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SPECTRAL GEOMETRY IN A ROTATING FRAME: PROPERTIES OF THE

GROUND STATE

DIANA BARSEGHYAN AND PAVEL EXNER

Abstract. We investigate spectral properties of the operator describing a quantum particle confined

to a planar domain Ω rotating around a fixed point with an angular velocity ω and demonstrate sev-

eral properties of its principal eigenvalue λω
1

. We show that as a function of rotating center position it

attains a unique maximum and has no other extrema provided the said position is unrestricted. Fur-

thermore, we show that as a function ω, the eigenvalue attains a maximum at ω = 0, unique unless

Ω has a full rotational symmetry. Finally, we present an upper bound to the difference λω
1,Ω
− λω

1,B

where the last named eigenvalue corresponds to a disk of the same area as Ω

1. Introduction

The subject of this paper are spectral properties of a quantum particle confined to a planar region

rotating around a fixed point. To motivate this task, recall that rotation is a frequent instrument to

reveal properties of physical systems. Quantum effects associated with rotation attracted a particu-

lar attention in connection with properties of ultracold gases such as superfluidity, see [4, Sec. VII],

[19], or [6, 7, 16] and references therein. These effects have many-body nature and their descrip-

tion can be reduced to nonlinear effective theory, but the one-particle Hamiltonians represent an

important input in such a description. At the same time, there are situations when the motion of a

single atom in a rotating trap is considered [8] as well as other interesting effects associated with

rotation [3].

Naturally, the type of confinement is in these problems usually far from a hard-wall ‘container’

being usually modeled by a suitable harmonic potential. Nevertheless, we believe that it is worth to

investigate the problem indicated above from several reasons. On the physical side, experimental

techniques develop rapidly and it is conceivable that sooner or later the model in question will

become closer to experimental reality. At the same time, one can think of classical systems for

which this would be a proper description. On the other hand, from the mathematical point of view

it is interesting to see how would be results of the spectral geometry modified in the presence of

rotation.

Let us describe our problem in more details. We suppose that Ω is a bounded region, i.e. regular

open set inR2, without loss of generality we may assume that it is connected because in the opposite

case we can analyze the spectrum referring to each component separately. The main object of our
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interest is the operator

(1) Hω(x0, y0) = −∆ΩD + iω((x − x0)∂y − (y − y0)∂x), with ω > 0, (x0, y0) ∈ R2,

where ∆Ω
D

is the Dirichlet Laplacian on Ω, the Hamiltonian of a particle in such a ‘container’

rotating around the point (x0, y0) with the angular velocity ωwhich, again without loss of generality,

may be supposed to be positive.

Concerning the domain, one may start from the operator defined on C∞
0

(Ω) by the right-hand

side of (1). It is straightforward to check that the associated quadratic form coincides with the form

of the operator

Ĥin
ω (x0, y0) =

(
i∇ + ω

2
Â

)2

− ω
2

4
((x − x0)2 + (y − y0)2), Â = (−y + y0, x − x0),

defined on the same space. In view of our hypothesis about Ω the corresponding operator is obvi-

ously bounded from below, hence it allows for Friedrichs extension. Its domain coincides with that

of first term, and therefore in view of the regularity assumption this extension is

Ĥω(x0, y0) =

(
i∇ + ω

2
Â

)2

− ω
2

4
((x − x0)2 + (y − y0)2)

with the domainH2(Ω)∩H1
0

(Ω) [17, Sec. 1.1.2.2] which is also the natural domain of the operator

(1).

Furthermore, the vector potential 1
2
ωÂ gives rise to a homogeneous ‘magnetic field’, and as

a consequence, Ĥω(x0, y0) is a by simple gauge transformation, u(x, y) 7→ u(x, y)e−iω(xy0−yx0)/2,

unitarily equivalent to

(2) H̃ω(x0, y0) =

(
i∇ + ω

2
A

)2

− ω
2

4
((x − x0)2 + (y − y0)2)

with A := (−y, x); in what follows we will work with both the operators (1) and (2). The bound-

edness of the second term at the right-hand side together with the ‘magnetic’ form of the first also

implies that the spectrum of Hω(x0, y0) is purely discrete and the eigenvalues obey for any fixed

ω > 0 and (x0, y0) ∈ R2 Weyl’s law,

(3) λωn (x0, y0) =
4πn

|Ω| (1 + o(1)) as n→ ∞,

cf. [12]. Our concern in this paper will be the principal eigenvalue λω
1

(x0, y0).

We note the operators H̃ω(x0, y0) form an analytic family in the sense of [15, Chap. 7]. For the

first term one can check it, say, as in [9], the second is even simpler being a multiplication by a

function which is analytic in ω, x0, y0 and bounded (on Ω). This means, in particular, that the

eigenvalue λω
1

(x0, y0) is simple for small values of ω since it has the property for ω = 0. On the

other hand, we shall see that this may not be the case in general.

Let us briefly describe the contents of the paper. First we will ask about optimization of

λω
1

(x0, y0) with respect to the position of the rotation center. We will show that there is a unique

maximum and no other critical points provided (x0, y0) is unrestricted. Assuming in addition that

Ω is convex or the rotation is slow, one can also say something about the location of the maximum.

Next, in Section 3, we investigate λω
1

(x0, y0) as a function of the angular velocity, we show that it
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attains a maximum value when ω = 0 and that this maximum is unique unless Ω exhibits a full

rotational symmetry with respect to the point (x0, y0).

In Section 4 we compare for a fixed ω the principal eigenvalue to that of a disk B of the same

area as Ω. In the standstill, ω = 0, the answer to the optimization question would be given by

Faber-Krahn inequality, and since the first term in the operator (2) can be written as the magnetic

Dirichlet Laplacian, it is worth noting that for such an operator the disk is also an optimizer [10]. It

is the second term, however, that spoils the game; while for the first one departure from a circular

form pushes the energy up, in the second one on the contrary an elongated shape means a larger

negative contribution, hence the existence of an optimal shape is not a priori clear. What we are

able to demonstrate in this situation is an upper bound on the difference λω
1,Ω

(x0, y0)− λω
1,B

(0, 0) for

convex regions expressed in terms of the geometry of Ω and the angular velocity. We conclude the

paper by mentioned some open questions inspired by this analysis.

2. Rotation center optimalization

The first problem we are going to address concerns the dependence of the ground state energy

on the position of center of rotation, i.e. the function (x0, y0) 7→ λω
1

(x0, y0) for fixed Ω and ω, in

particular, the existence its extrema.

2.1. Absence of minima and saddle points.

Theorem 1. λω
1

(·, ·) as a map R2 → R has no minima. If it has a maximum, it is unique.

Proof. We will use the form (2) of the operator. The idea is to look how λω
1

(x0, y0) behaves with

respect to small shifts of the rotation center. We employ normalized eigenfunctions u
(x0 ,y0)
ω and

v
(x0 ,y0)
ω corresponding to eigenvalue λω

1
(x0, y0) such that their perturbations satisfy the relations

u
(x0+t,y0)
ω = u

(x0 ,y0)
ω + O(t),

v
(x0 ,y0+s)
ω = v

(x0 ,y0)
ω + O(s),

(4)

for small values of t and s, where the error term is understood in the L∞ sense. The two functions

could be identical but we do not know a priori whether the eigenvalue λω
1

(x0, y0) is simple – in

fact we shall see in Example 1 below that this not true in general – what is important is that such

functions can be always found [18, Sec. II.5, Thm 3] as long as the perturbation is analytic which

is the case here as we have already mentioned.

Assume that at least one of the following conditions holds:

∫

Ω

(x − x0) |u(x0 ,y0)
ω |2 dx dy , 0,

∫

Ω

(y − y0) |v(x0 ,y0)
ω |2 dx dy , 0,

(5)
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then we are going to show that (x0, y0) is not an extremum point. Suppose, for instance, that the

first integral is positive, then using the minimax principle we get for any h < 0 small enough

λω1 (x0 + h, y0) ≤
(
H̃ω(x0 + h, y0)u

(x0 ,y0)
ω , u

(x0 ,y0)
ω

)

=
(
H̃ω(x0, y0)u

(x0 ,y0)
ω , u

(x0 ,y0)
ω

)
+
ω2h

2

∫

Ω

(x − x0)|u(x0 ,y0)
ω |2 dx dy + O(h2)

<
(
H̃ω(x0, y0)u

(x0 ,y0)
ω , u

(x0 ,y0)
ω

)
= λω1 (x0, y0).(6)

On the other hand, the assumed positivity of the integral in combination with (4) means that
∫

Ω

(x − x0) |u(x0+t,y0)
ω |2 dx dy > 0

holds for all sufficiently small t. Choosing the latter positive and small enough, we get

λω1 (x0, y0) ≤
(
H̃ω(x0, y0)u

(x0+t,y0)
ω , u

(x0+t,y0)
ω

)

=
(
H̃ω(x0 + t, y0)u

(x0+t,y0)
ω , u

(x0+t,y0)
ω

)

− ω
2t

2

∫

Ω

(x − x0 − t) |u(x0+t,y0)
ω |2 dx dy + O(t2)

<
(
H̃ω(x0 + t, y0)u

(x0+t,y0)
ω , u

(x0+t,y0)
ω

)
= λω1 (x0 + t, y0).

A similar argument applies if the integral is negative, which together with (6) shows that x0 is not

a stationary point of the function λω
1

(·, y0). Repeating the reasoning with the other variable, we

conclude that if λω
1

(·, ·) has a stationary point (x0, y0), there exist eigenfunctions u
(x0 ,y0)
ω and v

(x0 ,y0)
ω ,

possibly equal each other, which satisfy
∫

Ω

(x − x0) |u(x0 ,y0)
ω |2 dx dy = 0,

∫

Ω

(y − y0) |v(x0 ,y0)
ω |2 dx dy = 0.

(7)

In such a case we have for all nonzero and sufficiently small h

λω1 (x0 + h, y0) ≤
(
H̃ω(x0 + h, y0)u

(x0 ,y0)
ω , u

(x0 ,y0)
ω

)

=
(
H̃ω(x0, y0)u

(x0 ,y0)
ω , u

(x0 ,y0)
ω

)
− ω

2h2

4
< λω1 (x0, y0)

and an analogous inequality in the other variable which means that (x0, y0) is a point of maximum.

This proves the first claim of the theorem.

To establish the second one, we note two things. First of all, the above argument shows that

a maximum of the function λω
1

(·, ·) is an isolated point. Furthermore, the previous reasoning can

apply not only in parallel with the axes but in any direction. Suppose thus that the function λω
1

(·, ·)
has more than one maximum point. We pick two of them, and since the spectral properties are

obviously invariant with respect to simultaneous Euclidean transformations of all the coordinates,

we may place those without loss of generality to the points (0, 0) and (t0, bt0) for some t0 , 0 and
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b > 0. Since the function t 7→ λω
1

(t, bt) is continuous it must have a point of minimum at some

t1 ∈ (0, t0).

As before there is an eigenfunction u
(t,bt)
ω corresponding to λω

1
(t, bt) such that u

(t,bt)
ω = u

(t1 ,bt1)
ω +

O(t − t1) holds for small |t − t1|. In a similar way as above we check that if
∫

Ω

(
x + by − (1 + b2)t1

) |u(t,bt)
ω |2 dx dy , 0,

the point (t1, bt1) cannot be a stationary point of λω
1

(·, b ·), while the integral vanishes we have

λω1 (t, bt) ≤
(
H̃ω(t, bt)u

(t1 ,bt1)
ω , u

(t1 ,bt1)
ω

)

=
(
H̃ω(t1, bt1)u

t1 ,bt1)
ω , u

(t1 ,bt1)
ω

)
− ω

2h2

4
(1 + b2)(t − t1)2 < λω1 (t1, bt1),

which contradicts the assumption that (t1, bt1) is a minimum of λω
1

(·, b ·). In this way the proof is

concluded. � �

In fact, the claim of the theorem can be strengthened in different ways:

Corollary 1. λω
1

(x0, y0)→ −∞ holds as (x0, y0)→ ∞.

Proof. By minimax principle we have

λω1 (x0, y0) ≤
∫

Ω

∣∣∣∣∣i∇u +
ω

2
Au

∣∣∣∣∣
2

dx dy − ω
2

4

∫

Ω

((x − x0)2 + (y − y0)2)|u|2 dx dy

for a fixed function u ∈ H1
0

(Ω) ∩H2(Ω) with first term independent of (x0, y0), while the negative

second diverges as (x0, y0)→ ∞. � �

Furthermore, since the dependence on the rotation center position is continuous, in fact analytic,

we can also make the following claim:

Corollary 2. the function λω
1

(·, ·) as a map R2 → R has a unique maximum.

Remark 1. The problem considered so far in which the placement of the rotation center is not

restricted could be called free. One can also consider the inner problem where one requires that

(x0, y0) ∈ Ω̄. In that case the minimum of λω
1

(·, ·) exists and follows from Theorem 1 that it is

reached at the boundary; it may not be unique as the disk example discussed below shows. The

maximum can occur either in a point of Ω in which case it is unique or at ∂Ω when it again may

not be unique.

2.2. Convex sets. For a particular class of regions Ω the difference between optimization result

for the free and inner problem mentioned above is absent.

Theorem 2. Let Ω be convex, then the ground state eigenvalue of Hω(x0, y0) reaches its maximum

at a point (x0, y0) ∈ Ω.

Proof. One can consider the operator in the two unitarily equivalent forms, either (1) which which

can be using the polar coordinates (r, ϕ) written also as

(8) Hω(x0, y0) = −∆ΩD + iω∂ϕ,
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or (2); in both of them it is obvious that spectral properties are invariant with respect to translation

and rotations of the coordinate system. We know that the maximum of λω
1

(·, ·) exists and the

conditions (7) applied to the eigenfunctions u
(x0 ,y0)
ω and v

(x0 ,y0)
ω we conclude that

(9) x0 ∈ PrX(Ω), y0 ∈ PrY(Ω),

projections of Ω to the axes. As (an open) convex set Ω is star-shaped with respect to any of its

points, in other words, one can identify such a point with the origin of the coordinates and write

Ω = {r ∈ [0,R(ϕ)), ϕ ∈ [0, 2π)} for a suitable 2π-periodic function R. Assume that (x0, y0) < Ω,

then one can always rotate the coordinate system in such a way that at least one of the conditions

(9) with respect to the rotated axes X′, Y ′ would be violated – the point would appear either outside

the segment or at its boundary – which contradicts the mentioned rotational invariance. � �

2.3. Slow rotation. If assume in addition that the angular velocity ω is small one located the

position of the maximum more precisely in a way reminiscent of [13, 11]. To this aim, we need a

notation: given a region Σ ⊂ R2 and a line P, we denote by ΣP the mirror image of Σ with respect

to P.

Theorem 3. Let Ω be convex set and P be a line which divides Ω into two parts, Ω1 and Ω2, in

such a way that ΩP
1
⊂ Ω2. Then for small enough values of ω the point at which λω

1
(x0, y0) attains

its maximum does not belong to Ω1.

Proof. Using once more the invariance of the spectrum with respect to rotations, we may suppose

that P is parallel to the Y axis. Consider first the situation when the rotation is absent, ω = 0. Let

uD be the ground state eigenfunction of the Dirichlet Laplacian, −∆D
Ω

uD = λ
D
1

uD. We employ the

idea introduced in [13] and define the function

v(x, y) := uD(x, y) − uD(xP, y) on Ω1,

where (xP, y) is the mirror image of (x, y) with respect to P; since ΩP
1
⊂ Ω2 the function is well

defined. The ground state eigenfunction of the Dirichlet Laplacian can be chosen to be positive,

hence we have v|∂Ω1
≤ 0. This fact together with the equation −∆v = λD

1
v on Ω1 and the maximum

principle for the second order elliptic partial differential equations means that v < 0 holds on Ω1,

in other words

(10) uD(x, y) ≤ uD(xP, y), (x, y) ∈ Ω1.

Now we take an arbitrary point (x0, y0) ∈ Ω1 and assume that P passes through it. Using (10) we

find
∫

Ω

(x − x0)(uD(x, y))2 dx dy =

∫

Ω\(Ω1∪ΩP
1 )

(x − x0)(uD(x, y))2 dx dy

+

∫

Ω1

(x − x0)(uD(x, y))2 dx dy +

∫

ΩP
1

(x − x0)(uD(x, y)|)2 dx dy

>

∫

Ω\(Ω1∪ΩP
1 )

(x − x0)(uD(x, y))2 dx dy > 0.(11)
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So far the point (x0, y0) ∈ Ω1 was arbitrary, now we replace −∆D
Ω

by the operator (1) and assume it

(x0, y0) is the point when the maximum is attained. Our operators form a type A analytic family [15]

with respect the parameters. This means, in particular, that the ground state eigenvalue λω
1

(x0, y0)

is simple for all sufficiently small ω and the corresponding eigenfunction satisfies

uω(x0, y0)(x, y) = uD(x, y) + O(ω)

with the error understood in the L∞ sense. In combination with inequality (11) and Theorem 2 this

leads to a contradiction with the condition (7) concluding thus the proof. � �

3. Standstill costs energy

Our next topic is to compare the ground state eigenvalue of Hω(x0, y0) in the situation with and

without the rotation. Specifically, we are going to prove the following claim:

Theorem 4. Under the stated assumptions we have

(12) λω1 (x0, y0) ≤ λD
1 (Ω),

where λD
1

(Ω) is the ground state eigenvalue of the Dirichlet Laplacian −∆Ω
D

on Ω. Moreover, the

inequality is sharp for ω > 0 provided the region Ω does not have full rotational symmetry being a

disk or a circular annulus rotating around its center.

Proof. We employ the form (1) of the Hamiltonian. The inequality (12) is easy to show, by mini-

max principle we have

λω1 (x0, y0) ≤ (Hω(x0, y0)uD, uD) = λD
1 (Ω) + (uD, iω((x − x0)∂y − (y − y0)∂x)uD)

but the second term on the right-hand side vanishes because the ground state eigenfunction uD of

−∆Ω
D

can be chosen real-valued.

Suppose next that the system lacks the rotational symmetry. First we will show that ω = 0 is a

strict maximum of the function ω 7→ λω
1

(x0, y0). For small ω we have the perturbation expansion

λω1 (x0, y0) = λD
1 + aω + bω2 + O(ω3),

with

a = i

∫

Ω

(
(x − x0)(uD)y − (y − y0)(uD)x

)
uD dx dy,(13)

b =

∞∑

k=2

1

(λD
1

(Ω) − λD
k

(Ω))

∣∣∣∣∣
∫

Ω

(
(x − x0)(uD)y − (y − y0)(uD)x

)
uD,k dx dy

∣∣∣∣∣
2

and the natural partial derivative abbreviations, where {uD,k : k = 1, 2, . . . } are the eigenfunctions

of the Dirichlet Laplacian −∆Ω
D

corresponding to eigenvalues λD
k

(Ω) and uD := uD,1. Using again

the fact that uD can be chosen real-valued we find that a = 0, thus it remains show that b < 0. Since

λD
k

(Ω) > λD
1

(Ω) holds for all k ≥ 2, this would mean
∫

Ω

(
(x − x0)(uD)y − (y − y0)(uD)x

)
uD,k dx dy = 0.
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This together with (13) implies that
∫

Ω

(
(x − x0)(uD)y − (y − y0)(uD)x

)
v dx dy = 0

must hold for any v ∈ L2(Ω), and this in turn is possible if and only if

(x − x0)(uD)y − (y − y0)(uD)x = 0.

The solution to this first order partial differential equation is

uD(x, y) = f ((x − x0)2 + (y − y0)2) with any f ∈ C1(Ω).

Since Ω is by assumption neither a disk nor a circular annulus with the center at (x0, y0), there must

be an open subset of Ω where uD vanishes but this contradicts the unique continuation principle for

second-order elliptic equations. This proves that b < 0 and the point ω = 0 is a strict maximum.

Assume next that function ω 7→ λω
1

(x0, y0) has another maximum at a point ω0 > 0, then it must

have a minimum at some ω1 ∈ (0, ω0). We are going to show that the corresponding ground state

eigenfunction u
(x0 ,y0)
ω1

which we for brevity denote as g must satisfy

(14) i

∫

Ω

(
(x − x0)gy(x0, y0) − (y − y0)gx(x0, y0)

)
g dx dy = 0.

If it is not the case, the left-hand side of the last expression is either positive or negative, because

as as a matrix element of a self-adjoint operator it is real valued. In the former case we have for

any h < 0

λ
ω1+h

1
(x0, y0) ≤ (

Hω1+h(x0, y0)g, g
)

=
(
Hω1

(x0, y0)g, g
)
+ ih

∫

Ω

(
(x − x0)gy − (y − y0)gx

)
g dx dy

<
(
Hω1

(x0, y0)g, g
)
= λ
ω1

1
(x0, y0),(15)

hence ω1 cannot be a minimum. The analogous argument applies if the expression in question is

negative, which establishes the validity of (14). Combining it with the fact that H0(x0, y0) = −∆Ω
D

and the minimax principle, we get

λD
1 (Ω) ≤ (

H0(x0, y0)g, g
)
=

(
Hω1

(x0, y0)g, g
)
= λ
ω1

1
(x0, y0).

This together with the fact that ω = 0 is a maximum and ω1 is a minimum implies that λ
ω1

1
(x0, y0) =

λD
1

(Ω) which means that the function λω
1

(x0, y0) has to be constant on the interval (0, ω1), however,

this is not possible because the origin is a strict maximum. � �

Let us now look more closely at the situation when the system has a rotational symmetry and

the existence of a sharp maximum is not guaranteed by the previous theorem.

Example 1. Let Ω be a disk of radius R rotating around its center which we identify with the point

(0, 0). The spectrum is in this case easy to find being

(16) λm,k(R, ω) =
j2
m,k

R2
− mω, m ∈ Z, k ∈ N,
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where jm,k is the kth positive zero of Bessel function of the first kind Jm. Indeed, the symmetry

allows for a separation of variables; we employ polar coordinates with the eigenfunction Ansatz

u(r, ϕ) = f (r)eimϕ for 0 ≤ r ≤ R0 and 0 ≤ ϕ < 2π. The equation Hωu = λu then for a fixed m ∈ Z
gives

(17) − f ′′(r) − 1

r
f ′(r) +

(
m2

r2
− ωm − λ

)
f (r) = 0

and changing the variable to t = r
√
λ + mω write the solution as the Bessel function Jm. The solu-

tion has to belong toH1
0
(Ω) and the Dirichlet condition imposed at r = R requires Jm

(
R0

√
λ + mω

)
=

0 which yields the spectrum (16) corresponding to the eigenfunctions (r, ϕ) 7→ Jm

(
jm,k
R

r
)

eimϕ.

Let us look what this tells us about λω
1

(x0, y0) := minm∈Z,k∈N λm,k(R, ω). For ω = 0 it is equal

to λD
1

(Ω) =
j2
0,1

R2 which also the value of λ0,1(R, ω) for any ω. Since the Bessel functions zeros are

conventionally numbered in the ascending order, we have to care about k = 1 only. For each m ∈ N
there is positive ωm such that for ω > ωm we have λm,k(R, ω) < λD

1
(Ω). Furthermore, we know that

jm,1 > m, see e.g. [5], hence ωm >
m
R2 −

j2
0,1

mR2 . This means, in particular, that the inequality (12) is

indeed not sharp in this case turning into equality for ω ∈ (0, ω1).

At the same time we have found that the ground state eigenvalue of Hω need not be simple in

general; in the present case it becomes degenerate for ω = ω1 as well at the other values of ωwhere

the two locally lowest eigenvalue lines ω 7→ λm,k(R, ω) cross.

Example 2. Let now Ω be a circular annulus of the radii 0 < R0 < R1 rotating around the center at

(0, 0). Mimicking the argument of the previous example we find that its spectrum consists of the

eigenvalues

(18) λm,k(R0,R1, ω) = λm,k(R0,R1, 0) − mω, m ∈ Z, k ∈ N,
where the first term on right-hand side are Dirichlet eigenvalues of the non-rotating annulus. The

latter are obtained as solutions of the spectral condition
∣∣∣∣∣∣

Jm(R0

√
λ) Ym(R0

√
λ)

Jm(R1

√
λ) Ym(R1

√
λ)

∣∣∣∣∣∣ = 0

and the radial parts of eigenfunctions now combine Bessel functions of the first and the second

type. As in the previous case, λω
1

(x0, y0) remains constant for small enough values of ω.

Remark 2. With respect to the topic of the previous section, the ground state maximum for disks

and annuli is reached when the rotation respect the symmetry. Was it not the case, the point ω = 0

would be by Theorem 4 a strict maximum but this is not the case. The annulus thus provides an

example of a region where the maximum of (x0, y0) 7→ λω
1

(x0, y0) lies outside Ω and the (non-

unique) maximum is attained at the inner boundary.

Remark 3. The operator (1) has a natural scaling property: changing (x, y) to η(x, y) one has to

replace the angular frequency ω by η−2ω to get the whole spectrum scaled by the factor η−2. In this

sense we can rephrase the conclusion of the examples saying that the ground state is independent

of ω from a fixed finite interval provided the radii are large enough.
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4. Domain comparison

Let us finally consider comparison of spectra for different regions at a fixed angular velocity ω.

As we mentioned in the introduction, an optimization à la Faber and Krahn cannot be expected. We

are nevertheless able to demonstrate an estimate which in the ground state eigenvalue is compared

to that of a disk of the same area. For this purpose we modify the notation and add the index

specifying the region writing Hω,Ω(x0, y0) and λω
1,Ω

(x0, y0). We restrict our attention to convex

regions with a fixed rotation center (x0, y0) ∈ Ω which we can as in the proof of Theorem 2 write

as

Ω =
{
(x0 + r cos ϕ, y0 + r sin ϕ) : ϕ ∈ [0, 2π), r ∈ [0,R(ϕ))

}

for a suitable 2π-periodic function R. Then we have the following result:

Theorem 5. Suppose that πR2
0
= |Ω| and denote by B the disk of radius R0, then

λω1,Ω(x0, y0)(19)

≤ λω1,B(0, 0) +


∫ 2π

0

(
R′(ϕ)

R(ϕ)

)2

dϕ

 sup

0≤m≤
R2

0
ω+

√
R4

0
ω2+4 j2

0,1

2

j2
m,1
− m2

2πR2
0

.

Proof. It is obvious that without loss of generality we may put x0 = y0 = 0. The quadratic form

corresponding to Hω,Ω(0, 0) is

(20) Q(Hω,Ω(0, 0))(u) =

∫ 2π

0

∫ R(ϕ)

0

r

(
|ur |2 +

1

r2
|uϕ|2 + iωuϕu

)
dr dϕ.

We are going to pass to new coordinates analogous to those used in [2]) changing the radial one to

r = tR(ϕ) with t ∈ [0, 1]. This allows to rewrite the form (20) as

Q(Hω,Ω(0, 0))(u) =

∫ 2π

0

∫ 1

0

R2(ϕ)t

(
1

R2(ϕ)
|vt |2 +

1

R2(ϕ)t2

∣∣∣∣∣vϕ −
R′(ϕ)t

R(ϕ)
vt

∣∣∣∣∣
2

+ iω

(
vϕ −

R′(ϕ)t

R(ϕ)
vt

)
v

)
dt dϕ,(21)

where v(t, ϕ) := u(R(ϕ)t, ϕ).

According to Example 1 the the eigenfunctions of Hω,B(0, 0) are obtained through solution of

equation (17) with λ = λω
1,B

(0, 0) and m ∈ Z, in particular, the normalized ground state eigenfunc-

tion, looks in the new coordinates like

v(t, ϕ) =

(
2π

∫ R0

0

z f 2(z) dz

)−1/2

f (R0t) eimϕ
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for some m, where it is obviously sufficient to consider m ∈ N ∪ {0}. Substituting it into (21), we

get from the minimax principle

λω1,Ω(0, 0) ≤
(
2π

∫ R0

0

z f 2(z) dz

)−1 ∫ 2π

0

∫ 1

0

R2(ϕ)t

( R2
0

R2(ϕ)
( f ′(R0t))2

+
1

R2(ϕ)t2

∣∣∣∣∣im f (R0t) − R′(ϕ)tR0

R(ϕ)
f ′(R0t)

∣∣∣∣∣
2

+ iω

(
im f (R0t) − R0R′(ϕ)t

R(ϕ)
f ′(R0t)

)
f (R0t)

)
dt dϕ

=

(
2π

∫ R0

0

z f 2(z) dz

)−1 ∫ 2π

0

∫ 1

0

(
tR2

0( f ′(R0t))2 +
m2

t
f 2(R0t)

+

(
R′(ϕ)

R(ϕ)

)2

tR2
0( f ′(R0t))2 − ωmtR2(ϕ) f 2(R0t)

)
dt dϕ,(22)

because the integral of the last term in the middle expression vanishes. Returning to the original

radial variable, it is easy to see that right-hand side of the last estimate coincides with

λω1,B(0, 0) +
1

2π

∫ 2π

0

(
R′(ϕ)

R(ϕ)

)2

dϕ

∫ R0

0

z( f ′(z))2 dz

(∫ R0

0

z f 2(z) dz

)−1

.

Next we recall that f satisfies equation (17). Multiplying it by r f , integrating by parts over [0,R0],

and using the fact that λω
1,B

(0, 0) is given by (16) we get

(23)

∫ R0

0

r( f ′(r))2 dr =

∫ R0

0

r


( j2

m,1

R2
0

− m2

r2

 f 2(r) dr ≤
j2
m,1
− m2

R2
0

if we choose the function properly normalized, ‖ f ‖L2((0,R0),rdr) = 1. It remains to estimate the

fraction at the right-hand side; following Example 1 we have to care about those values of m for

which

( j1m)2

R2
0

− mω ≤
( j1

0
)2

R2
0

holds. Since jm,1 > m as mentioned there we conclude that m should not exceed 1
2

(
R2

0
ω +√

R4
0
ω2 + 4 j2

0,1

)
. This together with (22) and (23) establishes the claim of the theorem. � �

Let us make a couple of comments on the obtained bound. It is clear that the inequality is

saturated if and only if Ω is a disk. Asking how tight the bound is generally we note that the

right-hand side of (19) behaves for large values of ω as

(24) λω1,B(0, 0) + O(R2/3

0
ω4/3 )

.

Indeed, the behavior of jm,k for a fixed k and large m is known [20], in particular, for k = 1 we

have j1m = m + O(m1/3), see [1, Sec. 9.5.14], hence for large values of m not exceeding 1
2

(
R2

0
ω +
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√
R4

0
ω2 + 4( j2

0,1

)
one has

( j1m)2 − m2

R2
0

= O(R2/3
0
ω4/3 )

,

which establishes (24). Furthermore, (19) also implies that

(25) λω1,Ω(x0, y0)→ −∞ as ω→ ∞.

To see that it is enough to show that the right-hand side of (19) has the same property. Using the

result of Example 1 in combination with minimax principle and the above asymptotic behavior, we

get

λω1,B(0, 0) ≤
j2[

1
2

R2
0
ω
]
,1

R2
0

−
[
1

2
R2

0ω

]
ω ≤ −

R2
0
ω2

4

(
1 + o(1)

)
+ O(ω4/3),

which proves our claim.

5. Concluding remarks

The results derived in the previous sections leave various questions open. Let us mention some

of them:

• concerning the inner problem mentioned in Remark 1, under which conditions is an ex-

tremum of λω
1

occurring at a boundary of the region Ω, non-convex in case of a maximum,

unique?

• how does the right-hand side of (19) behave with respect to the position of the rotation

center? The polar coordinate parametrization is possible with respect to any (x0, y0) ∈ Ω
and the integral in the second term depends on this point continuously, hence there a –

possibly non-unique – point where it attains its minimum value. What is such a point for a

non-circular Ω and what is its relation to the center of mass of the region?

• is there a nontrivial class of Ω of a fixed area for which a maximizer of λω
1

exists, and in

such a case, how it looks like?

The ground state is not the only spectral information about the operator (1):

• another point of interest is the distribution of the eigenvalues. It is clear that the Weyl

asymptotics (3) cannot be strengthened to a inequality valid for all n in the spirit of Pólya’s

conjecture; the latter is known to be violated for magnetic Dirichlet Laplacians [12] and

since the second term on the right-hand side of (2) is negative, the same would be true in

our case

• instead one may try to find the asymptotics beyond the leading term. In the non-rotating

case the second term of the counting function is determined by the length of the boundary,

N(λ) =
λ

4π
|Ω| −

√
λ

8π
|∂Ω| + o(

√
λ),

provided the boundary is smooth [14]; the question is for which class of Ω this remains

true in the presence of rotation
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• no less interesting are properties of the eigenfunctions. Although they are complex in

general, they may have nodal lines. In Example 1, for instance, the eigenfunction (r, ϕ) 7→
Jm

(
jm,k
R

r
)

eimϕ vanishes at the circles of radii ri =
jm,i
jm,k

R , k = 1, . . . , k−1. However, typically

the eigenfunctions are expected to vanish at isolated points with the characteristic vortex

behavior in their vicinity; one is interested in their number and distribution

Possible generalizations of our present problem include

• the case when the Hamiltonian contains an additional potential and/or the condition at the

boundary of Ω are altered. Of a particular interest are strongly attractive Robin conditions

which make the eigenfunctions localized in the vicinity of the boundary

• the analogous problem in higher dimensions when the point (x0, y0) is replaced an axis

around which the corresponding Ω rotates

We prefer to stop here being convinced that the reader can ask other questions inspired by the

problem discussed in this paper.
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[13] E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle or a well so as to optimize the fundamental

eigenvalue, SIAM J. Math. Anal. 33 (2001), 240259.



14 DIANA BARSEGHYAN AND PAVEL EXNER

[14] V.Ya. Ivrii: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with

boundary, Func. Anal. Appl. 14 (1980), 98-106.

[15] T. Kato: Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin 1976.

[16] E.H. Lieb, R. Seiringer: Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Commun. Math. Phys.

264 (2006), 505-537.

[17] N. Raymond: Bound States of the Magnetic Schrödinger Operators, EMS, Zürich 2017.
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