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ABSTRACT. We consider the gravity water waves system with a periodic one-dimensional interface
in infinite depth, and prove a rigorous reduction of these equations to Bikhoff normal form up to
degree four. This proves a conjecture of Zakharov-Dyachenko [62] based on the formal Birkhoff
integrability of the water waves Hamiltonian truncated at order four. As a consequence, we also
obtain a long-time stability result: periodic perturbations of a flat interface that are of size € in a
sufficiently smooth Sobolev space lead to solutions that remain regular and small up to times of
order 3.

Main difficulties in the proof are the quasilinear nature of the equations, the presence of small
divisors arising from near-resonances, and non-trivial resonant four-waves interactions, the so-called
Benjamin-Feir resonances. The main ingredients that we use are: (1) various reductions to con-
stant coefficient operators through flow conjugation techniques; (2) the verification of key algebraic
properties of the gravity water waves system which imply the integrability of the equations at non-
negative orders; (3) smoothing procedures and Poincaré-Birkhoff normal form transformations;
(4) a normal form identification argument that allows us to handle Benajamin-Feir resonances by
comparing with the formal computations of [62] 22 [30] 20].
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1. INTRODUCTION

We consider an incompressible and irrotational perfect fluid, under the action of gravity, occu-
pying at time ¢ a two dimensional domain with infinite depth, periodic in the horizontal variable,
given by

Dy :={(z,y) e TxR; —co<y<n(taz)}, T:=R/(2rZ), (1.1)
where 7 is a smooth enough function. The velocity field in the time dependent domain D,, is the
gradient of a harmonic function @, called the velocity potential. The time-evolution of the fluid
is determined by a system of equations for the two functions (t,x) — n(t,x), (t,z,y) — ®(t, z,y).

This research was supported by PRIN 2015 “Variational methods, with applications to problems in mathematical
physics and geometry”. The third author was supported in part by Start-up grants from Princeton University and
the University of Toronto, and NSERC grant RGPIN-201.
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Following Zakharov [61] and Craig-Sulem [2I] we denote ¥ (t,x) = ®(¢,z,n(t,z)) the restriction
of the velocity potential to the free interface. Given the shape 7(t, ) of the domain D, and the
Dirichlet value v (t,x) of the velocity potential at the top boundary, one can recover ®(¢,z,y) as
the unique solution of the elliptic problem

AP =0inD,, 0y —=0asy— —oo, ®=von{y=nta)} (1.2)
The (n,1) variables then satisfy the gravity water waves system
o =Gy

’ 1.3
Opb = —gn — %Uji L L(mets + Gn)y) (1.3)

2 1+n2

where G(n)1 is the Dirichlet-Neumann operator
G = V14 17(0n®)ly—p(te) = (Oy® = n:0:P)(t, z,n(t, 7)) (1.4)

and n is the outward unit normal at the free interface y = n(t,z). G(n) is a pseudo-differential
operator with principal symbol |D|, self-adjoint with respect to the L? scalar product, positive-
semidefinite, and its kernel contains only the constant functions. Without loss of generality, we set
the gravity constant to g = 1.

It was first observed by Zakharov [61] that are the Hamiltonian system

8t77 = V’QZ)H(nv ¢) ; at¢ = _vﬁH(n’ 1/}) ) (15)
where V denotes the L?-gradient, with Hamiltonian
1 1
Hwb) =y [6Gppds+ [ s (1.6
T T

given by the sum of the kinetic and potential energy of the fluid. Recall that the Poisson bracket
between functions H(n, ), F'(n, 1) is defined as

{F.H} = /T (VyHV yF =V HV, F)dz . (1.7)

Note that the “mass” fT ndz is a prime integral of and, with no loss of generality, we can fix
it to zero by shifting the y coordinate. Moreover (|1.3) is invariant under spatial translations and
Noether’s theorem implies that the momentum [}, 7, (x)(z) da is a prime integral of (L.F)).
Let H*(T) := H®, s € R, be the Sobolev spaces of 2m-periodic functions of x. The natural phase
space of is
(n,¢) € Hg(T) x H*(T) (1.8)
where H*(T) := H*(T)/~ is the homogeneous Sobolev space obtained by the equivalence relation
P1(x) ~ o(x) if and only if ¢1(x) — ¢a(z) = cis a constantEL and H{(T) is the subspace of

H*(T) of zero average functions. Moreover, since the space averages 7o(t) = 5= [rn(t,z)dz,
120(75) = % Jp ¥(t,z) dx evolve according to the decoupled equation
Oo(t) =0,  dbo(t) = —gio(t) , (1.9)

IThe fact that Y € H*® is coherent with the fact that only the velocity field Va&,y® has physical meaning, and
the velocity potential @ is defined up to a constant. For simplicity of notation we denote the equivalence class [¢]
by 1 and, since the quotient map induces an isometry of H* (T) onto Hj(T), we will conveniently identify ¢ with a
function with zero average.

2Since the ocean has infinite depth, if ® solves , then ®.(z,y) := ®(z,y — ¢) solves the same problem in Dy,
assuming the Dirichlet datum 1) at the free boundary n + c¢. Therefore G(n+ ¢) = G(n), Vc € R, and fT VaKdr=0
where K := £ Jz G (n)t da denotes the kinetic energy.
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we may restrict, with no loss of generality, to the invariant subspace

/Tnd:B:/T@/)d:r:O.

The main result of this paper (Theorem proves a conjecture of Zakharov-Dyachenko [62]
and Craig-Worfolk [22], on the approximate integrability of the water waves system . More
precisely, we show that can be conjugated, via a bounded and invertible transformation in a
neighborhood of the origin in phase space, to its Birkhoff normal form, up to order 4. This latter
was formally computed in [62, 22], see also [20], and, remarkably, shown to be integrable. As a
consequence, we obtain a long-time stability result (Theorem for small periodic perturbations of
flat interfaces: periodic perturbations that are initially e-close to the flat equilibrium in a sufficiently
regular Sobolev space, lead to solutions that remain regular and small for times of order £73.

While in recent years several results have been obtained for quasilinear equations set in an Eu-
clidean space R?, fewer results are available in the periodic setting, or on other compact manifolds.
In this context, the achievement of extended stability results through rigorous reductions to high-
order Birkhoff normal forms should be seen as a key step to understand the global dynamics of
evolution PDEs in non-dispersive settings.

1.1. Main results. We denote the horizontal and vertical components of the velocity field at the
free interface by

V=V(n,¢) = (0:2)(x,n(x)) = Yz — 0B, (1.10)

(M + Nzthe

B = B(r.v) = (0,8)(z.n(a)) = T (1.11)

and the “good unknown” of Alinhac

wi=1— OPBW(B(T/a ?/)))777 (112)

as introduced in Alazard-Metivier [6] (see Definition for the definition of the paradifferential
operator Op®W).

To state our first main result concerning the rigorous reduction to Birkhoff normal form of the
system , let us assume that, for N large enough and some T > 0, we have a classical solution

(n.4) € CO(=T. T); HN 5 x HN*5) (1.13)
of the Cauchy problem for ([1.3|) with the initial height satisfying

/ n(0,z)dxr =0. (1.14)
T

The existence of such a solution, at least for small enough T, is guaranteed by the local well-
posedness Theorem of Alazard-Burq-Zuily [3] (see Theorem below) under the regularity as-

sumption (n,,V, B)(0) € XN=1 where we denote
X = H"2 x H"2 x H® x H* . (1.15)
Defining the complex scalar unknown

Lipin+ Lpp (1.16)
U= — 1 —|D|3w, .
V2 7 V2

we deduce, by (1.13), that u € C([~T,T]; H"), and u solves an evolution equation of the form
Ou + iw(D)u = M>o(u,w), w(k) = /K|, (1.17)
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where M>2(u, @) is a fully nonlinear vector field which contains up to first order derivatives of w.
Moreover, since the zero average condition ((1.14)) is preserved by the flow of ([1.3)), it follows that

/u(t,x) de =0, Vtel-T,T]. (1.18)
T

This is our first main result.

Theorem 1.1. (Birkhoff normal form) Let u be defined as in (1.16)), with w as in (1.12)), for

(n,v) solution of (1.3)) satisfying (1.13))-(1.14). There exist N > K > 1 and 0 < € < 1, such
that, if

K
sup Y [|0fu(t)| gpr—r <E, (1.19)
te[-T.1] .=
then there exist a bounded and invertible transformation B = B(u) of HN , which depends (nonlin-
early) on u, and a constant C := C(N) > 0 such that
1B ()l 2 g vy + 1B ) ™ g vy < 1+ Cllul g, (1.20)
and the variable z := B(u)u satisfies the equation
Oz = —i0zHzp(2,7) + X, (1.21)
where:

(1) the Hamiltonian Hzp has the form

1
Hzp = Hyh+ Hy),  Hpp(22) = / 1D]52)* de, (1.22)
T
with
), — 1 31, |4 2. 12
Hyp(2,%) = EZW (lzrl* = 202k ?z-1]%)
keZ
1 (1.23)
+— > L N e N L T e N e b
k1,k2€Z,sign(k1)=sign(k2)
k2| <|k1]

where zy denotes the k-th Fourier coefficient of the function z, see (|2.3)).
(2) &4, == X3, (u, 7, 2,%) is a quartic nonlinear term satisfying, for some C := C(N) > 0, the
“energy estimate”

Re/ IDINXL, - [DINzde < C|lz|%x - (1.24)
- >

The main point of Theorem is the construction of the bounded and invertible transformation
B(u) in which recasts the water waves system (in the form of the equation (|1.17)
satisfied by w) into the equation (1.2I)-(1.24). Purely formal, i.e. unbounded, non-invertible,
transformations mapping the Hamiltonia to the Hamiltonian , up to higher order
degrees of homogeneity, were previously exhibited by Zakharov-Dyachenko [62] (hence our notation
Hyzp), Craig-Worfolk [22], and Craig-Sulem [20].

The main consequence of Theorem is to rigorously relate the flow of the full water waves
system to the flow of the system , which is made by the explicit Hamiltonian component
Hzp plus remainders of higher homogeneity. These remainders are under full control thanks to
the energy estimates ((1.24). With simple calculations one can verify that the Hamiltonian Hyzp is
integrable, as observed in [62, 22], and its flow preserves all the Sobolev norms; see Theorem
Thus, as a consequence of Theorem we obtain the following long-time existence result.
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Theorem 1.2. (Long-time existence) There exists sy > 0 such that, for all s > sg, there is
eo > 0 such that, for any initial data (no, o) satisfying (recall (1.15)))

H(WO’wO, %7 BO)HXS S g S &0, / 770(97>dx - 07 (125>
T

where Vi := V(no, o), Bo := B(no, o) are defined by (1.10)-(1.11)), the following holds: there exist
constants ¢ > 0, C > 0 and a unique classical solution (0,1, V,B) € C°([~1.,T:], X*) of the water

waves system (1.3) with initial condition (n,)(0) = (no, o) with
T.>ce™?, (1.26)
satisfying

S (e ) lexczs + 1V, B) | grs-1xprs-1) < Ce, /Tn(t, z)dzr = 0. (1.27)

The main conclusion of the above theorem is the existence time 7. of order O(¢~3). This goes
well beyond the time of O(e~!) which is guaranteed by the local existence theory. It also extends
past the natural time scale of O(¢~2) which one expects for non-resonant equations, and that
has indeed been achieved for the system in the works of Wu [58], Ionescu-Pusateri [43] and
Hunter-Ifrim-Tataru [37]. To our knowledge, this is the first e existence result for water waves,
or quasilinear systems, in absence of external parameters. The regularity index in Theorem isa
large number sg which we did not try to optimize. By a more careful analysis and some adjustments
to our setting for the paradifferential calculus, one could likely set so = 30.

Before discussing the literature on long-time existence results and normal forms, we briefly
describe some of the key points of this paper, and refer to Subsection for a longer explanation
of our strategy.

e The long-time existence Theorem is obtained by a different mechanism compared to all
previous works in the literature, such as [58, 411, [37]. It relies on a complete conjugation of the
water waves vector field to its Birkhoff normal form up to order 4, Theorem and not
on the use of energies as in [23| 25] [41], 37, [39].

e The gravity water waves system ([1.3)) presents a family of non-trivial quartic resonances, the
so-called Benjamin-Feir resonances, and there are no external parameters which can be used
to modulate the dispersion relation to avoid higher order resonances.

e The nonlinear Birkhoff normal form transformation of Theorem is constructed by com-
posing several paradifferential flow conjugations. Since the gravity water waves dispersion
relation w(k) = \/m is sublinear (in particular it is of lower order compared to the first order
quasilinear transport term in the equation) the Birkhoff normal form reduction procedure is
very different from [I3], where the dispersion relation ~ |k|3/? is superlinear. However, we
still employ the paradifferential framework developed in [I3] as it readily provides us with a
paralinearization of the Dirichlet-Neumann map with multilinear expansions, and several tools
for conjugations via paradifferential flows.

e Besides the resonant interactions, one also needs to pay attention to near resonances which
can prevent the boundedness of the Poincaré-Birkhoff normal form transformations. This is
addressed by performing iterative diagonalization and smoothing procedures.

e Our transformations are non-symplectic and the final resonant Poincaré-Birkhoff normal form
system is not a priori explicit. Then, an important step in our proof is a normal form uniqueness
argument, that relies on the absence of three-waves resonances, and allows us to identify our
system with the Hamiltonian equations associated to the Zakharov-Dyachenko-Craig-Worfolk

Hamiltonian Hyzp in (1.22)-(|1.23)), up to degree 4 of homogeneity.
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We have chosen to formulate our long-time existence result using the original symplectic variables
(n,%) as well as the velocity components (V, B) in (1.10])-(1.11)) consistently with the formulation

of the local existence theorem of [3], that we reproduce below.

Theorem 1.3 (Local existence [3]). Let s > 3/2 and consider (no,vo) such that (no, o, Vo, Bo) is
in X?, see (1.15]). Then the following holds:

(1) there exists Tioc > 0 such that the Cauchy problem for (1.3|) with initial data (no,v0) has a
unique solution (n, 1)) € CO([O,TR)C},HSJ“% X H5+%) with (V, B) € C°([0, Tioc), H® x H?);

(2) let T, be the mazimal time of existence of the solution (n,) € C°([0, Tioc), H 3 x H5+%). If,
for some Ty > 0,
sup ||(777¢7V»B)(t)|\x5 < 400 (128)
[0,T0]

then Ty < T, and sup 1, [[(n, ¥, V, B)(t)[|xs < +o0.

Part (1) of Theorem is the local existence result [3, Theorem 1.2], stated in the case of
the torus T, for a fluid in infinite depth. The result is based on energy methods for hyperbolic
symmetrizable quasi-linear systems, which are the same in T and in R%. A more precise version,
which implies also the continuation criterion in (2), is Theorem 1.2 of De Poyferré [29]. By time-
reversibility, the solutions of are defined in a symmetric interval [T, T]. Note that the system
which we derive in Proposition admits energy estimates. Therefore, one could also prove
a local existence result based on this, implementing an iterative scheme as in [31].

1.2. Literature. We now present some known results on the well-posedness and normal form
theory for the water waves equations.

Local well-posedness. Early results on the local well-posedness of the water waves system include
those by Nalimov [49], Yosihara [60], and Craig [19], which deal with the case of small perturbations
of a flat interface. It was then proved by Wu [56] [57] that local-in-time solutions can be constructed
with initial data of arbitrary size in Sobolev spaces, in the irrotational case. The question of local
well-posedness of the water waves and free boundary Euler equations has then been addressed by
many authors, see for example [15, [17, 47, [7, 45, 18, 51, 16, 2, B]. We refer to [43, Section 2| for
a longer discussion. Due to the cited contributions, the local well-posedness theory is presently
well-understood: in a variety of different scenarios, for sufficiently nice initial data, it is possible
to prove the existence of classical smooth solutions on a small time interval that depends on the
size of the initial data (and the arc-chord constant of the initial interface). In particular, for data

which are ¢ close to a flat interface, solutions exist and stay regular for times of order e~1.

Long-time regularity in the Euclidean case. In the Euclidean case, i.e. when the horizontal vari-
able z € R?, it is also possible to construct global-in-time solutions for the water waves equations.
The main mechanism used in these cases is dispersion which, combined with localization (decay at
spatial infinity), transfers the decay of linear solutions to the nonlinear problem, and gives control
for long times.

For 3-dimensional fluids (2d interfaces), the first global well-posedness results were proved by
Germain-Masmoudi-Shatah [33] and Wu [59] for gravity water waves, and for the capillary problem
(g =0, k > 0, Kk being the surface tension coefficient when capillarity at the interface is included
in the system) by Germain-Masmoudi-Shatah [34]. The more difficult question of global regularity
for the gravity-capillary water waves (g > 0, k > 0) has been recently solved by Deng-ITonescu-
Pausader-Pusateri [2§]. For the case of a finite flat bottom see the works of Wang [54] [55].

For 2-dimensional fluids (1d interfaces), the first long-time existence result is due to Wu [5§],
who proved an almost-global existence result for gravity water waves. This was improved to global
regularity by Ionescu-Pusateri [40], Alazard-Delort [4, 5], Hunter and Ifrim-Tataru [37,[38]. See also
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the improvements by Wang [53]. For the capillary problem in 2d, global regularity was proved by
Ionescu-Pusateri [42], see also [41], and by Ifrim-Tataru [39]. We refer to [43] for a more extensive
list of references.

Long-time existence on Tori: Normal Forms. In the case of the torus, € T¢, there are no
obvious dispersive effects that help to control solutions for long times. In addition, the quasilinear
nature of the equations and the lack of conserved quantities which control high Sobolev norms,
prevent the effective use of semilinear techniques.

An important tool that can be used to extend the lifespan of solutions for quasilinear equations
is normal form theory. To explain the idea, let us consider a generic evolution equation of the form

O+ iw(D)u = Q(u,w), u(t=0)=wug, |uolg~yv <e, (1.29)
where w = w(D) is a real-valued Fourier multiplier, and @ is a quadratic nonlinearity, semi- or
quasi-linear, which depends on (u,u) and their derivatives. In the case of (1.3|) the dispersion
relation is w(k) = /|k|. An energy estimate for (1.29)) of the form %E(t) S Ju(t)|| yv E(t), where

E(t) = ||lu(t)||3;~, allows the construction of local solutions on time scales of O(e™1).
To extend the time of existence one can try to obtain a quartic energy inequality of the form

B(t) - B(0)] < /0 lu(r) | E(r) dr (1.30)

This will then give existence for times of O(¢72). For water waves, such inequalities have been
proven in [58, 52, 40, 4, [37] for the system (1.3)), and also in the case of pure capillarity [42}[39], and
gravity over a flat bottom [35]. Similar results were obtained in [26] for the Klein-Gordon equation
on T¢, which corresponds to the dispersion relation w(k) = /|k[> + m? in (T.29). Although some
delicate analysis is needed in the case of quasilinear PDEs, the possibility of proving an inequality
of the form relies on the absence of 3-waves resonances, that is, non-zero integers (n1, na, n3)
solving

o1w(ny) + oow(ng) + osw(ns) =0, o1ny + oong +o3ng =0, (1.31)
for o; € {+,—}. In order to further extend the existence time, one can try to upgrade to an
estimate like

B(t) - B(0)] < /0 lu(r)[3n E(7) dr . (1.32)

At a formal level, this is possible in the absence of 4-waves resonances, that is, non-trivial integer
solutions of

4 4
30010'2030'4('”13”2’”37”4) = Zo-jw(nj) =0, Zajnj =0. (133)
j=1 J=1
Here, by “trivial” solutions we mean those 4-tuples where the frequencies nq, ..., n4 appear in pairs

with corresponding opposite signs. These unavoidable resonances can then often be handled by
exploiting the Hamiltonian /reversibile structure of the equation to show that they do not contribute
to the energy inequality.

The condition on the absence of non-trivial solutions to ([1.33)) is, however, not satisfied in many
cases, and it does not hold true for the gravity water waves system . See the expressions ([1.38))
of the nontrivial solutions of . Nevertheless, could still follow from the more precise
(and quantitative) inequality

do1...04 (nla na,n3,n4g
Doy ..oq (N1, M2, 13, M4
for some p > 0, where ¢,,.. -, is an appropriate symbol determined by the nonlinearity ). Note

that for ([1.34)) to hold it is necessary that the symbol ¢y, . 5, (n1, 12,13, n4) vanishes at all the sites
of the non-trivial 4 resonances. Verifying (1.34)) can be a difficult task, because of complicated

)) ‘ < (third largest frequency among (n1), (na), (n3), (n4))? (1.34)
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algebra, losses of derivatives from the nonlinearity, and the presence of near-resonant interactions.
To our knowledge, such a condition has not been verified for or any other quasilinear system.

As we will explain in detail in Subsection below, our approach to the question of long-time
existence is very different from the works cited above. We will actually prove a quintic energy
inequality of the form (|1.32)) as a consequence of a much more precise analysis of the equations,
and the reduction of its integrable Birkhoff normal form up to order 4.

Existence results for longer times can sometimes be obtained when the dispersion relation w(k)
in depends in a non-degenerate way on some additional parameter. In these cases it is
possible to verify algebraic conditions such as and its higher order analogues for almost all
values of these parameters. Trivial resonances can again be handled using the the Hamiltonian
(or reversible) structure of the equations. In this direction we mention the works of Bambusi [10],
Delort-Szeftel [27], Bambusi-Delort-Grebért-Szeftel [11], and Bambusi-Grebért [12] which developed
normal form theory for Hamiltonian semilinear PDEs. In the context of quasilinear PDEs, Delort
[24] 25] obtained an e~M existence result for arbitrary M, for almost all mass parameters m for
Hamiltonian Klein-Gordon equations on spheres.

For water waves, the only extended stability result proven so far, is that of Berti-Delort [I3] who
obtained an e =M existence result for 1d periodic gravity-capillary waves with depth h, corresponding
to w(k) = /tanh(h|k|)(g|k| + k|k[3), for almost all values of the surface tension parameter x. This
work introduced a general procedure for dealing with normal forms of quasi-linear PDEs, performing
a paradifferential regularization of the unbounded operators up to smoothing remainders, before
starting Birkhoff normal form reductions to eliminate the homogeneous components of the vector
field of low degree in u. We also refer to Feola-Iandoli [32] where this strategy is applied to fully
nonlinear reversible Schrodinger equations.

Quasi-periodic solutions. We finally mention that global in time quasi-periodic solutions for
1d space periodic water waves equations have been recently constructed, using KAM techniques
combined with a systematic use of pseudo-differential calculus, in Berti-Montalto [14] for gravity-
capillary waves, using k as a parameter (see [I] for periodic solutions), and in Baldi-Berti-Haus-
Montalto [9] for pure gravity waves in finite depth (see [50], [44] for periodic solutions) using the
depth or the wavelength as a parameter. For the construction of quasi-periodic solutions using the
“initial conditions” as parameters we refer to Baldi-Berti-Montalto [§] for quasilinear perturbations
of KdV.

1.3. The Zakharov-Dyachenko conjecture and our strategy. In this subsection we first
recall the calculations of [62] 22 30, 20] concerning the formal integrability, up to order four, of
the pure gravity water waves Hamiltonian in infinite depth. We then discuss the strategy of
proof of Theorem which rigorously justifies this integrability.

1.3.1. The formal Birkhoff normal form of Zakharov-Dyachenko [62]. Consider the Hamiltonian H
in (1.6)) on the phase space ([1.8)). Introduce the complex variable
1 1 1 1
w:= ——|D|"in + —| D1y, 1.35
ﬂ’ [~ \/5! KX (1.35)
and let Hc be the Hamiltonian expressed in (u, ). By a Taylor expansion of the Dirichlet-Neumann

operator for small 7, see for example [21], one can expand H = H((Cz) + Hg’) + -+ where H((CZ) are
¢-homogeneous in (u,w), see ((7.8)-(7.9)-(7.10). Notice that in this Taylor expansion there is a priori
no control on the boundedness of the Hamiltonian vector fields associated to Hg), {=3,4,...

Applying the usual Birkhoff normal form procedure for Hamiltonian systems (see Subsection
, it is possible to find a formal symplectic transformation ® such that

Hod=HY +HY) + - (1.36)
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where: (1) all terms of homogeneity 3 have been eliminated due to the absence of 3-waves resonant

interactions, that is, non-zero integer solutions of ([1.31)), and (2) the term H(Z [)) is supported only

on Birkhoff resonant quadruples, i.e.

Hy) = 3 HET208,00,0102,78 1,0 (1.37)

ni,n2,m3,n4 N1 N2 N3 n4
o1ni1+oonz+osnz+oangs=0

o1w(ni)+ow(ng)+osw(ns)+oaw(na)=0
where Hiln2n30t € C, w(n) = /|n| and ny, ng, n3, ng € Z\ {0}. As shown in [62], there are many
solutions to the constralnts for the sum in . For example, if 01 = 03 = 1 = —09 = —o0y,
and up to permutations, there are trivial solutions of the form (k, k, 7, j), which give rise to benign
integrable monomials |ug|?|u;|? and the two parameter family of solutions, called Benjamin-Feir
resonances,

U {nl =M% e =Ab0+1)%, ng = Ab? +b+1)% ng = Ab+ 1)2b2} : (1.38)
A€Z\{0},beN

As a consequence, one could expect, a priori, the presence in of non-integrable monomials
of the form w_\pey (5 1)2Uxp2+b+1)2Un(b41)252 and their complex conjugates. The striking property
proved in [62], see also [22, 20], is that the coefficients Hy, nzmimns in (1.37) which are supported on
Benjamin-Feir resonances are actually zero. The consequence of this “null condition” of the gravity
water waves system in infinite depth is the following remarkable result:

Theorem 1.4. (Formal integrability of the water waves Hamiltonian (1.6) at order
four [62, B0, 22, 20]) The Hamiltonian H(Z% n ) has the form (1.23|). The Hamiltonian

Hy;p = H(Z% +H 4D m s integrable and it can be written in actwn angle variables as
The Hamiltonian vector ﬁeld generated by Hzp, explicitly written in and ( - possesses
the actions |u,|?, n € Z\ {0}, as prime integrals. In particular, the flow of Hzp preserves all
Sobolev norms.

We refer the reader to Subsection [Z.1] for further details on the structure of the Hamiltonian
Hzp. Unfortunately, this striking result is a purely formal calculation because the transformation
® in is not bounded and invertible, and there is no control on the higher order remainder
terms. Thus, no actual relation can be established between the flow of H (which is well-posed for
short times) and that of H o ®.

1.3.2. Strategy for the proof of Theorem . We now describe how the water-waves system ([1.3])
can be conjugated, through finitely many well-defined, bounded and invertible transformations, to

the Hamiltonian equation (1.21]),
Oz = —i|D|"22 —10:H ) (2,7) + X,

where Hg% is the Hamiltonian (1.23)) and the quartic remainder X;L admits energy estimates in

the sense of ((1.24)).

Step 1: Diagonalization up to smoothing remainders. We begin our analysis by paralinearizing

the water-waves system , writing it as a system in the complex variable
1 1
U:=(u,u u:=—|D| 1 Dw
(u, @), \/5\ "+ \f\ E

where w is the “good-unknown” defined in . The good unknown w has been introduced by
Alazard-Metivier [6] and systematically used in the works on the local existence theory of Alazard-
Burg-Zuily [2, 3] to prove energy estimates; see also Alazard-Delort [4 [5]. In this paper we use
the paralinearization results proved in [I3], collected in Proposition which, in addition, provide
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expansions in homogeneous components in 7, w of the paralinearized system. The precise form of
the system satisfied by the complex variable U is given by in Proposition

Our first task is to perform a diagonalization in (u, @) of this system up to smoothing remainders.
We remark that the highest order quasilinear transport operator in the system is already
diagonal. Hence, as a first step in Section we diagonalize the sub-principal operator (which is
of order 1/2), as one would do to obtain local-in-time energy estimates. We then use an iterative
descent procedure to diagonalize the operators of order 0, —1/2, and so on, up to a large negative
order. The outcome of this procedure is described in Proposition in which we obtain that
is reduced to the system .

The main reason for this “super” diagonalization procedure, inspired by [I3], is that, when
combined with a reduction to constant coefficients (Step 2 below), it allows us to handle all the
losses of derivatives that arise from quasilinear terms and small divisors when performing Poincaré-
Birkhoff normal form reductions (Step 3 below).

Step 2: Reduction to constant coefficients and Poincaré-Birkhoff normal forms. In Section [ we
reduce all the para-differential operators in the diagonalized system to constant-in-x coeffi-
cients, which are integrable in the sense of Definition [5.1] up to smoothing remainders of homo-
geneity 2 and 3, and higher order contributions that admit energy estimates of the form (|1.24]).
The most delicate reductions concern the quasilinear components in the right-hand side ofqﬂél_z :
the highest order fully nonlinear transport term iOpBW(V¢) and the quasilinear dispersive term
iOpPV((1 +a©)le]2).

Let us briefly describe how to deal with the transport term. Roughly speaking, at the highest
order, system (which we represent using only its first equation, the second one being the
complex conjugate) looks like

where V' = V(u) is a real-valued function that depends on u, hence on x and ¢, and vanishes at
u = 0. Our aim is to transform (1.39) into an equation of the form

O = —iOpBW(vf)v +..- where V= C(u) + O(u?) (1.40)

is a real valued function independent of x up to cubic order in u. To do this we consider an auxiliary
flow ®? obtained by solving

9p®? = A®?, ®%=0 =14, (1.41)
where A = i0pBW(B(u)) is a para-differential operator, with B(u) a real-valued function to be
determined depending on the solution u, and possibly on 6. Since [ is real valued, is a
paradifferential transport equation which is well-posed in the auxiliary time 6, and gives rise to a
bounded and invertible flow ®?, § € [0,1]. The conjugation through the flow ®%=1 corresponds to a
paradifferential change of variables which is approximately given by the paracomposition operator
associated to the diffeomorphism = — x + B(u(x,t)) of T.

We then define a new variable through the time-1 flow of ,

vi=3"lw.
Conjugating (1.39) through the flow ®’=! one obtains (see Lemma
Oy = —iOpBW(Vé)v — [0 Ao+ -+ = —iOpBW((V(u) + 3t5(u))£)v + e (1.42)

64'

where “---” denote paradifferential operators of order less than 1, or terms satisfying the energy
estimates . Notice that the contribution at the highest order 1 comes from the conjugation of
Oy because the dispersion relation —i|D|'/? has sublinear growth. For this reason, all our transfor-
mations are very different with respect to those performed in [I3] for the gravity-capillary equations
where the dispersion relation ~ —i|D|3/ 2 is superlinear. In Appendix we provide the general
transformation rules of a paradifferential operator under the flow generated by a paradifferential
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equation like (1.41)). In particular, a key feature is that paradifferential operators are transformed
into paradifferential ones with symbols which can be algorithmically computed.

In light of we look for 3 solving
oB(u) + V(u) = C(u) + Ou?), (1.43)

where ((u) is constant-in-x. However, in general it is only possible to obtain

a8+ V() = S (W w2+ Y (W) une ™+ O(?)

nez\{0} neZ\{0}
where (Vél)):{l;2 are some coefficients depending on the function V. We then verify the essential
cancellation (Vgl));{;n = 0, thus reducing the equation (1.42)) to the desired form (1.40). More

specifically, ((u) has the “integrable” form

== alllul,

neZ\{0}
and ((1.40) is given in Fourier by

) i g
vn:—;< E j|j||Uj|2) nuy + - - - (1.44)
JEZ\{0}

which (substitute u; = vj+- - ) is composed only by Birkhoff resonant cubic vector field monomials.

Remark 1.5. While we do verify explicitly several key cancellations, such as the one leading to
, some, but not all, of them can be derived as a consequence of the following invariance
properties of the water waves system :
(i) The water waves vector field X (n,1) is reversible with respect to the involution

S : [gg))] s [jig(—f;)}, ie. XoS=-SoX; (1.45)
(ii) X 1is even-to-even, i.e. maps even functions into even functions.

The reduction described above is performed in Subsection [5.1]in two separate steps corresponding
to the degrees of homogeneity one and two in w. Similar arguments can be used to reduce to
constant coefficients — and in Birkhoff normal form — the modified dispersive term i(1 + ag)|¢|!/2.
Actually, thanks to additional algebraic cancellations, which appear to be intrinsic to the water
waves system , it turns out that the new dispersive term is exactly —i]D\%, up to lower order
symbols. The transformation which is used for the conjugation is the flow (thus bounded and
invertible) generated by a paradifferential “semi-Fourier integral operator” as with generator
A= iOpBW(/B(u)lf\%) for a suitable real S(u).

All lower order symbols can also be reduced to constant coefficients in = — and in Poincaré-
Birkhoff normal form — using flows generated by Banach space ODEs. Eventually we obtain the
system , which is in Poincaré-Birkhoff-normal form up to cubic degree in u, and up to a
smoothing remainder and admissible symbols which satisfy energy estimates. We say that is
in Poincaré-Birkhoff normal form, and not just Birkhoff, because it is not Hamiltonian, since we
performed non-symplectic transformations.

Step 3: Poincaré-Birkhoff normal form reductions. By the previous transformations we have
obtained a system of the form

Oz = —((2)0az — D22 + r_1 (2 D)[2] + R(2) + X (1.46)

where r_y/5 is a constant-coefficient integrable symbol of order —1 /2, up to some very regular
nonlinear term R(z), plus an admissible remainder term X>4 of higher homogeneity satisfying
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energy estimates as (1.24). Our next step, in Section [6] is to apply Poincaré-Birkhoff normal form
transformations to eliminate all non-resonant quadratic and cubic nonlinear terms in the smoothing
remainder R. Thanks to these normal forms transformations the new system becomes (Proposition

52)

Qz = —((2)0uz —i|D|Z 2 +1_15(2 D)[2] + R™(2) + Xou (1.47)
where R™5(z) is a cubic term of the form
R (z) = > Ty 2 2z (1.48)

oin1+ogng+o3nz=n
o1w(ni)+oaw(ng)+osw(ng)=w(n)

with coefficients c;1%27% € C (compare with (L.37))). Solutions to the constraints in (1.48) are of
two types:

(a) Trivial Resonances: These occur when, say (o1,02,03) = (+,—,+), one has n; = ng and

n = ng (or permutations) producing resonant cubic terms of the form ¢y, ,|2n, |*2ne™.

(b) Benjamin-Feir resonances: These occur when three of the frequencies (n1,ng, n3, n4) have the
same sign and, in the case of (01,02) = (4, —) say, are given by the two-parameter family in
(1:39).

In the case of Hamiltonian systems — or, more in general, in the presence of other algebraic
structures — one can expect that the trivially resonant terms will not impact the dynamics. Notice
however the following difficulty: we have performed non-symplectic transformations so that the
Hamiltonian nature of is lost. In addition, the presence of 4-waves resonances, such as
the Benjamin-Feir, is a strong obstruction to prove bounded dynamics for times of the order e 3.
One may expect, in analogy with Theorem to be able to check by direct computations that
the coefficients ¢]19273 = in vanish on the Benjamin-Feir resonances. However, after, having
performed all the reductions described before, this computation seems rather involved. As we
describe in Step 4 below, in this paper we will prove such a property by an indirect uniqueness
argument of the cubic Poincaré-Birkhoff normal form.

Before moving to this last step let us comment on the issue of small divisors. To perform
the above Birkhoff normal form reduction of the smoothing terms, we need to deal with near-
resonances. Indeed, our normal form transformation is generated by a flow as in where,
roughly speaking, the coefficients of the operator A are obtained through division by the phase
o1w(ny) + oew(ng) + osw(ns) —w(n). This becomes dangerous if it degenerates rapidly close to the
resonances. For example, if 01 =1 =03, 09 = —1, and nqy = k, ng = —k, ng = j, n = j + 2k, with
§ >k we get |w(ny) — w(ng) + w(ng) —w(n)| =~ j~'/2. Dividing by this expression then causes a
loss of (at least) a 1/2 derivative. In our proof this issue is overcome thanks to the fact that the
smoothing remainders R(z) can tolerate losses of derivatives.

Step 4: Normal form identification. In our last main step in Subsection we prove that the
cubic terms in ([1.47)-(1.48)) coincide with the Hamiltonian vector field generated by the quartic
Hamiltonian in ((1.23])

— ((2)ez +7_1/5(2; D)[] + R(2) = —i0-HY), (1.49)

This implies in particular that R™(z) is supported only on trivial resonances. To obtain
we use a normal form identification argument which relies on the uniqueness of solutions of the
quadratic homological equation . The final outcome is that the equation , that we have
obtained through the bounded and invertible transformations described in Steps 1-3, coincides up
to quartic terms, with the Hamiltonian vector field generated by the Hamiltonian formally
derived by Zakharov-Dyachenko-Craig-Worfolk-Sulem. Notice that this argument also proves that
the cubic vector field of the Poincaré-Birkhoff normal form is Hamiltonian, which was not
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known a priori since we have performed non-symplectic transformations. This algebraic identifi-
cation can be seen as philosophically similar to Moser’s indirect proof of the convergence of the
Lindsted series for a KAM torus [48]: Moser rigorously proves the existence of quasi-periodic so-
lutions, which are analytic in e, and then shows, a posteriori, that their Taylor expansions in &
coincide with the formal Lindsted power series.

Acknowledgements. We thank M. Procesi and W. Craig for stimulating discussions on the topic.

2. FUNCTIONAL SETTING AND PARA-DIFFERENTIAL CALCULUS

In this section we introduce our notation and recall several results on para-differential calculus,
mostly following Chapter 3 of the monograph [I3]. We find convenient the use of this set-up to
obtain our initial paralinearization of the water waves equations with multilinear expansions,
as stated in Proposition [3.I] and several tools for conjugations via paradifferential flows which are
contained in Appendix [A22]

Given an interval I C R symmetric with respect tot =0 and s € R we define the space

CK(1, H%(T,C?) ﬂ Ck(I; H7F(T;C?)),
k=0
endowed with the norm

SZIEI?HU(L-)HK,S where [|U(,)|| s := ZH@k s M prs—r- (2.1)

We denote by CL (I, H*(T, C?)) the space of functions U in Cf([, H*(T,C?)) such that U = [%].
Given r > 0 we set

BE(I;r) = {U € CE (I, B (T;€%)) ; sup [[U (¢, )1 < r}. (2.2)

With similar meaning we denote CX(I; H5(T;C)). We expand a 2r-periodic function u(z), with
zero average in x (which is identified with u in the homogeneous space), in Fourier series as

einx 1 .
u(x) = u(n , un) = — [ u(x)e "™ dx. 2.3
@= ¥ anT=. A== [ @ (2.3
neZ\{0}
We also use the notation
ul = u, = u(n) and U,y = Uy :=u(n). (2.4)

For n € N* := N\ {0} we denote by II,, the orthogonal projector from L?(T;C) to the subspace
spanned by {e™* e """} i.e.
inx e—inx
II,u)(x) :=uln +u(—n , 2.5
() (o) = ) S+ 70 25)
and we denote by II,, also the corresponding projector in L?(T,C?). IfU = (Uy,...,U,) is a p-tuple
of functions, 7 = (n1,...,n,) € (N*)P, we set

HaU = (I, Uy, ..., 11, Up) (2.6)
In this paper we deal with vector fields X which satisfy the x-translation invariance property
Xompg=mo0oX, VOER, (27)

where

7o : u(x) — (Tpu)(z) == u(x +0). (2.8)
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Para-differential operators. We first give the definition of the classes of symbols that we are
going to use, collecting Definitions 3.1, 3.2 and 3.4 in [I3]. Roughly speaking, the class I')" contains
homogeneous symbols of order m and homogeneity p in U, while the class T'}* K k,p contains non-

homogeneous symbols of order m which vanish at degree at least p in U, and that are (K — K')-times
differentiable in ¢.

Definition 2.1. (Classes of symbols) Letm e R, p, N e N, p< N, K'< K in N, r > 0.

(i) p-.homogeneous symbols. We denote by 1:;1 the space of symmetric p-linear maps from
(H>(T;C?))P to the space of C™ functions of (x,&) € T x R, U — ((z,€) — a(ld;z,£)),
satisfying the following. There is > 0 and, for any o, 5 € N, there is C > 0 such that

P
1020 (T 2, €)| < Clif (€)™ T 1T, Ujll 2 (2.9)
j=1
for anyU = (Uy,...,Up) in (H®(T;C*))P, and it = (n1,...,n,) € (N*)P. Moreover we assume
that, if for some (ng,...,npy) € N x (N*)P,

Mpa(Ily, Uty ... 1y, Ups <) # 0, (2.10)
then there exists a choice of signs oy, ...,0p, € {—1,1} such that Z?:o ojn; = 0. Forp =10
we denote by fg““ the space of constant coefficients symbols & — a(&) which satisfy (2.9) with
o = 0 and the right hand side replaced by C(&)™~P. In addition we require the translation
1nvariance property

a(told;z,€) = all;x +0,€), VOeR. (2.11)

(il) Non-homogeneous symbols. Let p > 1. We denote by I kip [r] the space of functions

(Ust,z,8) — a(U;t,x,£), defined for U € BK(I r), for some large enough sg, with complex

values such that for any 0 < k < K — K', any o > s, there are C >0, 0 < r(c) < r and for
any U € BE(I;r(0)) N CHE' (1, H(T; cc2)) and any o, B € N, with o < & — sg

0820 a(U; t,2,€)| < CLO™ P IUIR o IU ks 0+ (2.12)
(ili) Symbols. We denote by Y% ki p [r, N] the space of functions (U,t,x,&) — a(U;t,z,£) such
that there are homogeneous symbols a, € f;” forq =p,...,N —1 and a non-homogeneous

symbol an € T 11 \[r] such that

N-1
aUst,z,8) = Y ag(U,...,U;z,€) + an(U;t, z,€). (2.13)
q=p

We denote by XI'g 1/ [r, N] @ M3(C) the space 2 x 2 matrices whose entries are symbols in
S o0 [, N.

Remark 2.2. The translation invariance property (2.11)) means that the dependence with respect to
the variable = of the symbol a(U;x, &) enters only through the function U(z), and it implies (2.10]).

Notice that

aefm, beFm = abeF;’fqm BCLGF 8§a€fpm_1;

ac FK,K/,p[ ], K/ +1 S K = 6150/ € FKK/+1P[ ], 810/ S FK,K/,])[T]7 8501 S IWI?’_KI,’p[T]; (2 14)

a €Ug g [r], b €T v yIr] = abe F%J}("?pﬂ[r]

a(US') S le = a(U7"'aU;') € F%Q,P[T]’ vr>0.
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Throughout this paper we will systematically use the following expansions, which are a conse-
quence of (2.11) and uw € H*(T;C). If a; € I'}" then

a1 (Us, &) = f > (a)n(©une, (2.15)

n€Z\{0},0=%
for some (a1)9(€) € C, and, if ay € ' then
ioc(ni1+n2)x i(ni—n2)x
oo o g € 76
2= Y (@Ot Y (@Ot
m,mgi\{o} n1,n2€Z\{0}
(2.16)

for some (ag)n1 n,(§) € C with 0,0" = +.
We also define the following classes of functions in analogy with our classes of symbols.

Definition 2.3. (Functions) Fiz N € N, p € N with p < N K K eNwith K <K, r>0. We
denote by Fp, resp. Fi k' plr], EFpr, N], the subspace of IO s TESD. I‘g[r}, resp. Efg[r, N], made
of those symbols which are independent of £. We write ]-"E, resp. f}%’K,’p[r], E]:E[r, N], to denote
functions in Fp, resp. F i p(r], EFpr, N], which are real valued.

Note that functions a; € ]?1, as € Fo expanded as in (2.15]), (2.16) are real valued if and only if

(a)n = (a1)ns  (32)niine = (82)nny s (32)0ime = (32)05 0, - (2.17)
Paradifferential quantization. Given p € N we consider smooth functions y, € C*°(R? x R;R)
and x € C*°(RxR;R), even with respect to each of their arguments, satisfying, for some 0 < 6 < 1,

supp xp C {(£,€) ERP xRy (€] < 0(E)},  xp(§,€) =1 for [€'] <6(6)/2, (2.18)
supp x C {(£,§) € R x R; [¢'] < 6(&)}, x(§,€) =1 for [€'] < 6(6)/2. (2.19)

For p = 0 we set xo = 1. We assume moreover that
0205 xp(&, )| < Cap§) ™, VaeN, BeN?,
020X (€, €)] < Capl§) ™", Va, BEN.

A function satisfying the above condition is x (&', &) := X(&'/(£)) where X is a function in C§°(R; R)
having a small enough support and equal to one in a neighborhood of zero.

(2.20)

Definition 2.4. (Bony-Weyl quantization) If a is a symbol in F , respectively in I'} K,p[r],
we define its Weyl quantization as the operator acting on a 2mw- pemodzc function u(x) (written as

in @23)) as

ikx

k-i— v, 1\ €
Op" (a)u = \ﬁz(z j)u(g)>m (2.21)

keZ jEL

where a(k,€) is the k" — Fourier coefficient of the 2m—periodic function x — a(z, ).
We set, using notation (12.6)),

ay, Usz,§) = pr n, &) a(llzU; x,€), ay(Ust,z,§) =

neNP

3 [ x(€.9awsne.eea

where in the last equality @ stands for the Fourier transform with respect to the x variable. Then
we define the Bony-Weyl quantization of a as

Op™(a(U;-)) = Op" (ay, Us-),  Op*W(a(Ust, ) = Op" (ay(Ust,-)) . (2.22)
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If a is a symbol in EF%K,m[r, N], that we decompose as in (2.13|), we define its Bony-Weyl quan-
tization

N-1
O0pPW(a(U;t,-)) = > 0p"W(ag(U,...,U;-)) + 0pPW(an (Ust, ) .

e By the translation invariance property (2.11]), we have
O0p™W(ag(roU, ..., 7U; -, €))[1eV] = 19 (O™ (ag (U, ..., U; -, €))[V]) - (2.23)

e The operator Op®W(a) acts on homogeneous spaces of functions, see Proposition

e The action of OpPW(a) on homogeneous spaces only depends on the values of the symbol a =
a(Ust,z,€) (or a(ld;t,z,€)) for [£] > 1. Therefore, we may identify two symbols a(U;t,z,£) and
b(U;t,xz,€) if they agree for |£| > 1/2. In particular, whenever we encounter a symbol that is not
smooth at & = 0, such as, for example, a = g(x)|£|™ for m € R\ {0}, or sign(§), we will consider its
smoothed out version x(£)a, where x € C*°(R;R) is an even and positive cut-off function satisfying

€ =0 g <5, x@=1ilg>5 9x(©>0 vee(5,,).

e If a is a homogeneous symbol, the two definitions of quantization in (2.22)), differ by a smoothing
operator that we introduce in Definition below.

Definition is independent of the cut-off functions x,, x satisfying (2.18)-(2.20]) up to smooth-
ing operators that we define below (see Definition 3.7 in [13]). Roughly speaking, the class R,”

contains smoothing operators which gain p derivatives and are homogeneous of degree p in U, while
the class Rl}p K'p contains non-homogeneous p-smoothing operators which vanish at degree at least
pin U, and are (K — K')-times differentiable in t.

Given (ny,...,np+1) € NPT1 we denote by maxa(ni,...,npr1) the second largest among the
integers m1,...,Mp41.

(2.24)

Definition 2.5. (Classes of smoothing operators) Let K/ < K € N, N € N with N > 1,
uweR, p>0andr>0.
(i) p-homogeneous smoothing operators. We denote by ﬁ;p the space of (p+1)-linear maps
R from the space (H®(T;C?))P x H®(T;C) to the space H®(T;C) symmetric in (Uy,...,Up),
of the form (Uy,...,Upy1) = R(Un,...,Up)Ups1 that satisfy the following. There are > 0,
C > 0 such that
p+1

T, Usll e
j=1

for any U = (Uy,...,U,) € (H®(T;C*)P, any Upy1 € H®(T;C), any i = (n1,...,np) €
(N*)P, any ng,np+1 € N*. Moreover, if

Mg RO, 4, Upta |2 < C

maxa(ny, ..., npt1)? T
max(ni,...,np+1)?P

Mg R, Us, ., Ty U Uy # 0, (2.25)
then there is a choice of signs oy, ...,0p41 € {1} such that Z?ié ojnj = 0. In addition we
require the translation invariance property

R(moU)[1Up 1) = 79(RU)Up11) , VO ER. (2.26)

(il) Non-homogeneous smoothing operators. We denote by R;{pK, nlr] the space of maps
(V,U) = R(V)U defined on BE(I;r) x CE(I, H(T,C)) which are linear in the variable U
and such that the following holds true. For any s > sg there exist a constant C' > 0 and
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r(s) €]0,7[ such that for any V € BE(I;r)nCE(I, H*(T,C?)), any U € CK(I, H*(T,C)), any
0<k<K-K'and anyt € I, we have

108 (RONO) (&) jroen < D2 (0T s IV I e
K +k''=k (2.27)
T s IVIN T s IV 1)

(iii) Smoothing operators. We denote by ER;(?K/,p[T’ N] the space of maps (V,t,U) — R(V,t)U
that may be written as

HU = Z R,(V,...,V)U + Rx(V;t)U

for some R, inﬁq_p, q=p,...,N—1and Ry in R K/N[ r].
We denote by ERK &1 plT N|@M2(C) the space of 2x2 matrices whose entries are in E’R;{'DK, [r,N].

e If Risin R,” then (V,U) — R(V,.. S VU isin Ry ], de. ([2-27) holds with N ~ p, K’ = 0.
o If R; € ERI_(‘?K,J)Z_ [r, N1, i = 1,2, then the composition Ry o Ry is in ZRK?K,J)I_H?Q [r, N].
The next proposition states boundedness properties on Sobolev spaces of the paradifferential

operators (see Proposition 3.8 in [13]).

Proposition 2.6. (Action of para-differential operator) Letr >0, me R, pe N, K' < K €
N. Then:

(i) There is sg > 0 such that for any symbol a € f;”, there is a constant C' > 0, depending only
on s and on (2.9) with o« = =0, such that for any U = (Uy,...,Up)

P
10P"™ (s NUpsallgre-m < C TT Ui 750 1Up-all e (2.28)
j=1
for p > 1, while for p =0 the ) holds by replacing the right hand side with C||Upy1|| g -
(i3) There is so > 0 such that for any symbol a € I} 1/ , [r] there is a constant C' > 0, depending

only on s,r and (2.12)) with 0 < «a <2, f =0, such that, for anytel, any0<k< K - K/,
HOPBW(QEG(UW?'))HL Hs Hs—m) = CHUHk+K'
o If a € ¥T ., [r, N] with m < 0 and p > 1, then Op®W(a(V;t,-))U is in R o, [, N].

Below we deal with classes of operators without keeping track of the number of lost derivatives
in a precise way (see Definition 3.9 in [I3]). The class Mv;” denotes multilinear maps that lose m
derivatives and are p-homogeneous in U, while the class ./\/l% K’ COntains non-homogeneous maps
which lose m derivatives, vanish at degree at least p in U, and are (K — K')-times differentiable in
t.

Definition 2.7. (Classes of maps) Let p, N € N, withp < N, N > 1, K, K' € N with K' < K
and m > 0.

(i) p-homogeneous maps. We denote by ﬂ;" the space of (p+1)-linear maps M from the space
(H>(T;C?))P x H®(T;C) to the space H*®(T;C) which are symmetric in (Uy,...,U,), of the
form (Uy,...,Upy1) = M(Us,...,Up)Ups1 and that satisfy the following. There is C > 0 such

that
p+1

o M (), Upallr2 < Clno + na+ -+ 4 npy)™ | 1T, Ujll 2
j=1
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for any U = (Uy,...,Up) € (HOO(’]I‘;CQ))p, any Uptp1 € HOO(']I‘;C), any 1 = (n1,...,np) €
(N*)?, any no, np1 € N*. Moreover the properties (2.25)-(2.26]) hold.

(ii) Non-homogeneous maps. We denote by MR i/ y[r] the space of maps (V,u) — M(V)U
defined on BE(I;r) x CE(I, H*0(T,C)) which are linear in the variable U and such that the

following holds true. For any s > s there exist a constant C'> 0 and r(s) €]0,r[ such that for
any V € BE(I;r)n CE(I,H*(T,C?)), any U € CK(I, H*(T,C)), any 0 < k < K — K" and

anytel, woe have || OF (M(V)U) (t,)|| jro—r—m is bounded by the right hand side of (2-27).
(iii) Maps. We denote by SM . [r, N] the space of maps (V,t,U) — M(V,t)U that may be
written as
N-1
MVit)U =Y My(V,...,V)U + My(Vit)U
9=p
for some M, in Mgl, q=mp,....N—=1and My in MR 1 y[r]. Finally we set Mvp =
Um0 ME', M g p[r] = Um0 M g0 [r] and SM g plr, NT := UpsoSME 1, 1]
We denote by SM% 1 [r, N] @ M2(C) the space of 2 x 2 matrices whose entries are maps in
the class SM 1 [r, N]. We also set EMg g p[r, N]@ Ma(C) = UperEME o [r, N]© Mo (C).

o If M is in M7, p > N, then (V,U) — M(V,...,V)U is in M7 y[r].

o If a € XTI g [r, N] for p > 1, then OpBWV(a(V;t,))U is in ZM%K,J)[T, N] for some m’ > m.

e Any R € ERl_{f'K,W[T, N1 defines an element of MR ;. [r, N| for some m > 0.

o If M € EMy g p[r, N] and M e YMp gpalrs N —pl, then (V. ¢,U) — M(V + M(V;t)V;t)[U]

is in SMg k14 kp plr NI

o If M € SMY . [r,N] and M € SMY ., [r, N, then M(U;t)o M (Ust) is in SMPRL L [, N].
Notice that, given M7 € My, the property implies that

1 ; 1 .
_ oo o .0 Jo(nit+na)z +- — i(n1—n2)x
M, (U)U = 5 E (My) uy ug e\ 4 5 E (My) Upy Upgye' M2

ni,n2 "ni N2 ni,n2

T T
n1,n2€Z\{0}, ni1,n2€Z\{0}
o=+

(2.29)
for some coefficients (M»)?%,, € C with o,0’ = 4 and ny,ns € Z\{0}.

ni,n2
Composition theorems. Let
0(Dz, D¢, Dy, D) :== D¢ Dy — D, D,
where D, := %81 and D¢, Dy, D), are similarly defined.
Definition 2.8. (Asymptotic expansion of composition symbol) Let K' < K,p,p,q be in
N, m,m" € R, r > 0. Consider a € XTI} y, [r, N] and b € ST g N|. For U in BE(I;7) we
define, for p < o — sg, the symbol

p . k
1 /1
(@h DUt = Y (5D D62, D) ) [alUstr WUt )] (2:30)
k=0 " r=y,E=n
. +m/—

modulo symbols in STy P [r, N].

e By (_2.14) the symbol a#,b belongs to EF%}W,{Hq[T, N]J. /

e We have the expansion a#,b = ab+ %{a, b} + -+, up to a symbol in ZF%}”ZPfq [r, N], where

{a,b} 1= Dcadub — Dpadeh
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denotes the Poisson bracket.

Proposition 2.9. (Composition of Bony-Weyl operators) Let K' < K, p,p,q be in N, m,m’ €
R, 7> 0. Consider a € XI'}} x, [r,N] and b € ZI‘}’}:K, 4r:N1. Then

R(U) = 0p"V(a(Ust,2,€)) 0 Op°W (b(U; t, 2,€)) — Op®W ((a#,)(U; t, 2, €))

_ ’
18 a non-homogeneous smoothing remainder in ERKP;QTY;:Z; [r, N]

Proof. See Propositions 3.12 and 3.15 in [13]. Let us justify that the homogeneous components
of R(U) satisfy the translation invariance property . The homogeneous components of the
symbols a and b (that for simplicity we still denote by a,b) satisfy . Then, by , the
composed operator OpBW (a(U; -, €)) o OpBW (b(U; -, €)) satisfies as well. In addition also the

symbol a#,b defined in (2.30) satisfies ([2:11), and therefore OpBW ((a#,b)(U; -, €)) satisfies (2:23).
Thus the homogeneous components of R(U) satisfy (2.26) by difference. O

e As proved in the remark after the proof of Proposition 3.12 in [I3], the remainder obtained by
the composition of paradifferential operators in Proposition has actually better estimates than
(2.27)), i.e. it is bounded from H® to H stp—(m+m’) for any s, with operator norm bounded by
U5
Proposition 2.10. (Compositions) Let m,m',m"” € R, K,K',N,p1,p2,p3,p € N with K' <
K, pl,/+ p2 < N,p>0andr >0. Let a € XTR o, [ N], R € ZRI_(?K,7P2[T,N] and M €
EMR i1 g1 NJ. Then
(i) R(U;t) 0 Op®W(a(U;t,2,€)), Op®W(a(U;t,2,€)) o R(U;t) are in ERZ’}?%IW [r, N].
(ii) R(U;t) ONM(U; t) and M(U;t) o R(U;t) are smoothing Ojl)lemtors in ER[_(’;%QJFPS [r, N].
(iii) If Ry € R;Zi then Ro(U, M(U;t)U;t) belongs to SR L [r, N].
(iv) Let c be in I, p € N. Then
U—cey(Ust,x, &) :i=c(U,...,U MU;t)U;t, x,¢§)

is in XU g [ NI If the symbol ¢ is independent of £ (i.e. c is in fp), so is the symbol

ey (thus it is a function in SFk i pips[rs N|). Moreover if ¢ is a symbol in I'g g n[r] then

the symbol car is in I'g jr \[r].
(v) OpPW(c(U, ..., U W;t,z,8))\wemwnu = Op®V (b(U;t,z,£)) + R(U;t) where

b(U;t,z,8) ==c(U,...,.U MU;t)U;t,z,§)

and R(U;t) is in YR pipy [T N

Proof. See Proposition 3.16, 3.17, 3.18 in [13]. The translation invariance properties for the com-
posed operators and symbols in items (i)-(v) follow as in the proof of Proposition O

Real-to-real operators. Given a linear operator R(U)[] acting on C? (it may be a smoothing
operator in ER[_(” ' 1 Or amap in ¥ M g 1) we associate the linear operator defined by the relation

R()[V]:= R(U)[V], VYV eC?. (2.31)
We say that a matrix of operators acting in C? is real-to-real, if it has the form

R1(U) Rz(U)> .

R(U) = (RZ(U) RAU) (2.32)

Notice that
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e if R(U) is a real-to-real matrix of operators then, given V = [%], the vector Z := R(U)[V] has
the form Z = [g], namely the second component is the complex conjugated of the first one.
e If a matrix of symbols A(U;x,§), in some class X'} - ; ® M2(C), has the form

(Ui bUiz.)
A<U”’””§)‘<b<U;x,—£> a(U;a:,—@) (2.53)

then the matrix of operators OpPW (A(U; x,€)) is real-to-real.

Notation.

e To simplify the notation, we will often omit the dependence on the time ¢ from the sym-
bols, smoothing remainders and maps, writing a(U; z,§), R(U), M (U) instead of a(U;t,x, &),
R(U;t), M(U;t). Moreover, given a symbol in YI'% g, We may omit to write its dependence
on U, writing b(x, §) instead of b(U;x, ), when this does not cause confusion.

e Since in the rest of the paper we only need to control expansions in degrees of homogeneity
of symbols, smoothing operators and maps, up to cubic terms O(u?), we fix once and for all
N = 3. We will omit the dependence on r and N = 3 in the class of symbols, writing XIg K po
instead of X' . [r, 3], and similarly for smoothing operators and maps.

o A <; Bmeans A < (C(s)B where C(s) > 0 is a constant depending on s € R.

e In this paper we will deal with parameters

s>sg>K>p>1.

The order of regularization p > 1 will be chosen large enough to control the loss of derivatives
coming from the small divisors in the two steps of Birkhoff normal form, see Section [ More
precisely p ~ Ny where Ny is the exponent appearing in . This requires to develop para-
differenatial calculus for functions U in H*® with s > p. In order to transform the water waves
equations into a paradifferential system plus a p-smoothing remainder we perform several
para-differential changes of variables for solutions U(t) which are K-times differentiable in time
with OFU € H*% 0 <k < K. Since each of the conjugations performed in Section {4| consumes
one time derivative, we need to require K >> p, more precisely K ~ 2p, see Proposition [£.1] We
then require that the Sobolev exponents satisfy s > sg > K.

3. COMPLEX FORM OF THE WATER WAVES EQUATIONS

3.1. Paralinearization and complex variables. Following [3, 5], we begin by writing the water
waves system (1.3]) using the good-unknown ((1.12))

w = —O0p"™(B(n,¥))n
where B(n,) is the real valued function introduced in ((1.11). The water-waves equations (|1.3)),
written in the new coordinates

ny._ "
(2] =614] = [y-om™Bmum] (3.1)
assume the following paralinearized form derived in [13].

Proposition 3.1. (Water-waves equations in (n,w) variables) Let I = [-T,T] with T > 0.
Let K € N* and p > 1. There exists so > 0 such that, for any s > sg, for all 0 < r < ry(s) small

enough, if (n,v) € BE(I;r) solves (1.3), then
. Va
O = |Dlw + Op"™ (= iVE = <5)n + Op”™ (b (5))w + Ra(n, w)w + Ry (n,w)n (3.2)

Ve
Ow = —n+ OpBW(—iVE + ?)w — OpBW(atB + VBy)n + Ry(n,w)w + RY(n,w)n (3.3)
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where the functions V, B defined in (1.10)-(1.11]) are in E]—'}%O,l, the symbol b_1(n;-) belongs to
ZF}IO 1» and the smoothing operators Ry, R}, Ry, Ry are in ZR[_{"O 1- The vector field in the right
hand side of (3.2)-(3.3) is x-translation invariant, i.e. (2.7) holds.

Proof. The proof of this proposition follows from the computations in [I3] in the absence of capil-
larity and specified in the case of infinite depth. In particular, the explicit expression of the symbols
in follows by developing the computations in Proposition 7.5 and Chapter 8.2 in [13]. Notice
that this expansion agrees with the paralinearization of the Dirichlet-Neumann operator in Theo-
rem 2.12 in [6], in the case of dimension 1 and using the Bony-Weyl quantization. The equation
follows by developing the computations in Proposition 7.6 in [13].

The Dirichlet-Neumann operator satisfies the translation invariance property G(myn)[To¢)] =
79G(n)[¢]. Hence the functions V,B defined in (1.10)-(1.11]) satisfy the z-invariance property
as well, and so do V, B, 9; B. The symbol b_1(n; ) satisfies the z-invariance property
checking the construction in [13] (its z-dependence enters only through (n,w)). Moreover, since

B(mon, 19)(x) = B(n, ) (x + 0), we get
Op"Y (B(rgn, 7o%)) [rom] (x) = Op®W (B(n, ) [n](z + ), VO €R,

and therefore the good-unknown transformation G defined in satisfies GoTy = 190G, where 1y
is the translation operator in . This implies that the whole vector field in the right hand side
of 1) satisfies the z-invariance property and therefore the smoothing remainders satisfy
(2.26) by difference. O

In Subsection we will provide explicit expansions for the symbols of non-negative order in
(3-2)-(3.3)) in linear and quadratic degrees of homogeneity.

Remark 3.2. (Expansion of the Dirichlet-Neumann operator)

(i) Substituting (3.1)) in the right hand side of (3.2)), which is equal to G(n)v, we have, using the
remarks under Definition [2.7, that G(n) — |D| is a map in SMg 1 and

G(n)y = |D|y + M (n)y + Ma(n)t + Ms3(n)t (3.4)

for some maps ]/\Zfl S Ml, J\Afz € //\/lvg and Mzg € Mk 3.
(ii) The Dirichlet-Neumann operator admits a Taylor expansion (see e.g. formula (2.5) of [20]) of
the form

Gy = DY + Gi(n)y + Ga(n)h + G>3(n)v (3.5)
where, D := %ax,

G1(77) = xna:c - |D‘77‘D|
Lo o 212 (3.6)
Ga(n) = —§(D | D] + | Dl D7 — 2ID!77\D|77!D\)
and where G'>3 collects all the terms with homogeneity in 1 greater than 2. We then see that the
quadratic and cubic components of the expansions and coincide, namely G1 = Ml
and Gy = Mg. It follows that G'>3 is in Mg 3.
(iii) Performing the paralinearization of G1(n)y and Go(n)¢ in (3.6), one obtains the expansion

1
G(n)Y = |D|w + OpBW( — V<o — §(V§2)x)n + cubic terms

up to smoothing operators, where V<o = 1y — 1z(|D|tY) contains the linear and quadratic
components of the function V in (1.10). This formula agrees with (3.2]) showing that the
symbol b_1 is zero (at least) at cubic degree of homogeneity.
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We now write the equations (3.2)-(3.3)) in terms of the complex variable u defined by, see ((1.16)),

wi= i+ Db, (3.7)

1
—=|D |D
V2 V2
Proposition 3.3. (Water-waves equations in complex variables) Let K € N* and p > 1.
There ezists sg > 0 such that, for any s > so, for all 0 < r < ro(s) small enough, if (n,w) solves
(13-2)-(3.3) and U := [%] with u defined in (3.7) belongs to BX(I;r), then U solves

QU = OpPW (141 (Us 2)€ +iAyo(Us ) [€]2 + Ap(Us ) + A1 (Us2,€))U + R(U)U (3.8)

where
A1(U;x) = <—V(é];m) —V((;];.CL‘)) (3.9)
Ay (U 2) i (_(1;5;(;]) KU X C(L[(]ngs)> 0= %(8,53 L VB,), (3.10)
Ao(Us ) = —% (g’ é) Vo(Usz), (3.11)

A_1 is a matriz of symbols in EI‘I}}I L ® M2(C), and R(U) is a matriz of smoothing operators
belonging to ER;(’)M ® Mo (C). The vector field in the right hand side of (3.8)) is x-invariant and

it is real-to-real according to (2.32)), i.e. the second equation for w is the complex conjugated of the
first equation for u.

Proof. We first rewrite — as the system

at[m _ OpBW<[__iZi—_ao: _lf‘t;i*% ]) [Z] + R(n,w) m], R e ERI_(,pO,l ® Mo (C), (3.12)

where the function ag := 9B+ V B, is in 2}_51,1- We now symmetrize (3.12)) at the highest order,
applying the change of variable
o ‘D|1/4 0 ~
3] = [P0, 0] 313
The conjugated system is, by Propositions [2.9) and [2.10}

]:opBW(['ﬁzf“ ot S e 1[4 5|91/4})[21+R< #)[1] (14

at[ 1+a0)

1

for a new smoothing remalnder Rin ¥R Kp 1+ 11 ® Ms(C). Recalling (2.30) we expand in decreasing

orders the symbols in .
DIAGONAL SYMBOLS. Up to a symbol in XTI} | we have (using Propositionand formula (2.30)))

Ve . Va
&7 A (—1VE — f>#p|§\1/4 =-iVe- =,
“} (3.15)
€11/, (—IVE + )b e/ = —ive+ 2.

OFF-DIAGONAL SYMBOLS. Up to a symbol in EFK({l we get (using Proposition and formula
(12.30)))

€] /4[] + bor)#ple| 7 = €] (3.16)

(recall that b_; is in EI’KO ,) and, up to a symbol in EI‘Kl/l, we have

— (€144 5(1 + ao)#,l€|M* = —(1 + ao)[€] V2. (3.17)
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The expansion (3.15)), (3.16]), (3.17) imply that the system (3.14) has the form

i1 0 BW ([ CVETE e ; _ i
815[?)] - Op <[_(1+a0)§1/2 —iV§+%] +A [g] + R(777w) [Z” (3‘18)
where A_; is a matrix of symbols in ZI‘]}TM ® M32(C) and R is in ER;(p;rll ® Ms(C).
Finally we write (3.18) in the complex variable (3.7)), i.e. recalling (3.13)),
1. o ) 1
(2] =1 4][2], withinverse  [2] = —=[ 55 ][F],

V2 V2
and we deduce (3.8) with matrices as in (3.9)), (3.10)), (3.11) and a new matrix of symbols A_; in
ZFI_(}M ® M32(C) and a new smoothing operator R(U) in ¥R, | ® M2(C), renaming p — 1 as p.
Finally, since the Fourier multiplier transformation (3.7 trivially commutes with the translation
operators 7y, the water waves vector field in (3.8) is z-invariant as the water waves vector field

3-2-B3)- O

In some instances we will write the water waves system (3.8)) as
_ _[IDIZ 0
oU =—ioU + MU)UL, 9=["" 1, (3.19)
— 2
where M(U) is a real-to-real matrix of maps in My, | @ M3 (C) for some my > 0, see the Remarks
after Definition We will also write system (3.19)) in Fourier basis as
Up = —1WnpUy + I(FQ(U) -+ Fzg(U))n , neE Z\ {0} , (320)

where F»(U) = M;(U)[U] is the quadratic component of the water-waves vector field and F>3(U)
collects all the cubic terms (the second equation of (3.19)) for @ is just the complex conjugated of
the one for u). Using the z-invariance property, the vector field F»(U) can be expanded as

eia(nl—}—ng)x L 7ei(n1—n2)x
RO)= Y Bt Y (Bt (321)
n1,n2€Z\{0},0==+ n1,n2€Z\{0},
with coefficients (Fg)gflm in C. We provide the explicit expression of iF5(U) in (3.40)).

3.2. Homogeneity expansions. By the expansion of the Dirichlet-Neumann operator in Remark
m we get the quadratic approximation of the water waves equations ((1.3)),

O = |Dly — 0:(ndx0) — |D[(n| D]¢),

1 1 3.22
3t¢:—"7—§¢:%+§(m|¢)2, (3.22)

up to functions in ]-'}%1 3. In this section, using this expansion, we compute explicitly the quadratic
vector field iF»(U) in :3.20, and the homogeneous expansions up to cubic terms of the functions

V and a appearing in (3.9))-(3.11]). We write
V=V +Vy+ V>3, V, € .%]R, j=12, V>3 € ‘F}%,O,?n (323)

a=aj+a+as3 a; € FF, j=1,2, as3 € Frys. (3.24)
In the following it is useful to note that the relation (3.7) has inverse

1 1 _ 1 _1 _
n = E|Dl4(u+u), w:ﬁ\D| 1(u—1). (3.25)

We have the following Lemma.
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Lemma 3.4. (Expansion of V) The function V defined in (1.10) admits the expansion
V = w, + 9, (0p®VV(|D|w)n) — (|D|w)ns + V3 (3.26)
where V>3 is a function in .7-"}1%073. Thus, in the complex variable u in (3.7)),(3.25)), we have
1 1
Vi=—=0.D| 4(u—7 3.27
1= D ) (3.21)

Vo = %aw <OPBW(|D|%(U - H)) [|D\i(u ‘*’ﬂ)}) (|D|%(u —H)) (&5|D|i(u —{-ﬂ)) ) (3.28)

1
2i
Proof. By (1.11]) and using the expansion (3.5]), we deduce B = |D| up to a quadratic function in
.7-"}1?7072. As a consequence, by ([1.10]) and (3.1)), we have
V =1, —Bny = (w+ OPBW(B)n)x — Bny = wz + 0y (OPBW(‘DW)U) — (ID[)ne

up to a function in .7-"}1?7073. Since 1 = w plus a quadratic function in .7-'}%072 (see (3.1)) we get
(3-26). 0

Lemma 3.5. (Expansion of 0;B) Let B the function defined in (1.11)). Then

1
OB = ~|Dln = 0Dy + [D|(nDl) + |D| ( — 502~

J@2 = 5(1DWw)?) + (ID)(DPw)  (3.29)

: Lo s TR
plus a cubic function in Fri1s

Proof. Recalling (|1.11]), and using (3.5)), we have to compute the expansion of

(G pi G 2 Wz ) 202 (M)
a8 = @f%“w—( (”)wg’lfg)@” Uhe _ 5 (Gn) + (@um)atie + no(@)a (3:30)

plus a cubic function in .7-"}1%173. By (3.22) the second plus the third terms in (3.30) have the

expansion

(&:ﬁh% + 77$(8t¢)x = (|D’wx)1/}w - 77:% ) (331)

up to a function in F5 | 5. For the first term in (3.30) we use the “shape derivative” formula (see
e.g. [46])

G )l = lim (G + i) — Glnyi} = ~Gn)(BA) — 0.(V7) (3.32)
where V = ¢, — Bn, is defined in . Then, up to functions in .7-"}1?71’3, we have
(G (n)w) = G () v] + G (0r) BB —G ) (Bmy) — 8:(Vir) + G () (04)
EDEDED _1py((Dp)) - as(w:(DIw) (3.33)
F1DI( = 542 + SUDI)?) + delnme) + DI D)

Finally, by (3.30)), (3.31)), (3.33)), we obtain, after simplification,

1 1
8.8 = ~|Dly — 5|DI((1D)?) — S1DWS2 + DI nIDIn) + s — el Dl (3.34)
plus a cubic function ]:}1?71 5. Since 8z, = —|D|? and ¥ = w plus a quadratic function in ]:}1%1’2, we
have that (3.34]) implies (3.29). O

We now expand the function a = $(8,B + V B,) which appears in (3.10).
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Lemma 3.6. (Expansion of a) We have

1 n 1 1 1 1
a=—5Dln— 2(1DPn) + 31D|(n|Din) = 7101 (w2 + (1Dw)?) + S(Dw)(1DIw) + S0 (0] DIw)
plus a cubic function in .7-"}1%073.

Proof. By (3:26) and (T.II) we have that a = (8B + VB,) = $0,B + 3w, (|D|¢;) plus a cubic
function in ]-"}371’3. Hence (3.29) implies the lemma. O

We Fourier develop the functions aj, Vi, ag, Vo, as in (2.15)), (2.16)).

Lemma 3.7. (Coefficients of Vi and Vy) The coefficients of the functions Vi and Vy in (3.27))-
(3.28) are, for alln € Z\ {0},

(V) = (V)5 = —nln 1, (V2)gn =nlnl,  (V2)i~, =0. (3.35)

V2
Proof. By (3.27)) (recalling (2.3))) we have

—L iy -7
V1= 0P e ) = rfz

which implies the expressions for (V1) in (3.35). By (3.28) an explicit computation using Definition
of the Bony-Weyl quantitation (and 1| shows that

TL|TL| 1/4u elnx+n|n| 1/4u e inz

_ 1 3.1 3,1 1 3.1 3,1
(V2)imns = 51 = m2)xa(ma, o) (I ol = nal ¥ ina] ) + 5 (nelma ¥ nal + mafal s 7)

2
where x; is a cut-off function as in (2.18]) with p = 1 (even in all its arguments). This formula
implies the expressions for (V) in (3.35)). O

We now compute the coefficients of the linear and quadratic component of the function a in
(13.10).

Lemma 3.8. (Coefficients of a; and ay) The coefficients of the functions a; and ag in (3.24))
satisfy

1 1
(a1)) = (a1), = _ﬁ’nPM’ (ag)h, = §|n|5/2, Vn € Z\ {0}. (3.36)

Proof. By Lemma we have a; = —%[D|n 1 |D|5/4(u + %) and the formulas for (aj)F
in ([3.36) follow. We next compute the coefficients of (ag) . We remark that the terms with the

operator |D| in front do not contribute to (ag),t,, because
§ : +— — i(ni—n2)x | _ § : . +— — i(n1—n2)x
|‘D’< mn1,n2un1 Un,y € ) - ‘nl n2‘mn1,n2un1 Un,y € ’
ni,ng ni,n2

whose coefficients vanish for n; = ny. Thus we have to consider the bilinear contribution in the
variables u, u defined in (3.7)), coming from the terms

—5(1DPn) = (1D + ) (1D + ) (3.37)

S1D@)(1DPw) =~ (IDP/*(u — ) (1D 4(u ) (3.39)

;wm Dlw) = 4 (0] DI (u — ) (24l DI/ (u — ) (3.30)

The contribution from (3.37)-(3.39) is (a2),};, = 3 L1n|%/2 proving the second formula in O
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It turns out that (ag)f{;n = |n|%/2 but we do not use this information in the paper.

Lemma 3.9. (Quadratic water waves vector field iF5(U)) The quadratic water waves vector

field iF>(U) in is

: 1 _1
iy (U) = —=|D)| 4(1D|0pBW<|Drw>n — 0,(nduw) — |D|(nDIw) )
V2 , (3.40)
BW BW
+ 5 IDI (- ek S (D) + 0P (IDly)y — Op <|D|w>rD|w)
expressing (n,w) in terms of (u,w) as in (3.25). The coefficients (F),\, ,, defined in 1) satisfy
(Fa)f = = (Fa)*r, = 2771 (3.41)

Proof. By (L.11]) (recalling (3.5))) we have the expansion w = 1 — OpBW(|D|¢))n, up to a cubic
function in F 70 4, of the good unknown in (1.12). Then the equations in (3.22) reads

O = |D|w + |D|0p®W(|D|y)n — 0 (ndsw) — | D|(n|D|w) ,
Ow = Py — OPBW(!Dlwt)n — Op"W(|D|yp)m

1
=-n-jwity (IDIw) +0p”™(IDln)n — OPBW(!DIW)[ID\w]
up to cubic functions in FK K13 In the complex variable u defined in we obtain the equation
up = —i|D|%u +iF5(U) with iF»(U) defined in (3.40|). Expressing in |D the variables (,w) in
terms of (u,w) as in (3.25) and passing to the Fourier coordinates, we derive (3.41)) by a direct

calculus similar to those in Lemmata and 3.8 O
Remark 3.10. The only property of the coefficients (Fg)n_n in (3.41)) that we are going to use

is that (Fg):[; (Fg) T ns see the proof of Lemma . This property could be also derived by
the reversibility and even-to-even property of the water waves system , or , which are
preserved by the good unknown transformation. The involution S in (L.45) reads u(z) — u(—=x),
and in the Fourier basis (u;) — ().

4. BLOCK-DIAGONALIZATION

The goal of this section is to transform the water waves system (3.8]) into the system (4.2)) below
which is block-diagonal in the variables (u, ), modulo a smoothing operator R(U).

Proposition 4.1. (Block-Diagonalization) Let p > 1 and K > K' := 2p + 2. There exists
so > 0 such that, for any s > so, for all0 < r < ro(s) small enough, and any solution U € BE(I;r)

of (3.8} . the following holds:
(i) there is a map \Ildmg(U) 0 € [0,1], satisfying, for some C = C(s,r, K) >0,
Hat ‘I’dzag( )[ ]HHS kTt Hat (‘I’dzag(U))il[V]HHS—k S ( )HVHk,Sv (41)
forany0 <k <K — K and any V = [3] in Cf@(RfK/(I, H*(T;C?)), 0 € 0,1];
(i) the function W := (\Ilgiag(U)U)|9:1 solves the system
d(U;$7£)+r—l 2(U,.’L‘,€) 0
aW:()BW( / W+ R(U)W] (4.2
W=or 0 Uiz, ~0) +r_1aUsw,—© w2
where d(U; xz,€) is a symbol of the form
d(Us2,€) = =iV (Us2)6 —i(1 +a O (U;2))¢] /2 (43)
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where a(©)

is a function in E}"}%Ll, r_12(U; 2, &) is a symbol in EF[_{}Q/;M, and R(U) is a
real-to-real matriz of smoothing operators in ERI_(I,)ZpH,l ® Mso(C). The function a®) has the
expansion

=a; + ago) + a(Zog, ago) =ag — %a? e Fy, (4.4)
where a1 and as are defined in .

Proposition [4.1]is proved applying a sequence a transformations which iteratively block-diagonalize
(3.8) in decreasing orders. In Subsection we block-diagonalize (3.8) at the order 1/2 and in
Subsection [4.2| we perform the block-diagonalization until the negative order —p.

a®

4.1. Block-Diagonalization at order 1/2. The aim of this subsection is to diagonalize the matrix
of symbols A; /5(U; z)|€]Y/? in [3.§), up to a matrix of symbols of order 0. We apply a parametrix
argument conjugating the system (3.8]) with a paradifferential operator whose principal matrix
symbol is

€= (f g>’ [(Usa) = e Ot 9(U;) = ¢ (4.5)

g f VO +a+ )2 —a? VO+a+r)?—a?’
where
A =2 (Usz) = £/ (1 +a)? —a? (4.6)
are the eigenvalues of A;/,. We have
det(C)=f?—¢*=1, C'= ( ! _9> , (4.7)
-9 f
and

_ ~A+ 0 —(1+4a© 0
C 1A1/20 - < 0+ )\+) == < ( 0 ) 1 + a(o) 5 a(o) = )\+ - 1 S Z‘F}l?l,l . (48)

Lemma 4.2. There ezists a function m_1(U;x) in XFk 11 such that, the flow

0 _ (), BW 0 0 _ o 0 m—1(U; z)
00w (U) = OpPW (M) 87 (1), ¥°,(U) =1d, M., = (m e Sl P
has the form
(®21(U))jpey = OP"™M(CTH + R(U), R(U) € Ry 1 ® Ma(C), (4.10)
(xpﬂl(U))l—g; = 0p®V(C) +Q(U), QU) € SR 1 ® My(C). (4.11)
Moreover, if U solves , then the function
Wo == (2%, (0)),,_,U (4.12)
solves the system
d(U;z,€) 0
— ,BW (0) (0)
Wy = Op ( ( 0 dTw _5)) +A )Wo + RO, (4.13)

where d(U; xz,€) is the symbol in (4.3)) with a(o)(U; x) defined in (4.8), a matriz of symbols

A(O) e ( CO(U; ng) bO(U7$7£)
. bO(Ua €, _5) CO(U; €, _5)

and a real-to-real matriz of smoothing operators R (U) in YRS, 1 ®@ Ma(C). Moreover the func-
tion a®) has the expansion (4.4).

_1
> , o €XT Sy, bo € XT%ny, (4.14)
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Proof. We prove (4.10)-(4.11]) in Appendix We conjugate (3.8)) with the flow (\I’O_l(U))|9:1
using formula (A.2) in Lemma [A.1] By Proposition we deduce that, if U solves (3.8]), then
@10),([@11) _
oy EED 5,055 (1) 0P (0
+ 0p®W(C™HOop®W (14:€ + iA1/2\§|% + Ao + A1) Op®V (CYW,

up to a matrix of smoothing operators in ERKp 2+ 11 ® My (C). Moreover Proposition imply that

Wy = OpPW (8101 4#,C + O (116 + A1 €] + Ag + A )#pC)Wo (4.15)

up to terms in ERK”;% ® M2(C). We now prove that - ) has the form . By (4.5 ., .
we have
-1 _ (O f)f — (Oeg)g (Oif)g — (Org) f _ 0 (0if)g — (Oeg) f
(B0 )#,C = ((atfm —(09)f (@f)f - <atg>g> - ((atfm ~g)f 0 ) (4.16)

because differentiating 2 — g2 = 1 we get (0;f)f — (0¢g)g = 0.
By (3.9), using symbolic calculus and f? — g? =1 (see (4.7))), we obtain the exact expansion

CTl'#,(1A#,C = (V(f;ql‘iﬁgxf) V(fx_gﬂ;ggmf)) : (4.17)
By we have
1 — 0))|¢|3
C’_l#p(iA1/2|f\§)#pC=i ( (1—1—68 €] (1+a(()0))§|5> (4.18)

_1
modulo a matrix of symbols XI';.% | ® M2(C). Moreover, recalling (3.11]), we have the paraproduct
expansion

- 1
CTlkp Ao, C = Ao = =[] Ve (4.19)
and finally, since A_; is in EI‘;{}LI ® M3(C) we deduce
C'#,A1#,C € ST | ® My(C). (4.20)
Formulas (4.15))-(4.20) imply (4.13] - -, with a remainder R()(U) in ERK 51 @ M>(C), renam-
ing p—1 as p. Flnally, by (4.8] . and - we get the expansion O

4.2. Block-Diagonalization at negative orders. The aim of this subsection is to iteratively
block-diagonalize the system (4.13) (which is yet block-diagonal at the orders 1 and 1/2) into (4.2]).

Lemma 4.3. For j =0,...,2p, there are
e paradifferential operators of the form

o =0 (Y i) roran) Y

where d(U; z, &) is the symbol defined in Lemma AU is a matriz of symbols of the form

bj(Us 2, =€) ¢j(Us 2, =€)
e a real-to-real matriz of smoothing operators RU)(U) in ER;(ZJer ® Mo (C),
such that, if W, j =0,...,2p — 1, solves

), ]EEFKJ+21, b; GEFK]+21, (4.22)

wj

OW; = (y(j)(U) + R(j)(U))VVjv Wi = [@j] ’ (4.23)
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then
Wi := (5(U)W)),_, (4.24)
where \Ilg(U) is the flow at time 6 € [0,1] of
0o (U) = i0p®W (M;(Us 2, ))®j(U), WH(U) =1d, (4.25)
with
(Uirey e O —imUsz, )  —x(©b(U;,8) _ift
Mstl;2,8) = (—imj(U;w,—f) 0 > " TS+ O U 2))e3 Hicsrans (426

and x defined in (2.24), satisfies a system of the form (4.23) with j + 1 instead of j.

Proof. The proof proceeds by induction.

Inizialization. System (4.13) is (£.23) for j = 0 where the paradifferential operator Y(©)(U) has
the form ({.21]) with the matrix of symbols A(®) defined in Lemma

Iteration. We now argue by induction. Suppose that W; solves system (4.23) with operators
YU(U) of the form (4.21)-(#.22) and smoothing operators RY)(U) in YR 101 ® M2(C). Let us
study the system solved by the function W, defined in (4.24)). Notice that the symbols of the
matrix M; defined in (4.26) have negative order for any j > 0. By formula (A.2)) the conjugated
system has the form

Wi = OpPW (025 (U)) T (U) + 5 (U)YV(U) % (U) Wi (4.27)

up to a smoothing operator in ERI_(Z‘H,I ® Ms(C). Moreover the operator (8t\I!jl.(U))\Ilj_1(U)

admits the Lie expansion in (A.4)) specified for A := OpBW (M, (U)). We recall (see (2.30)) that

—(j+1)-1
My, 00M; = 0 M, M; = {M;, 005} € ST L),
up to a symbol in ZFI_((;E); ®. By Proposition we have that Ado,sw ) [i0pPW (9, M;)] is

a paradifferential operator with symbol in EI‘;?I; 9 '® My (C) plus a smoothing remainder in

ER}Z‘%J ® M(C). As a consequence we deduce, for k > 2,

: — L (k1) —k
Ad?OpBW(MJ)[IOpBW(atMJ)] = OpBW(Bk) + Rka By € FK7JQ_|_3(7]§—:_1) ® MQ((C) s

and R € R;(f)j+3,k+1 ® My(C). By taking L large enough with respect to p, we obtain that

J+1

(3t\Il]1-(U))\Il;1(U) is a paradifferential operator with symbol in ZFI_(J?%J ® M3(C) plus a smooth-

ing operator in ER;(Z%,I ® M2(C). We now want to apply the expansion (A.3) with A :=
OpBW(M;(U)) and X := YU) in order to study the second summand in ([&27). We claim that
T3 U)W U) = 0PN YV () + [0pPY (1M (1)), YO (1) (4.28)
_Jtl
plus a paradifferential operator with symbol in XI" K,Jj2+2,1 ® M3(C) and a smoothing operator in
ZR[_{’}HJ ® Ms(C). We first give the expansion of [OpBW (iM;(U)), YU (U)] using the expression

of YU)(U) in (#.21)). We have

. d(U;,8) 0 L 0 i(Usz,€)
[OpBW(le(U))’ OpBW([ 0 d(U;m,—f)]ﬂ o OpBW <[pj(U;x,—E) " 0 ]> (4.29)

pj = 2im;(Us z,€)(1 + aO(Us 2)) €]}



30 MASSIMILIANO BERTI, ROBERTO FEOLA, AND FABIO PUSATERI
_J+1 .
up to a symbol in X'y 2, | ® M2(C). Moreover, since AU is a matrix of symbols of order —1/2,
for j > 1, respectively 0 for j = 0 (see (4.22))), we have that
EpES .
Xl fra1 ® M2(C) for j > 1

[0p®Y (iM;), OpBW (AW)] € (4.30)

1
Y05, ® Ma(C) for j =0

up to a smoothlng operator in ¥R " 421 ® My(C). Tt follows that the off-diagonal symbols of

order —j/2 in are of the form [ﬁ qj(UO;x’g)] with
J W

- 1
6 (U;2,8) 7= bj(Us2,€) + 2im; (Us 2, ) (1 + a@) g2 (4.31)
By the definition of x in (2.24) and the remark under Definition the operator Op®W((1 —
x(€))b;(U;z,€)) is in ERI_(Z‘HJ ® Mj3(C) for any p > 0. Moreover, by the choice of m;(U;x,§) in
(4.26]) we have that

X(E)b; (Us 2, €) + 2im; (Us 2, €)(1 + a@) ]2 = 0.

This implies that [i0pBW (M), Y9)(U)] is a paradifferential operator with symbol in EFI_(J‘THJ ®
M3 (C) plus a remainder in ER;{}H 1 ® M3(C). Now, using Proposition we deduce, for k > 2,

J+1

j D o k
A mw j)[y@(U)] =O0p®W(Bp)+ Re,  Br €Ty 2y iy ® Ma(C),

where Ry, is in Rf_(pj togr1 ® Ms(C). Using formula (A.3]) with L large enough an the estimates of
flow in (4.25)) (see Lemma [A.2)) one obtains the claim in (4.28). We conclude that (4.24]) solves a

system of the form

d(U;zx, 0 i i
W1 = OpPW ([ 0 ! TTa—g Wi + Op®W(AUTDYW, 1 + RUTD(U) W44
for some matrix of symbol AU+ of the form (£.22) with j ~» j + 1 and smoothing operators
RUTD(U) in SR, 51 ® Ma(C), O

Proof of Proposition [4.1} For 6 € [0,1] we define
‘Ildzag(U) ‘I’Zp 1(U) 0---0 ‘Ilg(U) o ‘Pe—l(U) (432>

where the maps ¥’ | (U) and \IIH(U) =0,1,...,2p — 1 are defined respectively in , (4.24).
The bound ( . ) follows by Lemma m Lemmata H n 1mply that if U solves then the

function W := W, = (\Ilfluw(U)U)|9:1 solves the system with j = 2p Wthh is 1' with
T_1/2 i= c2p and

0 by (Usz,€)

L BW
R(U) :=Op <[b2p(U;m,—s> 0

]) T R(Zp)(U) , by e ZFI_&M?J ’

which is a smoothing operator in SR %, ot21 ® M3(C) by the remark below Proposition The
expansion (4.4)) is proved in Lemma
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5. REDUCTIONS TO CONSTANT COEFFICIENTS

The aim of this section is to conjugate (4.2]) to a system in which the symbols of the paradiffer-
ential operators are constant in the spatial variable x and are “integrable” according to Definition
below, up to symbols which are “admissible” according to Definition [5.2)

Definition 5.1. (Integrable symbol) A homogeneous symbol f in fg‘ is integrable if it is inde-
pendent of x and it has the form

[ =fU:6) =5 Y SR@lP,  fL@eC, nez\{0}). (1)

neZ\{0}

Definition 5.2. (Admissible symbol) A non-homogeneous symbol H>3 in I‘}{ K5 15 admissible
if it has the form

. . 1
H>3(Us,§) == iax3(U;2)€ +1iB>3(U; @) [€]2 + 7>3(Us 2, €) (5.2)
with real valued functions a>3(U;x), f>3(U;x) in ]:%K/,:s and a symbol v>3(U;z,£) in F?{,KC& A
matriz of symbols H>3 in I‘}(7K,73 ® Mo (C) is admissible if it has the form

H>3(U;,8) 0

H3(U;z,€) = | 0 m]

(5.3)
for a scalar admissible symbol H>3.

The relevance of Definition [5.2] is explained in the next remark.

Remark 5.3. An equation of the form O = OpBW (Hs3(U;x,&))[v], where Hs3(U;x,€) is an
admissible symbol in F}( K3, admits an energy estimate of the form

Dellv(t, I Ss 10 )i sollo (I

for s > so > 1, see Lemma[7.5 For this reason vector fields of this form are “admissible” to prove
existence of solutions up to times O(c™3).

The main result of this section is the following.

Proposition 5.4. (Integrability of water waves at cubic degree up to smoothing remain-
ders) Fiz p > 0 arbitrary and K > K' := 2p + 2. There exists so > 0 such that, for any s > s,
for all 0 < r < ro(s) small enough, and any solution U € BE(I;r) of , there is a family of
nonlinear maps FO(U), 6 € [0,1], such that the function Z := F1(U) solves the system

nZ = —i0Z + Op®V (— iD(U;€) + H3) Z + R(U)[Z] (5.4)
where ) is defined in (3.19) and
e the symbol D(U; &) has the form

ey [SW)EHD_1 o (Us8) 0 o 1 2
D(U,f) = [ 0 C(U)E—m] ) C(U) = ;\%O}nhﬂun’ ) (5'5)
ne

with an integrable symbol D_; 5(U;¢&) € f;% (see Definition ,'
e the matriz of symbols H>3 € F}<7K,’3 ® Mo (C) is admissible (see Definition ;
e R(U) is a real-to-real matriz of smoothing operators in ERI_(’;E%T ® M3 (C) for some m > 0.
o The family of transformations has the form

F(U) := 3 (U)[U] (5.6)
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with F%(U) real-to-real, bounded and invertible, and there is a constant C = C(s,r, K), such
that, VO < k < K — K', for any V € CE-%'(I; H*(T; C?)),
0 OV e+ 1EE ) Ve < IV I+ U 10). (5.7
uniformly in 6 € [0, 1].

The proof of Proposition [5.4] above is divided into several steps in Subsections below. We
combine these steps in Subsection [5.4

5.1. Integrability at order 1. By Proposition we have obtained, writing only the first line of
the system (4.2))-(4.3]),

Orw = OpPV (= iV(U;2)¢ —i(1 + O (U; 2))[¢]V? + r_1 o) w + R(U)[W] (5.8)
where R(U) is a 1 x 2 matrix of smoothing operators in ¥R/, | with K’ =2p+2and W = [&].

The second component of system (4.2)) is the complex conjugated of the first one. Expanding in
degrees of homogeneity the symbol

~_1 ~_1 1
royp=ri+ro+rysy, riely?, rnely,?, rosely?y 4,

recalling (3.23]) and item (ii) in Proposition we rewrite (5.8) as
drw = OpPW (—i(Vy +Vo)& —i(1+ a1 +a)[€]V/2 + 11 + 1o + Hsz)w + R(U)[W] (5.9)
where H>3 is an admissible symbol according to Definition

5.1.1. Elimination of the linear symbol of the transport. The goal of this subsection is to eliminate
the transport operator OpBW (—iv€) in (5.9). With this aim we conjugate the equation (5.9) under
the flow

@Y (U) = i0p"Y (0(U30,2)§) 1 (U), @Y (U) =1d, (5.10)
with B(U:2)
;T
bU;0,2) = ————— 5.11
Uib.2) = 3ge— (511)
where B(U;x) is a real valued function in .7?{[{ of the same form of V;(U;z), i.e.
1 : .
BU ) =——= > Blrune™ + B, e ™. (5.12)
V2T oy
The function B(U;x) is real if a condition like (2.17) holds, i.e.
Bt =By - (5.13)

The flow of the transport equation (5.11]) is well posed by Lemma We introduce the new
variable

o (U) [w]
Vi= o] = (®{)W]), = (= W= [% 5.14
L= (2] = (@), <¢?<U>[w1)|“ , 4], (5.14)
where the operator ®¢(U)[] is defined as in (2.31)).
Lemma 5.5. Define 3 € .7?]1R in (5.12) with coefficients

V + . V — .

g e —Va _ SL— grow o _ . n#0, (5.15)
TNCIE TN

and (B)§ =0, 0 = %. Then, if w solves (5.9), the function vy defined in (5.14) solves
o = OpPY (=g —i(1+a)lelz + 21" 42l + HJor + RO@)WV] (5.16)
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where:

. Vél) € .%ZR and its coefficients (according to the expansion ) satisfy

(V5 )im = 2nlnl, (vy))} 2, =0; (5.17)

agl) € .%QR and its coefficients satisfy
() = 0; (5.18)

) rgl) € fl_% and rgl) € f;%,
. HSS) € F}(,K/,g is an admissible symbol, and RV (U) belongs to ERI_(/,)K'J'
Notice that the procedure that eliminates the linear term of the transport in , that is, the

contribution with degree of homogeneity 1 to the coefficient of £, automatically also eliminates the
contribution with degree of homogeneity 1 to the coefficient of the symbol of order 1/2.

Proof of Lemmal5.5 Conjugation under the flow in (5.10). We use Lemmata and
STEP 1. We apply Lemmawith B in .7?1]R C .7-"%0’1 by the fourth remark in (2.14). Then Lemma
implies that

0:21(U)(@1(U) ™! = Op"Y (i(Bt — Bubr)€ + Hz3) + R(U)
where H>3 := ig>3¢ is an admissible symbol in F}CIB and R(U) belongs to ZRI_(”)LI.
STEP 2. We apply Lemma with a = —iV¢. Thus — imply that, noting that
ag) =0,
e (U)Op™W (—iVE)(@1(U)) ! = O™V (= iV (& + B(x)) (1 + By () jy=a+ ) €) + R(U)
where 2 = 5 + ((y) denotes the inverse diffeomorphism of y = z 4+ 8(z) and R(U) is a smoothing
operator in ¥R Kp ;,1 By we deduce the expansion

1 U)OPPWV(—iVE)(@1(U)) ! = OpPWV (= i(V1 + V)€ +1(ViBs — (V1)oB)E + H>3) + R(U)

where H>3 € T'k 1 5 is an admissible symbol and R(U) belongs to ¥R Kp ;;,1 .

—pt3
KK/ 10

STEP 3. By Lemma |A.4| we have that, up to a smoothing remainder in XR

~ @} (V)0 (i(1 + a1 + a5 ) 6]'/) (@} () = ~0p"V (ag + ay)
where ag] ) € ZFI%{’ K0 is given by and ag ) € ZFI_(’%K,J. By we have the expansion
ay) = —i(1+a; +ad))[¢]/2 + {BE, —i(1 + ar)€]V?}
+ %({55, {Be, —ile|"?}} — {BBE, —i|§|1/2}) + admissible symbol
and a direct computation gives
—®H(U)0p"W (i(1+ a1 +a”)[¢]/2) (@} (U) ! =

OpBW( (1 +a; — & + a —l— (al)xﬁ — %/Bxal + gﬁ§)|§|l/2 T+t H23> i R(U)

_3 1 orl
where r € XI'; % |, H>3 € ' r 5 is an admissible symbol and R(U) is in Z‘RK?,fl.

STEP 4. By Lemma [A.4] the conjugated operator
oHU)opBW (r1+ 12+ Hs3)(1(U) ! = OpBW (rgl) + rgl) + HL3) + R(U)
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1

~_1 1
(M e r, =, rél) €T, 2, a new admissible symbol H. ; € '}, ;. 5, and a smoothing remainder

where r;
R(U) in SR

STEP 5. By Lemma (m) we write ®1(U) = Id + M(U) with M(U) in SM ., , for some
m > 0. Hence, using Proposition M(ii), we have that the conjugated of the operator R(U) in
(5.9) is a smoothing remainder in ¥R " ;,271” In conclusion we get that if w solves (5.9) then v;

defined in satisfies
dror =i0p"V ((= Vi + 08)E + (— Vo + (vlﬁx — (V1)uB) — Bufi)€)v1
0P (el — (an —~ D)l — (&) + (@)aB — gfemi + R)e o (5.19)
+0pPV (2 + Yoy + 0pBW (Hsg)0y + RO(U)[W)

~_1 ~_1
where rgl) el 2, rgl) €el,?, Hs3 € F}(,K’,3 is admissible according to Definition [5.2{and R (1)

is a 1 x 2 matrix of smoothing operators in ZR[_(’) 1 (renaming p — 2m as p).

Choice of 3. Recall that the coefficients 5= defined in ([5.15) satisfy (5.13)) and the function 3(U; x)
is real. Using (3.20]) we get

OBU;z) = \/12—# D (—iwn) B €™ un + iwn B, € U, + hy + hxg (5.20)
n€eZ\{0}
where ho, h>3 are defined as
f > BHHF(U = BrilB(U)]pe ™,
nez\{0}
(5.21)
hogi=—= Y BrilFos(U)]ne™ = B i[Fa3(U)]ne ™.
27 e 0}

By (5.20) and (5.15)) we deduce that

—Vi+ 08 =ho+ h>3. (5.22)

By (5.13) the functions hy and h>3 are real. Moreover hy € fQR and h>3 € .7:}%173 by item (iv) of
Proposition and the fact that F5(U)+ F>3(U) = M(U)[U] for some M in ¥ Mg 1 1, see (3.19).

The new equation. From (5.22)) and the first line of ([5.19)) we deduce that Vél) in (5.16) is given by
— Vél) ==hy — Vo — (V1)8, (5.23)

having used (Vi — 0¢58)f3: € ]—"}1?71’3. From the second line of (5.19)) we deduce that agl) in (5.16) is
given by

1 3 -
al == al” + (a1),8 — 5 0o21 + éﬂg e F¥ (5.24)

having noted that the function a; — % =0 by (3.36) and ([5.15]).
Let us prove (5.17). By (5.23) and (5.15)) we have

(V) D)y = = (02)d o, + (V)i + i +m2) (V)] 67, — (V) B) - (5:25)
The coefficients (hy);"~,, associated to hy defined in (5.21)) are

ni,n2

(h2)n1 NeD) =1 :1 —n2 (F2)7’L1 no ilB:(nl_nQ)(Fz);t;nl
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with (Fy) -, defined by (3.20)-(3.21). We claim that
(h2)y, =0,  (h2);—, =0. (5.26)

The first identity in ([5.26|) is trivial since the coefficients 57 in (5.15)) are zero for n = 0. To prove
the second identity in (5.26]) we compute by (5.21]) and (3.41))

(ho)y —p = i(F2) 5~ (B — B2g,) =0
in view of ( - From (]_[)5 25), (5.26), (3-35) we then obtain (V5"))}=, = 0. By (5.25), (5.20),
(5-15), (3-35) we get V2 nn = 2n|n]|.

To conclude we prove . From ([5.24]) we calculate
. _ . _ in _ _ 3 _
(a§")in = (a “’)M in(an); By —in(a)n B — 5 (65 (a1)n — By (a1)f) + 818’

where (37 are defined in ([5.15)). By we have (ago)):{l_nz = (ag)fgl n, — (a1);h (a1);,, and one can
check directly using the formulas (| and - that ( a2 ,J[ n=0. O

5.1.2. Reduction of the quadratic symbol of the transport. The aim of this section is to reduce the

transport operator —iOpBW(Vgl)(U; 7)€) in (5.16) into the “integrable” one —iOpBW (((U)¢) where
¢(U) is the function, constant in z, defined in (5.5). To do this we conjugate the equation (5.16))
under the flow of the transport equation

Bp@Y(U) = i0p®W (bo (U3 0, 2)€)@5(U), @Y(U) =1d, (5.27)

where by is defined as in ([5.11)) in terms of a real valued function B2 (U;z) € ]T"QR The flow in ((5.27))
is well-posed by Lemma, We then define the new variable

Y(U)[v1]
Vo= (1) = @O, = (g ]>9 1 529
where ®4(U) is defined as in (2.31)).
Lemma 5.6. Define 35 € fR with coefficients for ni,ngy € Z \ {0},
(V5 )5 g ALY
= _ "2 Jmng -+ = _\'2 Jmne + 2
(162)n1,n2 ld(wnl + an) ) (o} Y (/82)77,1,712 l(wnl an) nl # n27 (5 9)
and (Bg)&% =0 (Bg)n on i =0,0 ==, where V( ) is the real-valued function defined in Lemma .
If vy solves then the function vy in solves
Qs = OpBW( —iC(U)E —i(1+ a2 + i) + 25 + HE) vy + RO (U)[1a] (5.30)
where:
e ((U) € ]%R is the integrable function defined in (5.5));
aéQ) € .?EQR satisfies
P =)~ (), (@) =0; (5.31)

~_ 1

1 ~_1
° rgl) eIy ? is the same symbol in (5.16)), and rg ) e ry?;
° H(g) € I‘K K3 s an admissible symbol, and R(2)(U) 1s a 1 X 2 matriz of smoothing operators
n ERI_( K11
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Proof. The function f3; is real valued since the coefficients (V5)2?" 7 np Of the real function Vgl) in (5.24))

satisfy (2.17]). In order to conjugate (5.16)) under the map <I>9 in (5.28) we apply Lemmata and
A.5 By (A.18) and (A.21)), and since 33 is quadratic in u, the only quadratic contributions are

OpBW ({Ba8, —i[¢]2 }>v2 +i0pBY (8, 82€)va, implying
oy = OpPY (v + e +1 221t i1 D)l + 2 + 2D 4 BY) s + ROV

(5.32)
~ 1
where fgl) is a symbol in T, 2, H(>1?2 eIl K.k 3 is a new admissible symbol, and R(U) is a 1 x 2

matrix of smoothing operators in ERK 1 (by renaming p — 2m as p).

By the choice of 83 in (5.29)), using (3.20)) and reasoning as in the proof of Lemma we have

1 1 1 el2ne
v ot = (52 X il + () i) + fa

nez\{0}
where f>3 is a function in ]—"}%173. Therefore, by (5.17), we get

- v;“ + 02 = —C(U) + f3 (5.33)
with ((U) defined in . System ([5.32)) and (5.33)) imply (5.30) where a ) is the function defined
in (5.31). Recalling (5.18)) we deduce that (ag )):{ L =0. O
Remark 5.7. For a cubic vector field of the form OpBW (iVo(U; 2)€)[u] with a real valued function
Vo in Fi the reversibility and even-to-even properties imply (Vo)F— =0, (V 2 = — (Vo) -
(V2);i € R, in agreement with (5.17). We remark that the cancellatzon (Vo),"~, = 0 is essential for

the whole argument to work. Notice also that on the subspace of even functzons u one has ((U) = 0.

5.2. Integrability at order 1/2 and 0. The first aim of this subsection is to reduce the operator
—i0pBW (ag)(U; :1:)|§|1/2) in to an integrable one. It actually turns out that, thanks to ,
we reduce it to the Fourier multiplier —i|D|/2, see . This is done in two steps. In we
apply a transformation which is a paradifferential “semi-Fourier integral operator”, generated as
the flow of . Then, in Subsection we apply the para-differential version of a torus
diffeomorphism which is “almost” time independent, see —. Eventually we deal with the
operators of order 0 in Subsection [5.2.3

5.2.1. Elimination of the time dependence at order 1/2 up to O(u®). We conjugate (5.30) under
the flow )
0p@5(U) = i0p™™ (B3(U; 2)[€[2)@5(U),  ®3(U) =1d, (5.34)

where G3(U;x) € ﬁéR is a real valued function. We set

©4(U)[v2]
Vs = [2] = (®5(U)[V4) :< 3 > (5.35)
)= @ORD = eoym),
where ®4(U) is defined as in ([2-31)).
Lemma 5.8. Define 35 € ]%R with coefficients
2)\oo (2) +—
—\& ni,n a ni,n
(B3)27 1y = R L o==%, (B)i, = (@ Jning , n1 # £na (5.36)

(wm - wn2)
and (B3)0% = 0, (B3)t5 on =0, 0 ==, where ag) is defined in (5.31)). If vo solves (5.30)) then
Orvg = OpPY (= iC(U)¢ —i(1 + a5 [¢]? + i sign(€) + 11 + 28 + HEJvg + RO(U) (V3] (5.37)

io(wn, + Wny)
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where

3 1 2 - i ’rw: 3 1
ag )= By Z (a g))fl U T el bg )= §(ﬁ3)z’ (5.38)
nezZ\{0}
1

1 ~_1
(1) €I’y 2 is the same symbol in (5.16)), rgg) el,?, H(>3) € FK K3 1S admissible, and RONU) is
a 1 X 2 matriz of smoothing operators in ER;(’)K, 1~ Moreover

Nt = iz, =0. (5.39)

n,—n
Proof. By (5.36)) and (2.17)) we deduce that (s is a real function. To conjugate system ([5.30]) we
apply Lemmata |[A.6 and |A.7| with m ~» 1/2 and m' ~» 1. The only new contribution at quadratic

degree of homogeneity and positive order is OpBW({Bg\ﬂ%, —i]g\%}) and iOpBW(atﬁg\ﬂ%). Then
we have

arvs = OpPY (= iC(U)E —i(1 + oY — AuB)[¢]> +i20

(63) 81gn(£) (1) ( ) + H>3)U3 + R(U) [V?J

(5.40)
~_1
where fég) eI, 2, the symbol H>3 € F}(’K,’?) is admissible and R(U) is a 1 x 2 matrix of smoothing

operators in YR, .. By (5.36]) and (3.20) we have
KK'1

—ial) 4108 =~ Y (@ )il + (a8)) e (5.41)
neZ\{0}

up to a function fs3 in F k.13 The conjugation of the remainder RA(U) in is performed as
in STEP 5 of Lemma n n conclusion, - q ) and the vanishing of the coefﬁ(nents
imply (5.37)-(5.38). Finally, (5.39) follows from b Y s = $(Bs)) w1y (N1 — in2). O

Remark 5.9. The cancellation (ag ))n n =01 ) does not follow from the properties of reality,
parity and reversibility of the water waves equatwns Thzs appears to be an intrinsic property of the
gravity water waves system and is, of course, in agreement with the normal form identification
of Section[]. We notice however that one would not need to prove this property for the sequel of

the proof, since the symbol i Znez\{o}(agz)),t’;yuﬁ is integrable and the coefficients (ag)):{; are
real (by (2.17)) and since the function a;2) is real).

5.2.2. Elimination of the x-dependence at order 1/2 up to O(u?®). The aim of this section is to
cancel out the operator

1
1) BW (2)\+— i2nz
iOp <27r Eez(a2 )i —nUnl—pe ) (5.42)

arising by the non-integrable part of the function a;?’)(U ;) in (5.38). We argue in a way inspired
by Section 12 in [9], noticing that the symbol in ([5.42) is a prime integral up to cubic terms O(u?).
We conjugate ([5.37)) under the flow

Bp@Y(U) = i0p®W (b4(U; 0, 2)€)@4(U), @J(U) =1d, (5.43)

where by is defined as in ([5.11]) in terms of a real valued function 84(U;z) € ]-'2R of the same form
of the symbol in (5.42), i.e.

Bs(U;x) = Qi Z (54):{’:nunmei2m. (5.44)

T
neZ\{0}
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The flow in (5.43]) is well-posed by Lemma We set

0
Vii= 7] = (2UU)Va]),_, = <©4(U)[Z3]> (5.45)

lo=1

where ®4(U) is defined as in (2.31].
Lemma 5.10. Define the function B4 € fZR as in (5.44) with coefficients

@, += .
(54)11,—71 T T ’ n 7é 0; (,84)0,0 =0. (546)
If vs solves (5.37) then
vs = OpPW (—iC(U)E —ile|2 +ibS sign(€) + ri” + x5 + HSY)vy + RO(U)[V4] (5.47)

where the symbols bg ), rgl), rgg) are the same of equation (5.37), the symbol H(;g € F}(,K’,S 18

admissible and R™* )(U) 1s a 1 X 2 matriz of smoothing operators in E”R,;('DK, 1

Proof. In order to conjugate (5.37) we apply Lemmata and The contribution com-
ing from the conjugation of J; is iOpBW((8t64)£)U4 plus a paradifferential operator with symbol

I(—(Ba)z(Ba)e + g>3)¢ (see (A.21))), which is admissible, and a smoothing remainder in ¥R,/ ;.

Recalling (3.20) we have
d - — i2nzx — i2nz
pm N (Bt = 3 (B0 (Wt + Uniw ) €2 4 s
neZ\{0} neZ\{0} (5.48)

because w_, = w, and where, arguing as in the proof of Lemma h>3 is a function in .7-"}13 1.3
This implies that the function 9y, is in }"}%173 and therefore i(0;(4)¢ is an admissible symbol.

Lemma implies that the conjugation of the spatial operator in (5.37) is a paradifferential
operator with symbol

—IC(U)E — i1+ a5)el® + {Bag, —ile]"/?) + v} sign(€) + i + x5 (5.49)
plus a symbol in EF;’)’I/(,J an admissible symbol and a smoothing operator in ERI_(’j 1+ 11 . Notice that
{Ba€, —i[€|2} = 1(B4).|¢|2 and that this equals a) in view of the definitions of 84 in and
, and of aég) in . It follows that the symbol in reduces to

—i{(U)¢ — i[§|% + ibg’)sign(f) + rgl) + rég) :
We have therefore obtained (after slightly redefining p) as desired. O

5.2.3. Integrability at order 0. Our aim here is to eliminate in (5.47)) the zero-th order paradiffer-
ential operator OpBW (ibég)sign(ﬁ)). We conjugate (5.47) with the flow

93 (U) = Op”™ (iB5(Us 2) sign(€))25(U) . #§(U) =1d, (5.50)
where 35(U;z) € ﬁéR is a real valued function. We introduce the variable
Vs:= [2] = (®YU)[VA]), = <(I)9(U)[ 4]> (5.51)
P L = I = g0, |

where ®¢(U) is defined as in (2.31)).
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Lemma 5.11. Define 85 € fR (of the form (2.16))) with

(0577 0, (05"
= : =+ = L2 - 52
(65)711,712 ia(wm +wn2) , O ) (55)711 ng (wnl an) , N1 7& na, (5 5 )
and (85)5% := 0, (Bs)fon =0, 0 = +. If vy solves then
rvs = OpPV (—i¢()¢ —ile)z + V) + rg”) + HO))vs + RO(U)[V] (5.53)

where rg5) € fl_a, r§5) € f2% the symbol H(g € Tk g3 is admissible, and RONU) is a 1 x 2
matriz of smoothing operators in ERK,K'J'
Proof. To conjugate we apply Lemmata and [A.7] m By (5 we have that
Op™™ (i(bS” + 0,85 )sign(€)) = i0p™™ (b<5>s1gn<§>>
up to symbols with degree of homogeneity greater than 3, and where

1 : .
DUy = - 3 Ol + (080 s B2 g,
neZ\{0}

The lemma, is proved. O

Remark 5.12. For a cubic vector field of the form Op®W (c(U;z) + ib(U; x)sign(€))[u] with real

valued functions c,b in ]-N"]R the reversibility and even-to-even properties imply c+_ = cf{fn =
b ", =0,bf, =—-b" _ bto eR. The fact that actually (bg ))nn = 0 as stated in

foilows by other properties of the water waves equations, and, once again, s in agreement wzth the
normal form identification of Section[7.4

In the following subsection we will be dealing with negative order operators, and will not need
additional algebraic information about the coefficients and their vanishing.

5.3. Integrability at negative orders. In this section we algorithmically reduce the linear and
quadratic symbols rg ) + rg5) of order —1/2 in (5.53)) into an integrable one, plus an admissible

symbol.

Proposition 5.13. For any j =0,...,2p — 1, there exist
N o~ 1
e integrable symbols pgj) 2 (Definition |5. , symbols
) s 4+ 1
q(j)(U,$,f) € EFKT;?’J , My = ]7—; ,

admissible symbols H(ng) in I’}{ k13, and a 1 x 2 matriz of smoothing operators R(j)(U) m

SRk
e bounded maps 'I']H(U), 0 € [0,1], defined as the compositions of three flows generated by

paradifferential operators with symbols of order < 0, (see (5.70) and (5.57)), (5.61) and (5.67)))

such that: if z; solves

Az = OpPV (= iC(U)E —ilgl? + 9§ (U5€) + D (Us2,€) + HE) 2 + ROW)(Z),  (5.54)
then the first component zj11 of the vector defined by
Zj+1 = [2%] = (THl(U))e:lZJ' (5.55)

solves an equation of the form (5.54) with j + 1 instead of j.
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The proof proceeds by induction.
Initialization. Notice that equation ([5.53] - has the form with 7 = 0, denoting 2y := vs,
pgo) =0, q© = r(15) + rg)) € ZFKll/f, 1 and renaming H(3) the admissible symbol H( ) in
and R (U) the smoothing operator RG N(U).
Iteration. The aim of the iterative procedure is to cancel out the symbol q\¥) up to a symbol of
order —m; — 1/2. This is done in two steps.
Step 1: Elimination of the linear symbols of negative order. We expand the symbol q¥) =
qg D4 qg ) 4 ... with ql( ) ¢ r, " 1 =1,2. In order to eliminate the operator Op® ( (U z,§))
in we conjugate it by the flow

0!, (U) = Op™ ()1 (Us2.) @ (U), @0, (U) =1d, (5.56)

Ti+1 Ti+1 Ti+1

where 7]( Jr)l(U ;x;€) is a symbol in fl_mJ The flow ([5.56) is well posed because the order of 7](-21 is

negative. We introduce the new variable

L ¥, (U5
Zigg =22 = (A%, ,(0)[Z; = | 5.57
j+1 [Zj+1] (A]J,-l,l( )[ ]])|9:1 @9(1) (U)[Z] ( )
i+ lo=1
where the map ®¢ e (U) is defined as in (2.31]).
Vi1
Lemma 5.14. Define 7(-21 e T[™ with coefficients
)+ ()~
1 (q )n — _(q )n 1) \o
ORDE =T e = = n#0, =0, o=+ (558)

If z; solves then
0iZj1 = OpPV (—iC(U)E = 1[¢]7 + ) (U;€) + 5 (Us 2, &) + KV (U 2, €) + K (U; 2, €)) Zj11

+ OpPY (HY)) %41 + RO(U)[Z;41]
(5.59)

,1
where p2 (U €) €Ty ? is the same of (5.54)),
() m—ma—l (s ~—ma—1
()EFmJ7 kg])erlmj 2 kgj)GFQm] 2
the symbol H(J) € I‘K K413 18 admissible and R(j)(U) is a 1 X 2 matrix of smoothing operators in
SR

Proof. In order to conjugate we apply Lemmata and |A.7] - The only contributions at ho-
mogeneity degree 1 and order —m,; are given by OpBW (aj ( ) + at’)’( ) 1) up to smoothing remainders.
From the time contribution a symbol which has homogenelty 2 and order less or equal —m; —1/2
appears (see the term 7 in of Lemmam By (5.58)) and ( we have that

qgj) + aﬂj(ur)l —qoj+axs, @€l 7, ax€ FK Vs

and we set ﬁg ). (] )

(5.59) at order less or equal —m;— 3, and homogeneity < 2 come from the conJugatlon of the spatial
operator —i|¢|'/2. In particular, using formula (A.24), we can set k) := (nyH) €| 2 sign(€)
and obtain (5.59) with some ﬁgj) in F;mj_l/Q. O

+ 2,5, and absorb g>3 in the admissible symbol H(>j§ The contributions in
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Step 2: Reduction of the quadratic symbols of negative order. We now cancel out the

symbol qgﬂ ) in (5.59), up to an integrable one and a lower order symbol. Following Section ﬂ we
use two different transformations.

ELIMINATION OF THE TIME DEPENDENCE UP TO O(u?®). We consider the flow generated by

002’ ) (U) = OpPY (1 (s, €0y (U), ¥y (U) =1d, (5.60)
.7 J J
where ’y](-i)l(U ;x;€) is a symbol in f; " We introduce the new variable
o W, (U)]5)
Ziy1 = [22] = (A2, 1,U)[Z = | 7= 5.61
Tt lo=1

where the map ®? -® (U) is defined as in ([2.31]).

Yj+1

Lemma 5.15. Let 'y(i)l(U; x; &) be a symbol in f;mf of the form (2.16)) with coefficients

2) oo (@3 (2) 4o @)
(W57 0y = E—. c=%, (N, = o oy ™ £ +ny. (5.62)
If z; solves then
0z = OpPV (— il — iC(U)E + Y (U:€)) 51
0PV (D @ ©lunl + @) (©uae ) ) 21 (5.63)

n€eZ\{0}

+ OpPV (& (U 2 5) + & (U;2,8) + HY) 201 + ROU)[Z511]

N om—mi—l oo ~—m .
where jo) el’; 7 2, kg) ey, 7 2, the symbol H(>§ € FK K13 18 admissible and RU(U) is a

1 x 2 matriz of smoothing operators in YR ) ;.

Proof. In order to conjugate (5.59) we apply Lemmata and The contributions at order
—my; and degree 2 are given by Op® ( g —i—@t'y(Q) ) All the other contributions have homogeneity

greater or equal 3 and are admissible. By the choice of ’yj(i)l in (5.62) we have

1 ~(j j — i2nzx
& o= 5= Y @Ol + @)L ©unte”
neZ\{0}

up to a symbol in I‘;{'I’JS O

ELIMINATION OF THE z-DEPENDENCE UP TO O(u?). In order to eliminate the non-integrable
symbol

1 ~(I)\+— — i2nx
5 > @) a(©uaae® (5.64)
nezZ\{0}
in (5.63) we follow the same strategy used in Subsection [5.2.2) m We conjugate (5.63|) by the flow
0%’y (U) =i0p"V (3, (U3 2,€))9! T, U), @l (U) =1d, (5.65)
J

J+1
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il
where 'yj(?l(U; z,&) is a symbol in Iy ™%2 of the same form (5.64), i.e.

1 — i2nx
YA Use &) = o= 3 (R a( untae™™. (5.66)
neZ\{0}

We introduce the new variable

o’ (3) (U) [5j+1]

2 0 o
i1 = [Eﬁi] = (‘AJ'H,S(U)[ J+1])‘6 L m[ﬁ] (5-67>
Vi1 \9:1

where the map @Y, (U) is defined as in (2.31).
Ti+1

1
Lemma 5.16. Define 7J+)1 in F M2 gsin 5.66) with coefficients

(D€)== m%sign@)%@é“):,:n(s), n#0. (5.68)

If Z; solves (5.63|) then

Dhzie1 = OpPW (—i(U)E = il¢]= + 9§ TV (U3€) + QU (U3, &) + HY) 20 + RIFD(U)[Z541]
(5.69)

1) (U; €) is an integrable symbol in f;Q qUtD(U; z,€) is in EI‘Kn}g,ﬁ, the symbol Hg;l) €

1“}(,[(,73 s admissible, and R(j+1)(U) 18 a 1 X 2 matriz of smoothing operators in ER;(’,)K,J.

where py

1

Proof. Reasoning asin , we have <4 a7 (U x,€) = 0 up to a cubic symbol in T', K 1 3 . In order

to conjugate (5 we apply Lemmata |A.6| and |A.7] - The only contributions with homogeneity 2
and order —m] are

1 (i () :
0P (LD elel Hsign(©) + o= 30 @i Ol + @i Ounie ™).
neZ\{0}

By the choice of ’yj(i)l in (5.66)), (5.68) we have

N 1 i2nx
SOl e (© 1 o= Y @O = 0.
neZ\{0}
Then (5.69) follows with the new integrable symbol
o N
0 =0 O+ Y @Ol

neZ\{0}

and a symbol qUt)(U; z,€) in T K@*i where mj 1 = mj + 1. O

Lemmata [5.14) [5.15] [5.16] imply Proposition by defining the map
T§+1(U) = A§+1,3(U) o §+1,2(U) 0 §+1,1(U) (5.70)

where Aj-‘rl L(U), for k =1,2,3, are defined respectively in (5.57), (5.61), (5.67).
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5.4. Proof of Proposition We set
FU) == 1%, (U)o ®E(U) 0 - - ] (U) 0 ¥, (V) (5.71)

and FO(U) := §%(U)[U] as in (5.6), where ‘Ilflmg(U) is defined in Proposition the maps @?(U),
j=1,...,5 are given respectively in (5.14), (5.28), (5.35)), m m and Y fm (U) = Tgp(U) o

-0 Tf(U) where T?H(U), j=0,...,2p—1, are defined in (5.70). Then, by the construction in
Subsections we have that Z := (F(U))g—; solves the system with j = 2p — 1 which
has the form with D_y (U3 ) ~ py* V(U €), Hog ~ HEY ™ and R(U) ~ R~D(U). The
bounds follow since §(U) is the composition of maps constructed using Lemma (see
bounds (A.11))).

6. POINCARE-BIRKHOFF NORMAL FORMS

The aim of this section is to eliminate all the terms of the system (5.4) up to cubic degree of
homogeneity which are not yet in Poincaré-Birkhoff normal form. Such terms appear only in the
smoothing remainder R(U)[Z] that we write as

R(U) =Ri(U) +Ro(U) +R>3(U), Rx3(U) € Rl 3 © Ma(C), (6.1)
@)= (i)t B) . @@ R, ®@)g - ®mO)T. 62

for 0,0’ = + and i = 1,2. The third identity in means that the matrix of operators R(U) is
real-to-real (see (2.32)). For any 0,0’ = + we expand

R =D (Ree(U)7 . R2(U)F =D (Boee(U))7 + (Rer—(U))7 (6.3)

e=+ e=+

where (Ry.(U))? € ﬁfp, (Roce(U))] € ﬁ;p with €, = =+, are the homogeneous smoothing
operators

(Ree(U)F 27 = S (X R e (6.4)

T jez\{o}  kez\{0}

ﬁ\

with entries

o’ 1 0,0 ¢ .
(R (U))7 = o S (rn)pTus, g ke Z\{0}, (6.5)
T nez\{o}

en+o'k=cj

for suitable scalar coefficients (rq, E)ZZ € C, and

Z ( Z (Rocer (U akzo)eiajz (6.6)

]GZ\{O} kez\{0}

(RZ,e,e’ (U))

ﬁ\

with entries

lvk 1 ) ! ! y
(R27€7€'(U))g,j = o Z (r27€7€')707,10,n2,ku$11u;2 , Jike Z\ {O} ) (67>
n1,n2€Z\{0}
en1+e'noto'k=oj

/
and suitable scalar coefficients (r2’5a5/);‘1710n2
9 b

: €C.
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Definition 6.1. (Poincaré-Birkhoff Resonant smoothing operator) Let R(U) be a real-to-
real smoothing operator in Ry” @ Mao(C) with p > 0 and scalar coefficients (e ) mr € C
defined as in (6.7). We denote by R"**(U) the real-to-real smoothing operator in ﬁ;p@)/\/lg((:) with
coefficients
/7k .— I ! ! y
RES(U))g; = > (Te )y mg el Uy » - Jok € ZN{0},  (6.8)
n1,m2€Z\{0}

eni+e'no+o'k—oj=0
ew(ny)+€ew(ng)+o'w(k)—ow(j)=0

where we recall that w(j) = m%

In Subsections and we will reduce the remainder R(U) in (6.1]) to its Poincaré-Birkhoff
resonant component. The key result of this section is the following.

Proposition 6.2. (Poincaré-Birkhoff normal form of the water waves at cubic degree)
There exists pg > 0 such that, for all p > py, K > K' = 2p + 2, there exists so > 0 such that, for
any s > so, for all 0 < r < ro(s) small enough, and any solution U € BE(I;r) of the water waves
system , there is a nonlinear map F5.(U), 0 € [0,1], of the form

Fr(U) = (U)[U]
where €9 (U) is a real-to-real, bounded and invertible operator, such that the function Y := [
FL(U) solves
oY = —iQY —i0pBWV (D(Y;€))[Y] + R (Y)[Y] + X4 (U, Y) (6.10)
where:
e () is the diagonal matriz of Fourier multipliers defined in , and D(Y;€) is the diagonal
matriz of integrable symbols I'y @ My (C) defined in (5.5);
e the smoothing operator R™*(Y) € ﬁ;(pfpo) ® My(C) is Poincaré-Birkhoff resonant according

to Definition[6.1];
o X>4(U,Y) has the form

X>4(U,Y) = OpPV (95(Us 2, €))[Y] + Rx3(U)[Y] (6.11)
where H>3(U;z,§) € F}QK,Q ® M2 (C) is an admissible matrixz of symbols (Deﬁnition and

R>3(U) is a matriz of real-to-real smoothing operators in R;{(%%O) ® My (C).

Furthermore, the map FGT(U) defined in satisfies the following properties:
(i) There is a constant C' depending on s, r and K, such that, for s > sg,

185 @) V| s + 186 T V]Il jgo—r < IV [lis(L+ ClUi,50) + ClIV k01U 1,55 (6.12)
forany0<k<K-K', Ve C'SI{KI(I; H*(T;C?)) and uniformly in 0 € [0,1];
(ii) The function Y = F4.(U) satisfies
C Ul zs < Y s < ClU s - (6.13)
(iii) The map F5.(U) admits an expansion as

F3(U) = U+ 0(M(U)[U] + My (U)[U]) + 0> My (U)[U] + Mzs(6: D)V,

where My (U) is in M, ® M3(C), the maps MQ(I)(U), M2(2)(U) are in Mo ®@M3(C), and M>3(68;U)
is in Mg g3 @ Ma(C) with estimates uniform in 6 € [0,1].

lo=1

In the following subsection we provide lower bounds on the “small divisors” which appear in the
Poincaré-Birkhoff reduction procedure. Then, in Subsection [6.2 we prove Proposition (6.2
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6.1. Cubic and quartic wave interactions. We study in this section the cubic and quartic
1
resonances among the linear frequencies w(n) = |n|2.

Proposition 6.3. (Non-resonance conditions) There are constants ¢ > 0 and Ny > 0 such

that
e (cubic resonances) for any 0,0’ =+ and ny,nq,n3 € Z \ {0} satisfying
ny+ong+0o'n3 =0, (6.14)
we have
lw(ny) + ow(ng) + o'w(ng)| > c. (6.15)
e (quartic resonances) For any o,0’,6"” = £ and n1,n9,n3,ng € Z\ {0} such that
ny+ong+o'nyg+0'ng =0, wng)+owng)+o'wlng)+oc"wlng) #0, (6.16)
we have
lw(ng) + ow(ng) + o’w(ng) + o”w(ng)| > cmax{|ny|, |nal, |nsl, [na|} 0. (6.17)

Proof. We first consider the cubic and then the quartic resonances.

PROOF OF ([6.15)). If o0 = ¢/ = + then the bound (6.15)) is trivial. Assume o = + and ¢/ = —. By
(6.14) we have that |n3| < |ni| 4 |n2| and therefore

|!n1\+\n2|—\n3!+2\/\n1Hn2H
|V Ini| 4+ v/ Ina| = /Insl| =
Vini| + VIne| + v/|ns]

NI N
VIl + Vel + VIl + ne| T 2+ V2
since |nq|, |n2| > 1. The bound in the case 0 = — and ¢/ = + is the same.
PROOF OF ([6.17). The case 0 = ¢/ = 0" = + is trivial. Assume 0 = ¢’ = + and ¢” = —. We have
In1| + [n2| + [ns| — [na] + 24/ |nina] + 24/ |nans| + 2+/|nins||
w(ny) +w(ng) + w(ng) + w(ng) '
The first (momentum) condition in implies that |n1| + |na| + [ng| — [n4| > 0 and hence (6.17))

follows (actually with Ny = 0). It remains to study the case o = ¢’ = — and ¢/ = +, i.e. we have
to prove that the phase

lw(ni) +w(n2) + w(ns) —w(ng)| =

$(n1,m2,m3,14) = [n1|7 — |na|2 + |nz|7 — |n4|2 (6.18)
_ [l = [na| + [na| — |na| + 2¢/|nans| — 2/|nona|
i |n1|%+|n2|2+|n3|z+\n4|2
satisfies . Notice that the first (momentum) equality in becomes
ny—mng+n3—na=0. (6.20)

(6.19)

Let |ni| := max{|ni],|n2|, |n3|, |n4|} and assume, without loss of generality, that n; > 0 and
na| > |ng| (the phase (6.18]) is symmetric in |ns|, |n4|). We consider different cases.
[n2| = |na (the p y :
Case a) Assume that n; = |ny|. Then by (6.18])
[V, ma,na)] = [inal? — foal3] = A8 = 1l
Ins|2 + |n4l?
Since ¥ # 0 then |ns| — |n4| is a non-zero integer and we get (6.17). Thus in the sequel we suppose
ny > |n2\ > |n4| . (6.21)

Case b) Assume that |n3| > |n4|. Then by (6.18]) we get
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—Ino| (27 1
Y(n1,na,nz,na) > 1|2 — |no|? = ‘m;’ | 2’; = T T
[n1|2 + |na|? [n1|2 + |ng|?
which implies (6.17)). Thus in the sequel we suppose, in addition to (6.21)), that
ny > \n2| > \n4| > |TL3| (6.22)

The case ny < 0 is not possible. Indeed, if no < 0 then (6.20)) implies ngy = ny + |ne| + n3 > nq by
(6.22)) which is in contradiction with n; > |ny4|. Hence from now on we assume that

ny > ng > |ng| > |ng| > 0. (6.23)
Case c1) Assume that all the frequencies have all the same sign, i.e. ny > ng > ng > nz > 0. In

this case, by (6.19)-(6.20), we get

W(nl,n2,n3,n4)\ =

12y/n1n3 — 2,/nang| 2 |n1ns — nany|
1 1 1 1 2 4 1 *
n1l2 + [nal2 + |ng|2 + [nal2 Y0 [l VINE T yn2ma

Since 1 # 0 we have nins # nang, and therefore (6.17)) follows.
Case c2) Assume now that two frequencies are positive and two are negative, i.e. ny < ng <0 <

ng < ni. The momentum condition (6.20]) becomes ny —ng = —|n4| + |n3| and, since ny > ngy, then

[ns| > |n4| contradicting (6.23)).

Case ¢3) Assume that three frequencies have the same sign and one has the opposite sign. By

(6.20]) and (|6.23) we then have

ny > ng >ng >0>n3, n4>\n3\. (6.24)

By (6.19) we get

n1 — ng + |ng| — ng + 2y/n1lns| — 2y/nang
Z?:l |nl|%
EN.63 %(\nﬂ +/mifng| - \/TW>
> im Inil?
2 n2 + ni|ng| — nang + 2[nsly/nilns|
Sz Insl+ V/lns| + igng

If nona < ny|ns| then (6.25) implies the bound (6.17)). If instead nona > ny|n3| we reason as follows.
Notice that

B :=n3 4+ ni|ng| — nang — 2|nz|\/n1|na| < nj — 2|nzlv/ni|ns| < —|ns|v/nijns| < -1,
in particular B # 0. Then we rationalize again (6.25) to obtain
w(n17n27n3an4) =C-A- B_l

w(nla n2,ns, 7'L4) =

(6.25)

where
2 1

S |nal2 Ins| + /nalns| + v/rang

Since ¥ # 0 then A is a non zero integer and so [¢)| > C|B|™'. Moreover |B| < cnf, for some
constant ¢ > 0, and (6.17)) follows. d

A= (03 + ming| — nona)® — 4nglPng, C =

6.2. Poincaré-Birkhoff reductions. The proof of Proposition[6.2)is divided into two steps: in the
first (Subsection [6.2.1]) we eliminate all the quadratic terms in (5.4)); in the second one (Subsection
6.2.2)) we eliminate all the non resonant cubic terms.
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6.2.1. Elimination of the quadratic vector field. In this section we cancel out the smoothing term
R1(U) in (6.1]) of system (5.4). We conjugate (5.4) with the flow

B (U) = q(U)BI(U), B)U)=1d, (6.26)
with Q1 (U) € ﬁfﬂ ® My (C) of the same form of Ry (U) in (6.2)-(6.5)), to be determined. We

introduce the new variable

Vi = [2] = (B{(U)[2]) (6.27)

lo=1 "

Lemma 6.4. (First Poincaré-Birkhoff step) Assume that Q1(U) € ﬁl_p ® M3 (C) solves the
homological equation
Qi (—iQU) + [Q1(U), —iQ] + R (U) = 0. (6.28)
Then
a1 = i1 + Op° " (=iD(U;€) + Hx3)[V1] + (R5 (U) + RL,(U)) [Vi] (6.29)

where §) is defined in (3.19), D(U;€) in (5.5), H>3 is an admissible symbol in F}(7K,73®M2((C), and
R (U) € Ry @ Ma(C), RIL(U) € RIEEY @ My(C),
with my > 1 as in (3.19).

Proof. To conjugate (5.4) we apply Lemmal[A .1 with Q;(U) = iA(U). By (A.3)) with L = 1 we have
—iBHU)QBI(U) ™ = i+ [ (V), -]

1
+ [ - oBIO) W), [ ), -i0]] B as. (6.30)
0
Using that Q;(U) belongs to 7:\’:1_’) ® M32(C) and applying Proposition and Lemma the
1

term in (6.30)) is a smoothing operator in ZRI_(/;,QQ ® M3(C). Similarly we obtain

—iBH(U)Op"Y (D(U; ))(B1(U) ™! = —0p"Y (D(U;€)) (6.31)
up to a term in ER;{?}{F}’Q ® M3 (C), and

Bi(U)Op®™ (H3) (B{ (U)) ™ = Op°W (Hzs) (6.32)

up to a matrix of smoothing operators in ZR}’},{Q ® Mj3(C). Finally

Bi(U)(R1(U) +Re(U) + R>3(U)) (B1(U)) ! =Ry (V) (6.33)

plus a smoothing operator in 273;{’;,12 ® Mo (C).

Next we consider the contribution coming from the conjugation of d;. Applying formula (A.4))
with L = 2, we get
1
OBUU)BIU) ™ = 0@ (U) + 5 [@(V), i (V)]
1

1
+3 [ 0-0rB 0w, o). 0a@))EO) . 63

Recalling (3.19) we have
Q1 (U) = Q1 (—iQU + M(U)[U]) = @ (—iQU) + (M (U)[U]) = Q1 (—iQU) (6.35)
up to a term in ER;(’,’ ;,m; ® My(C), where we used the last two remarks under Definition

~ o1l
By (6.35) and the fact that Q;(—iQ2U) is in R4 ) M5 (C) we have that the second line (6.34))
belongs to ER}’}T’Q ® Ms(C).
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In conclusion, by (6.30)), (6.31)), (6.32), (6.33), (6.34) and the assumption that Q; solves (6.28))

we deduce ([6.29). O
e Notation. Given p € N we denote by maxa(|ni,|ns2l,...,|np|) and max(|ni|,|nal,...,|np|)
respectively the second largest and the largest among |ni|,. .., |n,|.

We have the following lemma.
Lemma 6.5. An operator R1(U) of the form (6.2)-(6.5]) belongs to ﬁfp ® M2(C) if and only if,
for some > 0,

maxy(|n|, [k[)7

max(|nl, |k|)

, Veo,0 =+, nkeZ\{0}. (6.36)

/
(T | <

An operator Ra(U) of the form (6.2))-(6.3]) as in 1} belongs to ﬁ;p ® Ma(C) if and only if,

for some > 0,

maxa(|n1|, [nal, |k|)PHH

maX(‘”l’a ’n2‘7|k’)p

‘(r2,676'):1cf;1j2,k‘ < , Ve, 6/7 g, o' = +, ni,ng,k€Z \ {0} : (6'37>

Proof. By the definition of smoothing homogeneous operators given in Definition O
We now solve the homological equation (6.28)).

Lemma 6.6. (First homological equation) The operator Qi of the form (6.2))-(6.5) with coef-
ficients

0,0’ _(rl,e)Z:Z . /
(ql,e)n,k =— T =, 0j—0k—en=0, (6.38)
i(alj]2 = o'[k]2 = €|n|2)

with 0,0’ e = £, j,n, k € Z\ {0} solves the homological equation (6.28) and Qy is in ﬁ,fp@/\/lg(((:).

Proof. First notice that the coefficients in (6.38)) are well-defined since o|j 2o |k:|% - e|n]% #0

for any 0,0’ e = £, n,k € Z\ {0}, by Proposition in particular 16.151 . Moreover, by (6.15))
and Lemma we have

0,0’ maX2(|n|’|k’)p+u
) <
[(ar,e)n% | < max(|n/, |k|)”

and therefore the operator Qp is in ﬁl_p ® Ms(C).
Next, recalling (6.2)) and (3.19)), the homological equation (6.28) amounts to the equations

(@ (~iQU))Z — (@u(U))3 o'i|D|? + 0i| D|2 (Q(U))] + (R (U)) =0, Yo,0" = =+,

and expanding (Q1(U))? as in (6.3)-(6.5) with entries

o’ 1 0,0’ € .
(QLE(U))U,;’“:\—E > (qudinug, gk e Z\ {0}, (6.39)
T nez\{o}

en+o'k=oj

)

to the equations, for any j, k € Z \ {0}, e = =+,

(Que(—QU)ZF + @ue(U)3F (ailj]2 — o'ilk]2) + Ree(U))F = 0. (6.40)
By (6.39)) and (3.19) we have
/ 1 ’ 1
Que(—QU)TF = —= > (a7 (—ieln|2)us,,
V2T o)

en+o'k=oj
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and (6.40) becomes, for j, k,n € Z\ {0} and o,0’, ¢ = + with en + o'k = 07,
(@137 i(olil2 — o' |k[2 —elnl2) + (x1)77 =0,
which is solved by the coefficients (ql,g)fl’;/ defined in ([6.35). O
6.2.2. Elimination of the cubic vector field. In this section we reduce to Poincaré-Birkhoff normal
form the smoothing term R (U) € Ry "™ @ My (C) in (6.29). We conjugate (6.29) with the flow
0pB3(U) = Q(U)By(U),  By(U) =1d, (6.41)

where Q2(U) is a matrix of smoothing operators in ﬁz_erNoerl ® M3 (C) of the same form of Ry (U)
to be determined. We introduce the new variable

Yy:=[g] = B0, - (6.42)

e Notation. Given the operator Q2(U) in (6.41), we denote by Qa(—iQU) the operator of the
form (6.2)), (6.3), 1} with coefficients defined as

. 'k 1
(Q2,c.e (—1Q0))7 5 = Z (q2€€)n10n2k( ie|n1|2 — ic|ng|2 ) ug, us,, - (6.43)
n1,n2€Z\{0}
eni+e'noto'k=oj

Lemma 6.7. (Second Poincaré-Birkhoff step) Assume that Q2(U) € ﬁ;p+NO+m1 ® M3(C)
solves the homological equation

Q2 (—iQU) + [Q2(U), —iQ] + RS (U) = (R])"*(U). (6.44)
Then
0Ya = —iQYs + Op"V (=iD(U; €) + Hx3)[Ya] + ((RF)"*(U) + R55(U)) Y] (6.45)

where Q is defined in (3.19) and D(U;€) in (5.5), H>3 is an admissible symbol in T /4 ®
M (C), (R])™*(U) is a Poincaré-Birkhoff resonant smoothing operator according to Definition
in Ry ™ @ My(C), and RL3(U) is a matriz of smoothing operators in RKPIJQ,NO+2m1 ® My (C)

with m1 > 1 as in (3.19).

Proof. To conjugate system ([6.29) we apply Lemma with Q2(U) = iA(U). Applying formula
[A.3) with L = 1, the fact that Qo(U) is a smoothing operator in R, ”*0""™ © My(C), Proposition
2.10] and Lemma we have that

By(U)(—iQ)(B3(U)) ™ = =i + [Q(V), —i€]

plus a smoothing operator in RKP;,NOJleJrl ® Mo (C). Similarly

By (U)(Op"W(—iD(U; €) + Hx3) + Ry (U) + RE4(U)) (B3 (U)) ™!
= Op"W (= iD(U;€) + H>3) + B3 (U) + RL4(U)

up to a smoothing operator in RK’);,NOerlﬂ ® My (C).

Next we consider the contribution coming from the conjugation of 9. First, notice that, using

equation ,
oW(U) = Q(0U) = Q(—iQU) (6.46)
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(defined in (6.43))) up to a smoothing operator in RKp;,NOHml ® My(C). The operator Qo(—iQ2U)

is in R;p+N0+m1+2 ® M3(C). Then, applying formula with L = 2 we have

OBI(UY(BYU)) ™! = 9,Qo(U) + %[cu(U ), %Qa2(U)]

1
+ ;/O (1 - 6)2B(U) [@2(U), [Q2(U), 8:Q2(U)] | (BS(U))~do = Qa(—iQU)

up to a smoothing operator in RKp;,NOHml ® Ms(C).
In conclusion Qo(—iQU) + [Q2(U), —iQ2] +RJ (U) collects all the non integrable terms quadratic

in U in the transformed system. Since Qo solves (6.44]) we conclude that Y5 solves ((6.45)). U
We now solve the homological equation ((6.44)).

Lemma 6.8. (Second homological equation) The operator Qa of the form (6.2)-(6.3), (6.6)-
with coefficients

_( + )J,U’

2,6,/ /ni,na,k a1 / 1 1 1

: E— olj|2 — o'|k|2 — €lny|2 —€lng|2 #0

(@2 )0 g = 3 (0|2 — o’|k|2 — eln1 |2 — €|nglZ) (6.47)
0 olj|z — o'|k|2 — €[ni|z — €|no|2z =0

with 0,0’ e, =+, ny,na, k € Z\ {0}, satisfying ocj — o'k — eny — €'ng = 0, solves the homological
equation (6.44). We have that Qg is in R;erNﬁml ® My (C).

Proof. First notice that the coefficients in (6.47) are well-defined thanks to Proposition in
particular (6.17]), and satisfy, using also |j| < |k| + |n1| + |n2,
maX2(|n1|7 ’n2|? |k.|)pfm17N0+;/

max(|na|, [ngl, [k[)p~m—No

(6.48)

o,0’ No
’(q27575/)n17n2, C|(r266 )nl na, ]{;|ma’X(‘n1| |n2’ |k|) < C

with g/ = p + Ny, because (r;rE o )Zlgm ., are the coefficients of a remamder in 7'\’, P & My (C),
and so they satisfy the bound with p ~» p —my. The estimate and Lemma imply
that Q2(U) belongs to the class R;’Hmﬁ% ® Mo (C).

Next, the homological equation ([6.44]) amounts to, for any o, 0’ ¢, € = =+,
. 'k Tk ot g 'k o'k
(Qe,e.e (—1QU))7 57 + Qe (U))y; (UI\JI2 —o'ilk]2) + Ry . (U))g ;" = ((RJ“)TGS(U))JJ (6.49)

for any j,k € Z\ {0}. Recalling (6 and (6.8), the left hand side of (6.49) is given by
(C12 €,€ )n1 no, ! (O-|]|2 -0 |k;|2 - €’n1|2 - 6|n?| ) (r;e € )Zlgng,k ’

for j,k,ni,ny € Z\ {0}, 0,0’ ¢, =+ and eny + ¢ n2 +0'k=0j. We deduce, recalling Definition

that the operator Qu with coefficients (qg ¢ )77 .k defined in solves the homological

equation ((6.44]). O

We can now prove the main result of this section.

Proof of Proposition Let Z be the function given by Proposition which solves (5.4]).
We set

= (BY(U))g=1[2]), where B°(U):=Bj(U)oB(U), 6el0,1], (6.50)
and BY(U), i = 1,2, are the flow maps defined respectively in (6.26), (6.41)) with generators Q; (U),
Q2(U) defined respectively in Lemmata and Therefore the function Y defined in ([6.50)
solves the system (recall ((6.45))

OY = —iQY + OpPW (~D(U3€) + Hug)[Y] + B (U)[Y] + Rog(U)[Y] (6.51)
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where Q and D(U; &) are defined respectively in and (5.5)), the smoothing operator R (U) :=
(Ry)"**(U) in 7%; PEML @ Mo(C) (where mq > 1 is the loss in (3-19)) is Poincaré-Birkhoff resonant
according to Definition the symbol H>3 € I‘}(, K3 ® M2(C) is admissible, and RS3(U) is in
R ;Zf”ml ® M3 (C) where the constant Ny is defined by Proposition

We set ¢?(U) := BY(U) o §%(U) where BY(U) is the map defined in and §°(U) in (5.6).
Then we define F9.(U) := ¢?(U)[U] as in (6.9). The maps BY, i = 1,2 are constructed as flows of
smoothing remainders, hence, by Lemma they are well-defined and satisfy the bounds ,
@D. Then, since the map F%(U) satisfies , the composition map ¢?(U) satisfies and
@. Moreover the map §%(U) is the composition of flows of para-differential operators (see its
definition in ), hence, by Lemma it admits multilinear expansions as in . In the

same way, by Lemma the map B?(U) admits a multilinear expansion as in (A.13)), and therefore
F%(U) admits an expansion like (A.13) as well, implying item (4ii) of Proposition Moreover

Y = (F4(U)),_, =U+MU)[U]  where M(U) € EM g1 @ Ma(C). (6.52)

Then, substituting in , we obtain — with
$>3(U;2,€) := —i(D(U;€) = D(U +M(U)[U];€)) + Hx3(Us2,€), (6.53)
Ros(U) 1= R"(U) — R (U +M(U)[U]) + Ra5(U) . (6.54)

Since the integrable symbol D(U;¢) in (5.5)) is homogeneous of degree 2, the quadratic terms in the
right hand side of (6.53|) cancel out and, by (6.52)) and item (iv) of Proposition we deduce that
H>3U;z,§) € F%(7K,73 ® M3(C) is an admissible symbol. Similarly, since R"**(U) is a smoothing
operator in 75,2_”"“ ® M3 (C), we deduce, by (6.52)) and item (éii) of Proposition that R>3(U)
defined in (6.54)) is a smoothing operator in ER;((?,%O) ® M3 (C) where pg := No + 2m;. O

7. LONG TIME EXISTENCE

The system

oY = —iQY —i0p®W (D(Y;€))[Y] + R (Y)[Y], (7.1)
obtained retaining only the vector fields in up to degree 3 of homogeneity, is in Poincaré-
Birkhoff normal form. In Section we will actually prove that this is uniquely determined and
that coincides with the Hamiltonian system generated by the fourth order Birkhoff normal
form Hamiltonian Hzp computed by a formal expansion in [62, 22] [30] 20], see Section Such
normal form is integrable and its corresponding Hamiltonian system preserves all Sobolev norms,
see Theorem[I.4] The key new relevant information in Proposition [6.2]is that the quartic remainder

in (6.11]) satisfies energy estimates (see Lemma [7.5)). This allows us to prove in Section energy
estimates for the whole system ((6.10|) and thus the long time existence result of Theorem |1.2

7.1. The formal Birkhoff normal form. We introduce, as in formula (2.7) of [20], the complex
symplectic variable

() =2 () =g (10 ioie ) (1) = () - (o)

(7.2)
Compare this formula with (1.16)) and recall that, in view of (|1.18]), we may disregard the zero
frequency in what follows. In the new complex variables (u,u), a vector field X (n, ) becomes

XC = A" X = AXAL. (7.3)
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The push-forward acts naturally on the commutator of nonlinear vector fields (A.35), namely
A[X,Y] = [A* X, AY] = [XC, YY)
The Poisson bracket in ([1.7)) assumes the form
1
{F.H} = T > (OuHOmF — 0z HOW F) .
keZ\{0}

Given a Hamiltonian F(n, 1)) we denote by Fi := FoA~! the same Hamiltonian expressed in terms
of the complex variables (u,w). The associated Hamiltonian vector field X, is

1 —iach eik:p
Xe= e Y (). (7.4)
V2T e\ (0} ot OuFce

that we also identify, using the standard vector field notation, with
Xpo= Y. ~i00,,-0 Fr Oug . (7.5)
keZ\{0}, 0=+
Note that, if X is the Hamiltonian vector field of F' in the real variables, then, using (7.3]), we
have
X5 =ANXp=Xp, Foc:=FoA!l, (7.6)
and
We now describe the formal Birkhoff normal form procedure performed in [62], B0, 22 20]. One

first expands the water waves Hamiltonian (1.6)), written in the complex variables (u, @), in degrees
of homogeneity

H(C — Ho Afl = H(g) + H((Cg) + H(é ) + H(>5) H(((:2) = Z Wju_juij; Wj = \/W7 (78)

JEZ\{0}
where
(3) _ Z 01,02,03, 01,02, 03
HC - H]l J2ugs Wi Wip Wig s (7'9)

o1j1+0o2j2+0353=0

(4) _ 01,02,03,04 . 01, 02, 03
He™ = Z Hy Gdsds Wi Wiy Wi u]w (7.10)
o1j1+02j2+0353+0454=0

(=5)

can be explicitly computed. The Hamiltonian Hx="" collects all the monomials of homogeneity

greater or equal 5. The Hamiltonians H, (3), HY are real valued if and only if their coefficients
C y
satisfy

01,02,03 _ py—01,—02,—03 01,02,03,04 __ 77—01,—02,—03,—04
HJ17J2 J3 HJ1J2,J3 ’ HJ1 J2.J8:J4 T T J1,J2,08:74 ) (7'11)

STEP 1. ELIMINATION OF CUBIC HAMILTONIAN. One looks for a symplectic transformation &)

as the (formal) time 1 flow generated by a cubic real Hamiltonian Fés) of the form (7.9). Then a
Lie expansion gives

Heod® = P + (FO B + HY + BY + %{Fg’% (FO HOW + {FP HOy + .- (1.12)
up to terms of quintic degree. The cohomological equation
D (FO HD Y =0 (7.13)
has a unique solution since

2 . . . .
{uPuPus HE'} = —i(o1w(ji) + oaw(ja) + 03w (js) uG uf?uf? |
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and the system

o1+ o2z +o3j3 =0,  ow(j1) + o2w(j2) + o3w(is) =0, (7.14)
has no integer solutions, see Proposition [6.3] Hence, defining the cubic real valued Hamiltonian
(see (7.11)))

H?’17f7230'3
F((ZS) _ Z J1,J2,J3 wlu2u’3

: : ; ; Jj1 g2 s 0
o1j1+02j2+0353=0 I(le(jl) + JQW(]2) + ng(jg))

the Hamiltonian in (7.12)) reduces to

1
Heo@® = HE + B + J{FEY, HE} + quintic terms. (7.15)
STEP 2. NORMALIZATION OF THE QUARTIC HAMILTONIAN. Similarly, one can finds a symplectic
transformation ®®, defined as the (formal) time 1 flow generated by a real quartic Hamiltonian

FY of the form (7-10), such that

He o ®®) o o) = H((Cz) + Hyer (H((C4) + %{F(g), Hg)}) + quintic terms, (7.16)

TtuT?uPu?t satisfying o1j1 + 09j2 + 0373 + 0474 = 0, we define

where, given a quartic monomial wj'uj uj us

Ther (uug2ugugt ) = Ui g Wy 1 onw(in) + oaw(e) + oaw(fy) + oaw(fa) =0 7oy
JLgz s A 0 otherwise .
The fourth order (formal) Birkhoff normal form Hamiltonian in ([7.16)), that is,
1
Hyp = Hgh+ Hyp,  Hpp=HY, Hyh:= e (H + {F HEY), (7.18)

has been computed explicitly in [62], 22, [30, 20], and it is completely integrable. In [22] this is
expressed as
Ko 2 4 2
Hzp = g (2na(k) = S (1} (k) = 33 (R)) ) + — o;m K21 (k) (1) (7.19)

with actions o L o
Zk2k +22—k2—k L D(k) = Zk 2k —2Z—k2—k 7 (7.20)
where zj denote the Fourier coefficients of z = %\Dfin + %|D|iw defined in (7.2). When

expressed in terms of the complex variables (zi,Zx), the Hamiltonian Hyp is given by H (Z% +H g%

as in (L22)-(L23).
The associated Hamiltonian system is (see (7.5]))

. . i i
fnm—ionzat— S0 Pl - Y Il P+ R

Ii(k) :=

sl <l s <l (7:21)
—sign(n)=sign(k4) sign(n)=sign(k4)
where
i i
B = 5P (o ~ 2Pt = 3 allnPan(en — ). (722)
| <[k1l,

sign(k1)=sign(n)

Notice in particular that |z,|? are prime integrals, as stated in Theorem
Although it is not necessary for the paper, for completeness we compare explicitly the structure

of the normal form vector field ([7.21)-(7.22)) with (7.1).
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Lemma 7.1. The Hamiltonian system (7.21)-(7.22)) has the form
. . 1 g
t = —iwnzn = = (D dlillzsl)nz + R (7.23)
lil<elnl
where R(z) is a smoothing vector field in the sense that, for any 0 < p < 2s — 3,
IR(2)lls+ < C(s)lI213 (7.24)

where for a sequence a = {a;}jez we define ||a||? =3, ,(j)*|a;|?. Notice that

s

where ((Z) is defined in (5.5).
Proof. Notice that

> [ [kl 2y 220 — > AR

JEZL

S dlilly )z = = 0p™ (ic(2)6): (7.25)

ljl<eln

|ka|<|n|,—sign(n)=sign(k4) |ka|<|n|,sign(n)=sign(ka)
= - > nsign(ka) kal |z, 220 — > nsign (ka) [ka|* 2k, *2n
|ka|<|n|,—sign(n)=sign(k4) |ka|<|n|,sign(n)=sign(k4)
_ —n( 3 sign(kz4)|k4|2|zk4|2)zn - _n( 3 j|j|\zj\2)zn. (7.26)
k4|<|n| PR

Then ([7.26)) allows to write (7.21)) as ((7.23)) where

i L
R i=—=( Y lillzP )z + R
eln|<|jl<In]|
The vector PR(z) satisfies the (super) smoothing estimate (7.24)) since it contains three high com-
parable frequencies. O

Notice that ((7.25)) is the transport paradifferential operator of order 1 in (6.10)) and ([5.5)). Notice

also that ¢(Z) in (5.5]) vanishes on the subspace of functions even in x, coherently with the fact that
the Hamiltonian in the second line of vanishes as well on even functions. We also remark
that does not contain paradifferential operators at non-negative orders, in agreement with
the form of the cubic terms in the Poincaré-Birkhoff normal form in and . In the next
section we actually prove that these have to coincide.

7.2. Normal form identification. In Sections we have transformed the water waves system
into , whose cubic component is in Poincaré-Birkhoff normal form. All the conju-
gation maps that we have used have an expansion in homogeneous components up to degree 4. In
this section we identify the cubic monomials left in the Poincaré-Birkhoff normal form . The
main result is the following.

Proposition 7.2. (Identification of normal forms) The cubic vector field component in (6.10)),

1.€.
Xieo(¥) 1= —0p™ (D(V3 ) [V] + B (V) [V ], (7.27)
coincides with the Hamiltonian vector field
XRes = Xerr(Hé4)+%{F@(3)7Hé3)}) = XH(Z% (7.28)

where the Hamiltonians H(l), l = 3,4, are defined in (7.8]), Fég) is the unique solution of (7.13)),
and Ihe is defined in (7.17]).
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The rest of the section is devoted to the proof of Proposition which is based on a uniqueness
argument for the Poincaré-Birkhoff normal form up to quartic remainders. The idea is the following.
We first expand the water waves Hamiltonian vector field in ([1.3]),(1.5) in degrees of homogeneity

Xgp=X1+Xo+ X3+ X24 where Xi = XH(Q), X9 = XH(3), X3 := XH(4) , (7.29)

and X>4 collects of the higher order terms. Then, in order to identify the cubic monomial vector
fields in we express the transformed system , obtained conjugating via the good-
unknown transformation G in and FlT in Proposition by a Lie commutator expansion up
to terms of homogeneity at least 4. See Lemma [A710] Notice that the quadratic and cubic terms in
may arise by only the conjugation of X1+ X9+ X3 under the homogeneous components up to
cubic terms of the paradifferential transformations G and FlT Then, after some algebraic manipula-

tion, we obtain the formulas ((7.40)-(7.42). Since the adjoint operator Adxg@) =1, Xg@)

on quadratic monomial vector fields satisfying the momentum conservation property is injective
and surjective we then obtain the identity ([7.44)), and can eventually deduce (|7.28)).

e Notation. We use the Lie expansion (A.37)) induced by a time-dependent vector field S, which
contains quadratic and cubic terms. Given a homogeneous vector field X, we denote by ®¢X
the induced (formal) push forward

| acting

X 1 1
SX =X+ [[SvX]]W:O + 5[[55 [[SuX]H]\@:O + 5[[895\9207)(]] +-e (730)

where [, -] is the non linear commutator defined in (A.35)).

Step 1. The good unknown change of variable G in (3.1)). We first provide the Lie expansion
up to degree four of the vector field in (3.2))-(3.3), which is obtained by transforming the water
waves vector field X; + X9 + X3 in ([7.29)) under the nonlinear map G in (3.1)).

We first note that G(n,v) = (®(n,1))s=1 where &’ (n, v) := (n,9—00p"W (B(n, w))niG €[0,1].
2.7

Since B(n,) is a function in E]:}%p’1 we have, using the remarks under Definition |2.7, that the

map ®%(n,v) has the form (A.26) in which U denotes the real variables (n,%)), plus a map in
Mk 03 @ M2(C). By Lemma we regard the inverse of the map G<3, obtained approximating

G up to quartic remainders, as the (formal) time one flow of a non-autonomous vector field of the
form

S(0) :=8;+6S3 where Sy :=S1(n,¥)[,], Ss:=S2n¥)[,], (7.31)
where S1(n,) is in M ® My (C) and Sa2(n,) is in M, ® Ms(C). By (7.29), (7.30) and (7.31),

we get
PH(X1+ Xo+ X3) = Xa 4+ Xo1 + X311+ (7.32)

where
Xo1:=Xo+[S2,X1], X31:= X3+ [S2, Xo] + %[[52, [S2, X1]] + é[[Sg,Xll] : (7.33)
Complex coordinates A in . In the complex coordinates , the vector field reads,
recalling the notation ,
NPG(X1 + Xo + X3) = A X1+ A X + A Xgq+- = X7+ X5, + X5+ (7.34)
where XT is the linear Hamiltonian vector field X* = X}CIQ =—i) owjuFOys .

Step 2. The transformation F%F in Proposition We consider the nonlinear map (F%F)gg

obtained retaining only the terms of the map Fflp = (F%) up to quartic remainders. The

lo=1
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approximate inverse of the map (F%[,)gg provided by Lemma can be regarded, by Lemma
as the (formal) approximate time-one flow of a non-autonomous vector field

T(G) =Ty + 6T3 where TQ(U) = Tl(U) [U] R Tg(U) = TQ(U) [U] R

for some T} (U) in My ® My(C) and To(U) € My @ Ms(C). We transform the system obtained
retaining only the components X + X(QCJ + Xésl in (7.34). By (7.30) we get

FARRG(X) + Xo + X3) = X[ + X§o + X§o + -+ (7.35)

where
Xécz = Xéc,l + [T2, X1, X32 = X3 1T [[T2,X2 W+ 5 [[TZ» [T2, XT1] + |[T3,X1 ]
and, recalling the expressions of X5 1, X371 in , the quadratlc and the cublc components of
the vector field are given by
X5y = X5 +[SS + T2, X1] (7.36)

and

1

1
X§2 - Xé()j + [[S(g + T27X(2C]] + §HSg7 [[S(Ca X%:]H] + [[T27 [[Sg,Xic]]]] + 5[[T27 HT27X:(lC]H]

X (7.37)
+ §|[S§+T3,XH .

Lemma 7.3. Given vector ﬁelds XY, Z we hcwe the identity
1
§[Y, v, X1l + 12,1V, X]] + = [Z 12, X]] = [[Y+Z Y +2 X]]+ = MY+Z Y], X]. (7.38)
Proof. Use the Jacobi identity [X, I,z + [z, [X, Y]] +[Y,[Z, X]] = 0. O
Using the identity ([7.38), the term X§S2 in (7.37) is
1 1
Xigo = X3 +[85 + T2, X5 + 5 [85 +Ta, [85 + To, X71] + 5 [[85 + T2, 85] + 85 + T3, X7] . (7.39)

Step 3. Identification of quadratic and cubic vector fields. The vector field ®7A* P (X +
X2 + X3) in (7.35) is the vector field in the right hand side of (7.1f), up to quartic remainders.
Thus, recalling the expression of the quadratic, respectively cubic, vector field in ([7.36]), respec-

tively ([7.39), the expansion (7.29)), formula ((7.6)), and the definition of Xges in ((7.27), we have the

identification order by order:

XS(v) = -y (7.40)
Xpe +[55 + T2, X5 =0 (7.41)
XS +[85 + T, X5] + [[s2 + Ta, [SS + To, XT]] + ; [[S5 + Ta, 8] + S5 + T3, XT] = Xges -
(7.42)
Quadratic vector fields. Since F((:g) solves , by , we have
X + [Xpe, Xyl =0. (7.43)
Subtracting ([7.41)) and (7.43]), and since XH((CQ) = Xg(g), we deduce
[s§ + T2 — XF(S),X}‘;(Q)]] =0.
The adjoint operator Ad XE, = [, x¢ 5(»] acting on quadratic monomial vector fields u?llu;”é?

satisfying the momentum conservation property cj = o1j1+027j2, is injective and surjective. Indeed
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we have that [[u?llu;-fjau?,Xg@)]] = i(ow(j) — o1w(j1) — agw(jg))u‘;llu?QO o and the system
has no solutions. As a consequence

Sg + Ty = XF(é3) . (744)

Cubic vector fields. The vector field Xpes defined in (7.27) is in Poincaré-Birkhoff normal
form, since the symbol D(Y;€) is integrable (Definition [5.1)) and R"®*(U) is Birkhoff resonant
(Definition 6. . Therefore, defining the linear operator Iy, acting on a cubic monomial vector

field u‘”u”u‘”@ o as
J1 e gz Cug

g g oz . . . . . .
err (ualuazuag,a ) - ujllu];ujgga if — O'(U(]) + le(]l) + JQW(]Q) + O-3W(.]3) =0 (745>
Jugz s 0 otherwise,
we have
Myer (XRes) = XRes - (7.46)
In addition, since [[ujlluj;ujg’@u ,XH(Q)]] = i(ow(j) — o1w(j1) — o2w(j2) — o3w(js))uj; u;’;ujfa s we
deduce that, for any cubic vector field G,
Hker [G3, Xg(z)]] =0. (7.47)

We can then calculate

(748) [™42),(7.47) 1
XRes — err(XRes) -:- err (XC(4) + [[82 + Ty, X2 ]] 2 [[Sg + Ty, [[Sg + To, X(lc]]]])

(44,729 C C

= Tyer (X @ + [ Xpe, Xgol + 5[[XF(§> X g, XHg)]]]])
(7.6),(7.7)
EDED pp, < X

B (O ) D )
= Ilker (X

1O+ 3O 1Y)
(7.45),(7.17) X
- Iheer(HO+3{FP B

which is (7.28)); the second identity follows by the definition of H (Z% in (7.18).
7.3. Energy estimate and proof of Theorem We first prove the following lemma.

Lemma 7.4. Let K € N*. There is so > 0 such that, for any s > sq, for all 0 < r < ro(s) small
enough, if U belongs to BE (I;r) and solves (3.8), then there is a constant Cs x > 0 such that

HOFU () jger < CsclUE e s YOSk <K, (7.48)
In particular the norm ||U(t,-)| ks defined in (2.1)) is equivalent to the norm [|U(t,-)]| z--

Proof. For k = 0 the estimate (7.48) is trivial. We are going to estimate OFU by (3.8)). Since the
matrix of symbols 141 (U;z)€ + 14, /9(U; az)|§|% + Ao(U; x,€) + A_y/2(U;2,§) in (3.8) belongs to
ZF}(,LO ® M3 (C) and the smoothing operator R(U) is in ER;('?M ® My (C), applying Proposition
(i7) (with K’ = 1, k = 0), the estimate (2.27) for R(U) (with K’ =1, k = 0, N = 1), and
recalling (2.1]), we deduce, for s > sq large enough,

18T (t, ) jgo—1 S U e (LA NTE ) o + 10U () greg—1)

10U @ ) g 1T ) s -

Evaluating (7.49)) at s = so and since |U(t, )| 55, is small, we get [|O;U(t, )| gso-1 Ss U (&) grso -
The latter inequality and (7.49) imply (7.48) for &k = 1, for any s > sg . Differentiating in ¢ the
system (13.8)) and arguing by induction on k, one proves similarly ([7.48)) for any & > 2. O

(7.49)
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We now prove the following energy estimate.

Lemma 7.5. (Energy estimate) Under the same assumptions of Proposz'tz'on the vector field

xt,(wy
X>4(U)Y) = [XZEU,Yi} in (6.11) satisfies, for any t € I, the energy estimate

Re/ |DI*X2,(U,Y) - [DPPy da Ss |yl - (7.50)
. >

Proof. By (6.11) and (5.3)), we have that X;(U, Y) = OpBW(Hs3)[y] + 9%J£3(U) [Y] where H>3 is
an admissible symbol as in (5.2]) that we write
. . 1
H>3 = hi(U;z, &) +v23(Us2,6), his(Usa,§) = iax3(U;2)E +1B>3(Us 2)[¢]2 (7.51)
and 9‘{;:3(U ) denotes the first row of SR>3. Then the left hand side of ([7.50) is equal to

1 S S 1 S S
5 (DI IDIFOPY (hL)[Y]) 12 + 5 (IDIOP°Y (L)), [ DIy) 1. (7.52)

+R6/T|D|SOPBW(V>3)[3/]'I *y dz + Re T\Dlsfﬁﬁg(U)[Y]'l *y dz . (7.53)

Since v>3 € F% K5 and %J;:,)(U ) is a 1 X 2 matrix of smoothing operators in R% K3, Cauchy-
Schwarz inequality, Proposition and 7)) imply that

I-I slly N ) s (7.54)

We now prove that (7.52)) satisfies the same bound. Since the symbol h;g has positive order we
decompose it according to

(752) = (IDIy, |DI*(Hz3 + His)y) 12 + (IDIy, [His, IDI%ly) 12+ (IDI°, Hsly, [ DI*y) - (7.55)

where H>3 = OpBW(hg?)(U;x,{)) and HL3 = OpBW(thg(U;x,f)) is its adjoint with respect to
the L2-scalar product. Recalling (7.51)) and that the functions a>3(U;x), B>3(U;x) are real we
have

Moz + Hig = OpPV (hi; + hi;) =0 (7.56)
Furthermore, by Proposition and the remark below it, the commutators [H% 4, [D[*], [| D], H>3]
are paradifferential operators with symbol in Fig k7,30 Up to a bounded operator in E(H s H Y) with
operator norm bounded by ||U||3. so- Lhen applying Proposition we get

|(IDI*y, [H2s, IDI*)y) 1o | + [(IDI° Hzsly, DY) o] Ss Nyt )70 s - (7.57)
In conclusion, by (7.54)), (7.55)), (7.56)), (7.57), and using Lemmawe deduce

Re/ IDIPXZ,(U,Y) - [DPFy da Ss ly(t )50 )G Ss Ty ).

by (6.13)), proving the energy estimate . O

We can now prove Theorem

Proof of Theorem [I.1. By (L.19), the function U = [%], where u is the variable defined in
and w in , belongs to the ball B (I;7) (recall (2.2)) with r =z < 1 and I = [-T,T]. By
Proposition the function U solves system . Then we apply Poincaré-Birkhoff Proposition
6.2 with s ~ N > K > 2p+2 > 2py + 2. The map FL(U) = ¢} (U)[U] in transforms the
water waves system into , which, thanks to Proposition is expressed in terms of the
Zakharov-Dyachenko Hamiltonian Hzp in , as

BY = Xp,,(Y) + Xou(U,Y).
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Renaming y ~ z and recalling (7.4]), the first component of the above system is the equation

(T.21]), and denoting B(u)u the first component of ¢*(U)[U]. The bound (1.20] follows by (6.12)
with s ~» N and k = 0, and Lemma The energy estimate (1.24]) is proved in Lemma

7.4. Proof of Theorem The next bootstrap Proposition is the main ingredient for the
proof of the long time existence Theorem Proposition [7.6]is a consequence of Theorem [I.1] and

the integrability of the fourth order Hamiltonian H (24[)) in (|1.23]).
By time reversibility we may, without loss of generality, only look at positive times ¢ > 0.

Proposition 7.6. (Main bootstrap) Fiz the constants €, K, N as in Theorem and let the

function u € C°([0,T]; HY) be defined as in (1.16)), with w in (1.12) and (n,%) solution of (1.3)
satisfying (1.13), (1.14). The function u satisfies (1.18)). Then there exists co > 0 such that, for

any 0 < ey <E, if

(@l < eoer. - sup Z |OFu) x-S ex, T <eoep?, (7.58)
OT]k 0
then we have the improved bound
up > 10 s < (759

t€(0,7] 1=
Proof. In view of (7.58)) the smallness condition ((1.19) holds and we can apply Theorem ob-
taining the new variable z = B(u)u satisfying the equation (1.21))-(1.24]). The integrability of H (ZA‘I))
in Theorem (see the Hamiltonian system written in (7.21)-(7.22))) gives
/ |D|N(1&HZD) |DINzdz=0.
From this, (1.21)) and (|1.24]) we obtain the energy estimate
d 2
=Wy Sn 2@ (7.60)
Using ([1.20)) and (7.58)) we deduce that, for all 0 <¢ < T,

’ :
lu(@®)n S 12017y SN HZ(O)H%NJr/O 12(7) 1% dTSCHU(O)HngJrC/O [u(T)|[%n dr

for some C'= C(N) > 0. Then, by the a priori assumption ([7.58)) we get, for all 0 <t < T < 0051_3,

Hu(t)||12qN <ORE +CTe) <e}(Cct+ Ccp) . (7.61)
The desired conclusion on the norms CFHN=* follows by Lemma [7.4 . -, and recalling
that fT u(t,x)dz =0, Choosmg co small enough dependlng on N. O

We now prove the long-time existence Theorem by Theorem and Proposition

Step 1: Local existence. Let s > 3/2. By the assumption ([1.25)), Theorem guarantees the
existence of a time Tj,. > 0 and a unique classical solution (1,) € C°([0, Tioc]; HF2 x Hs“'%) of

(1.3]), with initial data as in (|1.25)), such that

sup (1m0, Vi B)(®)]| o < Ce., / n(t.z)de = 0. (7.62)
t€[0,Tioc) T
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Step 2: Preliminary estimates in high norms. We now show that, for any K > 0, if s > K + oy, for

some oq large enough, and ¢ is small enough, then the time derivatives (9fn, dfy), k = 0,..., K,
satisfy, for all ¢ € [0, Tioc),
k k
T - SR 1 RS 1) (7.63)

One argues by induction on k. For k = 0 the second estimate in (7.63]) is (7.62)). Assume that
7.63)) holds for any 0 < j <k —1< K — 1, k > 1. By differentiating in ¢ the water waves system
1.3) we get

Ofn =0 (Gw), =07 (F(nestha, GY)), k=1,... K, (7.64)

where F is an analytic function vanishing at the origin. Then, using that G(n)v is expressed from

the right hand side of (3.2)), Proposition (2.27) and the inductive hypothesis, we get

k— k' k'
Hat 1(G(77)¢)||Hs+%_k Ss Z Hat ¢||Hs+%—k+1 + Hat 7I||Hs+%_k+1 55 ||TIHH5+% =+ ”w”Hs-q—% .
K <k—1

This implies, in view of the first equation in (|7.64), that H@anHS +4-& is bounded as in (7.63). To
estimate ||(9fw||HS +}-x> We use the second equation in (7.64), the inductive estimates for (01n,0]y),

0 < j <k —1, the previous bound on H@ffl(G(n)@Z))||Hs+%fk and the fact that for s > K + o¢ the

K

1 .
space H*T27% is an algebra.

Step 3: A priori estimate for the basic diagonal complex variable. We now look at the complex

variable

. .
u = 7|Dy—%n+i2|p|%w (7.65)

V2 V2

defined in (1.16) where w = 1 — OpBW(B(n,v))n is the good unknown defined in (1.12). Since the
function B is in E}—%o,l (Proposition , we deduce, applying Proposition for s > s large

enough, that w is in C°([0, Tiocl; HS+%), and so

1
u e CO([0, Tioe]; HY) | Ni=s+7. (7.66)
Moreover, using (1.25)), (7-62))-(7.63)), we estimate ||0Fu| gn-+, k =0,..., K for N> K, by
. (7.65) . )
10 ull = SN 0T vy + 107l ne g
(T12),Prop[2:6| . N [763)
SN 10y 7’||HN+%—I€ + 119, ¢||HN+%7I¢ SN o€,

for any t € [0, Tioc|. In conclusion, there is C; = C1(N) > 0 such that

K
|w(0)]| g~ < 2e, sup Z |0Fu(t)|| jyv—r < Cie, / u(t,z)dr =0. (7.67)
t€[0,Tioc] ,—p T
Step 4: Bootstrap argument and continuation criterion. With €, K, N given by Theorem and
co by Proposition we choose ¢ in small enough so that, for 0 < & < gp we have 2¢ < ¢,
C1e < & where Cy is the constant in . Moreover we take s > sg large enough in such a way
that - hold with N given by Theorem Hence the first two assumptions in
hold with e; = e max{2¢; L C1} on the time interval [0, Tjoc]. Then Proposition and a standard

bootstrap argument guarantee that u(t) can be extended up to a time

o -3
TE . — 6061 9



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 61

consistently with the existence time ([1.26]) of the statement, and that

sup lu()]lyw < 21, /u(t,a:) o =0. (7.68)
0,7 T

Finally, we prove that the solution of (1.3|) satisfies (1.27) and that (n,,V, B)(t) takes values
in X* for all ¢t € [0,7]. Expressing (n,w) in terms of u, % as in (3.25)), we deduce by (7.68) that

sup Ol gzs + @ ary) Ss e (7.69)
Then we estimate
sup [[4(t)] s Ss € (7.70)
0,T:
by (1.12)), (7.69) and Proposition and
sup IV B)Y () o1 -1 Ss € (7.71)

using (3.2) for G(n)y. The estimates (7.69)-(7.71)) imply (1.27)) and, in particular, that
sup H(nv 1/}7 V7 B)(t) ”X3*1 58 €

0,T:

thus guaranteeing (1.28)), for s — 1 > 5, on the time interval [0,7.]. The continuation criterion in
Theorem [1.3}(2) implies that the solution (n,,V, B) is in C°([0,T], X?) for T > T.. O

APPENDIX A. FLOWS AND CONJUGATIONS

In this Appendix we study the conjugation rules of a vector field under flow maps.

A.1. Conjugation rules. We first give this simple lemma that we use in sections [4] and [6]

Lemma A.1l. For U = [%] consider a system 8;U = X (U)U with X(U) in Mg k9 ® Mz(C)
and let ®Y(U) be the flow of

0@ (U) =iAU)®°(U), ®°(U)=1d, (A1)
where A := A(U) is in 2739{,}(/,1 ® M3(C). Under the change of variable V := (®°(U))g—1U, the

new system becomes
RV =XTWU)V, XTU):= 62 U)) (e (V) + e (U)XU) (@' (U)!. (A.2)

The operator Xt (U) is in EMg k41,0 ® Ma(C) and, setting Aja[X] := [iA, X], it admits the Lie
expansion

L
@ O)XO)@ ) =X+ D0 Ladyx) [ e i @)
2.y .
(A.3)
L
O, (U))@)) = i A + z_; ;Adf’:[i@tA]
L 1(1 —0)Le?()AdL, [i0,A)(®%(U))1dh . (A.4)

I J,
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Proof. The expression follows by an explicit computation. In order to prove notice that
the vector field P(#) := ®% (U)X (U)(®°(U))~! satisfies the Heisenberg equation
0pP(0) = [1A, P(6)] =1AP(0) — P(9)iA , P(0)=X(U).
Since the vector field A is independent of # we also have
deP(0) = ®°(U)Adia[X]®%(U) !

Then follows by a Taylor expansion. To prove we reason as follows. We have that

BH(U) 00,0 (@1(U)) "L = 6 + BLU) (@ (1)) = &1 — (B W)@'(U) L (AB)
Moreover, using the expansion , we have

1

BL(U) 00y 0 (B} (V) = &) — Z ~ AL (0.A] - <

q= 1
which, together with , implies (A.4)).
By Taylor expanding ®1(U) usin, we derive that ®1(U) —Id is in SMg g/ 1 @ Ma(C).
The translation invariance property of the homogeneous components of ®*(U) follows since
the generator A (U) satisfies (2.26)). Then, the operator X (U) in belongs to XM g k41,0 ®
M;(C) by Proposition Let us justify the translation invariance property of the homogeneous
components of X (U). Denoting by ®L,(U) the sum of its homogeneous components of degree

/1(1 — 0)"®"(U)Ad{4 [i0,A](®"(U)) " db

less or equal to 2 we have that, for any ¥ € R, 7'79‘~I)1§2(U) = <I>1§2(7'19U)779, and so
Tody®Ly(U)[H] = dy®Ly(roU)[roH]ro - (A.6)
Then
908 (U)) = 9 (dy ®Loy (U)X (OU])) B dy@L, (ryl) [rg X (U)Urg = (0@ Ly (75U )9
(

]
using the translation 1nvar1ance of X(U)U. By composition we deduce that the homogeneous

components of X (U) in (A.2)) satisfy (2.26). O

In the next subsection we analyze how paradifferential operators change under the flow maps
generated by paradifferential operators.

A.2. Conjugation of paradifferential operators via flows. We consider the flow equation
0@ =10p™™ (£(0,U;2,€))97, @ =1d, (A7)

where f is a symbol assuming one of the following forms:

BU; )

. ) R
f(@, U,x,g) = b(@ U )6 . mf ,B(U,x) - E”FK,K’,l N (A8)
FO.U;2,€) = f(U;2,€) = BU3 ) €], B(U; ) € SFg ko1 5 (A.9)
f0,U;2,8) == f(Usx,8) € XK g1 m<0. (A.10)

Notice that (A.7)) with f asin (A.8) is a para-differential transport equation. This is used in Section

and Subsection Flows with f as in (A.9)) are used in Section and with f as in (A.10)
in Subsection [£.2.3 and Section (.3l

Lemma A.2. (Linear flows generated by a para-differential operator) Assume that f
has the form (A.8) or (A.9) or (A.10). Then, there is so > 0,7 > 0 such that, for any U €
CE(I; H®) N Bg([;r), for any s > 0, the equation (A7) has a unique solution ®°(U) satisfying:
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(i) the linear map ®(U) is invertible and, for some Cs > 0,
10 (U) [0l o + 107 (@ (U)) ]l jro-s < 0]l (1 + Csl|Ulls) » YO <k < K — K', (A1)
O Mol e < 197U [0lll 7o < Csllvll g (A.12)
for any v € Cf(*K/(I; Hs) and uniformly in 0 € [0,1];
(i3) the map ®°(U) admits an expansion in multilinear maps as ®°(U) —1d € SMg k1, 0 € [0,1].
More precisely there are My(U) in My, and Mél)(U), 2(2)(U) in My (independent of 0) such that
o (U)[U] = U + 6(M(U)[U] + My" (U)[U]) + 6>M> (U)[U] + Ms3(6; U)[U] (A.13)
where M>3(0;U) is in MR r 5 with estimates uniform in 0 € [0,1].
The same result holds for a matriz valued system 0y®°(U) = B(U)®%(U), ®°(U) = 1d, where
B(U) = OpBWV(B(U;x,€)) and B(U;x,€) is a matriz of symbols in EI‘(}{,K,’1 ® M3 (C).
Proof. See Lemma 3.22 in [13]. The translation invariance property (2.26)) of the flow map ®°(U)

defined by (A.7)) follows by the fact that the homogeneous components of the symbol f(0,U;x, &)
satisfy (2.11]). O

The proof of the next lemma follows by standard theory of Banach space ODEs.

Lemma A.3. (Linear flows generated by a smoothing operator) Assume that A(U) in
(A1) is a smoothing operator in ¥R Sy, ® Ma(C) for some p > 0. Then, there is so > 0,7 > 0
such that, for any U € BE(I;r), for any s > so, the equation (A1) has a unique solution ®°(U)
satisfying, for some Cs > 0,

198 (@7 W) (0]l gres o < N0llis (1 + Csll Ul k50) + Csllv s IV | 7.5 (A.14)

for any v e CE-K' (I, H%), 0 < k < K — K', and uniformly in 0 € [0,1]. Moreover ®°(U) satisfies
a bound like (A.12) and (i) of LemmalA.3
We now provide the conjugation rules of a paradifferential operator under the flow QH(U) in

(A.7). We first give the result in the case when f has the form (A.8)), i.e. (A.7) is a transport

equation.

Lemma A.4. (Conjugation of a paradifferential operator under transport flow) Let

®Y(U) be the flow of (A7) given by Lemma with f(0,U;x,€) as in (A8) and U € CK(I; H)N
ng([; r). Consider the diffeomorphism of T given by

Yu:x—ax+ BU;z).

Let a(U;z,€) be a symbol in YU gy for some g €N, g <2, K <K,r>0andmeR. If s is
large enough and r small enough then there is a symbol ag(U;x,&) in NI 4., q such that

e (U)0p°W(a(U;,€))(21(U)) ! = 0p"V(as(U; 2,€)) + R(U) (A.15)
where R(U) is a smoothing remainder in ZR[_(”);,TZH. Moreover ag admits an expansion as
ap(U32,€) = ay (Us,€) + af) (Usz,€) (A.16)
where )
ag (U7 z, é) = G(U; wU(ta .CE), gay(¢51(t7 y))lyin“vl‘)) S ZF%,K’,q (A17)

and ag)(U;x,f) is a symbol in ZFTI?_KQ, gr1- I addition, if a(U;x, &) = g(U; x)€ then ag) =0.
Furthermore, the symbol ag]) in (A.17) admits an expansion in degrees of homogeneity as

o) = a+ {6} + 5 ({86 166 )} + {~5:6, ) (A.18)
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up to a symbol in I} 1/ 5.

Proof. Formulas (A.15)-(A.17)) are proved in Theorem 3.27 of [13] (with homogeneity degree N = 3),
where it is shown that the symbol ag))(U; z,§) = ao(0,U;z,8)9=1 and ag(#) solves the transport
equation

d

@ao(e) ={b(0,U;z)¢,a0(0)}, ao(0)=a. (A.19)

The claim that, if a(U;z,£) = g(U;x)¢ then ag) = 0 follows because in formula (3.5.37) of [13],

the symbol 7_,3 = 0. Finally we deduce (A.18) by a Taylor expansion in 6 using (A.19) (note
that b and 8 have degree of homogeneity 1 in u). Since the homogeneous components of 5(U;z)

satisfy the invariance condition (2.11)), the flow ®!(U) satisfies (2.26)), and so the left hand side in

(A.15)). The proof shows that the symbol a in (A.16) satisfies the invariance condition (2.11)) and
therefore the remainder R(U) in (A.15) satisfies (2.26) by difference. O

Lemma A.5. (Conjugation of 9; under transport flow) Let ®°(U) be the flow of (A7) given
by Lemma[A.4 with f(0,U;z,€) as in (A.8). Then

(0.1 (U)) (21 (U)) " = i0p®V (9(U; 2)€) + R(U) (A.20)

where g(U; ) is a function in SFr k1411 and R(U) is a smoothing operator in ¥Ry,

+1,1°
In addition, the function g(U;x) admits the expansion in degrees of homogeneity
g(Usz) = Bt — Bufr + 9>3(Usz), g>3(Usz) € f}%K,JrLg . (A.21)
Proof. By the proof of Proposition 3.28 of [I3] the operator P(f) := (9,®°(U))(®(U))~! solves
d
—5P(0) = [10p"Y (b(0, U; 2)8), P(0)] +10p° ¥ (0,b(0, U3 2)€),  P(0) =0. (A.22)

The solution of (A.22)) is, up to smoothing remainders, given by P(6) = Op®W (po(, z,€)), where
the symbol po (8, z, &) solves the forced transport equation

d

@po(a,l‘,f) = {b(e’ U;l’)f,po(e,ﬂ?,g)} +18tb(9aUa ﬂi)f, pD(O) =0. (A23)

The solution of (A.23)) is
0
po6,2,€) = i / Onf (5, U5 6 (2,€))ds where f(s,Usx,€) = b(s, Us 2)¢
0

and ¢4 (x, ) is the solution of the characteristic Hamiltonian system

{fsx(s) = —b(s,z(s))
Le(s) = by(s,2(s))E(s)

with initial condition ¢%Y = Id. Moreover, by Lemma 3.23 in [13], f(s,U; ¢**(z,&)) is in 2T 0,
with estimates uniform in |6],|s| < 1. Then (A.20) follows with ig(U;x)¢ := po(1,z,£). Finally

we deduce (A.21)) by a Taylor expansion in 6 of the symbol pg(#), using (A.23)). The function
By — Bzt satisfies the translation invariance property (2.11) as 8. As in Lemma the operator
(0;@Y(U))(@Y(U))~! in (A.20) is translation invariant and R(U) satisfies the property (2.26) by
difference. O

We now provide the conjugation of a paradifferential operator under the flow ®°(U) in (A.7), if

f has the form (A.9) or (A.10).
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Lemma A.6. (Conjugation of a paradifferential operator) Let ®°(U) be the flow of (A7)
given by Lemma with symbol f(U;x,§) in LI 1 | with m < 1/2, of the form (A.9) or (A.10).
Let a(U;z,€) be a symbol in ZIVI’{‘/K/ g for some g €N, ¢ <2, K'<K,r>0and m' € R. Then

oL () OBV (a(U; z,€)) (@' (U)) ! =

A24
OpBW(a+{f,a}+%{f,{f,a}}wl+rz+r3) + R(U) A

m+m/—3 2m-+m/—4 3m+m’—3 —p
where 1 € YU R 1 T2 € XU w g s 1 € TS and R(U) € SRk i1

Proof. The result follows by a Lie expansion. Using ((A.3)) we have, for L > 3,
1
@} U)0p™ (@)(@H (1)) = 05" (a) + [0 (1), 05" (@)] + 5 Ad% o) O™ (@) +

L 1
kZ:?» %AdngW(if) [0 (@)] + % /0 (1= 0)*2"(U) (Adg s ) [OP™ (@)]) (#(U) "

By applying Propositions replacing the smoothing index p by some p to be chosen below
large enough, we get

Adgew i) [0P%Y ()] = [0V (if), OpPW(a)] = Op®Y ({f,a} +71), m € SRS,

5 !
up to a smoothing operator in ¥R’ ;g,";:? . Moreover

Ad?)pBW(if) 0"V (a)] = OP"W({f,{f.a}} +12), T2 € Er?ﬁﬁ:f,

up to a smoothing operator in ERI_{’S ;/2 Zzzm/. By induction, for k > 3 we have

k(m—1)+m/
AdE i [0PPY (@) = OpPV (i), by € ST DA™

up to a smoothing operator in ER;(ﬁ;g/W;/i:m. We choose L in such a way that (L+1)(1—m)—m' > p
and L+1 > 3, so that the operator OpBW (bz 1) belongs to Rl_(p k' 3. The integral Taylor remainder
in (A.2) belongs to R/}, 4 as well, see Lemma 5.6 in [13]. Then we choose p large enough so that

p—m' — (L+ 1)m > p and the remainders are p-smoothing. O

Lemma A.7. (Conjugation of ;) Let ®°(U) be the flow of (A7) with symbol f(U;x,£) in
IR perq with m < 1/2, of the form (A.9)) or (A.10). Then

(@' () (@' ()" = 10" (0uf + %{f, Ouf}) + OpPY (r +12) + R(U) (A.25)

2m—3 3m—2 -P
where r| € EFK,K’+1,27 ry € FK,K’+173 and R(U) € ZRK,K’+1,2'

Proof. By the Lie expansion (A.4) we have
L
_ , 1, .
(@' () (@' U)) " = op"V (o) + Y gAd’(gpéw(i HlopPV (o, f)]
k=2
1
g1 | =0 @) (Aah e 00" (0] ) (@ ) a8

and the lemma follows noting that f#,f; — fi#,f = %{f, ft} plus a symbol of order 2m — 3.

The translation invariance properties (2.11)), (2.26]) follow since f(U;x, &) and (0.f)(U; x, §) satisty
(2.11)) as well, and then arguing as in the proof of Lemma U
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A.3. Lie expansions of vector fields up to quartic degree. In this subsection the variable U
may denote both the couple of complex variables (u,u) or the real variables (1, 1)).

Lemma A.8. (Inverse of F%,(U) up to O(u*)) Consider a map 0 — F%,(U), 6 € [0,1], of the
form B B

FL,(U) = U + (M (U)[U] + MV (U)[U]) + 62 M7 (U)[U] (A.26)

where My (U) is in My ® Ms(C) and the maps Mg(l)(U), MQ(Z)(U) are in My ® My(C). Then there
s a family of maps G‘%g(V) of the form

GLy(V) =V = 6(M(V)[V] + Mg  (V)[V]) + 62N (V)[V] (A.27)
where M2(2)(V) is in My @ My(C), such that
GL o FL,(U) = U + M>3(0; U)[U], Fly0GLy(V) =V + Ms3(0;U)[U], (A.28)

where M>3(0;U) is a polynomial in 6 and finitely many monomials M,(U)[U] for maps M,(U) €
Proof. Setting V = Fig(U) we have, by (A.26]),
U=V —o(M/(U)U]+ MM @[U)) — M ()] . (A.29)

Substituting iteratively twice the relation (A.29) into itself, and using the last two remarks under
Definition we get
U =V = 0My(V)[V] + My (V) [My(V)[V]] + M (M (V) VD) V] = 620037 (V) [V] = 03P (V) V]
up to a polynomial M>3(0;U)[U] in 6 and U which has degree of homogeneity at least three in U
(recall that FOS?)(U) in (A.26) is a polynomial in U). This expansion defines GQS?) in (A.27), and
proves (A.28)). O

We regard the map 6 — Gig(V) in (A.27) as the formal flow of a non-autonomous vector field
S(0;U) up a remainder of degree of homogeneity four, see (A.30]).

Lemma A.9. Consider a map F‘%g(U) as in (A.26) and let GQS?,(V) be its approrimate inverse as
in (A.27)) up to quartic remainders. Then

0GLy(V) = S(0;GLy(V)) + Mxs(0; U)[U), GLy(V) =V, (A.30)
where S(6;U) is a vector field of the form
S(0;U) = S1(U)[U] + 6S2(U)[U] (A.31)

where Sy(U) is a map in My @ My(C) and Sa(U) in My ® My(C), and M>3(0;U) is a polynomial

in 0 and finitely many monomials M,(U)[U] for maps M,(U) € M, ® M(C), p > 3.
Proof. Differentiating we have
BGLy(V) = =M (V)[V] = MSV (V) [V] + 20017 (V)[V]. (A.32)
Then set
S(0;U) == — My (FLy(U)[FLy (U)] — MY (FLy(U)[FLy(U)] + 20057 (FLy (U)[FLy(U)] . (A.33)

By (A.26) and the last two remarks under Definition we deduce that S(6;U) is equal to a
vector field S(0;U) as in (A.31) plus a term M>3(6; U)[U] which is a polynomial in 6 of monomials

M, (U)[U] for maps M,(U) € Mvp ® M3(C), p > 3. By (A.33)) and the second identity in (A.28)
we deduce
8(6; GLy (V) = =My (V)[V] = MED (V)[V] + 20057 (V) [V] (A.34)
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plus another polynomial M>3(8; U)[U] of degree at least three. Comparing (A.34) with (A.30) the

lemma follows.

Given polynomials vector fields X (U) and Y (U) we define the nonlinear commutator
[X,Y](U) = dvY (U)[X(U)] = du X (U)[Y'(U)] . (A.35)
Under the same notation of Lemmata we have the following result.
Lemma A.10. (Lie expansion) Consider a vector field X of the form X(U) = M(U)U for some
map M(U) = Mo+ M (U) + Ma(U) where My is in Mo ® My(C), Ml( ) is in My ® My(C) and

Ms(U) in Ma @ Mo(C). Consider a transformation Fegg(U) as in and let S(68;U) be the
vector field of the form (A.31) such that (A.30) holds true. Then, ifU solves

U =X(U), (A.36)
the function V := FLy(U) solves

1 1
OV = X(V) 4[5 Xjp—o(V) + 3 [8,18, XNo—o(V) + 5[00S-0, XIV) +-+ (A37)
up to terms of degree of homogeneity greater or equal to 4.
Proof. In order to find the quadratic and cubic components of the transformed system, it is sufficient
to write V := FZ4(U), 6 € [0,1], and the first identity in (A.28) as U = G%4(V) + M>3(6; U)[U].

Then, differentiating with 9; the first identity in (A.28)), and using (A.36), we obtain, up to a
quartic term,

X(GL3(V)) = dGLs(V)[Vi] = (Id — M(6;V))[Vi] (A.38)
where M (0; V) = O(M (V) + MY (V) + 0205 (V) for suitable maps My (V) in My ® Ms(C) and
My (V), Mz(l)(V) in My ® M3 (C), recall (A.27). Applying in (A.38) the “pseudo-inverse”

(dGLy (V)™ i=T1d + M(6; V) + M2(6; V),

and since, by (A.36), we have 9,V = 0,U plus a quadratic term in U, we deduce that, up to a
quartic term,

(dGL;(V)) " X(GLy(V)) = Vi

The left hand side of this formula can be expanded in Taylor at 8 = 0 up to degree 2, obtaining,
using ({A.30)), the usual Lie formula (see e.g. [30])

02
X(V) 4+ 018, Xljoo(V) + % (1,18 X o—o(V) + [@0S(0)) -0 X](V)) (A.39)
up to terms of degree 4. Evaluating (A.39) at 6 = 1 we get (A.37). O

A.4. Proof of (4.10])-(4.11).

Proof. For any function m_1(U;x) in ¥Fg 1,1[r], by Lemma the flow in (4.9) is well defined.
We claim that

(21 (U))},_, = exp{Op"V (M_1)} = Op"W (exp{M_1}) + R(U) (A.40)

where R is in ER;(ﬁl 1 ® M3(C) for any p > 0. Indeed

1
exp{Op"W (M_1)} = 1d + Op"™ (M_y) + S Op™Y (M_1)Op"V (M_y) + L (O™ ()"
k>3
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By Proposition (applied with some p to be chosen later) we have that OpBW(M_1)OpBWV (M _1)
is equal to OpBW((M_1)?) plus a smoothing remainder in R, ,. Furthermore, by Proposition
3.6 in [31] we deduce that

> A (O ) - 0P (a1
k>3

belongs to the class of non-homogeneous smoothing remainders Rl_(ﬁ 13- This proves (A.40)). By an
explicit computation (see the proof of Corollary 3.1 in [31]) we have

exp{M_1} := (5; §j) C o=l U (mal), gri=maP(maf), (A41)
where Wy (y), Ua(y) are the analytic functions
y y* S
v == —, U =1 —_.
1w):=5 +kz>:2 e 2w +; 2k +1)!

We now choose m_1(U;z) in such a way that exp{M_1} := C~}(U;x), namely (recalling (4.7),
(4.5)) we have to solve the following equations

Vi(m-1f) = f—1, m_a¥s(m_f’) = —g.
Notice that Wy(y) is locally invertible near 0 and that, since 1 + a + Ay > 1/2, the function f in

([@.5) satisfies f2 —1 = 72)\+(1|ﬂ2+)\+) >0, thus f — 1 > 0. Therefore we have
2 -1 g
m_1|* =V -1, m3=————. A.42
‘ 1| 1 (f ) 1 \112(|m_1|2) ( )

Since f — 1 and g belong to X Fk 1,1 and \Iifl, W5 are analytic, it follows that the function m_;

belongs to ¥Fk 11 as well. Formulas ((A.40])-(A.42)) prove (4.10).
Let us prove (#.11). The flow (¥Y (U))|y, 1s invertible and, setting Q(U) := (w? (U) ! —

lo=1
OpBW(C), we have

Id = (22, (0));, L, (221(U))),., OpPW (C)0p"™M(C™1) +0p" WV (C)R(U) +Q(U) (¥2,(U))

lo= lo=1"

Hence, using Propositions 2.10, we deduce that Q(U) = R(U)(\Ile_l(U))_il, for some R in the

. lo
class ¥R ;. We conclude that @ is in ¥R, ;, using that (\Ilbll(U))‘_;l is in XM 10 ® M2 (C)
by item (i) of Lemma and choosing p large enough. O
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