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Abstract. This paper presents a methodology to study non-twist invariant
circles and their bifurcations for area preserving maps. We recall that non-

twist invariant circles are characterized not only by being invariant, but also

by having some specified normal behavior. The normal behavior may endow
them with extra stability properties (e.g. against external noise) and hence,

they appear as design goals in some applications.

Our methodology leads to efficient algorithms to compute and continue,
with respect to parameters, non-twist invariant circles. The algorithms are

quadratically convergent, have low storage requirement and low operations
count per step. Furthermore, the algorithms are backed up by rigorous a-

posteriori theorems which give sufficient conditions guaranteeing the existence

of a true non-twist invariant circle, provided an approximate invariant circle
is known. Hence, one can compute confidently even very close to breakdown.

With some extra effort, the calculations could be turned into computer assisted

proofs.
Our algorithms are also guaranteed to converge up to the breakdown of

the invariant circles, then they are suitable to compute regions of parameters

where the non-twist invariant circles exist. The calculations involved in the
computation of the boundary of these regions are very robust, they do not

require symmetries and can run without continuous manual adjustments.

This paper contains a detailed description of our algorithms, the corre-
sponding implementation and some numerical results, obtained by running the

computer programs. In particular, we include estimates for two-dimensional

parameter regions where non-twist invariant circles (with a prescribed fre-
quency) exist. These numerical explorations lead to some new mathematical

conjectures.
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1. Introduction

The standard KAM theorem (see [14] and references there) shows that quasi-pe-
riodic solutions (geometrically invariant tori) in Hamiltonian systems which satisfy
some non-degeneracy conditions are persistent under perturbations.

Models which violate the non-degeneracy conditions of standard KAM theorem
appear naturally in several applications, such as models of Rossby waves, celestial
mechanics and plasma physics (see e.g. [2, 3, 15, 16, 17, 18, 19, 20, 27, 30, 38, 45]).
Although we are not aware of mathematically precise formulations, it has been
empirically found that non-twist tori are robust barriers for stochastic transport.

In such cases, where the non-degeneracy conditions of standard KAM theory are
not satisfied, it is possible to establish the persistence by including extra parameters.
The inclusion of extra parameters is natural in several problems, such as the design
of accelerators or of confinement devices. In these problems, the designer can choose
(within certain limits) the system that needs to be considered. In these applications,
where stability is a main goal, one wants to modify the systems so that there are
KAM tori guaranteeing the long term stability.

In design problems, by adjusting parameters, one aims to obtain not only the
existence of KAM tori, but – if sufficient parameters are available – also extra
properties that make the invariant tori effective barriers for transport.

With the above motivations, in [28] we introduced a rigorous methodology to
study the persistence of non-twist tori, prescribing the qualitative properties of the
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degeneracies in the normal behavior. The main points of strength of the method-
ology include:

• It is based on the theory of counterterms, also referred to as the method of
parameters: one fixes the rotation and finds a modification (counterterm)
of the system so that the modified system has an invariant torus, with the
prescribed rotation. This technique was first introduced in [44] for close
to integrable systems. See also [22], which includes a review of Herman’s
approach.
• It uses symplectic geometry, so that the normal behavior of an invariant

torus is described by the jet of a function (the potential) rather than a
Birkhof Normal form.
• The system is not assumed to be written as a close to integrable system.
• It is formulated in an a-posteriori format: under the hypothesis of the exis-

tence of an approximate solution of the invariance equation which satisfies
certain sufficient conditions, the existence of true solutions is proven in
a constructive way. The sufficient conditions guaranteeing the existence
of true solutions are made explicit in form of conditions numbers (mea-
suring the quality of the approximation). In this way, the classical close-
to-integrable hypotheses is replaced by the assumption of the existence of
an approximate solution of the invariance equation. Of course, for close-
to-integrable systems, the exact solution of the integrable system can be
taken as the approximate solution. Hence, we recover the customary quasi-
integrable results as particular cases of our approach. Moreover, the a-pos-
teriori format can also be used to validate the formal expansions obtained
by matching powers.
• As it is shown here, our theory leads to efficient and reliable algorithms for

the computation of non-twist tori and detect bifurcations of invariant tori.

The goal of this paper is to turn the rigorous results in [28] into practical al-
gorithms, implement them and report some results and conjectures obtained by
running the programs. The presentation of the algorithms is mainly for two di-
mensional maps, that is for computing invariant circles. The assumption of two
dimensional systems, appears frequently in practice and it allows some simplifica-
tions that were not used in the general results of [28], which were formulated for
arbitrary dimension. Some interesting features of this paper are:

• The algorithms we present are highly efficient:
– They are based on Newton method and, hence, quadratically conver-

gent. The non-degeneracy condition required to perform one iterative
step is just the invertibility of a matrix, which is defined explicitly (see
Algorithm 3.1).

– To compute d-dimensional tori one deals only with d-dimensional func-
tions (in the present paper, d = 1). This can be contrasted with meth-
ods based on Normal Forms, which rely on transformation theory that
requires dealing with functions depending on as many variables as the
dimension of the phase space (in the present paper, n = 2). It is well
known that the computational effort grows exponentially fast with the
dimension of the computed objects.
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– Low operation counts and storage requirements. The algorithms de-
scribed here involve sequences of steps consisting on rather simple op-
erations with periodic functions represented either in grid space (with
N discretization points) or in Fourier space (with N Fourier coeffi-
cients). Each step has cost O(N), in an appropriate representation, or
O(N log(N)), when transforming one representation into another by
using Fast Fourier Transform (FFT) algorithm. The storage is O(N).
This is a considerable improvement over the methods based on a di-
rect discretization of the invariance equations that give rise to large
systems for the Fourier coefficients, which require O(N3) operations
and O(N2) storage.

• The algorithms are backed up by rigorous a-posteriori theorems. This sys-
tematic assessment of the reliability of the computations is particularly
important when studying invariant tori close to the breakdown. In these
regimes, of course, the calculations become delicate and it is found empiri-
cally that there are many spurious solutions (i.e. solutions of the truncated
equation which are not truncations of true solutions). With some extra
level of effort (which we have not undertaken here), the a-posteriori theo-
rems allow to obtain computer assisted proofs. It suffices to obtain rigorous
estimates on the error of invariance, and the – rather mild – non-degeneracy
assumptions. These can be obtained using interval arithmetic in function
space. See [23] for a recent implementation.
• Keeping certain parameters fixed, the continuation algorithms are guaran-

teed to converge (in machines with unlimited resources) as close as desired
to values of parameters where the theoretical results (or the non-degeneracy
conditions) fail to hold. This gives a practical criterion to find the limits
of validity of the existence of non-twist invariant tori, which is based on
the blow-up of Sobolev norms of the parameterizations at breakdown (see
also [7]). In today’s desktop machines (which are not infinite) in reasonable
problems, such as the ones discussed in this paper, we estimate that one
can get two or three decimal figures of the breakdown values in calculations
of one hour or less.
• The present method can be programmed once and for all: it does not require

manual adjustments.
This is an advantage over methods based on computing periodic orbits

with large period, which often require considerable hand-tweaking of the
algorithm to success to continue the right periodic orbits. An important
example is the study of the breakdown of invariant circles, in which Greene’s
method [15, 29, 47, 49] requires searching for periodic orbits. In practice,
this requires the system to have some symmetries, indicator points, etc. It
has been observed that in systems with two harmonics, the computation of
periodic orbits near breakdown is rather delicate [21, 39].

In contrast, the Fourier methodology presented here is of general purpose
and it is supported by rigorous results which apply, in principle, to regular
regions of phase/parameter space (the hypotheses of our theorems include
analyticity properties, which can be relaxed to finite differentiability prop-
erties). In these regions, the number of Fourier coefficients required by our
methods to approximate an invariant circle with a good level of accuracy
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is relatively small (usually from 128 to 1024), while approximating the cir-
cles by periodic orbits would require periods of order 109 (for an accuracy
10−9). In critical regimes (i.e. close to breakdown), this number increases
abruptly: to obtain three or four digits of the breakdown parameter the
required number of the Fourier coefficients easily increases to 105 or 106,
and several observables can be use to extrapolate the breakdown. In this
paper we provide numerical evidence that, in absence of symmetries and
close to breakdown, the algorithms presented here produce rather accurate
results. Our methods are guaranteed to run till breakdown.
• Our method is based on computing a potential, in a parameter space, whose

critical points correspond to the invariant tori. The potential is defined and
can be calculated for any given symplectic map, regardless the existence
of invariant tori. Moreover, the critical points of the potential provide
parameter values for which invariant tori (with a prescribed frequency)
are likely to appear. This might be useful in some applications when the
parameters are not subject to control, but they fluctuate (for example in
oceanography, we can predict where the barriers are likely to form).

Besides describing the algorithms, we also present implementation details: used
discretizations, chosen linear solvers (not all linear solvers are practical for the
problems considered here due to degeneracies in the spectrum), etc.

In a final layer, we present the results of running the implementation in some
problems that we believe would have been difficult by others methods:

• the bifurcation of meandering non-twist circles;
• phenomena at breakdown;
• the computation of the breakdown of non-twist invariant circles in families

with several harmonics, where the periodic orbit theory seems complicated.

Aims of the paper. This paper requires working with different tools and stan-
dards:

• rigorous results are presented, mainly tailored from [28], but also new re-
sults in the area preserving case;
• numerical algorithms are presented;
• details of implementation of the algorithms are provided;
• numerical results obtained by running the algorithms are described;
• conjectures on the mathematical phenomena happening at breakdown ob-

tained, from the numerical results, are presented.

We hope that the different topics covered in the different sections are sufficiently
clear and that the reader appreciates having in a single paper the different tools
which can bear on a rich problem coming from applied sciences. We certainly hope
that this paper could inspire new further applications (e.g. the higher dimensional
case, more applied problems and more detailed studies of the breakdown phenom-
ena).
Organization of the paper. Section 2 tailors the geometric and analytic set up
introduced in [28] to the area preserving case. In particular, we adopt a few sim-
plifying assumptions: the phase space is assumed to be a two-dimensional cylinder,
and the symplectic form is assumed to be the standard one. These assumptions
make the theoretical results in [28] ready for the numerical implementation. We
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recall that a rotational circle in a cylinder is a no homotopically trivial circle. Sec-
tion 2 can also serve as a guide to interpret the results of [28] in a concrete simplified
case. Moreover, additional results are here shown to hold in the two-dimensional
case. These are included in the Appendix A. Section 3 presents some of the algo-
rithms that can be derived from the methodology to compute invariant rotational
circles. The rotation number and the type of degeneracy of a rotational invariant
circle within a family of area preserving maps are assumed to be given and fixed.
Section 4 reports numerical results obtained with the implemented algorithms for
the cases mentioned above (fold bifurcation, meandering circles, etc).

2. Methodology

This section describes our methodology to study degenerate invariant circles
for area preserving maps. As mentioned before, this is an adaptation to the two
dimensional case of the methodology introduced in [28]. It turns out that the
geometric properties of area preserving maps lead to simplifications with respect
to the case of arbitrary dimension and arbitrary symplectic form. With the aim of
implementing the algorithms produced by the methodology and their application to
concrete problems, explicit formulas are included here, although details regarding
the convergence are not given in this paper (the latter are presented in full detail
in [28]).

To deal with degenerate rotational circles, some parameters (acting as transla-
tions) are introduced. In this way, the existence of invariant rotational circles is
reduced to finding zeros of a function, which acts as a translation. It is worth men-
tioning that the translation can be computed even when the invariant rotational
circle does not exist. It was proved in [28] that the translation is the negative gra-
dient of another function, which we called potential, so existence of invariant tori
is reduced to finding critical points of the potential. See Appendix A for the result
tailored to the setting of this paper.

In the present paper, invariant rotational circles are found by finding zeros of
the translation rather than finding critical points of the potential because in the
planar case both problems are equivalent (the functions are univariate) and, from
the numerical point of view, the former is less expensive and allows greater accuracy
than the latter.

The functional equations for the translated circles are formulated in Section 2.1.
The corresponding linearized equation is studied in Section 2.2. For completeness,
in Section 2.3 we state a result which gives sufficient conditions for the existence of
translated circles and hence the convergence of the quasi-Newton method described
in Section 2.2. Invariant rotational circles are obtained and classified by finding and
classifying the zeros of the translations, as discussed in Section 2.4.

2.1. Classification of invariant rotational circles. Let T × R denote the two
dimensional cylinder, with coordinates z = (x, y), endowed with the canonical
symplectic form:

Ω0 =

(
0 −1
1 0

)
.

Given z ∈ T × R, let zx = x and zy = y denote the projections over the x and y
components, respectively.
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Let Φ : R × T × R → T × R denote the Hamiltonian action on T × R given by
the horizontal translations:

x̄ = Φx(λ;x, y) = x+ λ mod 1 ,

ȳ = Φy(λ;x, y) = y .
(2.1)

Notice that Φ is the flow generated by the Hamiltonian vector field with Hamilton-
ian M (x, y) = y. Hence, M is the moment map of Φ.

Let F : T × R → T × R be an exact symplectomorphism z̄ = F (z) which is
homotopic to the identity and has the following form:

x̄ = F x(x, y) = x+ f(x, y) mod 1 ,

ȳ = F y(x, y) = g(x, y) ,

where f, g : T×R→ R are 1-periodic in x. The exactness condition on F guarantees
the existence of a function S : T × R → R, known as the primitive function of F ,
such that:

∂S

∂x
= g(x, y)

(
1 +

∂f

∂x
(x, y)

)
− y, ∂S

∂y
= g(x, y)

∂f

∂y
(x, y).

In particular, F is a zero net flux area preserving map. To avoid a large amount
of notation, in referring to a symplectic map F , no notational distinction is made
between the map and its lift (i.e. F is often assumed to be defined on R× R).

We say that a circle K ⊂ R2 is a rotational circle if it is homotopic to the zero
section, i.e. K is parameterized by an embedding K : T→ T×R defined as follows:

K(θ) =

(
Kx(θ)
Ky(θ)

)
=

(
θ + x(θ)

y(θ)

)
,

where x,y are 1-periodic in θ. Let 〈·〉 denote the average of a periodic function,
given a rotational circle K, parameterized by K, the averages 〈x〉 and 〈y〉 are called,
respectively, the phase and the momentum of K.

A rotational circle K is F -invariant, with rotation number ω ∈ R, if for a pa-
rameterization K of K, the following equation holds:

F (K(θ))−K(θ + ω) = 0.

Notice that, if K is F -invariant with rotation number ω, then, for any parameter-
ization K and any ϕ ∈ R, Kϕ(θ) = K(θ + ϕ) is also a parameterization of the
same invariant circle K. The phase of Kϕ is 〈xϕ〉 = ϕ + 〈x〉. Hence, by choosing
ϕ = −〈x〉, it is always possible to obtain a parameterization with phase equal to
zero. Hereafter it is assumed that the parameterization of the circles have phase
equal to zero. This normalization eliminates the ambiguity in the choice of the ori-
gin of coordinates on the circles and it makes the translated circles locally unique
under mild non-degenerate condition, as it is shown in [28].

Let U ⊂ R be an open interval, a family of F -translated rotational circles with
frequency ω and labeled by the momentum p ∈ U is a map

K̂ = (K, τ) : T× U → (T× R)× R2,

of the form K̂(θ, p) = (K(θ, p), τ(p)) with

K(θ, p) =

(
θ + x(θ, p)

y(θ, p)

)
, τ(p) =

(
λ(p)
σ(p)

)
,
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and such that the following equations hold:

F (K(θ, p)) + τ(p)−K(θ + ω, p) = 0 ,〈
K(θ, p)− (θ, p)>

〉
= 0 .

(2.2)

Notice that if K and p satisfy equations (2.2), with p ∈ U , then the exactness
of F implies σ(p) = 0 for all p (an area preserving map with zero net flux cannot
translate a circle neither upward nor downward) and hence the following holds:

(2.3) Φ(λ(p);F (K(θ; p)))−K(θ + ω; p) = 0 , p ∈ U ,
with Φ defined in (2.1), thus obtaining a family of (horizontally) translated rota-
tional circles.

Hence, if K and τ = (λ, τ) satisfy equations (2.2), with p ∈ U , then λ is referred
to as the (horizontal) translation function of the family {K(·, p)}p∈U , with p ∈ U .
Moreover, any zero of λ corresponds to a F -invariant rotational circle with frequency
ω: if λ(p0) = 0, then K(·, p0) is the parameterization of an F -invariant rotational
circle Kp0 . In the later case, we say that Kp0 is non-degenerate if p0 is a simple zero
of the equation λ(p) = 0, and we say that it is degenerate if p0 is a multiple zero.
The multiplicity of the invariant rotational circle is the minimum integer k ≥ 1 such
that

(2.4) λ(p0) = 0, λ(1)(p0) = 0, . . . , λ(k−1)(p0) = 0, λ(k)(p0) 6= 0.

Remark 2.1. In [28] we proved that the translation function λ(p) is the negative
gradient of a potential function V (p) (see Appendix A.1), which is explicitly given
by

V (p) = −p λ(p)− 〈S(K(θ, p))〉 .
We emphasize that the construction works for families of translated Lagrangian
tori for symplectic maps in arbitrary dimension. An important consequence is that
invariant rotational tori correspond to critical points of the potential, and hence a
bifurcation theory of KAM tori can be derived from Singularity Theory of critical
points of functions. In the two-dimensional case (p ∈ R), rather than the potential
V (p), we use the translation function λ(p) because it is less expensive from the
numerical point of view.

2.2. A quasi-Newton step for finding translated rotational circles. In this
section, we introduce a quasi-Newton method to find families of translated rota-
tional circles with a given frequency ω. Within the setting of Section 2.1, this means
finding a solution (K, τ) of equations (2.2).

As it is standard in KAM theory, we assume ω to be Diophantine: there exists
γ > 0 and ν ≥ 1 such that |qω − n| ≥ γ|q|−ν for all n, q ∈ Z with q 6= 0.

In what follows, we describe one step of a quasi-Newton method to solve equa-
tions (2.2). Assuming that (K, τ) is an approximate solution of (2.2), a new ap-
proximate solution can be defined by (K̄, τ̄) = (K, τ) + (∆K,∆τ), if (∆K,∆τ)
solves the linearized equation

DF (K(θ))∆K(θ) + ∆τ −∆K(θ + ω) = −E(θ),

〈∆K(θ)〉 = −e.
(2.5)

where

E(θ) = F (K(θ)) + τ −K(θ + ω) ,

e = −
〈
K(θ)− (θ, p)>

〉
,

(2.6)



COMPUTATION OF INVARIANT NON-TWIST CIRCLES 9

are assumed to be “small”.
Our goal is to find (∆K,∆τ) solving the linear equations (2.5), up to an error

which is quadratic with respect to (E, e) (in suitable norms). If one defines

M(θ) = DF (K(θ)), L(θ) = DK(θ),
V (θ) = −E(θ), v = −e,
U(θ) = ∆K(θ), u = ∆τ,

then the linearized equations (2.5) can be written as follows:

M(θ)U(θ) + u− U(θ + ω) = V (θ),

〈U(θ)〉 = v.
(2.7)

Moreover, the following hold:

M(θ)L(θ) = L(θ + ω) + DE(θ), 〈Lx(θ)〉 = 1, 〈Ly(θ)〉 = 0.

To avoid technical details that are not be used in the definition of the approximate
solution of (2.5), we concentrate our efforts on finding a solution (U, u) of (2.7) un-
der the following assumptions: M : T→ R2×2 is symplectic, ω ∈ R is Diophantine,
V : T→ R2 and v ∈ R2 are known, and there is L : T→ R2 such that L(θ) 6= 0 for
all θ and moreover the following equations hold:

(2.8) M(θ)L(θ) = L(θ + ω), 〈Lx(θ)〉 = 1, 〈Ly(θ)〉 = 0.

Remark 2.2. From a dynamical point of view, (2.8) implies that L parameterizes
an invariant bundle for the bundle map (M,Rω) : R2×T→ R2×T which is defined
by

v̄ = M(θ)v ,

θ̄ = θ + ω .

From a functional analysis point of view, (2.8) implies that L parameterizes an
eigen-section of eigenvalue 1 for the transfer operator M acting on sections V :
T→ R2 of the trivial bundle R2 × T by

MV (θ) = M(θ − ω)V (θ − ω).

We note that the Newton method involves solving equations involving the transfer
operators as above.

Remark 2.3. Invertibility of transfer operators is key on defining and implement-
ing a Newton method. It is important to notice that the spectral properties of trans-
fer operators are rather subtle. The spectrum presents certain peculiarities affecting
the feasibility of the corresponding numerical algorithms.

The spectral theory of transfer operators in spaces of C0 functions was studied in
[42] for rather general dynamics, where it was shown that the spectrum is invariant
under rotations. The arguments in [42] do not generalize to the spectrum in spaces
of more differentiable functions. Nevertheless, for bundle maps under irrational
rotations, [33] shows that the spectrum acting on Cr (r ∈ N ∪ {ω}) is invariant
under rotations.

The invariance of the spectrum of transfer operators over rotations has several
practical consequences (see e.g. [1] for a discussion). In particular, the iterative
methods based on selecting leading eigenvalues (Krylov, Arnoldi, etc.) do not work
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well in this case. The only alternative, we aware of, to the geometric procedure pre-
sented here is the use of the full matrix method [32] (which consists in discretazing
the linear equation into a full matrix equation).

Remark 2.4. Notice that, in the case that E = 0 in 2.6, the bundle map (M,Rω)
is the linearized dynamics around a translated rotational circle (K, τ), and L gives
the tangent directions to the circle. This property is satisfied approximately when
E 6= 0.

In what follows we give a detailed description of our method to solve equa-
tions (2.7), under assumptions (2.8); explicit formulas are provided with the aim of
making the resulting algorithm ready for implementation. First, define the follow-
ing matrix-valued function:

(2.9) P (θ) =
(
L(θ) N(θ)

)
,

where

N(θ) = Ω0L(θ)(L(θ)>L(θ))−1 =

(
−Ly(θ)
Lx(θ)

)
1

Lx(θ)2 + Ly(θ)2
.

Notice that for each θ ∈ T, P (θ) is symplectic: P (θ)>Ω0P (θ) = Ω0. In particular,
P is invertible with inverse give by:

(2.10) P (θ)−1 = −Ω0P (θ)>Ω0.

Symplectness and invertibility of matrix P , defined by (2.9), is guaranteed by the
fact that it is 2× 2 dimensional. In the general dimensional case, P is only approx-
imately symplectic and approximately invertible with approximate inverse given
by (2.10) In (x, y)-coordinates,

P (θ) =

(
Lx(θ) Nx(θ)
Ly(θ) Ny(θ)

)
, P (θ)−1 =

(
Ny(θ) −Nx(θ)
−Ly(θ) Lx(θ)

)
.

From (2.8) one obtains

M(θ)P (θ) = P (θ + ω)Λ(θ) ,

where

Λ(θ) =

(
1 T (θ)
0 1

)
, T (θ) = N(θ + ω)>Ω0M(θ)N(θ) .

In particular, the linearized dynamics (M,Rω) around a translated rotational circle
is reducible by the symplectic bundle map (P, Id) to a triangular bundle map (Λ, Rω)
with the identity in the diagonal.

The torsion, defined by T̄ = 〈T 〉, measures how much the normal bundle is
twisted by the action of (M,Rω), in average. We say that the circle is twist if
T̄ 6= 0, otherwise we say that the circle is non-twist. It was proved in [28] that
twist tori are non-degenerate and non-twist are degenerate in the sense introduced
in (2.4) (see Appendix A.2 for details in the two dimensional case).

Define U(θ) = P (θ)ξ(θ), then performing some computations, equations in (2.7)
are transformed into the following system of equations:

Λ(θ)ξ(θ) + P (θ + ω)−1u− ξ(θ + ω) = η(θ) ,

〈P (θ)ξ(θ)〉 = v ,
(2.11)

where η(θ) = P (θ + ω)−1V (θ).
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Let Lω denote the left operator acting on periodic functions ξ∗ : T → R as
follows:

Lωξ∗(θ) = ξ∗(θ)− ξ∗(θ + ω) .

Then, using the following notation

ξ(θ) =

(
ξL(θ)
ξN (θ)

)
, η(θ) =

(
ηL(θ)
ηN (θ)

)
(2.11) is written as follows:

LωξL(θ) + T (θ)ξN (θ) +Ny(θ + ω)ux −Nx(θ + ω)uy = ηL(θ) ,(2.12)

LωξN (θ) − Ly(θ + ω)ux + Lx(θ + ω)uy = ηN (θ) ,(2.13) 〈
Lx(θ)ξL(θ) +Nx(θ)ξN (θ)

〉
= vx ,(2.14) 〈

Ly(θ)ξL(θ) +Ny(θ)ξN (θ)
〉

= vy ,(2.15)

where the unknowns are ξL, ξN , ux and uy.
A fundamental result in KAM theory [46] is the following. If ω satisfies Dio-

phantine conditions, then given a periodic function η∗ : T→ R, the equation

(2.16) Lωξ∗(θ) = η∗(θ)− 〈η∗(θ)〉 , 〈ξ∗(θ)〉 = 0 ,

has an unique solution. We denote this unique solution by Rωη∗(θ) = ξ∗(θ), we
refer to Rω as the right operator. The paper [46] contains a detailed study of
the spaces in which equation (2.16) is solvable and the estimates satisfied by their
solutions. Improved estimates appear in [23, 24].

Remark 2.5. The operators Lω and Rω introduced above are diagonal in Fourier
space: if

ξ∗(θ) =
∑
k∈Z

ξ∗ke2πikθ , η∗(θ) =
∑
k∈Z

η∗ke2πikθ ,

then formally one has:

Lωξ∗(θ) =
∑
k 6=0

(1− e2πikω)ξ∗ke2πikθ , Rωη∗(θ) =
∑
k 6=0

(1− e2πikω)−1η∗ke2πikθ .

This is important from both theoretical and practical points of view. Convergence of
Fourier series Rωη∗ is possible thanks to Diophantine properties on ω and smooth-
ness properties of η∗.

Numerical implementation of the action of Lω and Rω on (truncated) Fourier
series is straightforward. Indeed, if η∗ is a (truncated) Fourier series with N har-
monics, then computing ξ∗ requires O(N) storage size and O(N) number of opera-
tions.

Below we find explicit formulas for the solution ξL, ξN , ux and uy of equa-
tions 2.12–2.15 in terms of Rω (see Algorithm 3.1).

From (2.13) and our hypothesis 〈Lx(θ)〉 = 1, 〈Ly(θ)〉 = 0, we obtain the following
equalities:

(2.17) uy =
〈
ηN (θ)

〉
and

(2.18) ξN (θ) = ξN0 +RωLy(θ + ω)ux −RωLx(θ + ω)uy +RωηN (θ),
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where ux and the average ξN0 have to be determined. Let ξ̃N denote the known
part of ξN (θ):

ξ̃N (θ) = −RωLx(θ + ω)uy +RωηN (θ) ,

Define
η̃L(θ) = ηL(θ)− T (θ)ξ̃N (θ) +Nx(θ + ω)uy.

then, substituting (2.18) in (2.12), one obtains

(2.19) LωξL(θ) + T (θ)ξN0 + (T (θ)RωLy(θ + ω) +Ny(θ + ω))ux = η̃L(θ) ,

For any ξL0 ∈ R, and ξN0 and ux such that

(2.20) 〈T (θ)〉 ξN0 + 〈T (θ)RωLy(θ + ω) +Ny(θ + ω)〉ux =
〈
η̃L(θ)

〉
,

the following defines a solution of Equation (2.19):
(2.21)
ξL(θ) = ξL0 −RωT (θ)ξN0 −Rω

(
(T (θ)RωLy(θ + ω) +Ny(θ + ω))

)
ux +Rω η̃L(θ) .

Replacing (2.21) into (2.15) and using the following notation:

T̂11 = 〈T (θ)〉 ,

T̂12 = 〈T (θ)RωLy(θ + ω) +Ny(θ + ω)〉

T̂21 = 〈Ny(θ)− Ly(θ)RωT (θ)〉 ,

T̂22 = 〈Ny(θ)RωLy(θ + ω)− Ly(θ)Rω(T (θ)RωLy(θ + ω) +Ny(θ + ω))〉 ,

Equation (2.20) and Equation (2.15) can be written as the following 2 × 2 linear
system:

T̂

(
ξN0
ux

)
=

( 〈
η̃L(θ)

〉
vy −

〈
Ly(θ)Rω η̃L(θ) +Ny(θ)ξ̃N (θ)

〉)
,

where

(2.22) T̂ =

(
T̂11 T̂12

T̂21 T̂22

)
.

It is clear that if the determinant of T̂ is different from zero then we ξN0 and ux can
be computed as follows:

(2.23)

(
ξN0
ux

)
= T̂−1

( 〈
η̃L(θ)

〉
vy −

〈
Ly(θ)Rω η̃L(θ) +Ny(θ)ξ̃N (θ)

〉
.

)
Hence, from any ξL0 ∈ R, solutions of equations 2.12, 2.13, 2.15 are defined by
(2.17), (2.18)(2.21) and (2.23). Equation 2.14 determines ξL0 ∈ R (the average of

ξL) as follows. Write ξL(θ) = ξL0 + ξ̃L(θ), then Equation (2.14) yields:

ξL0 = vx −
〈
Lx(θ)ξ̃L(θ) +Nx(θ)ξN (θ)

〉
.

Remark 2.6. We refer to matrix T̂ , defined in (2.22), as the supertorsion of
the circle K with respect to the map F and the Hamiltonian action Φ given by
the horizontal translations (see (2.1)). Note that the torsion T involves geometric

properties only of the circle and the map, whereas the supertorsion T̂ also involves
the whole family of translated rotational circles (see (2.3)). We claim that T̂ is a
symmetric matrix and moreover the following equality holds:

T̂22 = 〈RωLy(θ)Ny(θ)−RωNy(θ)Ly(θ) +RωLy(θ + ω)T (θ)RωLy(θ + ω)〉
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(this result does not appear in [28]). This follows from the fact that for any periodic
functions u and v, the following holds:

〈Rωu(θ + ω)v(θ)〉 = −〈u(θ)Rωv(θ)〉 .

Remark 2.7. It is worth mentioning that if in (2.7), M is in a reduced form (as
it happens in integrable systems):

M(θ) =

(
1 T (θ)
0 1

)
,

then, the supertorsion T̂ , defined in (2.22), is non-degenerate no matter whether T̄
is non-degenerate or degenerate. Indeed it is given by:

T̂ =

(
T̄ 1
1 0

)
.

2.3. Existence of translated rotational circles. Under suitable conditions, the
iterative procedure based on the quasi-Newton method sketched in Section 2.2 is
quadratically convergent, leading to an algorithm to compute translated rotational
circles (i.e. solutions of (2.2)). This algorithm is discussed in Section 3.2. The
convergence result is informally stated here without proof as Theorem 2.8, see
Chapter 6 in [28] for a rigorous and more general statement, and a complete proof,
for existence of families of translated tori for exact symplectic maps (with respect
to a given exact symplectic form). It is also proved in [28] that translated tori (here
rotational circles) depend smoothly on the momentum.

Theorem 2.8. Let F : T × R → T × R be a real-analytic area preserving map,
homotopic to the identity and with zero net flux. Let ω ∈ R be a frequency satisfying
Diophantine conditions and let p0 ∈ R be a momentum.

Let K0 : T → T × R be a real-analytic parameterization of a rotational circle,
and τ0 = (λ0, σ0)> be a translation.
Assume that:

H1. The parameterization K0 is regular. That is, DK(θ)>DK(θ) is invertible;

H2. The supertorsion T̂ of K0 (with respect to F and ω), defined in (2.22), is
a non-degenerate 2× 2 matrix.

Let (E, e) be the error of the approximately translated rotational circle (K0, τ0)
of momentum p0:

E(θ) = F (K0(θ)) + τ0 −K0(θ + ω) ,

e = −
〈
K0(θ)− (θ, p)>

〉
.

If (E, e) is sufficiently small (in analytic norms), then:

T1. there exists a locally unique real-analytic family of F -translated rotational
circles with frequency ω, labeled with the momentum in a neighborhood U
of p0, that is, a real-analytic map K̂ = (K, τ) : T × U → (T × R) × R2 of

the form K̂(θ, p) = (K(θ, p), τ(p)) such that

F (K(θ, p)) + τ(p)−K(θ + ω, p) = 0 ,〈
K(θ, p)− (θ, p)>

〉
= 0 ;

T2. the vertical translation is zero: σ(p) := τy(p) = 0 for all p ∈ U ;
T3. the supertorsion of all translated tori in the family is non-degenerate.
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A quantitative version of Theorem 2.8 is suitable to perform rigorous proofs of
the existence of (translated) rotational circles because the smallness condition on
the error (E, e) was made explicit in [28]. The paper [23] contains a methodology
to perform computer-assisted proofs in the context of KAM theory.

2.4. A methodology to study bifurcations of invariant rotational circles.
This section describes the main ingredients of our methodology to study smooth
bifurcations of invariant rotational circles.

Theorem 2.8 and the procedure described in Section 2.2 can be adapted to fam-
ilies of area-preserving maps. To study bifurcations of rotational circles for area-
preserving maps, we assume that the family of area preserving maps depends on
parameters µ and ε. Parameters µ = (µ0, . . . , µk−1) are used to unfold a zero,
of multiplicity k, of the translation function, while ε is assumed to be a pertur-
bation parameter which preserve the multiplicity k of the zero. More concretely,
if the symplectomorphism F depends smoothly on parameters µ, ε, then the fam-
ilies of F -translated rotational circles, with fixed rotation ω, and the translation
λ = λ(p;µ, ε) depend also smoothly on µ, ε. Hence, the study of bifurcations of
invariant circles (with fixed frequency ω), which in principle is an infinite-dimen-
sional problem, can be reduced to analyze the bifurcations of the zeros of λ(p;µ, ε),
which is a finite dimensional problem.

The procedure of computing and studying the bifurcations of rotational circles
consists of three following main stages:

Stage 1 For given parameters µ, ε∗, fix a value p for the average momentum. Ap-
ply a quasi-Newton method (which is an infinite dimensional problem) to
obtain:
(1) a parameterization of the translate rotational circle with momentum

equal to p (as well as other normalizations in the phase);
(2) the value of the horizontal translation λ, which make the momentum

of the translated rotational circle equal to p. Since the value of the
momentum depends on the parameters p and µ and ε∗, we will write
λ(p;µ, ε∗).

Stage 2 For ε∗ fixed, run a finite dimensional Newton method to search for a pa-
rameter value µ∗ for which the function λ(p;µ∗, ε∗) has a zero at p∗, with
the prescribed multiplicity k. That is p∗ is such that the following holds:

λ(p∗;µ∗, ε∗) = λ(1)(p∗;µ∗, ε∗) = · · · = λ(k−1)(p∗;µ∗, ε∗) = 0 ,
λ(k)(p∗;µ∗, ε∗) 6= 0 .

To do so, one applies Perturbation Theory to compute the k-jet of λ(p;µ, ε∗)
and its first order derivatives (with respect to µ).

Stage 3 Starting at ε∗, continue with respect to ε, the solution (p(ε);µ(ε)) of

λ(p(ε);µ(ε), ε) = λ(1)(p(ε);µ(ε), ε) = · · · = λ(k−1)(p(ε);µ(ε), ε) = 0 ,
λ(k)(p(ε);µ(ε), ε) 6= 0 .

From the computational point of view, the most delicate step is Stage 1, because
it involves solving an infinite dimensional problem. Moreover it involves dealing
with small divisors and it has unbounded derivatives. Hence, issues such as the
truncation of Fourier series are rather delicate, see Section 3.
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3. Algorithms

This section contains the explicit description of the algorithms that implement
the three-stage procedure introduced in Section 2.4.

The algorithm which computes the solution of the linearized equations (2.7) is
formulated in Section 3.1. This algorithm is then applied to perform one step
of our quasi-Newton method to compute translated rotational circles (Stage 1 in
Section 2.4), see Section 3.2.

Section 3.3 contains the algorithms for computing and continuing invariant ro-
tational circles, which is done by finding simple zeros of the translation (µ is fixed).
Although, it would be sufficient to apply a root-finding algorithm, such as the secant
method, Brent’s method [6], or Steffensen’s method [5], we present an algorithm
based on a Newton method. The case of zeros of multiplicity k > 1 is considered
in Section 3.4. In this case, one needs to obtain the k-jet of the translation function
with respect to the momentum and first order derivatives with respect to parame-
ters µ. In this paper we only consider zeros of finite multiplicity, hence only a finite
number of computations is required, see Section 3.5. (For examples with zeros of
infinite multiplicity, see [28]).

In Section 3.6 we discuss some implementation details.

3.1. Approximate solution of the linearized equations. Our first algorithm
solves the linearized equations (2.7), providing the basis for our quasi-Newton
method to solve the invariance equations.

Algorithm 3.1 (Approximate solution of the linearized equations for translated
rotational circles). Let ω ∈ R satisfy Diophantine conditions. Assume that M :
T → R2 is a matrix-valued function and that L : T → R2 satisfies the following
conditions:

- L is a regular function: L(θ)>L(θ) is invertible;
- 〈Lx(θ)〉 = 1, 〈Ly(θ)〉 = 0.

Given a couple (V, v), where V : T→ R2 and v ∈ R, we compute the couple

(3.1) (U, u) := R̂M,L,ω(V, v),

where U : T→ R2 and u ∈ R2, through the following sequence of operations:

(1) N(θ) = Ω0L(θ)(L(θ)>L(θ))−1;
(2) P (θ) =

(
L(θ) N(θ)

)
;

(3) T (θ) = N(θ + ω)>Ω0M(θ)N(θ);
(4) η(θ) = P (θ + ω)−1V (θ);
(5) uy =

〈
ηN (θ)

〉
;

(6) ξ̃N (θ) = −RωLx(θ + ω)uy +RωηN (θ);

(7) η̃L(θ) = ηL(θ)− T (θ)ξ̃N (θ) +Nx(θ + ω)uy;

(8) T̂11 = 〈T (θ)〉;
(9) T̂12 = 〈T (θ)RωLy(θ + ω) +Ny(θ + ω)〉;

(10) T̂21 = T̂12;

(11) T̂22 = 〈Ny(θ)RωLy(θ + ω)− Ly(θ)Rω(T (θ)RωLy(θ + ω) +Ny(θ + ω))〉 ,

(12) T̂ =

(
T̂11 T̂12

T̂21 T̂22

)
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(13) if detT̂ = 0, break algorithm, otherwise define(
ξN0
ux

)
=

(
T̂11 T̂12

T̂21 T̂22

)−1
( 〈

η̃L(θ)
〉

vy −
〈
Ly(θ)Rω η̃L(θ) +Ny(θ)ξ̃N (θ)

〉)
(14) ξN (θ) = ξN0 +RωLy(θ + ω)ux + ξ̃N (θ);

(15) ξ̃L(θ) = −RωT (θ)ξN0 −Rω
(
(T (θ)RωLy(θ+ω)+Ny(θ+ω))

)
ux+Rω η̃L(θ);

(16) ξL0 = vx −
〈
Lx(θ)ξ̃L(θ) +Nx(θ)ξN (θ)

〉
;

(17) ξL(θ) = ξL0 + ξ̃L(θ);
(18) U(θ) = P (θ)ξ(θ).

The output (U, u) = R̂M,L,ω(V, v) of Algorithm 3.1 satisfies the following:

M(θ)U(θ) + u− U(θ + ω)− V (θ) = (M(θ)−M0(θ))U(θ) ,

〈U(θ)− v〉 = 0 ,
(3.2)

where

M0(θ) = P (θ + ω)Λ(θ)P (θ)−1 ,

with

Λ(θ) =

(
1 T (θ)
0 1

)
.

In particular, if M = M0 is reducible to (Λ, Rω), then (U, u) is the only solution of
the linearized system (2.7).

Remark 3.2. If (K, ν) is an approximate solution of (2.2),

M(θ) = DF (K(θ)), L(θ) = DK(θ),

and

V (θ) = −E(θ), v = −e,
then (∆K = U,∆τ = u) is an approximate solution of the linearized equations (2.5)
(which is quadratic with respect to (E, e), in suitable norms).

3.2. Computation of families of translated rotational circles. Implementa-
tion of Stage 1 in Section 2.4 is performed by applying the algorithms introduced
here: Algorithm 3.4 computes a family of translated rotational circles with fixed pa-
rameters, then, Algorithm 3.5 performs the numeric continuation of the translated
rotational circle.

3.2.1. Newton method for translated rotational circles. To compute a translated ro-
tational circle and its corresponding translation, with prescribed momentum p and
fixed Diophantine frequency ω ∈ R, we apply the quasi-Newton method described
in Section 2.2. In particular, we apply Algorithm 3.1, see Remark 3.2.

Let R̂M,L,ω denote the output of Algorithm 3.1 (see equality (3.1)). Let p ∈ R
be fixed, assume that (K, τ) is an approximate solution of:

F (K(θ)) + τ −K(θ + ω) = 0 ,〈
K(θ)− (θ, p)>

〉
= 0 .

(3.3)

Let (E, e) be the corresponding error:

E(θ) = F (K(θ)) + τ −K(θ + ω) ,

e =
〈
K(θ)− (θ, p)>

〉
,
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which is assumed to be small (in appropriate norms).

Define M(θ) = DF (K(θ)), L(θ) = DK(θ). If supertorsion T̂ , defined in (2.22),
is non-degenerate, Algorithm (3.1) provides the correction ∆K and ∆τ given by:

(∆K,∆τ) = R̂M,L,ω(−E,−e),

The new approximate solution is then defined as follows:

(K̄(θ), p̄) = (K(θ) + ∆K(θ), p+ ∆p).

In [28] it was proved (Theorem 2.7) that under suitable conditions the error, cor-
responding to the new approximate solution, is quadratic with respect to (E, e) in
analytic norms (see Remark 3.2). This is an important ingredient in proving the
convergence of the quasi-Newton method described in Section 2.2.

The following Algorithm 3.3 implements one step of the Newton method describ-
ing the mathematical theory described in this section.

Algorithm 3.3 (Newton step for computing a translated rotational circle). Let the
momentum p be given. Assume that (K, τ) is an approximate solution of (3.3) with

invertible supertorsion T̂ . Then, a new approximate solution (K̄, τ̄) is produced as
follows:

(1) E(θ) = F (K(θ)) + τ −K(θ + ω);
(2) e =

〈
K(θ)− (θ, p)>

〉
;

(3) L(θ) = DK(θ);
(4) M(θ) = DF (K(θ));

(5) (∆K(θ),∆τ) = R̂M,L,ω(−E(θ),−e) (call Algorithm 3.1);
(6) K̄(θ) = K(θ) + ∆K(θ);
(7) τ̄ = τ + ∆τ .

In practice, the previous algorithm needs to be driven by an algorithm that
involves choices of thresholds for success and for unrecoverable failure.

Algorithm 3.4 (Newton method for computing a translated rotational circle). Let
the momentum p be given. Assume that (K, τ) is an approximate solution of (3.3)

with invertible supertorsion T̂ . Then, repeat iteratively the following procedure (up
to a given number of times):

(1) E(θ) = F (K(θ)) + τ −K(θ + ω);
(2) e =

〈
K(θ)− (θ, p)>

〉
;

(3) If (E, e) is too big (given a failure threshold), break and report failure;
(4) If (E, e) is small enough (given a tolerance error), break and report success;
(5) Otherwise, call Algorithm 3.3 (but, of course, steps (1) and (2) are already

done).

Obviously, when Algorithm 3.4 reports success, we produce a (good) approxi-
mated translated rotational circle (K, τ) = Newton(K, τ ;F, p) of momentum p.

Notice that the time taken by Algorithm 3.3 is completely predictable, but Algo-
rithm 3.4 may require more or less iterations depending on the thresholds chosen.
Then, the resources of storage are very easy to predict. and they are linear in the
number of discretization modes.
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3.2.2. Continuation of the family of translated rotational circles. To continue the
family of translated rotational circles (K(θ, p), τ(p)), with respect to the parameter
p (the momentum), we apply the quasi-Newton method introduced in Section 2.2,
starting with a suitable approximate solution of 3.3, for p̄ close to p, defined as
follows.

Assume that the supertorsion T̂ (p) of K(θ, p) is non-degenerate (this is, in fact,
the condition to apply the implicit function theorem to continue the family of
translated rotational circles). Let

M(θ) = DF (K(θ, p)) , V (θ) = 0, v =

(
0
1

)
,

and, since L(θ, p) = DK(θ, p) satisfy (2.8), we define

(3.4)

(
∂K

∂p
(θ, p),

∂τ

∂p
(p)

)
= R̂M,L,ω

(
0, (0, 1)>

)
.

Then, for p̄ = p+ δp close to p, the approximate solution of 3.3 is defined by:

K(θ, p) +
∂K

∂p
(θ, p)δp , τ(p) +

∂τ

∂p
(p)δp.

Algorithm 3.5 (Predictor of continuation of the translated rotational circles).

Given a solution of (3.3), (K, τ), if the supertorsion T̂ (p) of K(θ, p) is non-
degenerate at the momentum p, then given δp, an approximate solution (K̄, τ̄) of
(3.3) p̄ = p+ δp is computed as follows:

(1) (Kp, τp) = R̂M,L,ω(0, (0, 1)>), λp = τxp (call Algorithm 3.1);

(2) K̄ = K +Kp δp;
(3) τ̄ = τ + τp δp.

3.3. Computation and continuation of invariant rotational circles. This
section contains the algorithms to numerically compute and continue (with respect
to a perturbative parameter ε) invariant rotational circles. Later, we will discuss
computation and continuation of invariant circles imposing a prescribed degeneracy.

Let F (·; ε) be a parameter family of exact symplectomorphisms. Assume that,
for ε in a suitable open interval, {(K(θ, p; ε), τ(p; ε))}p∈U is a family of F (·; ε)-
translated rotational circles with Diophantine frequency ω:

F (K(θ, p; ε); ε) + τ(p; ε)−K(θ + ω, p; ε) = 0 ,〈
K(θ, p; ε)− (θ, p)>

〉
= 0 .

Let λ(p; ε) = τx(p; ε) denote the horizontal translation. It is clear that F -
invariant rotational circles correspond to parameter values for which the following
equality holds:

(3.5) λ(p; ε) = 0.

The computation and continuation F -invariant rotational circles is done by contin-
uing solutions of equation (3.5).

3.3.1. Computation of non-degenerate invariant rotational circles. Let ε ∈ I be
fixed, assume that p is an approximate solution of (3.5):

λ(p; ε) = e0 .
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A classical Newton method can be applied to solve (3.5), provided that e0 is suf-
ficiently small and λp = λp(p; ε) 6= 0, i.e. the F -invariant rotational circle is non-
degenerate (see Section 3.2.2). At each step, the correction is taken to be the
solution of the corresponding linearized equation:

(3.6) λp(p; ε)∆p = −e0,

where

λp(p; ε) =
∂λ

∂p
(p; ε)

is computed in (3.4). Then, provided that λp = λp(p; ε) 6= 0, ∆p is given by:

∆p =
−e0

λp
= − λ

λp
.

Algorithm 3.6 (Newton method for computing a non-degenerate invariant rota-
tional circle). Given a rotational circle K with momentum p and a translation τ
such that (K, τ) is approximately F (·; ε)-invariant, for ε fixed. A new approximately
F (·; ε)-invariant rotational circle K̄ with momentum p̄ and translation τ̄ is defined
by the following computations:

(1) (K, τ) = Newton(K, τ ;F (·; ε), p) (call Algorithm 3.4)

(2) (Kp, τp) = R̂M,L,ω

(
0, (0, 1)>

)
, λp = τxp (call Algorithm 3.1);

(3) If λp 6= 0 define p̄ = p− λ
λp

, otherwise break;

(4) K̄(θ) = K(θ) +Kp(θ)(p̄− p);
(5) τ̄ = τ + τp(p̄− p).

Remark 3.7. Another algorithm suitable for computing twist invariant rotational
circles for exact symplectic maps follows from the KAM theory without angle-action
angles introduced in [11, 14]. See e.g. [31] for actual implementations, and [23] for
rigorous estimates. It is worth mentioning that Algorithm 3.6 can also be applied
to non-exact symplectic maps to compute vertically translated rotational circles.

Remark 3.8. We emphasize that Algorithm 3.6 can be used to refine numerical re-
sults obtained by other methods, such as neighbouring periodic orbits (using Fourier
interpolation), or from efficient quantitave methods to compute rotation numbers
[9, 10, 40, 41].

3.3.2. Continuation of non-degenerate invariant rotational circles. To continue in-
variant rotational circles, we look for solutions, (K, τ, p, ε), of the following equa-
tions:

F (K(θ); ε) + τ −K(θ + ω) = 0 ,〈
K(θ)− (θ, p)>

〉
= 0 ,

λ = 0 ,

(3.7)

where λ = τx. Here, we consider ε as a natural parameter, and we aim to find a
function ε → p(ε) such that, for each ε, τ (ε) := τ(p(ε); ε) = 0 so that K(θ; ε) :=
K(θ, p(ε); ε) is an F (·; ε)-invariant rotational circle, with Diophantine frequency ω
and momentum p(ε).

More explicitly:

F (K(θ; ε); ε) + τ (ε)−K(θ + ω; ε) = 0 ,〈
K(θ; ε)− (θ, p(ε))>

〉
= 0 ,

λ(ε) = 0 ,

(3.8)
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where λ(ε) = τx(ε).
Provided that a solution of 3.7, (K, τ, p, ε) = (K(·; ε), τ (ε) = 0, p(ε), ε), is known

for ε fixed, below we describe an algorithm to compute a predictor to which our
quasi-Newton method (Algorithm 3.6) can be applied to solve (3.7) for ε̄ = ε+ δε.

First, we compute the partial derivatives with respect to ε of the involved func-
tions (K, τ , p) as follows. From

dK

dε
(θ; ε) =

∂K

∂p
(θ, p(ε); ε)

dp

dε
(ε) +

∂K

∂p
(θ, p(ε); ε)

and
dτ

dε
(ε) =

∂τ

∂p
(p(ε); ε)

dp

dε
(ε) +

∂τ

∂ε
(p(ε); ε),

we then obtain that(
dK

dε
(θ; ε),

dτ

dε

)
= R̂M,L,ω

(
0, (0, 1)>

) dp
dε

(ε)+R̂M,L,ω

(
−∂F
∂ε

(K(θ; ε); ε), (0, 0)>
)
,

where dp
dε is chosen so that dλ

dε = 0. Then, a seed for the Newton method given by
Algorithm 3.6, for finding a F (·; ε)-invariant rotational circle with frequency ω and

momentum p(ε̄) is the triplet (K̃, τ̃ , p̃) given by:

K̃(θ) = K(θ) +
dK

∂ε
(θ; ε)δε, τ̃ = τ +

dτ

dε
(ε)δε, p̃ = p+

dp

dε
(ε)δε .

Algorithm 3.9 (Predictor of the natural continuation method for invariant rota-
tional circles). Given a solution (K, 0, p, ε) of (3.7) for a value ε and an given a

parameter step δε, an approximate solution (K̃, τ̃ , p̃, ε̄) of (3.7) for ε̄ = ε + δε is
computed as follows:

(1) (Kp, τp) = R̂M,L,ω(0, (0, 1)>), λp = τxp (call Algorithm 3.1);

(2) (Kε, τε) = R̂M,L,ω

(
−∂F (·;ε)

∂ε (K(θ)), (0, 0)>
)

, λε = τxε (call Algorithm 3.1);

(3) if λp 6= 0, pε = −λε
λp

, otherwise break the algorithm;

(4) Kε = Kε +Kp pε;

(5) K̃ = K +Kε δε;
(6) p̃ = p+ pε δε.

3.3.3. Pseudo-arclength continuation method. The continuation method sketched
in previous section fails to continue turning points of the circle λ(p; ε) = 0. At
the turning points, the invariant rotational circles are degenerate (non-twist). If
the circle is regular, one of the derivatives ∂λ

∂ε , ∂λ
∂p is different from zero. In this

case, a pseudo-arclength continuation method can be used to follow turning points
(and easily detect degenerate invariant rotational circles). Within the pseudo-
arclength continuation method [36], the solution curve λ(p; ε) = 0 is considered
to be parameterized by the arclength (notice that we consider (K, τ) as objects
depending on (p, ε)).

The pseudo-arclength continuation method involves the following steps:

(1) The corrector step: given an approximate solution, represented by a
point in the parameter space that is close to the solution curve λ(p, ε) = 0,
the corrector obtains the point in the solution curve which is the closest
to the given approximation. This is done by applying Newton method
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to compute the minimum-norm solution of the corresponding linearized
equations (notice that there are more unknowns than equations).

(2) The predictor step: given a point (p, ε) in the solution curve λ(p; ε) =
0 and a continuation step δs, the predictor obtains a new point in the
parameter space which approximates a new point in the solution curve
with arclength distance from (p, ε) equal to δs.

Given an approximate solution (p; ε) of (3.5), with λ(p; ε) = e0, the corrector step
aims to obtain a correction (∆p; ∆ε) to (p; ε) and a correction to the corresponding
translated rotational circle (K, τ), (∆K,∆τ). The linearized equation for (∆p; ∆ε)
is the following:

λp∆p+ λε∆ε = −e0,

where the following notation is used:

λp(p; ε) =
∂λ

∂p
(p; ε) , λε(p; ε) =

∂λ

∂ε
(p; ε) .

The solution that minimizes (∆p)2 + (∆ε)2 (other weights in the Euclidean norm
can also be used) is the one that solves the following linear equation:

(3.9)

(
λp λε
−λε λp

)(
∆p
∆ε

)
=

(
−e0

0

)
.

It is clear that to have a solution of 3.9, it is sufficient to assume λ2
p + λ2

ε 6= 0.
As already showed before, the partial derivatives of K and τ are obtained as

follows:

(Kp, τp) = R̂M,L,ω(0, (0, 1)>),

(Kε, τε) = R̂M,L,ω

(
−∂F
∂ε

(K(θ), ε), (0, 0)>
)
,

and, in particular, λp = τxp and λε = τxε . The corrections for (K, τ) are then
computed as follows:

(∆K,∆τ) = (Kp, τp)∆p+ (Kε, τε)∆ε

The above procedure describes the corrector of the pseudo-arclength continuation
method, which is summarized in the following algorithm.

Algorithm 3.10 (Corrector of the pseudo-arclength continuation method). At
each step of the corrector, given an approximately invariant rotational circle K of
momentum p and translation τ for F (·; ε), we produce another approximately in-
variant rotational circle K̄ of momentum p̄ and translation τ̄ for F (·; ε), as follows:

(1) (K, τ) = Newton(K, τ ;F (·; ε), p) (call Algorithm 3.4);

(2) (Kp, τp) = R̂M,L,ω(0, (0, 1)>), λp = τxp (call Algorithm 3.1);

(3) (Kε, τε) = R̂M,L,ω

(
−∂F∂ε (K(θ), ε), (0, 0)>

)
, λε = τxε (call Algorithm 3.1);

(4) if λ2
p + λ2

ε = 0, break and reports failure;

(5) ∆p = −λλp (λ2
p + λ2

ε)
−1;

(6) ∆ε = −λλε (λ2
p + λ2

ε)
−1 ;

(7) ∆K = Kp∆p+Kε∆ε;
(8) ∆τ = τp∆p+ τε∆ε;
(9) K̄ = K + ∆K;

(10) τ̄ = τ + ∆τ ;
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(11) p̄ = p+ ∆p;
(12) ε̄ = ε+ ∆ε.

If the initial seed is sufficiently close to regular points of the solution curve
λ(p, ε) = 0, the repeated application of the previous step would converge to a point
(p, ε) in the curve, which corresponds to an invariant rotational circle for F (x, y, ε).
In the predictor step, λ(p, ε) = 0 is considered to be a curve parameterized by the
arclength, s, so that one has a function s→ (p(s), ε(s)), such that{

λ(p(s), ε(s)) = 0,
dp
ds (s))2 + (dεds (s))2 = 1.

Hence, the functions K(θ; s) = K(θ, p(s); ε(s)), τ (s) := τ(p(s); ε(s)) satisfy

F (K(θ; s); ε(s)) + τ (s)−K(θ + ω; s) = 0,〈
K(θ; s)− (θ, p(s))>

〉
= 0,

λ(s) = 0,

(3.10)

where λ(s) = τx(s). Taking derivative of λ(s) = 0 with respect to s and using the
arclength condition we obtain the following equalities:

∂λ

∂p
(p(s), ε(s))

dp

ds
(s) +

∂λ

∂ε
(p(s), ε(s))

dε

ds
(s) = 0 ,(

dp

ds
(s)

)2

+

(
dε

ds
(s)

)2

= 1 ,

from which we have
dp

ds
(s) = ± λε√

λ2
p + λ2

ε

,
dε

ds
(s) = ∓ λp√

λ2
p + λ2

ε

(the choice of the sign depends on the orientation of the arclength parameterization
of the curve λ(p, ε) = 0). We recall that the partial derivatives of λ(p; ε) are
obtained from

(Kp, τp) = R̂M,L,ω(0, (0, 1)>),

(Kε, τε) = R̂M,L,ω

(
−∂F
∂ε

(K(θ; s); ε(s)), (0, 0)>
)
,

and λp = τxp , λε = τxε . Finally, we get(
dK

ds
(θ; s),

dτ

ds
(s)

)
= (Kp, τp)

dp

ds
(s) + (Kε, τε)

dε

ds
(s) .

Previous computations lead to the following predictor step.

Algorithm 3.11 (Predictor of the pseudo-arclength continuation method). Given
(K, 0, p, ε), solution of (3.7) for a certain arclength parameter value s, and given

an arclength parameter step δs, an approximate solution (K̃, τ̃ ; p̃, ε̃) of (3.7) for the
arclength parameter value s̄ = s+ δs, is computed as follows:

(1) (Kp, τp) = R̂M,L,ω(0, (0, 1)>), λp = τxp (call Algorithm 3.1);

(2) (Kε, τε) = R̂M,L,ω

(
−∂F∂ε (K(θ); ε), (0, 0)>

)
, λε = τxε (call Algorithm 3.1);

(3) if λ2
p + λ2

ε = 0, break and report failure;

(4) ps = λε (λ2
p + λ2

ε)
−1/2;

(5) εs = −λp (λ2
p + λ2

ε)
−1/2;
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(6) Ks = Kpps +Kεεs;
(7) τ s = τpps + τεεs;
(8) K̄ = K +Ks δs;
(9) τ̄ = τ + τ s δs;

(10) p̄ = p+ ps δs;
(11) ε̄ = ε+ εs δs.

3.4. Computation of jets of the translation function. As explained before,
in this paper the classification of an invariant rotational circle is based on the
multiplicity of the corresponding momentum as a zero of the translation function.
Hence, the continuation and unfolding of an invariant rotating circle is performed
through the continuation and unfolding of the translation function with respect to
the momentum. This, in particular, requires the study of the derivatives of the
translation function with respect to the momentum and parameters, as it is shown
in this section.

Let F (·; ε) be a parametric family of exact symplectomorphisms, with ε ∈ R
(the case ε ∈ R` follows the steps). Assume that for each ε in a neighbor-
hood of parameter space, there exists a family of translated rotational circles
(K(θ, p; ε), τ(p; ε) = (λ(p; ε), 0)):

F (K(θ, p; ε); ε) + τ(p; ε)−K(θ + ω, p; ε) = 0 ,〈
K(θ, p; ε)− (θ, p)>

〉
= 0 .

(3.11)

We aim to compute derivatives of λ(p; ε) up to order k with respect to p and
up to order 1 with respect to ε. This is equivalent to compute the k-jets of λ(p; ε)
w.r.t. p (Taylor expansions up to order k) and the corresponding derivatives with
respect to ε:

λ≤k(p; ε)(∆p) =

k∑
i=0

λi(p; ε)(∆p)
i,

λ≤k,ε(p; ε)(∆p) =

k∑
i=0

λi,ε(p, ε)(∆p)
i ,

where

λi(p; ε) =
1

i!

∂iλ

∂pi
(p; ε), λi,ε(p, ε) =

∂λi
∂ε

(p; ε) =
1

i!

∂i+1λ

∂pi∂ε
(p; ε) .

Formally, the corresponding jets and the first order derivatives with respect to ε of
the corresponding translated rotational circles are given by:

K≤k(θ, p; ε)(∆p) =

k∑
i=0

Ki(θ, p; ε)(∆p)
i,

K≤k,ε(θ, p; ε)(∆p) =

k∑
i=0

Ki,ε(θ, p, ε)(∆p)
i,

where

Ki(θ, p; ε) =
1

i!

∂iK

∂pi
(θ, p; ε), Ki,ε(θ, p, ε) =

∂Ki

∂ε
(θ, p; ε) =

1

i!

∂i+1K

∂pi∂ε
(θ, p; ε) .

By applying the methods introduced in the previous sections, the zero and first
order terms of λ≤k, λ≤k,ε, K≤k and K≤k,ε can be computed (via Newton method).
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The computation of higher order terms and the corresponding derivatives with
respect to ε is performed by recurrence as explained below.

Given i ≥ 1, assume that the following have been already computed:

• the (i− 1)-jet (K<i, τ<i) := (K≤i−1, τ≤i−1);
• the derivatives of the (i− 1)-jet with respect to ε;
• the (i− 1)-jets and derivatives with respect to ε of the corresponding com-

positions with F :

[F (K<i(θ, p; ε), ε)]<i, [DzF (K<i(θ, p; ε), ε)]<i,

[
∂F

∂ε
(K<i(θ, p; ε), ε)

]
<i

.

An iteration step i.e. to compute (K≤i, τ≤i), its derivatives with respect to ε, the
i-jets of their compositions with F and the corresponding derivatives with respect
to ε, is obtained by defining

(Ki, τi) = R̂M,L,ω

(
− [F (K<i(θ, p; ε); ε)]i , (0, δi0)>

)
.

Indeed, the i-th order terms in (3.11) satisfy:

DzF (K0(θ, p; ε); ε)Ki(θ, p; ε) + τi(θ, p; ε)−Ki(θ + ω, p; ε) = − [F (K<i(θ, p; ε); ε)]i ,〈
Ki(θ, p; ε)− (0, δi0)>

〉
= 0,

(3.12)

where δi0 = 1 if i = 1, and δi0 = 0 if i > 1. Then,

[F (K≤i(θ, p; ε), ε)]i = [F (K≤i−1(θ, p; ε); ε)]i + DzF (K0(θ, p; ε), ε)Ki(θ, p; ε) ,

from which [F (K≤i(θ, p; ε), ε]≤i, [DzF (K≤i(θ, p; ε), ε)]≤i and
[
∂F
∂ε (K≤i(θ, p; ε), ε)

]
≤i

are computed.
By differentiating (3.11) with respect to ε, and then taking terms of order i, we

obtain

DzF (K0(θ, p; ε); ε)Ki,ε(θ, p; ε) + τi,ε(θ, p, ε)−Ki,ε(θ + ω, p; ε) =

−
[
DzF (K≤i(θ, p; ε); ε)K<i,ε(θ, p; ε)

]
i

−
[
∂F

∂ε
(K≤i(θ, p; ε); ε)

]
i

;

〈Ki,ε(θ, p; ε)〉 = (0, 0)>,

(3.13)

In summary, we get

(Ki,ε, τi,ε) =

R̂M,L,ω

(
−
[
DzF (K≤i(θ, p; ε); ε)K<i,ε(θ, p; ε)

]
i

−
[
∂F

∂ε
(K≤i(θ, p; ε); ε)

]
i

, (0, 0)>
)
.

Remark 3.12. In the implementations of the previous formulae, jets of composi-
tions such as F (K(θ, p; ε); ε), DzF (K(θ, p; ε); ε) or ∂F

∂ε (K(θ, p; ε); ε) up to a given
order can be performed with automatic differentiation tools [31, 37].

3.5. Computation and continuation of degenerate invariant rotational cir-
cles. In this section we consider the problem of computing degenerate invariant
rotational circles, of multiplicity greater than 1. Of course, for multiplicity k > 1,
the system at hand has to depend on a sufficient number of parameters, at least
k− 1 unfolding parameters, which are denoted by the multidimensional parameter
µ = (µ0, µ1, . . . , µk−2) ∈ Rk−1. We also consider the problem of continuing such a
degenerate invariant rotational circle with respect to a perturbative parameter ε.
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Let F (·;µ, ε) be a multi-parametric family of exact symplectomorphisms, with
parameters (µ, ε). Assume that a family of F -translated rotational circles has been
computed for (µ, ε) in a given neighborhood. Let (K(θ, p;µ, ε), τ(p;µ, ε)) denote
such family, then the following holds:

F (K(θ, p;µ, ε);µ, ε) + τ(p;µ, ε)−K(θ + ω, p;µ, ε) = 0 ,〈
K(θ, p;µ, ε)− (θ, p)>

〉
= 0 ,

(3.14)

where λ(p;µ, ε) = τx(p;µ, ε) and τy(p;µ, ε) = 0. Such a family of F -translated
rotational circles can be computed by applying Algorithm 3.4 in Section3.2.1.

A degenerate invariant rotational circle of multiplicity k corresponds to values
of the parameters for which the following equality holds in the (k − 1)-jet space:

(3.15) λ≤k−1(p;µ, ε) = 0,

for the unknowns (p;µ, ε). Using the coefficients of the jet, to solve equation (3.15)
it is sufficient to solve the following system of equations:

(3.16)


λ0(p;µ, ε) = 0 ,
λ1(p;µ, ε) = 0 ,
...

...
λk−1(p;µ, ε) = 0 ,

where

λi(p;µ, ε) =
1

i!

∂iλ

∂pi
(p;µ, ε) .

See Section 3.4 for a methodology to compute jets.

3.5.1. Computation of degenerate invariant rotational circles. Let ε be fixed, and
assume that an approximate solution (p;µ) of (3.16) is known:

λ0(p;µ, ε) = e0 ,

λ1(p;µ, ε) = e1 ,

...
...

λk−1(p;µ, ε) = ek−1 .

In what follows we describe one step of a quasi-Newton method to find a solution
of (3.16). To improve the approximate solution we define a correction (∆p; ∆µ),
with ∆µ = (∆µ0, . . . ,∆µk−2), which satisfies the following linearized equation:

(3.17)



k−2∑
j=0

λ0,µj
(p;µ, ε)∆µj = −e0,

k−2∑
j=0

λ1,µj
(p;µ, ε)∆µj = −e1,

...
...

kλk(p;µ, ε)∆p+

k−2∑
j=0

λk−1,µj
(p;µ, ε)∆µj = −ek−1,
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where the following notation is used:

λi,µj (p;µ, ε) =
∂λi
∂µj

(p;µ, ε) =
1

i!

∂i+1λ

∂piµj
(p;µ, ε).

Section 3.4 contains methodology for computing such derivatives. In (3.17) the
terms jλj(p;µ, ε)∆p for j = 1, . . . , k − 1 have been neglected because they are
quadratically small with respect to the error.

The solubility of (3.17) depends on the fact that µ is the unfolding parameter of
the singularity and that multiplicity is k (λk 6= 0). To solve (3.17) we proceed as
follows. First, we solve the first k − 1 equations finding ∆µ = (∆µ0, . . . ,∆µk−2).
Then, we find ∆p from the last equation,

∆p =
−1

kλk

ek−1 +

k−2∑
j=0

λk−1,µj∆µj

 .

Algorithm 3.13 (Newton method for computing an invariant rotational circle of
multiplicity k). At each step of Newton method, given an approximately invariant
rotational circle K of momentum p and translation τ , of multiplicity k for µ in the
family F (·;µ, ε) with ε fixed, we produce another approximately invariant rotational
circle K̄ of momentum p̄ and translation τ̄ , of multiplicity k for µ̄ in the family
F (·; µ̄, ε) as follows:

(1) (K, τ) = Newton(K, τ ;F (·;µ, ε), p) (call Algorithm 3.4);
(2) Compute jet (K≤k(θ, p;µ, ε), τ≤k(p;µ, ε)), for the triple (p;µ, ε), with coeffi-

cients (K0(θ), τ0), . . . (Kk(θ), τk) (in particular, λ≤k(p;µ, ε) = τx≤k(p;µ, ε));

(3) Compute jets (K<k,µj (θ, p;µ, ε), τ<k,µj (p;µ, ε), for j = 0, . . . , k− 2, for the
triple (p;µ, ε), with coefficients (K0,µj (θ), τ0,µj ), . . . (Kk−1,µj (θ), τk−1,µj ) (in
particular, λ<k,µj

(p;µ, ε) = τx<k,µj
(p;µ, ε));

(4) Solve linear system of size k − 1:

k−2∑
j=0

λ0,µj
∆µj = −λ0,

...
...

k−2∑
j=0

λk−2,µj
∆µj = −λk−2,

(5) If λk = 0, break and report failure, otherwise compute

∆p =
−1

kλk

λk−1 +

k−2∑
j=0

λk−1,µj
∆µj

 ;

(6) p̄ = p+ ∆p;
(7) µ̄ = µ+ ∆µ;

(8) K̄(θ) = K0(θ) +K1(θ)∆p+
∑k−2
j=0 K0,µj

(θ)∆µj;

(9) τ̄ = τ0 + τ1∆p+
∑k−2
j=0 τ0,µj

∆µj.
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3.5.2. Continuation of degenerate invariant rotational circles. Continuation with
respect to the natural parameter ε of the degenerate invariant circle, requires the
computation of derivatives with respect to ε of the all involved objects. To obtain
a first order approximation of these objects for a value close to ε, ε̄ = ε + δε, we
first consider the problem from a formal point of view and assume that there is a
function ε→ (p(ε);µ(ε)) satisfying the following equalities:

F (K(θ, p(ε);µ(ε), ε) + τ(p(ε);µ(ε), ε)−K(θ + ω, p(ε);µ(ε), ε) = 0 ,〈
K(θ, p(ε);µ(ε), ε)− (θ, p(ε))>

〉
= 0 ,

and 
λ0(p(ε);µ(ε), ε) = 0 ,
λ1(p(ε);µ(ε), ε) = 0 ,

...
...

λk−1(p(ε);µ(ε), ε) = 0 .

The (formal) derivatives of p(ε) and µ(ε) with respect to ε are found by solving the
following equation:

k−2∑
j=0

λ0,µj
(p(ε);µ(ε), ε)

dµj
dε

(ε) = −λ0,ε(p(ε), µ(ε), ε),

k−2∑
j=0

λ1,µj (p(ε);µ(ε), ε)
dµj
dε

(ε) = −λ1,ε(p(ε), µ(ε), ε),

...
...

kλk(p(ε);µ(ε), ε)
dp

dε
(ε) +

k−2∑
j=0

λk−1,µj
(p(ε);µ(ε), ε)

dµj
dε

(ε) = −λk−1,ε(p(ε), µ(ε), ε) .

(3.18)

The coefficients in (3.18) are found by computing jets and their derivatives with re-
spect to µ and ε. The procedure to solve equation (3.18) is similar to the procedure
we used to solve (3.17). Uniqueness of the solutions of 3.18 follows from the fact
that µ is assumed to be the unfolding parameters of the degeneracy of multiplicity
k.

After computing the derivatives, with respect to ε, of the momentum p and the
unfolding parameter µ, the derivatives with respect to ε of the corresponding k-
degenerate invariant rotational circle, K(θ; ε) := K(θ, p(ε);µ(ε), ε), and the trans-
lation τ (θ; ε) := τ(θ, p(ε);µ(ε), ε) (which should be zero) are computed as follows:(

∂K

∂ε
(θ; ε),

dτ

∂ε
(ε)

)
= R̂M,L,ω(0, (0, 1)>)

dp

dε
(ε)+

R̂M,L,ω(−DµF (K(θ; ε), p(ε);µ(ε), ε), (0, 0)>)
dµ

dε
(ε)+

R̂M,L,ω

(
−∂F
∂ε

(K(θ; ε), p(ε);µ(ε), ε), (0, 0)>
)
.
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Indeed, since

∂K

∂ε
(θ; ε) =

∂K

∂p
(θ, p(ε);µ(ε), ε)

dp

dε
(ε) + DµK(θ, p(ε);µ(ε), ε)

dµ

dε
(ε)+

∂K

∂ε
(θ, p(ε);µ(ε), ε)

= K1(θ)
dp

dε
(ε) +K0,µ(θ)

dµ

dε
(ε) +K0,ε(θ)

and
dτ

∂ε
(ε) =

∂τ

∂p
(p(ε);µ(ε), ε)

dp

dε
(ε) + Dµτ(p(ε);µ(ε), ε)

dµ

dε
(ε) +

∂τ

∂ε
(p(ε);µ(ε), ε)

= τ1(θ)
dp

dε
(ε) + τ0,µ

dµ

dε
(ε) + τ0,ε

where (K1, τ1), (K0,µ, τ0,µ) are assumed to be known (computed by Algorithm 3.13)
and (K0,ε, τ0,ε) is computed in a similar fashion.

We summarize the findings of this section in the following algorithm.

Algorithm 3.14 (Predictor of the natural continuation method for degenerate
invariant rotational circles). Given (K, 0; p, µ), solution of (3.14) and (3.15) for a

value ε, an given a parameter step δε, an approximate solution (K̃, τ̃ ; p̃, µ̃) of (3.7)
and (3.14) (3.15) for ε̄ = ε+ δε is computed as follows:

(1) Compute jet (K≤k(θ, p;µ, ε), τ≤k(p;µ, ε)), for the triple (p;µ, ε), with coeffi-
cients (K0(θ), τ0), . . . (Kk(θ), τk) (in particular, λ≤k(p;µ, ε) = τx≤k(p;µ, ε));

(2) Compute jets (K<k,µj
(θ, p;µ, ε), τ<k,µj

(p;µ, ε), for j = 0, . . . , k− 2, for the
triple (p;µ, ε), with coefficients (K0,µj

(θ), τ0,µj
), . . . (Kk−1,µj

(θ), τk−1,µj
) (in

particular, λ<k,µj
(p;µ, ε) = τx<k,µj

(p;µ, ε));

(3) Compute jets (K<k,ε(θ, p;µ, ε), τ<k,ε(p;µ, ε), for the triple (p;µ, ε), with co-
efficients (K0,ε(θ), τ0,ε), . . . (Kk−1,ε(θ), τk−1,ε) (in particular, λ<k,ε(p;µ, ε) =
τx<k,ε(p;µ, ε));

(4) Solve linear system of size k − 1:

k−2∑
j=0

λ0,µj
µj,ε = −λ0,ε,

...
...

k−2∑
j=0

λk−2,µj
µj,ε = −λk−2,ε,

(5) If λk = 0, break and report failure, otherwise compute

pε =
−1

kλk

λk−1,ε +

k−2∑
j=0

λk−1,µj
µj,ε

 ;

(6) Kε = K0,ε +K1pε +
∑k−2
j=0 K0,µj

µj,ε;

(7) τε = τ0,ε + τ1pε +
∑k−2
j=0 τ0,µj

µj,ε;

(8) K̃ = K +Kε δε;
(9) τ̃ = τ + τε δε;

(10) p̃ = p+ pε δε;
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(11) µ̃j = µj + µε δε, for j = 0, . . . , k − 2.

3.6. Implementation of the algorithms. On implementing the algorithms pre-
sented in this paper, it is convenient to represent periodic functions in two different
ways:

a) grids (we keep the values over equispaced meshes in the space domain [0, 1]);
b) truncated Fourier series (with a finite number of harmonics).

In this way, if N is the number of discretization points and the number of harmonics,
almost all operations can be performed with O(N) storage and O(N) operations
in the appropriate representation (see below). The only operations which require
more operations are those transforming one representation into the other, by means
of Fast Fourier Transform (FFT) algorithm, resulting in O(N logN) operations.
Fortunately, from the practical point of view, FFT is a very well studied algorithm
and, in most machines, there are implementations and even specialized hardware,
which make the time to be small. So that the theoretical estimate O(N logN) in
practice is much better.

The operations with cost O(N) done in Fourier spaces are: linear transforma-
tions, computation of derivatives, composition with the rotation by ω, and solving
the small divisors equations (2.16) (i.e. application of the right operator Rω).

The operations with cost O(N) done in grid space are: algebraic operations be-
tween (matrices of) periodic functions, composition of known functions (e.g. func-
tions corresponding to the family of symplectic maps and its derivatives). Here we
assume the cost for evaluating known functions at a grid point is O(1). See e.g.
[31] for implementation details of related algorithms.

The algorithms were coded using the C programming language, and the C library
FFTW [26]. This library was used to perform the backward and forward FFT
transformations between grid space and Fourier space.

In the implementations, two different accuracy controls were fixed: one (e.g.
10−9) for the Newton methods (using `1-norms in Fourier spaces and sup-norms in
grid spaces) and other for the size of the tails of the truncated Fourier series, by
making the harmonics of order higher than N/2 smaller than (e.g. 10−11). These
and other controls can be easily tuned. See e.g. [31].

4. Results of numerical computations

In this section we report some results obtained by running the implementations
of the algorithms detailed in Section 3 in some concrete examples. Some of them
have been considered by using methods different to those presented here. Moreover
we include some examples without symmetry lines, which seem to be inaccessible
with methods based on the calculation of periodic orbits. We consider the follow-
ing phenomena: detection of fold bifurcations (Section 4.1), birth of meandering
rotational circles (Section 4.2), and continuation of non-twist rotational circles up
to breakdown (Section 4.3). Examples in Section 4.1 and Section 4.2 focus on the
detection of bifurcations in regular regions of parameters, and aim to illustrate the
geometrical ideas underlying our methodology. In Section 4.3, we report the nu-
merical results regarding the continuation, with respect to parameters, of a non-
twist invariant rotational circle in a regular region of the parameters. Moreover,
we provide a critical boundary of this regular region. This boundary corresponds
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to values of the parameters for which the non-twist rotational curve breaks down.
This preliminary study of the breakdown reveals several interesting features.

4.1. Detection of fold bifurcations. Fold bifurcations of invariant rotational cir-
cles occur when two invariant circles collide and annihilate each other when tuning
control parameters. This is similar to the fold bifurcation of zeros of a function. To
illustrate the fold bifurcation mechanism for invariant rotational circles, we consider
a one-parameter family of quadratic standard maps Fε : T × R → T × R, defined
by:

(4.1)


x̄ = α+ x+ ȳ2 ,

ȳ = y − ε

2π
sin(2πx),

where α = 0.375 is fixed and ε is the perturbation parameter. In this case, the
primitive function of Fε is

S(x, y; ε) =
2

3
ȳ3 +

ε

4π2
cos(2πx) .

We are interested in finding invariant rotational circles with fixed frequency ω =
3−
√

5
2 . For ε = 0, the map F0 is integrable and possesses two invariant rota-

tional circles with frequency ω, The rotational circles of the p-parameterized family
K0,p(θ) = (θ, p) are horizontally translated by

λ(p; 0) = ω − α− p2 ,

the corresponding potential function is given by:

V (p; 0) = −pλ0(p)− 〈S0 ◦K0,p〉

= p(ω − α) +
1

3
p3 .

Hence, the two invariant rotational circles of f0 are parameterized by K0,p± , where

p± = ±
√
ω − α ' ±0.08346263 are the two zeros of λ0(p) or, equivalently, the two

critical points of the potential V0. The corresponding torsion is T̄0(p±) = 2p± '
±0.1669253: the rotational circles are twist (positive and negative, respectively).
We emphasize that the supertorsion is

T̂ (p; 0) =

(
T̄ (p; 0) 1

1 0

)
,

and, hence, its determinant is different from zero.
We continued both twist invariant rotational circles, with respect to ε, using the

algorithms 3.6 and 3.9. The two rotational circles smoothly collide at ε = εc '
1.361408, the resulting invariant rotational circle is non-twist. Computing each
translation function λ(p; ε) for p ∈ [−0.1, 0.1] (with a step size 0.01), takes a few
minutes.

As already mentioned, in the area-preserving case, the supertorsion is non-
degenerate. This allows us to apply algorithms 3.4 and 3.5 to continue also a
family of translated rotational circles, (K(θ, p; ε), (λ(p; ε), 0)>) (with frequency ω),
for ε > 0. It is worth mentioning that families of translated rotational circles can
be computed for values of ε greater than the collision value. Figure 1 displays the
results for several parameter values of ε. The left column displays the dynamics,
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as well as the invariant rotational circles with frequency ω, the second and third
columns display the translation function and the potential, respectively.
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Figure 1. Numerical continuation of invariant rotational circles
of frequency ω = 3−

√
5

2 and detection of a fold bifurcation , for
the family (4.1): (left) dynamics and invariant rotational circles of
frequency ω (if any); (center) translation function of the family of
translated rotational circles with frequency ω; (right) potential of
the family of translated rotational circles with frequency ω.

4.2. Birth of meandering rotational circles. In this section we illustrate the
methodology in an example exhibiting meandering invariant rotational circles, that
is circles that can not be described as graphs of the y component over the x com-
ponent. These circles are not present in the non-perturbed system, but appear for



32 A. GONZÁLEZ-ENRÍQUEZ, A. HARO, AND R. DE LA LLAVE

positive value of the perturbation parameter by means of a mechanism known as
reconnection scenario [35, 49]. By the so called second Birkhof theorem [4, 34, 43],
meandering circles do not appear in twist maps.

The model we consider in this section is a one-parameter family of quadratic
standard maps Fε : T× R→ T× R, defined by:

(4.2)


x̄ = x+ (ȳ − a)(ȳ − b) ,

ȳ = y − ε

2π
sin(2πx) ,

with a = −0.1, b = 0.2, and ε is the perturbation parameter. The primitive function
of Fε is

S(x, y; ε) =
2

3
ȳ3 − 1

2
(a+ b)ȳ2 +

ε

4π2
cos(2πx).

For ε = 0, there are two invariant rotational circles with frequency ω =
√

5−1
32

but, when the parameter ε increases, the invariant circles are destroyed in the
reconnection of hyperbolic fixed points, colliding with their invariant manifolds at
ε ' 0.241992. So, for ε = 0.42, there are no invariant rotational circles with this
frequency. For ε running from 0.42 to 0.45, using algorithms 3.4 and 3.5, we have
computed the corresponding families of translated rotational circles. Computing
each translation function λ(p; ε) for p ∈ [0, 0.1] (with a step size 0.01), takes a few
minutes. We detect the fold bifurcation at which meandering invariant circles are
born. At the bifurcation value εc ' 0.430396, the meander is non-twist. The results
are displayed in Figure2.

Once we have detected the non-twist invariant rotational circle, parameters a
or b can be tuned to perform a continuation of the non-twist invariant rotational
circle. In the following section we provide some implementation details to do so.

Remark 4.1. The rotational invariant circle at the bifurcation value in Figure 2
is a non-twist meander circle. In [48] the author proves the existence of meanders
for certain non-twist maps. It should be noticed that, in our nomenclature, the
meanders in the paper [48] are twist. Indeed, after performing appropriate changes
of variables in certain regions, the system considered in [48] is written as a near-
integrable twist map. Then, the existence of the meanders in [48] is guaranteed by
the classical Moser’s twist map theorem. Of course, this theorem can not be applied
to prove existence of non-twist invariant circles.

4.3. Continuation of non-twist rotational circles up to breakdown. In this
section we consider the continuation of a non-twist invariant rotational circle from
the integrable case up to breakdown. This problem has been previously stud-
ied [15, 16, 17] by using the Greene’s method in which, assuming reversibility and
extra symmetries properties, non-twist invariant rotational circles are continued by
computing stable periodic orbits with very large period. The breakdown of the
non-twist circle is investigated by studying the stability properties of the approxi-
mating periodic orbits. In our experience with reversible systems, the presence of
symmetries is crucial for the computation of periodic orbits with large period (see
also [47] for the use of the so-called indicators points). Even with the use of the
symmetry lines it is hard to systematize the continuation of periodic orbits with
large period. Moreover, if symmetries are not present finding periodic orbits can
be very cumbersome, even for twist area preserving maps [39].
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Figure 2. Detection of a fold bifurcation giving rise to mean-

dering rotational circles of frequency ω =
√

5−1
32 , for the family

(4.2): (left) dynamics and meandering circles of frequency ω (if
any); (center) translation function of the family of translated ro-
tational circles with frequency ω; (right) potential of the family of
translated rotational circles with frequency ω.

The present methodology can be used to compute breakdown of twist and non-
twist invariant circles, regardless the existence of symmetries, and does not rely
on the computation of periodic orbits. It is rigorously shown [13] that the present
methods of continuation, given a computer with unlimited memory and running
long enough, could reach arbitrarily close to the breakdown. (In real computers,
of course it can get only very close as it is standard in all convergence proofs in
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numerical analysis.) Furthermore, in [7] it is shown that this breakdown happen if
and only if one (Sobolev) Hr norm of the parameterization of the invariant circle
blows up. (In such a case all Hs norms with s ≥ r also blow up.) Note that, since
we are computing Fourier series, Hr norms are easy to compute. The criterion of
blow up of Sobolev norms is a very practical tool to ascertain the breakup, and it
is often much easier to implement than the classic Greene’s method. The paper [7]
contains a detailed comparison of several methods to compute the breakdown.

In the present paper, the continuation of a non-twist rotational circle is done by
applying the algorithms introduced in Section 3.5 for degenerate rotational circles.
In particular, we seek degenerate zeros of the translation function. The continuation
is performed with respect to a perturbation parameter. To deal with the type of
degeneracy we use an unfolding parameter, which has to be adjusted during the
continuation process to fix the order of degeneracy. In the case considered here,
the multiplicity of the target zeros is k = 2.

To illustrate our methodology, throughout this section, we consider, for each
ϕ ∈ T, the two parameter family of quadratic standard maps Fϕ,µ,ε : T×R→ T×R,
defined by:

(4.3)


x̄ = ω + µ+ x− ȳ2 ,

ȳ = y − cos(2πϕ)
ε

2π
sin(2πx)− sin(2πϕ)

ε

4π
cos(4πx) .

where ω =
√

5−1
2 is a fixed frequency, µ is the unfolding parameter and ε the

perturbation parameter. The parameter ϕ breaks reversibility (notice that for
ϕ = 0, the map is reversible). For ε = 0, the rotational circle y = 0 is a non-twist
invariant rotational circle with frequency ω for µ = 0. Once we fix ϕ, the goal is
to continue the non-twist rotational circle with respect to ε, and the corresponding
unfolding parameter µ = µ(ε), up to the breakdown.

Remark 4.2. Similar models have been considered in the literature. The one pro-
posed in the seminal works [15, 16, 17] is

(4.4)

 X̄ = X + a− aȲ 2 ,

Ȳ = Y − b sin(2πX) .

If ϕ = 0, then (4.3) is conjugated to the model in (4.4), with conjugacy given by
X = x, Y = y/

√
a, with a = ω + µ and b = ε

2π
√
ω+µ

.

We first illustrate the case ϕ = 1
8 . The numerical results are summarized in

Table 1, where for each value of ε, the corresponding computed values for the
following quantities, involved in the continuation, are reported:

• the unfolding parameter µ;
• the number of Fourier nodes NF ;
• the determinant of the super-torsion, det T̂ (which should be different from

zero to be able to solve approximately the linearized equations);
• the torsion T (which should be zero, since we are computing non-twist

invariant circles);
• the translation λ (which should be zero since we are seeking invariant cir-

cles);



COMPUTATION OF INVARIANT NON-TWIST CIRCLES 35

• the derivative of the translation, λ′ (which should be zero, since we are
computing degenerate invariant circles);
• error estimates: the invariance error E and the reducibility error Ered .

As it can be noticed in third column of Table 1, the number of Fourier co-
efficients for accurate approximations of the circles increases abruptly when ap-
proaching to the breakdown. Consequently, the computational time also increases.
In slightly out of date desktop computers, the continuation up to ε = 2.860
takes a few minutes, the value ε = 2.870 takes around half an hour, the values
ε = 2.871, 2.872, 2.873 take one hour each (with one extra hour to adjust the length
NF and redo some computations in the continuation from ε = 2.870 to ε = 2.871),
and the last values ε = 2.874, 2.875, 2.876, 2.877 around two hours and a half each
(with extra hour again to adjust NF ).

Figure 3 shows the Fourier spectrum of the two components of the parameteriza-
tion of the non-twist invariant circle for ε = 2.870, giving a good numerical evidence
of the convergence of the Fourier series.
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Figure 3. Fourier spectrum of the two components of the pa-
rameterization of the non-twist invariant rotational circle for the
map (4.3), with ϕ = 1

8 and ε = 2.870.

The dynamics of the map (4.3), with ϕ = 1
8 , is illustrated in Figure 4, for values

of the parameters in the regular region (i.e. far from breakdown) and in Figure 5
for values of the parameters in the critical region (i.e. close to breakdown). These
figures illustrate:

(left) the continuation of the non-twist rotational circle K(θ) and the dynamics in
the two connected components into which K(θ) separates the phase space;

(right) the tangent bundle, generated by DK(θ) (in red), and the corresponding

normal invariant bundle, generated by N̂(θ) = N(θ) − DK(θ)RωT (θ) (in
blue), both represented by the corresponding polar angle α as a function
of the θ coordinate. As mentioned in Section 2.2, the torsion T̄ = 〈T 〉
measures how much, in average, the normal bundle, N̂(θ), is twisted by
the action of (M,Rω). In the case under study, the torsion is zero because
we are continuing non-twist rotational curves, from which one has that the
normal bundle N̂(θ) is invariant.

For parameter values close to breakdown (Figure 5), it is interesting to observe how
the chaotic sea grows as the twist invariant rotational circles are destroyed, but the
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ε µ NF det T̂ T λ λ′ E Ered

0.000 0.000000000e+00 128 -1.000000000 0.0e+00 0.0e+00 0.0e+00 5.5e-17 0.0e+00
0.100 2.689330523e-05 128 -1.000149075 2.1e-14 0.0e+00 5.5e-20 6.5e-10 9.7e-09
0.200 1.075089389e-04 128 -1.000598049 -3.9e-19 0.0e+00 5.9e-20 1.3e-14 1.4e-12
0.300 2.416538811e-04 128 -1.001352204 -9.1e-19 0.0e+00 -7.0e-20 1.8e-14 2.2e-12
0.400 4.290059645e-04 128 -1.002420508 5.6e-18 0.0e+00 1.2e-19 2.7e-14 3.6e-12
0.500 6.691132180e-04 128 -1.003815842 4.2e-17 0.0e+00 9.8e-19 2.2e-14 3.3e-12
0.600 9.613931163e-04 128 -1.005555333 2.1e-16 0.0e+00 4.5e-18 1.9e-14 2.2e-12
0.700 1.305131921e-03 128 -1.007660744 -3.4e-16 0.0e+00 2.5e-18 1.3e-14 3.3e-12
0.800 1.699484434e-03 128 -1.010158903 -1.1e-15 0.0e+00 1.8e-17 2.7e-14 4.3e-12
0.900 2.143474636e-03 128 -1.013082090 -3.2e-15 0.0e+00 2.7e-17 3.3e-14 8.9e-12
1.000 2.635997922e-03 128 -1.016468239 -8.4e-15 0.0e+00 6.3e-17 2.9e-14 3.2e-12
1.100 3.175825908e-03 128 -1.020360777 -2.3e-14 0.0e+00 2.2e-16 7.2e-14 1.1e-11
1.200 3.761615163e-03 128 -1.024807769 3.5e-15 0.0e+00 1.3e-16 5.4e-14 1.0e-11
1.300 4.391921635e-03 128 -1.029859963 1.1e-16 0.0e+00 1.0e-17 4.3e-14 1.4e-11
1.400 5.065223072e-03 128 -1.035567144 1.9e-16 0.0e+00 1.8e-17 7.2e-14 1.8e-11
1.500 5.779952341e-03 128 -1.041972079 3.1e-16 0.0e+00 2.3e-17 5.7e-14 2.0e-11
1.600 6.534545263e-03 128 -1.049101221 4.5e-16 0.0e+00 -7.7e-19 8.8e-14 2.2e-11
1.700 7.327507464e-03 128 -1.056951325 5.6e-16 0.0e+00 -1.2e-16 4.6e-13 1.6e-10
1.800 8.157505852e-03 128 -1.065471397 3.9e-16 0.0e+00 -4.6e-16 4.6e-12 1.7e-09
1.900 9.023491847e-03 128 -1.074540071 -4.6e-15 0.0e+00 -1.3e-15 4.3e-11 1.5e-08
2.000 9.924865716e-03 256 -1.083939776 -1.4e-16 0.0e+00 -2.9e-15 3.2e-13 5.4e-11
2.100 1.086169444e-02 256 -1.093330970 3.0e-15 0.0e+00 -5.6e-15 5.4e-13 9.0e-11
2.200 1.183499966e-02 256 -1.102232832 3.4e-14 0.0e+00 -9.5e-15 1.2e-12 4.8e-10
2.300 1.284713682e-02 256 -1.110028121 2.1e-13 0.0e+00 -1.8e-14 1.4e-11 1.5e-08
2.400 1.390229190e-02 256 -1.116072511 -5.8e-12 0.0e+00 3.3e-15 4.0e-10 7.3e-07
2.500 1.500713160e-02 512 -1.120289535 3.9e-13 0.0e+00 -1.8e-16 4.8e-11 2.0e-08
2.600 1.617166309e-02 512 -1.125757333 -2.1e-11 -6.6e-24 1.3e-15 6.1e-10 1.3e-05
2.700 1.741026233e-02 1024 -1.148344324 3.3e-15 -1.3e-23 8.0e-15 6.1e-12 2.6e-06
2.800 1.874186375e-02 2048 -1.258225819 1.9e-10 -7.3e-23 6.7e-15 5.9e-11 3.5e-04
2.810 1.888095841e-02 4096 -1.282423016 -1.5e-13 -7.4e-23 2.3e-15 2.5e-12 5.2e-06
2.820 1.902122871e-02 4096 -1.311268973 1.4e-12 0.0e+00 2.9e-13 2.7e-12 9.1e-05
2.830 1.916270733e-02 4096 -1.346169050 1.2e-10 0.0e+00 -3.0e-12 3.3e-12 1.1e-03
2.840 1.930543452e-02 8192 -1.389715256 3.3e-12 -5.2e-26 -7.0e-14 8.4e-12 9.2e-05
2.850 1.944946217e-02 16384 -1.447987600 9.3e-11 -2.2e-21 -3.2e-15 2.8e-11 1.2e-03
2.860 1.959486022e-02 65536 -1.541115777 -2.9e-11 -2.3e-21 9.5e-15 1.4e-10 1.2e-05
2.870 1.974172732e-02 262144 -1.767004363 -8.3e-11 0.0e+00 -6.9e-14 3.0e-10 3.6e-05
2.871 1.975649989e-02 524288 -1.810830661 1.8e-10 -1.8e-22 9.7e-17 3.7e-10 3.9e-05
2.872 1.977128873e-02 524288 -1.862911243 -4.7e-11 -1.1e-23 1.8e-16 5.1e-10 5.1e-05
2.873 1.978609405e-02 524288 -1.925829388 -4.3e-10 -2.1e-23 -2.5e-16 8.1e-10 7.8e-05
2.874 1.980091609e-02 1048576 -2.003372033 4.3e-11 0.0e+00 -2.9e-14 4.3e-12 9.3e-07
2.875 1.981575512e-02 1048576 -2.101565084 -2.6e-11 0.0e+00 3.1e-14 6.0e-12 5.6e-07
2.876 1.983061150e-02 1048576 -2.231241517 3.6e-11 0.0e+00 -3.0e-14 7.0e-12 2.1e-06
2.877 1.984548567e-02 1048576 -2.417204084 4.7e-11 0.0e+00 2.6e-14 2.1e-11 5.0e-05

Table 1. Numerical results for the continuation of the non-twist
rotational curve for the map (4.3), with ϕ = 1

8 .

non-twist invariant rotational circle seems to be more robust. The strange behavior
of the invariant bundles announce the breakdown of the invariant circle.

Sobolev norms Hr have been used to detect the breakdown of non-twist invariant
circles, monitoring their blow-up [7, 8, 12, 25, 31]. From a certain Sobolev regularity,
rc, Sobolev norms Hr blow-up at a certain critical value εc, following a power law
asymptotic of the form:

(4.5) hr(ε) ∼ Ar
(εc − ε)Br

,
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r εc µc A B
1.5 2.879961 1.988833e-02 1.147817e-01 7.348917e-01
1.6 2.879815 1.988619e-02 1.347752e-01 8.230374e-01
1.7 2.879666 1.988400e-02 1.626924e-01 9.079701e-01
1.8 2.879517 1.988182e-02 2.015756e-01 9.896998e-01
1.9 2.879376 1.987974e-02 2.553353e-01 1.068929e+00
2.0 2.879246 1.987784e-02 3.289723e-01 1.146724e+00
2.1 2.879133 1.987617e-02 4.288363e-01 1.224217e+00
2.2 2.879036 1.987476e-02 5.629332e-01 1.302416e+00
2.3 2.878956 1.987359e-02 7.412960e-01 1.382114e+00
2.4 2.878893 1.987266e-02 9.764379e-01 1.463875e+00
2.5 2.878844 1.987195e-02 1.283904e+00 1.548065e+00
2.6 2.878808 1.987142e-02 1.682938e+00 1.634889e+00
2.7 2.878783 1.987105e-02 2.197264e+00 1.724444e+00
2.8 2.878768 1.987082e-02 2.855957e+00 1.816760e+00
2.9 2.878760 1.987071e-02 3.694243e+00 1.911852e+00
3.0 2.878761 1.987072e-02 4.753658e+00 2.009795e+00

Table 2. Extrapolation of critical parameters at breakdown for
the system (4.3) in the case ϕ = 1

8 , and fits with power laws
asymptotics (4.5). The exponents are fit by Br ' αr − β, where
α = 0.801536, β = 0.458888 (see Figure 6).

as ε→ εc. Hence, this behavior enables us to formulate predictions of the parameter
value at which the non-twist rotational circle breaks down, εc. Furthermore, the
renormalization group theory of [7] predicts that Br is affine in r:

Br = αr − β.

The numbers Br and α, β are universal in the sense of renormalization group theory,
that is, they should be the same for families in an open set and related by explicit
formulas to properties of a fixed point (or periodic orbit) of a renormalization group
operator.

We analyzed some Sobolev norms of the invariant rotational circles for (4.3),
with ϕ = 1

8 . Figure 6 (top) shows the corresponding Sobolev norm functions h2

and h2.5 of the parameterization of the non-twist circle, and the corresponding
fits. Figure 6 (down-left) shows the critical exponents Br as a function of the
Sobolev regularity r. The glimpsed linear behavior suggests the renormalization
group scenario described in [7], and that the critical Sobolev regularity is bigger
than 0.5. Figure 6 (down-right) shows the dependence of the unfolding parameter µ
with respect to ε, from which the critical value of the unfolding parameter, µc, can
be extrapolated. Table 2 displays several extrapolations of the critical parameters
from the asymptotic laws, from which we conjecture the following critical values
εc ' 2.879 and µc ' 0.01987 (fits have been performed with last 10 results displayed
in Table 2).

Remark 4.3. If ϕ = 0 in (4.3) (the reversible case), our estimates for the critical
parameters are εc ' 3.8641 and µc ' 0.068011, which correspond to the critical
values ac ' 0.686044 and bc ' 0.74249 for the model (4.4). Our estimates follow
from the analysis of the observables, see Figure 7 and Table 3. In [15], the critical
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r εc µc A B
1.5 3.864123 6.800983e-02 1.119521e-01 6.527341e-01
1.6 3.864125 6.800990e-02 1.188536e-01 7.553563e-01
1.7 3.864130 6.801012e-02 1.280560e-01 8.589383e-01
1.8 3.864135 6.801035e-02 1.398677e-01 9.629918e-01
1.9 3.864140 6.801054e-02 1.546452e-01 0.106729e+00
2.0 3.864143 6.801069e-02 1.728447e-01 1.171723e+00
2.1 3.864145 6.801078e-02 1.950621e-01 1.276256e+00
2.2 3.864146 6.801082e-02 2.220730e-01 1.380864e+00
2.3 3.864146 6.801081e-02 2.548864e-01 1.485515e+00
2.4 3.864145 6.801076e-02 2.948299e-01 1.590144e+00
2.5 3.864142 6.801063e-02 3.437096e-01 1.694590e+00
2.6 3.864136 6.801036e-02 4.041481e-01 1.798480e+00
2.7 3.864123 6.800981e-02 4.803567e-01 1.900989e+00
2.8 3.864097 6.800871e-02 5.799014e-01 2.000423e+00
2.9 3.864048 6.800661e-02 7.173409e-01 2.093788e+00
3.0 3.863964 6.800306e-02 9.197952e-01 2.177229e+00

Table 3. Extrapolation of critical parameters at breakdown for
the system (4.3) in the reversible case ϕ = 0, and fits with power
laws asymptotics (4.5). The exponents are fit by Br ' αr − β,
where α = 1.045900, β = 0.920093 (see Figure 7).

parameters reported are ac ' 0.686049 and bc ' 0.742493, that correspond to εc '
3.86411 and µc ' 0.068015. These values were obtained by using refined versions
of the Greene method, which is a specialized algorithm for detecting breakdown for
uni-harmonic reversible non-twist and symmetric area preserving maps.

Continuation of non-twist invariant curves for (4.3), for several values of ϕ, can
easily be handled by a computer cluster. We performed the computations for the
values ϕ = 5 · 10−3i, with i ∈ 0, 1, . . . , 199, and obtained a domain in parameter
plane (ε1, ε2) = (cos(2πϕ)ε, sin(2πϕ)ε) in which there exists a non-twist rotational
circle with frequency ω for (4.3). Figure 8 displays the corresponding results, each
boundary point was computed up to 3 digits (and extrapolated to 4 digits). The
computational time, parameterizing the circles with Fourier series up to hundreds
of thousands of coefficients, is only a few hours. Requiring one more precision
digit results into the need of using millions of Fourier coefficients, which clearly
lead to much more computation time. It is important to recall that, in the whole
process, our methodology does not assume any reversibility property. To the best
of our knowledge, the accurateness reported here has not been obtained before and
we believe that it would be extremely hard to obtain it with techniques based on
periodic orbits, due to the absence of symmetries and because periodic orbits may
appear in complicated ways [39].

5. Conclusions and some open questions

In this paper we presented several algorithms which can be applied to study
bifurcations of invariant rotational circles, with fixed rotational number. The al-
gorithms can be used to study any kind of finitely-determined degeneracy class of
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invariant circle. Bifurcations of invariant circles are encoded in a parameter-depen-
dent function, which we called translation function, so that bifurcations of invariant
rotational circles correspond to zeros of the translation function.

Our algorithms are also suitable to continue, with respect to parameters, non-
twist invariant circles (with a specified degeneracy). We reported some numerical
results produced by our algorithms in the simplest class of degeneracy: the fold
singularity.

Even though our methodology has not been tailored for studying the mecha-
nisms happening at the breakdown, in Section 4 we gave numeric evidence that
our methodology can be used to provide observables that announce the presence of
the critical phenomena. More precisely, we monitored Sobolev norms Hr and their
blow-up to compute values of the parameters corresponding to the critical curves.

The numerical results in Section 4 lead to several interesting open questions, all
of them somehow related to each other. For example:

(1) What can be said about the regularity of the invariant circles as they ap-
proach to the critical curve?

(2) Is it possible to provide estimates of the critical exponent Br in (4.5) in
terms of the degree of the Sobolev regularity r?

From our numerical computations we conjecture that such behavior of Br is affine
with respect to r, for r greater than certain Sobolev regularity rc. This conjecture
favors a renormalization group picture [7, 8, 12, 25, 31]. It would be also very
interesting to obtain formulas for the coefficients of such linear behavior, and study
the dependence with respect to the families, and so the existence of universality
classes. Notice that the degenerate nature of the invariant circles approaching to the
critical circle makes the computation of the breakdown parameters very challenging.
Summarizing, a related open question is:

(3) How the universality classes and the renormalization groups depend on the
type of degeneracy of the invariant circles?

Notice that classes of degeneracy higher to the fold singularity correspond to higher
“flatness” of the frequency map around the circle, so a natural question, which is
also of interest in plasma physics and oceanography:

(4) What is the influence of the “flatness” on the robustness of the non-invari-
ant circle?

Last but not least, what about bifurcations of non-twist invariant tori with di-
mension greater than 1? The results in [28] hold in arbitrary dimensions, and the
algorithms in this paper can be generalized to the setting in [28]. In that case, to
study bifurcations of non-twist tori the potential function (and its critical points) is
more suitable than the translation function (and its zeros). Of course, from the nu-
merical point of view questions 1– 4 become more challenging in higher dimensional
cases.

Appendix A. The potential and degeneracy conditions

One of the features of the methodology introduced in [28] is that the transla-
tion function of a family of translated tori is the negative gradient of a potential.
Another strong point is the fact that non-degenerate (degenerate) critical points
of the potential correspond to twist (non-twist) rotational tori. Moreover, explicit



40 A. GONZÁLEZ-ENRÍQUEZ, A. HARO, AND R. DE LA LLAVE

formulas are provided for the translation function and the primitive function of F
(in terms of the geometrical and analytical objects associated to the family).

In the area preserving case, even though the fact that the translation function
is the gradient of a potential becomes apparent (because it depends only on one
variable), some extra properties hold. This appendix reports some of these features
and extra properties for area preserving maps.

In the area preserving case, in addition to the property that the translation
function is the gradient of a potential (which is obvious because it depends only on
one variable), we provide a formula for the potential and its first two derivatives.

A.1. The potential of a family of translated rotational circles. Following
the notation and definitions introduced in Section 2, the potential of the family of
F -translated rotational circles is given by:

V (p) = −p λ(p)− 〈S(K(θ, p))〉 .

We have the following result.

Lemma A.1. λ(p) = −V ′(p)

Proof. From the definition of primitive function, we get

∂

∂p
〈S(K(θ, p))〉 =

〈
∂S

∂x
(K(θ, p))

∂Kx

∂p
(θ, p) +

∂S

∂y
(K(θ, p))

∂Ky

∂p
(θ, p)

〉
=

〈(
F y(K(θ, p))

∂F x

∂x
(K(θ, p))−Ky(θ, p)

)
∂Kx

∂p
(θ, p)

〉
+

〈
F y(K(θ, p))

∂F x

∂y
(K(θ, p))

∂Ky

∂p
(θ, p)

〉
=

〈
F y(K(θ, p))

∂

∂p
(F x(K(θ, p)))−Ky(θ, p)

∂Kx

∂p
(θ, p)

〉
=

〈
Ky(θ + ω, p)

∂

∂p
(Kx(θ + ω, p)− λ(p))−Ky(θ, p)

∂Kx

∂p
(θ, p)

〉
= −pλ′(p),

where in the last equality we used the following equality:

〈Ky(θ + ω, p)〉 = 〈Ky(θ, p)〉 = p,

and 〈
Ky(θ + ω, p)

∂

∂p
(Kx(θ + ω, p))

〉
=

〈
Ky(θ, p)

∂

∂p
(Kx(θ, p))

〉
.

The proof follows immediately. �

An important consequence of Lemma A.1 is that for a F -invariant rotational
circle Kp0 , p0 is a critical point of the potential V .

A.2. On the equivalence of degeneracy and non-twist conditions. In this
section we review the fact that twist (non-twist) invariant rotational circles corre-
spond to non-degenerate (degenerate) rotational circles, by tailoring some results
in [28] to the area-preserving case. We use the notations and definitions given in
Section 2.
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Lemma A.2. Let (K(θ, p), τ(p)) be a F -family of translations rotational circles,

with τ(p) = (λ(p), 0), and for each p, let T̄ (p) the torsion and T̂ (p) the supertorsion
of the rotational circle Kp of momentum p. We assume the supertorsion is non-
degenerate. Then:

λ′(p) =
1

detT̂ (p)
T̄ (p).

Proof. By differentiating with respect to p the equation for F -translated rotational
circles (2.2), we find the equations for ∂K

∂p (θ, p) and τ ′(p):

(A.1)


DF (K(θ, p))

∂K

∂p
(θ, p) + τ ′(p)− ∂K

∂p
(θ + ω, p) = 0〈
∂K

∂p
(θ, p)

〉
=

(
0
1

)
.

Fixed p we are in the conditions of Algorithm 3.1, then taking M(θ) = DF (K(θ, p))
and L(θ) = DK(θ, p), we have that M(θ) can be reduced to a block triangular
form Λ(θ), so M0(θ) = M(θ). Algorithm 3.1 provides a procedure to compute the

torsion of the rotational circle Kp, T̄ (p) = T̂11 (see step (8) ) and the solution of

(A.1) for the knows V (θ) = 0, v = (0, 1)>, and the unknowns U(θ) = ∂K
∂p (θ, p),

u = τ ′(p) = (λ′(p), σ′(p))>. That is:(
∂K

∂p
(θ, p), τ ′(p)

)
= R̂M,L,ω(0, (0, 1))>.

Following the steps of Algorithm 3.1, we obtain in step (12)(
ξN0
ux

)
=

(
T̂11 T̂12

T̂21 T̂22

)−1(
0
1

)
,

from which the result follows. �

Remark A.3. In terms of the potential of the family, Lemma A.2 gives:

V ′′(p) =
−1

detT̂ (p)
T̄ (p).

Remark A.4. Notice that in step (4) of Algorithm 3.1, we obtain η(θ) = 0, and,
then, σ′(p) = uy =

〈
ηN
〉

= 0. This also follows from the exactness condition on F ,
which implies σ(p) = 0.

Remark A.5. We incidentally obtain the formula〈
DθK(θ, p)>Ω0DpK(θ, p)

〉
= −ξN0 =

1

detT̂ (p)
T̂12(p) .

In fact, it is easy to see that

DθK(θ, p)>Ω0DpK(θ, p)−DθK(θ+ω, p)>Ω0DpK(θ+ω, p) = −DθK
y(θ+ω, p)λ′(p),

from where we obtain that
(A.2)

DθK(θ, p)>Ω0DpK(θ, p) =
1

detT̂ (p)

(
T̂12(p)−Rω(DθK

y(θ + ω, p))T̂11(p)
)
.
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If the expression (A.2) does not vanish, the translated rotational circles are transver-
sal with respect to their momentum p, guaranteeing the existence of a (local) diffeo-
morphism (θ, p) → K(θ; p) giving rise to a (local) Lagrangian foliation. In partic-
ular, on a non-twist torus of momentum p,

DθK(θ, p)>Ω0DpK(θ, p) =
−1

T̂12(p)
.
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[3] Francisco J. Beron-Vera, Maŕıa J. Olascoaga, Michael G. Brown, Huseyin Koçak, and
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[39] Héctor E. Lomeĺı and Renato Calleja. Heteroclinic bifurcations and chaotic transport in the

two-harmonic standard map. Chaos, 16(2):023117, 8, 2006.

[40] A. Luque and J. Villanueva. Numerical computation of rotation numbers of quasi-periodic
planar curves. Phys. D, 238(20):2025–2044, 2009.

[41] A. Luque and J. Villanueva. A numerical method for computing initial conditions of La-

grangian invariant tori using the frequency map. Phys. D, 325:63–73, 2016.
[42] John N. Mather. Characterization of Anosov diffeomorphisms. Nederl. Akad. Wetensch. Proc.

Ser. A 71 = Indag. Math., 30:479–483, 1968.

[43] John N. Mather. Nonexistence of invariant circles. Ergodic Theory Dynam. Systems, 4(2):301–
309, 1984.

[44] J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann., 169:136–176,
1967.

[45] Sergey V. Prants, Michael Yu. Uleysky, and Maxim V. Budyansky. Lagrangian Oceanography:

Large-scale Transport and Mixing in the Ocean. Springer Verlag, 2017.

http://www.springer.com/us/book/9783319296609
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Figure 4. Continuation of the golden non-twist invariant circle
for the family Fϕ,µ,ε (4.3), with ϕ = 1

8 . For each parameter value
ε, µ is the unfolding parameter, the left picture shows the invariant
rotational circle and the dynamics, and the right picture shows the
angle representation of the tangent bundle (red) and the normal
invariant bundle (blue) as a function of the circle coordinate θ.
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Figure 5. Breakdown of the golden non-twist invariant circle for
the family Fϕ,µ,ε (4.3), with ϕ = 1

8 . For each parameter value ε,
µ is the unfolding parameter, the left picture shows the invariant
rotational circle and the dynamics, and the right picture shows the
angle representation of the tangent bundle (red) and the normal
invariant bundle (blue) as a function of the circle coordinate θ.
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Figure 6. Asymptotic behavior of different observables in the
continuation of a non-twist rotational circle up to breakdown, for
the family Fϕ,µ,ε defined in (4.3), with ϕ = 1

8 : (top) Sobolev norms

H2 and H2.5 as functions of ε; (down-left) Critical exponents Br;
(down-right) Unfolding parameter µ as a function of ε.
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Figure 7. Asymptotic behavior of different observables in the
continuation of a non-twist rotational circle up to breakdown, for
the family Fϕ,µ,ε defined in (4.3), with ϕ = 0: (top) Sobolev norms
H2 and H2.5 as functions of ε; (down-left) Critical exponents Br;
(down-right) Unfolding parameter µ as a function of ε.
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Figure 8. Domain of existence of non-twist rotational circles in
the (ε1, ε2) plane. The picture on the right shows a zoom of one
of the peaks.
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