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1 Introduction

Conventional diffusion terms in reaction-diffusion equations describe randommotion of atoms
and molecules in multi-component continuous media or random motion of individuals in pop-
ulation dynamics. There exist also other types of motion in various applications, including
a long range dispersion in ecology [12, 13], in neural models [9, 11] or in phase field mod-
els [4]. In this work we present a method to study the existence of travelling waves of
reaction-diffusion-dispersion equations. Consider the system of equations

∂u

∂t
= D

∂2u

∂x2
+ SJ(u) + F (u), (1.1)

where u = (u1, ..., un), F = (F1, ..., Fn), J = (J1, ..., Jn),

Jk(u) =

∫ ∞

−∞
ϕk(x− y)uk(y, t)dy , k = 1, ..., n,

ϕk(x) are non-negative even functions such that ϕk(x) exp(r|x|) are integrable for some r > 0,∫∞
−∞ ϕk(x)dx = 1; D is a diagonal matrix with positive diagonal elements di, S is a matrix
with constant elements sij ≥ 0, i, j = 1, ..., n.
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We will consider in this work system (1.1) on the whole axis, x ∈ R, and will study the
existence of travelling wave solutions. It is a solution u(x, t) = w(x− ct), which satisfies the
second-order equation

Dw′′ + SJ(w) + cw′ + F (w) = 0, (1.2)

where c is an unknown constant, the wave speed. We will look for solutions with some limits
at infinity,

w(±∞) = w±, (1.3)

where w± are solutions of the equation

Φ(w) ≡ Sw + F (w) = 0. (1.4)

We assume that 0 < w+ < w− (the inequalities are understood component-wise), and we
will consider monotonically decreasing solutions of problem (1.2), (1.3). Next, suppose that
the vector-function F (w) is continuous together with its second derivatives and satisfies the
following condition:

Fi(w) ≤ 0 ⇒ ∂Fi(w)

∂uj

> 0 , j ̸= i, j = 1, ..., n. (1.5)

This condition is automatically satisfied for the scalar equation (n = 1). Let us recall the
definitions of some related classes of systems.

Monotone systems. The system is called monotone if the right-hand side inequality in
(1.5) is satisfied for all w ∈ Rn. This is the class of systems for which the maximum prin-
ciple is applicable. Existence, uniqueness and stability of waves for the monotone reaction-
diffusion systems without dispersion (S = 0) was studied in [16, 18]. The scalar equation with
dispersion was considered in [4, 7]. There are numerous works with a nonlinear dependence
on the integral terms (see [15] and the references therein). There are various applications of
such systems in chemical kinetics and combustion, in population dynamics and biomedicine
[5, 18].

Locally monotone systems. The reaction-diffusion system (without dispersion) is called
locally monotone if the right-hand side inequality in (1.5) is satisfied for such w that Fi(w) =
0 [16, 18]. It is a more general class of systems also encountered in various applications.
Let us note that if a function F (w) satisfies the monotonicity condition, then the function
F̃ = (F̃1, ..., F̃n), F̃i = gi(w)Fi(w) is locally monotone for any gi(w) > 0. This remark opens
a wide range of applications of such systems. Locally monotone systems do not satisfy the
maximum principle. The existence of waves for such systems is proved in [16, 18, 21], the
stability of waves, in general, may not hold. Locally monotone systems with dispersion are
not studied since the same methods are not applicable for them.
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In this work we study locally monotone systems with dispersion. Local monotonicity is
understood here in the sense of condition (1.5). The presence of the integral terms makes
this condition more restrictive in comparison with the reaction-diffusion systems without
dispersion. The proof of the wave existence is based on the Leray-Schauder method using
the topological degree for elliptic operators in unbounded domains and a priori estimates
of solutions in some weighted spaces. The degree is constructed for Fredholm and proper
operators with the zero index [14, 16] (Section 2.2). The main result of this work is given in
the following theorem.

Theorem 1.1. Suppose that the vector-function Φ(w) = Sw + F (w) has two zeros w+

and w− such that w+ < w− (the inequalities between the vectors are understood component-
wise), and a finite number of zeros wk

0 , k = 1, ...,m such that w+ ≤ wk
0 ≤ w−. Assume,

next, that all eigenvalues of the matrices Φ′(w±) lie in the left-half plane, and the matrices
Φ′(wk

0), k = 1, ...,m have some eigenvalues in the right-half plane. If condition (1.5) is
satisfied, then problem (1.2), (1.3) has a monotonically decreasing solution for some value
of c.

Thus, we consider the bistable case where the limiting values at infinity w+ and w− are
stable as solutions of the ODE system du/dt = Φ(u). The intermediate zeros are unstable.

In the next section we introduce the functional setting: operators, spaces, topological
degree for Fredholm and proper operators. Section 3 begins with the modification of the
Leray-Schauder method applied for some subclasses of solutions [16, 18, 22]. It is followed
by the separation of monotone and non-monotone solutions which represent these subclasses
and by a priori estimates of monotone solutions. These results allow us to prove the main
existence theorem.

2 Operators and spaces

For the functional setting let us introduce the Hölder space Ck+α(R) consisting of vector-
functions of class Ck, which are bounded and continuous on the real axis R together with
their derivatives of order k, and such that the derivatives of order k satisfy the Hölder
condition with the exponent α ∈ (0, 1). The norm in this space is the usual Hölder norm.
Set E1 = C2+α(R), E2 = Cα(R). Next, we introduce the weighted spaces E1

µ and E2
µ with

µ(x) =
√
1 + x2. These spaces are equipped with the norms:

∥w∥Ei
µ
= ∥wµ∥Ei , i = 1, 2.

Following [16, 18] we introduce the operators which will allow us to study solutions of
problem (1.2), (1.3). Consider an infinitely differentiable vector-function η(x) such that

η(x) =

{
w− , x ≤ −1
w+ , x ≥ 1

.

Set w = u+ η and consider the operator

3



A(u) = D(u+ η)′′ + SJ(u+ η) + c(u+ η)′ + F (u+ η), (2.1)

acting from E1
µ into E2

µ.

2.1 Fredholm property of linear operators

Consider the linearized operator

Lu = Du′′ + SJ(u) + cu′ + F ′(w(x))u

acting from E1 into E2, and the corresponding limiting operators

L±u = Du′′ + SJ(u) + cu′ + F ′(w±)u,

where the function w(x) is replaced by its limiting values at infinity. By definition, the
operator L satisfies the Fredholm property if it is normally solvable, the dimension of its
kernel and the codimension of its image (the number of solvability conditions) are finite.
The set of all complex numbers λ for which the operator L−λ does not satisfy the Fredholm
property is the essential spectrum of the operator L. In order to determine the essential
spectrum of the operator L, we consider the equations

L±u = λu. (2.2)

The operator L is normally solvable with a finite dimensional kernel if and only if the only
bounded solution of equations (2.2) is zero. This assertion is proved in [3] in the case of the
scalar equation and in [1, 2] for systems of equations. Applying the Fourier transform we
obtain that this condition is equivalent to the condition

det
(
−Dξ2 + Sϕ̃(ξ) + ciξ + F ′(w±)− λE

)
= 0 (2.3)

for some ξ ∈ R. Here ϕ̃(ξ) = (ϕ̃1(ξ), ..., ϕ̃k(ξ)), and ϕ̃k(ξ) is the Fourier transform of the
function ϕk(x), E is the identity matrix.

Condition 2.1. Equations (2.2) do not have nonzero bounded solutions for any real λ ≥ 0
or equality (2.3) does not hold for such λ and any real ξ.

If Condition 2.1 is satisfied, then the operator L is Fredholm with the zero index. It is used
in the construction of the topological degree [3, 14].

Lemma 2.2. If all eigenvalues of the matrices Φ′(w±) lie in the left-half plane, then Con-
dition 2.1 is satisfied.

Proof. Since the kernels ϕk(x) are even functions, then their Fourier transforms ϕ̃k(ξ) are
real-valued functions. Furthermore,

ϕ̃k(0) =

∫ ∞

−∞
ϕk(y)dy = 1,
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and

ϕ̃k(ξ) =

∫ ∞

−∞
ϕk(y) cos(ξy)dy < 1, ∀ξ ̸= 0.

Since the matrices

M±(ξ) = −Dξ2 + Sϕ̃(ξ) + F ′(w±)

have positive off-diagonal elements, then their principal eigenvalues λ±(ξ) adopt the maximal
values for ξ = 0. Indeed, the principal eigenvalues of such matrices are real and they decrease
with the decrease of the elements of the matrix. On the other hand, M±(0) = Φ′(w±). Hence

λ±(ξ) ≤ λ0
± , ξ ∈ R,

where λ0
± are the principal eigenvalues of the matrices Φ′(w±). Therefore, all eigenvalues of

the matrices M±(ξ) + ciξ lie in the half-plane Re λ ≤ λ0
±.

�

2.2 Properness and topological degree

Homotopy. According to the Leray-Schauder (LS) method, we consider the equation

Dw′′ + SJτ (w) + cw′ + F (w) = 0 (2.4)

depending on parameter τ ∈ [0, 1]. Here

Jτ (w) = (1− τ)J(w) + τw.

The corresponding operator Aτ (u)

Aτ (u) = D(u+ η)′′ + SJτ (u+ η) + c(u+ η)′ + F (u+ η), (2.5)

acts from E1
µ into E2

µ. For τ = 0 we have the original operator (2.1) and for τ = 1 the model
operator for which the degree is different from 0. We need to obtain a priori estimates of
solutions of the equation Aτ (u) = 0 independent of τ . We will use a modification of the LS
method for some subclasses of solutions.

Properness. Let us recall that an operator is called proper on closed bounded sets if the
intersection of an inverse image of any compact set with a closed bounded set is compact.
Properness of general elliptic problems in unbounded domains holds in properly chosen
weighted spaces if the essential spectrum lies in the left-half plane [14]. They may not
be proper in the spaces without weight. Properness of the integro-differential operators is
proved in [3] in the case of the scalar operators. The proof remains similar in the vector
case.
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Topological degree. If Condition 2.1 is satisfied, then the operator linearized about any
function in E1

µ satisfies the Fredholm property and has the zero index. The nonlinear operator
is proper on closed bounded sets. This means that the inverse image of a compact set is
compact in any closed bounded set in E1

µ. The topological degree can be defined for this
operator. All these properties can be found in [18, 19, 20, 21, 14]. Let us note that most of
the methods of nonlinear analysis use the Fredholm property of the corresponding operators.
Few results are available for non-Fredholm operators [23, 24].

Functionalization of the parameter. Solution w(x) of equation (1.2) is invariant with
respect to translation in space. Along with any solution w(x), the functions w(x + h) also
satisfy this equation for any real h. This property of solutions of autonomous problems
on the whole axis implies the existence of a zero eigenvalue of the linearized operator A′.
Consequently, we cannot find the index of the solution (the index is understood here as the
value of the degree with respect to a small ball containing the solution). Moreover, this
family of solutions is not bounded in the weighted norm. Therefore, we cannot apply the
Leray-Schauder method to study the existence of solutions.

In order to overcome these difficulties we introduce functionalization of the parameter c
[18] (Chapter 2). This means that instead of the unknown constant c we introduce some
given functional c(w) such that c(w(·+h)) is a monotone function of h with the values from
−∞ to ∞. Hence, equation c(w(· + h)) = c has a unique solution h for any wave speed c.
Therefore, we obtain an equivalent problem without invariance of solutions with respect to
translation in space. The linearized operator A′ does not have zero eigenvalue.

3 Leray-Schauder method

3.1 Subclasses of solutions

We consider the operator equation

Aτ (u) = 0, (3.1)

where the operator Aτ (u) : E
1
µ → E2

µ is defined in Section 2. The homotopy is constructed
in such a way that A0(u) corresponds to the original problem (1.2), (1.3) and A1(u) to
the model problem. In order to apply the Leray-Schauder method, we need to verify two
conditions: a priori estimates of solutions of equation (3.1) hold in the space E1

µ and the
value of the topological degree for the model operator is different from 0.

Suppose that the set of solutions K of equation (3.1) in the space E1
µ can be represented

as a union of two subsets K1 and K2 such that the following two conditions are satisfied:

(i) for any u ∈ K1 and v ∈ K2, the estimate

∥u− v∥E1
µ
≥ r (3.2)
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holds with some positive constant r independent of the choice of u and v. We call this
property separation of solutions.

(ii) for any u ∈ K1

∥u∥E1
µ
≤ R (3.3)

with some positive constant R independent of u. This is a priori estimate of solutions from
the first subset.

Thus, we have a priori estimates of solutions which belong to the class K1 but not of all
possible solutions. Therefore, we need to modify the Leray-Schauder method in the following
way. Denote by B a ball in the space E1

µ which contains all solutions from the class K1. Since
the operator Aτ (u) is proper [14], that is the inverse image of the compact set is compact in
any bounded closed set, then the set of solutions in B is compact. For each solution u ∈ K1,
consider a ball br(u) of radius r and center u. Set

Ωr = ∪u∈Kbr(u).

Let us choose r small enough such that Ωr contains all solutions from K1 and does not
contain other solutions. Consider the topological degree γ(Aτ ,Ωr). It is well defined since
Aτ (u) ̸= 0 for u ∈ ∂Ωr. We suppose that the degree is different from 0 for the model problem,
γ(A1,Ωr) ̸= 0. Therefore, γ(A0,Ωr) ̸= 0, and equation A0(u) = 0 has a solution in Ωr.

In the following sections we will implement this approach.

3.2 Separation of solutions

The two subclasses of solutions separated in the function space are monotone and non-
monotone solutions. By monotone solutions we understand vector-functions w(x) all com-
ponents of which are monotonically decreasing. Non-monotone solutions do not satisfy this
property. Let us stress that monotonicity is considered for the function w(x) = u(x) + η(x),
and not for the function u(x), but we will still call u(x) monotone solutions.

We will show that the properties (i) and (ii) hold for the problem under consideration.
Suppose that (i) is not valid. Then there are two sequences, ui ∈ K1 (monotone solutions)
and vi ∈ K2 (non-monotone solutions) such that ∥ui − vi∥E1

µ
→ 0 as i → ∞. We will show

that this assumption leads to a contradiction.
If condition (ii) is satisfied, then the sequence ui is bounded. From the properness of the

operator Aτ on closed bounded sets [14, 21] it follows that it has a convergent subsequence.
Without loss of generality we can assume that ∥ui+η−w∥E1

µ
→ 0 for some function w ∈ E1

µ.
Therefore, w′(x) ≤ 0 for all x ∈ R (component-wise). We show that this inequality is strict.

Lemma 3.1. Let w(x) be a solution of problem (1.2), (1.3). If w′(x) ≤ 0 for all x ∈ R
(component-wise) and w(x) ̸≡ const, then w′(x) < 0.

Proof. Suppose that w′
i(x0) = 0 for some i = 1, ..., n and x0. Since w

′(x) ≤ 0 for all x, then
w′′

i (x0) = 0. Hence, by virtue of the ith equation of system (1.2),
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n∑
j=1

sijJj(w)(x0) + Fi(w(x0)) = 0.

Since sij ≥ 0 and w(x) > 0, we have Ji(w)(x) ≥ 0 and Fi(w(x0)) ≤ 0. We set ui(x) = −w′
i(x)

and differentiate the ith equation of system (1.2). By virtue of the equalities

d

dx
Jj(w) =

d

dx

∫ ∞

−∞
ϕj(z)wj(x− z)dz =

∫ ∞

−∞
ϕj(z)w

′
j(x− z)dz =∫ ∞

−∞
ϕj(x− y)w′

j(y)dy = Jj(w
′)

we get

diu
′′
i + cu′

i +
∂Fi

∂wi

ui −
∑
j ̸=i

∂Fi

∂wj

w′
j + siiJi(ui)−

∑
j ̸=i

sijJj(w
′
j) = 0. (3.4)

Since ∂Fi

∂wj
> 0 (see (1.5)) and w′

j(x) ≤ 0, we obtain

T (x0) ≡ −
∑
j ̸=i

∂Fi

∂wj

w′
j(x0) + siiJi(ui)−

∑
j ̸=i

sijJj(w
′
j) ≥ 0.

Assume, first, w′
i(x) ̸≡ 0 in any small interval I(x0) around x0. If we take it sufficiently

small, then the inequalities ∂Fi

∂wj
> 0 hold in this interval and, consequently, T (x) ≥ 0 in

I(x0). Hence we obtain a contradiction with the maximum principle for equation (3.4) in
I(x0) since ui(x) ≥ 0 in I(x0), ui(x0) = 0 and ui(x) ̸≡ 0.

If w′
i(x) ≡ 0 in some interval I0, then we repeat the previous construction in a slightly

larger interval I and obtain a similar contradiction.
�

Next, we consider the sequence of non-monotone solutions vi. For each such solution there
is at least one point xi where the derivative of one of the components of the function vi + η
vanish. Suppose, first, that this sequence is bounded. From the convergence ∥vi+η−w∥E1

µ
→

0 as i → ∞ it follows that the derivative of the limiting function w′(x) also vanish (for one
of the components). We obtain a contradiction with Lemma 3.1. Therefore, the sequence
xi is not bounded. Without loss of generality we can assume that xi → ∞ as i → ∞. This
gives a contradiction with the following lemma.

Lemma 3.2. Let v(x) be a solution of system (1.2) such that w(x) → w+ as x → ∞. More-
over, the matrix Φ′(w+) has positive off-diagonal elements and negative principal eigenvalue
(i.e. with the maximal real part). If w′(x0) < 0 (component-wise) for some x0 sufficiently
large, then w′(x) < 0 for all x ≥ x0.

Proof. Set u(x) = −w′(x) and differentiate equation (1.2):

Du′′ + cu′ + SJ(u) +B(x)u = 0, (3.5)
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where B(x) = F ′(w(x)), u(x0) > 0, u(x) → 0 as x → ∞. Since the matrix Φ′(w+) = S +
F ′(w+) has positive off-diagonal elements and negative principal eigenvalue, then Φ′(w+)p <
0, where p is the principal eigenvector. Therefore, we can choose x0 sufficiently large such
that (S +B(x))p < 0 for all x ≥ x0.

We need to prove that u(x) > 0 for x ≥ x0. Suppose that this is not true. If u(x) ≥ 0
for all x ≥ x0 and uj(x1) = 0 for some j and x1, then we obtain a contradiction with
the maximum principle. Therefore, we consider the case where one of the components of
the function u(x) becomes negative. Hence there exists a positive number t such that the
function û(x) = u(x) + tp satisfies the following conditions: û ≥ 0 for all x ≥ x0, û(x0) > 0,
ûj(x2) = 0 for some j and x2 > x0. It satisfies the following equation:

Dû′′ + cû′ + SJ(û) +B(x)û+ f(x) = 0, (3.6)

where f(x) = −t(S + B(x))p > 0. Therefore, we obtain again a contradiction with the
maximum principle. This contradiction proves the lemma.

�
Thus, we have proved the following theorem.

Theorem 3.3. Let the system

Dw′′ + SJτ (w) + cw′ + F (w) = 0 (3.7)

satisfy condition (1.5), Φτ (w±) = 0 for some w±, w+ < w− (component-wise), and the ma-
trices Φ′

τ (w±) have all eigenvalues in the left-half plane. Suppose that for any monotonically
decreasing solution wm of system (3.7) with the limits

w(±∞) = w± (3.8)

the estimate

∥wm − η∥E1
µ
≤ R (3.9)

holds with some positive constant R independent of the solution and of the value of τ ∈ [0, 1].
Then there exists a positive constant r such that

∥wm − wn∥E1
µ
≥ r, (3.10)

where wn is any non-monotone solution of problem (3.7), (3.8) possibly for a different value
of τ , r does not depend on solutions and on τ .

3.3 A priori estimates

3.3.1 The sign of the speed

We begin with the auxiliary results on the sign of the wave speed.

9



Lemma 3.4. Suppose that v(x) is a decreasing positive function, ϕ(x) is even and non-
negative. Then for any N∫ ∞

N

dx

∫ ∞

−∞
ϕ(x− y)v(y)dy >

∫ ∞

N

dx

∫ ∞

−∞
ϕ(x− y)v(x)dy =

∫ ∞

N

v(x)dx. (3.11)

If v is a positive and increasing function, then∫ N

−∞
dx

∫ ∞

−∞
ϕ(x− y)v(y)dy >

∫ N

−∞
dx

∫ ∞

−∞
ϕ(x− y)v(x)dy =

∫ N

−∞
v(x)dx. (3.12)

It is assumed that all these integrals exist.

Proof We have ∫ ∞

N

dx

∫ ∞

N

ϕ(x− y)v(y)dy =

∫ ∞

N

dx

∫ ∞

N

ϕ(x− y)v(x)dy.

If v is decreasing, then∫ ∞

N

dx

∫ N

−∞
ϕ(x− y)v(y)dy >

∫ ∞

N

dx

∫ N

−∞
ϕ(x− y)v(x)dy

since y 6 N 6 x in the domain of integration and, consequently, v(y) > v(N) > v(x).
Taking a sum of the last two relations, we obtain (3.11).

Consider now the second case. From the equality∫ N

−∞
dx

∫ N

−∞
ϕ(x− y)v(y)dy =

∫ N

−∞
dx

∫ N

−∞
ϕ(x− y)v(x)dy

and inequality ∫ N

−∞
dx

∫ ∞

N

ϕ(x− y)v(y)dy >
∫ N

−∞
dx

∫ ∞

N

ϕ(x− y)v(x)dy,

which takes place since in the domain of integration x 6 N 6 y and v(x) 6 v(N) 6 v(y),
we obtain (3.12).

�
Lemma 3.5. Suppose that there exists a monotonically decreasing solution w(x) of equation
(1.2) such that w(x) → w0 as x → ∞. Then c > 0.

Proof. Set v(x) =
∫∞
x
(w(y)− w0)dy. Taking into account that Sw0 + F (w0) = 0, we write

equation (1.2) as

Dw′′ + cw′ + (S + F ′(w0))(w − w0) + S(J(w)− w) + o(|w − w0|) = 0.

We integrate this equation from y to infinity:
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(S +F ′(w0))
v(x)

|v(x)|
+

o(v(x))

|v(x)|
=

1

|v(x)|

(
Dw′(x) + c(w(x)− w0)−

∫ ∞

x

S(J(w)− w(y))dy

)
.

(3.13)
If c ≤ 0, then by virtue of (3.11) the right-hand side of (3.13) is a negative vector for any x.
On the other hand, by virtue of the minimax representation of the principal eigenvalue λ0

of the matrix with positive off-diagonal elements [10] (Chapter XIII), we have

min
|q|=1,q>0

max
i

((S + F ′(w0))q)i
qi

= λ0 > 0.

Therefore, equality (3.13) gives a contradiction which proves that c > 0.
�

Lemma 3.6. Suppose that there exists a monotonically decreasing solution w(x) of equation
(1.2) such that w(x) → w0 as x → −∞. Then c < 0.

3.3.2 Estimates of solutions

In this section we will obtain a priori estimates of monotone solutions in weighted Hölder
spaces. Since the essential spectrum of the operator L lies in the left-half plane and it
satisfies the Fredholm property, then the solutions converge to their limiting values at infinity
exponentially [14]. In the other words, the following estimates hold:

|wm(x)− η(x)| ≤ K1e
−µ0x, x ≥ N+, |wm(x)− η(x)| ≤ K1e

µ0x, x ≤ N− (3.14)

with some positive constants K1 and µ0 independent of a monotone solution wm and the
value of τ . On the contrary, the values N+ and N− can depend on the solution. They are
chosen in such a way that

|wm(x)− η(x)| ≤ ϵ, x ≥ N+, |wm(x)− η(x)| ≤ ϵ, x ≤ N−

for some small positive ϵ. This means that estimates (3.14) hold in some neighborhoods of
the points w± in Rn (w-space).

Since the weight function µ(x) has polynomial growth at infinity, then we obtain the
estimate

|(wm(x)− η(x))µ(x)| ≤ K2 (3.15)

for x ≥ N+ and x ≤ N−. If N+ and N− are uniformly bounded for all solutions, the last
estimate obviously holds for all x ∈ R.

Introducing functionalization of parameter, we consider the given functional c(w) instead
of the unknown wave speed cτ which depends on τ . The value of the functional c(w(·+ h))
depends on the shift h. Therefore, we choose a single value of h such that
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c(w(·+ h)) = cτ (3.16)

and, consequently, remove the invariance of solution with respect to translation. By virtue
of a priori estimates of the wave speed, solution h of equation (3.16) is uniformly bounded
for all τ . Indeed, c(w(·+h)) → ±∞ as h → ±∞. Hence, solutions w(x+h) and w(x+N+

τ )
differ by a final value of shift. Consequently, estimate (3.15) for the latter implies a similar
estimate for the former.

Let us consider the case where these values are not uniformly bounded. Suppose that
N i

+ → ∞ for some sequence of solutions wi, and N i
− remains bounded. Consider the shifted

functions vi(x) = wi(x − N i
+). We have the equality |vi(0) − ν(0)| = ϵ. We can choose a

subsequence of the sequence vi(x) locally converging to some limiting function v0(x). It is
a solution of system (3.7) for some τ , it is monotonically decreasing, and |v0(0)− ν(0)| = ϵ.
Hence v0(x) → w+ as x → ∞, and there exists a limit v∗ = v0(−∞). Clearly, Φ(v∗) = 0.
Since N i

+ − N i
i → ∞, then |v∗ − w−| ≥ ϵ. Thus, we have constructed a solutions with the

limits

v0(−∞) = v∗, v0(∞) = w+, v∗ ̸= w±. (3.17)

Similarly, for the shifted functions ui(x) = wi(x − N i
−) we obtain a limiting solution u0(x)

with the limits

u0(−∞) = w−, u0(∞) = v∗, v∗ ̸= w±. (3.18)

We can now prove the following theorem.

Theorem 3.7. Let the system (3.7) be locally monotone, Φτ (w±) = 0 for some w±, w+ <
w−, and the matrices Φ′

τ (w±) have all eigenvalues in the left-half plane. Suppose that for
any other zero w0 of the function Φ(w) such that w+ ≤ w0 ≤ w−, the principal eigenvalue
of the matrix Φ′(w0) is positive. Then the estimate

sup
x

|(wm(x)− η(x))µ(x)| ≤ K (3.19)

holds for any monotonically decreasing solution wm(x) of problem (3.7), (3.8) with a constant
K independent of the solution.

Proof. Suppose that the assertion of the theorem does not hold. Then, as it is shown
above, the values N± in (3.14) are not uniformly bounded. Suppose that there is a sequence
of solutions wi for which N i

+ → ∞ as i → ∞, and N i
− remain bounded. Then there are

solutions v0(x) with limits (3.17) and u0(x) with limits (3.18). The existence of the former
implies that c < 0 and of the latter that c > 0 (Lemmas 3.5, 3.6). This contradiction proves
that the assumption on N± cannot hold.

Similarly, we can consider the case where N i
− tends to −∞ and N i

+ remains bounded, or
both of them are unbounded. Since the solutions are invariant with respect to translation

12



in space, all these cases can be reduced to the case where the values N i
− are bounded. The

shift remains bounded due to a priori estimates of the wave speed [16, 18].
�

Corollary 3.8. Let u = wm − η, where wm is a monotone solution of problem (3.7), (3.8).
Then ∥u∥E1

µ
≤ K, where a positive constant K does no depend on the solution.

Thus, we obtain a priori estimates of monotone solutions.

3.3.3 Wave speed estimate

The estimate of solution in the previous section uses the estimate of the wave speed. We
will show that it is uniformly bounded for all values of parameter τ . We will obtain the
estimate from above. The estimate from below can be obtained similarly. We begin with
some auxiliary results.

Lemma 3.9. Let v(x, t) be a solution of the Cauchy problem for the equation

∂v

∂t
= D

∂2v

∂x2
+ SJ(v) +G(v), (3.20)

with the initial condition v(x, 0), where G(v) ≥ F (v) for all v ∈ Rn (component-wise) and

∂Gi

∂vj
> 0 , i, j = 1, ..., n, j ̸= i. (3.21)

If v(x, 0) ≥ u(x, 0) for all x ∈ R, then v(x, t) ≥ u(x, t) for all x ∈ R and t ≥ 0, where u(x, t)
is the solution of equation (1.1) with the initial condition u(x, 0).

Proof. Set z = v − u. Then

∂z

∂t
= D

∂2z

∂x2
+ SJ(z) +H(z) + f(x, t), (3.22)

where H = (H1, ..., Hn),

Hi(z) = Gi(v)−Gi(u) = (Gi(v1, v2, ..., vn)−Gi(u1, v2, ..., vn))+

(Gi(u1, v2, ..., vn)−Gi(u1, u2, ..., vn)) + ...+ (Gi(u1, u2, ..., vn)−Gi(u1, u2, ..., un)) =

ai(x, t)zi +
∑
j ̸=i

bij(x, t)zj .

If, for certainty, i = 1, then

a1(x, t) =
G1(v1, v2, ..., vn)−G1(u1, v2, ..., vn)

v1 − u1

,

b12(x, t) =
G1(u1, v2, ..., vn)−G1(u1, u2, ..., vn)

v2 − u2

, ...
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Since bij(x, t) > 0, f(x, t) = G(u) − F (u) ≥ 0, and v(x, 0) ≥ u(x, 0), then by virtue of the
positiveness theorem [8, 18], z(x, t) ≥ 0.

�
Lemma 3.10. Equation

Dw′′ + cw′ + SJ(w) + Bw = 0, (3.23)

where B is a constant matrix with positive off-diagonal elements such that the S + B has a
positive principle eigenvalue, has a solution w(x) = p exp(−λx), where p > 0 is a constant
vector, λ > 0 is a real number, λ → 0 as c → ∞.

Proof. Substituting solution w(x) = p exp(−λx) into equation (3.23), we get(
Dλ2 − cλ+ SJ(λ) + B

)
p = 0, (3.24)

where J(λ) = (J1(λ), ..., Jn(λ)), Jk(λ) =
∫∞
∞ ϕ(y)eλydy. Set

M(λ) = Dλ2 + SJ(λ) + B.

This matrix has a real principle eigenvalue µ(λ) and the corresponding positive eigenvector
p. According to the condition of the lemma, µ(0) > 0. Moreover µ(λ) → µ(0) as λ → 0.
Put c = µ(λ)/λ. Then equality (3.24) holds and λ = cµ(λ) → ∞ as λ → 0.

�
Theorem 3.11. The estimate |c| ≤ K holds with a constant K independent of τ .

Proof. Let us recall that we consider the equation

Dw′′ + SJτ (w) + cw′ + F (w) = 0, (3.25)

where Jτ (w) = (1− τ)J(w)+ τw. This homotopy does not change the stationary points and
their stability. Let us now study how the essential spectrum of the corresponding operator

Lτu = Du′′ + SJτ (u) + cu′ + F ′(w(x))u

depends on τ . Set

M±
τ (ξ) = −Dξ2 + S((1− τ)ϕ̃(ξ) + τ) + F ′(w±).

The essential spectrum is given by the eigenvalues λ±(ξ) of the matrix M±
τ (ξ) + ciξ for all

real ξ. Since the matrix F ′(w±) has positive off-diagonal elements, the matrix S has non-
negative elements, ϕ̃(ξ) is a real-valued vector since the functions ϕk(x) are even, and D is a
diagonal matrix, then the principal eigenvalue µ±

τ (ξ) of the matrix M±
τ (ξ) is real. Moreover,

for each τ fixed its maximal value is reached for ξ = 0. Indeed,

(1− τ)ϕ̃k(0) + τ = 1 , (1− τ)ϕ̃k(ξ) + τ < 1 , ∀ξ ̸= 0.
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Therefore, all eigenvalues of the matrix M±
τ (ξ) lie in the half-plane Re λ ≤ µ±

τ (0) for all
real ξ and τ ∈ [0, 1]. However, M±

τ (0) = S + F ′(w±). Thus, all eigenvalues of the matrix
M±

τ (ξ) + ciξ lie in the half-plane Re λ ≤ µ±
0 , where µ±

0 is the principal eigenvalues of the
matrix S + F ′(w±), and

σess(Lτ ) ∈ {λ ∈ C, Re λ ≤ max(µ+
0 , µ

−
0 ) < 0}. (3.26)

Choose a positive number κ such that max(µ+
0 , µ

−
0 ) < −κ. Then it follows from estimate

(3.26) that for any solution w1(x) of equation (3.25) such that w1(x) → w+ as x → ∞, the
estimate

|w1(x)− w+| ≤ Ke−κx (3.27)

holds with a positive constant K that can depend on solution [14].
Next, we can choose a constant matrix B with positive elements such that F (w) ≤

B(w − w+) for all w ≥ w+. According to Lemma 3.10 we can choose c = c0 such that
w0(x) = w+ + p exp(−κx) is a solution of (3.23). It follows from (3.27) that the estimate

w1(x) ≤ w0(x− h) , x ∈ R (3.28)

holds for h sufficiently large.
We can now compare the speed c1 of the solution w1(x) and the speed c0 of the solution

w0(x). We consider the solution u(x, t) = w1(x− c1t) of the equation

∂u

∂t
= D

∂2u

∂x2
+ SJ(u) + F (u) (3.29)

and the solution v(x, t) = w0(x− c0t) of the equation

∂v

∂t
= D

∂2v

∂x2
+ SJ(v) +B(v − w+). (3.30)

From Lemma 3.9 and inequality (3.28) it follows that u(x, t) ≤ v(x, t) for all x ∈ R and
t ≥ 0. Hence c1 ≤ c0. It remains to note that c0 does not depend on τ . Similarly, the
estimate of the speed from below can be obtained.

�

3.4 Existence of solutions

Proof of Theorem 1.1. We consider the operator equation

Aτ (u) = 0, (3.31)

where the operator Aτ (u) : E
1
µ → E2

µ is defined in Section 2. The homotopy is constructed
in such a way that A0(u) corresponds to the original problem (1.2), (1.3) and A1(u) to
the model problem. In order to apply the Leray-Schauder method, we need to verify two
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conditions: a priori estimates of solutions of equation (3.31) in the space E1
µ and that the

value of the topological degree for the model operator is different from 0.
In the previous section we obtained a priori estimates of solutions from the class K1

which consists of monotonically decreasing solutions (component-wise). We now apply the
modification of the Leray-Schauder method presented in Section 3.1. Denote by B a ball
in the space E1

µ which contains all solutions from the class K. Since the operator Aτ (u) is
proper [14], that is the inverse image of the compact set is compact in any bounded closed
set, then the set of solutions in B is compact. For each solution u ∈ K1, consider a ball br(u)
of radius r and center u. Set

Ωr = ∪u∈K1br(u).

If r is sufficiently small, then the set Ωr does not contain solutions u ̸∈ K. Indeed, suppose
that this is not true and there exists a sequence rn → 0 such that the corresponding sequence
of solutions un belongs to the sets Ωrn . By virtue of compactness of the set of solution we
conclude that there is a subsequence of this sequence which converges in E1

µ to a solution
from K1. This assertion contradicts Theorem 3.3.

Let us choose r small enough such that Ωr contains all solutions from K1 and does not
contain other solutions. Consider the topological degree γ(Aτ ,Ωr). It is well defined since
Aτ (u) ̸= 0 for u ∈ ∂Ωr. It remains to note that the existence of solutions for the problem
without the integral terms (τ = 1) is proved in [15, 16, 18], and γ(A1,Ωr) ̸= 0. Therefore,
γ(A0,Ωr) ̸= 0, and equation A0(u) = 0 has a solution in Ωr. Thus, Theorem 1.1 is proved.

�

4 Example of applications

We will apply the results of the existence of waves to the system of equations

d1u
′′ + k1J1(u) + cu′ + F1(u, v) = 0, (4.1)

d2v
′′ + k2J2(v) + cv′ + F2(u, v) = 0, (4.2)

where

F1(u, v) = g1(u, v)f1(u, v), F2(u, v) = g2(u, v)f2(u, v),

∂f1(u, v)

∂v
> 0,

∂f2(u, v)

∂u
> 0. (4.3)

If gi(u, v) ≡ const, i = 1, 2, then

∂F1(u, v)

∂v
> 0,

∂F2(u, v)

∂u
> 0,
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and the system satisfies the monotonicity condition. If gi(u, v) > 0 for all u, v ∈ R, then

F1(u, v) = 0 ⇒ ∂F1(u, v)

∂v
> 0, F2(u, v) = 0 ⇒ ∂F2(u, v)

∂u
> 0,

and the system satisfies the local monotonicity condition.
Suppose that

gi(u, v) > 0, i = 1, 2 ∀u, v ∈ R (4.4)

and

∂g1(u, v)

∂v
< 0,

∂g2(u, v)

∂u
< 0. (4.5)

It follows from (4.3)-(4.5) that Condition 2.1 is satisfied, and Theorem 1.1 is applicable.
Let us consider the following example:

f1(u, v) = u(1− u− αv) , f2(u, v) = v(1− v − βu).

If gi(u, v) ≡ const and k1 = k2 = 0, then (4.1), (4.2) is the classical system of competition
of species. If we set ũ = 1− u, then we reduce it to the monotone system. We get a locally
monotone system under condition (4.4). If, in addition, (4.5) is satisfied, then Condition 2.1
holds, wave existence in the case with dispersion follows from Theorem 1.1.
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tions. Birkhäuser, Basel, 2014.

[16] A.I. Volpert, V.A. Volpert. Application of the theory of the rotation of vector fields to
the investigation of wave solutions of parabolic equations. Trans. Moscow Math. Soc.,
52 (1990), 59-108.

[17] A. Volpert, V. Volpert. Existence of multidimensional travelling waves and systems of
waves. Comm. Partial Differential Equations, 26 (2001), no. 3-4, 421 - 459.

[18] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems.
Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence,
1994.

18



[19] A.I. Volpert, V.A. Volpert. Construction of the Leray-Schauder degree for elliptic op-
erators in unbounded domains. Ann. Inst. H. Poincare Anal. Non Lineaire, 11 (1994),
no. 3, 245-273.

[20] V. Volpert, A. Volpert, J.F. Collet. Topological degree for elliptic operators in un-
bounded cylinders. Adv. Differential Equations, 4 (1999), no. 6, 777-812.

[21] V. Volpert, A. Volpert. Properness and topological degree for general elliptic operators.
Abstr. Appl. Anal., (2003), no. 3, 129-181.

[22] V. Volpert, V. Vougalter. Method of monotone solutions for reaction-diffusion equations.
Contemporary Mathematics. Fundamental Directions, 2018, in press.

[23] V.Vougalter, V.Volpert. On the existence of stationary solutions for some non-Fredholm
integro-differential equations, Doc. Math., 16 (2011), 561-580.

[24] V.Vougalter, V.Volpert. Solvability conditions for some linear and nonlinear non-
Fredholm elliptic problems, Anal. Math. Phys., 2 (2012), No. 4, 473-496.

19


