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1. Introduction

The solutions of many systems of convection-diffusion-reaction equations arising
in biology, physics or engineering describe such quantities as population densities,
pressure or concentrations of nutrients and chemicals. Thus, a natural property to
require for the solutions is their nonnegativity. Models that do not guarantee the
nonnegativity are not valid or break down for small values ofthe solution. In many
cases, showing that a particular model does not preserve thenonnegativity leads
to the better understanding of the model and its limitations. One of the first steps
in analyzing ecological or biological or bio-medical models mathematically is to
test whether solutions originating from the nonnegative initial data remain nonneg-
ative (as long as they exist). In other words, the model underconsideration ensures
that the nonnegative cone is positively invariant. We recall that if the solutions (of
a given evolution PDE) corresponding to the nonnegative initial data remain non-
negative as long as they exist, we say that the system satisfies the nonnegativity
property.

For scalar equations with the standard Laplace operator thenonnegativity prop-
erty is a direct consequence of the maximum principle (see [1] and the references
therein). However, for the equations involving the bi-Laplacian the maximum prin-
ciple is not valid.
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In this work we aim to prove a simple and easily verifiable criterion, that is,
the necessary condition for the nonnegativity of solutionsof systems of nonlinear
convection–diffusion–reaction equations involving the bi-Laplace operator arising
in the modelling of life sciences. We believe that it could provide the modeler with
a tool, which is easy to verify, to approach the question of nonnegative invariance
of the model.

Presently we deal with the preservation of the nonnegativity of solutions of the
following system of reaction-diffusion equations

∂u

∂t
= −A∆2u+

d
∑

i=1

Γi ∂u

∂xi

− F (u), x ∈ R
d, d ∈ N, (1.1)

whereA, Γi, 1 ≤ i ≤ d areN ×N matrices with constant coefficients. Here

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

Note that in the present article we deal with the space of an arbitrary dimension.
Solvability conditions for the linearized Cahn-Hilliard equation involving the bi-
Laplcian were studied in [2]. The solvability of the single equation containing the
standard Laplacian with drift relevant to the fluid mechanics was treated in [3].
We assume here that (1.1) contains the square matrices with the entries constant in
space and time

(A)k,j := ak,j, (Γi)k,j := γi
k,j, 1 ≤ k, j ≤ N, 1 ≤ i ≤ d, d ∈ N

and that the matrixA+A∗ > 0 for the sake of the global well posedness of system
(1.1). HereA∗ stands for the adjoint of matrixA. Hence, system (1.1) can be
rewritten in the form

∂uk

∂t
= −

N
∑

j=1

ak,j∆
2uj +

d
∑

i=1

N
∑

j=1

γi
k,j

∂uj

∂xi

− Fk(u), 1 ≤ k ≤ N. (1.2)

In the present work the interaction vector function term

F (u) := (F1(u), F2(u), ..., FN(u))
T ,

which can be linear, nonlinear or in principle even nonlocal. We assume its smooth-
ness in the theorem below for the sake of the well posedness ofour system (1.1),
although, we are not focused on the well posedness issue in the present article. Let
us denote the inner product as

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx. (1.3)
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As for the vector functions, their inner product is defined using their components as

(u, v)L2(Rd,RN ) :=

N
∑

k=1

(uk, vk)L2(Rd). (1.4)

Evidently, (1.4) induces the norm

‖u‖2L2(Rd,RN ) =
N
∑

k=1

‖uk‖2L2(Rd).

By the nonnegativity of a vector function below we mean the nonnegativity of the
each of its components. Our main proposition is as follows.

Theorem 1. LetF : RN → RN , such thatF ∈ C1, the initial condition for system
(1.1) isu(x, 0) = u0(x) ≥ 0 andu0(x) ∈ L2(Rd,RN). We also assume that the off
diagonal elements of the matrixA, are nonnegative, such that

ak,j ≥ 0, 1 ≤ k, j ≤ N, k 6= j. (1.5)

Then the necessary condition for system (1.1) to possess a solution u(x, t) ≥ 0 for
all t ∈ [0,∞) is that the matricesA andΓi, 1 ≤ i ≤ d are diagonal and for all
1 ≤ k ≤ N

Fk(s1, ..., sk−1, 0, sk+1, ..., sN) ≤ 0 (1.6)

holds , wheresl ≥ 0 and1 ≤ l ≤ N, l 6= k.

Remark 1. In the case of the linear interaction term, namely whenF (u) = Lu,
whereL is a matrix with elementsbi,j , 1 ≤ i, j ≤ N constant in space and time,
our necessary condition leads to the condition that the matrix L must be essentially
nonpositive, that isbi,j ≤ 0 for i 6= j, 1 ≤ i, j ≤ N .

Remark 2. Our proof implies that, the necessary condition for preserving the non-
negative cone is carried over from the ODE (the spatially homogeneous case, as
described by the ordinary differential equationu′(t) = −F (u)) to the case of the
diffusion involving the bi-Laplacian and the convective drift term.

Remark 3. In the forthcoming works we intend to consider the followingcases:
a) the necessary and sufficient conditions of the present work,
b) the nonautonomous version of the present work,
c) the density-dependent diffusion matrix,
d) the effect of the delay term in the cases a), b) and c).

We proceed to the proof of our main result.

2. The preservation of the nonnegativity of the solution of the system of parabolic equations
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Proof of Theorem 1.Let us note that the maximum principle actively used for the
studies of solutions of single parabolic equations with thestandard Laplace operator
does not apply to such equations with the bi- Laplacian. Let us consider a time
independent, square integrable, nonnegative vector function v(x) and estimate

(

∂u

∂t

∣

∣

∣

∣

∣

t=0

, v

)

L2(Rd,RN )

=

(

limt→0+
u(x, t)− u0(x)

t
, v(x)

)

L2(Rd,RN )

.

By virtue of the continuity of the inner product, the right side of the formula above
equals to

limt→0+
(u(x, t), v(x))L2(Rd,RN )

t
− limt→0+

(u0(x), v(x))L2(Rd,RN )

t
. (2.7)

We choose the initial condition for our systemu0(x) ≥ 0 and the constant in time
vector functionv(x) ≥ 0 to be orthogonal to each other inL2(Rd,RN). It can be
achieved, for instance for

u0(x) = (ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)), vj(x) = ṽ(x)δj,k, (2.8)

with 1 ≤ j ≤ N . Hereδj,k denotes the Kronecker symbol and1 ≤ k ≤ N is fixed.
Thus, the second term in (2.7) vanishes and (2.7) is equal to

limt→0+

∑N

k=1

∫

Rd uk(x, t)vk(x)dx

t
≥ 0,

since all the componentsuk(x, t) andvk(x) involved in the formula above are non-
negative. Hence, we obtain

N
∑

j=1

∫

Rd

∂uj

∂t

∣

∣

∣

∣

∣

t=0

vj(x)dx ≥ 0.

By means of (2.8), only thek th component of the vector functionv(x) is nontrivial.
This gives us

∫

Rd

∂uk

∂t

∣

∣

∣

∣

∣

t=0

ṽ(x)dx ≥ 0.

Therefore, using (1.2) we derive

∫

Rd

[

−
N
∑

j=1, j 6=k

ak,j∆
2ũj(x) +

d
∑

i=1

N
∑

j=1, j 6=k

γi
k,j

∂ũj

∂xi

−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x))

]

ṽ(x)dx ≥ 0.
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Since the nonnegative, square integrable functionṽ(x) can be chosen arbitrarily, we
arrive at

−
N
∑

j=1, j 6=k

ak,j∆
2ũj(x) +

d
∑

i=1

N
∑

j=1, j 6=k

γi
k,j

∂ũj

∂xi

−

−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≥ 0 a.e. (2.9)

For the purpose of the scaling, we replace all theũj(x) by ũj

(

x

ε

)

in the estimate

above, whereε > 0 is a small parameter. This gives us

−
N
∑

j=1, j 6=k

ak,j

ε4
∆2ũj(y) +

d
∑

i=1

N
∑

j=1, j 6=k

γi
k,j

ε

∂ũj(y)

∂yi
−

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.10)

First we suppose that some of theak,j involved in the sum in the left side of (2.10)
are strictly positive. Evidently, the first term in the left side of (2.10) is the leading
one asε → 0. Let us choose here all thẽuj(y), 1 ≤ j ≤ N, j 6= k to be identical,
equal toey

2

in a neighborhood of the origin, smooth and decaying to zero at the
infinity. A straightforward computation yields

∆2ũj(y)
∣

∣

∣

y=0
= 4d(d+ 2) > 0, 1 ≤ j ≤ N, j 6= k.

Therefore,∆2ũj(y) > 0 in a neighborhood of the origin via the trivial continuity
argument. By making the parameterε small enough, we are able to violate the
inequality in (2.10). Because the negativity of the off diagonal elements of the
matrixA is ruled out via assumption (1.5), we obtain

ak,j = 0, 1 ≤ k, j ≤ N, k 6= j.

Hence, from (2.10) we derive

d
∑

i=1

N
∑

j=1, j 6=k

γi
k,j

ε

∂

∂yi
ũj(y)−

−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.11)

In the case ofγi
k,j > 0, j 6= k we can choose herẽuj(y) = e−

√
y2+1 in a neighbor-

hood of the origin, smooth and decaying to zero at the infinity, such that

∂

∂yi
ũj(y) = − yi

√

y2 + 1
e−

√
y2+1 < 0, yi > 0
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near the origin. Ifγi
k,j < 0, j 6= k, then we can takẽuj(y) = e

√
y2+1 in a neighbor-

hood of the origin, smooth and tending to zero at the infinity,such that

∂

∂yi
ũj(y) =

yi
√

y2 + 1
e
√

y2+1 > 0, yi > 0

near the origin. Then the left side of (2.11) can be made as negative as possible
whenε → 0, which will violate bound (2.11). Let us note that the last term in the
left side of (2.11) will remain bounded. Therefore, for the matricesΓi involved in
system (1.1), the off diagonal elements should vanish, suchthat

γi
k,j = 0, 1 ≤ k, j ≤ N, k 6= j.

Thus, by means of (2.11) we arrive at

Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≤ 0 a.e.,

whereũj(x) ≥ 0 andũj(x) ∈ L2(Rd) with 1 ≤ j ≤ N, j 6= k.

Acknowledgement. Valuable discussions with Messoud Efendiev are gratefully
acknowledged.
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