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1. Introduction

Let us consider the problem

−∆u + V (x)u− au = f, (1.1)

whereu ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and
V (x) is a function decaying to0 at infinity. If a ≥ 0, then the essential spectrum
of the operatorA : E → F , which corresponds to the left-hand side of equation
(1.1) contains the origin. Consequently, such operator fails to satisfy the Fredholm
property. Its image is not closed, ford > 1 the dimensions of its kernel and the
codimension of its image are not finite. In this article we will study some properties
of such operators. Note that elliptic equations involving non-Fredholm operators
were treated extensively in recent years (see [11], [12], [15], [16], [17], [19],
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[20], [21], also [3]) along with their potential applications to the theory of reaction-
diffusion equations (see [7], [8]). In the particular case wherea = 0 the operator
A satisfies the Fredholm property in some properly chosen weighted spaces [1], [2],
[5], [6], [3]. However, the case witha 6= 0 is essentially different and the method
developed in these articles cannot be applied.

One of the important issues about equations with non-Fredholm operators con-
cerns their solvability. We will study it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
Denote byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Since the operatorA fails to satisfy the Fredholm property, the sequenceun may not
be convergent. Let us call a sequenceun such thatAun → f a solution in the sense
of sequences of equationAu = f (see [10]). If this sequence converges to a function
u0 in the norm of the spaceE, thenu0 is a solution of this equation. Solution in the
sense of sequences is equivalent in this sense to the usual solution. However, in the
case of non-Fredholm operators this convergence may not hold or it can occur in
some weaker sense. In such case, solution in the sense of sequences may not imply
the existence of the usual solution. In this work we will find sufficient conditions
of equivalence of solutions in the sense of sequences and theusual solutions. In
the other words, the conditions on sequencesfn under which the corresponding
sequencesun are strongly convergent.

In the first part of the work we consider the equation with the drift term

−d2u

dx2
− b

du

dx
− au = f(x), x ∈ R, (1.2)

wherea ≥ 0 andb ∈ R, b 6= 0 are constants and the right side is square integrable.
The equation with drift in the context of the Darcy’s law describing the fluid motion
in the porous medium was treated in [19]. The drift term arises when studying
the emergence and propagation of patterns arising in the theory of speciation (see
[13]). Nonlinear propagation phenomena for the reaction-diffusion type equations
involving the drift term was studied in [4]. The operator involved in the left side of
(1.2)

La, b := − d2

dx2
− b

d

dx
− a : H2(R) → L2(R) (1.3)

is non-selfadjoint. By means of the standard Fourier transform

f̂(p) :=
1√
2π

∫ ∞

−∞

f(x)e−ipxdx, p ∈ R (1.4)

it can be easily verified that the essential spectrum of the operatorLa, b is given by

λa, b(p) := p2 − a− ibp, p ∈ R.
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Evidently, whena > 0 the operatorLa, b is Fredholm, because its essential spectrum
does not contain the origin. But whena = 0 the operatorL0, b is non Fredholm since
its essential spectrum contains the origin.

Note that in the absence of the drift term we are dealing with the self-adjoint
operator

− d2

dx2
− a : H2(R) → L2(R), a > 0,

which fails to satisfy the Fredholm property (see [14], [21]). Let us write down the
corresponding sequence of iterated equations withm ∈ N as

−d2um

dx2
− b

dum

dx
− aum = fm(x), x ∈ R, (1.5)

where the right sides converge to the right side of (1.2) inL2(R) asm → ∞. The
inner product of two functions

(f(x), g(x))L2(R) :=

∫ ∞

−∞

f(x)ḡ(x)dx, (1.6)

with a slight abuse of notations when these functions are notsquare integrable. In-
deed, iff(x) ∈ L1(R) andg(x) ∈ L∞(R), then clearly the integral considered
above makes sense, like for example in the case of functions involved in the orthog-
onality relations (1.8) and (1.9) of Theorems 1 and 2 below. For our problem on
the finite intervalI := [0, 2π] with periodic boundary conditions, we will use inner
product analogously to (1.6), replacing the real line withI. In the article we will
consider the spaceH2(R) equipped with the norm

‖u‖2H2(R) := ‖u‖2L2(R) +

∥∥∥∥∥
d2u

dx2

∥∥∥∥∥

2

L2(R)

. (1.7)

Our first main proposition is as follows.

Theorem 1.Letf(x) : R → R andf(x) ∈ L2(R).

a) Whena > 0 equation (1.2) admits a unique solutionu(x) ∈ H2(R).

b) Whena = 0 let in additionxf(x) ∈ L1(R). Then problem (1.2) possesses a
unique solutionu(x) ∈ H2(R) if and only if the orthogonality condition

(f(x), 1)L2(R) = 0 (1.8)

holds.

Note that the expression in the left side of (1.8) is well defined via the elementary
argument analogous to the proof of Fact 1 of [17]. Then we turnour attention to
proving the solvability in the sense of sequences for our equation on the real line.
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Theorem 2. Let m ∈ N, fm(x) : R → R and fm(x) ∈ L2(R). Moreover,
fm(x) → f(x) in L2(R) asm → ∞.

a) Whena > 0 equations (1.2) and (1.5) have unique solutionsu(x) ∈ H2(R) and
um(x) ∈ H2(R) respectively, such thatum(x) → u(x) in H2(R) asm → ∞.

b) Whena = 0 let in additionxfm(x) ∈ L1(R), such thatxfm(x) → xf(x) in
L1(R) asm → ∞. Furthermore,

(fm(x), 1)L2(R) = 0, m ∈ N (1.9)

holds. Then problems (1.2) and (1.5) admit unique solutionsu(x) ∈ H2(R) and
um(x) ∈ H2(R) respectively, such thatum(x) → u(x) in H2(R) asm → ∞.

Note that in the parts a) of Theorems 1 and 2 above the orthogonality conditions
are not required, as distinct from the situation without a drift term discussed in the
part a) of Lemma 5 of [21] and in the part a) of Theorem 1.1 of [14]. In the part b)
of Theorems 1 and 2 of the present article only a single orthogonality condition is
required, as distinct from the situation whenb = 0 studied in the part b) of Lemma
5 of [21] and in the part a) of Theorem 1.1 of [14], where there solvability was
based on the two orthogonality relations. These facts show that the introduction of
the drift term provides the regularization for the solutions of our problems.

In the second part of the work we study the analogous equationon the finite
interval with periodic boundary conditions, i.e.I := [0, 2π], namely

−d2u

dx2
− b

du

dx
− au = f(x), x ∈ I (1.10)

wherea ≥ 0 andb ∈ R, b 6= 0 are constants and the right side is bounded and
periodic. Clearly,

‖f‖L1(I) ≤ 2π‖f‖L∞(I) < ∞, ‖f‖L2(I) ≤
√
2π‖f‖L∞(I) < ∞, (1.11)

such thatf(x) ∈ L1(I) ∩ L2(I) as well. We will use the Fourier transform

fn :=
1√
2π

∫ 2π

0

f(x)e−inxdx, n ∈ Z, (1.12)

such that

f(x) =

∞∑

n=−∞

fn
einx√
2π

.

Evidently, the non-selfadjoint operator involved in the left side of (1.10)

La, b := − d2

dx2
− b

d

dx
− a : H2(I) → L2(I) (1.13)
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is Fredholm. By applying (1.12), it can be easily verified that the spectrum ofLa, b

is given by
λa, b(n) := n2 − a− ibn, n ∈ Z

and the corresponding eigenfunctions are the Fourier harmonics
einx√
2π

, n ∈ Z. Ob-

viously, the eigenvalues of the operatorLa, b are simple, as distinct from the situa-
tion without the drift term, when the eigenvalues corresponding ton 6= 0 are doubly
degenerate (see [18]). The appropriate functional space hereH2(I) is

{u(x) : I → R | u(x), u′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)}.

For the technical purposes, we will use the following auxiliary constrained subspace

H2
0 (I) = {u(x) ∈ H2(I) | (u(x), 1)L2(I) = 0}, (1.14)

which is a Hilbert spaces as well (see e.g. Chapter 2.1 of [9]). Whena > 0, the
kernel of the operatorLa, b is empty. Fora = 0, we consider

L0, b : H2
0 (I) → L2(I).

Such operator has the empty kernel as well. We write down the corresponding
sequence of iterated equations withm ∈ N as

−d2um

dx2
− b

dum

dx
− aum = fm(x), x ∈ I, (1.15)

where the right sides are bounded, periodic and converge to the right side of (1.10)
in L∞(I) asm → ∞. Theorems 3 and 4 below are given to show the formal
similarity of the results on the finite interval with periodic boundary conditions to
the ones established for the whole real line case in Theorems1 and 2 above.

Theorem 3.Letf(x) : I → R, such thatf(0) = f(2π) andf(x) ∈ L∞(I).

a) Whena > 0 equation (1.10) has a unique solutionu(x) ∈ H2(I).

b) Whena = 0 problem (1.10) admits a unique solutionu(x) ∈ H2
0 (I) if and only

if the orthogonality condition

(f(x), 1)L2(I) = 0 (1.16)

holds.

Our final main proposition deals with the solvability in the sense of sequences
for our equation on the finite intervalI.

Theorem 4. Letm ∈ N, fm(x) : I → R, such thatfm(0) = fm(2π). Moreover,
fm(x) ∈ L∞(I) andfm(x) → f(x) in L∞(I) asm → ∞.
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a) Whena > 0 equations (1.10) and (1.15) have unique solutionsu(x) ∈ H2(I)
andum(x) ∈ H2(I) respectively, such thatum(x) → u(x) in H2(I) asm → ∞.

b) Whena = 0 let
(fm(x), 1)L2(I) = 0, m ∈ N. (1.17)

Then (1.10) and (1.15) admit unique solutionsu(x) ∈ H2
0 (I) andum(x) ∈ H2

0 (I)
respectively, such thatum(x) → u(x) in H2

0 (I) asm → ∞.

Note that in the parts a) of Theorems 3 and 4 above the orthogonality relations
are not required, as distinct from the situation whena = n2

0, n0 ∈ N considered in
part II) of Theorem 2 of [18], see also part II) of Theorem 2.2 of [22], where the
two orthogonality conditions were involved.

2. The whole real line case

Proof of Theorem 1.First of all, let us show that it would be sufficient to solve
our problem inL2(R). Indeed, ifu(x) is a square integrable solution of (1.2),
directly from this equation under our assumptions we obtainthat

−d2u

dx2
− b

du

dx
∈ L2(R)

as well. By using the standard Fourier transform (1.4), we arrive at(p2−ibp)û(p) ∈
L2(R). Hence,

∫ ∞

−∞

p4|û(p)|2dp < ∞, such that
d2u

dx2
∈ L2(R). Therefore,u(x) ∈

H2(R) as well.
To show the uniqueness of solutions of (1.2), we suppose thatu1(x), u2(x) ∈

L2(R) satisfy this equation. Then their differencew(x) := u1(x)− u2(x) ∈ L2(R)
is a solution of the homogeneous problem

d2w

dx2
− b

dw

dx
− aw = 0.

Since the operatorLa, b, which is defined in (1.3) does not possess any nontrivial
square integrable zero modes on the real line, the functionw(x) vanishes onR.

We apply the standard Fourier transform to both sides of equation (1.2). This
yields

û(p) =
f̂(p)

p2 − a− ibp
. (2.18)

Therefore,

‖u‖2L2(R) =

∫ ∞

−∞

|f̂(p)|2
(p2 − a)2 + b2p2

dp. (2.19)
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Let us first consider the case a) of the theorem. By means of (2.19), we obtain

‖u‖2L2(R) ≤
1

C
‖f‖2L2(R) < ∞

due to the one of our assumptions. Here and throughout the article C will denote a
finite, positive constant.

Then we turn our attention to the situation whena = 0. From (2.18), we easily
express

û(p) =
f̂(p)

ib(p− ib)
− f̂(p)

ibp
. (2.20)

The first term in the right side of (2.20) is square integrable, since

∫ ∞

−∞

|f̂(p)|2
b2(p2 + b2)

dp ≤ 1

b4
‖f‖2L2(R) < ∞

as assumed. The second term in the right side of (2.20) can be written as

if̂(p)

bp
χ{|p|≤1} +

if̂(p)

bp
χ{|p|>1}. (2.21)

Here and further downχA will denote the characteristic function of a setA ⊆ R.
Clearly, the second term in (2.21) can be estimated from above in the absolute value

by
|f̂(p)|
|b| ∈ L2(R) sincef(x) is square integrable according to our assumption. Let

us express

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

Hence, the first term in (2.21) can be written as

if̂(0)

bp
χ{|p|≤1} +

i
∫ p

0
df̂(s)
ds

ds

bp
χ{|p|≤1}. (2.22)

Using definition (1.4), we easily estimate
∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R).

Thus, the second term in (2.22) can be bounded from above in the absolute value by

1√
2π|b|

‖xf(x)‖L1(R)χ{|p|≤1} ∈ L2(R).

Obviously, the first term in (2.22) is square integrable if and only if f̂(0) vanishes,
which is equivalent to orthogonality relation (1.8).
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Then we proceed to establishing the solvability in the senseof sequences for our
problem on the real line.

Proof of Theorem 2.First of all, we suppose that equations (1.2) and (1.5) admit
unique solutionsu(x) ∈ H2(R) andum(x) ∈ H2(R), m ∈ N respectively, such
thatum(x) → u(x) in L2(R) asm → ∞. This will imply thatum(x) also converges
to u(x) in H2(R) asm → ∞. Indeed, from (1.2) and (1.5) we easily obtain

∥∥∥∥∥− d2(um − u)

dx2
− b

d(um − u)

dx

∥∥∥∥∥
L2(R)

≤ ‖fm − f‖L2(R) + a‖um − u‖L2(R).

The right side of the inequality above tends to zero asm → ∞ due to our assump-
tions. By applying the standard Fourier transform (1.4), wearrive at

∫ ∞

−∞

p4|ûm(p)− û(p)|2dp → 0, m → ∞,

such that
d2um

dx2
→ d2u

dx2
in L2(R) asm → ∞. Therefore,um(x) → u(x) in H2(R)

asm → ∞ as well.
By applying the standard Fourier transform (1.4) to both sides of (1.5), we arrive

at

ûm(p) =
f̂m(p)

p2 − a− ibp
, m ∈ N (2.23)

Let us first consider the case a) of the theorem. By means of thepart a) of Theorem
1, equations (1.2) and (1.5) admit unique solutionsu(x) ∈ H2(R) andum(x) ∈
H2(R), m ∈ N respectively. By virtue of (2.23) along with (2.18), we derive

‖um − u‖2L2(R) =

∫ ∞

−∞

|f̂m(p)− f̂(p)|2
(p2 − a)2 + b2p2

dp.

Hence,

‖um − u‖L2(R) ≤
1

C
‖fm − f‖L2(R) → 0, m → ∞,

which implies that in the case ofa > 0 we haveum(x) → u(x) in H2(R) as
m → ∞ as discussed above.

Let us conclude the proof of the theorem by considering the situation when the
parametera = 0. By means of the result of the part a) of Lemma 3.3 of [14], under
our assumptions we obtain that

(f(x), 1)L2(R) = 0 (2.24)

holds. Then by virtue of the part b) of Theorem 1, problems (1.2) and (1.5) have
unique solutionsu(x) ∈ H2(R) andum(x) ∈ H2(R), m ∈ N respectively whena
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vanishes. Formulas (2.23) and (2.18) give us

ûm(p)− û(p) =
f̂m(p)− f̂(p)

ib(p− ib)
− f̂m(p)− f̂(p)

ibp
,

which yields

‖um − u‖L2(R) ≤
1

|b|

∥∥∥∥∥
f̂m(p)− f̂(p)

p− ib

∥∥∥∥∥
L2(R)

+
1

|b|

∥∥∥∥∥
f̂m(p)− f̂(p)

p

∥∥∥∥∥
L2(R)

. (2.25)

Clearly, the norm involved in the first term in the right side of (2.25) can be bounded
from above by

1

|b|‖fm − f‖L2(R) → 0, m → ∞

as assumed. Let us express

f̂m(p)− f̂(p)

p
=

f̂m(p)− f̂(p)

p
χ{|p|≤1} +

f̂m(p)− f̂(p)

p
χ{|p|>1}.

Hence ∥∥∥∥∥
f̂m(p)− f̂(p)

p

∥∥∥∥∥
L2(R)

≤

≤
∥∥∥∥∥
f̂m(p)− f̂(p)

p
χ{|p|≤1}

∥∥∥∥∥
L2(R)

+

∥∥∥∥∥
f̂m(p)− f̂(p)

p
χ{|p|>1}

∥∥∥∥∥
L2(R)

. (2.26)

Evidently, the second term in the right side of (2.26) can be estimated from above
by

‖fm − f‖L2(R) → 0, m → ∞
due to the one of our assumptions. Orthogonality conditions(2.24) and (1.9) give
us

f̂(0) = 0, f̂m(0) = 0, m ∈ N,

such that

f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂m(p) =

∫ p

0

df̂m(s)

ds
ds, m ∈ N. (2.27)

Hence, it remains to estimate the norm of the term

∫ p

0
[df̂m(s)

ds
− df̂(s)

ds
]ds

p
χ{|p|≤1}.
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Using the definition of the standard Fourier transform (1.4), we easily derive

∣∣∣df̂m(p)
dp

− df̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xfm(x)− xf(x)‖L1(R).

Thus,
∥∥∥∥∥
f̂m(p)− f̂(p)

p
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1√
π
‖xfm(x)− xf(x)‖L1(R) → 0, m → ∞

as assumed. Therefore,um(x) → u(x) in L2(R) asm → ∞, which implies that
um(x) → u(x) in H2(R) asm → ∞ as discussed above.

3. The problem on the finite interval

Proof of Theorem 3.First of all, we prove that it would be sufficient to solve
our problem inL2(I). Indeed, ifu(x) is a square integrable solution of (1.10),
periodic onI along with its first derivative, directly from our equation under the
given conditions we arrive at

−d2u

dx2
− b

du

dx
∈ L2(I).

Using (1.12), we obtain(n2 − ibn)un ∈ l2. Thus,
∞∑

n=−∞

n4|un|2 < ∞, such that

d2u

dx2
∈ L2(I). This implies thatu(x) ∈ H2(I) as well.

To prove the uniqueness of solutions of (1.10), we treat the case ofa > 0.
Whena vanishes, we are able to use the similar argument in the constrained sub-
spaceH2

0 (I). Let us suppose thatu1(x), u2(x) ∈ H2(I) solve (1.10). Then their
differencew(x) := u1(x)− u2(x) ∈ H2(I) satisfies the homogeneous equation

d2w

dx2
− b

dw

dx
− aw = 0.

Since the operatorLa, b : H2(I) → L2(I) defined in (1.13) does not have any
nontrivialH2(I) zero modes, the functionw(x) vanishes onI.

Let us apply the Fourier transform (1.12) to both sides of problem (1.10). This
yields

un =
fn

n2 − a− ibn
, n ∈ Z. (3.28)

First we consider the case a) of our theorem. By virtue of (3.28), we arrive at

‖u‖2L2(I) ≤
1

C
‖f‖2L2(I) < ∞
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via the one of our assumptions (see (1.11)). Let us conclude the proof of the theorem
by treating the situation whena = 0. From (3.28), we easily derive

un =
fn

ib(n− ib)
− fn

ibn
, n ∈ Z. (3.29)

The first term in the right side of (3.29) belongs tol2, since

∞∑

n=−∞

|fn|2
b2(n2 + b2)

≤ 1

b4
‖f‖2L2(I) < ∞

as discussed above. The second term in the right side of (3.29) belongs tol2 if and
only if f0 = 0 and the square of itsl2 norm can be easily bounded from above by
1

b4
‖f‖2L2(I) < ∞, which is equivalent to orthogonality condition (1.16).

Let us conclude the article with proving the solvability in the sense of sequences
for our problem on the intervalI with periodic boundary conditions.

Proof of Theorem 4.Evidently,

|f(0)− f(2π)| ≤ |f(0)− fm(0)|+ |fm(2π)− f(2π)| ≤ 2‖fm − f‖L∞(I) → 0

asm → ∞. Hence,f(0) = f(2π). By means of (1.11) under our assumptions, we
havefm(x) ∈ L1(I) ∩ L2(I), m ∈ N. Using (1.11), we arrive at

‖fm(x)− f(x)‖L1(I) ≤ 2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞ (3.30)

as assumed, such thatfm(x) → f(x) in L1(I) asm → ∞. Similarly, via (1.11) we
obtain

‖fm(x)− f(x)‖L2(I) ≤
√
2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞, (3.31)

such thatfm(x) → f(x) in L2(I) asm → ∞ as well. By applying the Fourier
transform (1.12) to both sides of (1.15), we derive

um,n =
fm,n

n2 − a− ibn
, m ∈ N, n ∈ Z. (3.32)

First we consider the case a) of our theorem. By virtue of the part a) of Theorem
3, problems (1.10) and (1.15) possess unique solutionsu(x) ∈ H2(I) andum(x) ∈
H2(I), m ∈ N respectively. (3.32) along with (3.28) yield

‖um − u‖2L2(I) =
∞∑

n=−∞

|fm,n − fn|2
(n2 − a)2 + b2n2

≤ 1

C
‖fm − f‖2L2(I) → 0, m → ∞
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via (3.31). Thus,um(x) → u(x) in L2(I) asm → ∞. Let us show thatum(x)
converges tou(x) in H2(I) asm → ∞. Indeed, (1.10) and (1.15) give us

∥∥∥∥∥− d2(um − u)

dx2
− b

d(um − u)

dx

∥∥∥∥∥
L2(I)

≤ ‖fm − f‖L2(I) + a‖um − u‖L2(I).

The right side of this inequality converges to zero asm → ∞ due to (3.31). Using
the Fourier transform (1.12), we derive

∞∑

n=−∞

n4|um,n − un|2 → 0, m → ∞.

Hence,
d2um

dx2
→ d2u

dx2
in L2(I) asm → ∞, such thatum(x) → u(x) in H2(I) as

m → ∞ as well.
We conclude the article by dealing with the situation when the parametera

vanishes. By means of (1.17) along with (3.30), we obtain

|(f(x), 1)L2(I)| = |(f(x)− fm(x), 1)L2(I)| ≤ ‖fm − f‖L1(I) → 0, m → ∞,

such that
(f(x), 1)L2(I) = 0 (3.33)

holds. By virtue of the part b) of Theorem 3 above equations (1.10) and (1.15) admit
unique solutionsu(x) ∈ H2

0 (I) andum(x) ∈ H2
0 (I), m ∈ N respectively when

a = 0. Formulas (3.28) and (3.32) yield

um,n − un =
fm,n − fn

ib(n− ib)
− fm,n − fn

ibn
, m ∈ N, n ∈ Z. (3.34)

By means of orthogonality relations (3.33) and (1.17), we have

f0 = 0, fm,0 = 0, m ∈ N.

Obviously, thel2 norm of the first term in the right side of (3.34) can be bounded
from above by

1

b2
‖fm − f‖L2(I) → 0, m → ∞

via (3.31). Thel2 norm of the second term in the right side of (3.34) can be estimated
from above by

√√√√
∞∑

n=−∞, n 6=0

|fm,n − fn|2
b2n2

≤ 1

|b|‖fm − f‖L2(I) → 0, m → ∞

as above. Therefore,um(x) → u(x) in L2(I) asm → ∞, which implies that
um(x) → u(x) in H2

0 (I) asm → ∞ as well via the argument analogous to the one
we had in the proof of the part a) of the theorem.
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elliptiques dansRn, C. R. Acad. Sci. Paris Sér. I Math.,307 (1988), No. 11,
577–580.

[4] H. Berestycki, F. Hamel, N. Nadirashvili,The speed of propagation for KPP
type problems. I. Periodic framework,J. Eur. Math. Soc. (JEMS),7 (2005),
No. 2, 173–213.

[5] P. Bolley, T.L. Pham,Propriét́es d’indice en th́eorie ḧoldérienne pour des
opérateurs diff́erentiels elliptiques dansRn, J. Math. Pures Appl. (9),72
(1993), No. 1, 105–119.

[6] P. Bolley, T.L. Pham,Propriét́e d’indice en th́eorie Höldérienne pour le
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