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Abstract: We study solvability of certain linear nonhomogeneousgti equa-
tions and prove that under reasonable technical condittmmgonvergence it
of their right sides yields the existence and the convergémé/? of the solutions.
The problems involve second order differential operatatk e without Fredholm
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ditions. We show that the drift term involved in these equadiprovides the regu-
larization for the solutions of our problems.
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1. Introduction
Let us consider the problem
—Au+V(z)u —au = f, (1.1)

whereu € E = H*R?) andf € F = L*R%), d € N, a is a constant and
V(x) is a function decaying t0 at infinity. If « > 0, then the essential spectrum
of the operatotd : £ — F, which corresponds to the left-hand side of equation
(1.1) contains the origin. Consequently, such operatts faisatisfy the Fredholm
property. Its image is not closed, fdr> 1 the dimensions of its kernel and the
codimension of its image are not finite. In this article wel sfildy some properties
of such operators. Note that elliptic equations involviron#redholm operators
were treated extensively in recent years (see [11], [12§],[116], [17], [19],
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[20], [21], also [3]) along with their potential applicatis to the theory of reaction-
diffusion equations (see [7], [8]). In the particular cadeenea = 0 the operator
A satisfies the Fredholm property in some properly chosenhteigspaces [1], [2],
[5], [6], [3]. However, the case with # 0 is essentially different and the method
developed in these articles cannot be applied.

One of the important issues about equations with non-Filedbperators con-
cerns their solvability. We will study it in the following #a1g. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — f in L?(R%) asn — oc.
Denote byu, a sequence of functions frofit?(R?) such that

Au, = fn, n € N.

Since the operato fails to satisfy the Fredholm property, the sequemgcenay not
be convergent. Let us call a sequengesuch thatdu,, — f a solution in the sense
of sequences of equatiohu = f (see [10]). If this sequence converges to a function
ug in the norm of the spack, thenu, is a solution of this equation. Solution in the
sense of sequences is equivalent in this sense to the usutabsoHowever, in the
case of non-Fredholm operators this convergence may ndtdrat can occur in
some weaker sense. In such case, solution in the sense efiwegunay not imply
the existence of the usual solution. In this work we will findfeient conditions
of equivalence of solutions in the sense of sequences andistied solutions. In
the other words, the conditions on sequengesinder which the corresponding
sequences,, are strongly convergent.
In the first part of the work we consider the equation with th& term
2

—%—bg—z—au:f(:p), r € R, (1.2)
wherea > 0 andb € R, b # 0 are constants and the right side is square integrable.
The equation with drift in the context of the Darcy’s law deising the fluid motion
in the porous medium was treated in [19]. The drift term arigden studying
the emergence and propagation of patterns arising in tregtlod speciation (see
[13]). Nonlinear propagation phenomena for the reactiiusion type equations
involving the drift term was studied in [4]. The operatorahved in the left side of
(1.2)

Lopyi=———b——a: H*R)— L*R) (1.3)
is non-selfadjoint. By means of the standard Fourier ti@mnsf
~ 1 o0 4
= — r)e P, eR 1.4
foy= o= [ 1@ p (1.4)
it can be easily verified that the essential spectrum of tlegadprL, , is given by
Ao o(p) = p* —a—ibp, peER.
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Evidently, wherm: > 0the operatoL,, , is Fredholm, because its essential spectrum
does not contain the origin. But when= 0 the operatoL, ;, is non Fredholm since
its essential spectrum contains the origin.

Note that in the absence of the drift term we are dealing wWithgelf-adjoint
operator

d2
—@—CL: H2<R) %LQ(R), a>0,
which fails to satisfy the Fredholm property (see [14], [21)et us write down the
corresponding sequence of iterated equations with N as
d*u,, Ay,
s b% — AUy, = fm(x), = €R, (1.5)

where the right sides converge to the right side of (1.2)(RR) asm — oo. The
inner product of two functions

(f(2), 9(2)) ey = / " f@)ga)de, (1.6)

with a slight abuse of notations when these functions aresquare integrable. In-
deed, if f(z) € L'(R) andg(z) € L*(R), then clearly the integral considered
above makes sense, like for example in the case of functmosved in the orthog-
onality relations (1.8) and (1.9) of Theorems 1 and 2 beloat dur problem on
the finite intervall := [0, 27| with periodic boundary conditions, we will use inner
product analogously to (1.6), replacing the real line within the article we will
consider the spacE?(R) equipped with the norm

2

d?*u
da?

(1.7)

HuH%ﬂ(R) = HuH%Q(R) +

L2(R)
Our first main proposition is as follows.
Theorem 1.Let f(z) : R — R and f(z) € L*(R).

a) Whenu > 0 equation (1.2) admits a unique solutiofiz) € H*(R).

b) Whena = 0 let in additionz f(z) € L'(R). Then problem (1.2) possesses a
unique solution:(z) € H?(R) if and only if the orthogonality condition

(f(2),1)2m) =0 (1.8)
holds.

Note that the expression in the left side of (1.8) is well dedinia the elementary
argument analogous to the proof of Fact 1 of [17]. Then we twmattention to
proving the solvability in the sense of sequences for ouaggn on the real line.
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Theorem 2. Letm € N, f,.(r) : R — R and f,,(z) € L*(R). Moreover,
fm(z) = f(z)in L*(R) asm — cc.

a) Whena > 0 equations (1.2) and (1.5) have unique solutions) € H*(R) and
un(z) € H*(R) respectively, such that,,(z) — u(z) in H*(R) asm — oc.

b) Whena = 0 let in additionz f,,(z) € L'(R), such thatzf,,(z) — zf(z) in
L'(R) asm — oo. Furthermore,

(fm(2), V2@ =0, meN (1.9)

holds. Then problems (1.2) and (1.5) admit unique solutiagns € H?*(R) and
un(z) € H?(R) respectively, such that,,(z) — u(z) in H*(R) asm — oo.

Note that in the parts a) of Theorems 1 and 2 above the ortladigypoonditions
are not required, as distinct from the situation withoutié tkrm discussed in the
part a) of Lemma5 of [21] and in the part a) of Theorem 1.1 of].[1@the part b)
of Theorems 1 and 2 of the present article only a single odhality condition is
required, as distinct from the situation whier- 0 studied in the part b) of Lemma
5 of [21] and in the part a) of Theorem 1.1 of [14], where theskvability was
based on the two orthogonality relations. These facts shawthe introduction of
the drift term provides the regularization for the solusiaf our problems.

In the second part of the work we study the analogous equatiotine finite
interval with periodic boundary conditions, i.e:= [0, 27|, namely

——— —b——au= f(x), xze€l (1.10)

wherea > 0 andb € R, b # 0 are constants and the right side is bounded and
periodic. Clearly,

[ fllevy < 27| flloeery < 00, |[fllz2ery) < V27| fll ooy < 00, (1.11)

such thatf(x) € L'(I) N L*(I) as well. We will use the Fourier transform
I :
fn = E/o f(z)e " dx, n€Z, (1.12)
such that

flz) = Z fn\/—2—ﬂ_-

n=—oo

Evidently, the non-selfadjoint operator involved in th& Bde of (1.10)

Lopi=———b——a: HI)— L*I) (1.13)



is Fredholm. By applying (1.12), it can be easily verifiedtti@ spectrum oL, ,
is given by
Ao v(n) :=n®—a—ibn, neEZ

and the corresponding eigenfunctions are the Fourier haius962—, n € Z. Ob-

™
viously, the eigenvalues of the operatdy , are simple, as distinct from the situa-
tion without the drift term, when the eigenvalues correspog ton # 0 are doubly
degenerate (see [18]). The appropriate functional spaeeH& ) is

{u(x): I = R|u(z), v () € L*(I), u(0)=u(2n), u'(0)=1u'(2m)}.
For the technical purposes, we will use the following a@axiliconstrained subspace
Hy(I) = {u(z) € H*(I) | (u(),1)12() = O}, (1.14)

which is a Hilbert spaces as well (see e.g. Chapter 2.1 of. [@hena > 0, the
kernel of the operatof, ;, is empty. Folw = 0, we consider

Loy H2(I)— LA(I).

Such operator has the empty kernel as well. We write down tineesponding
sequence of iterated equations withe N as

— b—x — AUy, = fm(x), z €1, (1.15)

where the right sides are bounded, periodic and converdestaght side of (1.10)
in L>(/) asm — oo. Theorems 3 and 4 below are given to show the formal
similarity of the results on the finite interval with pericdboundary conditions to
the ones established for the whole real line case in Theotesnsl 2 above.
Theorem 3.Let f(z) : I — R, such thatf(0) = f(27) and f(z) € L>(I).
a) Whenz > 0 equation (1.10) has a unique solutiofir) € H?(I).
b) Whena = 0 problem (1.10) admits a unique solutiefiz) € HZ () if and only
if the orthogonality condition

(f(x), D)2y =0 (1.16)
holds.

Our final main proposition deals with the solvability in trense of sequences
for our equation on the finite interval

Theorem 4. Letm € N, f,.(z) : I — R, such thatf,,(0) = f,.(27). Moreover,
fm(z) € L*(I) and f,,(z) — f(z)in L>(I) asm — oo.
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a) Whena > 0 equations (1.10) and (1.15) have unique solutiafs) € H?(I)
andu,,(z) € H*(I) respectively, such that,,(z) — u(z) in H*(I) asm — occ.

b) Whem = 0 let
(fm(2), D)2y =0, meN. (1.17)

Then (1.10) and (1.15) admit unique solutior(s) € H(I) andu,,(x) € HZ(I)
respectively, such that,,(z) — u(z) in HZ(I) asm — oo.

Note that in the parts a) of Theorems 3 and 4 above the orttadigyprelations
are not required, as distinct from the situation whea n2, n, € N considered in
part 1) of Theorem 2 of [18], see also part Il) of Theorem 2{2[@2], where the
two orthogonality conditions were involved.

2. The whole real line case

Proof of Theorem 1First of all, let us show that it would be sufficient to solve
our problem inL?*(R). Indeed, ifu(z) is a square integrable solution of (1.2),
directly from this equation under our assumptions we olttzan

d*u du
——— _b— e I*R
dx? bd:c € L'(R)
as well. By using the standard Fourier transform (1.4), wie@at(p> —ibp)u(p) €
00 d2
L*(R). Hence,/ p*i(p)|*dp < oo, such thatd—z € L*(R). Thereforeu(r) €
oo x

H?*(R) as well.

To show the uniqueness of solutions of (1.2), we supposeudfial, us(x) €
L*(R) satisfy this equation. Then their differencér) := u;(z) — us(z) € L*(R)
is a solution of the homogeneous problem

Since the operatok, ,, which is defined in (1.3) does not possess any nontrivial
square integrable zero modes on the real line, the funetian vanishes orR.

We apply the standard Fourier transform to both sides of temuél.2). This
yields

T
u(p) = pE—— (2.18)
Therefore, R
> |f(p)?
||u||%2(]R) = /oo (pg — a)g + b2p2dp (219)



Let us first consider the case a) of the theorem. By meansI®)ave obtain

1
[l 2y < EHfH%Q(R) <0

due to the one of our assumptions. Here and throughout ticéeart will denote a
finite, positive constant.

Then we turn our attention to the situation when- 0. From (2.18), we easily
express

I fw
W)= —m (2.20)
The first term in the right side of (2.20) is square integrabilece

00 f 9
/ 62|( (+)|b2)dp— b4||f||L2(R < 0

as assumed. The second term in the right side of (2.20) camitterwas

if(p) if(p)

Tpp X< T X - (2.21)
Here and further dowry 4 will denote the characteristic function of a sétC R.
Clearly, the second term in (2.21) can be estimated fromeabuothe absolute value

oy S @)

b
us e>|<p|ress

€ L*(R) sincef(x) is square integrable according to our assumption. Let

7 df(s)
+ / ),

Hence, the first term in (2.21) can be written as

T v df(s)
if(0) i fr i) gs
gy Xtrisn F %X{mgl}- (2.22)

Using definition (1.4), we easily estimate

df( )

(@)l @)

\/—Hl’f

Thus, the second term in (2.22) can be bounded from above ialtbolute value by

—— ||z f ()| @) X(pl<1y € L*(R).

V2 Ib\
Obviously, the first term in (2.22) is square integrable ifl amly if A(O) vanishes,
which is equivalent to orthogonality relation (1.8). [ |
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Then we proceed to establishing the solvability in the sefsequences for our
problem on the real line.

Proof of Theorem 2First of all, we suppose that equations (1.2) and (1.5) admit
unique solutionsi(z) € H?*(R) andu,,(z) € H*(R), m € N respectively, such
thatu,,(z) — u(x)in L?*(R) asm — oo. This willimply thatw,,(x) also converges
tou(z) in H*(R) asm — oo. Indeed, from (1.2) and (1.5) we easily obtain

d(ty, — u)
dx? dx

< | fm = fllezwy + al|tm — vl L2@w)-
L2(R)

The right side of the inequality above tends to zeranas> oo due to our assump-
tions. By applying the standard Fourier transform (1.4) aneve at

/ p4\ﬁm(p) — ﬁ(p)\de — 0, m — oo,

oo

td2um d*u

such tha T3 o3 in L?(R) asm — oo. Thereforeu,,(z) — u(x) in H*(R)

asm — oo as well.
By applying the standard Fourier transform (1.4) to botlesiof (1.5), we arrive

at

~ 0
— 2.2
Let us first consider the case a) of the theorem. By means gidtie) of Theorem
1, equations (1.2) and (1.5) admit unique solutiaig) € H?*(R) andu,,(z) €
H?*(R), m € N respectively. By virtue of (2.23) along with (2.18), we deri

s [ )~ T
it =l = |

Hence, .
Jum — ullz2@) < 5||fm — flle2@ — 0, m — oo,
which implies that in the case af > 0 we haveu,,(z) — u(x) in H*(R) as
m — oo as discussed above.
Let us conclude the proof of the theorem by considering thimgon when the

parameter, = 0. By means of the result of the part a) of Lemma 3.3 of [14], unde
our assumptions we obtain that

(f(x), D2y =0 (2.24)

holds. Then by virtue of the part b) of Theorem 1, problem2)(and (1.5) have
unique solutions(z) € H*(R) andu,,(r) € H*(R), m € N respectively whem
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vanishes. Formulas (2.23) and (2.18) give us

o~

_ S =) Fulp) — F ()
ib(p — ib) ibp ’

U (p) — u(p)

which yields

~

Fu(p) = ()
p

1

0 (2.25)

||um — UHLQ(R) < — —+

L2(R)

L2(R)

Clearly, the norm involved in the first term in the right sid€225) can be bounded

from above by
1
m”fm — flle2@ =0, m — o0

as assumed. Let us express

In®) = 10) _ ful0) = 1@ S0 =)
p p p
Hence ~ ~
fm(p) = f(p) <
b 12()
g 22 DO NN |10 e ) S (2.26)
P L2(R) p L2(R)

Evidently, the second term in the right side of (2.26) can steéreated from above

by
”fm_fHLz(R) —)0, m — o0

due to the one of our assumptions. Orthogonality condit{@®4) and (1.9) give
us

such that

fp) = /O d‘];is)ds, Foulp) = /0 dfgs(s)ds, m € N. (2.27)

Hence, it remains to estimate the norm of the term

fo dfm(s 8)]d8

ds ds

X{lp|<1}-



Using the definition of the standard Fourier transform (1w easily derive

V%U MW

0 \/—H 2fm(@) — 2 f (@)l 21 w)
Thus,
Inl0) = J 0y e 2 fn(2) 27 (@)li3y = 0, m o0
p L f
(®)
as assumed. Therefore,,(r) — u(z) in L?*(R) asm — oo, which implies that
U (z) — u(x) in H?(R) asm — oo as discussed above. |

3. The problem on the finite interval

Proof of Theorem 3First of all, we prove that it would be sufficient to solve
our problem inL?(7). Indeed, ifu(z) is a square integrable solution of (1.10),
periodic on/ along with its first derivative, directly from our equationder the
given conditions we arrive at

Using (1.12), we obtaitin® — ibn)u, € 2. Thus, Y n*[u,|* < oo, such that
d*u 9 L 9
7 € L*(I). This implies that(x) € H*(I) as well.

To prove the uniqueness of solutions of (1.10), we treat #se ®fa > 0.
Whena vanishes, we are able to use the similar argument in the reomest sub-
spaceH:(I). Let us suppose that (), us(x) € H?(I) solve (1.10). Then their

differencew(z) := uy(z) — uz(z) € H*(I) satisfies the homogeneous equation

Pu o
dx? dx
Since the operatof, , : H*(I) — L?*(I) defined in (1.13) does not have any

nontrivial H2(I) zero modes, the functiom(z) vanishes or.
Let us apply the Fourier transform (1.12) to both sides obfmm (1.10). This

yields
fn

Up = —————, MNEZL (3.28)
n? —a —ibn

First we consider the case a) of our theorem. By virtue of§3.&e arrive at

HUHL2(1) > Hf”L2
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via the one of our assumptions (see (1.11)). Let us conchelprbof of the theorem
by treating the situation when= 0. From (3.28), we easily derive

fn Ja

L Z. 3.29
n—ib) ibn’ S (3.29)

Up =

The first term in the right side of (3.29) belongdtpsince

\fn|2 1

as discussed above. The second term in the right side of)(Be28ngs td? if and
only if fo = 0 and the square of it§ norm can be easily bounded from above by

i 11121y < oo, which is equivalent to orthogonality condition (1.16). u

Let us conclude the article with proving the solvability ivetsense of sequences
for our problem on the intervdl with periodic boundary conditions.

Proof of Theorem 4Evidently,

1£(0) = f2m)] < [F(0) = fn(O)] + [fm(27) — f2m)| < 2[[fn = fllzoery = 0

asm — oo. Hence,f(0) = f(2x). By means of (1.11) under our assumptions, we
havef,,(x) € L'(I) N L*(I), m € N. Using (1.11), we arrive at

[ fon (@) = f @)1y < 2l () = F(@)l[ ooty = 0, m =00 (3.30)

as assumed, such that(z) — f(z) in L'(I) asm — oo. Similarly, via (1.11) we
obtain

(@) = f@)l2y < V2r| (@) = f(@)|poory =+ 0, m =00, (3.31)

such thatf,,(x) — f(z)in L*(I) asm — oo as well. By applying the Fourier
transform (1.12) to both sides of (1.15), we derive

o fm,n
Um,n

n? —a—ibn

First we consider the case a) of our theorem. By virtue of @n¢ @) of Theorem
3, problems (1.10) and (1.15) possess unique solutionse H*(I) andu,,(z) €
H?(I), m € Nrespectively. (3.32) along with (3.28) yield

- ‘fmn fn‘Q
||um - UH%Q(I) = Z (TL2 ) +b2n2 — _Hfm f“%Q(I) —0, m—o0

n=—0oo
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via (3.31). Thusyu,,(z) — u(z) in L*(I) asm — oco. Let us show that,, ()
converges ta(z) in H?*(I) asm — oo. Indeed, (1.10) and (1.15) give us
da? dx

< | fm = Fllzzay + allum = ull 2y
L2(I)

The right side of this inequality converges to zeroras—+ oo due to (3.31). Using
the Fourier transform (1.12), we derive

o0

Z YU — Un|* — 0, m — oo0.
d*u,,  d*u ) R
Hence, T2 g in L*(I) asm — oo, such that,,(z) — u(x) in H*(I) as
X

m — oo as well.
We conclude the article by dealing with the situation whea plarametern
vanishes. By means of (1.17) along with (3.30), we obtain

|(f(2), D2yl = 1(f(2) = fn (@), Dz < N fom = fllrgy = 0, m — o0,
such that
(f(z), D)2y =0 (3.33)
holds. By virtue of the part b) of Theorem 3 above equatiori)land (1.15) admit
unique solutionsi(x) € HZ(I) andu,,(z) € H3(I), m € N respectively when
a = 0. Formulas (3.28) and (3.32) yield

fm,n - fn _ fm,n - fn
ib(n — ib) ibn

By means of orthogonality relations (3.33) and (1.17), weeha
f0:07 fm,0:07 m € N.

Obviously, thel? norm of the first term in the right side of (3.34) can be bounded
from above by

., meN, neZ (3.34)

Ump — Up =

§||fm_f||L2(I)_>07 m — 00

via (3.31). Thd? norm of the second term in the right side of (3.34) can be esth
from above by

- |fm,n_fn|2
J > oz S |b|”fm fllzzy = 0, m — o0

n=—o00, n#0

as above. Thereforey,,(z) — w(x) in L?*(I) asm — oo, which implies that
U (z) = u(z) in H3(I) asm — oo as well via the argument analogous to the one
we had in the proof of the part a) of the theorem. [ |
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