),(9.3.53),(9.2.9)

.s1 N2(τ ′+ςs1)+4|A′0 − A0|+,s1δ
9
10
1 +N2(τ ′+ςs1)+4|ρ− ρ′|s1

(9.3.68)

.s1 NQδ
9
10
1 |A′0 − A0|+,s1 +NQ|ρ− ρ′|+,s1 (9.3.80)

(9.3.74)
� δ

7
8
1 |A′0 − A0|+,s1 + δ

− 1
40

1 |ρ− ρ′|+,s1

proving (9.3.60). In addition

T ]j b
]
j = g]j + zN , T ]j

′
b]j
′
= g]j

′
+ z′N ,

where, by (9.3.64),

|zN − z′N |s1+ 1
2

=
∣∣(− Π⊥N g

]
j + Π⊥N T

]
j b
]
j

)
−
(
− Π⊥N g

]
j

′
+ Π⊥N T

]
j

′
b]j
′)∣∣

s1+ 1
2

≤ |g]j − g
]
j

′|s1+ 1
2

+
∣∣Π⊥N (T ]j − T

]
j

′
)b]j
∣∣
s1+ 1

2

+
∣∣Π⊥N T ]j ′Π2N(b]j − b

]
j

′
)
∣∣
s1+ 1

2

(9.3.37),(9.3.38),(9.3.70)

.s1 |g]j − g
]
j

′|s1+ 1
2

+
∣∣A0 − A′0

∣∣
s1+ 1

2

∣∣b]j∣∣s1+ 1
2

+
(
N +

∣∣R0

∣∣
Lip,s1+ 1

2

)∣∣b]j − b]j ′∣∣s1+ 1
2

.s1 |g
]
j − g

]
j

′|s1+ 1
2

+
∣∣A0 − A′0

∣∣
+,s1

∣∣b]j∣∣s1+ 1
2

+ (N +
∣∣R0

∣∣
Lip,+,s1

)
∣∣b]j − b]j ′∣∣s1+ 1

2

(9.3.56),(9.3.77),(9.3.80)

.s1 |ρ− ρ′|+,s1 + δ
7
8
1 |A0 − A′0|+,s1

+NQ+1δ
9
10
1 |A′0 − A0|+,s1 +NQ+1|ρ− ρ′|+,s1

(9.3.74)
� δ

4
5
1 |A′0 − A0|+,s1 + δ

− 1
40

1 |ρ− ρ′|+,s1 . (9.3.81)

Finally, recalling (9.3.65) and Lemma 3.3.8, we obtain∣∣(Tjaj − gj)− (T ′j(a
j)′ − (gj)′)

∣∣
s1+ 1

2

= |ΠG(zN − z′N)|s1+ 1
2
.s1 |zN − z′N |s1+ 1

2

and (9.3.81) implies the estimate (9.3.61).

Step 3: Conclusion of the proof of Lemma 9.2.2. We consider the sets

Λ(ε; η, A0) :=
⋂
j∈F

Λ2
j(ε; η, A0)

⋂
Λ1(ε; η, A0) ,

1

2
≤ η ≤ 1 , (9.3.82)
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where the sets Λ1(ε; η, A0) are defined in (9.3.6) and the sets Λ2
j(ε; η, A0) in (9.3.51). By

Lemmata 9.3.3 and 9.3.5 and (9.3.51), the sets Λ(ε; η, A0), 1/2 ≤ η ≤ 1, satisfy the prop-
erties 1-3 listed in Proposition 9.1.1 for some 0 < α < 1/12.

For all λ ∈ Λ(ε; 1, A0) we define the self-adjoint operator

S(ϕ) :=

(
dN(ϕ) a∗(ϕ)
a(ϕ) 0

)
(9.3.83)

where dN(ϕ) = d∗N(ϕ) is defined in Lemma 9.3.2 and a := (aj)j∈F by Lemma 9.3.9. The
operator S defined in (9.3.83) satisfies the estimates (9.1.7)-(9.1.8) by (9.3.11) and (9.3.57)-
(9.3.58).

Proof of (9.2.11). The estimate (9.2.11) follows by (9.3.12), (3.3.44)-(3.3.45), and
(9.3.59), recalling the definition of Tj in (9.3.33) and of gj in (9.3.56).

Proof of (9.2.12)-(9.2.13). By (9.2.2), (9.3.8), Lemma 9.3.9, (3.3.44)-(3.3.45) and the
fact that

Tj(aj) = Tj(ΠGb
]
j) = ΠGT

]
j (b

]
j) ,

(see (9.3.56), (9.3.41)), we derive

|Jω̄ε · ∂ϕS + [JS, JA0]|Lip,+,s

≤ |ΠNρ1|Lip,+,s +
∑
j∈F

∣∣Tj(aj)∣∣Lip,s+ 1
2

.s |ρ1|Lip,+,s +
∑
j∈F

∣∣ΠNT
]
j (b

]
j)
∣∣
Lip,s+ 1

2

+
∑
j∈F

∣∣Π⊥N T ]j (b]j)∣∣Lip,s+ 1
2

.s |ρ1|Lip,+,s +
∣∣ΠNρ2

∣∣
Lip,s+ 1

2

+
∑
j∈F

∣∣Π⊥N T ]j (b]j)∣∣Lip,s+ 1
2

. (9.3.84)

Now ∣∣Π⊥N T ]j (b]j)∣∣Lip,s+ 1
2

(9.3.70)

.s
(
N + |R0|Lip,s+ 1

2

)
‖b]j‖Lip,s1 +

(
N + |R0|Lip,s1

)
‖b]j‖Lip,s+ 1

2

.s
(
N +

∣∣R0

∣∣
Lip,+,s

)
‖b]j‖Lip,s1 + (N + ε2)‖b]j‖Lip,s+ 1

2

(9.3.67),(9.3.69)

.s
(
N + |R0|Lip,+,s

)
NQδ

9/10
1

+NQ+1
(
(N ς(s−s1) + |R0|Lip,+,s)δ

9/10
1 + |ρ|Lip,+,s

)
.s N

Q+1
(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+NQ+1δ

9/10
1 N ς(s−s1)

.s δ
−1/40
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

7/8
1 δ

−3ς
s−s2
s2−s1

1 . (9.3.85)

Estimates (9.2.12) (for ε small enough) and (9.2.13) are immediate consequences of (9.3.84)
and (9.3.85).
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Proof of (9.2.14). By (9.3.83), Lemma 9.3.2, Lemma 3.3.10, and Lemma 9.3.9, for any
λ ∈ Λ(ε; 1, A0) ∩ Λ(ε; 1, A′0), we have

|SA0,ρ − SA′0,ρ′|+,s1 . |dN − d
′
N |s1+ 1

2
+
∑
j∈F

|aj − a′j|s1+ 1
2

≤ δ
4
5
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1

proving (9.2.14).

Proof of (9.2.15). Also (9.2.15) is a consequence of Lemma 9.3.2 and Lemma 9.3.9, more
precisely of (9.3.14), (3.3.44)-(3.3.45) and (9.3.61). This concludes the proof of Lemma
9.2.2.

9.4 Splitting step: Proof of Proposition 9.1.1

Recalling (3.2.28), (3.2.29), (3.2.30) we decompose the coupling term ρ ∈ L(H⊥S ) as

ρ = ΠDρ+ ΠOρ . (9.4.1)

The operator ΠOρ has the form (9.2.3), satisfies (9.2.10) and, by (3.3.35) and (9.1.2), it
satisfies also (9.2.9). We then apply Lemma 9.2.2 with A0 and ρ  ΠOρ. It provides the

existence of closed subsets Λ(ε; η, A0) ⊂ Λ̃, 1/2 ≤ η ≤ 1, satisfying the properties 1-3 of
Proposition 9.1.1, and a self-adjoint operator S(ϕ) := S(ε, λ)(ϕ) ∈ L(H⊥S ) of the form
(9.2.1), defined for all λ ∈ Λ(ε; 1, A0), such that

|Jω̄ε · ∂ϕS + [JS, JA0]− JΠOρ|Lip,+,s1 ≤ δ
7
4
1 (9.4.2)

(see (9.2.11)) and (9.1.7)-(9.1.8), (9.2.12), (9.2.13) hold.
We now conjugate the Hamiltonian operator

ω̄ε · ∂ϕ − JA , A = A0 + ρ
(8.1.1)

=
DV

1 + ε2λ
+R0 + ρ , (9.4.3)

by the symplectic linear invertible transformations eJS(ϕ). We first notice that the conju-
gated operator

e−JS(ϕ)
(
ω̄ε · ∂ϕ − JA(ϕ)

)
eJS(ϕ) = ω̄ε · ∂ϕ − JA+(ϕ) (9.4.4)

is Hamiltonian, because eJS(ϕ) is symplectic and Lemma 3.2.3 implies that the (unbounded)
operator A+(ϕ) is self-adjoint. We are going to prove that (see (9.4.13), (9.1.4))

A+(ϕ) =
DV

1 + ε2λ
+R+

0 (ϕ) + ρ+(ϕ) ,
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where
R+

0 := R0 + ΠDρ , (9.4.5)

and the estimates (9.1.11)-(9.1.13), (9.1.14) of Proposition 9.1.1 hold. First notice that the
bounded operator ρ+(ϕ) is self-adjoint because the operators A+(ϕ), DV and R+

0 (ϕ) are
self-adjoint.

Lie series expansion. Consider the 1-parameter family of operators

Xt := e−tJS(ϕ)
(
ω̄ε · ∂ϕ − JA

)
etJS(ϕ) , t ∈ [0, 1] , (9.4.6)

connecting X0 := ω̄ε · ∂ϕ − JA to

X1 := e−JS(ϕ)(ω̄ε · ∂ϕ − JA)eJS(ϕ) (9.4.4)
= ω̄ε · ∂ϕ − JA+ . (9.4.7)

Since the path t 7→ Xt solves the problem
dXt

dt
= −JSXt +XtJS = [−JS, Xt] = Ad(−JS)(Xt)

X0 = ω̄ε · ∂ϕ − JA ,
(9.4.8)

we deduce from (9.4.7), (9.4.6), (9.4.8) the Lie series expansion

ω̄ε · ∂ϕ − JA+ = X1 =
∑
k≥0

1

k!
Adk(−JS)(X0)

= X0 + Ad(−JS)(X0) +
∑
k≥2

1

k!
Adk(−JS)(X0) . (9.4.9)

Now

Ad(−JS)(X0) = X0JS − JSX0

= JS ω̄ε · ∂ϕ + ω̄ε · ∂ϕ(JS)− JAJS − (JS ω̄ε · ∂ϕ − JSJA)

= ω̄ε · ∂ϕ(JS) + [JS, JA]

= J ω̄ε · ∂ϕS + [JS, JA0] + [JS, Jρ] (9.4.10)

recalling that A = A0 + ρ, see (9.4.3). Comparing (9.4.9) and (9.4.10) we obtain

−JA+ = −JA+ Jω̄ε · ∂ϕS + [JS, JA0] + [JS, Jρ] +
∑
k≥2

1

k!
Adk(−JS)(X0)

= −JA0 − JΠDρ− Jρ+ (9.4.11)

where, recalling the decomposition (9.4.1),

−Jρ+ :=
(
Jω̄ε · ∂ϕS + [JS, JA0]− JΠOρ

)
+ [JS, Jρ] +

∑
k≥2

1

k!
Adk(−JS)(X0) . (9.4.12)
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Note that, by (9.4.2), the first addendum in the expression of −Jρ+ in (9.4.12) is very small
(in low norm) and the others terms in (9.4.12) are “quadratic” in ρ (note that the term ρ+

satisfies the estimate (9.4.17)). By (9.4.11) we have that

A+ = A0 + ΠDρ+ ρ+ (8.1.1)
=

DV

1 + ε2λ
+R0 + ΠDρ+ ρ+

(9.4.5)
=

DV

1 + ε2λ
+R+

0 + ρ+ . (9.4.13)

Lemma 9.4.1. A+ has the form (9.1.4)-(9.1.5) and (9.1.9)-(9.1.10) holds.

Proof. By (9.4.13), (8.1.2), (3.2.28), (3.2.29), (8.1.3), the operator A+ has the form
(9.1.4) with

D+
0 = D0 +D+(ρFF) = Diagj∈F

(
µj(ε, λ)Id2 + π+[ρ̂jj(0)]

)
,

V +
0 = V0 + ρGG .

Since ρjj(ϕ) is a 2× 2 symmetric matrix, (3.2.21) implies (9.1.5) with

µ+
j (ε, λ) = µj(ε, λ) +

1

2
Tr[ρ̂jj(0)] .

Hence
|µ+
j (ε, λ)− µj(ε, λ)|Lip + ‖V +

0 − V0‖Lip,0 . ‖ρ‖Lip,0

and by (9.1.2) the bounds (9.1.9)-(9.1.10) follow.

The first estimate in (9.1.11) follows by

|R+
0 −R0|Lip,+,s1

(9.4.5)
= |ΠDρ|Lip,+,s1

(3.3.35),(9.1.2)

.s1 δ1 ≤ δ
3
4
1 (9.4.14)

for δ1 ≤ ε3 small. For the estimate of |ρ+|Lip,+,s1 we use the following lemma.

Lemma 9.4.2. We have

|Ad(−JS)(X0)|Lip,+,s1 .s1 δ1 (9.4.15)

|Adk(−JS)(X0)|Lip,+,s1 ≤ δ
1+ 3

4
(k−1)

1 , ∀k ≥ 2 . (9.4.16)

Proof. By (9.4.10) and (3.3.24), we have

|Ad(−JS)(X0)|Lip,+,s1 =
∣∣Jω̄ε · ∂ϕS + [JS, JA0] + [JS, Jρ]

∣∣
Lip,+,s1

≤
∣∣Jω̄ε · ∂ϕS + [JS, JA0]− ΠOρ

∣∣
Lip,+,s1

+
∣∣ΠOρ

∣∣
Lip,+,s1

+ C(s1)|JS|Lip,s1+ 1
2
|ρ|Lip,+,s1

(9.4.2),(3.3.35),(9.1.2),(9.1.7)

≤ δ
7
4
1 + C(s1)δ1 + C(s1)δ

7
8

+1

1

.s1 δ1
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for δ1 small, proving (9.4.15). In order to prove (9.4.16), let mk := |Adk(−JS)(X0)|Lip,+,s1 .
For k ≥ 1, we get, for δ1 small,

mk+1 =
∣∣[−JS,Adk(−JS)(X0)]

∣∣
Lip,+,s1

(3.3.24)

≤ C(s1)|S|Lip,s1+ 1
2
mk

(9.1.7)

≤ C(s1)δ
7
8
1 mk

� δ
3
4
1 mk .

This iterative inequality and (9.4.15) imply (9.4.16).

We derive by (9.4.12) the bound

|ρ+|Lip,+,s1 ≤ |Jω̄ε · ∂ϕS + [JS, JA0]− JΠOρ|Lip,+,s1 + |[JS, Jρ]|Lip,+,s1

+
∑
k≥2

1

k!

∣∣Adk(−JS)(X0)
∣∣
Lip,+,s1

(9.4.2),(3.3.24),(9.1.2),(9.1.7),(9.4.16)

≤ δ
7
4
1 + C(s1)δ

7
8

+1

1 + δ
7
4
1 � δ

3
2
1 (9.4.17)

for δ1 ≤ ε3 small. This proves the second estimate in (9.1.11).
There remains to estimate the high norms |R+

0 |Lip,+,s + |ρ+|Lip,+,s for s ≥ s2. First, by
(9.4.5) and (3.3.35),

|R+
0 |Lip,+,s = |R0 + ΠDρ|Lip,+,s ≤ |R0|Lip,+,s + C(s)|ρ|Lip,+,s (9.4.18)

which implies the bound for |R+
0 |Lip,+,s in (9.1.14) (actually (9.4.18) is much better than

the estimate (9.1.14) for |R+
0 |Lip,+,s). For |ρ+|Lip,+,s we use the following lemma.

Lemma 9.4.3. For k ≥ 1,

|Adk(−JS)(X0)|Lip,+,s ≤ (C(s))kMsδ
3 k−1

4
1

(9.4.19)

where

Ms := δ
− 1

4
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

− 3
4

1 δ
−3ς

s−s2
s2−s1

1 . (9.4.20)

Proof. By (9.4.10) and (3.3.24) we have

|Ad(−JS)(X0)|Lip,+,s ≤
∣∣Jω̄ε · ∂ϕS + [JS, JA0]

∣∣
Lip,+,s

+ |[JS, Jρ]
∣∣
Lip,+,s

≤
∣∣Jω̄ε · ∂ϕS + [JS, JA0]

∣∣
Lip,+,s

+ C(s)
∣∣S∣∣

Lip,s1+ 1
2

|ρ|Lip,+,s

+ C(s)|S|Lip,s+ 1
2
|ρ|Lip,+,s1

(9.2.13),(9.1.7),(9.1.8)

≤ C(s)
[
δ
− 1

4
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

− 3
4

1 δ
−3ς

s−s2
s2−s1

1

]
.
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Hence, the estimate (9.4.19) is proved for k = 1, recall (9.4.20). In order to prove (9.4.19)
for k ≥ 2, let Mk := |Adk(−JS)(X0)|Lip,+,s. For k ≥ 1, we have, by (3.3.24),

Mk+1 =
∣∣[−JS,Adk(−JS)(X0)]

∣∣
Lip,+,s

≤ C(s)|S|Lip,s1+ 1
2
Mk + C(s)|S|Lip,s+ 1

2
|Adk(−JS)(X0)|Lip,+,s1

(9.1.7),(9.1.8),(9.4.20),(9.4.16)

≤ C(s)
(
δ

7
8
1 Mk +Msδ

1+ 3
4

(k−1)

1

)
. (9.4.21)

Then (9.4.19) follows by iteration from (9.4.21), provided ε is small enough (independently
of s).

Finally, by (9.4.12) and (9.4.10) we get

−Jρ+ = −JΠOρ+
∑
k≥1

1

k!
Adk(−JS)(X0) (9.4.22)

so that

|ρ+|Lip,+,s ≤ |ΠOρ|Lip,+,s +
∑
k≥1

1

k!

∣∣Adk(−JS)(X0)
∣∣
Lip,+,s

(3.3.35),(9.4.19)

≤ C(s)|ρ|Lip,+,s +Msδ
−3/4
1

∑
k≥1

(
C(s)δ

3/4
1

)k
k!

≤ C(s)|ρ|Lip,+,s +MsC(s)
eC(s)δ

3/4
1 − 1

C(s)δ
3/4
1

(9.4.20)

.s δ
−1/4
1

(
|R0|Lip,+,s + |ρ|Lip,+,s

)
+ δ

−3/4
1 δ

−3ς
s−s2
s2−s1

1 . (9.4.23)

The estimate (9.1.14) is a consequence of (9.4.18) and (9.4.23). We can prove in the same
way (9.1.13) taking δ1 small enough (depending on s2).

At last, by (9.4.5) and (3.3.35) we get

|R′0
+ −R+

0 |+,s1 ≤ |R′0 −R0|+,s1 + C|ρ′ − ρ|+,s1

for some positive C := C(s1), proving (9.1.15).

Lemma 9.4.4. (9.1.16) holds.

Proof. By (9.4.22) we have

−J(ρ+ − (ρ+)′) = −JΠO(ρ− ρ′) + Ad(−JS)(X0)− Ad(−JS′)(X
′
0)

+
∑
k≥2

1

k!

(
Adk(−JS)(X0)− Adk(−JS′)(X

′
0)
)
. (9.4.24)
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Set
Vk := Adk(−JS)(X0)− Adk(−JS′)(X

′
0) , vk := |Vk|+,s1 , k ≥ 1 . (9.4.25)

By (9.2.15) in Lemma 9.2.2 (that we applied with ΠOρ instead of ρ), and recalling (9.4.10),
we have

|V1 − JΠO(ρ− ρ′)|+,s1 ≤ δ
3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ΠO(ρ− ρ′)|+,s1
+ |[JS, JΠOρ]− [JS ′, JΠOρ

′]|+,s1 (9.4.26)

.s1 δ
3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1 (9.4.27)

because the term in (9.4.26) is bounded as

|[JS, JΠOρ]− [JS ′, JΠOρ
′]|+,s1

(3.3.23)

.s1 |S − S ′|s1+ 1
2
|ΠOρ|+,s1 + |S ′|s1+ 1

2
|ΠO(ρ− ρ′)|+,s1

(3.3.35)

.s1 |S − S ′|+,s1|ρ|+,s1 + |S ′|s1+ 1
2
|ρ− ρ′|+,s1

(9.2.14),(9.1.2),(9.1.7)

.s1
(
δ

3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1
)
δ1

+ δ
7
8
1 |ρ− ρ′|+,s1

(the estimate (9.1.7) is applied to S ′). By (9.4.27) and (3.3.35) we deduce that

v1 := |V1|+,s1 ≤ C(s1)
(
δ

3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1
)
. (9.4.28)

Now, recalling (9.4.25),

Vk+1 = Ad(−JS)(Vk) +
[
JS ′ − JS,Adk(−JS′)(X

′
0)
]
.

Hence, for k ≥ 1, we get, setting m′k := |Adk(−JS′)(X
′
0)|+,s1 ,

vk+1 := |Vk+1|+,s1 .s1 |S|+,s1vk + |S − S ′|+,s1m′k
≤ C(s1)δ

7
8
1 vk + C(s1)δ

1+ 3
4

(k−1)

1

(
δ

3
4
1 |A0 − A′0|+,s1 + δ

− 1
30

1 |ρ− ρ′|+,s1
)

by (9.1.7), (9.2.14) and Lemma 9.4.2. From the previous iterative estimate and (9.4.28),
we may derive ∑

k≥2

vk ≤ δ
3
4
1

(
|A0 − A′0|+,s1 + |ρ− ρ′|+,s1

)
. (9.4.29)

Finally, recalling (9.4.24) and (9.4.25), we get

|ρ+ − ρ′+|+,s1 ≤
∣∣V1 − JΠO(ρ− ρ′)

∣∣
+,s1

+
∑
k≥2

vk

(9.4.27),(9.4.29)

≤ δ
1
2
1 |A0 − A′0|+,s1 + δ

− 1
20

1 |ρ− ρ′|+,s1
which is (9.1.16).



Chapter 10

Construction of approximate right
inverse

The goal of this Chapter is to prove Proposition 8.2.1.

10.1 Splitting of low-high normal subspaces

The first step in order to find an approximate solution of the equation(
ω̄ε · ∂ϕ − J(A0 + ρ)

)
h = g , (10.1.1)

see (8.2.7), is to apply the splitting Corollary 9.1.2, whose assumptions are verified by
the hypothesis of Proposition 8.2.1. As a consequence there are sets Λ∞(ε; η, A0, ρ) ⊂ Λ̃,
1/2 ≤ η ≤ 5/6, and a sequence of symplectic linear transformations Pn(ϕ) ∈ L(H⊥S ), n ≥ 1,
satisfying (9.1.21)-(9.1.23), such that, for all λ ∈ Λ∞(ε; 5/6, A0, ρ), the conjugation (9.1.34)
holds for any n ≥ 1, namely(

ω̄ε · ∂ϕ − JA0 − Jρ
)
Pn(ϕ) = Pn(ϕ)

(
ω̄ε · ∂ϕ − JAn − Jρn

)
, (10.1.2)

where the operators An have the form described in (9.1.25)-(9.1.26) and satisfy (9.1.27)-
(9.1.31), in particular An ∈ C(2C1, c1/2, c2/2) is an admissible split operator according
to Definition 8.1.1. Moreover the coupling operator ρn ∈ L(H⊥S ) in (10.1.2) satisfies the
estimates (9.1.32)-(9.1.33), in particular it is small in the low norm | |Lip,+,s1 .

Thus, given a function g satisfying (8.2.5), in order to find a function h such that (8.2.7)
holds with a remainder r satisfying (8.2.8), we make the change of variables

g′(ϕ) := P−1
n (ϕ)g(ϕ) ∈ H⊥S , h′(ϕ) := P−1

n (ϕ)h(ϕ) ∈ H⊥S , (10.1.3)

and we look for an approximate solution of the equation(
ω̄ε · ∂ϕ − JAn − Jρn

)
h′ = g′ . (10.1.4)

233
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In sections 10.2 and 10.3 we shall solve approximately the more general equation(
ω̄ε · ∂ϕ − JA(ε, λ, ϕ)− J%

)
h′ = g′ (10.1.5)

with an admissible split operator A ∈ C(2C1, c1/2, c2/2) as in Definition 8.1.1, i.e. of the
form

A(ε, λ, ϕ) =
DV

1 + ε2λ
+ R(ε, λ, ϕ) , |R|Lip,+,s1 ≤ 2C1ε

2 , (10.1.6)

and a self-adjoint operator % ∈ L(H⊥S ) satisfying suitable smallness conditions (see (10.3.2)).
Multiplying by J both sizes of the equation (10.1.5), we look for an approximate solution

h′ of
Lh′ = Jg′ with L := LD + % , LD := Jω̄ε · ∂ϕ + A . (10.1.7)

Notice that the operator LD is block-diagonal according to the splitting H⊥S = HF ⊕ HG,
as the admissible split operator A ∈ C(2C1, c1/2, c2/2).

In section 10.2 we shall first find an approximate right inverse of LD. Then in section
10.3 we shall obtain, by a Neumann series argument, an approximate right inverse of the
whole L = LD + % under a suitable smallness condition on %, see (10.3.2).

Finally in section 10.4 we shall apply the results of sections 10.2 and 10.3 to obtain an
approximate solution of the equation (10.1.5) with A = An and % = ρn, namely of equation
(10.1.4), and, ultimately, of (10.1.1). The number n of splitting steps will be chosen in
section 10.4 large enough (see (10.4.3)-(10.4.4)), so that the coupling term ρn is a small
perturbation of LD, satisfying the smallness condition (10.3.2).

10.2 Approximate right inverse of LD
We first obtain an approximate right inverse of the block diagonal operator LD introduced
in (10.1.7).

Proposition 10.2.1. (Approximate right inverse of LD). Let A be a split admissible
operator in C(2C1, c1/2, c2/2) according to Definition 8.1.1. Then there are closed subsets
Λ(ε; η,A), 1/2 ≤ η ≤ 1, satisfying Properties 1-3 of Proposition 4.1.5, and N̄ ∈ N such
that, for all N ≥ N̄ , there exists a linear operator ID := ID,N , defined for λ ∈ Λ(ε; η,A),
with the following properties:

• setting
Q′ := 2(τ ′ + ςs1) + 3 , (10.2.1)

where τ ′ is given by Proposition 4.1.5, we have

‖IDg′‖Lip,s0 .s0 N
Q′‖g′‖Lip,s0 , ‖IDg′‖Lip,s1 .s1 N

Q′‖g′‖Lip,s1 , (10.2.2)



CHAPTER 10. CONSTRUCTION OF APPROXIMATE RIGHT INVERSE 235

and, ∀s ≥ s1,

‖IDg′‖Lip,s ≤ CNQ′‖g′‖Lip,s + C(s)NQ′(N ς(s−s1) + |R|Lip,+,s)‖g′‖Lip,s1 (10.2.3)

where C is a constant independent of s (it depends on s1) and R is introduced in
(10.1.6). Furthermore

‖IDg′‖Lip,s0 .s1 ‖g′‖Lip,s0+Q′ . (10.2.4)

• ID is an approximate right inverse of LD, in the sense that

‖(LDID − Id)g′‖Lip,s1

.s3 N
Q′+1−(s3−s1)

(
‖g′‖Lip,s3 +

(
N ς(s3−s1) + |R|Lip,+,s3

)
‖g′‖Lip,s1

)
. (10.2.5)

The rest of this section is devoted to the proof of Proposition 10.2.1.
Recalling Definition 8.1.1, the split admissible operator A ∈ C(2C1, c1/2, c2/2) in (10.1.6)

is block-diagonal according to the splitting H⊥S = HF ⊕HG, i.e.

A(ε, λ, ϕ) =

(
D(ε, λ) 0

0 W(ε, λ, ϕ)

)
, (10.2.6)

and, moreover, in the basis of the eigenfunctions {(Ψj, 0), (0,Ψj)}j∈F (see (3.1.9)), the
operator D is represented by the diagonal matrix

D := Diagj∈Fmj(ε, λ)Id2 , (10.2.7)

where each mj(ε, λ) ∈ R satisfies (see (8.1.4))

|mj(ε, λ)− µj| ≤ C1ε
2 ,

and the estimates (see (8.1.7))

∀j ∈ F
(c2

2
ε2 ≤ dλmj(ε, λ) ≤ 2c−1

2 ε2 or − 2c−1
2 ε2 ≤ dλmj(ε, λ) ≤ −c2

2
ε2
)

(10.2.8)

and, by (8.1.8),

dλW(ε, λ) ≤ −c1

2
ε2Id . (10.2.9)

By (10.2.6), in order to find an approximate solution of (Jω̄ε · ∂ϕ + A)h′ = g′, where
g′ ∈ L2(T|S|, H⊥S ), we have to solve approximately the pair of decoupled equations(

Jω̄ε · ∂ϕ + D(ε, λ)
)
h′F = g′F (10.2.10)(

Jω̄ε · ∂ϕ + W(ε, λ, ϕ)
)
h′G = g′G (10.2.11)
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having used the notation

h′ =

(
h′F
h′G

)
, g′ =

(
g′F
g′G

)
,

h′F := ΠFh
′ , h′G := ΠGh

′ , g′F := ΠFg
′ , g′G := ΠGg

′ .

(10.2.12)

Solution of (10.2.10). Recalling (10.2.6) and (10.2.7), and decomposing

h′F =
∑
j∈F

h′j(ϕ)Ψj(x) , h′j(ϕ) ∈ R2 ,

g′F =
∑
j∈F

g′j(ϕ)Ψj(x) , g′j(ϕ) ∈ R2 ,
(10.2.13)

the equation (10.2.10) reduces to the decoupled system of scalar equations(
Jω̄ε · ∂ϕ + mj(ε, λ)

)
h′j(ϕ) = g′j(ϕ) , j ∈ F . (10.2.14)

Setting, for 1/2 ≤ η ≤ 1,

Λ1(ε; η,A) :=
{
λ ∈ Λ̃ : |ω̄ε · `+ mj(ε, λ)| ≥ γ1

2η〈`〉τ
, ∀(`, j) ∈ Z|S| × F

}
(10.2.15)

with γ1 = γ0/2 and τ satisfying (9.3.7), we have the following usual lemma.

Lemma 10.2.2. (Solution of (10.2.10)) For all λ ∈ Λ1(ε; 1,A) the equation (10.2.10)

has a solution h′F =
∑
j∈F

h′j(ϕ)Ψj(x), written as in (10.2.13), satisfying

‖h′j‖Lip,Hs(T|S|) ≤ C‖g′j‖Lip,Hs+2τ (T|S|) , ∀j ∈ F . (10.2.16)

Moreover, for all N ∈ N\{0},

‖ΠNh
′
j‖Lip,Hs(T|S|) ≤ C‖ΠNg

′
j‖Lip,Hs+2τ (T|S|)

≤ CN2τ‖ΠNg
′
j‖Lip,Hs(T|S|) , ∀j ∈ F .

(10.2.17)

Proof. By the Fourier expansion

g′j(ϕ) =
∑
`∈Z|S|

ĝ′j(`)e
i`·ϕ , ĝ′j(`) ∈ C2 , ĝ′j(`) = ĝ′j(−`) , (10.2.18)

h′j(ϕ) =
∑
`∈Z|S|

ĥ′j(`)e
i`·ϕ , ĥ′j(`) ∈ C2 , ĥ′j(`) = ĥ′j(−`) , (10.2.19)
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each equation (10.2.14) amounts to

Mj,`ĥ′j(`) = ĝ′j(`) , ` ∈ Z|S| , where Mj,` := iω̄ε · `J + mjId2 , j ∈ F , (10.2.20)

are 2× 2 self-adjoint matrices with eigenvalues mj ± ω̄ε · `. As a consequence, for any λ in
the set Λ1(ε; 1,A) defined in (10.2.15), the matrices Mj,` are invertible and ‖M−1

j,` ‖ ≤ C〈`〉τ ,
for some positive constant C := C(γ0), for any ` ∈ Z|S|. Hence the equation (10.2.14) has
the unique solution

h′j(ϕ) =
∑
`∈Z|S|

M−1
j,` ĝ

′
j(`)e

i`·ϕ satisfying ‖h′j‖Hs(T|S|) ≤ C‖g′j‖Hs+τ (T|S|) . (10.2.21)

In addition ĥ′j(`) = M−1
j,` ĝ

′
j(`) satisfies the reality condition (10.2.19) since, taking the

complex conjugated equation in (10.2.20), we obtain, by (10.2.18),

Mj,−`ĥ′j(`) = ĝ′j(−`)

and, therefore, by uniqueness ĥ′j(`) = ĥ′j(−`).
Moreover, since ‖M−1

j,` ‖ ≤ C〈`〉τ and ‖Mj,`‖lip ' |mj|lip ≤ 2c−1
2 ε2 (see (10.2.8)), we get

‖h′j‖lip,Hs(T|S|) .
( ∑
`∈Z|S|
〈`〉2s

(
‖M−1

j,` ‖lip|ĝ′j(`)|+ ‖M−1
j,` ‖|ĝ′j(`)|lip

)2
)1/2

.
( ∑
`∈Z|S|
〈`〉2s

(
‖M−1

j,` ‖
2‖Mj,`‖lip|ĝ′j(`)|+ ‖M−1

j,` ‖|ĝ′j(`)|lip
)2
)1/2

.
( ∑
`∈Z|S|
〈`〉2s

(
〈`〉2τε2|ĝ′j(`)|+ 〈`〉τ |ĝ′j(`)|lip

)2
)1/2

. ε2‖g′j‖Hs+2τ (T|S|) + ‖g′j‖lip,Hs+τ (T|S|) . (10.2.22)

The bounds (10.2.21) and (10.2.22) imply (10.2.16). The estimate (10.2.17) is obtained in
the same way, just considering sums over |`| ≤ N .

Moreover, with arguments similar to those used in Lemmas 9.3.3 and 9.3.5, using
(10.2.8), the fact that mj(ε, λ) = µj + O(ε2), and the unperturbed first order Melnikov
non-resonance conditions (1.2.7), we deduce the following measure estimate.

Lemma 10.2.3. (Measure estimate) Let τ ≥ (3/2)τ0 + 3 + |S| (τ0 is the Diophantine
exponent in (1.2.7)). Then the sets Λ1(ε; η,A) defined in (10.2.15) satisfy, for ε small
enough (depending on C1, c1),

|[Λ1(ε; η,A)]c ∩ Λ̃| ≤ ε , ∀1/2 ≤ η ≤ 1 . (10.2.23)

Moreover, if |A′ − A|+,s1 ≤ δ ≤ ε3 on Λ̃ ∩ Λ̃′, then, for η ∈ [(1/2) +
√
δ, 1],

|Λ̃′ ∩ [Λ1(ε; η,A′)]c ∩ Λ1(ε; η −
√
δ,A)| ≤ δ

1
12 . (10.2.24)
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Remark 10.2.4. The measure of the set [Λ1(ε; η,A)]c is smaller than εp, for any p, taking
the exponent τ in (10.2.15) large enough. This is analogous to the situation described in
remark 9.3.4.

Approximate solution of (10.2.11). We now solve approximately the equation (10.2.11),
that we write as

T (h′G) = g′G , T := Jω̄ε · ∂ϕ + W(ε, λ, ϕ) , (10.2.25)

where we regard T as an unbounded operator of L2(T|S|, HG). We first extend the operator
T to an unbounded linear operator T ] acting on the whole space

L2(T|S|, H) , H = HS∪F ⊕HG = HS ⊕HF ⊕HG ,

(see (3.1.7)), by defining

T ] := Jω̄ε · ∂ϕ +
DV

1 + ε2λ
ΠS∪F +

c

1 + ε2λ
ΠS + iGW(ε, λ, ϕ)ΠG

(10.2.6),(10.1.6)
= Jω̄ε · ∂ϕ +

DV

1 + ε2λ
+

c

1 + ε2λ
ΠS + R(ε, λ, ϕ)ΠG (10.2.26)

where c > 0 is a positive constant that we fix according to (4.1.5), iG is the canonical
injection defined in (9.3.34) and R(ε, λ, ϕ) is given in (10.1.6).

According to the decomposition H = HS∪F ⊕HG the operator T ] is represented by the
matrix of operators

T ] =

Jω̄ε · ∂ϕ +
DV

1 + ε2λ
+

c

1 + ε2λ
ΠS 0

0 T

 , TΠG = ΠGT
] , (10.2.27)

and, according to the decomposition H = HS ⊕ HF ⊕ HG, and recalling (10.2.25), by the
matrix of operators

T ] = Jω̄ε · ∂ϕ +


DV + c Id

1 + ε2λ
0 0

0
DV

1 + ε2λ
0

0 0 W(ε, λ, ϕ)

 . (10.2.28)

We look for an approximate solution of

T ]h]
′
= g]G

′
where g]G

′
:= iGg

′
G . (10.2.29)

With this aim we apply the multiscale Proposition 4.1.5 (in case (4.1.1)-(i) and (4.1.6)) to
the operator

Lr = (1 + ε2λ)T ]
(10.2.26)

= Jω · ∂ϕ +DV + cΠS + r = Jω · ∂ϕ +Xr (10.2.30)
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where
ω = (1 + ε2λ)ω̄ε , r = (1 + ε2λ)RΠG , Xr = DV + cΠS + r .

The operator Xr belongs to the class C(C1, c1) (see Definition 4.1.2-(i)) for some positive
constant C1, c1 > 0. Indeed Xr is self-adjoint with respect to the scalar product L2(T|S|, H)
(argue as in Lemma 9.3.6) and r = (1 + ε2λ)RΠG has off-diagonal decay by (10.1.6). More
precisely, arguing as in Lemma 9.3.7, we obtain

|r|Lip,+,s

(3.3.24)

.s (1 + ε2λ)|R|Lip,+,s|ΠG|Lip,s+ 1
2

(3.3.33)

.s |R|Lip,+,s , (10.2.31)

and therefore, by (10.1.6), |r|Lip,+,s1 ≤ C(s1)ε2. Finally, recalling (10.2.30) and (10.2.28),
according to the decomposition H = HS ⊕HF ⊕HG, we represent

Xr

1 + ε2λ
=


DV + c Id

1 + ε2λ
0 0

0
DV

1 + ε2λ
0

0 0 W(ε, λ, ϕ)


and we deduce by the assumption (10.2.9), and arguing as in Lemma 9.3.8, that

dλ

( Xr

1 + ε2λ

)
≤ −c ε2 Id

for some constant c > 0. We have proved that Xr is in C(C1, c1) according to Definition
4.1.2-(i), for suitable positive constants C1, c1.

Thus Proposition 4.1.5 implies the existence of ε0 > 0 (depending only on fixed positive
constants as C1, c1, γ1, τ1), of closed subsets

Λ2(ε; η,A) , 1/2 ≤ η ≤ 1 , satisfying Properties 1− 3 of Proposition 4.1.5 , (10.2.32)

and N̄ ∈ N, such that, for all λ ∈ Λ2(ε; 1,A), ∀N ≥ N̄ ,

∀s ≥ s0 , |(T ]N)−1|Lip,s ≤ C(s)NQ′
(
N ς(s−s1) + |R|Lip,+,s

)
(10.2.33)

|(T ]N)−1|Lip,s0 ≤ C(s0)NQ′ , |(T ]N)−1|Lip,s1 ≤ C(s1)NQ′ (10.2.34)

(see (4.1.20), (4.1.23), (10.2.31)) where Q′ is defined in (10.2.1) and (T ]N)−1 denotes

i) the right inverse of ΠN(T ])|H2N
defined in Proposition 4.1.5 if N̄ ≤ N < N(ε) ,

ii) the inverse of ΠN(T ])|HN if N ≥ N(ε) ,
(10.2.35)

and HN are the finite dimensional subspaces defined in (4.1.10). We lay the stress on the
fact that N̄ can be regarded as a fixed constant, being independent of ε. Note also that
(10.2.34) is a straightforward consequence of (10.2.33), by (10.1.6).
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Now, given g′G ∈ L2(T|S|, HG), we define the following approximate solution of the
equation (10.2.29),

h′G := ΠGh
]′ , h]

′
:= (T ]N)−1g

]
N , g

]
N := ΠNg

]
G
′
, g]G

′
:= iGg

′
G , (10.2.36)

and notice that, by (10.2.35),

h]
′ ∈ H2N if N < N(ε) , and h]

′ ∈ HN if N ≥ N(ε) . (10.2.37)

Finally, for all λ in

Λ(ε; η,A) := Λ1(ε; η,A) ∩ Λ2(ε; η,A) , 1/2 ≤ η ≤ 1 , (10.2.38)

where Λ(1), Λ(2) are the sets introduced in (10.2.15), (10.2.32), we define the following
approximate right inverse ID of the operator LD: given g′ ∈ L2(T|S|, H⊥S ), let

h′ := IDg′ := ΠNh
′
F + h′G , ΠNh

′
F :=

∑
j∈F

(ΠNh
′
j(ϕ))Ψj(x) , (10.2.39)

where h′F is the solution of equation (10.2.10) given in Lemma 10.2.2, h′G is defined in
(10.2.36) and the projector ΠN applies to functions depending only on the variable ϕ as in
(9.3.9).

Lemma 10.2.5. The operator ID defined in (10.2.39) satisfies (10.2.2)-(10.2.3).

Proof. We first estimate the function h′G = ΠGh
]′ = ΠG(T ]N)−1g

]
N in (10.2.36). Since

|ΠG|Lip,s ≤ C(s) by (3.3.33), the estimate (3.3.12) implies that, ∀s ≥ s0,

‖h′G‖Lip,s = ‖ΠGh
]′‖Lip,s = ‖ΠG(T ]N)−1g

]
N‖Lip,s (10.2.40)

≤ C‖(T ]N)−1g
]
N‖Lip,s + C(s)‖(T ]N)−1g

]
N‖Lip,s1

(3.3.12)

≤ C|(T ]N)−1|Lip,s1‖g
]
N‖Lip,s + C(s)|(T ]N)−1|Lip,s‖g]N‖Lip,s1

(10.2.33),(10.2.34)

≤ CNQ′‖g]N‖Lip,s + C(s)NQ′(N ς(s−s1) + |R|Lip,+,s)‖g]N‖Lip,s1

(10.2.36),(4.1.13)

≤ CNQ′‖g′G‖Lip,s + C(s)NQ′(N ς(s−s1) + |R|Lip,+,s)‖g′G‖Lip,s1 (10.2.41)

where C is a positive constant which depends on s1. Moreover (10.2.40), (3.3.33), (3.3.8),
(10.2.34), (10.2.36),(4.1.13) imply

‖h′G‖Lip,s1 .s1 ‖h]
′‖Lip,s1 .s1 N

Q′‖g′G‖Lip,s1 , (10.2.42)

‖h′G‖Lip,s0 .s0 ‖h]
′‖Lip,s0 .s0 N

Q′‖g′G‖Lip,s0 . (10.2.43)
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In addition, Lemma 10.2.2 and the fact that Ψj(x) ∈ C∞(Td) for all j ∈ F imply that ΠNh
′
F

defined in (10.2.39) satisfies, for s ≥ s0,

‖ΠNh′F‖Lip,s

(3.5.2)

≤ max
j∈F

(
C‖Ψj‖s1‖ΠNh

′
j‖Lip,Hs(T|S|) + C(s)‖Ψj‖s‖ΠNh

′
j‖Lip,Hs1 (T|S|)

)
(10.2.17)

≤ N2τ
(
C max

j∈F
‖g′j‖Lip,Hs(T|S|) + C(s) max

j∈F
‖g′j‖Lip,Hs1 (T|S|)

)
≤ N2τ

(
C‖g′F‖Lip,s + C(s)‖g′F‖Lip,s1

)
(10.2.44)

using that g′j(ϕ) = 〈g′F(ϕ, ·),Ψj〉L2
x
, see (10.2.13).

In conclusion, by (10.2.41), (10.2.44), the fact that 2τ < Q′, (10.2.42), (10.2.43), (10.1.6),
the function h′ := IDg′ defined in (10.2.39) satisfies (10.2.3) and (10.2.2).

Lemma 10.2.6. The operator ID defined in (10.2.39) satisfies (10.2.4).

Proof. Recalling (10.2.39), that Ψj(x) ∈ C∞(Td) for all j ∈ F, and arguing as in
(10.2.44), we obtain

‖ΠNh′F‖Lip,s0 .s0 max
j∈F
‖h′j‖Lip,Hs0 (T|S|)

(10.2.16)

.s0 max
j∈F
‖g′j‖Lip,Hs0+2τ (T|S|)

.s1 ‖g′F‖Lip,s0+Q′

where Q′ = 2(τ ′ + ςs1) + 3 is defined in (10.2.1). Hence, in order to prove (10.2.4), it is
sufficient to show that

‖h′G‖Lip,s0 .s1 ‖g′G‖Lip,s0+Q′ . (10.2.45)

We use a dyadic decomposition argument. First, given an integer N > N̄ , we define a
sequence (Mp)0≤p≤q of positive integers, q ≥ 1, by

M0 := N̄ , Mp := 2Mp−1 ,∀p ∈ [[1, q − 1]] and 2Mq−1 ≤Mq := N < 4Mq−1 ,

so that
[[0, N ]] = [[0,M0]] ∪ . . . ∪ [[Mq−1,Mq]] .

For 0 ≤ p ≤ q, we set Πp := ΠMp and we define the dyadic projectors

∆0 := Π0 , ∆p := Πp − Πp−1 = ΠpΠ
⊥
p−1 , ∀p ∈ [[1, q]] , Π⊥p−1 := Id− Πp−1 .

For any function h ∈ HN (recall that N = Mq) we consider its dyadic decomposition

h =

q∑
p=0

hp where hp := ∆ph , (10.2.46)
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and, for 0 ≤ p ≤ q, we denote

Hp :=

p∑
`=0

h` = Πph . (10.2.47)

In order to estimate h′G := ΠGh
]′ we recall that, by (10.2.36) and (10.2.35), we have

ΠNT
]h]
′
= g

]
N , ∀N ≥ N̄ , (10.2.48)

and the function h]
′

satisfies (10.2.37). The key estimate is the following:

• Let g]p := ∆pg
]
N . Then, each function h]

′

p = ∆ph
]′ , p ∈ [[0, q]], satisfies

‖h]′p ‖Lip,s0 .s1 N̄
Q′
∥∥g]p−1 + g]p + g]p+1 + g]p+2

∥∥
Lip,s0+Q′

+M−1
p

(
‖h]′‖Lip,s0 + ‖g′G‖Lip,s0

) (10.2.49)

with the convention that g]l := 0 for l < 0 or l > q.

We split the proof of (10.2.49) in different cases.

Case I: 0 ≤ p ≤ q − 3 and Mp+1 ≤ N(ε). Applying in (10.2.48) the projectors Πp+1 and
Πp+2 for 0 ≤ p ≤ q − 3, and using the splitting Id = Πp+1 + Π⊥p+1, we get

Πp+2T
]Πp+1h

]′ + Πp+2T
]Π⊥p+1h

]′ = G]
p+2 where G]

p+2 := Πp+2g
]
N , (10.2.50)

and therefore
T ]p+1H

]′

p+1 = G]
p+2 − Πp+2T

]Π⊥p+1h
]′ (10.2.51)

where T ]p+1 := Πp+2(T ])|HMp+1
and H]′

p+1 := Πp+1h
]′.

We claim that T ]p+1 has a left inverse. Indeed, by (10.2.32)-(10.2.35) (applied with Mp+1

instead of N) each operator Πp+1(T ])|HMp+2
has a right inverse

Rp+1 := (T ]Mp+1
)−1 : HMp+1 7→ HMp+2 .

Taking the adjoints in the identity Πp+1T
]Rp+1 = IdHMp+1

, we obtain

R∗p+1T
]
p+1 = IdHMp+1

where T ]p+1 = Πp+2(T ])|HMp+1
,

i.e. R∗p+1 : HMp+2 → HMp+1 is a left inverse of T ]p+1, that we denote by (T ]p+1)−1 := R∗p+1.

By (3.3.13) and since Rp+1 = (T ]Mp+1
)−1 satisfies (10.2.34) we deduce that∣∣(T ]p+1)−1
∣∣
Lip,s1

≤ C(s1)MQ′

p+1 . (10.2.52)
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Applying the left inverse (T ]p+1)−1 in (10.2.51) we deduce that H]′

p+1 = Πp+1h
]′ may be

expressed as
H]′

p+1 = (T ]p+1)−1G]
p+2 − (T ]p+1)−1Πp+2T

]Π⊥p+1h
]′ .

Finally, applying the projector ∆p we get, setting g]p := ∆pg
]
N ,

h]
′

p := ∆pH
]′

p+1 = ∆p(T ]p+1)−1(g]p−1 + g]p + g]p+1 + g]p+2) (10.2.53)

+ ∆p(T ]p+1)−1G]
p−2 (10.2.54)

−∆p(T ]p+1)−1Πp+2T
]Π⊥p+1h

]′ . (10.2.55)

For p = 0, 1 the previous formula holds with g]−1 := 0 and G]
−2 := G]

−1 := 0. In particular
for p = 0, 1 the term (10.2.54) is not present.

We now estimate separately the terms in (10.2.53)-(10.2.55).

Estimate of (10.2.53). By (3.3.8), (10.2.52) and since Mp+1 = 2Mp we have, for
p = 0, . . . , q − 3,

‖∆p(T ]p+1)−1(g]p−1 + g]p + g]p+1 + g]p+2)‖Lip,s0

.s1 M
Q′

p ‖g
]
p−1 + g]p + g]p+1 + g]p+2‖Lip,s0

.s1 N̄
Q′‖g]p−1 + g]p + g]p+1 + g]p+2‖Lip,s0+Q′ . (10.2.56)

Note that we make appear the multiplicative constant N̄Q′ to deal with the cases p = 0, 1,
where g]0 is in the last sum (we use M0,M1 ≤ 4N̄). Notice that the constant C(s1) in
(10.2.56) does not depend on N̄ .

Estimate of (10.2.54). Denoting

Bp :=
{
i ∈ Z|S|+d : |i| ≤Mp

}
, (10.2.57)

we have, if 2 ≤ p ≤ q − 3 (for p = 0, 1 this term is not present)

‖∆p(T ]p+1)−1G]
p−2‖Lip,s0

(3.3.8)

.s0
∣∣∆p(T ]p+1)−1

|HMp−2

∣∣
Lip,s0
‖G]

p−2‖Lip,s0

(3.3.14),(10.2.50)

.s0 d(Bp−2, B
c
p−1)−(s1−s0)

∣∣∆p(T ]p+1)−1
|HMp−2

∣∣
Lip,s1
‖g]N‖Lip,s0

(10.2.57),(10.2.52),(10.2.36)

.s1 M−(s1−s0)
p MQ′

p ‖g′G‖Lip,s0 , (10.2.58)

keeping in mind that Ml+1 = 2Ml for 0 ≤ l ≤ p.
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Estimate of (10.2.55). By (3.3.8) we have

‖∆p(T ]p+1)−1Πp+2T
]Π⊥p+1h

]′‖Lip,s0

.s0
∣∣∆p(T ]p+1)−1Πp+2T

]Π⊥p+1

∣∣
Lip,s0
‖h]′‖Lip,s0

(3.3.14)

.s0 d(Bp, B
c
p+1)−(s1−s0)

∣∣(T ]p+1)−1Πp+2T
]Π⊥p+1

∣∣
Lip,s1
‖h]′‖Lip,s0

(10.2.57),(10.2.52)

.s1 M−(s1−s0)
p MQ′+1

p ‖h]′‖Lip,s0 , (10.2.59)

using that |Πp+2T
]|Lip,s1 .s1 Mp+2 .s1 Mp. Now, since s1 is large according to (4.3.6), and

Q′ = 2(τ ′ + ςs1) + 3, we have that Q′ − (s1 − s0) < −1 and by (10.2.53)-(10.2.55) and
(10.2.56), (10.2.58), (10.2.59) we obtain the estimate (10.2.49), for any 0 ≤ p ≤ q − 3 and
Mp+1 ≤ N(ε).

Case II: 0 ≤ p ≤ q − 3 and Mp+1 > N(ε). We have just to replace (10.2.50) with

Πp+1T
]Πp+1h

]′ + Πp+1T
]Π⊥p+1h

]′ = G]
p+1

and apply the inverse (T ]p+1)−1 of T ]p+1 := T ]Mp+1
(recall that by (10.2.35) this operator

admits an inverse), which satisfies (10.2.34). Then H]′

p+1 := Πp+1h
]′ satisfies

H]′

p+1 = (T ]p+1)−1G]
p+1 − (T ]p+1)−1Πp+1T

]Π⊥p+1h
]′

and, applying ∆p, we derive the estimate (10.2.49) in the same way (notice that since the

functions g]p−1, . . . , g
]
p+2 are orthogonal for the scalar product associated to the s0-norm, we

have ‖g]p−1 + . . .+ g]p+1‖Lip,s0 ≤ ‖g
]
p−1 + . . .+ g]p+1 + g]p+2‖Lip,s0).

Case III: q − 2 ≤ p ≤ q. By (10.2.36) we write

h]
′

p = ∆ph
]′ = ∆p(T

]
N)−1g

]
N

= ∆p(T
]
N)−1(g]p−1 + . . .+ g]q) + ∆p(T

]
N)−1Πp−2g

]
N .

Now recalling (10.2.57), and since p− 2 ≥ q − 4, Mq = N , we have that

d(Bc
p−1, Bp−2) ≥Mp−2 ≥ N/32 .

Hence, arguing as above, we get by (10.2.34), (3.3.14), (3.3.8),

‖h]′p ‖Lip,s0 .s1 N
Q′(‖g]p−1‖Lip,s0 + . . .+ ‖g]q‖Lip,s0) +N−(s1−s0)|(T ]N)−1|Lip,s1‖g

]
N‖Lip,s0

.s1
(
‖g]p−1‖Lip,s0+Q′ + . . .+ ‖g]q‖Lip,s0+Q′

)
+N−1‖g′G‖Lip,s0 .

In conclusion, since N−1 ≤M−1
p , the estimate (10.2.49) is proved for any p ∈ [[0, q]].
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By (10.2.49) we have

‖h]′p ‖2
Lip,s0

.s1 N̄
2Q′
(
‖g]p−1‖2

Lip,s0+Q′ + ‖g]p‖2
Lip,s0+Q′ + ‖g

]
p+1‖2

Lip,s0+Q′ + ‖g
]
p+2‖2

Lip,s0+Q′

)
+M−2

p ‖h]
′‖2

Lip,s0
+M−2

p ‖g′G‖2
Lip,s0

. (10.2.60)

Taking the sum for 0 ≤ p ≤ q of (10.2.60), recalling that g]p := ∆pg
]
N , the definition of g]N

in (10.2.36), and that M0 = N̄ , we obtain

‖h]′‖2
Lip,s0

.s1 N̄
2Q′‖g′G‖2

Lip,s0+Q′ + N̄−2‖g′G‖2
Lip,s0

+ N̄−2‖h]′‖2
Lip,s0

.

For N̄−1 ≤ δ(s1) small enough, this implies

‖h]′‖Lip,s0 .s1 N̄
Q′‖g′G‖Lip,s0+Q′ .

Then the function h′G := ΠGh
]′ satisfies, by Lemma 3.3.8, the estimate

‖h′G‖Lip,s0 .s1 N̄
Q′‖g′G‖Lip,s0+Q′ .

Since N̄ is a fixed constant, depending on s1, this inequality implies (10.2.45). The proof
of the lemma is complete.

We now prove that ID is an approximate right inverse of LD satisfying (10.2.5).

Lemma 10.2.7. (10.2.5) holds.

Proof. We have to estimate

(LDID − Id)g′
(10.2.39)

= LDh′ − g′
(10.1.7)

= (Jω̄ε · ∂ϕ + A)h′ − g′ . (10.2.61)

Recalling the definition of h′ := IDg′ in (10.2.39), (10.2.10)-(10.2.11), Lemma 10.2.2,
(10.2.25) (10.2.27), (10.2.35), (10.2.36), we have

(Jω̄ε · ∂ϕ + A)h′ − g′ =
(

−Π⊥Ng′F
ΠGΠ⊥N

(
T ] h]

′ − g]G
′)) . (10.2.62)

Hence by (10.2.61) and (10.2.62) we have∥∥(Jω̄ε · ∂ϕ + A
)
h′ − g′

∥∥
Lip,s1

.s1 ‖Π⊥Ng′F‖Lip,s1 + ‖Π⊥N (T ] h]
′ − g]G

′
)‖Lip,s1 (10.2.63)

.s1 ‖Π⊥Ng′F‖Lip,s1 + ‖Π⊥N T ] h]
′‖Lip,s1 + ‖Π⊥N g

]
G
′‖Lip,s1

.s1 N
−(s3−s1)‖g′‖Lip,s3 +N−(s3−s1)‖Π⊥N T ] h]

′‖Lip,s3

by the smoothing property (4.1.13).



CHAPTER 10. CONSTRUCTION OF APPROXIMATE RIGHT INVERSE 246

Recalling the form of T ] in (10.2.26), and writing DV = Dm + (DV −Dm), we obtain

Π⊥N T
] h]
′
= Π⊥N T

] Π2Nh
]′

= Π⊥N Jω̄ε · ∂ϕΠ2Nh
]′ +

1

1 + ε2λ

(
Π⊥NDmΠ2Nh

]′ + Π⊥N (DV −Dm)h]
′)

+
1

1 + ε2λ
Π⊥N cΠSΠ2Nh

]′ + Π⊥NRΠGh
]′ . (10.2.64)

Notice that, by (10.2.37), if N ≥ N(ε) then h]
′ ∈ HN and the first and second terms in

(10.2.64) are zero.
In conclusion, by (10.2.63), (10.2.64), using (3.3.8), (3.3.33), we get

‖(Jω̄ε · ∂ϕ + A)h′ − g′‖Lip,s1 (10.2.65)

.s3 N
−(s3−s1)

(
‖g′‖Lip,s3 + ‖(DV −Dm)h]

′‖Lip,s3 + ‖RΠGh
]′‖Lip,s3 +N‖h]‖Lip,s3

)
(3.4.1),(10.1.6)

.s3 N−(s3−s1)
(
‖g′‖Lip,s3 +N‖h]′‖Lip,s3 + |R|Lip,s3‖h]

′‖Lip,s1

)
(10.2.40),(10.2.41),(10.2.42)

.s3 N−(s3−s1)NQ′+1
(
‖g′‖Lip,s3 + (N ς(s3−s1) + |R|Lip,+,s3)‖g′‖Lip,s1)

)
(and recall that g′G = ΠGg

′ by (10.2.12)). Recalling (10.2.61), the estimate (10.2.65) proves
(10.2.5).

Now by Lemma 10.2.3 and (10.2.32), Λ1(ε; η,A) and Λ2(ε; η,A) satisfy properties 1-3 of
Proposition 4.1.5. Since these properties are preserved under finite intersection, this implies
the following lemma.

Lemma 10.2.8. The sets Λ(ε; η,A) defined in (10.2.38) satisfy properties 1-3 of Proposition
4.1.5.

10.3 Approximate right inverse of L = LD + %

In this section we construct an approximate right inverse of L = LD + % by a perturbative
Neumann series argument, for % ∈ L(H⊥S ) small, using the approximate right inverse ID of
LD found in Proposition 10.2.1.

We denote
U(s) := UA,%(s) := |R|Lip,+,s + |%|Lip,+,s . (10.3.1)

Proposition 10.3.1. (Approximate right inverse of L). There is c0 > 0 (depending
on s1) such that, for N ≥ N̄ , if % satisfies

|%|Lip,s1N
Q′ = |%|Lip,s1N

2(τ ′+ςs1)+3 ≤ c0 , (10.3.2)
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then ∀λ ∈ Λ(ε; η,A), 1/2 ≤ η ≤ 1 (where the set Λ(ε; η,A) is defined in Proposition 10.2.1),
the operator Id + ID% is invertible and

I := IN := (Id + ID%)−1ID (10.3.3)

is an approximate right inverse of L, in the sense that

‖(LI − Id)g′‖Lip,s1 .s3

NQ′+1−(s3−s1)
(
‖g′‖Lip,s3 + (N ς(s3−s1) +NQ′U(s3))‖g′‖Lip,s1

)
.

(10.3.4)

Moreover the operator I satisfies

‖Ig′‖Lip,s1 .s1 N
Q′‖g′‖Lip,s1 , (10.3.5)

‖Ig′‖Lip,s ≤ CNQ′‖g′‖Lip,s + C(s)NQ′
(
N ς(s−s1) +NQ′U(s)

)
‖g′‖Lip,s1 , ∀s ≥ s1 , (10.3.6)

where the constant C is independent of s (it depends on s1). Furthermore

‖Ig′‖Lip,s0 .s1 ‖g′‖Lip,s0+Q′ . (10.3.7)

The proof of Proposition 10.3.1 is given in the rest of this section.
We first justify that the operator Id+ID% is invertible and provide appropriate estimates

for its inverse, as an application of Lemma 3.3.13. By (10.2.2) and (3.3.8) we have

‖ID%h′‖Lip,s0 .s0 N
Q′‖%h′‖Lip,s0 .s0 N

Q′|%|Lip,s0‖h′‖Lip,s0 ,

‖ID%h′‖Lip,s1 .s1 N
Q′‖%h′‖Lip,s1 .s1 N

Q′|%|Lip,s1‖h′‖Lip,s1 ,
(10.3.8)

and, by (10.2.3), (10.3.1),

‖ID%h′‖Lip,s ≤ CNQ′‖%h′‖Lip,s + C(s)NQ′
(
N ς(s−s1) + U(s)

)
‖%h′‖Lip,s1

(3.3.12)

≤ CNQ′|%|Lip,s1‖h′‖Lip,s + C(s)NQ′ |%|Lip,s‖h′‖Lip,s1

+ C(s)NQ′|%|Lip,s1

(
N ς(s−s1) + U(s)

)
‖h′‖Lip,s1 (10.3.9)

where C = C(s1). Hence, there is a positive constant c0 (depending on s1) such that, if

|%|Lip,s1N
Q′ ≤ c0 , (10.3.10)

then the operator ID% satisfies, by (10.3.8), (10.3.9) and recalling also (10.3.1),

‖ID%h′‖Lip,s0 ≤
1

2
‖h′‖Lip,s0 (10.3.11)

‖ID%h′‖Lip,s1 ≤
1

2
‖h′‖Lip,s1 (10.3.12)

‖ID%h′‖Lip,s ≤
1

2
‖h′‖Lip,s + C(s)

(
N ς(s−s1) +NQ′U(s)

)
‖h′‖Lip,s1 . (10.3.13)
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By (10.3.11)-(10.3.13) and Lemma 3.3.13 (applied with R = ID% and E = L2(T|S|, H⊥S )),
the operator Id + ID% is invertible and its inverse satisfies the tame estimates

‖(Id + ID%)−1g′‖Lip,s0 ≤ 2‖g′‖Lip,s0 (10.3.14)

‖(Id + ID%)−1g′‖Lip,s1 ≤ 2‖g′‖Lip,s1 (10.3.15)

‖(Id + ID%)−1g′‖Lip,s ≤ 2‖g′‖Lip,s + C(s)
(
N ς(s−s1) +NQ′U(s)

)
‖g′‖Lip,s1 (10.3.16)

for all s ≥ s1. We now estimate the operator I defined in (10.3.3).

Lemma 10.3.2. The operator I = (Id + ID%)−1ID defined in (10.3.3) satisfies (10.3.5)-
(10.3.6) and (10.3.7).

Proof. By (10.3.15) and (10.2.2) we have

‖Ig′‖Lip,s1 ≤ 2‖IDg′‖Lip,s1 .s1 N
Q′‖g′‖Lip,s1

which is (10.3.5). In addition (10.3.16), (10.2.2), (10.2.3), (10.3.1), imply

‖Ig′‖Lip,s ≤ 2‖IDg′‖Lip,s + C(s)
(
N ς(s−s1) +NQ′U(s)

)
‖IDg′‖Lip,s1

≤ CNQ′‖g′‖Lip,s + C(s)NQ′
(
N ς(s−s1) +NQ′U(s)

)
‖g′‖Lip,s1

proving (10.3.6). Finally, by (10.3.14),

‖Ig′‖Lip,s0 = ‖(Id + ID%)−1IDg′‖Lip,s0 ≤ 2‖IDg′‖Lip,s0

(10.2.4)

.s1 ‖g′‖Lip,s0+Q′

which is (10.3.7).

We now prove that I is an approximate right inverse of L satisfying (10.3.4).

Lemma 10.3.3. (10.3.4) holds.

Proof. Recalling that L = LD + % by (10.1.7), and setting

h′ := Ig′ (10.3.3)
= (Id + ID%)−1(IDg′) , (10.3.17)

we have

(LI − Id)g′ = LDh′ + %h′ − g′

= LD(Id + ID%)h′ − LDID%h′ + %h′ − g′

= LDIDg′ − LDID%h′ + %h′ − g′

= (LDID − Id)(g′ − %h′) . (10.3.18)
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Then we estimate (10.3.18) as

‖(LI − Id)g′‖Lip,s1 = ‖(LDID − Id)(g′ − %h′)‖Lip,s1

(10.2.5),(10.3.1)

.s3 NQ′+1−(s3−s1)
(
‖g′‖Lip,s3 + ‖%h′‖Lip,s3

+ (N ς(s3−s1) + U(s3))(‖g′‖Lip,s1 + ‖%h′‖Lip,s1)
)

(3.3.8),(10.3.17),(10.3.5)

.s3 NQ′+1−(s3−s1)
(
‖g′‖Lip,s3 + |%|Lip,s1‖h′‖Lip,s3 + |%|Lip,s3N

Q′‖g′‖Lip,s1

+ (N ς(s3−s1) + U(s3))
(
‖g′‖Lip,s1 + |%|Lip,s1N

Q′‖g′‖Lip,s1

))
(10.3.17),(10.3.6),(10.3.2),(10.3.1)

.s3 NQ′+1−(s3−s1)
(
‖g′‖Lip,s3 +

(
N ς(s3−s1) +NQ′U(s3)

)
‖g′‖Lip,s1

)
which proves (10.3.4).

10.4 Approximate right inverse of ω̄ε · ∂ϕ − J(A0 + ρ)

In this section we complete the proof of Proposition 8.2.1. As said in section 10.1, by the
hypotheses of Proposition 8.2.1, the assumptions of Corollary 9.1.2 are satisfied by (A0, ρ).
Corollary 9.1.2 then provides, for all λ in Λ∞(ε; 5/6, A0, ρ), the conjugation (see (10.1.2))(

ω̄ε · ∂ϕ − JA0 − Jρ
)
Pn(ϕ) = Pn(ϕ)

(
ω̄ε · ∂ϕ − JAn − Jρn

)
,

where An is a self-adjoint block diagonal operator of the form

An =
DV

1 + ε2λ
+Rn ,

see (9.1.25)-(9.1.26), satisfying (9.1.27)-(9.1.31), in particular An ∈ C(2C1, c1/2, c2/2) is an
admissible split operator according to Definition 8.1.1. The sequence (Pn(ϕ)) of symplectic
transformations satisfies (9.1.21)-(9.1.23) and Rn, ρn satisfy (9.1.29)-(9.1.33); in particular

|ρn|Lip,+,s1 ≤ δ
( 3

2
)n

1 . (10.4.1)

We define, for 1/2 ≤ η ≤ 5/6, the sets

Λ(ε; η, A0, ρ) := Λ∞(ε; η, A0, ρ)
⋂(⋂

n≥0

Λ(ε; η + ηn, An)
)

(10.4.2)

where Λ∞ is defined in Corollary 9.1.2, Λ in Proposition 10.2.1 (i.e. (10.2.38)) and the
sequence (ηn) is defined in (9.1.37). Note that we can apply Proposition 10.2.1 with A = An
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for any n ≥ 0, because An ∈ C(2C1, c1/2, c2/2). In Lemma 10.4.4 below we shall prove that
the sets Λ(ε; η,A0, ρ) satisfy properties 1-3 of Proposition 8.2.1.

Choice of the cut-off N and of the number n of splitting steps.

For any ν ∈ (0, ε), we choose N ∈ N such that

N ∈
[
ν
− 3
s3−s1 − 1

2
, ν
− 3
s3−s1 +

1

2

)
(10.4.3)

and the number n ∈ N of splitting steps in Corollary 9.1.2 as

n := min
{
k ∈ N : δ

( 3
2

)k

1 NQ′ = δ
( 3

2
)k

1 N2(τ ′+ςs1)+3 ≤ c0

}
where δ1 = ε3 (see (9.1.20) and (9.1.2)) and c0 is the strictly positive constant of Proposition
10.3.1. Hence

δ
( 3

2
)n

1 NQ′ ≤ c0 , and, if n ≥ 1 , δ
( 3

2
)n−1

1 NQ′ > c0 . (10.4.4)

Remark 10.4.1. In the sequel we suppose that ν is small enough, possibly depending on s3

(the aim is to obtain estimates without any multiplicative constant depending on s3). Since
ν ∈ (0, ε), any smallness condition for ν is satisfied if ε is small enough, possibly depending
on s3, which is a large, but fixed, constant. For this reason, often we will not explicitly
indicate such dependence. However it is useful to point out that, for ε fixed, our estimates
still hold for ν small enough. In fact, in Proposition 8.2.2, we extend some estimates on
the s3-norm to estimates on the s-norm for any s ≥ s3, with a smallness condition on ε
which does not depend on s but only on s3, while the smallness condition on ν depends on
s.

In the sequel of this section the notation a� b means that a/b→ 0 as ν → 0.
By (10.4.3) that, for ν small enough, N ≥ N̄ .
By (10.4.3), (8.2.1) and recalling that Q′ = 2(τ ′ + ςs1) + 3 and ς = 1/10, we have

NQ′+1 � ν−
1
20 , N ς(s3−s1) � ν−

2
5 , N−(1−ς)(s3−s1) � ν

5
2 (10.4.5)

NQ′+1−(s3−s1) ≤ ν−
1
20N−(s3−s1) .s3 ν

− 1
20ν3 � ν

11
4 . (10.4.6)

Moreover, by (10.4.3), (10.4.4), (8.2.1), we have

δ
( 3

2
)n

1 . ν
3Q′
s3−s1 � ν−

1
20 , n ≤ 1

ln(3/2)
ln ln ν−1 ,

[C(s)]n = en lnC(s) ≤ e
lnC(s)
ln(3/2)

ln ln ν−1

≤
(

ln ν−1
) lnC(s)

ln(3/2) , (10.4.7)

and, for n ≥ 1,

δ
−( 3

2
)n−1

1 . ν
−3Q′
s3−s1 � ν−

1
20 . (10.4.8)
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Recalling (10.3.1), we introduce the notation

Un(s) = UAn,ρn(s) = |Rn|Lip,+,s + |ρn|Lip,+,s . (10.4.9)

The bounds (9.1.31), (9.1.33) where α(s) = 3ς
s− s2

s2 − s1

and (10.4.7), (10.4.8) provide the

estimate

Un(s3) .s3 2(ln(ν−1))
lnC(s3)
ln(3/2) ν

− 3Q′
s3−s1

( 3
4

+3ς
s3−s2
s2−s1

)[(|R0|Lip,+,s3 + |ρ|Lip,+,s3

)
δ

1
2

+
2α(s3)

3
1 + 1

]
(8.2.5)

.s3 2(ln(ν−1))
lnC(s3)
ln(3/2) ν

− 3Q′
s3−s1

( 3
4

+3ς
s3−s2
s2−s1

)[
ν−1ε2 + 1

]
.s3 2(ln(ν−1))

lnC(s3)
ln(3/2) ν

− 9Q′
4(s3−s1)ν

− 9Q′ς
s2−s1

[
ν−1ε2 + 1

]
(8.2.1)

≤ C(s3)ν−
11
10 . (10.4.10)

The estimate (9.1.23) provides similarly

|P±1
n |Lip,+,s3 ≤ C(s3)ν−

11
10 . (10.4.11)

Solution of (8.2.7).

By (10.4.1) and (10.4.4), the smallness condition (10.3.2) is satisfied by % = ρn. Then
Proposition 10.3.1 applies to the operator L := Jω̄ε · ∂ϕ + An + ρn, implying the existence
of an approximate right inverse I := IN,n, defined for λ ∈ Λ(ε; η, A0, ρ) (see (10.4.2)),
satisfying (10.3.4)-(10.3.7). The operator I satisfies

‖I g̃‖Lip,s1

(10.3.5)

.s1 NQ′‖g̃‖Lip,s1

(10.4.5)

≤ ν−
1
20‖g̃‖Lip,s1 (10.4.12)

and

‖I g̃‖Lip,s3

(10.3.6)

≤ CNQ′‖g̃‖Lip,s3 + C(s3)
(
N ς(s3−s1) +NQ′Un(s3)

)
‖g̃‖Lip,s1

(10.4.5),(10.4.10)

≤ ν−
1
20‖g̃‖Lip,s3 +

(
ν−

2
5 + ν−

1
20ν−

11
10

)
‖g̃‖Lip,s1

≤ ν−
1
20‖g̃‖Lip,s3 + ν−

6
5‖g̃‖Lip,s1 . (10.4.13)

In addition estimates (10.3.4), (10.4.5)-(10.4.6), (10.4.10) give

‖(LI − Id)g̃‖Lip,s1 ≤ ν
11
4

(
‖g̃‖Lip,s3 +

(
ν−

2
5 + ν−

1
20ν−

11
10

)
‖g̃‖Lip,s1

)
≤ ν

11
4 ‖g̃‖Lip,s3 + ν

3
2‖g̃‖Lip,s1 . (10.4.14)

Now let g ∈ H⊥S satisfy the assumption (8.2.5) and consider the function g′ = P−1
n (ϕ)g

introduced in (10.1.3). We define, for any λ in Λ(ε; η, A0, ρ), the approximate solution
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h′ = I(Jg′) of the equation (10.1.7) where I is the approximate right inverse, obtained in
Proposition 10.3.1, of the operator L = Jω̄ε ·∂ϕ+An+ρn, and we consider the “approximate
solution” h of the equation (10.1.1) as

h := Pn(ϕ)h′ where h′ := I(Jg′) , g′ = P−1
n (ϕ)g . (10.4.15)

It means that we define the approximate right inverse of ω̄ε · ∂ϕ − J(A0 + ρ) as

L−1
approx := Pn(ϕ)IJPn(ϕ)−1 . (10.4.16)

We claim that the function h defined in (10.4.15) is the required solution of (8.2.7) with a
remainder r satisfying (8.2.8).

Lemma 10.4.2. The approximate solution h defined in (10.4.15) satisfies (8.2.6) and
(8.2.9).

Proof. We have

‖h‖Lip,s1

(10.4.15)
= ‖Pn I(JP−1

n g)‖Lip,s1

(9.1.21),(3.3.8)

.s1 ‖I(JP−1
n g)‖Lip,s1

(10.4.12)

.s1 ν−
1
20‖P−1

n g‖Lip,s1

(9.1.21)

.s1 ν−
1
20‖g‖Lip,s1 .s1 ε

2ν
19
20 (10.4.17)

by the assumption ‖g‖Lip,s1 ≤ ε2ν, see (8.2.5). Therefore ‖h‖Lip,s1 ≤ ε2ν4/5, for ν small
enough (depending on s1), proving the first inequality in (8.2.6).

Let us now estimate ‖h‖Lip,s3 . We have

‖g′‖Lip,s3

(10.4.15)
= ‖P−1

n g‖Lip,s3

(3.3.8)

.s3 |P−1
n |Lip,s3‖g‖Lip,s1 + |P−1

n |Lip,s1‖g‖Lip,s3

(10.4.11),(9.1.21)

.s3 ν−
11
10‖g‖Lip,s1 + ‖g‖Lip,s3

(8.2.5)

.s3 ε2(ν−
1
10 + ν−1) .s3 ε

2ν−1 . (10.4.18)

Then (10.4.13), (10.4.18) and ‖g′‖Lip,s1 .s1 ‖g‖Lip,s1 .s1 ε
2ν, imply

‖I(Jg′)‖Lip,s3 .s3 ε
2(ν−

1
20ν−1 + ν−

6
5ν) .s3 ε

2ν−
21
20 (10.4.19)

and finally, using (3.3.8), (9.1.21), (10.4.11),(10.4.19) and ‖I(Jg′)‖Lip,s1 .s1 ε2ν
19
20 (see

(10.4.17)), we conclude that

‖h‖Lip,s3 = ‖Pn I(Jg′)‖Lip,s3 .s3 ε
2
(
ν−

3
20 + ν−

21
20

)
≤ ε2ν−

11
10 (10.4.20)
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for ν small enough (depending on s3). This proves the second inequality in (8.2.6).
At last, by (9.1.21) and (10.3.7), for any g ∈ Hs0+Q′ ∩H⊥S ,

‖L−1
approxg‖Lip,s0 = ‖PnIJP−1

n g‖Lip,s0 .s1 ‖JP−1
n g‖Lip,s0+Q′ .s1 ‖g‖Lip,s0+Q′

using that s0 +Q′ ≤ s1. This proves (8.2.9).

We finally estimate the error r in the equation (8.2.7).

Lemma 10.4.3. ‖r‖Lip,s1 ≤ ε2ν3/2 , where r =
(
ω̄ε · ∂ϕ − J(A0 + ρ)

)
h− g.

Proof. By (10.1.2), (10.4.15) and recalling that L = Jω̄ε · ∂ϕ + An + ρn we have

r =
(
ω̄ε · ∂ϕ − J(A0 + ρ)

)
h− g

= Pn

[(
ω̄ε · ∂ϕ − J(An + ρn)

)
h′ − g′

]
= −PnJ

[
Lh′ − Jg′

]
= −PnJ

[
(LI − Id)Jg′

]
. (10.4.21)

Now, by the estimates in the proof of Lemma 10.4.2, see (10.4.18), we know that g′ = P−1
n g

satisfies

‖g′‖Lip,s3 .s3 ε
2(ν−1 + ν−

1
10 ) .s3 ε

2ν−1 , ‖g′‖Lip,s1 . ε2ν . (10.4.22)

Hence by (10.4.21), (3.3.8), (9.1.21), we get

‖r‖Lip,s1 . ‖(LI − Id)Jg′‖Lip,s1

(10.4.14)

. ν
11
4 ‖g′‖Lip,s3 + ν

3
2‖g′‖Lip,s1

(10.4.22)

.s3 ε2(ν
7
4 + ν

5
2 ) ≤ ε2ν

3
2

proving the lemma.

The next lemma completes the proof of Proposition 8.2.1.

Lemma 10.4.4. (Measure estimates) The sets Λ(ε; η, A0, ρ), 1/2 ≤ η ≤ 5/6, defined in
(10.4.2) satisfy properties 1-3 of Proposition 8.2.1.

Proof. Property 1 follows immediately because the sets Λ∞ defined in Corollary 9.1.2,
and Λ in Proposition 10.2.1 are increasing in η.

For the proof of properties 2 and 3 , we observe that whereas A0 is defined for any λ ∈ Λ̃, by
Corollary 9.1.2 the operators An, n ≥ 1, are defined for λ ∈ Λ∞(ε; 5/6, A0, ρ) ⊂ Λ̃. Hence
for n ≥ 1, the set Λ(ε, η, An) (1/2 ≤ η ≤ 1) is considered as a subset of Λ∞(ε; 5/6, A0, ρ),
and we shall apply Proposition 10.2.1 (more precisely Lemma 10.2.8) in this setting.
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Proof of property 2 of Proposition 8.2.1. Definining

Λn(ε; η, A0, ρ) := Λ∞(ε; η,A0, ρ)
⋂( n−1⋂

k=0

Λ(ε; η + ηk, Ak)
)
, ∀n ≥ 1 , (10.4.23)

we write the set in (10.4.2) (recall that η0 = 0) as

Λ(ε; η, A0, ρ) = Λ∞(ε; η, A0, ρ)
⋂

Λ(ε; η,A0)
⋂(⋂

n≥1

Λn(ε; η, A0, ρ)
)
. (10.4.24)

Then its complementary set may be decomposed as (arguing as in (9.1.54))

Λ(ε; η, A0, ρ)c = Λ∞(ε; η, A0, ρ)c
⋃

Λ(ε; η, A0)c⋃(⋃
n≥1

(
Λn(ε; η, A0, ρ)

⋂
Λ(ε; η + ηn, An)

c
))
. (10.4.25)

By property 2 of Corollary 9.1.2 we have∣∣Λ∞(ε; 1/2, A0, ρ)c ∩ Λ̃
∣∣ ≤ b1(ε) with lim

ε→0
b1(ε) = 0 . (10.4.26)

By Lemma 10.2.8, ∣∣Λ(ε; 1/2, A0)c ∩ Λ̃
∣∣ . ε . (10.4.27)

Moreover, for n ≥ 1, by (10.4.23), we have

Λn(ε; η,A0, ρ) ∩ Λ(ε; η + ηn, An)
c

⊂ Λ∞(ε; 5/6, A0, ρ) ∩ Λ(ε; η + ηn−1, An−1) ∩ Λ(ε; η + ηn, An)
c .

Then, since, for all n ≥ 1, we have |An−An−1|+,s1 ≤ δ3/4
n on Λ∞(ε; 5/6, A0, ρ) (see (9.1.39))

and η + ηn−1 = η + ηn − δ3/8
n (see (9.1.37)), we deduce by Lemma 10.2.8 that, for any

1/2 ≤ η ≤ 5/6, ∣∣Λn(ε; η, A0, ρ)
⋂

Λ(ε; η + ηn, An)
c
∣∣ ≤ δ3α/4

n . (10.4.28)

In conclusion, by (10.4.25) and (10.4.26), (10.4.27), (10.4.28) at η = 1/2, we deduce∣∣Λ(ε; 1/2, A0, ρ)c ∩ Λ̃
∣∣ ≤ b1(ε) + Cε+

∑
n≥1

δ3α/4
n

≤ b1(ε) + Cε+ cδ
3α/4
1 ≤ b(ε)

with lim
ε→0

b(ε) = 0, since δ1 = ε3. This proves property 2 of Proposition 8.2.1 for the sets

Λ(ε; η, A0, ρ).
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Proof of property 3 of Proposition 8.2.1. By (10.4.25) (with A′0, ρ
′ instead of

A0, ρ) and (10.4.24) we deduce, for all (1/2) + δ2/5 ≤ η ≤ 5/6, the inclusion

M := Λ̃′
⋂

Λ(ε; η, A′0, ρ
′)c
⋂

Λ(ε; η − δ2/5, A0, ρ)

⊂M∞
⋃
M0

⋃(⋃
n≥1

Mn

)
, (10.4.29)

where

M∞ := Λ̃′ ∩ [Λ∞(ε; η, A′0, ρ
′)]c ∩ Λ∞(ε; η − δ2/5, A0, ρ)

M0 := Λ̃′ ∩ Λ(ε; η, A′0)c ∩ Λ(ε; η − δ2/5, A0)

Mn := Λn(ε; η, A
′
0, ρ
′) ∩ Λ(ε; η + ηn, A

′
n)
c ∩ Λ(ε; η + ηn − δ2/5, An) , for n ≥ 1 .

By (8.2.3) and noting that δ1/2 ≤ δ2/5, we deduce by (9.1.18) that, for all (1/2) + δ2/5 ≤
η ≤ 5/6,

|M∞| ≤ δα/2 . (10.4.30)

Moreover Lemma 10.2.8 implies that

|M0| ≤
∣∣Λ̃′ ∩ Λ(ε; η, A′0)c ∩ Λ(ε; η − δ1/2, A0)

∣∣ ≤ δα . (10.4.31)

For n ≥ 1, we have, by (10.4.28) (applied to (A′0, ρ
′))

|Mn| ≤
∣∣Λn(ε; η, A′0, ρ′) ∩ Λ(ε; η + ηn, A

′
n)
c
∣∣ ≤ δ3α/4

n . (10.4.32)

On the other hand, assumption (8.2.3) implies (9.1.35), and so (9.1.36) holds, i.e. |An −
A′n|+,s1 ≤ δ4/5 for any λ inMn ⊂ Λ∞(ε; 5/6, A′0, ρ

′)
⋂

Λ∞(ε; 5/6, A0, ρ), and we deduce, by

Lemma 10.2.8, the measure estimate

|Mn| ≤
∣∣Λ∞(ε; 5/6, A′0, ρ

′) ∩ Λ(ε; η + ηn, A
′
n)
c ∩ Λ(ε; η + ηn − δ2/5, An)

∣∣
. δ4α/5 .

(10.4.33)

Finally (10.4.29), (10.4.30), (10.4.31), (10.4.33), (10.4.32) imply the measure estimate

|M| ≤ δα/2 + δα + C
∑
n≥1

min(δ4α/5, δ3α/4
n ) . (10.4.34)

Now, using that δn = δ
( 3

2
)n−1

1 with δ1 = ε3, there is a constant C > 0 such that

δ
4α
5 ≤ δ

3α
4

n =⇒ n ≤ C ln(ln(δ−1)) .
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Hence ∑
n≥1

min(δ
4α
5 , δ

3α
4

n ) ≤ C ln(ln(δ−1))δ
4α
5 +

∑
n≥1,δ

3α
4

n <δ
4α
5

δ
3α
4

n

≤ C ln(ln(δ−1))δ
4α
5 + Cδ

4α
5 . (10.4.35)

The estimates (10.4.34) and (10.4.35) imply, for δ small, that

|M| ≤ δα/3 ,

which is (8.2.4).

Proof of Proposition 8.2.2. The result of Proposition 8.2.1 holds for any fixed s3

satisfying (8.2.1). The sets Λ(ε; η, A0, ρ) do not depend on the choice of s3. On the other
hand, the smallness condition for ε may depend on s3 but, as explained in Remark 10.4.1,
what is really used in the proof of Proposition 8.2.1 is that ν is small enough. This naturally
leads to Proposition 8.2.2, the proof of which is exactly the same as for Proposition 8.2.1,
replacing s3 by s, and the smallness condition on ε by a smallness condition on ν (depending
on s). Notice that the approximate inverse L−1

approx depends not only on ν, but also on s, in
particular through the choice of N , that, replacing s3 with s in (10.4.3), results in

N ∈
[
ν
− 3
s−s1 − 1

2
, ν
− 3
s−s1 +

1

2

)
.



Chapter 11

Proof of the Nash-Moser Theorem

In this Chapter we finally prove the Nash-Moser Theorem 5.1.2, finding, by an iterative
scheme (see section 11.2), a solution of the nonlinear equation F(λ; i) = 0 where F is the
operator defined in (5.1.2).

By the procedure described in Chapter 6 (see Proposition 6.1.1) in order to find an
approximate inverse for the linearized operator at an approximate solution i, and thus
implement a convergent Nash-Moser scheme, it is sufficient to prove the existence of an
approximate right inverse of the operator D(i) defined in (6.1.22). This is achieved in
Proposition 11.2.4.

11.1 Approximate right inverse of Lω
We first give the key result about the existence of an approximate right inverse of the
operator Lω := Lω(i) defined in (6.1.23), acting on the normal subspace H⊥S . We recall
that i(ϕ) = (ϕ, 0, 0) + I(ϕ) is defined for all λ ∈ ΛI.

Proposition 11.1.1. (Approximate right inverse of Lω(i)) Let ω̄ε ∈ R|S| be (γ1, τ1)-
Diophantine and satisfy property (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed in (1.2.28).
Assume (8.2.1).

Then there is ε0 > 0 such that, ∀ε ∈ (0, ε0), for all I, defined for all λ ∈ ΛI, satisfying
‖I‖Lip,s2+2 ≤ ε, there are closed subsets Λ(ε; η, I) ⊂ ΛI, 1/2 ≤ η ≤ 5/6, satisfying

1. Λ(ε; η, I) ⊆ Λ(ε; η′, I) for all 1/2 ≤ η ≤ η′ ≤ 5/6,

2.
∣∣[Λ(ε; 1/2, I)]c ∩ ΛI

∣∣ ≤ b(ε) where lim
ε→0

b(ε) = 0,

3. if ‖I′ − I‖s1+2 ≤ δ ≤ ε3/2 for all λ ∈ ΛI ∩ ΛI′, then, for all (1/2) + δ2/5 ≤ η ≤ 5/6,∣∣ΛI′ ∩ [Λ(ε; η, I′)]c ∩Λ(ε; η − δ2/5, I)
∣∣ ≤ δα/3; (11.1.1)

257
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and, for any ν ∈ (0, ε
3
2 ) such that ‖I‖Lip,s3+4 ≤ εν−

9
10 , there exists a linear operator

L−1
appr := L−1

appr,ν

such that, for any function g : ΛI → Hs3+2 ∩H⊥S satisfying

‖g‖Lip,s1 ≤ ε2ν , ‖g‖Lip,s3+2 ≤ ε2ν−
9
10 , (11.1.2)

the function h := L−1
apprg, h : Λ(ε; 5/6, I)→ Hs3+2 ∩H⊥S satisfies

‖h‖Lip,s1 ≤ C(s1)ε2ν
4
5 , ‖h‖Lip,s3+2 ≤ C(s3)ε2ν−

11
10 , (11.1.3)

and, setting Lω := Lω(i) defined in (6.1.23), we have

‖Lωh− g‖Lip,s1 ≤ C(s1)ε2ν
3
2 . (11.1.4)

Furthermore, setting Q′ := 2(τ ′ + ςs1) + 3 (where ς = 1/10, see (4.1.16)) and τ ′ are given
by Proposition 4.1.5), for all g ∈ Hs0+Q′ ∩H⊥S ,

‖L−1
apprg‖Lip,s0 .s1 ‖g‖Lip,s0+Q′ . (11.1.5)

We underline that the estimate (11.1.5) is independent of ν which defines Lappr = Lappr,ν.

Remark 11.1.2. We lay the stress on the fact that along the proof, any smallness condition
depending on s3 will concern ν rather than ε (while ε is small depending on s1 and s2).

Since ν ∈ (0, ε
3
2 ), these conditions obviously will be satisfied for ε small enough (depending

on s3). However to obtain C∞ solutions in section 11.3, we shall need to replace s3 with
some s that is slowly increasing along the Nash Moser scheme, and we shall use that, for ε
fixed, the estimates of Proposition 11.1.1 hold for any ν small enough (depending on s).

Proof. The proposition is a consequence of Lemma 6.1.2, Proposition 7.3.1, Lemma 8.1.2
and Proposition 8.2.1. By (6.1.23), (6.1.24) and recalling that ω = (1 + ε2λ)ω̄ε we write
the operator Lω acting on H⊥S ,

Lω = (1 + ε2λ)
[
ω̄ε · ∂ϕ − J

(
A +

rε

1 + ε2λ

)]
where A =

DV

1 + ε2λ
+

ε2B

1 + ε2λ
,

as in (7.1.3). Notice that the term rε = rε(I) depends on the torus i at which we linearize,
see (6.1.1), unlike B in (6.1.25), and thus A. Moreover, by (6.1.27) and the assumptions of
the proposition

‖I‖Lip,s2+2 ≤ ε , ‖I‖Lip,s3+4 ≤ εν−
9
10 ,

we get

|rε|Lip,+,s2 ≤ C(s2)ε2(ε2 + ε)� ε
5
2 (11.1.6)

|rε|Lip,+,s3+2 ≤ C(s3)ε2(ε2 + εν−
9
10 )� ε

5
2ν−1 . (11.1.7)
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Applying Proposition 7.3.1 we get

Lω = (1 + ε2λ)P(ϕ)
[
ω̄ε · ∂ϕ − J(A0 + %+)

]
P−1(ϕ) , (11.1.8)

where, as in (7.3.5), (7.1.4),

A0 :=
DV

1 + ε2λ
+R0 , R0 = ΠD% , % =

ε2

1 + ε2λ
B , (11.1.9)

and the coupling term %+ satisfies (7.3.7), i.e.

|%+|Lip,+,s ≤ C(s)(ε4 + |rε|Lip,+,s) . (11.1.10)

By (3.3.35) and (7.1.6) we have

|R0|Lip,+,s = |ΠD%|Lip,+,s ≤ C(s)ε2 . (11.1.11)

We want to apply Proposition 8.2.1 to the operator

ω̄ε · ∂ϕ − J(A0 + %+) with ğ =
P−1(ϕ)g

1 + ε2λ
, (11.1.12)

namely with the substitutions A0  A0, R0 = ΠD%, ρ  %+ and g  ğ. First of all
Lemma 8.1.2 proves that A0 is an admissible split operator in the class C(C1, c1, c2). Then,
by (11.1.10), (6.1.26), (11.1.11), (11.1.6)-(11.1.7), we verify that

|%+|Lip,+,s1 ≤ ε3 ,

|R0|Lip,+,s2 + |%+|Lip,+,s2 ≤ ε−1 ,

ν
(
|R0|Lip,+,s3+2 + |%+|Lip,+,s3+2

)
� ε2 ,

(11.1.13)

for ν small depending on s3 (for the last estimate we use the first inequality in (11.1.7)),
which implies the conditions required in (8.2.2) and (8.2.5) with s3  s3 + 2. Notice also
that the function ğ defined in (11.1.12) satisfies, by (7.3.3) and (3.3.8), the estimate

‖ğ‖Lip,s ≤ C(s)‖g‖Lip,s , ∀s ≥ s1 ,

and therefore, by (11.1.2), the function ğ satisfies the assumption

‖ğ‖Lip,s1 ≤ ε2C(s1)ν , ‖ğ‖Lip,s3+2 ≤ C(s3)ε2ν−
9
10 ≤ ε2(C(s1)ν)−1

required in (8.2.5) with ν  C(s1)ν and s3  s3 + 2, for ν small depending on s3. Note
also that, since ν ∈ (0, ε3/2), we have C(s1)ν ∈ (0, ε), as required in Proposition 8.2.1.
Therefore Proposition 8.2.1 applies and there are closed subsets (independent of g)

Λ(ε; η, I) := Λ(ε; η, A0, %
+) ⊂ ΛI , 1/2 ≤ η ≤ 5/6 , (11.1.14)
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satisfying the properties 1-3 listed in Proposition 8.2.1 with Λ̃ = ΛI, and an operator
L−1
approx = L−1

approx,ν such that the function

h̆ := L−1
approxğ , h̆ : Λ(ε; 5/6, I)→ Hs3+2 ∩H⊥S ,

satisfies (8.2.6) with s3  s3 + 2, i.e.

‖h̆‖Lip,s1 .s1 ε
2ν

4
5 , ‖h̆‖Lip,s3+2 .s1 ε

2ν−
11
10 , (11.1.15)

and, see (8.2.7), (8.2.8),

(ω̄ε · ∂ϕ − J(A0 + %+))h̆ = ğ + r̆ with ‖r̆‖Lip,s1 .s1 ε
2ν

3
2 . (11.1.16)

Set

L−1
appr :=

1

1 + ε2λ
P(ϕ)L−1

approxP
−1(ϕ) , h := P(ϕ)h̆ = L−1

apprg . (11.1.17)

By (11.1.16)-(11.1.17) and (11.1.8), (11.1.12) we get

Lωh− g = (1 + ε2λ)P(ϕ)r̆ . (11.1.18)

By (11.1.17), (7.3.3), (3.3.8), (11.1.18) we get

‖h‖Lip,s = ‖P(ϕ)h̆‖Lip,s ≤ C(s)‖h̆‖Lip,s

‖Lωh− g‖Lip,s = ‖(1 + ε2λ)P(ϕ)r̆‖Lip,s ≤ C(s)‖r̆‖Lip,s ,

and, from the estimates of h̆ and r̆ in (11.1.15), (11.1.16), we deduce (11.1.3), (11.1.4).
Furthermore the estimate (11.1.5) follows by (11.1.17), (7.3.3), (3.3.8) and (8.2.9).

Let us finally prove that the sets Λ(ε; η, I) defined in (11.1.14) satisfy the properties 1-3
listed in the statement of the Proposition 11.1.1. Items 1-2 are immediate consequences the
corresponding ones in Proposition 8.2.1. For proving item 3, first notice that, % (defined
in (7.1.4)), R0 = ΠD% and hence A0 (defined in (11.1.9)) do not depend on the torus I at
which we linearize. Then, if ‖I− I′‖s1+2 ≤ δ ≤ ε3/2, we have

|A′0 − A0|+,s1 + |%+ − (%+)′|+,s1 = |%+ − (%+)′|+,s1
(7.3.8)

.s1 |rε − r′ε|+,s1
(6.1.28)

.s1 ε2‖I− I′‖s1+2 ≤ ε
3
2 δ ≤ ε3 ,

so that condition (8.2.3) of Proposition 8.2.1 is satisfied. Hence, by the property 3 (see

(8.2.4)) in Proposition 8.2.1, and the inclusion Λ(ε; η − δ
2
5 , I) ⊂ Λ(ε; η − (ε

3
2 δ)

2
5 , I) , we

have ∣∣ΛI′ ∩ [Λ(ε; η, I′)]c ∩Λ(ε; η − δ
2
5 , I)

∣∣ ≤ (ε
3
2 δ)

α
3 .

This proves property 3 for the sets Λ(ε; η, I) in Proposition 11.1.1.
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11.2 Nash-Moser iteration

In Chapter 5 we observed that the nonlinear operator F defined in (5.1.2) evaluated at the
trivial torus i0(ϕ) := (ϕ, 0, 0) satisfies (see (5.1.7))

‖F(λ; i0)‖Lip,s ≤ C(s)ε2 on Λ , ∀s ≥ s0 , (11.2.1)

and, in Lemma 5.3.1 we have defined, for all λ ∈ Λ, a torus embedding i1(ϕ) such that (see
(5.3.5))

‖F(λ; i1)‖Lip,s ≤ C(s)ε4 on Λ , ∀s ≥ s0 . (11.2.2)

In this section we define a sequence of torus embeddings (in(ϕ))n≥2, n ≥ 2, defined for λ
belonging to a decreasing sequence of subsets Λn ⊂ Λ which converges, for all λ belonging
to the intersection ∩n≥2Λn to a solution i∞(ϕ) of F(λ; i∞) = 0.

Fixing ν1 = C(s1)ε2 such that ‖F(i1)‖Lip,s1 ≤ ε2ν1 (see (11.2.2)), we define the decreas-
ing sequence (νn)n≥1 by

νn := νq
n−1

1 , νn+1 = νqn , q :=
3

2
− σ? , (11.2.3)

for some σ? ∈ (0, 1/4). Theorem 5.1.2 will be a consequence of the following result.

Theorem 11.2.1. (Nash-Moser) Let ω̄ε ∈ R|S| be (γ1, τ1)-Diophantine and satisfy prop-
erty (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed in (1.2.28). Assume (8.2.1) and s2−s1 ≥
τ + 2, s1 ≥ s0 + 2 + τ + Q′, where τ is the loss of derivatives defined in Proposition 6.1.1
and Q′ := 2(τ ′ + ςs1) + 3 is defined in Proposition 10.2.1.

Then, there exists s3 large enough, a constant σ? := σ?(s3) > 0, satisfying σ?(s3)→ 0 as
s3 → +∞, and ε0 > 0, such that, defining the sequence (νn) by (11.2.3), for all 0 < ε ≤ ε0,
for all n ≥ 1, there exist

1. a subset Λn ⊆ Λn−1, Λ1 := Λ0 := Λ, satisfying

|Λ1 \Λ2| ≤ b(ε) with lim
ε→0

b(ε) = 0 ,

|Λn−1 \Λn| ≤ να∗n−2 , ∀n ≥ 3 ,
(11.2.4)

where α∗ = α/4 and α > 0 is the exponent in (11.1.1),

2. a torus in(ϕ) = (ϕ, 0, 0) + In(ϕ), defined for all λ ∈ Λn, satisfying

‖In‖Lip,s1+2 ≤ C(s1)ε2 , ‖In‖Lip,s2+2 ≤ ε , ‖In‖Lip,s3+2 ≤ ε2ν
− 4

5
n , (11.2.5)

‖in − in−1‖Lip,s1+2 ≤ C(s1)νn−1 + ε2ν
4
5
−σ?

n−1 , n ≥ 2 , (11.2.6)

‖in − in−1‖Lip,s2+2 ≤ εν
1
5
n−1 , n ≥ 2 , (11.2.7)

such that
‖F(in)‖Lip,s1 ≤ ε2νn . (11.2.8)
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The rest of this section is devoted to the proof of Theorem 11.2.1.

First step. For n = 1 the torus i1(ϕ) defined in Lemma 5.3.1, for all λ ∈ Λ = Λ1, satisfies
(5.3.4) and (5.3.5), which imply (11.2.5) and (11.2.8) at n = 1, for ε small enough (recall
that ν1 = C(s1)ε2).

Iteration. We now proceed by induction. Assume that we have already defined subsets
Λn ⊆ Λn−1 ⊆ . . . ⊆ Λ satisfying (11.2.4), and n tori i1, . . . , in, of the form in(ϕ) =
(ϕ, 0, 0) + In(ϕ), satisfying (11.2.5)-(11.2.7) and such that (11.2.8) holds. We are going to
define a subset Λn+1 ⊆ Λn and, for all λ ∈ Λn+1, the subsequent better approximate torus
embedding in+1 which satisfies (11.2.5)-(11.2.7) and (11.2.8) at order n+ 1.

We shall define in+1 by a Nash-Moser type iterative scheme, using Propositions 6.1.1
and 11.1.1.

• Notation. From now, σ denotes an arbitrarily small, strictly positive, constant. In
the sequel, when it appears in some inequality (at the exponent), it means that for
any σ > 0, if s3 has been chosen large enough and νn is small enough (depending on
s3 and σ), the inequality holds. In particular, since νn ≤ ν1 ≤ C(s1)ε2, the inequality
holds for ε small enough (depending on s3).

Step 1. Regularization. We first consider the regularized approximate torus

ı̆n(ϕ) := (ϕ, 0, 0) + Ĭn(ϕ) , Ĭn := ΠNnIn , (11.2.9)

where ΠN is the Fourier projector defined in (4.1.11) and

Nn ∈
[
ν
− 3
s3−s1

n − 1, ν
− 3
s3−s1

n + 1
]
. (11.2.10)

Lemma 11.2.2. The torus ı̆n(ϕ) := (ϕ, 0, 0) + Ĭn(ϕ) satisfies

‖Ĭn‖Lip,s1+2 ≤ C(s1)ε2 , ‖Ĭn‖Lip,s2+2 ≤ ε , ‖Ĭn‖Lip,s3+τ+6 ≤ ε2ν
− 4

5
−σ

n , (11.2.11)

‖in − ı̆n‖Lip,s1+2 � ε2ν2
n , ‖in − ı̆n‖Lip,s3+2 ≤ ε2ν

− 4
5

n , (11.2.12)

‖F (̆ın)‖Lip,s1 ≤ 2ε2νn , ‖F (̆ın)‖Lip,s3+2+τ ≤ ε2ν
− 4

5
−2σ

n , (11.2.13)

where σ > 0 can be taken arbitrarily small taking s3 − s1 large enough.

Proof. The first two estimates in (11.2.11) follow by (11.2.5) and (4.1.13). The third
estimate in (11.2.11) follows by

‖Ĭn‖Lip,s3+τ+6

(4.1.13)

≤ N τ+4
n ‖In‖Lip,s3+2

(11.2.10),(11.2.5)

≤ Cν
− 3(τ+4)
s3−s1

n ε2ν
− 4

5
n ≤ ε2ν

− 4
5
−σ

n
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for 3(τ + 4)/(s3 − s1) < σ.

Proof of (11.2.12). We have

‖in − ı̆n‖Lip,s1+2
(11.2.9)

= ‖Π⊥NnIn‖Lip,s1+2

(4.1.13)

≤ N−(s3−s1)
n ‖In‖Lip,s3+2

(11.2.10),(11.2.5)

.s3 ν3
nε

2ν
− 4

5
n

which implies the first bound in (11.2.12). Similarly (11.2.9), (4.1.13) and (11.2.5) imply
the second estimate in (11.2.12).

Proof of (11.2.13). Recalling the definition of the operator F in (5.1.2), and using Lemma
3.5.5, (11.2.5), (11.2.11), we have

‖F (̆ın)‖Lip,s1 ≤ ‖F(in)‖Lip,s1 + C(s1)‖in − ı̆n‖Lip,s1+2

(11.2.8),(11.2.12)

≤ 2ε2νn

proving the first inequality in (11.2.13). Finally Lemma 3.5.5 and (11.2.11) imply

‖F (̆ın)‖Lip,s3+2+τ ≤ ‖F(i0)‖Lip,s3+2+τ + C(s3)‖Ĭn‖Lip,s3+4+τ

(11.2.1),(11.2.11)

.s3 ε2 + ε2ν
− 4

5
−σ

n ≤ ε2ν
− 4

5
−2σ

n

for ε small, proving the second inequality in (11.2.13).

Step 2. Isotropic torus. We associate to the regularized torus ı̆n defined in (11.2.9) the
isotropic torus in,δ defined by Proposition 6.1.1 with i = ı̆n. Notice that, by (11.2.11), the
torus ı̆n satisfies the assumption (6.1.4) required in Proposition 6.1.1. The torus in,δ is an
approximate solution “essentially as good” as in (compare (11.2.8) and (11.2.16)).

Lemma 11.2.3. The isotropic torus in,δ(ϕ) = (ϕ, 0, 0) + In,δ(ϕ) defined by Proposition
6.1.1 with i = ı̆n, satisfies

‖in,δ − ı̆n‖Lip,s0+2 .s0 ε
2νn , ‖in,δ − ı̆n‖Lip,s1+4 � ε2ν1−σ

n , (11.2.14)

‖in,δ − ı̆n‖Lip,s3+4 � ε2ν
− 4

5
−2σ

n , ‖In,δ‖Lip,s3+4 � ε2ν
− 4

5
−2σ

n , (11.2.15)

and
‖F(in,δ)‖Lip,s0 .s0 ε

2νn ,

‖F(in,δ)‖Lip,s1+2 ≤ ε2ν1−σ
n

‖F(in,δ)‖Lip,s3+2 ≤ ε2ν
− 4

5
−2σ

n .

(11.2.16)
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Proof.
Proof of (11.2.14). Since s0 + 2 + τ ≤ s1, we have by (11.2.11),

‖Ĭn‖Lip,s0+2+τ ≤ C(s1)ε2 .

Hence by (6.1.6) (with s = s0 + 2), we have

‖in,δ − ı̆n‖Lip,s0+2 .s0 ‖F (̆ın)‖Lip,s0+2+τ .s0 ‖F (̆ın)‖Lip,s1

(11.2.13)

.s0 ε2νn (11.2.17)

which is the first estimate in (11.2.14). Similarly, since s1 + 2 + τ ≤ s2, we have by the
second estimate in (11.2.11),

‖Ĭn‖Lip,s1+4+τ ≤ ‖Ĭn‖Lip,s2+2 ≤ ε .

Hence by (6.1.6) (with s = s1 + 4),

‖in,δ − ı̆n‖Lip,s1+4 .s1 ‖F (̆ın)‖Lip,s1+4+τ . (11.2.18)

Now, by the interpolation inequality (3.5.10) we have

‖F (̆ın)‖Lip,s1+4+τ .s3 ‖F (̆ın)‖θLip,s1
‖F (̆ın)‖1−θ

Lip,s3
(11.2.19)

where

θ := 1− 4 + τ

s3 − s1

, 1− θ :=
4 + τ

s3 − s1

. (11.2.20)

Therefore (11.2.19), (11.2.13), (11.2.20) imply

‖F (̆ın)‖Lip,s1+4+τ .s3 (ε2νn)θ(ε2ν
− 4

5
−2σ

n )1−θ � ε2ν1−σ
n (11.2.21)

for s3− s1 large enough and νn small. Inequalities (11.2.18) and (11.2.21) prove the second
estimate in (11.2.14).

Proof of (11.2.15). By (6.2.6) we have

‖In,δ − Ĭn‖Lip,s3+4 .s3 ‖Ĭn‖Lip,s3+5

(11.2.11)
� ε2ν

− 4
5
−2σ

n

for νn small enough, proving the first inequality in (11.2.15). The second inequality in
(11.2.15) follows as a consequence of the first one and the third estimate in (11.2.11).

Proof of (11.2.16). Recalling the definition of the operator F in (5.1.2) and using Lemma
3.5.5, (11.2.11), we have

‖F(in,δ)‖Lip,s ≤ ‖F (̆ın)‖Lip,s + C(s)‖in,δ − ı̆n‖Lip,s+2
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both for s = s0 and s = s1 + 2, and therefore

‖F(in,δ)‖Lip,s0

(11.2.13)(11.2.14)

.s0 ε2νn ,

‖F(in,δ)‖Lip,s1+2

(11.2.21)(11.2.14)

≤ ε2ν1−σ
n ,

proving the first two estimates in (11.2.16). Finally

‖F(in,δ)‖Lip,s3+2 ≤ ‖F(i0)‖Lip,s3+2 + ‖F(in,δ)−F(i0)‖Lip,s3+2

(11.2.1),Lemma 3.5.5

.s3 ε2 + ‖In,δ‖Lip,s3+4

(11.2.15)

≤ ε2ν
− 4

5
−2σ

n (11.2.22)

for νn small, which is the third inequality in (11.2.16).

Step 3. Symplectic diffeomorphism. We apply the symplectic change of variables Gn,δ

defined in (6.1.9) with (θ(φ), yδ(φ), z(φ)) = in,δ(φ), which transforms the isotropic torus in,δ
into (see (6.1.10))

G−1
n,δ(in,δ(ϕ)) = (ϕ, 0, 0) . (11.2.23)

It conjugates the Hamiltonian vector field XK associated to K defined in (2.2.7), with the
Hamiltonian vector field (see (6.1.13))

XKn = (DGn,δ)
−1XK ◦Gn,δ where Kn := K ◦Gn,δ . (11.2.24)

Denote by u := (φ, ζ, w) the symplectic coordinates induced by the diffeomorphism Gn,δ in
(6.1.9). Under the symplectic map Gn,δ, the nonlinear operator F in (5.1.2) is transformed
into

Fn(u(ϕ)) := ω ·∂ϕu(ϕ)−XKn(u(ϕ)) = (DGn,δ(u(ϕ)))−1F(Gn,δ(u(ϕ))) . (11.2.25)

By (11.2.25) and (11.2.23) (see also (6.1.15)) we have that

Fn(ϕ, 0, 0) = (ω, 0, 0)−XKn(ϕ, 0, 0) = (DGn,δ(ϕ, 0, 0))−1F
(
in,δ(ϕ)

)
. (11.2.26)

Hence by (6.1.11), for s ≥ s0,

‖Fn(ϕ, 0, 0)‖Lip,s .s ‖F(in,δ)‖Lip,s + ‖Ĭn‖Lip,s+2‖F(in,δ)‖Lip,s0

(11.2.16)

.s ‖F(in,δ)‖Lip,s + ‖Ĭn‖Lip,s+2 ε
2νn . (11.2.27)

By (11.2.27), (11.2.16) and (11.2.11), we have

‖Fn(ϕ, 0, 0)‖Lip,s0 .s0 ε
2νn

‖Fn(ϕ, 0, 0)‖Lip,s1+2 ≤ ε2ν1−2σ
n

‖Fn(ϕ, 0, 0)‖Lip,s3+2 ≤ ε2ν
− 4

5
−3σ

n .

(11.2.28)
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Step 4. Approximate solution of the linear equation associated to a Nash-Moser
step in new coordinates. In order to look for a better approximate zero

un+1(ϕ) = (ϕ, 0, 0) + hn+1(ϕ) (11.2.29)

of the operator Fn(u) defined in (11.2.25), we expand

Fn(un+1) = Fn(ϕ, 0, 0) +
(
ω ·∂ϕ − duXKn(ϕ, 0, 0)

)
hn+1 +Qn(hn+1) (11.2.30)

where Qn(hn+1) is a quadratic remainder, and we want to solve (approximately) the linear
equation

Fn(ϕ, 0, 0) +
(
ω ·∂ϕ − duXKn(ϕ, 0, 0)

)
hn+1 = 0 . (11.2.31)

This is the goal of the present step. Notice that the operator ω ·∂ϕ − duXKn(ϕ, 0, 0) is
provided by (6.1.21), and we decompose it as

ω ·∂ϕ − duXKn(ϕ, 0, 0) = Dn + RZn (11.2.32)

where Dn is the operator in (6.1.22) with i replaced by ı̆n, i.e.

Dn

φ̂ζ̂
ŵ

 :=

ω · ∂ϕφ̂− K
(n)
20 (ϕ)ζ̂ − [K

(n)
11 ]>(ϕ)ŵ

ω · ∂ϕζ̂
L(n)
ω ŵ − JK(n)

11 (ϕ)ζ̂

 (11.2.33)

with L(n)
ω := Lω (̆ın) (see (6.1.23)), the functions K

(n)
20 (ϕ), K

(n)
11 (ϕ) are the Taylor coefficients

in (6.1.14) of the Hamiltonian Kn, and

RZn

φ̂ζ̂
ŵ

 :=

 −∂φK(n)
10 (ϕ)[φ̂]

∂φφK
(n)
00 (ϕ)[φ̂] + [∂φK

(n)
10 (ϕ)]>ζ̂ + [∂φK

(n)
01 (ϕ)]>ŵ

−J{∂φK(n)
01 (ϕ)[φ̂]}

 . (11.2.34)

In the next proposition we define hn+1 as an approximate solution of the linear equation
Fn(ϕ, 0, 0) + Dnhn+1 = 0.

Proposition 11.2.4. (Approximate right inverse of Dn) For all λ in the set

Λn+1 := Λn ∩Λ(ε; ηn, Ĭn) , η1 := 1/2 , ηn := ηn−1 + ν
1
4
n−1 , n ≥ 2 , (11.2.35)

where Λ(ε; η, I) is defined in Proposition 11.1.1, there exists hn+1 satisfying

‖hn+1‖Lip,s1+2 .s1 νn + ε2ν
4
5
−5σ

n , ‖hn+1‖Lip,s3+2 ≤ ε2ν
− 11

10
−2σ

n , (11.2.36)

such that
rn+1 := Fn(ϕ, 0, 0) + Dn hn+1 (11.2.37)

satisfies

‖rn+1‖Lip,s1 ≤ ε2ν
3
2
−6σ

n . (11.2.38)
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Proof. Recalling (11.2.33) we look for an approximate solution hn+1 = (φ̂, ζ̂, ŵ) of

Dn

φ̂ζ̂
ŵ

 =

ω · ∂ϕφ̂− K
(n)
20 (ϕ)ζ̂ − [K

(n)
11 ]>(ϕ)ŵ

ω · ∂ϕζ̂
L(n)
ω ŵ − JK(n)

11 (ϕ)ζ̂

 =

f
(n)
1

f
(n)
2

f
(n)
3

 (11.2.39)

where (f
(n)
1 , f

(n)
2 , f

(n)
3 ) := −Fn(ϕ, 0, 0). Since XKn is a reversible vector field, its components

f
(n)
1 , f

(n)
2 , f

(n)
3 satisfy the reversibility property

f
(n)
1 (ϕ) = f

(n)
1 (−ϕ) , f

(n)
2 (ϕ) = −f(n)

2 (−ϕ) , f
(n)
3 (ϕ) = −(Sf

(n)
3 )(−ϕ) . (11.2.40)

We solve approximately (11.2.39) in a triangular way.

Step 1. Approximate solution of the second equation in (11.2.39), i.e. ω ·∂ϕζ̂ =

f
(n)
2 . We solve the equation

ω · ∂ϕζ̂ = ΠNnf
(n)
2 (ϕ) (11.2.41)

where Nn is defined in (11.2.10) and the projector ΠNn applies to functions depending only
on the variable ϕ as in (9.3.9). Notice that ω is a Diophantine vector by (6.2.1) for all

λ ∈ Λ, and that, by (11.2.40), the ϕ-average of ΠNnf
(n)
2 is zero. The solutions of (11.2.41)

are
ζ̂ = ζ̂0 + [ζ̂] , [ζ̂] := (ω · ∂ϕ)−1ΠNnf

(n)
2 , ζ̂0 ∈ R|S| , (11.2.42)

where (ω ·∂ϕ)−1 is defined in (1.6.1) and ζ̂0 is a free parameter that we fix below in (11.2.54).
By (11.2.42), (6.2.1), (2.3.7), we have

‖[ζ̂]‖Lip,s . ‖ΠNnf
(n)
2 ‖Lip,s+τ1

(4.1.13)

. N τ1
n ‖f

(n)
2 ‖Lip,s (11.2.43)

(γ2 = γ0/4 is considered as a fixed constant). Therefore, using (11.2.43), (11.2.28), (11.2.10),
and taking s3 − s1 large enough, we have for νn small enough (depending on s3)

‖[ζ̂]‖Lip,s1+2 ≤ ε2ν1−3σ
n , ‖[ζ̂]‖Lip,s3+2 ≤ ε2ν

− 4
5
−4σ

n . (11.2.44)

Step 2. Approximate solution of the third equation in (11.2.39), i.e.

L(n)
ω ŵ = f

(n)
3 + JK

(n)
11 ζ̂0 + JK

(n)
11 [ζ̂] . (11.2.45)

For some ν ∈ (0, ε
3
2 ) such that

‖Ĭn‖Lip,s3+4 ≤ εν−
9
10 (11.2.46)

and which will be chosen later in (11.2.58), we consider the operator L−1
appr,ν defined in Propo-

sition 11.1.1 (with I Ĭn). Notice that, by (11.2.11), also the assumption ‖Ĭn‖Lip,s2+2 ≤ ε
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required in Proposition 11.1.1 with I Ĭn holds. Moreover L−1
appr,ν satisfies (11.1.5) (inde-

pendently of ν). We define the approximate solution ŵ of (11.2.45),

ŵ := L−1
appr,ν

(
f

(n)
3 + JK

(n)
11 [ζ̂]

)
+ L−1

appr,νJK
(n)
11 ζ̂0 . (11.2.47)

Step 3. Approximate solution of the first equation in (11.2.39). With (11.2.47),
the first equation in (11.2.39) can be written as

ω · ∂ϕφ̂ = Tnζ̂0 + gn (11.2.48)

where
Tn := K

(n)
20 + [K

(n)
11 ]>L−1

apprJK
(n)
11 ,

gn := f
(n)
1 + K

(n)
20 [ζ̂] + [K

(n)
11 ]>L−1

appr

(
f

(n)
3 + JK

(n)
11 [ζ̂]

)
.

(11.2.49)

We have to choose the constant ζ̂0 ∈ R|S| such that the right hand side in (11.2.48) has zero
average. By (6.1.17), the matrix

〈K(n)
20 〉 := (2π)−|S|

∫
T|S|

K
(n)
20 (ϕ)dϕ

is close to the invertible twist matrix ε2A (see (1.2.12)) and therefore by (1.2.12) there is
a constant C such that

‖〈K(n)
20 〉−1‖ ≤ Cε−2 . (11.2.50)

By (11.2.49) the operator 〈Tn〉 : ζ0 ∈ R|S| 7→ 〈Tnζ0〉 ∈ R|S| is decomposed as

〈Tn〉 := 〈K(n)
20 〉+ 〈[K(n)

11 ]>L−1
apprJK

(n)
11 〉 . (11.2.51)

Now, for ζ0 ∈ R|S|,

|〈[K(n)
11 ]>L−1

apprJK
(n)
11 ζ0〉|Lip ≤ ‖[K(n)

11 ]>L−1
apprJK

(n)
11 ζ0‖Lip,s0

(6.1.20),(11.2.11)

≤ ε2‖L−1
apprJK

(n)
11 ζ0‖Lip,s0

(11.1.5)

≤ C(s1)ε2‖K(n)
11 ζ0‖Lip,s0+Q′

(6.1.19)

≤ C(s1)ε4
(
|ζ0|Lip + ‖Ĭn‖Lip,s0+τ+Q′ |ζ0|Lip

)
(11.2.11)

≤ C(s1)ε4|ζ0|Lip (11.2.52)

using the fact that s0 + τ +Q′ ≤ s1. By (11.2.51), (11.2.50), (11.2.52), we deduce that, for
ε small enough, 〈Tn〉 is invertible and

‖〈Tn〉−1‖ ≤ 2Cε−2 . (11.2.53)
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Thus, in view of (11.2.48), we define

ζ̂0 := −〈Tn〉−1〈gn〉 ∈ R|S| . (11.2.54)

We now estimate the function gn defined in (11.2.49). By (6.1.18), (6.1.20), (11.2.11),
(11.1.5), and using that s1 > s0 +Q′ + τ ,

‖gn‖Lip,s0 ≤ ‖f
(n)
1 ‖Lip,s0 + ‖K(n)

20 [ζ̂]‖Lip,s0 + ‖[K(n)
11 ]>L−1

appr

(
f

(n)
3 + JK

(n)
11 [ζ̂]

)
‖Lip,s0

.s0 ‖f
(n)
1 ‖Lip,s0 + ε2‖[ζ̂]‖Lip,s0 + ε2

(
‖f(n)

3 ‖Lip,s0+Q′ + ‖K(n)
11 [ζ̂]‖Lip,s0+Q′

)
.

Hence by (11.2.44), (6.1.19), (11.2.11),

‖gn‖Lip,s0 .s0 ‖f
(n)
1 ‖Lip,s0 + ε4ν1−3σ

n + ε2
(
‖f(n)

3 ‖Lip,s0+Q′ + ε4ν1−3σ
n

)
(11.2.28)

.s1 ε2νn + ε4ν1−3σ
n + ε2

(
ε2ν1−2σ

n + ε4ν1−3σ
n

)
.s1 ε

2νn + ε4ν1−3σ
n . (11.2.55)

Then the constant ζ̂0 defined in (11.2.54) satisfies, by (11.2.53), (11.2.55),

|ζ̂0|Lip .s1 νn + ε2ν1−3σ
n . (11.2.56)

Using (11.2.28), (6.1.19), (11.2.56), (11.2.44) and (11.2.11), we have

‖f(n)
3 ‖Lip,s1 + ‖JK(n)

11 ζ̂0‖Lip,s1 + ‖JK(n)
11 [ζ̂]‖Lip,s1 ≤ ε2ν1−3σ

n ,

‖f(n)
3 ‖Lip,s3+2 + ‖JK(n)

11 ζ̂0‖Lip,s3+2 + ‖JK(n)
11 [ζ̂]‖Lip,s3+2 ≤ ε2ν

− 4
5
−5σ

n

(11.2.57)

for νn small enough.
We now choose the constant ν in (11.2.46) as

ν := ν1−3σ
n (11.2.58)

so that ν ∈ (0, ε3/2) and, by the third inequality in (11.2.11), condition (11.2.46) is satisfied,
provided σ is chosen small enough (and hence s3 is large enough). We apply Proposition

11.1.1 with g = f
(n)
3 +JK

(n)
11 ζ̂0 +JK

(n)
11 [ζ̂] (and I Ĭn) noting that (11.2.57) implies (11.1.2)

with ν defined in (11.2.58), again provided σ is chosen small enough. As a consequence, by
(11.1.3) the function ŵ defined in (11.2.47) satisfies (for νn small enough)

‖ŵ‖Lip,s1 ≤ C(s1)ε2ν
4
5

(1−3σ)
n ≤ ε2ν

4
5
−3σ

n ,

‖ŵ‖Lip,s3+2 ≤ C(s3)ε2ν
− 11

10
(1−3σ)

n ≤ ε2ν
− 11

10
+3σ

n .
(11.2.59)
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By (11.2.59) and interpolation inequality (3.5.10), arguing as above (11.2.21), we obtain

‖ŵ‖Lip,s1+2 ≤ ε2ν
4
5
−4σ

n , (11.2.60)

for s3 large enough and νn small enough (depending on s3). Moreover, by (11.1.4),

L(n)
ω ŵ −

(
f

(n)
3 + JK

(n)
11 ζ̂0 + JK

(n)
11 [ζ̂]

)
= rn+1 , (11.2.61)

where rn+1 satisfies

‖rn+1‖Lip,s1 ≤ C(s1)ε2ν
3
2

(1−3σ)
n ≤ ε2ν

3
2
−5σ

n . (11.2.62)

Now, since ζ̂0 has been chosen in (11.2.54) so that Tnζ̂0 + gn has zero mean value, the
equation (11.2.48) has the approximate solution

φ̂ := (ω · ∂ϕ)−1ΠNn(Tnζ̂0 + gn) . (11.2.63)

Recalling the definition of gn and Tn in (11.2.49) we have

gn + Tnζ̂0 = f
(n)
1 + K

(n)
20 ζ̂ + [K

(n)
11 ]>ŵ (11.2.64)

where ŵ is defined in (11.2.47). By (11.2.64) we estimate

‖gn + Tnζ̂0‖Lip,s1

(6.1.18),(6.1.20),(11.2.11)

≤ ‖f(n)
1 ‖Lip,s1 + C(s1)ε2

(
‖ζ̂‖Lip,s1 + ‖ŵ‖Lip,s1

)
(11.2.28),(11.2.44),(11.2.56),(11.2.59)

≤ ε2ν1−2σ
n + C(s1)ε2

(
νn + ε2ν1−3σ

n + ε2ν
4
5
−3σ

n

)
≤ ε2ν

4
5
−3σ

n (11.2.65)

and, similarly, by (6.1.18), (6.1.20),(11.2.11), (11.2.28), (11.2.44), (11.2.56), (11.2.59), we
get

‖gn + Tnζ̂0‖Lip,s3 ≤ ‖f
(n)
1 ‖Lip,s3 + C(s3)ε2

(
‖ζ̂‖Lip,s3 + ‖ŵ‖Lip,s3

)
+ C(s3)ε2‖Ĭn‖Lip,s3+τ

(
‖ζ̂‖Lip,s0 + ‖ŵ‖Lip,s0

)
≤ ε2ν

− 4
5
−3σ

n + C(s3)ε2ν
− 11

10
+3σ

n + C(s3)ε2ν
− 4

5
−σ

n ν
4
5
−3σ

n

≤ ε2ν
− 11

10
n . (11.2.66)

The function φ̂ defined in (11.2.63) satisfies by (6.2.1), (2.3.7), (4.1.13), (11.2.10), for s3−s1

large enough, and (11.2.65), (11.2.66),

‖φ̂‖Lip,s1 ≤ ε2ν
4
5
−4σ

n , ‖φ̂‖Lip,s3+2 ≤ ε2ν
− 11

10
−σ

n . (11.2.67)
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Using again the interpolation inequality (3.5.10), we deduce by (11.2.67), the estimate

‖φ̂‖Lip,s1+2 ≤ ε2ν
4
5
−5σ

n , (11.2.68)

for s3 large enough and νn small enough. Moreover the remainder

r
(n+1)
3 := Π⊥Nn(Tnζ̂0 + gn) (11.2.69)

satisfies

‖r(n+1)
3 ‖Lip,s1

(4.1.13)

≤ N−(s3−s1)
n ‖Tnζ̂0 + gn‖Lip,s3

(11.2.10),(11.2.66)

≤ ε2ν
3
2
n . (11.2.70)

Step 4. Conclusion. We set hn+1 := (φ̂, ζ̂, ŵ) defined in (11.2.63), (11.2.42), (11.2.54)
and (11.2.47). The estimates in (11.2.36) follow by (11.2.67)-(11.2.68), (11.2.44), (11.2.56),
(11.2.59)-(11.2.60) and recalling that νn ≤ ν1 = C(s1)ε2. Finally, by (11.2.39), (11.2.42),
(11.2.54), (11.2.61), we have that

Dn

φ̂ζ̂
ŵ

−
f

(n)
1

f
(n)
2

f
(n)
3

 =

−r(n+1)
3

Π⊥Nnf
(n)
2

rn+1

 (11.2.71)

where r
(n+1)
3 is defined in (11.2.69) and rn+1 in (11.2.61). The estimate (11.2.38) follows by

(11.2.71), (11.2.70), the bound

‖Π⊥Nnf
(n)
2 ‖Lip,s1

(4.1.13)

≤ N−(s3−s1)
n ‖f(n)

2 ‖Lip,s3

(11.2.10),(11.2.28)
� ε2ν

3
2
n

and (11.2.62).

The function hn+1 defined in Proposition 11.2.4 is an approximate solution of equation
(11.2.31), according to the following corollary.

Corollary 11.2.5. The function

r′n+1 := Fn(ϕ, 0, 0) +
(
ω ·∂ϕ − duXKn(ϕ, 0, 0)

)
hn+1 (11.2.72)

satisfies

‖r′n+1‖Lip,s1 ≤ ε2ν
3
2
−8σ

n . (11.2.73)

Proof. The term r′n+1 in (11.2.72) is, by (11.2.32) and (11.2.37),

r′n+1 = rn+1 + RZnhn+1 . (11.2.74)
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By the expression of RZn in (11.2.34), using the tame estimate (3.5.1) for the product of
functions and (6.2.13), we get

‖RZnhn+1‖Lip,s1 .s1
(
‖K(n)

10 − ω‖Lip,s1+1 + ‖K(n)
01 ‖Lip,s1+1 + ‖∂φK(n)

00 ‖Lip,s1+1

)
‖hn+1‖Lip,s1

(6.1.16),(11.2.11)

.s1 ‖Fn(ϕ, 0, 0)‖Lip,s1+1+τ‖hn+1‖Lip,s1 (11.2.75)

having used that s1 + 1 + τ ≤ s2 and the estimate ‖Ĭn‖Lip,s2 ≤ ε in (11.2.11). Now, by
(11.2.28) and the interpolation inequality (3.5.10), we get, for s3 − s1 large enough,

‖Fn(ϕ, 0, 0)‖Lip,s1+1+τ ≤ ε2ν1−3σ
n . (11.2.76)

So we derive, by (11.2.75), (11.2.76) and (11.2.36), the estimate

‖RZnhn+1‖Lip,s1 ≤ ε2ν
9
5
−8σ

n . (11.2.77)

In conclusion (11.2.74), (11.2.38), (11.2.77) imply (11.2.73).

Step 5. Approximate solution in+1. Finally, for all λ in the set Λn+1 introduced
in (11.2.35), we define the new approximate solution of the Nash-Moser iteration in the
original coordinates as

in+1 := in,δ + hn+1 , hn+1 := DGn,δ(ϕ, 0, 0)hn+1 , (11.2.78)

where in,δ is the isotropic torus defined in Lemma 11.2.3 and hn+1 is the function defined
in Proposition 11.2.4. By (6.1.11), (11.2.11) coupled with the inequality s1 + 4 ≤ s2 + 2
and (11.2.36), we have

‖hn+1‖Lip,s1+2 .s1 ‖hn+1‖Lip,s1+2 .s1 νn + ε2ν
4
5
−5σ

n (11.2.79)

‖hn+1‖Lip,s3+2 .s3 ‖hn+1‖Lip,s3+2 + ‖Ĭn‖Lip,s3+4‖hn+1‖Lip,s0 ≤ ε2ν
− 11

10
−3σ

n (11.2.80)

for νn small enough.

Lemma 11.2.6. The term

%n+1 := F(in,δ) + diF(in,δ)hn+1 (11.2.81)

satisfies

‖%n+1‖Lip,s1 ≤ ε2ν
3
2
−9σ

n . (11.2.82)

Proof. Differentiating the identity (see (11.2.25))

DGn,δ(u(ϕ))Fn(u(ϕ)) = F(Gn,δ(u(ϕ))) (11.2.83)
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we obtain
D2Gn,δ(u(ϕ))[h, Fn(u(ϕ))] +DGn,δ(u(ϕ))duFn(u(ϕ))[h]

= diF(Gn,δ(u(ϕ)))DGn,δ(u(ϕ))[h] .

For u(ϕ) = (ϕ, 0, 0) and h = hn+1 this gives, recalling (11.2.23), (11.2.78),

D2Gn,δ(ϕ, 0, 0)[hn+1, Fn(ϕ, 0, 0)] +DGn,δ(ϕ, 0, 0)duFn(ϕ, 0, 0)[hn+1]

= diF(in,δ(ϕ))hn+1 .
(11.2.84)

By (11.2.83) we have F(in,δ) = DGn,δ(ϕ, 0, 0)Fn(ϕ, 0, 0) and therefore, by (11.2.84),

F(in,δ) + diF(in,δ)hn+1

= DGn,δ(ϕ, 0, 0)
(
Fn(ϕ, 0, 0) + duFn(ϕ, 0, 0)[hn+1]

)
+D2Gn,δ(ϕ, 0, 0)[hn+1, Fn(ϕ, 0, 0)]

(11.2.72),(11.2.30)
= DGn,δ(ϕ, 0, 0)r′n+1 +D2Gn,δ(ϕ, 0, 0)[hn+1, Fn(ϕ, 0, 0)] .

In conclusion the term %n+1 in (11.2.81) satisfies

‖%n+1‖Lip,s1 ≤ ‖DGn,δ(ϕ, 0, 0)r′n+1‖Lip,s1 + ‖D2Gn,δ(ϕ, 0, 0)[hn+1, Fn(ϕ, 0, 0)]‖Lip,s1

(6.1.11),(6.1.12)

.s1
(
1 + ‖Ĭn‖Lip,s1+2

)
‖r′n+1‖Lip,s1

+
(
1 + ‖Ĭn‖Lip,s1+3

)
‖hn+1‖Lip,s1‖Fn(ϕ, 0, 0)‖Lip,s1

(11.2.11)

.s1 ‖r′n+1‖Lip,s1 + ‖hn+1‖Lip,s1‖Fn(ϕ, 0, 0)‖Lip,s1 (11.2.85)

where we use that s1 + 3 ≤ s2 + 2. Hence by (11.2.85), (11.2.73), (11.2.36), (11.2.28), we
get

‖%n+1‖Lip,s1 .s1 ε
2ν

3
2
−8σ

n + (νn + ε2ν
4
5
−5σ

n )ε2ν1−2σ
n

which gives (11.2.82).

Lemma 11.2.7. ‖F(in+1)‖Lip,s1 ≤ ε2ν
3
2
−10σ

n .

Proof. By (11.2.78) we have

F(in+1) = F(in,δ + hn+1) = F(in,δ) + diF(in,δ)hn+1 +Q(in,δ, hn+1) (11.2.86)

and, by the form of F in (5.1.2),

Q(in,δ, hn+1) = F̃(in,δ + hn+1)− F̃(in,δ)− diF̃(in,δ)hn+1

=

∫ 1

0

(1− τ)(D2
i F̃)(in,δ + τhn+1)[hn+1, hn+1] dτ
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where F̃ is the “nonlinear part” of F defined as

F̃(i) :=

 −ε2(∂yR)(i(ϕ), ξ)
ε2(∂θR)(i(ϕ), ξ)

−ε2
(
0, (∇QR)(i(ϕ), ξ)

)


and R is the Hamiltonian defined in (2.2.8) and (2.2.9). We have

‖Q(in,δ, hn+1)‖Lip,s1 .s1 ε
2
(
1 + ‖In,δ‖Lip,s1 + ‖hn+1‖Lip,s1

)
‖hn+1‖2

Lip,s1

(11.2.11),(11.2.14)

.s1 ε2‖hn+1‖2
Lip,s1

(11.2.79)

.s1 ε2ν
8
5
−10σ

n . (11.2.87)

The lemma follows by (11.2.86), Lemma 11.2.6 and (11.2.87).

Step 6. End of the Induction. We are now ready to prove that the approximate solution
in+1 defined in (11.2.78) for all λ in the set Λn+1 ⊂ Λn introduced in (11.2.35) satisfies the
estimates (11.2.5)-(11.2.7) and (11.2.8) at step n + 1. By Lemma 11.2.7 and (11.2.3) we
obtain

‖F(in+1)‖Lip,s1 ≤ ε2ν
3
2
−10σ

n = ε2νn+1

with
σ? := 10σ , (11.2.88)

proving (11.2.8)n+1. Moreover we have

‖in+1 − in‖Lip,s1+2 ≤ ‖in+1 − in,δ‖Lip,s1+2 + ‖in,δ − ı̆n‖Lip,s1+2 + ‖ı̆n − in‖Lip,s1+2

(11.2.78),(11.2.79),(11.2.14),(11.2.12)

.s1 νn + ε2ν
4
5
−5σ

n + ε2ν1−σ
n + ε2ν2

n

≤ C(s1)νn + ε2ν
4
5
−6σ

n (11.2.89)

proving (11.2.6)n+1 since σ? := 10σ. Similarly we get

‖in+1 − ı̆n‖Lip,s3+2 ≤ ‖in+1 − in,δ‖Lip,s3+2 + ‖in,δ − ı̆n‖Lip,s3+2

(11.2.78),(11.2.80),(11.2.15)

≤ ε2ν
− 11

10
−4σ

n (11.2.90)

(11.2.3),(11.2.88)
� ε2ν

− 4
5

n+1 (11.2.91)

and, by (11.2.91) and (11.2.12),

‖in+1 − in‖Lip,s3+2 ≤ ‖in+1 − ı̆n‖Lip,s3+2 + ‖ı̆n − in‖Lip,s3+2 � ε2ν
− 4

5
n+1 (11.2.92)

provided σ is chosen small enough.
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The bound (11.2.7)n+1 for ‖in+1 − in‖Lip,s2 follows by interpolation: setting

s2 + 2 = θs1 + (1− θ)s3 , θ =
s3 − s2 − 2

s3 − s1

, 1− θ =
s2 + 2− s1

s3 − s1

,

we have, using νn = O(ε2),

‖in+1 − in‖Lip,s2+2

(3.5.10)

.s1,s3 ‖in+1 − in‖θLip,s1
‖in+1 − in‖1−θ

Lip,s3

(11.2.89),(11.2.92)

.s1,s3
(

max{νn, ε2ν
4
5
−6σ

n }
)θ(

ε2ν
− 11

10
−4σ

n

)1−θ

.s1,s3
(
ε

3
2ν

1
4
n

)θ(
ε

3
2ν
− 11

10
−3σ

n

)1−θ ≤ ε
3
2ν

1
4
−σ

n (11.2.93)

for s3 large enough. The bounds for In+1 follow by a telescoping argument. Using the first
estimate in (11.2.5)1 and (11.2.6)k for all 1 ≤ k ≤ n+ 1 we get

‖In+1‖Lip,s1+2 ≤ ‖I1‖Lip,s1+2 +
n+1∑
k=1

‖Ik+1 − Ik‖Lip,s1+2 .s1 ε
2 + ε2ν

4
5
−σ?

1

≤ C(s1)ε2

since ν1 = C(s1)ε2. This proves the first inequality in (11.2.5)n+1. Moreover

‖In+1‖Lip,s3+2 ≤ ‖Ĭn‖Lip,s3+2 + ‖in+1 − ı̆n‖Lip,s3+2

(11.2.11)(11.2.90)

≤ ε2ν
− 4

5
−σ

n + ε2ν
− 11

10
−4σ

n

≤ 2ε2ν
− 11

10
−4σ

n

(11.2.3)

≤ ε2ν
− 4

5
n+1 (11.2.94)

which is the third estimate in (11.2.5)n+1. The second estimate in (11.2.5)n+1 follows
similarly by (5.3.4) and (11.2.7)k, for all k ≤ n+ 1.

In order to complete the proof of Theorem 11.2.1 it remains to prove the measure
estimates (11.2.4).

Lemma 11.2.8. The sets Λn defined iteratively in (11.2.35) with Λ1 := Λ, satisfy (11.2.4).

Proof. The estimate |Λ1 \Λ2| ≤ b(ε) with lim
ε→0

b(ε) = 0 follows by item 2 of Proposition

11.1.1 with ΛI = ΛĬ1
= Λ. In order to prove (11.2.4) for n ≥ 3 notice that, by the definition

of Λn+1 (and Λn) in (11.2.35), we have

Λn \Λn+1 = Λn−1

⋂
Λ(ε; ηn−1, Ĭn−1)

⋂
[Λ(ε; ηn, Ĭn)]c , n ≥ 2 . (11.2.95)
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In addition, for all λ ∈ Λn, we have, for β :=
3

4
,

‖Ĭn − Ĭn−1‖s1+2
(11.2.9)

= ‖ΠNnIn − ΠNn Ĭn−1‖s1+2

≤ ‖ΠNn(In − In−1)‖s1+2 + ‖ΠNn(In−1 − Ĭn−1)‖s1+2

(4.1.12)

≤ N2
n‖in − in−1‖s1 + ‖in−1 − ı̆n−1‖s1+2

(11.2.6),(11.2.12)

≤ ν
− 6
s3−s1

n

(
C(s1)νn−1 + ε2ν

4
5
−σ?

n−1

)
+ ε2ν2

n−1

� νβn−1 ≤ ε
3
2 , ∀n ≥ 2 , (11.2.96)

since νn−1 ≤ C(s1)ε2. Now by (11.2.35), we have ηn − ηn−1 = ν
1
4
n−1 ≥ ν

2
5
β

n−1. Hence
the estimates (11.1.1) and (11.2.96) imply that the set of (11.2.95) satisfies the measure
estimate

|Λn \Λn+1| ≤ ν
βα/3
n−1 ≤ ν

α/4
n−1 ,

which proves (11.2.4).

Proof of Theorem 5.1.2. The torus embedding

i∞ := i0 + (i1 − i0) +
∑
n≥2

(in − in−1)

is defined for all λ in C∞ := ∩n≥1Λn, and, by (5.3.4) and (11.2.6)-(11.2.7), it is convergent
in ‖ ‖Lip,s1 and ‖ ‖Lip,s2-norms with

‖i∞ − i0‖Lip,s1 ≤ C(s1)ε2 , ‖i∞ − i0‖Lip,s2 ≤ ε ,

proving (5.1.9). By (11.2.8) we deduce that

∀λ ∈ C∞ = ∩n≥1Λn , F(λ; i∞(λ)) = 0 .

Finally, by (11.2.4) we deduce (5.1.8), i.e. that C∞ is a set of asymptotically full measure.

Remark 11.2.9. The previous result holds if the nonlinearity g(x, u) and the potential
V (x) in (1.1.1) are of class Cq for some q large enough, depending on s3.

11.3 C∞ solutions

In this section we prove the last statement of Theorem 5.1.2 about C∞ solutions.

By Proposition 8.2.2 and a simple modification of the proof of Proposition 11.1.1 which
substitutes any s ≥ s3 to s3 (see Remark 11.1.2), we obtain the following result.
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Proposition 11.3.1. Same assumptions as in Proposition 11.1.1. From (11.1.1), the con-
clusion can be modified in the following way: for any s ≥ s3, there is ν̃(s) such that the
following holds.

For any ν ∈ (0, ε
3
2 )∩(0, ν̃(s)) such that ‖I‖Lip,s+4 ≤ εν−

9
10 , there exists a linear operator

L−1
appr := L−1

appr,ν,s such that, for any function g : ΛI → Hs ∩H⊥S satisfying

‖g‖Lip,s1 ≤ ε2ν , ‖g‖Lip,s ≤ ε2ν−
9
10 , (11.3.1)

the function h := L−1
apprg, h : Λ(ε; 5/6, I)→ Hs ∩H⊥S satisfies

‖h‖Lip,s1 ≤ C(s1)ε2ν
4
5 , ‖h‖Lip,s+2 ≤ C(s)ε2ν−

11
10 , (11.3.2)

and, setting Lω := Lω(i), we have

‖Lωh− g‖Lip,s1 ≤ C(s1)ε2ν
3
2 . (11.3.3)

Furthermore, setting Q′ := 2(τ ′ + ςs1) + 3 (where ς = 1/10 and τ ′ are given by Proposition
4.1.5), for all g ∈ Hs0+Q′ ∩H⊥S ,

‖L−1
apprg‖Lip,s0 .s1 ‖g‖Lip,s0+Q′ . (11.3.4)

Note that in Proposition 11.3.1 the sets Λ(ε; 5/6, I) do not depend on s and are the
same as in Proposition 11.1.1.

Thanks to Proposition 11.3.1 we can modify the Nash-Moser scheme in order to keep
along the iteration the control of higher and higher Sobolev norms. This new scheme relies
on the following result, which is used in the iteration. We recall that the sequence (νn) is
defined in (11.2.3), and the sequence (ηn) in (11.2.35).

Proposition 11.3.2. For any s ≥ s3, there is ν̃ ′(s) > 0 with the following property.
Assume that for some n such that νn ≤ ν̃ ′(s), there is a map In : λ 7→ In(λ), defined for λ
in some set Λn, such that,

‖In‖Lip,s1+2 ≤ C(s1)ε2 , ‖In‖Lip,s2+2 ≤ ε , ‖In‖Lip,s+2 ≤ ε2ν
− 4

5
n , (11.3.5)

and
‖F(in)‖Lip,s1 ≤ ε2νn where in(ϕ) = (ϕ, 0, 0) + In(ϕ) .

Let

Nn,s ∈
[
ν
− 3
s−s1

n − 1, ν
− 3
s−s1

n + 1
]

and Ĭn,s := ΠNn,sIn . (11.3.6)

Then there exists a map λ 7→ In+1(λ), defined for λ ∈ Λn ∩Λ(ε; ηn, Ĭn,s), which satisfies

‖in+1 − in‖Lip,s1+2 ≤ C(s1)νn + ε2ν
4
5
−σ?

n , ‖in+1 − in‖Lip,s2 ≤ ε2ν
1
5
n , (11.3.7)

‖In+1‖Lip,s+3 ≤ ε2ν
− 4

5
n+1 (11.3.8)
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and
‖F(in+1)‖Lip,s1 ≤ ε2νn+1 ,

where σ? is chosen as in Theorem 11.2.1.

Proof. The proof follows exactly the steps of the inductive part in the proof of Theorem

11.2.1, with Nn,s ∼ ν
− 3
s−s1

n and with the same small exponent σ. We have just to observe
that in Step 1 (regularization)

‖Ĭn‖Lip,s+τ+7

(4.1.13)

≤ N τ+5
n,s ‖In‖Lip,s+2

(11.3.6),(11.3.5)

≤ C(s)ν
− 3(τ+5)

s−s1
n ε2ν

− 4
5

n ≤ ε2ν
− 4

5
−σ

n ,

for 3(τ + 5)/(s3 − s1) < σ and νn small enough (depending on s). As a result

‖Ĭn‖Lip,s+1+τ+6 ≤ ε2ν
− 4

5
−σ

n ,

i.e. in the third estimate of (11.2.11) in Lemma 11.2.2, s + 1 can be substituted to s3.
From this point, we use the substitution s3  s + 1 in all the estimates of the induction
where s3 appears, except the second estimate of (11.2.12) and (11.2.92), where we keep s3.
Note that these last two estimates are useful only to obtain the bound (11.2.93) on the
norm ‖in+1 − in‖Lip,s2+2 by an interpolation argument. All the estimates where we apply
the substitution s3  s+ 1 hold provided that νn is smaller than some possibly very small,
but positive constant, depending on s. In particular, the analogous of Proposition 11.2.4
uses Proposition 11.3.1, and the second estimate of (11.2.36) is replaced by

‖hn+1‖Lip,s+3 ≤ ε2ν
− 11

10
−2σ

n .

To prove (11.3.8), we use (11.2.94) with the substitution s3  s + 1. Note that in this
estimate we need only a bound for ‖Ĭn‖Lip,s+3, not for ‖In‖Lip,s+3.

We now consider a non-decreasing sequence (pn) of integers with the following properties:

(i) p1 = 0 and lim
n→∞

pn =∞ ;

(ii) ∀n ≥ 1 , νn ≤ ν̃ ′(s3 + pn) ;

(iii) ∀n ≥ 1 , pn+1 = pn or pn+1 = pn + 1 .

The sequence (pn) can be defined iteratively in the following way: p1 := 0, so that property
(ii) is satisfied for n = 1, provided ε is small enough (the smallness condition depending on
s3). Once pn is defined (satisfying (ii)), we choose

pn+1 :=

{
pn + 1 if νn+1 ≤ ν̃ ′(s3 + pn + 1)

pn otherwise .
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Then property (ii) is satisfied at step n + 1 in both cases, because (νn) is decreasing. The
sequence (pn) satisfies (i) because lim

n→∞
νn = 0 (so that the sequence cannot be stationary)

and (iii) by definition.
Starting, as in section 11.2, with the torus i1(ϕ) defined in Lemma 5.3.1 for all λ ∈ Λ =

Λ1 and using repeatedly Proposition 11.3.2, we obtain the following theorem.

Theorem 11.3.3. (Nash-Moser C∞) Let ω̄ε ∈ R|S| be (γ1, τ1)-Diophantine and satisfy
property (NR)γ1,τ1

in Definition 4.1.4 with γ1, τ1 fixed in (1.2.28). Assume (8.2.1) and
s2−s1 ≥ τ +2, s1 ≥ s0 +2+τ +Q′, where τ is the loss of derivatives defined in Proposition
6.1.1 and Q′ := 2(τ ′ + ςs1) + 3 is defined in Proposition 10.2.1.

Then, for all 0 < ε ≤ ε0 small enough, for all n ≥ 1, there exist

1. a subset Λn ⊆ Λn−1, Λ1 := Λ0 := Λ, satisfying

|Λ1 \Λ2| ≤ b(ε) with lim
ε→0

b(ε) = 0 ,

|Λn−1 \Λn| ≤ να∗n−2 , ∀n ≥ 3 ,
(11.3.9)

where α∗ = α/4 and α > 0 is the exponent in (11.1.1),

2. a torus in(ϕ) = (ϕ, 0, 0) + In(ϕ), defined for all λ ∈ Λn, satisfying

‖In‖Lip,s1 ≤ C(s1)ε2 , ‖In‖Lip,s2+2 ≤ ε , ‖In‖Lip,s3+pn+2 ≤ ε2ν
− 4

5
n , (11.3.10)

‖in − in−1‖Lip,s1+2 ≤ C(s1)νn−1 + ε2ν
4
5
−σ?

n−1 , n ≥ 2 , (11.3.11)

‖in − in−1‖Lip,s2 ≤ εν
1
5
n−1 , n ≥ 2 , (11.3.12)

and
‖F(in)‖Lip,s1 ≤ ε2νn . (11.3.13)

As said at the end of section 11.2, (11.3.11) and (11.3.12) imply that the sequence (in)
converges in ‖ ‖Lip,s1 and ‖ ‖Lip,s2 norms to a map i∞ : λ 7→ i∞(λ), defined on

C∞ = ∩n≥1Λn ,

which satisfies
∀λ ∈ C∞ , F(λ; i∞(λ)) = 0 .

There remains to justify that

‖I∞‖Lip,s = ‖i∞ − i0‖Lip,s <∞ , ∀s > s2 .

For a given s > s2, let us fix n large enough, so that

s ≤ 3

4
s1 +

1

4
s with s := s3 + pn + 2 . (11.3.14)
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Then, by (11.3.10), for all k ≥ n+ 1,

‖Ik − Ik−1‖Lip,s ≤ ‖Ik‖Lip,s + ‖Ik−1‖Lip,s ≤ 2ε2ν
− 4

5
k . (11.3.15)

Hence, by interpolation,

‖Ik − Ik−1‖Lip,s

(11.3.14)

≤ ‖Ik − Ik−1‖Lip,
3s1+s

4

(3.5.10)

≤ C(s)‖Ik − Ik−1‖
3
4
Lip,s1
‖Ik − Ik−1‖

1
4
Lip,s

(11.3.11),(11.3.15)

≤ C(s)ν
3
5
−σ?

k−1 ν
− 1

5
k ≤ ν

3
10
−σ?

k−1 (11.3.16)

using that νk = νqk−1, with q < 3/2, see (11.2.3). Moreover, recalling that s := s3 + pn + 2
(see (11.3.14)), we deduce by (11.3.10) that

‖In‖Lip,s <∞ . (11.3.17)

In conclusion, (11.3.17) and (11.3.16), imply, since (3/10)− σ? > 0, that

‖In‖Lip,s +
∑
k≥n+1

‖Ik − Ik−1‖Lip,s <∞ ,

and the sequence (In)n≥n converges in Hs
ϕ ×Hs

ϕ × (Hs ∩H⊥S ) to I∞ = i∞ − i0. Since s is
arbitrary, we conclude that i∞(λ) is C∞ for any λ ∈ C∞.



Chapter 12

Genericity of the assumptions

The aim of this Chapter is to prove the genericity result stated in Theorem 1.2.3.

12.1 Genericity of non-resonance and non-degeneracy

conditions

We fix s > d/2, so that we have the compact embedding Hs(Td) ↪→ C0(Td). We denote by
B(w, r) the open ball of center w and radius r in Hs(Td).

Recalling Definition 1.2.2 of C∞-dense open sets, it is straightforward to check the
following lemma.

Lemma 12.1.1. The following properties hold:

1. a finite intersection of C∞-dense open subsets of U is C∞-dense open in U ;

2. a countable intersection of C∞-dense open subsets of U is C∞-dense in U ;

3. given three open subsets W ⊂ V ⊂ U of Hs(Td) (resp. Hs(Td) × Hs(Td)), if W is
C∞-dense in V and V is C∞-dense in U , then W is C∞-dense in U .

Moreover we have the following useful result.

Lemma 12.1.2. Let U be a connected open subset of Hs(Td) and let f : U → R be a real
analytic function. If f 6≡ 0, then

Z(f)c :=
{
w ∈ U : f(w) 6= 0

}
is a C∞-dense open subset of U .

281
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Proof. Since f : U → R is continuous, Z(f)c is an open subset of U . Arguing by
contradiction, we assume that Z(f)c is not C∞-dense in U . Then there are w0 ∈ U ,
s′ ≥ s and ε > 0 such that: for all h ∈ C∞(Td) satisfying ‖h‖Hs′ < ε, we have that
f(w0 + h) = 0. Let ρ > 0 be such that the ball B(w0, ρ) ⊂ U . We claim that f vanishes
on B(w0, ρ) ∩ C∞(Td). Indeed, if h ∈ C∞(Td) satisfies ‖h‖Hs < ρ we have the segment
[w0, w0 + h] ⊂ U , and the map ϕ : t 7→ f(w0 + th) is real analytic on an open interval of R
which contains [0, 1]. Moreover ϕ(t) vanishes on the whole interval |t| < ε‖h‖−1

Hs′ . Hence ϕ
vanishes everywhere, and f(w0 + h) = ϕ(1) = 0.

Now, by the fact that C∞(Td) is a dense subset of Hs(Td), and f is continuous, we
conclude the f vanishes on the whole ball B(w0, ρ).

Let
V :=

{
w ∈ U : f vanishes on some open neighborhood of w

}
.

From the previous argument, V is not empty, and it is by definition an open subset of U .
Let us prove that it is closed in U too. Assume that the sequence (wn) Hs-converges to
some w and satisfies: wn ∈ V for all n. Then there is r > 0 such that, for n large enough,
the ball B(wn, r) contains w and is included in U . Using the same argument as before
(with wn instead of w0), we can conclude that f vanishes on the whole ball B(wn, r), hence
w ∈ V .

Since U is connected, we finally obtain V = U , which contradicts the hypothesis f 6≡ 0.

The proof of Theorem 1.2.3 uses results and arguments provided by Kappeler-Kuksin
[89] that we recall below. We first introduce some preliminary information. For a real
valued potential V ∈ Hs(Td), we denote by (λj(V ))j∈N the sequence of the eigenvalues
of the Sturm-Liouville operator −∆ + V (x), written in increasing order and counted with
multiplicity

λ0(V ) < λ1(V ) ≤ λ2(V ) ≤ . . . .

These eigenvalues are Lipschitz-continuous functions of the potential, namely

|λj(V1)− λj(V2)| ≤ ‖V1 − V2‖L∞(Td) . ‖V1 − V2‖Hs(Td) . (12.1.1)

Step 1. The construction of Kappeler-Kuksin [89]. For J ⊂ N, define the set of
potentials V := V (x) in Hs(Td) such that the eigenvalues λj(V ), j ∈ J , of −∆ + V (x) are
simple, i.e.

EJ :=
{
V ∈ Hs(Td) : λj(V ) is a simple eigenvalue of −∆ + V (x) , ∀j ∈ J

}
.

The set E[[0,N ]] will be simply denoted by EN . Since the eigenvalues λj(V ) of −∆ + V (x)
are simple on EJ , it turns out that each function

λj : EJ → R , j ∈ J ,
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is real analytic. Moreover the corresponding eigenfunctions Ψj := Ψj(V ), normalized with
‖Ψj‖L2 = 1, can locally be expressed as real analytic functions of the potential V ∈ EJ .

By [89], Lemma 2.2, we have that, for any J ⊂ N finite,

1. EJ is an open, dense and connected subset of Hs(Td),

2. Hs(Td)\EJ is a real analytic variety. This implies that for all V ∈ Hs(Td)\EJ , there
are r > 0 and real analytic functions f1, . . . , fs on the open ball B(V, r) such that

(i) B(V, r)\EJ ⊂
s⋃
i=1

f−1
i (0) (ii) ∀i ∈ [[1, s]] , fi|B(V,r) 6≡ 0 . (12.1.2)

Recalling Definition 1.2.2 we prove this further lemma.

Lemma 12.1.3. Let P be the set defined in (1.2.36). The subset EJ ∩ P ⊂ Hs(Td) is
connected and C∞-dense open in P.

Proof. We first prove that EJ ∩ P is C∞-dense open in P . By (12.1.2)

s⋂
i=1

B(V, r)\f−1
i (0) ⊂ B(V, r) ∩ EJ . (12.1.3)

By Lemma 12.1.2 each set B(V, r)\f−1
i (0), i = 1, . . . , s, is C∞-dense open in B(V, r) (since

fi|B(V,r) 6≡ 0), as well as their intersection, and therefore (12.1.3) implies that B(V, r) ∩ EJ
is C∞-dense in B(V, r). Thus EJ is C∞-dense open in Hs(Td). Finally, since P is an open
subset of Hs(Td), the set EJ ∩ P is C∞-dense open in P .

There remains to justify that EJ ∩ P is connected. Let V0, V1 ∈ EJ ∩ P . Since EJ is
an open connected subset of Hs(Td), it is arcwise connected: there is a continuous path
γ : [0, 1]→ EJ such that γ(0) = V0, γ(1) = V1. Notice that, if V ∈ EJ , then, for all m ∈ R,
the potential V + m ∈ EJ . Let λ0(t) be the smallest eigenvalue of −∆ + γ(t). The map
t 7→ λ0(t) is continuous. Since V0, V1 ∈ P , we have λ0(0) > 0, λ0(1) > 0. Choose any
continuous map µ : [0, 1] →]0,+∞[ such that µ(0) = λ0(0) and µ(1) = λ0(1) and define
m : [0, 1] → R by m(t) := µ(t) − λ0(t). Then γ + m is a continuous path in EJ ∩ P
connecting V0 and V1. In conclusion, EJ ∩ P is arcwise connected.

We have the following result, which is Lemma 2.3 in [89], with some new estimates on
the eigenfunctions, i.e. items (iii)-(iv).

Lemma 12.1.4. Fix J ⊂ N , J finite. There is a sequence (qn)n∈N of C∞ positive potentials
with the following properties:

(i) ∀n ∈ N, the potential qn is in EJ . More precisely, for each j ∈ J , the sequence of
eigenvalues (λn,j)n := (λj(qn))n converges to some λj > 0, with λj 6= λk if j, k ∈ J ,
j 6= k.
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(ii) Let ±Ψn,j be the eigenfunctions of −∆ + qn(x) with ‖Ψn,j‖L2 = 1. For each j ∈ J ,
the sequence (Ψn,j)n → Ψj weakly in H1(Td), hence strongly in L2(Td), where the
functions Ψj ∈ L∞(Td) have disjoint essential supports.

(iii) For each j ∈ J , the sequence (Ψn,j)n → Ψj strongly in Lq(Td) for any q ≥ 2.

(iv) For any ρ ∈ L∞(Td), ∀j, k ∈ J ,

lim
n→∞

∫
Td
ρ(x)Ψ2

n,j(x)Ψ2
n,k(x) dx = δjk

∫
Td
ρ(x)Ψ4

j(x) dx

where δjk is the Kronecker delta with values δjk := 0, if k 6= j, and δjj := 1.

Proof. Let M ∈ N be such that J ⊂ [[0,M ]]. It is enough to prove the lemma for
J = [[0,M ]]. We recall the construction in Lemma 2.3 of [89]. Choose disjoints open balls
Bj := B(xj, rj), 0 ≤ j ≤M , of decreasing radii r0 > . . . > rM in such a way that, denoting
by λj the smallest Dirichlet eigenvalue of −∆ on Bj, it results

λ0 < . . . < λM < λ
(2)
0

where λ
(2)
0 is the second Dirichlet eigenvalue of −∆ on B1. Define a sequence of C∞ positive

potentials such that

qn(x) :=

n , ∀x ∈ Td\
M⋃
i=0

Bi ,

0 , ∀x ∈ B(xi, ri − εn) ,

with lim
n→∞

εn = 0 , 0 ≤ qn ≤ n .

It is proved in [89], Lemma 2.3, that properties (i)−(ii) hold with functions Ψj, j ∈ [[0,M ]],
in H1(Td), satisfying suppess(Ψj) = Bj and such that Ψj|Bj ∈ H1

0 (Bj) is an eigenfunction

of −∆ associated to the eigenvalue λj. Such functions Ψj are in L∞(Td) because they are
smooth in each ball Bj and vanish outside.

To prove (iii), it is sufficient to prove the Lp bounds

∀j ∈ [[0,M ]] , ∀p ≥ 2 , sup
n
‖Ψn,j‖Lp(Td) ≤ Cj,p < +∞ . (12.1.4)

Indeed, since (Ψn,j)n converges to Ψj in L2(Td) by item (ii), the bound (12.1.4), the fact
that Ψj ∈ L∞(Td), and Hölder inequality, imply that the sequence (Ψn,j)n converges to Ψj

in Lq(Td) for any q.
We fix 0 ≤ j ≤ M and, for simplicity, we write Ψn,j = Ψn in what follows. To prove

(12.1.4) we perform a bootstrap argument for the Lp norms of the solutions of the elliptic
eigenvalue equation

−∆Ψn(x) + qn(x)Ψn(x) = λnΨn(x) . (12.1.5)
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Remark that the eigenfunctions Ψn are in C∞(Td), but we shall not perform Schauder
estimates because we want bounds independent of the potentials qn(x) which are unbounded
in Sobolev spaces. We multiply (12.1.5) by |Ψn|r−2Ψn, r ≥ 2, and integrate by parts on Td,
obtaining∫

Td
∇Ψn(x) · ∇(|Ψn(x)|r−2Ψn(x)) + qn(x)|Ψn(x)|r dx = λn

∫
Td
|Ψn(x)|r dx . (12.1.6)

Now
∇Ψn · ∇(|Ψn|r−2Ψn) = (r − 1)|Ψn|r−2|∇Ψn|2 = (r − 1)||Ψn|

r
2
−1∇Ψn|2

= Kr|∇zn|2

where
Kr := 4r−2(r − 1) , zn := zn(x) := |Ψn(x)|

r
2
−1Ψn(x) .

Hence, by (12.1.6) and since qn ≥ 0,

Kr

∫
Td
|∇zn(x)|2 dx ≤

∫
Td
Kr|∇zn(x)|2 + qn(x)|zn(x)|2 ≤ λn

∫
Td
|zn(x)|2 dx ,

which gives
‖zn‖H1 ≤ (K−1

r λn + 1)1/2‖zn‖L2 ≤ Cr‖zn‖L2

because the sequence (λn)n is bounded, see item (i). The continuous Sobolev embedding

H1(Td) ↪→ Ld∗(Td) with d∗ =
2d

d− 2
, implies that ‖zn‖Ld∗ ≤ C ′r‖zn‖L2 , i.e.

‖Ψn‖
L

rd
d−2
≤ Cr‖Ψn‖Lr . (12.1.7)

Iterating (12.1.7) (and starting from r = 2), we obtain that the sequence (‖Ψn‖Lp)n is
bounded for any p. Note that if d ≤ 2, we obtain (12.1.4) in one step only since in this case
H1 is continuously embedded in Lp for any p.

(iv) is a straightforward consequence of the convergence of the sequence (Ψn,j)n to Ψj

in L4(Td) for all j ≥ M and of the fact that the functions Ψj (0 ≤ j ≤ M) have disjoint
essential supports.

As a corollary we deduce the following lemma.

Lemma 12.1.5. (Lemma 2.3 in [89]) There is a C∞ potential q(x) such that all the
eigenvalues λj(q), j ∈ S, are simple (therefore q is in ES), and the corresponding L2-
normalized eigenfunctions Ψj(q), j ∈ S, have the property that (Ψ2

j(q))j∈S are linearly
independent.

Consider the real analytic map

Λ : ES → R|S| , Λ(V ) := (λj(V ))j∈S .
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Lemma 12.1.6. There is a |S|-dimensional linear subspace E of C∞(Td) such that

N (1)
S :=

{
V ∈ ES : dΛ(V )|E is an isomorphism

}
(12.1.8)

is a C∞-dense open subset of ES, thus of Hs(Td).

Proof. We follow [89]. For any V̂ ∈ Hs(Td) we have that the differential

dΛ(q)[V̂ ] =
(
(V̂ ,Ψ2

j)L2

)
j∈S .

Since the Ψ2
j(q) are linearly independent by Lemma 12.1.5, dΛ(q) is onto, and there is a

|S|-dimensional linear subspace E of C∞(Td) such that dΛ(q)|E is an isomorphism. Let
(g1, . . . , g|S|) be a basis of E. For any V ∈ ES, denote by AV the |S| × |S|-matrix whose
columns are given by dΛ(V )[gj], so that

N (1)
S =

{
V ∈ ES : dΛ(V )|E is an isomorphism

}
=
{
V ∈ ES : detAV 6= 0

}
.

ES is a connected open subset of Hs(Td) and the map V 7→ detAV is real analytic on ES

and does not vanish at q. Hence Lemma 12.1.2 implies that N (1)
S is a C∞-dense open

subset of ES.

For any V ∈ P , defined in (1.2.36), all the eigenvalues λj of −∆ + V (x) are strictly
positive, and therefore we deduce the following lemma:

Lemma 12.1.7. The map

µ̄ : ES ∩ P → R|S| , µ̄(V ) := (µj(V ))j∈S =
(
λ

1
2
j (V )

)
j∈S , (12.1.9)

is real analytic and, for any V ∈ N (1)
S , the differential dµ̄(V )|E is an isomorphism onto

R|S|.

Remark 12.1.8. More generally, for any finite J ⊂ N, there is a C∞-dense open subset
N (1)
J of Hs(Td) such that, for all V ∈ N (1)

J ∩P , the linear map (dµj(V ))j∈J : Hs(Td)→ R|J |
is onto.

The |S|-dimensional linear subspace E of C∞(Td) defined in Lemma 12.1.6 is the same
subspace that appears in the statement of Theorem 1.2.3.

Step 2. Genericity of the twist condition (1.2.12)

Our aim is to prove that the twist matrix A defined in (1.2.9) is invertible for (V, a)
belonging to some C∞-dense open subset of ES ×Hs(Td). Note that A is invertible if and
only if detG 6= 0 where the matrix G := (Gj

k(V, a))j,k∈S is defined in (1.2.10). The matrix G
depends linearly on the function a(x), and nonlinearly on the potential V (x), through the
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eigenfunctions Ψj := Ψj(V ) defined in (1.1.5). By previous considerations, the functions
Ψ2
j(x), j ∈ S, where the eigenfunctions Ψj(x) are normalized by the condition ‖Ψj‖L2 = 1,

depend analytically on the potential V ∈ ES, and so each map

Gj
k : Hs(Td)×Hs(Td)→ R ,

(V, a) 7→ Gj
k(V, a) =

3

4
(2− δjk)(Ψ

2
j , aΨ2

k)L2 , ∀j, k ∈ S ,
(12.1.10)

is real analytic on ES ×Hs(Td), as well as the map (V, a) 7→ detG(V, a).

Lemma 12.1.9. The set

N (2)
S := {V ∈ ES : detG(V, 1) 6= 0}

is a C∞-dense open subset of ES.

Proof. Consider the sequence (qn)n of C∞ potentials provided by Lemma 12.1.4 with
J = S. By property (iv) of that lemma, taking the limit for n→∞ in (12.1.10), we get

lim
n→∞

Gj
k(qn, 1) =

3

4
δjk(Ψ

2
j ,Ψ

2
k)L2

and therefore

lim
n→∞

detG(qn, 1) = (3/4)|S|
∏
j∈S

∫
Td

Ψ4
j(x) dx =: ρ 6= 0 . (12.1.11)

In particular, there is a potential qn(x) in ES such that detG(qn, 1) 6≡ 0. Since the map
V 7→ detG(V, 1) is real analytic on the open and connected subset ES of Hs(Td), Lemma

12.1.2 implies that N (2)
S is C∞-dense open in ES.

We deduce the following corollary.

Corollary 12.1.10. The set

G(2) :=
{

(V, a) ∈ ES ×Hs(Td) : detG(V, a) 6= 0
}

(12.1.12)

is a C∞-dense open subset of ES ×Hs(Td), thus of Hs(Td)×Hs(Td).

Proof. By Lemma 12.1.9, for each potential V ∈ N (2)
S , we have that detG(V, 1) 6= 0 and,

since the function (V, a) 7→ detG(V, a) is real analytic on the open and connected subset
ES×Hs(Td), Lemma 12.1.2 implies that G(2) is a C∞-dense open subset of ES×Hs(Td).

Remark 12.1.11. With similar arguments we deduce that, for each potential V ∈ N (2)
S ,

the set
{
a ∈ Hs(Td) : detG(V, a) 6= 0

}
is a C∞-dense open subset of Hs(Td).
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Step 3. Genericity of the non-degeneracy conditions (1.2.21)-(1.2.22)

Let M ∈ N such that S ∪ F ⊂ [[0,M ]]. We define

GM :=
{

(V, a) ∈ (ES ∩ P)×Hs(Td) : the following conditions hold (12.1.13)

1.
(

det A µj − [BA ]µ̄]j
)
−
(

det A µk − [BA ]µ̄]k
)
6= 0, ∀j, k ∈ Sc, j, k ≤M, j 6= k,

2.
(

det A µj − [BA ]µ̄]j
)

+
(

det A µk − [BA ]µ̄]k
)
6= 0∀j, k ∈ Sc , j, k ≤M

}
where A := A (V, a), B := B(V, a) are the Birkhoff matrices introduced in (1.2.9) and
where A ] denotes the comatrix of A . Notice that

for any (V, a) ∈ G(2) , defined in (12.1.12) , A −1 = A ]/ det A (12.1.14)

so that conditions 1, 2, above imply the non-degeneracy conditions (1.2.21)-(1.2.22) for
S ∪ F ⊂ [[0,M ]].

Proposition 12.1.12. The set GM defined by (12.1.13) is a C∞-dense open subset of
P ×Hs(Td). As a result, GM ∩G(2) is a C∞-dense open subset of P ×Hs(Td) and, for any
(V, a) ∈ GM ∩ G(2), the conditions (1.2.21)-(1.2.22) hold, provided that S ∪ F ⊂ [[0,M ]].

Proof of Proposition 12.1.12. Define

IM :=
{

(j, k, σ) ∈
(
[[0,M ]] ∩ Sc

)2 × {±1} : j 6= k or σ = 1
}
,

and, for any (j, k, σ) ∈ IM , the real function Fj,k,σ on P ×Hs(Td) by

Fj,k,σ(V, a) :=
(

det A µj − [BA ]µ̄]j
)

+ σ
(

det A µk − [BA ]µ̄]k
)
. (12.1.15)

Lemma 12.1.13. The set

NS,M :=
{
V ∈ EM ∩ P : ∀(j, k, σ) ∈ IM , Fj,k,σ(V, 1) 6= 0

}
(12.1.16)

is an open and C∞-dense subset of P.

Proof. It is enough to prove that

for each (j, k, σ) ∈ IM , there exists V ∈ EM ∩ P such that Fj,k,σ(V, 1) 6= 0 . (12.1.17)

Indeed, since, for all (j, k, σ) ∈ IM , the function Fj,k,σ(·, 1) is real analytic on the open
connected subset EM ∩ P of Hs(Td), by (12.1.17), Lemma 12.1.2 and the finiteness of IM ,
we conclude that NS,M is C∞-dense open in EM ∩ P . Hence, since EM ∩ P is C∞-dense
open in P , the set NS,M is C∞-dense open in P .
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To prove (12.1.17), we consider the sequence (qn) of potentials provided by Lemma
12.1.4, with J = [[0,M ]]. In particular, qn ∈ EM ∩ P . By Lemma 12.1.4-(i) we get

∀j ∈ [[0,M ]] , µn,j
n→+∞−→ µj =

√
λj > 0 with µj 6= µk for j 6= k . (12.1.18)

Moreover, by Lemma 12.1.4-(i)-(ii), for all k ∈ S, j ∈ [[0,M ]] ∩ Sc, the matrix elements
(recall (1.2.9), (1.2.10) and that j 6= k)[

B(qn, 1)
]k
j

=
3

2
µ−1
n,j(Ψ

2
n,j,Ψ

2
n,k)L2µ−1

n,k → 0 as n→ +∞ . (12.1.19)

In addition, by (1.2.9), (12.1.11) and (12.1.18), we have

det A (qn, 1) =
(∏
j∈S

µ−1
n,j

)2

detG(qn, 1)
n→+∞−→

(∏
j∈S

µ−1
j

)2

ρ =: ρ1 > 0 . (12.1.20)

Therefore (Fj,k,σ(qn, 1)) defined in (12.1.15) converges to ρ1(µj +σµk), and since (µj)j∈[[0,M ]]

are distinct and strictly positive, ρ1(µj+σµk) 6= 0 for (j, k, σ) ∈ IM . This implies (12.1.17).

We have the following corollary.

Corollary 12.1.14. For each potential V (x) ∈ NS,M (defined in (12.1.16)), the set

GV,S,M :=
⋂

(j,k,σ)∈IM

{
a ∈ Hs(Td) : Fj,k,σ(V, a) 6= 0

}
is C∞-dense in Hs(Td).

Proof. By Lemma 12.1.13, for each potential V ∈ NS,M , for each (j, k, σ) ∈ IM , we
have that Fj,k,σ(V, 1) 6= 0. Since the function a 7→ Fj,k,σ(V, a) is real analytic on Hs(Td),
Lemma 12.1.2, and the fact that IM is finite, imply that GV,S,M is a C∞-dense open subset
of Hs(Td).
Proof of Proposition 12.1.12 concluded. The set GM defined in (12.1.13) is clearly
open. Moreover GM is C∞-dense in (ES ∩ P)×Hs(Td), by Corollary 12.1.14, and because
NS,M is C∞-dense in ES ∩ P . Hence GM is a C∞-dense open subset of (ES ∩ P)×Hs(Td).
Since ES is C∞-dense open in P , the set GM is a C∞-dense open subset of P ×Hs(Td). By
Corollary 12.1.10, so is GM ∩G(2), and by (12.1.14), we deduce the last claim of Proposition
12.1.12.

Step 4. Genericity of finitely many first and second Melnikov conditions (1.2.7),
(1.2.16)-(1.2.19)

Let L,M ∈ N with S ⊂ [[0,M ]]. Consider the following Conditions:
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(C1) µ̄ · `+ µj 6= 0 , ∀` ∈ ZS, |`| ≤ L, j ∈ Sc,

(C2) µ̄ · `+ µj − µk 6= 0 , ∀(`, j, k) 6= (0, j, j) ∈ ZS × ([[0,M ]] ∩ Sc)× Sc , |`| ≤ L ,

(C3) µ̄ · `+ µj + µk 6= 0 , ∀(`, j, k) ∈ ZS × ([[0,M ]] ∩ Sc)× Sc , |`| ≤ L .

Note that (C1), (C2), (C3) correspond to the Melnikov conditions (1.2.7), (1.2.16)-(1.2.19).

We denote by E (1)
L , respectively E (2)

L,M , E (3)
L,M , the set of potentials V ∈ ES ∩ P satisfying

conditions (C1), respectively (C2), (C3).

Lemma 12.1.15. Let L,M ∈ N. The set of potentials

EL,M := E (1)
L ∩ E

(2)
L,M ∩ E

(3)
L,M =

{
V ∈ ES ∩ P : (C1),(C2),(C3) hold

}
(12.1.21)

is a C∞-dense open subset of ES ∩ P, thus of P.

Proof. First note that for any potential q ∈ P , Weyl asymptotic formula about the
distribution of the eigenvalues of −∆ + q(x) implies that

C1j
1/d ≤ µj ≤ C2j

1/d , ∀j ∈ N , (12.1.22)

for some positive constants C1, C2, which is uniform on some open neighborhood Bq of
q. Hence Condition (C1) above may be violated by some V ∈ Bq for j ≤ C(|µ̄|L)d

only. Similarly, Conditions (C2) and (C3) may be violated by some V ∈ Bq for k ≤
C(M + (|µ̄|L)d) only. Hence the inequalities in Conditions (C1)-(C3) above are locally
finitely many so that it enough to check that for any ` ∈ Z|S|, j ∈ Sc, k ∈ Sc, the sets

E (1)
`,j :=

{
V ∈ ES ∩ P : µ̄ · `+ µj 6= 0

}
,

E (2)
`,j,k :=

{
V ∈ ES ∩ P : µ̄ · `+ µj − µk 6= 0

}
with ` 6= 0 or j 6= k,

E (3)
`,j,k :=

{
V ∈ ES ∩ P : µ̄ · `+ µj + µk 6= 0

} (12.1.23)

are C∞-dense open in ES ∩ P . The sets in (12.1.23) are open, since each µj depends

continuously on V ∈ ES∩P . We now prove the C∞-density of E (2)
`,j,k, with (`, j, k) 6= (0, j, j).

Notice that the map

Υj,k : ES∪{j}∪{k} ∩ P → R|S|+2 , V 7→ Υj,k(V ) := (µ̄, µj, µk) ,

is real analytic and, by remark 12.1.8, the differential dΥj,k(V ) is onto for any V belonging

to some C∞-dense open subset N (1)
S∪{j}∪{k} of Hs(Td). Hence the map V 7→ µ̄ · `+ µj − µk

is real analytic on the connected open set ES∪{j}∪{k} ∩ P and does not vanish everywhere

for (`, j, k) 6= (0, j, j). Therefore Lemma 12.1.2 implies that E (2)
`,j,k is C∞-dense open in
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ES∪{j}∪{k}∩P , hence also in ES∩P . The same arguments can be applied to E (1)
`,j and E (3)

`,j,k.

Step 5. Genericity of the Diophantine conditions (1.2.6), (1.2.8), of the first
Melnikov conditions (1.2.7) and the second Melnikov conditions (1.2.16)-(1.2.19)

Consider the set of (V, a) defined by

G(3) :=
(
(N (1)

S ∩ P)×Hs(Td)
)⋂
G(2) (12.1.24)

where N (1)
S is the set of potentials defined in (12.1.8) and G(2) is the set of (V, a) defined in

(12.1.12) (for which the twist condition (1.2.12) holds).

Lemma 12.1.16. G(3) is a C∞-dense open subset of P ×Hs(Td).

Proof. By Lemma 12.1.6 and Corollary 12.1.10.

We also remind that the map

µ̄ : ES ∩ P → R|S| , V 7→ µ̄(V ) := (µj(V ))j∈S

defined in (12.1.9) is real analytic, and, by Lemma 12.1.7, for any V ∈ N (1)
S , the differential

dµ̄(V )|E is an isomorphism, where E is the |S|-dimensional subspace of C∞(Td) defined in
Lemma 12.1.6.

We fix some (V̄ , ā) ∈ G(3) and, according to the decomposition

Hs(Td) = E ⊕ F , where F := E⊥L2 ∩Hs(Td) ,

we write uniquely
V̄ = v̄1 + v̄2 , v̄1 ∈ E , v̄2 ∈ F ,

i.e. v̄1 is the projection of V̄ on E and v̄2 is the projection of V̄ on F .

Lemma 12.1.17. (i) There are open balls B1 ⊂ E (the subspace E ' R|S|), B2 ⊂ F ⊂
Hs(Td), centered respectively at v̄1 ∈ E, v̄2 ∈ F , such that, for all v2 ∈ B2, the map

uv2 : B1 ⊂ E → R|S| , v1 7→ uv2(v1) := µ̄(v1 + v2)

is a C1 diffeomorphism from B1 onto its image µ̄(B1 +v2) =: Ov2 which is an open bounded
subset of R|S|, the closure of which is included in (0,+∞)|S|.

(ii) There is a constant KV̄ > 0 such that the inverse functions

u−1
v2

(·) : Ov2 ⊂ R|S| → E

are KV̄ -Lipschitz continuous.
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(iii) There is an open ball B ⊂ Hs(Td) centered at ā such that (possibly after reducing
B1 and B2) the neighborhood UV̄ ,ā := (B1 +B2)×B of (V̄ , ā) has closure contained in G(3),
and there is a constant CV̄ ,ā > 0 such that

‖a‖L∞(1 + ‖A −1‖) ≤ CV̄ ,ā , ∀(V, a) ∈ UV̄ ,ā , (12.1.25)

where A is the Birkhoff matrix in (1.2.9)-(1.2.10).

Proof. Since V̄ = v̄1+v̄2 is inN (1)
S , the differential dµ̄(v̄1+v2)|E is an isomorphism and the

local inversion theorem implies item (i) of the lemma. Items (ii)-(iii) are straightforward
taking B1 and B2 small enough.

In the sequel we shall always restrict to the neighborhood UV̄ ,ā of (V̄ , ā) ∈ G(3) provided
by Lemma 12.1.17-(iii).

For any j ∈ N, v2 ∈ B2, we consider the C1 function

Ξj : Ov2 ⊂ R|S| → R , ω 7→ Ξj(ω) := µj(u
−1
v2

(ω) + v2) . (12.1.26)

Note that, for any j ∈ S, it results Ξj(ω) = ωj.

Lemma 12.1.18. There is a constant K̄ := K̄V̄ > 0 such that, for any potential v2 ∈ B2 ⊂
F ⊂ Hs(Td), each function Ξj defined in (12.1.26) is K̄-Lipschitz continuous. Moreover
there are constants C,C ′ > 0, such that, for all v2 ∈ B2,

Cj1/d ≤ Ξj(ω) ≤ C ′j1/d , ∀j ∈ N , ω ∈ Ov2 . (12.1.27)

Proof. By (12.1.1), λj = µ2
j , and the fact that

α := inf
V ∈B1+B2

inf
j∈N

µj(V ) > 0

we get that

∀V, V ′ ∈ B1 +B2 , |µj(V )− µj(V ′)| ≤
1

2α
‖V − V ′‖Hs . (12.1.28)

Since, by Lemma 12.1.17 the functions u−1
v2

are KV̄ -Lipschitz continuous, (12.1.28) implies

that the function Ξj defined in (12.1.26) is
KV̄

2α
-Lipschitz continuous. The bound (12.1.27)

follows by (12.1.22).

Notice that, in view of (7.1.8), the set M := MV,a ⊂ N\S associated to (V, a) in Lemma
7.1.1 has an upper bound C(V, a) that depends only on ‖A −1‖ and ‖a‖L∞ . Hence M can
be taken constant for all (V, a) in a neighborhood of (V̄ , ā), namely, by (12.1.25),

∃M̄ ∈ N such that, ∀(V, a) ∈ UV̄ ,ā , MV,a ∪ S ⊂ [[0, M̄ ]] . (12.1.29)



CHAPTER 12. GENERICITY OF THE ASSUMPTIONS 293

Lemma 12.1.19. Fix an integer L̄ ≥ 4K̄ where the constant K̄ is defined in Lemma
12.1.18 and let M̄ ∈ N be as in (12.1.29). Given a potential v2 ∈ B2 ⊂ F ⊂ Hs(Td), we
define, for any γ > 0, the subset of potentials G(γ, v2) ⊂ B1 ⊂ E ⊂ C∞ of all the v1 ∈ B1

such that, for V = v1 + v2, the following Diophantine conditions hold:

1. |µ̄ · `| ≥ γ

〈`〉τ0
, ∀` ∈ Z|S|\{0} ;

2.
∣∣∣n+

∑
i,j∈S,i<j

pijµiµj

∣∣∣ ≥ γ

〈p〉τ0
, ∀(n, p) ∈ Z× Z

|S|(|S|+1)
2 \ {0} ;

3. |µ̄ · `+ µj| ≥
γ

〈`〉τ0
, ∀` ∈ Z|S| , |`| ≥ L̄ , j ∈ Sc := N \ S ;

4.

|µ̄ · `+ µj − µk| ≥
γ

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × ([[0, M̄ ]] ∩ Sc)× Sc ,

(`, j, k) 6= (0, j, j) , |`| ≥ L̄ ,
(12.1.30)

|µ̄ · `+ µj + µk| ≥
γ

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × ([[0, M̄ ]] ∩ Sc)× Sc ,

|`| ≥ L̄ .
(12.1.31)

Then the measure (on the finite dimensional subspace E ' R|S|)∣∣∣B1\
( ⋃
γ>0

G(γ, v2)
)∣∣∣ = 0 . (12.1.32)

Proof. In this lemma we denote by mLeb the Lebesgue measure in R|S|.
i) Let F1,γ be the set of the Diophantine frequency vectors ω ∈ Ov2 such that

|ω · `| ≥ γ

〈`〉τ0
, ∀` ∈ Z|S|\{0} . (12.1.33)

It is well known that, for τ0 > |S| − 1, mLeb(Ov2\F1,γ) = O(γ).

ii) Let F2,γ be the set of the frequency vectors ω ∈ Ov2 such that∣∣∣n+
∑

i,j∈S,i<j

pijωiωj

∣∣∣ ≥ γ

〈p〉τ0
, ∀(n, p) ∈ Z× Z

|S|(|S|+1)
2 \ {0} . (12.1.34)

Arguing as in Lemma 2.3.1 we deduce that mLeb(Ov2\F2,γ) = O(γ), see also Lemma 6.3 in
[22].
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iii) Let F3,γ be the set of the frequency vectors ω ∈ Ov2 such that

|ω · `+ Ξj(ω)| ≥ γ

〈`〉τ0
, ∀` ∈ Z|S| , |`| ≥ L̄ , j ∈ Sc . (12.1.35)

Let us prove that mLeb(Ov2\F3,γ) = O(γ). Define on Ov2 the map f`,j(ω) := ω · `+ Ξj(ω).
By (12.1.27), there is a constant C > 0 such that if j ≥ C|`|d, then f`,j ≥ 1 on Ov2 .
Assume j ≤ C|`|d. Since Ξj is K̄-Lipschitz continuous by Lemma 12.1.18, we have, for
|`| ≥ L̄ ≥ 4K̄,

`

|`|
· ∂ω(ω · `+ Ξj(ω)) = |`|+ `

|`|
· ∂ωΞj(ω) ≥ 3|`|

4
.

Hence, for |`| ≥ L̄,

mLeb

({
ω ∈ Ov2 : ∃j ∈ Sc , |f`,j(ω)| ≤ γ

〈`〉τ0
})
≤ C|`|d γ

〈`〉τ0+1
≤ C

γ

〈`〉τ0+1−d .

Hence
mLeb(Ov2\F3,γ) ≤ C

∑
|`|≥L̄

γ

|`|τ0+1−d ≤ Cγ ,

provided that τ0 > d+ |S| − 1.

iv) Let F4,γ, resp. F5,γ, be the set of the frequency vectors ω ∈ Ov2 such that

|ω · `+ Ξj(ω)− Ξk(ω)| ≥ γ

〈`〉τ0
, ∀(`, j, k) ∈ Z|S| × ([[0, M̄ ]] ∩ Sc)× Sc ,

(`, j, k) 6= (0, j, j) , |`| ≥ L̄ ,
(12.1.36)

respectively

|µ̄ · `+ Ξj(ω) + Ξk(ω)| ≥ γ

〈`〉τ0
,

∀(`, j, k) ∈ Z|S| × ([[0, M̄ ]] ∩ Sc)× Sc , |`| ≥ L̄ .
(12.1.37)

Define on Ov2 the map f`,j,k(ω) := ω · `+ Ξj(ω)− Ξk(ω). By (12.1.27), there is a constant
C such that, if j ≤ M̄ and k ≥ C(|`|d + M̄), then f`,j,k ≥ 1 on Ov2 . Moreover, since Ξj, Ξk

are K̄-Lipschitz continuous by Lemma 12.1.18, we deduce that, for |`| ≥ L̄ ≥ 4K̄,

`

|`|
· ∂ω(ω · `+ Ξj(ω)− Ξk(ω)) = |`|+ `

|`|
· ∂ωΞj(ω)− `

|`|
· ∂ωΞk(ω) ≥ |`|

2
.

Therefore, for |`| ≥ L̄,

mLeb

({
ω ∈ Ov2 : ∃(j, k) ∈ ([[0, M̄ ]] ∩ Sc)× Sc , |f`,j,k(ω)| ≤ γ

〈`〉τ0
})

≤ CM̄(|`|d + M̄)
γ

〈`〉τ0+1

≤ C ′(M̄)
γ

〈`〉τ0+1−d .
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Hence, as in iii), mLeb(Ov2\F4,γ) ≤ Cγ, provided that τ0 > d+ |S| − 1. We have the similar
estimate mLeb(Ov2\F5,γ) ≤ Cγ.

We have proved that mLeb(Ov2\Fi,γ) = O(γ) for i = 1, . . . , 5. We conclude that F(γ) :=
∩5
i=1Fi,γ satisfies

mLeb(Ov2\F(γ)) ≤
5∑
i=1

mLeb(Ov2\Fi,γ) = O(γ) =⇒ mLeb

(
Ov2\

⋃
γ>0

F(γ)
)

= 0 .

Finally, since by Lemma 12.1.17-(i) the map uv2 is a diffeomorphism between B1 and Ov2 ,
the measure

mLeb(B1\G(γ, v2, a)) = mLeb(u−1
v2

(Ov2\F(γ))) = 0 .

This completes the proof of the lemma.

Step 6. Conclusion: Proof of Theorem 1.2.3

For any (V̄ , ā) ∈ G(3) (see (12.1.24)), set introduced in (12.1.24), we define

GV̄ ,ā :=
(
EL̄,M̄ ×Hs(Td)

)⋂
GM̄
⋂
UV̄ ,ā (12.1.38)

where UV̄ ,ā ⊂ G(3) is the neighborhood of (V̄ , ā) fixed in Lemma 12.1.17, and the sets EL̄,M̄ ,
GM̄ are defined respectively in (12.1.21), (12.1.13) with integers L̄, M̄ , associated to (V̄ , ā),
that are fixed in Lemma 12.1.19 and (12.1.29).

Lemma 12.1.20. The set GV̄ ,ā is C∞-dense open in UV̄ ,ā.

Proof. By Lemma 12.1.15 and Proposition 12.1.12.

Finally, we define the set G of Theorem 1.2.3 as

G :=
⋃

(V̄ ,ā)∈G(3)

GV̄ ,ā , (12.1.39)

where G(3) is defined in (12.1.24).

Lemma 12.1.21. G is a C∞-dense open subset of P ×Hs(Td).

Proof. Since GV̄ ,ā is open and C∞-dense in UV̄ ,ā by Lemma 12.1.20, the set G defined in
(12.1.39) is open and C∞-dense in ⋃

(V̄ ,ā)∈G(3)

UV̄ ,ā = G(3) .

(recall that UV̄ ,ā ⊂ G(3) by Lemma 12.1.17). Now, by Lemma 12.1.16, G(3) is a C∞-dense

open subset of P ×Hs(Td) and therefore G is a C∞-dense open subset of P ×Hs(Td).
The next lemma completes the proof of Theorem 1.2.3.
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Lemma 12.1.22. Let ã ∈ Hs(Td), ṽ2 ∈ E⊥L2 ∩Hs(Td), where E is the finite dimensional
linear subspace of C∞(Td) defined in Lemma 12.1.6. Then∣∣∣{v1 ∈ E : (v1 + ṽ2, ã) ∈ G\G̃

}∣∣∣ = 0 (12.1.40)

where G̃ is defined in (1.2.37).

Proof. We may suppose that

Wṽ2,ã :=
{
v1 ∈ E : (v1 + ṽ2, ã) ∈ G

}
6= ∅ ,

otherwise (12.1.40) is trivial. Since G is open in Hs(Td), the set Wṽ2,ã is an open subset of
E and, in order to deduce (12.1.40), it is enough to prove that, for any ṽ1 ∈ Wṽ2,ã, there is
an open neighborhood W ′ṽ1

⊂ Wṽ2,ã of ṽ1 such that∣∣∣{v1 ∈ W ′ṽ1
: (v1 + ṽ2, ã) /∈ G̃

}∣∣∣ = 0 . (12.1.41)

Since (ṽ1 + ṽ2, ã) ∈ G, by the definition of G in (12.1.39), there is (V̄ , ā) ∈ G(3) such that

(ṽ1 + ṽ2, ã) ∈ GV̄ ,ā
(12.1.38)

=
(
EL̄,M̄ ×Hs(Td)

)⋂
GM̄
⋂
UV̄ ,ā

where
UV̄ ,ā = (B1 +B2)×B

is defined in Lemma 12.1.17. Define

W ′ṽ1
:=
{
v1 ∈ E : (v1 + ṽ2, ã) ∈ GV̄ ,ā

}
⊂ B1 .

Since GV̄ ,ā is open, W ′ṽ1
⊂ Wṽ2,ã is an open neighborhood of ṽ1 ∈ Wṽ2,ã.

Now for all (V, a) ∈ GV̄ ,ā, the twist condition (1.2.12) and the non-degeneracy properties
(1.2.21)-(1.2.22) hold and, by the definition of EL̄,M̄ in (12.1.21) and by (12.1.29), there is
γ0 = γ0(V, a) > 0 such that (1.2.7) and (1.2.16)-(1.2.19) for all |`| ≤ L̄. Thus, recalling the

definition of the sets G(γ, ṽ2) in Lemma 12.1.19 and G̃ in (1.2.37), and (12.1.29), we have

GV̄ ,ā
⋂(⋃

γ>0

G(γ, ṽ2)
)
⊂ G̃ ,

so that {
v1 ∈ W ′ṽ1

: (v1 + ṽ2, ã) /∈ G̃
}
⊂ B1\

( ⋃
γ>0

G(γ, ṽ2)
)
.

Hence, by (12.1.32), the measure estimate (12.1.41) holds. This completes the proof of
(12.1.40).



Appendix A

Hamiltonian and Reversible PDEs

In this Appendix we first introduce the concept of Hamiltonian and/or reversible vector
field. Then we shortly review the Hamiltonian and/or Reversible structure of some classical
PDE.

A.1 Hamiltonian and Reversible vector fields

Let E be a real Hilbert space with scalar product 〈 , 〉. Endow E with a constant exact
symplectic 2-form

Ω(z, w) = 〈J̄z, w〉 , ∀z, w ∈ E ,

where J̄ : E → E is a non-degenerate, antisymmetric linear operator. Then, given a
Hamiltonian function H : D(H) ⊂ E → R, we associate the Hamiltonian system

ut = XH(u) where dH(u)[·] = −Ω(XH(u), ·) (A.1.1)

formally defines the Hamiltonian vector field XH . The vector field XH : E1 ⊂ E → E is,
in general, well defined and smooth only on a dense subspace E1 ⊂ E. A continuous curve
[t0, t1] 3 t 7→ u(t) ∈ E is a solution of (A.1.1) if it is C1 as a map from [t0, t1] 7→ E1 and

ut(t) = XH(u(t)) in E , ∀t ∈ [t0, t1] .

If, for all u ∈ E1, there is a vector ∇uH(u) ∈ E such that the differential writes

dH(u)[h] = 〈∇uH(u), h〉 , ∀h ∈ E1 , (A.1.2)

(since E1 is in general not a Hilbert space with the scalar product 〈 , 〉 then (A.1.2) does
not follow by the Riesz theorem), then the Hamiltonian vector field XH : E1 7→ E writes

XH = J∇uH , J := −J̄−1 . (A.1.3)

297
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In PDE applications that we shall review below, usually E = L2 and the dense subspace
E1 belongs to the Hilbert scale formed by the Sobolev spaces of periodic functions

Hs :=
{
u(x) =

∑
j∈Zd

uje
ij·x : ‖u‖2

s :=
∑
j∈Zd
|uj|2(1 + |j|2s) < +∞

}
for s ≥ 0, or by the spaces of analytic functions

Hσ,s :=
{
u(x) =

∑
j∈Zd

uj e
ij·x : ‖u‖2

σ,s :=
∑
j∈Zd
|uj|2 e2|j|σ(1 + |j|2s) < +∞

}
for σ > 0. For s > d/2 the spaces Hs and Hσ,s are an algebra with respect to the product
of functions. We refer to [95] for a general functional setting of Hamiltonian PDEs on scales
of Hilbert spaces.

Reversible vector field. A vector field X is reversible if there exists an involution S of
the phase space, i.e a linear operator of E satisfying S2 = Id, such that

X ◦ S = −S ◦X . (A.1.4)

Such condition is equivalent to the relation

Φt ◦ S = S ◦ Φ−t

for the flow Φt associated to the vector field X. For a reversible equation it is natural to
look for “reversible” solutions u(t) of ut = X(u), namely such that

u(−t) = Su(t) .

If S is antisymplectic, i.e. S∗Ω = −Ω, then a Hamiltonian vector field X = XH is reversible
if and only if the Hamiltonian H satisfies

H ◦ S = H .

Remark A.1.1. The possibility of developing KAM theory for reversible systems was first
observed for finite dimensional systems by Moser in [99], see [110] for a complete presen-
tation. In infinite dimension, the first KAM results for reversible PDEs have been obtained
in [119].

We now present some examples of Hamiltonian and/or Reversible PDE.
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A.2 Nonlinear wave and Klein-Gordon equations

We consider the Nonlinear wave equation (NLW)

ytt −∆y + V (x)y = f(x, y) , x ∈ Td := (R/2πZ)d , y ∈ R , (A.2.1)

with a real valued multiplicative potential V (x) ∈ R. If V (x) = m is constant, (A.2.1) is
also called a nonlinear Klein-Gordon equation.

The NLW equation (A.2.1) can be written as the first order Hamiltonian system

d

dt

(
y
p

)
=

(
p

∆y − V (x)y + f(x, y)

)
=

(
0 Id
−Id 0

)(
∇yH(y, p)
∇pH(y, p)

)
where ∇yH, ∇pH denote the L2(Tdx)-gradient of the Hamiltonian

H(y, p) :=

∫
Td

p2

2
+

1

2

(
(∇xy)2 + V (x)y2

)
+ F (x, y) dx (A.2.2)

with potential density F (x, y) := −
∫ y

0

f(x, z) dz and ∇xy := (∂x1y, . . . , ∂xdy). Thus for

the NLW equation E = L2 × L2 with L2 := L2(Td,R), the symplectic matrix

J = J̄ =

(
0 Id
−Id 0

)
and 〈 , 〉 is the L2 real scalar product. The variables (y, p) are “Darboux coordinates”.

Remark A.2.1. The transposed operator J̄> = −J̄ (with respect to 〈 , 〉) and J̄−1 = J̄>.

The Hamiltonian H is properly defined on the subspaces E1 := Hs×Hs, s ≥ 2, so that
the Hamiltonian vector field is a map

J∇uH : Hs ×Hs → Hs−2 ×Hs−2 ⊂ L2 × L2 .

Note that the loss of two derivatives is only due to the Laplace operator ∆ and that the
Hamiltonian vector field generated by the nonlinearity is bounded, because the composition
operator

y(x) 7→ f(x, y(x)) (A.2.3)

is a map of Hs into itself. For such a reason the PDE (A.2.1) is semi-linear.
If the nonlinearity f(x, u) is analytic in the variable u, and Hs0 , s0 > d/2, in the space

variable x, then the composition operator (A.2.3) is analytic from Hs0 in itself. It is only
finitely many times differentiable on Hs0 if the nonlinearity f(x, u) is only (sufficiently)
many times differentiable with respect to u.
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Remark A.2.2. The regularity of the vector field is relevant for KAM theory: for finite
dimensional systems, it has been rigorously proved that, if the vector field is not sufficiently
smooth, then all the invariant tori could be destroyed and only discontinuous Aubry-Mather
invariant sets survive, see e.g. [82].

If the potential density F (x, y,∇xy) in (A.2.2) depends also on the first order derivative
∇xy, we obtain a quasi-linear wave equation. For simplicity we write explicitly only the
equation in dimension d = 1. Given the Hamiltonian

H(y, p) :=

∫
T

p2

2
+

1

2

(
y2
x + V (x)y2

)
+ F (x, y, yx) dx

we derive the Hamiltonian wave equation

ytt − yxx + V (x)y = f(x, y, yx, yxx)

with nonlinearity (denoting by (x, y, ζ) the independent variables of the potential density
(x, y, ζ) 7→ F (x, y, ζ)) given by

f(x, y, yx, yxx) = −(∂yF )(x, y, yx) +
d

dx

{
(∂ζF )(x, y, yx)

}
= −(∂yF )(x, y, yx) + (∂ζxF )(x, y, yx) + (∂ζyF )(x, y, yx)yx + (∂ζζF )(x, y, yx)yxx .

Note that f depends on all the derivatives y, yx, yxx but it is linear in the second order
derivatives yxx, i.e. f is quasi-linear. The nonlinear composition operator

y(x) 7→ f(x, y(x), yx(x), yxx(x))

maps Hs → Hs−2, i.e. loses two derivatives.

Derivative Wave equations. If the nonlinearity f(x, y, yx) depends only on first order
derivatives, then the Hamiltonian structure of the wave equation is lost (at least the usual
one). However such equation can admit a reversible structure. Consider the derivative
wave, or, better called, derivative Klein-Gordon equation

ytt − yxx +my = f(x, y, yx, yt) , x ∈ T ,

where the nonlinearity depends also on the first order space and time derivatives (yx, yt),
and write it as the first order system

d

dt

(
y
p

)
=

(
p

yxx −my + f(x, y, yx, p)

)
.

Its vector field X is reversible (see (A.1.4)) with respect to the involution

S : (y, p)→ (y,−p) , resp. S : (y(x), p(x))→ (y(−x),−p(−x)) ,

assuming the reversibility condition

f(x, y, yx,−p) = f(x, y, yx, p) , resp. f(x, y,−yx, p) = f(−x, y, yx,−p) .
KAM results have been obtained for reversible derivative wave equations in [18].
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A.3 Nonlinear Schrödinger equation

Consider the Hamiltonian Schrödinger equation

iut −∆u+ V (x)u = f(x, u) , x ∈ Td , u ∈ C , (A.3.1)

where f(x, u) = ∂ūF (x, u) and the potential F (x, u) ∈ R, ∀u ∈ C, is real valued. The NLS
equation (A.3.1) can be written as the infinite dimensional complex Hamiltonian equation

ut = i∇ūH(u) , H(u) :=

∫
Td
|∇u|2 + V (x)|u|2 − F (x, u) dx .

Actually (A.3.1) is a real Hamiltonian PDE. In the variables (a, b) ∈ R2, real and imaginary
part of

u = a+ ib ,

denoting the real valued potential W (a, b) := F (x, a+ ib) so that

∂ūF (x, a+ ib) :=
1

2
(∂a + i∂b)W (a, b) ,

the NLS equation (A.3.1) reads

d

dt

(
a
b

)
=

 ∆b− V (x)b+
1

2
∂bW (a, b)

−∆a+ V (x)a− 1

2
∂aW (a, b)

 =
1

2

(
0 −Id
Id 0

)(
∇aH(a, b)
∇bH(a, b)

)

with real valued Hamiltonian H(a, b) := H(a+ ib) and ∇a,∇b denote the L2-real gradients.
The variables (a, b) are “Darboux coordinates”.

A simpler Hamiltonian pseudo-differential model equation often studied is

iut −∆u+ V ∗ u = ∂ūF (x, u) , x ∈ Td , u ∈ C , (A.3.2)

where the convolution potential V ∗ u is the Fourier multipliers operator

u(x) =
∑
j∈Zd

uje
ij·x 7→ V ∗ u :=

∑
j∈Zd

Vjuje
ij·x

with real valued Fourier multipliers Vj ∈ R. The Hamiltonian of (A.3.2) is

H(u) :=

∫
Td
|∇u|2 + (V ∗ u) ū− F (x, u) dx .

Also for the NLS equation (A.3.1), the Hamiltonian vector field loses two derivatives because
of the Laplace operator ∆. On the other hand the nonlinear Hamiltonian vector field
i∂ūF (x, u) is bounded, so that the PDE (A.3.1), as well as (A.3.2), is a semi-linear equation.
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If the nonlinearity depends also on first and second order derivatives, we have, respec-
tively, derivative NLS (DNLS) and fully-non-linear (or quasi-linear) Schrödinger equations.
For simplicity we present the model equations only in dimension d = 1. For the DNLS
equation

iut + uxx = f(x, u, ux) (A.3.3)

the Hamiltonian structure is lost (at least the usual one). However (A.3.3) is reversible
with respect to the involution

S : u 7→ ū

(see (A.1.4)) if the nonlinearity f satisfies the condition

f(x, ū, ūx) = f(x, u, ux) .

KAM results for DNLS have been proved in [119]. On the other hand, fully nonlinear, or
quasi-linear, perturbed NLS equations like

iut = uxx + εf(ωt, x, u, ux, uxx)

may be both reversible or Hamiltonian. They have been considered in [62].

A.4 Perturbed KdV equations

An important class of equations which arises in fluid mechanics concerns nonlinear pertur-
bations

ut + uxxx + ∂xu
2 +N (x, u, ux, uxx, uxxx) = 0 , x ∈ T , (A.4.1)

of the KdV equation
ut + uxxx + ∂xu

2 = 0 . (A.4.2)

Here the unknown u(x) ∈ R is real valued. If the nonlinearity N (x, u, ux, uxx, uxxx) does
not depend on uxxx such equation is semilinear. The most general Hamiltonian (local)
nonlinearity is

N (x, u, ux, uxx, uxxx) := −∂x
[
(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))

]
(A.4.3)

which is quasi-linear. In this case (A.4.1) is the Hamiltonian PDE

ut = ∂x∇uH(u) , H(u) =

∫
T

u2
x

2
− u3

3
+ f(x, u, ux) dx , (A.4.4)

where ∇uH denotes the L2(Tx) gradient.



APPENDIX A. HAMILTONIAN AND REVERSIBLE PDES 303

The “mass”

∫
T
u(x) dx is a prime integral of (A.4.1)-(A.4.3) and a natural phase space

is

H1
0 (Tx) :=

{
u(x) ∈ H1(T,R) :

∫
T
u(x)dx = 0

}
.

Thus for the Hamiltonian PDE (A.4.4) we have

E = L2
0(T,R) :=

{
u ∈ L2(T,R) :

∫
T
u(x) dx = 0

}
, J̄ = −∂−1

x ,

and 〈 , 〉 is the L2 real scalar product. Note that J = −J̄−1 = ∂x see (A.1.3). The
nonlinear Hamiltonian vector field is defined and smooth on the subspaces E1 = Hs

0(T),
s ≥ 3, because

N (x, u, ux, uxx, uxxx) : Hs
0(T) 7→ Hs−3

0 (T) ⊂ L2
0(T) .

Note that, if the Hamiltonian density f = f(x, u) does not depend on the first order
derivative ux, the nonlinearity in (A.4.3) reduces to N = −∂x[(∂uf)(x, u)] and so the PDE
(A.4.1)-(A.4.3) is semilinear.

Birkhoff coordinates. The KdV equation (A.4.2) has very special algebraic properties:
it possesses infinitely many analytic prime integrals in involution, i.e. pairwise commuting,
and it is integrable in the strongest possible sense, namely it possesses global analytic action-
angle variables, called the Birkhoff coordinates. The whole infinite dimensional phase space
is foliated by quasi-periodic and almost-periodic solutions. The quasi-periodic solutions are
called the “finite gap” solutions. Kappeler and collaborators (see for example [90] and
references therein) proved that there exists an analytic symplectic diffeomorphism

Ψ−1 : HN
0 (T)→ `2

N+ 1
2
(R)× `2

N+ 1
2
(R) ,

from the Sobolev spaces HN
0 (T) := HN(T) ∩ L2

0(T), N ≥ 0, to the spaces of coordinates

(x, y) ∈ `2
N+ 1

2
(R)× `2

N+ 1
2
(R) equipped with the canonical symplectic form

∑
n≥1

dxn ∧ dyn,

where
`2
s(R) :=

{
x := (xn)n∈N , xn ∈ R :

∑
n≥1

x2
nn

2s < +∞
}
,

such that, for N = 1, the KdV Hamiltonian

HKdV (u) =

∫
T

u2
x

2
− u3

3
dx ,

expressed in the new coordinates, i.e. K := HKdV ◦ Ψ, depends only on x2
n + y2

n, n ≥ 1
(actions). The KdV equation appears therefore, in these new coordinates, as an infinite
chain of anharmonic oscillators, whose frequencies

ωn(I) := ∂InK(I) , I = (I1, I2, . . .) , In = (x2
n + y2

n)/2
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depend on their amplitudes in a nonlinear and real analytic fashion. This is the basis for
studying perturbations of the finite gap solutions of KdV.

Remark A.4.1. The existence of Birkhoff coordinates is much more than what is needed
for local KAM perturbation theory. As noted by Kuksin in [94]-[95] it is sufficient that
the unperturbed torus is reducible, namely that the linearized equation at the quasi-periodic
solution have, in a suitable set of coordinates, constant coefficients.

Other integrable Hamiltonian PDEs which possess Birkhoff coordinates are the mKdV
equation, see [91],

ut + uxxx + ∂xu
3 = 0 , x ∈ T , (A.4.5)

and the cubic 1-d NLS equation, see [74],

iut = uxx + |u|2u , x ∈ T . (A.4.6)



Appendix B

Multiscale Step

In this Appendix we provide the proof of the multiscale Step Proposition B.2.4 proved in
[23], which is used to prove Proposition 4.3.4.

• Notation. In this Appendix we use the notation of [23], in particular be aware that
the Definitions B.2.1, B.2.2, B.2.3 below ofN -good/bad matrix, regular/singular sites,
and (A,N)-good/bad site are different with respect to those introduced in section 4.3
which are used in the Monograph.

In order to give a self-contained presentation we first prove the properties of the decay
norms introduced in [23], recalled in section 3.3.

B.1 Matrices with off-diagonal decay

Let ei = ei(`·ϕ+j·x) for i := (`, j) ∈ Zb := Zν ×Zd. In the vector-space Hs = Hs(Tν ×Td;Cr)
defined in (3.3.2) with ν = |S|, we consider the basis

ek = eiea , k := (i, a) ∈ Zb × I , (B.1.1)

where ea := (0, . . . , 1︸︷︷︸
a−th

, . . . , 0) ∈ Cr, a = 1, . . . , r, denote the canonical basis of Cr, and

I := {1, . . . , r} .

Then we write any u ∈ Hs as

u =
∑

k∈Zb×I

ukek , uk ∈ C .

305
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For B ⊂ Zb × I, we introduce the subspace

Hs
B :=

{
u ∈ Hs : uk = 0 if k /∈ B

}
.

When B is finite, the space Hs
B does not depend on s and will be denoted HB. We define

ΠB : Hs → HB

the L2-orthogonal projector onto HB.
In what follows B,C,D,E are finite subsets of Zb × I.
We identify the space LBC of the linear maps L : HB → HC with the space of matrices

MB
C :=

{
M = (Mk′

k )k′∈B,k∈C , M
k′

k ∈ C
}

according to the following usual definition.

Definition B.1.1. The matrix M ∈MB
C represents the linear operator L ∈ LBC , if

∀k′ = (i′, a′) ∈ B, k = (i, a) ∈ C , ΠkLek′ = Mk′

k ek ,

where ek are defined in (B.1.1) and Mk′

k ∈ C.

Example. The multiplication operator for(
p(ϕ, x) q(ϕ, x)
q(ϕ, x) p(ϕ, x)

)
,

acting in Hs(Tν × Td;C2), is represented by the matrix

T := (T i
′

i )i,i′∈Zb where T i
′

i =

(
pi−i′ qi−i′

(q)i−i′ pi−i′

)
(B.1.2)

and pi, qi denote the Fourier coefficients of p(ϕ, x), q(ϕ, x). With the above notation, the
set I = {1, 2} and

T
(i′,1)
(i,1) = pi−i′ , T

(i′,2)
(i,1) = qi−i′ , T

(i′,1)
(i,2) = (q)i−i′ , T

(i′,1)
(i,2) = pi−i′ .

Notation. For any subset B of Zb × I, we denote by

B := projZbB (B.1.3)

the projection of B in Zb.
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Given B ⊂ B′, C ⊂ C ′ ⊂ Zb×I and M ∈MB′

C′ we can introduce the restricted matrices

MB
C := ΠCM|HB , MC := ΠCM , MB := M|HB . (B.1.4)

If D ⊂ projZbB
′, E ⊂ projZbC

′, then we define

MD
E as MB

C where B := (D × I) ∩B′, C := (E × I) ∩ C ′ . (B.1.5)

In the particular case D = {i′}, E := {i}, i, i′ ∈ Zb, we use the simpler notation

Mi := M{i} (it is either a line or a group of 2, . . . , r lines of M) , (B.1.6)

M i′ := M{i′} (it is either a column or a group of 2, . . . , r columns of M) , (B.1.7)

and
M i′

i := M
{i′}
{i} , (B.1.8)

it is am×m′-complex matrix, wherem ∈ {1, . . . , r} (resp. m′ ∈ {1, . . . , r}) is the cardinality
of C (resp. of B) defined in (B.1.5) with E := {i} (resp. D = {i′}).

We endow the vector-space of the m×m′, m,m′ ∈ {1, . . . , r}, complex matrices with a
norm | | such that

|UW | ≤ |U‖W | ,
whenever the dimensions of the matrices make their multiplication possible, and |U | ≤ |V |
if U is a submatrix of V .

Remark B.1.2. The notation in (B.1.5), (B.1.6), (B.1.7), (B.1.8), may be not very specific,
but it is deliberate: it is convenient not to distinguish the index a ∈ I, which is irrelevant
in the definition of the s-norms, in Definition B.1.3.

We also set the L2-operatorial norm

‖MB
C ‖0 := sup

h∈HB ,h6=0

‖MB
C h‖0

‖h‖0

(B.1.9)

where ‖ ‖0 := ‖ ‖L2 .

Definition B.1.3. (s-norm) The s-norm of a matrix M ∈MB
C is defined by

|M |2s :=
∑
n∈Zb

[M(n)]2〈n〉2s (B.1.10)

where 〈n〉 := max(|n|, 1),

[M(n)] :=

 max
i−i′=n,i∈C,i′∈B

|M i′

i | if n ∈ C −B

0 if n /∈ C −B ,
(B.1.11)

with B := projZbB, C := projZbC (see (B.1.3)).
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It is easy to check that | |s is a norm on MB
C . It verifies | |s ≤ | |s′ , ∀s ≤ s′, and

∀M ∈MB
C , ∀B′ ⊆ B , C ′ ⊆ C , |MB′

C′ |s ≤ |M |s .

The s-norm is designed to estimate the off-diagonal decay of matrices similar to the Töplitz
matrix which represents the multiplication operator for a Sobolev function.

Lemma B.1.4. The matrix T in (B.1.2) with (p, q) ∈ Hs(Tν × Td;C2) satisfies

|T |s . ‖(q, p)‖s . (B.1.12)

Proof. By (B.1.11), (B.1.2) we get

[T (n)] := max
i−i′=n

∣∣∣ ( pi−i′ qi−i′
qi−i′ pi−i′

) ∣∣∣ . |pn|+ |qn| .
Hence, the definition in (B.1.10) implies

|T |2s =
∑
n∈Zb

[T (n)]2〈n〉2s .
∑
n∈Zb

(|pn|+ |qn|)2〈n〉2s . ‖(p, q)‖2
s

and (B.1.12) follows.

In order to prove that the matrices with finite s-norm satisfy the interpolation inequal-
ities (B.1.15), and then the algebra property (B.1.16), the guiding principle is the analogy
between these matrices and the Töpliz matrices which represent the multiplication opera-
tor for functions. We introduce the set H+ of the trigonometric polynomials with positive
Fourier coefficients

H+ :=
{
h =

∑
h`,je

i(`·ϕ+j·x) with h`,j 6= 0

for a finite number of (`, j) only and h`,j ∈ R+

}
.

Note that the sum and the product of two functions in H+ remain in H+.

Definition B.1.5. Given M ∈ MB
C , h ∈ H+, we say that M is dominated by h, and we

write M ≺ h, if
[M(n)] ≤ hn , ∀n ∈ Zb , (B.1.13)

in other words if |M i′

i | ≤ hi−i′ , ∀i′ ∈ projZbB, i ∈ projZbC.

It is easy to check (B and C being finite) that

|M |s = min
{
‖h‖s : h ∈ H+ , M ≺ h

}
and

∃h ∈ H+ , ∀s ≥ 0 , |M |s = ‖h‖s .
(B.1.14)
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Lemma B.1.6. For M1 ∈MC
D, M2 ∈MB

C , M3 ∈MC
D, we have

M1 ≺ h1 , M2 ≺ h2 , M3 ≺ h3 =⇒
M1 +M3 ≺ h1 + h3 and M1M2 ≺ h1h2 .

Proof. Property M1 + M3 ≺ h1 + h3 is straightforward. For i ∈ projZbD, i′ ∈ projZbB,
we have

|(M1M2)i
′

i | =
∣∣∣ ∑
q∈C:=projZbC

(M1)qi (M2)i
′

q

∣∣∣ ≤ ∑
q∈C

|(M1)qi ||(M2)i
′

q |

≤
∑
q∈C

(h1)i−q(h2)q−i′

≤
∑
q∈Zb

(h1)i−q(h2)q−i′ = (h1h2)i−i′

implying M1M2 ≺ h1h2 by Definition B.1.5.

We deduce from (B.1.14) and Lemma 3.5.1, the following interpolation estimates.

Lemma B.1.7. (Interpolation) For all s ≥ s0 > (d+ ν)/2, there is C(s) ≥ 1, such that,
for any finite subset B,C,D ⊂ Zb × I, for all matrices M1 ∈MC

D, M2 ∈MB
C ,

|M1M2|s ≤ C(s0)|M1|s0|M2|s + C(s)|M1|s|M2|s0 , (B.1.15)

in particular,
|M1M2|s ≤ C(s)|M1|s|M2|s . (B.1.16)

Note that the constant C(s) in Lemma B.1.7 is independent of B, C, D.

Lemma B.1.8. For all s ≥ s0 > (d + ν)/2, there is C(s) ≥ 1, such that, for any finite
subset B,C,D ⊂ Zb × I, for all M1 ∈MC

D, M2 ∈MB
C , we have

|M1M2|s0 ≤ C(s0)|M1|s0|M2|s0 , (B.1.17)

and, ∀M ∈MB
B, ∀n ≥ 1,

|Mn|s0 ≤ (C(s0))n−1|M |ns0 ,
|Mn|s ≤ C(s)(C(s0))n−1|M |n−1

s0
|M |s , ∀s ≥ s0 .

(B.1.18)

Proof. The first estimate in (B.1.18) follows by (B.1.16) with s = s0 and the second
estimate in (B.1.18) is obtained from (B.1.15), using C(s) ≥ 1.

The s-norm of a matrix M ∈ MB
C controls also the Sobolev Hs-norm. Indeed, we

identify HB with the space M{0}
B of column matrices and the Sobolev norm ‖ ‖s is equal

to the s-norm | |s, i.e.
∀w ∈ HB , ‖w‖s = |w|s , ∀s ≥ 0 . (B.1.19)

Then Mw ∈ HC and the next lemma is a particular case of Lemma B.1.7.
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Lemma B.1.9. (Sobolev norm) ∀s ≥ s0 there is C(s) ≥ 1 such that, for any finite subset
B,C ⊂ Zb × I, for any M ∈MB

C , w ∈ HB,

‖Mw‖s ≤ C(s0)|M |s0‖w‖s + C(s)|M |s‖w‖s0 . (B.1.20)

The following lemma is the analogue of the smoothing properties of the projection
operators.

Lemma B.1.10. (Smoothing) Let M ∈MB
C . Then, ∀s′ ≥ s ≥ 0,

M i′

i = 0 , ∀|i− i′| < N =⇒ |M |s ≤ N−(s′−s)|M |s′ , (B.1.21)

and, for N ≥ N0,

M i′

i = 0 , ∀|i− i′| > N =⇒

{
|M |s′ ≤ N s′−s|M |s
|M |s ≤ N s+b‖M‖0 .

(B.1.22)

Proof. Estimate (B.1.21) and the first bound of (B.1.22) follow from the definition of
the norms | |s. The second bound of (B.1.22) follows by the first bound in (B.1.22), noting
that |M i′

i | ≤ ‖M‖0, ∀i, i′,

|M |s ≤ N s|M |0 ≤ N s
√

(2N + 1)b‖M‖0 ≤ N s+b‖M‖0

for N ≥ N0.

In the next lemma we bound the s-norm of a matrix in terms of the (s+ b)-norms of its
lines.

Lemma B.1.11. (Decay along lines) Let M ∈MB
C . Then, ∀s ≥ 0,

|M |s . max
i∈projZbC

|M{i}|s+b (B.1.23)

(we could replace the index b with any α > b/2).

Proof. For all i ∈ C := projZbC, i′ ∈ B := projZbB, ∀s ≥ 0,

|M i′

i | ≤
|M{i}|s+b
〈i− i′〉s+b

≤ m(s+ b)

〈i− i′〉s+b

where m(s+ b) := max
i∈C
|M{i}|s+b. As a consequence

|M |s =
( ∑
n∈C−B

(M [n])2〈n〉2s
)1/2

≤ m(s+ b)
(∑
n∈Zb
〈n〉−2b

)1/2

implying (B.1.23).

The L2-norm and s0-norm of a matrix are related.
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Lemma B.1.12. Let M ∈MC
B. Then, for s0 > (d+ ν)/2,

‖M‖0 .s0 |M |s0 . (B.1.24)

Proof. Let m ∈ H+ be such that M ≺ m and |M |s = ‖m‖s for all s ≥ 0, see (B.1.14).

Also for H ∈ M{0}
C , there is h ∈ H+ such that H ≺ h and |H|s = ‖h‖s, ∀s ≥ 0. Lemma

B.1.6 implies that MH ≺ mh and so

|MH|0 ≤ ‖mh‖0 ≤ |m|L∞‖h‖0 .s0 ‖m‖s0‖h‖0 = |M |s0|H|0 , ∀H ∈M{0}
C .

Then (B.1.24) follows (recall (B.1.19)).

In the sequel we use the notion of left invertible operators.

Definition B.1.13. (Left Inverse) A matrix M ∈ MB
C is left invertible if there exists

N ∈MC
B such that NM = IdB. Then N is called a left inverse of M .

Note that M is left invertible if and only if M (considered as a linear map) is injective
(then dimHC ≥ dimHB). The left inverses of M are not unique if dimHC > dimHB: they
are uniquely defined only on the range of M .

We shall often use the following perturbation lemma for left invertible operators. Note
that the bound (B.1.25) for the perturbation in s0-norm only, allows to estimate the inverse
(B.1.28) also in s ≥ s0 norm.

Lemma B.1.14. (Perturbation of left invertible matrices) If M ∈ MB
C has a left

inverse N ∈MC
B , then there exists δ(s0) > 0 such that,

∀P ∈MB
C with |N |s0|P |s0 ≤ δ(s0) , (B.1.25)

the matrix M + P has a left inverse NP that satisfies

|NP |s0 ≤ 2|N |s0 , (B.1.26)

and, ∀s ≥ s0,

|NP |s ≤
(
1 + C(s)|N |s0|P |s0

)
|N |s + C(s)|N |2s0 |P |s (B.1.27)

.s |N |s + |N |2s0 |P |s . (B.1.28)

Moreover,
∀P ∈MB

C with ‖N‖0‖P‖0 ≤ 1/2 , (B.1.29)

the matrix M + P has a left inverse NP that satisfies

‖NP‖0 ≤ 2‖N‖0 . (B.1.30)
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Proof.
Proof of (B.1.26). The matrix NP = AN with A ∈ MB

B is a left inverse of M + P if and
only if

IB = AN(M + P ) = A(IB +NP ) ,

i.e. if and only if A is the inverse of IB + NP ∈ MB
B. By (B.1.17) and (B.1.25) we have,

taking δ(s0) > 0 small enough,

|NP |s0 ≤ C(s0)|N |s0|P |s0 ≤ C(s0)δ(s0) ≤ 1/2 . (B.1.31)

Hence the matrix IB +NP is invertible and

NP = AN = (IB +NP )−1N =
∞∑
p=0

(−1)p(NP )pN (B.1.32)

is a left inverse of M + P . Estimate (B.1.26) follows by (B.1.32) and (B.1.31).

Proof of (B.1.27). For all s ≥ s0, ∀p ≥ 1,

|(NP )pN |s
(B.1.15)

.s |N |s0|(NP )p|s + |N |s|(NP )p|s0
(B.1.18)

.s |N |s0(C(s0)|NP |s0)p−1|NP |s + |N |s(C(s0)|NP |s0)p

(B.1.31),(B.1.15)

.s 2−p(|N |s0|P |s0|N |s + |N |2s0|P |s) . (B.1.33)

We derive (B.1.27) by

|NP |s
(B.1.32)

≤ |N |s +
∑
p≥1

|(NP )pN |s

(B.1.33)

≤ |N |s + C(s)(|N |s0|P |s0|N |s + |N |2s0 |P |s) .

Finally (B.1.30) follows from (B.1.29) as (B.1.26) because the operatorial L2-norm (see
(B.1.9)) satisfies the algebra property ‖NP‖0 ≤ ‖N‖0‖P‖0.

B.2 Multiscale step Proposition

This section is devoted to prove the multiscale step Proposition B.2.4.
In the whole section ς ∈ (0, 1) is fixed and τ ′ > 0, Θ ≥ 1 are real parameters, on which

we shall impose conditions in Proposition B.2.4.
Given Ω,Ω′ ⊂ E ⊂ Zb × I we define

diam(E) := sup
k,k′∈E

|k − k′| , d(Ω,Ω′) := inf
k∈Ω,k′∈Ω′

|k − k′| ,
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where, for k = (i, a), k′ := (i′, a′) we set

|k − k′| :=


1 if i = i′ , a 6= a′ ,

0 if i = i′ , a = a′ ,

|i− i′| if i 6= i′ .

Definition B.2.1. (N-good/bad matrix [23]) The matrix A ∈ ME
E, with E ⊂ Zb × I,

diam(E) ≤ 4N , is N-good if A is invertible and

∀s ∈ [s0, s1] , |A−1|s ≤ N τ ′+δs. (B.2.1)

Otherwise A is N-bad.

Definition B.2.2. (Regular/Singular sites [23]) The index k := (i, a) ∈ Zb × I is
regular for A if |Akk| ≥ Θ. Otherwise k is singular.

Definition B.2.3. ((A,N)-good/bad site [23]) For A ∈ME
E, we say that k ∈ E ⊂ Zb×I

is

• (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(k,E\F ) ≥ N and
AFF is N-good.

• (A,N)-good if it is regular for A or (A,N)-regular. Otherwise we say that k is
(A,N)-bad.

Let us consider the new larger scale

N ′ = Nχ (B.2.2)

with χ > 1.

For a matrix A ∈ME
E we define Diag(A) := (δkk′A

k′

k )k,k′∈E.

Proposition B.2.4. (Multiscale step [23]) Assume

ς ∈ (0, 1/2) , τ ′ > 2τ + b+ 1 , C1 ≥ 2 , (B.2.3)

and, setting κ := τ ′ + b+ s0,

χ(τ ′ − 2τ − b) > 3(κ+ (s0 + b)C1) , χς > C1 , (B.2.4)

s1 > 3κ+ χ(τ + b) + C1s0 . (B.2.5)

For any given Υ > 0, there exist Θ := Θ(Υ, s1) > 0 large enough (appearing in Definition
B.2.2), and N0(Υ,Θ, s1) ∈ N such that:

∀N ≥ N0(Υ,Θ, s1), ∀E ⊂ Zb × I with diam(E) ≤ 4N ′ = 4Nχ (see (B.2.2)), if A ∈ ME
E

satisfies
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• (H1) |A−Diag(A)|s1 ≤ Υ

• (H2) ‖A−1‖0 ≤ (N ′)τ

• (H3) There is a partition of the (A,N)-bad sites B = ∪αΩα with

diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (B.2.6)

then A is N ′-good. More precisely

∀s ∈ [s0, s1] , |A−1|s ≤
1

4
(N ′)τ

′
(

(N ′)ςs + |A−Diag(A)|s
)
, (B.2.7)

and, for all s ≥ s1,

|A−1|s ≤ C(s)(N ′)τ
′(

(N ′)ςs + |A−Diag(A)|s
)
. (B.2.8)

The above proposition says, roughly, the following. If A has a sufficient off-diagonal
decay (assumption (H1) and (B.2.5)), and if the sites that can not be inserted in good
“small” submatrices (of size O(N)) along the diagonal of A are sufficiently separated (as-
sumption (H3)), then the L2-bound (H2) for A−1 implies that the “large” matrix A (of size
N ′ = Nχ with χ as in (B.2.4)) is good, and A−1 satisfies also the bounds (B.2.7) in s-norm
for s > s1. Notice that the bounds for s > s1 follow only by informations on the N -good
submatrices in s1-norm (see Definition B.2.1) plus the s-decay of A. The link between the
various constants is the following:

• According to (B.2.4) the exponent χ, which measures the new scale N ′ � N , is large
with respect to the size of the bad clusters Ωα, i.e. with respect to C1. The intuitive
meaning is that, for χ large enough, the “resonance effects” due to the bad clusters
are “negligible” at the new larger scale.

• The constant Θ ≥ 1 which defines the regular sites (see Definition B.2.2) must be large
enough with respect to Υ, i.e. with respect to the off diagonal part T := A−Diag(A),
see (H1) and Lemma B.2.5.

• Note that χ in (B.2.4) can be taken large independently of τ , choosing, for example,
τ ′ := 3τ + 2b.

• The Sobolev index s1 has to be large with respect to χ and τ , according to (B.2.5).
This is also natural: if the decay is sufficiently strong, then the “interaction” between
different clusters of N -bad sites is weak enough.

• In (B.2.6) we have fixed the separation N2 between the bad clusters just for definite-
ness: any separation Nµ, µ > 0, would be sufficient. Of course, the smaller µ > 0 is,
the larger the Sobolev exponent s1 has to be.
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The proof of Proposition B.2.4 is divided in several lemmas. In each of them we shall
assume that the hypotheses of Proposition B.2.4 are satisfied. We set

T := A−Diag(A) , |T |s1
(H1)

≤ Υ . (B.2.9)

Call G (resp. B) the set of the (A,N)-good (resp. bad) sites. The partition

E = B ∪G

induces the orthogonal decomposition

HE = HB ⊕HG

and we write
u = uB + uG where uB := ΠBu , uG := ΠGu .

We shall denote by IG, resp. IB, the restriction of the identity matrix to HG, resp. HB,
according to (B.1.4).

The next Lemmas B.2.5 and B.2.6 say that the system Au = h can be nicely reduced
along the good sites G, giving rise to a (non-square) system A′uB = Zh, with a good control
of the s-norms of the matrices A′ and Z. Moreover A−1 is a left inverse of A′.

Lemma B.2.5. (Semi-reduction on the good sites) Let Θ−1Υ ≤ c0(s1) be small
enough. There exist M ∈ ME

G, N ∈ MB
G satisfying, if N ≥ N1(Υ) is large enough,

|M|s0 ≤ cNκ , |N |s0 ≤ cΘ−1Υ , (B.2.10)

for some c := c(s1) > 0, and, ∀s ≥ s0,

|M|s ≤ C(s)N2κ
(
N s−s0 +N−b|T |s+b

)
,

|N |s ≤ C(s)Nκ
(
N s−s0 +N−b|T |s+b

)
,

(B.2.11)

such that
Au = h =⇒ uG = NuB +Mh .

Moreover
uG = NuB +Mh =⇒ ∀k regular , (Au)k = hk . (B.2.12)

Proof. It is based on “resolvent identity” arguments.

Step I. There exist Γ, L ∈ME
G satisfying

|Γ|s0 ≤ C0(s1)Θ−1Υ , |L|s0 ≤ Nκ , (B.2.13)
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and, ∀s ≥ s0,

|Γ|s ≤ C(s)Nκ
(
N s−s0 +N−b|T |s+b

)
, |L|s ≤ C(s)Nκ+s−s0 , (B.2.14)

such that
Au = h =⇒ uG + Γu = Lh . (B.2.15)

Fix any k ∈ G (see Definition B.2.3). If k is regular, let F := {k}, and, if k is not regular
but (A,N)-regular, let F ⊂ E such that d(k,E\F ) ≥ N , diam(F ) ≤ 4N , AFF is N -good.
We have

Au = h =⇒ AFFuF + A
E\F
F uE\F = hF

=⇒ uF +QuE\F = (AFF )−1hF
(B.2.16)

where
Q := (AFF )−1A

E\F
F = (AFF )−1T E\FF ∈ME\F

F . (B.2.17)

The matrix Q satisfies

|Q|s1
(B.1.16)

≤ C(s1)|(AFF )−1|s1|T |s1
(B.2.1),(B.2.9)

≤ C(s1)N τ ′+ςs1Υ (B.2.18)

(the matrix AFF is N -good). Moreover, ∀s ≥ s0, using (B.1.15) and diam(F ) ≤ 4N ,

|Q|s+b .s |(AFF )−1|s+b|T |s0 + |(AFF )−1|s0|T |s+b
(B.1.22)

.s N s+b−s0|(AFF )−1|s0 |T |s0 + |(AFF )−1|s0|T |s+b
(B.2.1),(B.2.9)

.s N (ς−1)s0
(
N s+b+τ ′Υ +N τ ′+s0|T |s+b

)
. (B.2.19)

Applying the projector Π{k} in (B.2.16), we obtain

Au = h =⇒ uk +
∑
k′∈E

Γk
′

k uk′ =
∑
k′∈E

Lk
′

k hk′ (B.2.20)

that is (B.2.15) with

Γk
′

k :=

{
0 if k′ ∈ F
Qk′

k if k′ ∈ E \ F ,

Lk
′

k :=

{
[(AFF )−1]k

′

k if k′ ∈ F
0 if k′ ∈ E \ F.

(B.2.21)

If k is regular then F = {k}, and, by Definition B.2.2,

|Akk| ≥ Θ . (B.2.22)
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Therefore, by (B.2.21) and (B.2.17), the k-line of Γ satisfies

|Γk|s0+b ≤ |(Akk)−1Tk|s0+b

(B.2.22),(B.2.9)

.s0 Θ−1Υ . (B.2.23)

If k is not regular but (A,N)-regular, since d(k,E\F ) ≥ N we have, by (B.2.21), that
Γk
′

k = 0 for |k − k′| ≤ N . Hence, by Lemma B.1.10,

|Γk|s0+b

(B.1.21)

≤ N−(s1−s0−b)|Γk|s1
(B.2.21)

≤ N−(s1−s0−b)|Q|s1
(B.2.18)

.s1 ΥN τ ′+s0+b−(1−ς)s1

.s1 Θ−1Υ (B.2.24)

for N ≥ N0(Θ) large enough. Indeed the exponent τ ′ + s0 + b− (1− ς)s1 < 0 because s1 is
large enough according to (B.2.5) and ς ∈ (0, 1/2) (recall κ := τ ′ + s0 + b). In both cases
(B.2.23)-(B.2.24) imply that each line Γk decays like

|Γk|s0+b .s1 Θ−1Υ , ∀k ∈ G .

Hence, by Lemma B.1.11, we get

|Γ|s0 ≤ C ′(s1)Θ−1Υ ,

which is the first inequality in (B.2.13). Likewise we prove the second estimate in (B.2.13).
Moreover, ∀s ≥ s0, still by Lemma B.1.11,

|Γ|s . sup
k∈G
|Γk|s+b

(B.2.21)

. |Q|s+b
(B.2.19)

.s Nκ
(
N s−s0 +N−b|T |s+b

)
where κ := τ ′ + s0 + b and for N ≥ N0(Υ).

The second estimate in (B.2.14) follows by |L|s0 ≤ Nκ (see (B.2.13)) and (B.1.22) (note
that by (B.2.21), since diamF ≤ 4N , we have Lk

′

k = 0 for all |k − k′| > 4N).

Step II. By (B.2.15) we have

Au = h =⇒ (IG + ΓG)uG = Lh− ΓBuB . (B.2.25)

By (B.2.13), if Θ is large enough (depending on Υ, namely on the potential V0), we have
|ΓG|s0 ≤ 1/2. Hence, by Lemma B.1.14, IG + ΓG is invertible and

|(IG + ΓG)−1|s0
(B.1.26)

≤ 2 , (B.2.26)

and, ∀s ≥ s0

|(IG + ΓG)−1|s
(B.1.26)

.s 1 + |ΓG|s
(B.2.14)

.s Nκ
(
N s−s0 +N−b|T |s+b

)
. (B.2.27)
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By (B.2.25), we have
Au = h =⇒ uG =Mh+NuB

with
M := (IG + ΓG)−1L ,

N := −(IG + ΓG)−1ΓB ,
(B.2.28)

and estimates (B.2.10)-(B.2.11) follow by Lemma B.1.7, (B.2.26)-(B.2.27) and (B.2.13)-
(B.2.14).

Note that
uG + Γu = Lh ⇐⇒ uG =Mh+NuB . (B.2.29)

As a consequence, if uG =Mh+NuB then, by (B.2.21), for k regular,

uk + (Akk)
−1
∑
k′ 6=k

Ak
′

k uk′ = (Akk)
−1hk ,

hence (Au)k = hk, proving (B.2.12).

Lemma B.2.6. (Reduction on the bad sites) We have

Au = h =⇒ A′uB = Zh

where
A′ := AB + AGN ∈MB

E ,

Z := IE − AGM ∈ME
E ,

(B.2.30)

satisfy
|A′|s0 ≤ c(Θ) ,

|A′|s ≤ C(s,Θ)Nκ(N s−s0 +N−b|T |s+b) ,
(B.2.31)

and
|Z|s0 ≤ cNκ ,

|Z|s ≤ C(s,Θ)N2κ(N s−s0 +N−b|T |s+b) .
(B.2.32)

Moreover (A−1)B is a left inverse of A′.

Proof. By Lemma B.2.5,

Au = h =⇒

{
AGuG + ABuB = h

uG = NuB +Mh

=⇒ (AGN + AB)uB = h− AGMh ,

i.e. A′uB = Zh. Let us prove estimates (B.2.31)-(B.2.32) for A′ and Z.
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Step I. ∀ k regular we have A′k = 0, Zk = 0.

By (B.2.12), for all k regular,

∀h , ∀uB ∈ HB ,
(
AG(NuB +Mh) + ABuB

)
k

= hk ,

i.e. (A′uB)k = (Zh)k ,

which implies A′k = 0 and Zk = 0.

Step II. Proof of (B.2.31)-(B.2.32).

Call R ⊂ E the regular sites in E. For all k ∈ E\R, we have |Akk| < Θ (see Definition
B.2.2). Then (B.2.9) implies

|AE\R|s0 ≤ Θ + |T |s0 ≤ c(Θ) ,

|AE\R|s ≤ Θ + |T |s , ∀s ≥ s0 .
(B.2.33)

By Step I and the definition of A′ in (B.2.30) we get

|A′|s = |A′E\R|s ≤ |ABE\R|s + |AGE\RN|s .

Therefore Lemma B.1.7, (B.2.33), (B.2.10), (B.2.11), imply

|A′|s ≤ C(s,Θ)Nκ
(
N s−s0 +N−b|T |s+b

)
and |A′|s0 ≤ c(Θ) ,

proving (B.2.31). The bound (B.2.32) follows similarly.

Step III. (A−1)B is a left inverse of A′.

By
A−1A′ = A−1(AB + AGN ) = IBE + IGEN

we get
(A−1)BA

′ = (A−1A′)B = IBB − 0 = IBB

proving that (A−1)B is a left inverse of A′.

Now A′ ∈ MB
E , and the set B is partitioned in clusters Ωα of size O(NC1), far enough

one from another, see (H3). Then, up to a remainder of very small s0-norm (see (B.2.37)),
A′ is defined by the submatrices (A′)Ωα

Ω′α
where Ω′α is some neighborhood of Ωα (the distance

between two distinct Ω′α and Ω′β remains large). Since A′ has a left inverse with L2-norm

O(N ′
τ
), so have the submatrices (A′)Ωα

Ω′α
. Since these submatrices are of size O(NC1), the

s-norms of their inverse will be estimated as O(NC1sN ′
τ
) = O(N ′

τ+χ−1C1s), see (B.2.43).
By Lemma B.1.14, provided χ is chosen large enough, A′ has a left inverse V with s-norms
satisfying (B.2.34). The details are given in the following lemma.
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Lemma B.2.7. (Left inverse with decay) The matrix A′ defined in Lemma B.2.6 has
a left inverse V which satisfies

∀s ≥ s0 , |V |s .s N2χτ+κ+2(s0+b)C1
(
NC1s + |T |s+b

)
. (B.2.34)

Proof. Define ζ ∈MB
E by

ζkk′ :=

{
(A′)kk′ if (k , k ′) ∈ ∪α(Ωα × Ω′α)

0 if (k , k ′) /∈ ∪α(Ωα × Ω′α)
(B.2.35)

where
Ω′α :=

{
k ∈ E : d(k,Ωα) ≤ N2/4

}
. (B.2.36)

Step I. ζ has a left inverse W ∈ME
B with ‖W‖0 ≤ 2(N ′)τ .

We define R := A′− ζ. By the definition (B.2.35)-(B.2.36), if d(k′, k) < N2/4 then Rk
k′ = 0

and so

|R|s0
(B.1.21)

≤ 4s1N−2(s1−b−s0)|R|s1−b ≤ 4s1N−2(s1−b−s0)|A′|s1−b
(B.2.31),(B.2.9)

.s1 N−2(s1−b−s0)Nκ(N s1−b−s0 +N−bΥ)

.s1 N
2κ−s1 (B.2.37)

for N ≥ N0(Υ) large enough. Therefore

‖R‖0‖(A−1)B‖0

(B.1.24)

.s0 |R|s0‖A−1‖0

(B.2.37),(H2)

.s1 N2κ−s1(N ′)τ

(B.2.2)
= C(s1)N2κ−s1+χτ

(B.2.5)

≤ 1/2 (B.2.38)

for N ≥ N(s1). Since (A−1)B ∈ ME
B is a left inverse of A′ (see Lemma B.2.6), Lemma

B.1.14 and (B.2.38) imply that ζ = A′ −R has a left inverse W ∈ME
B, and

‖W‖0

(B.1.30)

≤ 2‖(A−1)B‖0 ≤ 2‖A−1‖0

(H2)

≤ 2(N ′)τ . (B.2.39)

Step II. W0 ∈ME
B defined by

(W0)k
′

k :=

{
W k′

k if (k, k′) ∈ ∪α(Ωα × Ω′α)

0 if (k, k′) 6∈ ∪α(Ωα × Ω′α)
(B.2.40)

is a left inverse of ζ and |W0|s ≤ C(s)N (s+b)C1+χτ , ∀s ≥ s0.
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Since Wζ = IB, we prove that W0 is a left inverse of ζ showing that

(W −W0)ζ = 0 . (B.2.41)

Let us prove (B.2.41). For k ∈ B = ∪αΩα, there is α such that k ∈ Ωα, and

∀k′ ∈ B ,
(
(W −W0)ζ

)k′
k

=
∑
q /∈Ω′α

(W −W0)qkζ
k′

q (B.2.42)

since (W −W0)qk = 0 if q ∈ Ω′α, see the Definition (B.2.40).

Case I: k′ ∈ Ωα. Then ζk
′

q = 0 in (B.2.42) and so ((W −W0)ζ)k
′

k = 0.

Case II: k′ ∈ Ωβ for some β 6= α. Then, since ζk
′

q = 0 if q /∈ Ω′β, we obtain by (B.2.42)
that

((W −W0)ζ)k
′

k =
∑
q∈Ω′β

(W −W0)qkζ
k′

q

(B.2.40)
=

∑
q∈Ω′β

W q
k ζ

k′

q

(B.2.35)
=

∑
k∈E

W q
k ζ

k′

q = (Wζ)k
′

k = (IB)k
′

k = 0 .

Since diam(Ω′α) ≤ 2NC1 , definition (B.2.40) implies (W0)k
′

k = 0 for all |k − k′| ≥ 2NC1 .
Hence, ∀s ≥ 0,

|W0|s
(B.1.22)

.s N (s+b)C1‖W0‖0

(B.2.39)

.s N (s+b)C1+χτ . (B.2.43)

Step III. A′ has a left inverse V satisfying (B.2.34).

Now A′ = ζ +R, W0 is a left inverse of ζ, and

|W0|s0 |R|s0
(B.2.43),(B.2.37)

≤ C(s1)N (s0+b)C1+χτ+2κ−s1
(B.2.5)

≤ 1/2

(we use also that χ > C1 by (B.2.4)) for N ≥ N(s1) large enough. Hence, by Lemma
B.1.14, A′ has a left inverse V with

|V |s0
(B.1.26)

≤ 2|W0|s0
(B.2.43)

≤ CN (s0+b)C1+χτ (B.2.44)

and, ∀s ≥ s0,

|V |s
(B.1.26)

.s |W0|s + |W0|2s0 |R|s .s |W0|s + |W0|2s0|A
′|s

(B.2.43),(B.2.31)

.s N2χτ+κ+2(s0+b)C1
(
NC1s + |T |s+b

)
proving (B.2.34).
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Proof of Proposition B.2.4 completed. Lemmata B.2.5, B.2.6, B.2.7 imply

Au = h =⇒

{
uG =Mh+NuB
uB = V Zh

whence
(A−1)B = V Z

(A−1)G =M+NV Z =M+N (A−1)B .
(B.2.45)

Therefore, ∀s ≥ s0,

|(A−1)B|s
(B.2.45),(B.1.15)

.s |V |s|Z|s0 + |V |s0|Z|s
(B.2.34),(B.2.32),(B.2.9),(B.2.44)

.s N2κ+2χτ+2(s0+b)C1
(
NC1s + |T |s+b

)
.s (N ′)

α1
(
(N ′)

α2s + |T |s
)

using |T |s+b ≤ C(s)(N ′)b|T |s (by (B.1.22)) and defining

α1 := 2τ + b+ 2χ−1(κ+ C1(s0 + b)) , α2 := χ−1C1 . (B.2.46)

We obtain the same bound for |(A−1)G|s. Notice that by (B.2.4) and (B.2.3), the exponents
α1, α2 in (B.2.46) satisfy

α1 < τ ′ , α2 < ς . (B.2.47)

Hence, for all s ≥ s0,

|A−1|s ≤ |(A−1)B|s + |(A−1)G|s ≤ C(s)(N ′)
α1
(
(N ′)

α2s + |T |s
)

(B.2.48)

(B.2.47),(B.2.9)

≤ C(s)(N ′)
τ ′(

(N ′)
ςs

+ |A−Diag(A)|s
)

which is (B.2.8). Moreover, for N ≥ N(s1) large enough, we have

∀s ∈ [s0, s1] , C(s)(N ′)
α1 ≤ 1

4
(N ′)

τ ′
,

and by (B.2.48) we deduce (B.2.7).



Appendix C

Normal form close to an isotropic
torus

In this Appendix we report the results in [24], which are used in Chapter 6. Theorem C.1.4
provides, in a neighborhood of an isotropic invariant torus for an Hamiltonian vector field
XK , symplectic variables in which the Hamiltonian K assumes the normal form (C.1.22).
It is a classical result of Herman [81], [64] that an invariant torus, densily filled by a quasi-
periodic solution, is isotropic, see Lemma C.1.2 and Lemma C.2.4 for a more quantitative
version. In view of the Nash-Moser iteration we need to perform an analogous construction
for an only “approximately invariant” torus. The key step is Lemma C.2.5 which constructs
near an “approximately invariant” torus an isotropic torus. This Appendix is written with
a self-contained character.

C.1 Symplectic coordinates near an invariant torus

We consider the toroidal phase space

P := Tν × Rν × E where Tν := Rν/(2πZ)ν

is the standard flat torus and E is a real Hilbert space with scalar product 〈 , 〉. We denote
by u := (θ, y, z) the variables of P . We call (θ, y) the “action-angle” variables and z the
“normal” variables. We assume that E is endowed with a constant exact symplectic 2-form

ΩE(z, w) = 〈J̄z, w〉 , ∀z, w ∈ E , (C.1.1)

where J̄ : E → E is an antisymmetric bounded linear operator with trivial kernel. Thus P
is endowed with the symplectic 2-form

W := (dy ∧ dθ) ⊕ ΩE (C.1.2)

323
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which is exact, namely
W = dκ (C.1.3)

where d denotes the exterior derivative and κ is the Liouville 1-form on P defined by

κ(θ,y,z) : Rν × Rν × E → R ,

κ(θ,y,z)[θ̂, ŷ, ẑ] := y · θ̂ +
1

2
〈J̄z, ẑ〉 , ∀(θ̂, ŷ, ẑ) ∈ Rν × Rν × E ,

(C.1.4)

and the dot “ · ” denotes the usual scalar product of Rν .
Given a Hamiltonian function K : D ⊂ P → R, we consider the Hamiltonian system

ut = XK(u) where dK(u)[·] = −W(XK(u), ·) (C.1.5)

formally defines the Hamiltonian vector field XK . For infinite dimensional systems (i.e.
PDEs) the Hamiltonian K is, in general, well defined and smooth only on a dense subset
D = Tν × Rν × E1 ⊂ P where E1 ⊂ E is a dense subspace of E. We require that, for all
(θ, y) ∈ Tν × Rν , ∀z ∈ E1, the Hamiltonian K admits a gradient ∇zK, defined by

dzK(θ, y, z)[h] = 〈∇zK(θ, y, z), h〉 , ∀h ∈ E1 , (C.1.6)

and that ∇zK(θ, y, z) ∈ E is in the space of definition of the (possibly unbounded) operator
J := −J̄−1. Then by (C.1.5), (C.1.1), (C.1.2), (C.1.6) the Hamiltonian vector field XK :
Tν × Rν × E1 7→ Rν × Rν × E writes

XK = (∂yK,−∂θK, J∇zK) , J := −J̄−1 .

A continuous curve [t0, t1] 3 t 7→ u(t) ∈ Tν×Rν×E is a solution of the Hamiltonian system
(C.1.5) if it is C1 as a map from [t0, t1] to Tν ×Rν ×E1 and ut(t) = XK(u(t)), ∀t ∈ [t0, t1].
For PDEs, the flow map Φt

K may not be well-defined everywhere. The next arguments,
however, will not require to solve the initial value problem, but only a functional equation
in order to find quasi-periodic solutions, see (C.1.11).

We suppose that (C.1.5) possesses an embedded invariant torus

ϕ 7→ i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ)) (C.1.7)

i ∈ C1(Tν ,P) ∩ C0(Tν ,P ∩ Tν × Rν × E1) , (C.1.8)

which supports a quasi-periodic solution with non-resonant frequency vector ω ∈ Rν , more
precisely

i ◦Ψt
ω = Φt

K ◦ i , ∀t ∈ R , (C.1.9)

where Φt
K denotes the flow generated by XK and

Ψt
ω : Tν → Tν , Ψt

ω(ϕ) := ϕ+ ωt , (C.1.10)
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is the translation flow of vector ω on Tν . Since ω ∈ Rν is non-resonant, namely

ω · ` 6= 0 , ∀` ∈ Zν \ {0} ,

each orbit of (Ψt
ω) is dense in Tν . Note that (C.1.9) only requires that the flow Φt

K is well
defined and smooth on the compact manifold T := i(Tν) ⊂ P and (Φt

K)|T = i ◦ Ψt
ω ◦ i−1.

This remark is important because, for PDEs, the flow could be ill-posed in a neighborhood
of T . From a functional point of view (C.1.9) is equivalent to the equation

ω · ∂ϕi(ϕ)−XK(i(ϕ)) = 0 . (C.1.11)

Remark C.1.1. In the sequel we will formally differentiate several times the torus embed-
ding i, so that we assume more regularity than (C.1.8). In the framework of a Nash-Moser
scheme, the approximate torus embedding solutions i are indeed regularized at each step.

We require that θ : Tν → Tν is a diffeomorphism of Tν isotopic to the identity. Then
the embedded torus T := i(Tν) is a smooth graph over Tν . Moreover the lift on Rν of θ is
a map

θ : Rν → Rν , θ(ϕ) = ϕ+ ϑ(ϕ) , (C.1.12)

where ϑ(ϕ) is 2π-periodic in each component ϕi, i = 1, . . . , ν, with invertible Jacobian
matrix Dθ(ϕ) = Id + Dϑ(ϕ), ∀ϕ ∈ Tν . In the usual applications Dϑ is small and ω is a
Diophantine vector, namely

|ω · `| ≥ γ

|`|τ
, ∀` ∈ Zν \ {0} .

The torus T is the graph of the function (see (C.1.7) and (C.1.12))

j := i ◦ θ−1 , j : Tν → Tν × Rν × E , j(θ) := (θ, ỹ(θ), z̃(θ)) , (C.1.13)

namely

T =
{

(θ, ỹ(θ), z̃(θ)) ; θ ∈ Tν
}
, where ỹ := y ◦ θ−1 , z̃ := z ◦ θ−1 . (C.1.14)

We first prove the isotropy of an invariant torus as in [81], [64], i.e. that the 2-form W
vanishes on the tangent space to i(Tν) ⊂ P ,

0 = i∗W = i∗dκ = d(i∗κ) , (C.1.15)

or equivalently the 1-form i∗κ on Tν is closed.

Lemma C.1.2. The invariant torus i(Tν) is isotropic.
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Proof. By (C.1.9) the pullback

(i ◦Ψt
ω)∗W = (Φt

K ◦ i)∗W = i∗W . (C.1.16)

For smooth Hamiltonian systems in finite dimension (C.1.16) is true because the 2-formW
is invariant under the flow map Φt

K (i.e. (Φt
K)∗W =W). In our setting, the flow (Φt

K) may
not be defined everywhere, but Φt

K is well defined on i(Tν) by the assumption (C.1.9), and
still preserves W on the manifold i(Tν), see the proof of Lemma C.2.4 for details. Next,
denoting the 2-form

(i∗W)(ϕ) =
∑
i<j

Aij(ϕ)dϕi ∧ dϕj ,

we have
(i ◦Ψt

ω)∗W = (Ψt
ω)∗ ◦ i∗W =

∑
i<j
Aij(ϕ+ ωt)dϕi ∧ dϕj

and so (C.1.16) implies that

Aij(ϕ+ ωt) = Aij(ϕ) , ∀t ∈ R .

Since the orbit {ϕ + ωt} is dense on Tν (ω is non-resonant) and each function Aij is
continuous, it implies that

Aij(ϕ) = cij , ∀ϕ ∈ Tν , i.e. i∗W =
∑

i<j
cijdϕi ∧ dϕj

is constant. But, by (C.1.3), the 2-form i∗W = i∗dκ = d(i∗κ) is also exact. Thus each
cij = 0 namely i∗W = 0.

We now consider the diffeomorphism of the phase space θ
y
z

 = G

 φ
ζ
w

 :=

 θ(φ)

y(φ) + [Dθ(φ)]−>ζ −
[
Dz̃(θ(φ))

]>
J̄w

z(φ) + w

 (C.1.17)

where z̃(θ) := (z ◦ θ−1)(θ), see (C.1.14). The transposed operator
[
Dz̃(θ)

]>
: E → Rν is

defined by the duality relation[
Dz̃(θ)

]>
w · θ̂ = 〈w,Dz̃(θ)[θ̂]〉 , ∀w ∈ E , θ̂ ∈ Rν .

Lemma C.1.3. Let i be an isotropic torus embedding. Then G is symplectic.

Proof. We may see G as the composition G := G2 ◦G1 of the diffeomorphisms θ
y
z

 = G1

 φ
ζ
w

 :=

 θ(φ)

[Dθ(φ)]−>ζ
w


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and  θ
y
z

 7→ G2

 θ
y
z

 :=

 θ

ỹ(θ) + y −
[
Dz̃(θ)

]>
J̄z

z̃(θ) + z

 (C.1.18)

where ỹ := y ◦ θ−1, z̃ := z ◦ θ−1, see (C.1.14). We claim that both G1, G2 are symplectic,

whence the lemma follows.

G1 is symplectic. Since G1 is the identity in the third component, it is sufficient to check
that the map

(φ, ζ) 7→
(
θ(φ), [Dθ(φ)]−>ζ

)
is a symplectic diffeomorphism on Tν × Rν , which is a direct calculus.

G2 is symplectic. We prove that G∗2κ − κ is closed and so (see (C.1.3))

G∗2W = G∗2dκ = dG∗2κ = dκ =W .

By (C.1.18) and the definition of pullback we have

(G∗2κ)(θ,y,z)[θ̂, ŷ, ẑ] =
(
ỹ(θ) + y −

[
Dz̃(θ)

]>
J̄z
)
· θ̂

+
1

2
〈J̄(z̃(θ) + z), ẑ +Dz̃(θ)[θ̂]〉 .

Therefore (recall (C.1.4))(
(G∗2κ)(θ,y,z) − κ(θ,y,z)

)
[θ̂, ŷ, ẑ] =

(
ỹ(θ)−

[
Dz̃(θ)

]>
J̄z
)
· θ̂ +

1

2
〈J̄ z̃(θ), ẑ〉

+
1

2
〈J̄ z̃(θ), Dz̃(θ)[θ̂]〉+

1

2
〈J̄z,Dz̃(θ)[θ̂]〉

= ỹ(θ) · θ̂ +
1

2
〈J̄ z̃(θ), Dz̃(θ)[θ̂]〉

+
1

2
〈J̄ z̃(θ), ẑ〉+

1

2
〈J̄Dz̃(θ)[θ̂], z〉 , (C.1.19)

having used that J̄> = −J̄ . We first note that the 1-form

(θ̂, ŷ, ẑ) 7→ 〈J̄ z̃(θ), ẑ〉+ 〈J̄Dz̃(θ)[θ̂], z〉 = d(〈J̄ z̃(θ), z〉)[θ̂, ŷ, ẑ] (C.1.20)

is exact. Moreover

ỹ(θ) · θ̂ +
1

2
〈J̄ z̃(θ), Dz̃(θ)[θ̂]〉 = (j∗κ)θ[θ̂] (C.1.21)

(recall (C.1.4)) where j := i ◦ θ−1 see (C.1.13). Hence (C.1.19), (C.1.20), (C.1.21) imply

(G∗2κ)(θ,y,z) − κ(θ,y,z) = π∗(j∗κ)(θ,y,z) + d
(1

2
〈J̄ z̃(θ), z〉

)
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where π : Tν × Rν × E → Tν is the canonical projection.
Since the torus j(Tν) = i(Tν) is isotropic the 1-form j∗κ on Tν is closed (as i∗κ, see

(C.1.15)). This concludes the proof.

Since G is symplectic the transformed Hamiltonian vector field

G∗XK := (DG)−1 ◦XK ◦G = XK , K := K ◦G ,

is still Hamiltonian. By construction (see (C.1.17)) the torus {ζ = 0, w = 0} is invariant
and (C.1.11) implies

XK(φ, 0, 0) = (ω, 0, 0)

(see also Lemma C.2.6). As a consequence, the Taylor expansion of the transformed Hamil-
tonian K in these new coordinates assumes the normal form

K = const+ ω · ζ +
1

2
A(φ)ζ · ζ + 〈C(φ)ζ, w〉+

1

2
〈B(φ)w,w〉+O3(ζ, w) (C.1.22)

where A(φ) ∈ Mat(ν × ν) is a real symmetric matrix, B(φ) is a self-adjoint operator of E,
C(φ) ∈ L(Rν , E), and O3(ζ, w) collects all the terms at least cubic in (ζ, w).

We have proved the following theorem:

Theorem C.1.4. [24] (Normal form close to an invariant isotropic torus) Let
T = i(Tν) be an embedded torus, see (C.1.7)-(C.1.8), which is a smooth graph over Tν, see
(C.1.13)-(C.1.14), invariant for the Hamiltonian vector field XK, and on which the flow is
conjugate to the translation flow of vector ω, see (C.1.9)-(C.1.10). Assume moreover that
T is isotropic, a property which is automatically verified if ω is non-resonant.

Then there exist symplectic coordinates (φ, ζ, w) in which T is described by

Tν × {0} × {0}

and the Hamiltonian assumes the normal form (C.1.22), i.e. the torus

T = G(Tν × {0} × {0})

where G is the symplectic diffeomorphism defined in (C.1.17), and the Hamiltonian K ◦G
has the Taylor expansion (C.1.22) in a neighborhood of the invariant torus.

The normal form (C.1.22) is relevant in view of a Nash-Moser approach, because it
provides a control of the linearized equations in the normal bundle of the torus. The
linearized Hamiltonian system associated to K at the trivial solution (φ, ζ, w)(t) = (ωt, 0, 0)
is 

φ̇− A(ωt)ζ − [C(ωt)]>w = 0

ζ̇ = 0

ẇ − J
(
B(ωt)w + C(ωt)ζ

)
= 0
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and note that the second equation is decoupled from the others. Inserting its constant
solution ζ(t) = ζ0 in the third equation we are reduced to solve the quasi-periodically
forced Hamiltonian linear equation in w,

wt − JB(ωt)w = g(ωt) , g(ωt) := JC(ωt)ζ0 .

This linear system may be studied with both the reducibility and the multiscale techniques
presented in sections 1.3 and 1.4. In particular, if the reducibility approach outlined in
subsection 1.3.1 applies, there is a symplectic change of variable which makes B(φ) constant.

C.2 Symplectic coordinates near an approximately in-

variant torus

In this section we report a construction of suitable symplectic coordinates near a torus
which is only approximately invariant, analogous to the one in the previous section.

For that, we first report a basic fact about 1-forms on a torus. We regard a 1-form

a =
ν∑
i=1

ai(ϕ)dϕi equivalently as the vector field a(ϕ) = (a1(ϕ), . . . , aν(ϕ)).

Given a function g : Tν → R with zero average, we denote by

u := ∆−1g

the unique solution of ∆u = g with zero average.

Lemma C.2.1. (Helmotz decomposition) A smooth vector field a on Tν may be de-
composed as the sum of a conservative and a divergence-free vector field:

a = ∇U + c + ρ , U : Tν → R , c ∈ Rν , divρ = 0 ,

∫
Tν
ρdϕ = 0 . (C.2.1)

The above decomposition is unique if we impose that the mean value of U vanishes. We
have that

U = ∆−1(div a) ,

the components of ρ are

ρj(ϕ) = ∆−1

ν∑
k=1

∂ϕkAkj(ϕ) , Akj := ∂ϕkaj − ∂ϕjak , (C.2.2)

and

c = (cj)j=1,...,ν , cj = (2π)−ν
∫
Tν
aj(ϕ) dϕ .
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Proof. Notice that div(~a − ∇U) = 0 if and only if div a = ∆U . This equation has the
solution U := ∆−1(div a) (note that div a has zero average). Hence (C.2.1) is achieved with
ρ := a−∇U − c. By taking the ϕ-average we get that each

cj = (2π)−ν
∫
Tν
aj(ϕ) dϕ .

Let us now prove the expression (C.2.2) of ρj. We have

∂ϕkρj − ∂ϕjρk = ∂ϕkaj − ∂ϕjak =: Akj

because
∂ϕj∂ϕkU − ∂ϕk∂ϕjU = 0 .

For each j = 1, . . . , ν we differentiate ∂ϕkρj − ∂ϕjρk = Akj with respect to ϕk and we sum
in k, obtaining

∆ρj −
ν∑
k=1

∂ϕkϕjρk =
ν∑
k=1

∂ϕkAkj .

Since
ν∑
k=1

∂ϕkϕjρk = ∂ϕjdivρ = 0

then ∆ρj =
ν∑
k=1

∂ϕkAkj and (C.2.2) follows.

Corollary C.2.2. Any closed 1-form on Tν has the form a(ϕ) = c + dU for some c ∈ Rν.

Corollary C.2.3. Let a(ϕ) be a 1-form on Tν, and let ρ be defined by (C.2.2). Then

a−
∑ν

j=1
ρj(ϕ)dϕj is closed.

We quantify how an embedded torus i(Tν) is approximately invariant for the Hamilto-
nian vector field XK in terms of the “error function”

Z(ϕ) := F(i) = (ω · ∂ϕi)(ϕ)−XK(i(ϕ)) . (C.2.3)

Consider the pullback 1-form on Tν (see (C.1.4))

(i∗κ)(ϕ) =
ν∑
k=1

ak(ϕ)dϕk (C.2.4)

where

ak(ϕ) :=
[[
Dθ(ϕ)

]>
y(ϕ) +

1

2
[Dz(ϕ)]>J̄z(ϕ)

]
k

= y(ϕ) · ∂θ
∂ϕk

(ϕ) +
1

2
〈J̄z(ϕ),

∂z

∂ϕk
(ϕ)〉 , (C.2.5)
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and the 2-form (recall (C.1.3))

i∗W = d(i∗κ) =
∑

k<j
Akj(ϕ)dϕk ∧ dϕj ,

Akj(ϕ) = ∂ϕkaj(ϕ)− ∂ϕjak(ϕ) .
(C.2.6)

We call the coefficients (Akj) the “lack of isotropy” of the torus embedding ϕ 7→ i(ϕ).
In Lemma C.2.4 below we quantify their size in terms of the error function Z defined in
(C.2.3). We first recall that the Lie derivative of a k-form β with respect to the vector field
Y is

LY β :=
d

dt

[
(Φt

Y )∗β
]
|t=0

where Φt
Y denotes the flow generated by Y .

Given a function g(ϕ) with zero average, we denote by u := (ω · ∂ϕ)−1g the unique
solution of ω · ∂ϕu = g with zero average.

Lemma C.2.4. The “lack of isotropy” coefficients Akj satisfy, ∀ϕ ∈ Tν,

(ω · ∂ϕ)Akj(ϕ) =W
(
DZ(ϕ)ek, Di(ϕ)ej

)
+W

(
Di(ϕ)ek, DZ(ϕ)ej

)
(C.2.7)

where (e1, . . . , eν) denotes the canonical basis of Rν. Thus, since each Akj has zero mean
value, if the frequency vector ω ∈ Rν is non-resonant, then

Akj(ϕ) = (ω · ∂ϕ)−1
(
W
(
DZ(ϕ)ek, Di(ϕ)ej

)
+W

(
Di(ϕ)ek, DZ(ϕ)ej

))
. (C.2.8)

Proof. We use Cartan’s formula

Lω(i∗W) = d
(
(i∗W)(ω, ·)

)
+
(
d(i∗W)

)
(ω, ·) .

Since d(i∗W) = i∗dW = 0 by (C.1.3) we get

Lω(i∗W) = d
(
(i∗W)(ω, ·)

)
. (C.2.9)

Now we compute, for φ̂ ∈ Rν

(i∗W)(ω, φ̂) =W(Di(ϕ)ω,Di(ϕ)φ̂) =W(XK(i(ϕ)) + Z(ϕ), Di(ϕ)φ̂)

= −dK(i(ϕ))[Di(ϕ)φ̂] +W(Z(ϕ), Di(ϕ)φ̂) .

We obtain

(i∗W)(ω, ·) =
ν∑
j=1

bj(ϕ)dϕj

bj(ϕ) = (i∗W)(ω, ej) = −∂(K ◦ i)
∂ϕj

(ϕ) +W(Z(ϕ), Di(ϕ)ej) .
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Hence, by (C.2.9), the Lie derivative

Lω(i∗W) =
∑
k<j

Bkj(ϕ)dϕk ∧ dϕj (C.2.10)

with

Bkj(ϕ) =
∂bj
∂ϕk

(ϕ)− ∂bk
∂ϕj

(ϕ)

=
∂

∂ϕk
(W(Z(ϕ), Di(ϕ)ej))−

∂

∂ϕj
(W(Z(ϕ), Di(ϕ)ek))

=W(DZ(ϕ)ek, Di(ϕ)ej) +W(Di(ϕ)ek, DZ(ϕ)ej) . (C.2.11)

Recalling (C.1.10) and (C.2.6) we have, ∀ϕ ∈ Tν ,

(ψtω)∗(i∗W)(ϕ) = i∗W(ϕ+ ωt) =
∑
k<j

Akj(ϕ+ ωt)dϕk ∧ dϕj .

Hence the Lie derivative

Lω(i∗W)(ϕ) =
∑
k<j

(ω · ∂ϕAkj)(ϕ)dϕk ∧ dϕj . (C.2.12)

Comparing (C.2.10)-(C.2.11) and (C.2.12) we deduce (C.2.7).

The previous lemma provides another proof of Lemma C.1.2. For an invariant torus
embedding i(ϕ) the “error function” Z(ϕ) = 0 (see (C.2.3)) and so each Akj = 0. We now
prove that near an approximate isotropic torus there is an isotropic torus.

Lemma C.2.5. (Isotropic torus) The torus embedding iδ(ϕ) = (θ(ϕ), yδ(ϕ), z(ϕ)) defined
by

yδ(ϕ) = y(ϕ)− [Dθ(ϕ)]−>ρ(ϕ) , ρj := ∆−1
( ν∑
k=1

∂ϕjAkj(ϕ)
)
, (C.2.13)

is isotropic.

Proof. By Corollary C.2.3 the 1-form i∗κ− ρ is closed with ρj defined in (C.2.13), see also
(C.2.2), (C.2.4). Actually

i∗κ − ρ = i∗δκ

is the pullback of the 1-form κ under the modified torus embedding iδ defined in (C.2.13),
see (C.2.5). Thus the torus iδ(Tν) is isotropic.
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In analogy with Theorem C.1.4 we now introduce a symplectic set of coordinates (φ, ζ, w)
near the isotropic torus Tδ := iδ(Tν) via the symplectic diffeomorphism θ

y
z

 = Gδ

 φ
ζ
w

 :=

 θ(φ)

yδ(φ) + [Dθ(φ)]−>ζ −
[
Dz̃(θ(φ))

]>
J̄w

z(φ) + w

 (C.2.14)

where z̃ := z ◦ θ−1. The map Gδ is symplectic by Lemma C.1.3 because iδ is isotropic
(Lemma C.2.5). In the new coordinates (φ, ζ, w) the isotropic torus embedding iδ is trivial,
namely

iδ(φ) = Gδ(φ, 0, 0) .

Under the symplectic change of variable (C.2.14), the Hamiltonian vector field XK changes
into

XK = G∗δXK = (DGδ)
−1XK ◦Gδ where K := K ◦Gδ . (C.2.15)

The Taylor expansion of the new Hamiltonian K : Rν × Rν × E → R at the trivial torus
(φ, 0, 0) is

K = K00(φ) + K10(φ) · ζ + 〈K01(φ), w〉

+
1

2
K20(φ)ζ · ζ + 〈K11(φ)ζ, w〉+

1

2
〈K02(φ)w,w〉+ K≥3(φ, ζ, w)

(C.2.16)

where K≥3 collects all the terms at least cubic in the variables (ζ, w). The Taylor coefficients
of K are K00(φ) ∈ R, K10(φ) ∈ Rν , K01(φ) ∈ E, K20(φ) ∈ Mat(ν × ν) is a real symmetric
matrix, K02(φ) is a self-adjoint operator of E and K11(φ) ∈ L(Rν , E).

As seen in Theorem C.1.4, if iδ were an invariant torus embedding, the coefficient
K00(φ) = const, K10(φ) = ω and K01(φ) = 0. We now express these coefficients in terms of
the error function Zδ := F(iδ).

Lemma C.2.6. The vector field

XK(φ, 0, 0) =

 K10(φ)
−∂φK00(φ)
JK01(φ)

 =

ω0
0

− (DGδ(φ, 0, 0)
)−1

Zδ(φ) . (C.2.17)

Proof. By (C.2.15) and iδ(φ) = Gδ(φ, 0, 0), we have

XK(φ, 0, 0) = DGδ(φ, 0, 0)−1XK(iδ(φ))

= DGδ(φ, 0, 0)−1
(
ω · ∂ϕiδ(φ)− Zδ(φ)

)
and (C.2.17) follows because DGδ(φ, 0, 0)−1Diδ(φ)[ω] = (ω, 0, 0).
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We finally write the expression of the coefficients K11(φ), K20(φ) in terms of K, which is
used in Chapter 6.

Lemma C.2.7. The coefficients

K11(φ) = Dy∇zK(iδ(φ))[Dθ0(φ)]−> + J̄(Dθz̃0)(θ0(φ))(D2
yK)(iδ(φ))[Dθ0(φ)]−> (C.2.18)

K20(φ) = [Dθ0(φ)]−1(D2
yK)(iδ(φ)))[Dθ0(φ)]−> . (C.2.19)

Proof. Formulas (C.2.18)(C.2.19) follow differentiating K = K ◦Gδ.
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equation, Astérisque, 403, viii + 148, 2018.

[29] Berti M., Maspero A., Long time dynamics of Schrödinger and wave equations on flat
tori, Journal Diff. eq., 267, 2, 5, 1167-1200, 2019.

[30] Berti M., Montalto R., Quasi-periodic standing wave solutions of gravity-capillary
water waves preprint https://arxiv.org/abs/1602.02411, to appear on Memoires AMS,
MEMO 891.

[31] Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups
and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011.

[32] Bobenko A., Kuksin S., The nonlinear Klein-Gordon equation on an interval as a
perturbed sine- Gordon equation, Comment. Math. Helv. 70, no. 1, 63-112, 1995.

[33] Bolle P., Khayamian C., Quasi-periodic solutions for wave equations on Zoll manifolds,
preprint 2018.

[34] Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of
linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no.
11, 1994.

[35] Bourgain J., Construction of periodic solutions of nonlinear wave equations in higher
dimension, GAFA, v.5, n.4, 629-639, 1995.

[36] Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445
- 458, 1997.

[37] Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of 2D linear
Schrödinger equations, Annals of Math. 148, 363-439, 1998.

[38] Bourgain J., Periodic solutions of nonlinear wave equations, Harmonic analysis and
partial differential equations, 69–97, Chicago Lectures in Math., Univ. Chicago Press,
1999.



BIBLIOGRAPHY 338

[39] Bourgain J., Estimates on Green’s functions, localization and the quantum kicked rotor
model, Annals of Math., 156, 1, 249-294, 2002.

[40] Bourgain J., Green’s function estimates for lattice Schrödinger operators and appli-
cations, Annals of Mathematics Studies 158, Princeton University Press, Princeton,
2005.

[41] Bourgain J., Goldstein M., Schlag W., Anderson localization for Schrödinger operators
on Z2 with quasi-periodic potential, Acta Math., 188, 41-86, 2002.

[42] Bourgain J., Wang W.M., Anderson localization for time quasi-periodic random
Schrödinger and wave equations, Comm. Math. Phys. 248, 429 - 466, 2004.

[43] Bourgain J., Wang W.M., Quasi-periodic solutions for nonlinear random Schrödinger,
J. European Math. Society, 10, 1 - 45, 2008.

[44] Broer H.; Huitema G., Sevryuk M., Quasi-periodic motions in families of dynamical
systems Order amidst chaos. Lecture Notes in Mathematics, 1645. Springer-Verlag,
xii+196 pp. ISBN: 3-540-62025-7, 1996.

[45] Chierchia L., You J., KAM tori for 1D nonlinear wave equations with periodic boundary
conditions, Comm. Math. Phys. 211, 497-525, 2000.

[46] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Transfer of energy to high
frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181,
no. 1, 39–113, 2010.

[47] Corsi L., Feola R., Procesi M., Finite dimensional invariant KAM tori for tame vector
fields, preprint, to appear on Transactions AMS.

[48] Corsi L., Montalto R., Quasi-periodic solutions for the forced Kirchoff equation on Td,
Nonlinearity 31, no. 11, 5075-5109, 2018.
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(d’ après M. Herman), Ergod. Th. Dynam. Sys., 24, 162, 2004.

[65] Fontich E., De la Llave R., Sire Y., Construction of invariant whiskered tori by a pa-
rameterization method. Part II: Quasi-periodic and almost periodic breathers in coupled
map lattices. J. Differential Equations 259, no. 6, 2180-2279, 2015.
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[109] Rüssmann, H., Über das Verhalten analytischer Hamiltonscher Differentialgleichun-
gen in der Nähe einer Gleichgewichtslsung, Math. Ann. 154, 285-300, 1964.

[110] Sevryuk M.B., Reversible Systems, Lecture Notes in Math, 1211, Springer-Verlag,
1986.
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