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Time quasi-periodic gravity water waves
in finite depth

Pietro Baldi, Massimiliano Berti, Emanuele Haus, Riccardo Montalto

Abstract: We prove the existence and the linear stability of Cantor families of small amplitude time
quasi-periodic standing water wave solutions — namely periodic and even in the space variable x — of a
bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the
values of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem.
The main difficulties are the quasi-linear nature of the gravity water waves equations and the fact that the
linear frequencies grow just in a sublinear way at infinity. We overcome these problems by first reducing the
linearized operators obtained at each approximate quasi-periodic solution along the Nash-Moser iteration
to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that are
quasi-periodic in time. Then we apply a KAM reducibility scheme which requires very weak Melnikov non-
resonance conditions (losing derivatives both in time and space), which we are able to verify for most values
of the depth parameter using degenerate KAM theory arguments.
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1 Introduction and main result

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible, inviscid,
irrotational fluid under the action of gravity, filling an ocean with finite depth h and with space periodic
boundary conditions, namely the fluid occupies the region

D, :={(z,y) e TxR: —h<y<ntaz)}, T:=T,:=R/271Z. (1.1)

In this paper we prove the existence and the linear stability of small amplitude quasi-periodic in time
solutions of the pure gravity water waves system

H® + $|VO[>+gn=0 at y = n(x)

AD =0 in D, 12
8,8 =0 aty=—h

O = 0y® — 01 - 0, P at y = n(z)

where g > 0 is the acceleration of gravity. The unknowns of the problem are the free surface y = n(x)
and the velocity potential ® : D,, — R, i.e. the irrotational velocity field v = V, ,® of the fluid. The first



equation in (Z) is the Bernoulli condition stating the continuity of the pressure at the free surface. The
last equation in (2] expresses that the fluid particles on the free surface always remain part of it.

Following Zakharov [61] and Craig-Sulem [26], the evolution problem (L2)) may be written as an infinite-
dimensional Hamiltonian system in the unknowns (n(z), 1 (x)) where, at each instant ¢,

’l/)(t,SC) = q)(tvxvn(ta 1'))

is the trace at the free boundary of the velocity potential. Given the shape n(t,z) of the domain top
boundary and the Dirichlet value (¢, z) of the velocity potential at the top boundary, there is a unique
solution ®(t,z,y; h) of the elliptic problem

AP =0 in{-h<y<n(tz)}
0y®=0 ony=—h (1.3)
d=y on{y=nto)}.

As proved in [26], system ([L2)) is then equivalent to the Craig-Sulem-Zakharov system

9 = G(n, h)qu? . (1.4)
Op = —gn — 7@ + W(G(Ua h)y + 771%)2 .
where G(n, h) is the Dirichlet-Neumann operator defined as
Gl ) = {®y ey}, (L5)

(we denote by n, the space derivative 9,n). The reason of the name “Dirichlet-Neumann” is that G(n, h)
maps the Dirichlet datum ¢ into the (normalized) normal derivative G(n, h)1 at the top boundary (Neumann
datum). The operator G(n, h) is linear in 1, self-adjoint with respect to the L? scalar product and positive-
semidefinite, and its kernel contains only the constant functions. The Dirichlet-Neumann operator is a
pseudo-differential operator with principal symbol D tanh(hD), with the property

G(n,h) — Dtanh(hD) € OPS™>

when n(x) € C*, see Section [3
Furthermore, equations (4] are the Hamiltonian system (see [61], [26])

O =VyH(n,¥), 0Onp=-VyH(n 1))

B = IV Hu), u:= <Z> g <_(;d I(;i) | (1.6)

where V denotes the L2-gradient, and the Hamiltonian
1 g
Hn0) = Hpo.h) =5 [ 66hwdo+§ [ do (17)
T T

is the sum of the kinetic and potential energies expressed in terms of the variables (n,). The symplectic
structure induced by (L8] is the standard Darboux 2-form

W(ur,uz) := (u1, Juz)rzcr,) = (M, ¥2)r2(r,) — (%1, m2) L2(1,) (1.8)

for all uy = (n1,¢1), ua = (N2, %2). In the paper we will often write G(n), H(n, 1) instead of G(n, h), H(n, ¥, h),
omitting for simplicity to denote the dependence on the depth parameter h.
The phase space of (4] is

(n,) € HY(T) x HY(T)  where  HY(T) := HY(T)/~ (1.9)



is the homogeneous space obtained by the equivalence relation ¢ (x) ~ ¥a(z) if and only if ¥ (z) — 2 (z) = ¢
is a constant. For simplicity of notation we denote the equivalence class [¢)] by ¢. Note that the second
equation in ([4) is in H'(T), as it is natural because only the gradient of the velocity potential has a physical
meaning. Since the quotient map induces an isometry of H'(T) onto H}(T), it is often convenient to identify
1 with a function with zero average.

The water waves system (L4)-(L6) exhibits several symmetries. First of all, the mass [, ndz is a first
integral of (L4). In addition, the subspace of functions that are even in z,

n(x) =n(=x), P)=v(-2), (1.10)

is invariant under (I4]). In this case also the velocity potential ®(x,y) is even and 27-periodic in « and so
the z-component of the velocity field v = (®,, ®,) vanishes at = km, for all k € Z. Hence there is no flow
of fluid through the lines = = k7, k € Z, and a solution of (I4) satisfying (II0) describes the motion of a
liquid confined between two vertical walls.

Another important symmetry of the water waves system is reversibility, namely equations (L4)-(L6]) are
reversible with respect to the involution p : (n,%) — (n, —), or, equivalently, the Hamiltonian is even in ¢:

Hop=H, Hnvy)=Hmn-v), p:m1)—@0-1). (1.11)

As a consequence it is natural to look for solutions of (L)) satisfying
u(it) = pu(t> ) i.e. 77(*157 :C) = 77(157 :C) ) 1/’(*@ ZL') = 71/)(157 :C) Vtv T e Rv (112)

namely 7 is even in time and 4 is odd in time. Solutions of the water waves equations (I.4)) satisfying (LI0)
and ([[LI2) are called gravity standing water waves.

The existence of standing water waves is a small divisor problem, which is particularly difficult because
(T3) is a quasi-linear system of PDEs. The existence of small amplitude time-periodic gravity standing wave
solutions for bi-dimensional fluids has been first proved by Plotinkov and Toland [52] in finite depth and by
Tooss, Plotnikov and Toland in [41] in infinite depth, see also [37], [38]. More recently, the existence of time
periodic gravity-capillary standing wave solutions has been proved by Alazard and Baldi [I]. Next, both the
existence and the linear stability of time quasi-periodic gravity-capillary standing wave solutions have been
proved by Berti and Montalto in [21], see also the expository paper [20].

We also mention that the bifurcation of small amplitude one-dimensional traveling gravity water wave
solutions (namely traveling waves in bi-dimensional fluids like (I4])) dates back to Levi-Civita [47]; note that
standing waves are not traveling because they are even in space, see (ILI0). For three-dimensional fluids,
the existence of small amplitude traveling water wave solutions with space periodic boundary conditions has
been proved by Craig and Nicholls [24] for the gravity-capillary case (which is not a small divisor problem)
and by Iooss and Plotinikov [39]-[40] in the pure gravity case (which is a small divisor problem).

The dynamics of the pure gravity and gravity-capillary water waves equations is very different, since in
the first case the linear frequencies grow at infinity as ~ /4, see (LI9), while in the presence of surface
tension they grow as ~ j3/2. The sub/super linear growth of the dispersion relation at high frequencies
induces quite a relevant difference for the development of KAM theory. As is well known, the abstract
infinite-dimensional KAM theorems available in literature, e.g. [43], [44], [53], require that the eigenvalues
of the linear constant coefficient differential operator grow as 7%, a > 1. The reason is that, in presence of a
sublinear (« < 1) growth of the linear frequencies, one may impose only very weak Melnikov non-resonance
conditions, see e.g. (L36]), which produce strong losses of derivatives along the iterative KAM scheme. We
overcome this difficulty by a regularization procedure performed on the linearized PDE at each approximate
quasi-periodic solution. This a very general idea, which can be applied in a broad class of situations. We
shall explain below in detail this key step of the proof.

The main result of this paper — see Theorem [[.T]— proves the existence of small amplitude time quasi-
periodic solutions of (L) for most values of the depth parameter h. Actually, from a physical point of
view, it is also natural to consider the depth h of the ocean as a fixed physical quantity and to look for



quasi-periodic solutions for most values of the space wavelength. This can be achieved by rescaling time and
space as

Ti=put, T:=Ar,
and the amplitude of (n, ) as

A(r, &) == M(p~tr,\712) = M(t, ), O(1, &) = ap(p i, A712) = an(t, z) .

Thus n(t, z), ¥(t, z) satisfy (I4) if and only if 7(7, ), 7,/;(7,5) satisfy
A2 ~
Dril = ~—G(i7, \h))
o ~
- A2q)2 A2
PRI Ly S —
)\u ap2  ap2(l+792)

Choosing the scaling parameters A, u, o such that

)\271 ga

)

ap A

Y

we obtain system ([L4]) where the gravity constant g has been replaced by 1 and the depth parameter h by
h:=M\h. (1.13)

The previous scaling implies that, given a fixed value of the depth h, for many values of the parameter A
there exist time quasi-periodic solutions to (L4]) whose space period is 27wA. In this sense, changing the
parameter h can be interpreted as changing the space period of solutions and not the depth of water.

Summarizing, in the sequel of the paper we shall look for time quasi-periodic solutions of the water waves
system

Oy = —n — % + m(G(%h)w + Uzwz)Q .

with 7(t) € H}(T,) and ¥(t) € H(T,).
We look for small amplitude solutions of ([LI4]). Of main importance is therefore the dynamics of the
system obtained linearizing (.14 at the equilibrium (7, ) = (0,0), namely

o
where G(0,h) = D tanh(hD) is the Dirichlet-Neumann operator at the flat surface n = 0, namely
G(0,h) cos(jz) = jtanh(hj)cos(jz), G(0,h)sin(jz) = jtanh(hj)sin(jz), Vj € N.
In the compact Hamiltonian form as in (L)), system (L.I5) reads
Ou=JOQu, Q:= <1 0 ) , (1.16)
0 G(0,h)
which is the Hamiltonian system generated by the quadratic Hamiltonian (see (L.7))
Hy, = ;(u Qu)re = = /wGth/Jd:E—i— /nde. (1.17)

The solutions of the linear system (L.I3)), i.e. (ILIG]), even in z, satisfying (I.12)), are

n(t,r) = a; cos(w;t) cos(jz), == a;w; " sin(w;t) cos(jz) , (1.18)

i>1 i>1



with linear frequencies of oscillation
w; = w,;(h) :=+/jtanh(hj), j>1. (1.19)

Note that, since j — jtanh(hj) is monotone increasing, all the linear frequencies are simple.

The main result of the paper proves that most solutions (ILI8)) of the linear system (II5) can be continued
to solutions of the nonlinear water waves Hamiltonian system (LI4]) for most values of the parameter
h € [h1,hy]. More precisely we look for quasi-periodic solutions u(@t) = (n,¢)(@t) of (LI4), with frequency
@ € R” (to be determined), close to some solutions (LI8)) of (LIH), in the Sobolev spaces of functions

H (T R?) o= {u = (n,9) :m,0p € H*}

H = H(THLR) = {f = 3 fud@o fl2= Y i) <oof,  (1:20)
(eg)ezv+t (6.5)ez»+1
where (¢, j) := max{1, |¢|, |j|}. For
v+ 1}

s> 8o ::{ +1eN (1.21)

one has H*(T**1 R) C L°°(T"*1,R), and H*(T**!,R) is an algebra.
Fix an arbitrary finite subset St € Nt := {1,2,...} (tangential sites) and consider the solutions of the
linear equation (LIH)

n(t, ) =Y /& cos(w;t) cos(jz), =Y V&wy sin(wjt) cos(jz), & >0, (1.22)
jESt jESt
which are Fourier supported on ST. We denote by v := |ST| the cardinality of S*.
Theorem 1.1. (KAM for gravity water waves in finite depth) For every choice of the tangential

sites ST C N\ {0}, there exists 5§ > %, g0 € (0,1) such that for every |¢| < €3, & := (&) jes+, & > 0 for
all j € ST, there exists a Cantor-like set G C [hy,ha] with asymptotically full measure as & — 0, i.e.

lim |g| :h2 —hl,
£—0

such that, for anyh € G, the gravity water waves system (LI4]) has a time quasi-periodic solution u(wt,x) =
(n(&t, z),y(@t, x)), with Sobolev regularity (n,v) € H¥(T” x T,R?), of the form

Z &; cos(@;t) cos(jz) + i (@t, ),
jESt

Z §jw sin(@;t) cos(jz) + ro(@t, z)
jest

(1.23)

with a Diophantine frequency vector & = (@;)es+ € RY satisfying @ — &(h) := (w;(h)),es+ as & = 0,
and the functions 1 (i, x),r2(p, x) are o(\/|€])-small in H*(T” x T,R), i.e. ||ri]ls/+/I€] = 0 as €] — 0 for
i =1,2. The solution (n,v) is even in z, n is even in t and ¢ is odd in t. In addition these quasi-periodic
solutions are linearly stable.

Let us make some comments on the result.

1. The parameter h varies in the finite interval [hi,ho] with 0 < h; < hy < 400, and all the estimates
depend on hj,hy. The result does not pass to the limit of zero (h; — 07) nor infinite (hy — +00)
rescaled depth parameter h (recall (LI3)). In those limit regimes different phenomena arise.

2. Note that the linear frequencies (LI9) admit the asymptotic expansion

V/jtanh(hj) = \/j +7(j,h) where [0fr(jh)| < Cre™ VEeEN, Vj>1, (1.24)

uniformly in h € [hy,hs], where the constant Cy depends only on k and hy. Despite the fact that
h changes the frequencies of exponentially small terms, we shall use the finite depth parameter h to
impose the required Melnikov non-resonance conditions.



3. No global in time existence results concerning the initial value problem of the water waves equations
(T4) under periodic boundary conditions are known so far. Global existence results have been proved
for smooth Cauchy data rapidly decaying at infinity in R, d = 1,2, exploiting the dispersive properties
of the flow. For three dimensional fluids (i.e. d = 2) it has been proved independently by Germain-
Masmoudi-Shatah [31] and Wu [60]. In the more difficult case of bi-dimensional fluids (i.e. d = 1) it
has been proved by Alazard-Delort [4] and Ionescu-Pusateri [36].

In the case of periodic boundary conditions, Ifrim-Tataru [35] proved for small initial data a cubic life
span time of existence, which is longer than the one just provided by the local existence theory, see for
example [3]. For longer times, we mention the almost global existence result in Berti-Delort [19] for
gravity-capillary space periodic water waves.

The present Nash-Moser-KAM iterative procedure selects many values of the parameter h € [hy,hs]
that give rise to the quasi-periodic solutions ([L23), which are defined for all times. Clearly, by a
Fubini-type argument it also results that, for most values of h € [h1,hs], there exist quasi-periodic
solutions of (LI4) for most values of the amplitudes |¢| < 3. The fact that we find quasi-periodic
solutions only restricting to a proper subset of parameters is not a technical issue, because the gravity
water waves equations (IL4)) are expected to be not integrable, see [27], [28] in the case of infinite depth.

4. The quasi-periodic solutions ([.23)) are mainly supported in Fourier space on the tangential sites S*.
The dynamics of the water waves equations (4] on the symplectic subspaces

£g+:::{v:: 3 (ZZ><nst)}, L@h;::{z:: 3 <nf)coﬂjx)€<H%(TI)}, (1.25)

jes+ JEN\S+

is quite different. We shall call v € Hg+ the tangential variable and z € HSJ; the normal one. On
the finite dimensional subspace Hg+ we shall describe the dynamics by introducing the action-angle
variables (0, 1) € T x R” in Section

Linear stability. The quasi-periodic solutions u(wt) = (n(@t), ¥ (wt)) found in Theorem [[1] are linearly
stable. This is not only a dynamically relevant information but also an essential ingredient of the existence
proof (it is not necessary for time periodic solutions as in [I], [37], [38], [41]). Let us state precisely the
result. Around each invariant torus there exist symplectic coordinates

((b’va) = (¢,y,77,1/1) e TV x R” x Hgl
(see ([6I7) and [I6]) in which the water waves Hamiltonian reads

wey+ %Kzo(fﬁ)y Y+ (K (@)y,w) o) + %(Km(sf»)w, ) par,) T K23(d,y,w), (1.26)

where K>3 collects the terms at least cubic in the variables (y,w) (see (GI9) and note that, at a solution,
one has 9,Koo = 0, K19 = w, Ko1 = 0 by Lemma [6.5]). In these coordinates the quasi-periodic solution
reads ¢t — (wt,0,0) (for simplicity we denote the frequency @ of the quasi-periodic solution by w) and the
corresponding linearized water waves equations are

¢ = Kao(wh)[y] + KT, (wh)[w]
y=0 (1.27)
W = JKoa(wt)[w] + JK11(wt)[y] .

Thus the actions y(t) = y(0) do not evolve in time and the third equation reduces to the linear PDE
w = J Koo (wt)[w] + JK11(wt)[y(0)] . (1.28)

The self-adjoint operator Koz (wt) (defined in (GI9)) turns out to be the restriction to Hg; of the linearized
water waves operator 9, VH (u(wt)), explicitly written in (I38]), up to a finite dimensional remainder, see
Lemma [T



In Sections [THTE] we prove the existence of a bounded and invertible “symmetrizer” map, see (42,
(I5.108), such that, for all ¢ € T,

W (¢) : (H*(T,,C) x H*(T,,C)) N Hey — (H*~%(T,,R) x H*"%(T,,R)) N H& , (1.29)
Wl (p) : (H*~1(T,,R) x H**4(T,,R)) N H& — (H*(T,,C) x H*(T,,C)) N Hg; , (1.30)

and, under the change of variables
w = (77) 1/1) = WOO (Wt)woo ,  Woo = (Woo;woo) 5

equation ([L28)) transforms into the (complex) diagonal system

. _ foo(wt
Ortg = —iDocttog + foolwt) . foc(wt) = W (w).T K1 (w)[y(0)] = (f Eiti) (181)
where 1 is the imaginary unit and, denoting Sp := ST U (=S*)U {0} C Z and S§ :=Z \ Sp,
Dy 0 . o oo
Dy := ( 0 Doo) v Do = dla'ngSS {l’l'j }a Hj €R, (132)

is a Fourier multiplier operator of the form (see (I6.3])), (I5.23), (I5.8), (I31]), (I3.79))

u® = L] tanh® (a]j) +75°, j €SG5, =1, (1.33)
and, for some a > 0,
m3® =1+ 0(¢]*) suplyl Ir5*| = O(I¢]*) -

Actually by (B21)-(.22) and (525) we also have a control of the derivatives of m‘? and 73° with respect to

(w,h). The purely imaginary numbers ip3° are the Floguet ezponents of the quasi-periodic solution. The
second equation of system (L3T]) is, in fact, the complex conjugate of the first one, and (L3T]) reduces to the
infinitely many decoupled scalar equations

Orvios,j = —ip5%Wos j + Foc,j(wt) Vi € §.
By variation of constants the solutions are

1w Lt

Woo j(t) = cje 5 b v i (1) where Voo, j ( Z . f T )
J

Lezv

. Vjess. (1.34)

Note that the first Melnikov conditions (523 hold at a solution, so that v ;(¢) in (I34)) is well defined.
Moreover (L29) and (L31)) imply that ||fo(wt)||m:xms < Cly(0)| for all t. As a consequence, the Sobolev
norm of the solution of (L3I)) with initial condition we(0) € H*(T;) x H*(T;), for some sg € (so,s) (in
a suitable range of values), satisfies

[woo (D)l| 20 s prz0 < C(8)([Y(0)] + lwoo (0) | 20 5 r20)
and, for all ¢ € R, using (L.29), (L30), we get

1(n,¥)(#) o3 < Cll(0(0),4(0))]

5 .;+7
H'™ 4><H0

| HO Ay
which proves the linear stability of the torus. Note that the profile n € H so—7 (T,) is less regular than the
velocity potential 1) € H®0+1 (T,), as it happens for pure gravity waves, see [2].

Clearly a crucial point is the diagonalization of (L28)) into (IL32)). With respect to the pioneering works
of Plotnikov-Toland [52] and Tooss-Plotnikov-Toland [41] dealing with time periodic solutions, this requires
to analyze more in detail the linearized operator in two respects:



1. We have to perform a reduction of the linearized operator into a constant coefficient pseudo-differential
operator, up to smoothing remainders, via changes of variables that are quasi-periodic transformations
of the phase space, so that the dynamical system nature of the transformed systems is preserved.
We shall perform such reductions in Sections [[HI4] by changes of variables generated by pseudo-
differential operators, diffeomorphisms of the torus, and “semi-Fourier integral operators” (namely

pseudo-differential operators of type (3, 3) in the notation of Hérmander [34]), inspired by [1], [21].

2. Once the above regularization has been performed, we implement in Section a KAM iterative
scheme which completes the diagonalization of the linearized operator. This scheme uses very weak
second order Melnikov non-resonance conditions which lose derivatives. This loss is compensated by
the smoothing nature of the variable coefficients remainders.

This diagonalization is not required for the construction of time-periodic solutions, as in [I], [41], [37],
[38], [62]. The key difference is that, in the periodic problem, a sufficiently regularizing operator in
the space variable is also regularizing in the time variable, on the characteristic Fourier indices which
correspond to the small divisors. This is clearly not true for quasi-periodic solutions.

We shall explain these steps in detail in Section [l

Literature about KAM for PDEs. KAM theory for PDEs has been developed to a large extent for
perturbations that are bounded and with linear frequencies growing in a superlinear way, as j%, a > 1. The
case = 1, which corresponds to Klein-Gordon equations, is more delicate. In the sublinear case a < 1,
as far as we know, there are no KAM results in literature, since the second order Melnikov conditions lose
derivatives. Of course we can regard the existence results for PDEs in higher space dimension under this
respect because the eigenvalues grow, according to the Weyl law, like ~ j2/¢ (which is a strictly sublinear rate
if the space dimension d is larger than 2), and the known results use the fact that one has a PDE on a torus
or a Lie group. In such cases one proves specific properties of clustering of the eigenvalues, according to a
different counting, and uses properties of “localization with respect to the exponentials” of the corresponding
eigenfunctions, see for example [22], [32], [15], [18], [64]. In the present case the linear frequencies grow as
v/7 and we perform a very detailed analysis of the water waves nonlinearity.

The existence of quasi-periodic solutions of PDEs (which we shall call, in a broad sense, KAM theory)
with unbounded perturbations (i.e. the nonlinearity contains derivatives) has been first proved by Kuksin
[44] and Kappeler-Poschel [42] for KAV, then by Liu-Yuan [48], Zhang-Gao-Yuan [63] for derivative NLS,
and by Berti-Biasco-Procesi [I3]-[14] for derivative NLW. All these previous results still refer to semilinear
perturbations, i.e. where the order of the derivatives in the nonlinearity is strictly lower than the order of
the constant coefficient (integrable) linear differential operator.

For quasi-linear (either fully nonlinear) nonlinearities the first KAM results have been recently proved by
Baldi-Berti-Montalto in [7], [8], [9] for perturbations of Airy, KAV and mKdV equations. These techniques
have been extended by Feola-Procesi [30] for quasi-linear perturbations of Schrédinger equations and by
Montalto [50] for the Kirchhoff equation.
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problems in mathematical physics and geometry”, by the European Research Council under FP7, project
no. 306414 “Hamiltonian PDEs and small divisor problem: a dynamical systems approach” (HamPDEs),
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1.1 Ideas of the proof

There are three major difficulties for proving the existence of time quasi-periodic solutions of the gravity
water waves equations (L14):

1. Equations ([.I4) are a quasi-linear system.

2. The dispersion relation (II9) of the linear water waves equations is sublinear, i.e. w; ~ \/J for j — oc.



3. One has to verify all the Melnikov non-resonance conditions required on the frequencies by the KAM
scheme.

We present below the key ideas of the paper to solve these three major problems. We start by the last
one, i.e. how to verify the non-resonance conditions which play a key role for the perturbation theory of
quasi-periodic solutions.

1. Bifurcation analysis and degenerate KAM theory. The first key observation is that we can use effec-
tively the depth parameter h € [h, hs] to impose all the required Melnikov non-resonance conditions.
Indeed we can prove that, for most values of h € [hy,hs], the unperturbed linear frequencies (L19)
are Diophantine and they satisfy also first and second order Melnikov non-resonance conditions: more
precisely the unperturbed tangential frequency vector &(h) := (w;(h)),es+ satisfies

G(h) - €] > (07T, Veez”\ {0}, (£):=max{L,]¢]}, (1.35)

and it is non-resonant with the normal frequencies Q(h) := (€2, (h))jent\s+ = (wj(h))jent\s+, in the
sense that )
|&(h) - €+Q(h)| Vi), Ve Z”, j ENT\ST,

B(0) - £+ Q;(0) + Q (R)] =12 + 52O, VL€ 2V, 5, e NT\ ST, (1.36)

|G(h) - €+ Q;(h) — Qyr ()] = 75~ 77, V(L 5,57) # (0,5,5) -
The verification of (33)-(L30) is a problem of Diophantine approximation on submanifolds as in
[55]. Tt can be solved by degenerate KAM theory (explained below), exploiting the fact that the linear
frequencies h — w;(h) are analytic, simple (in the subspace of functions even in z), they grow asymp-
totically like v/j for j — oo, and they are non-degenerate in the sense of Bambusi-Berti-Magistrelli
[11].
For such values of h € [hy,hs], the solutions (I.22)) of the linear equation (LIH) are already sufficiently
good approximate quasi-periodic solutions of the nonlinear water waves system ([L4)). Since the pa-
rameter space [hy, ho] is fixed, independently of the O(e)-neighborhood of the origin where we look for
the solutions, the small divisor constant v in (L3H)-(L30) can be taken v = o(1) as € — 0. Actually
for simplicity we take v = o(e®) with a > 0 small as needed, see (5:25). As a consequence, in order to
prove the continuation of the solutions (IL22]) of the linearized PDE (I.IH]) to solutions of the nonlinear
water waves system ([LI4), all the terms which are at least quadratic in (I.I4)) are already perturbative.
The precise meaning is that in (G.)) it is sufficient to regard the vector field eXp_ as a perturbation of
the linear vector field J<.

Along the Nash-Moser-KAM iteration we need to verify that the perturbed frequencies, and not only
the unperturbed linear ones, are Diophantine and satisfy first and second order Melnikov non-resonance
conditions, see the explicit conditions in ([@.23]). It is for this purpose that we find it convenient to
develop degenerate KAM theory as in [I1], [21], and to formulate the problem as a Nash-Moser theorem
of “hypothetical conjugation” as in [21].

Notice that in the case of infinite depth h = +oo the linear frequencies (LI9) are exactly /4 and
therefore some of the unperturbed Melnikov non-resonance conditions (L30]) are certainly violated.
As a consequence, the corresponding perturbed non-resonance conditions can hold only with a small
constant v = o(¢?). In this case, existence of pure gravity quasi-periodic solutions is still an open
problem.

Regarding second order Melnikov non-resonance conditions, two relevant differences with respect to
the capillary-gravity case studied in [21] are the following:

(a) The linear frequencies w;(h) = \/j tanh(hj) in (II9) grow in a sublinear way as \/j as j — oo,
and not as ~ j3/2 as for the gravity-capillary dispersion relation /(1 + 32); tanh(hj).

b) The parameter h moves the frequencies w;(h) of exponentially small quantities of order O(e™?
j
(on the contrary, the surface tension parameter x moves the frequencies of polynomial quantities

O(5°/%)).
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As a consequence, we can prove that the second Melnikov non-resonance conditions in ([36]), and
the corresponding ones in (5:23)), hold for most values of the parameter h € [hy,hs] only if d is large
enough, i.e. d > % kg in Theorem 521 The larger is d, the weaker are such Melnikov conditions, and the
stronger will be the loss of derivatives due to the small divisors in the reducibility scheme of Section [I5]
In order to guarantee the convergence of such a KAM reducibility scheme, these losses of derivatives
will be compensated by the regularization procedure of Sections [[HI4] where we reduce the linearized
operator to constant coefficients up to very regularizing terms O(|D,| =) for some M := M(d, 7) large
enough, fixed in (I5.10]), which is large with respect to d and 7 by (I[5.I0). We shall explain in detail
this procedure below.

. A Nash-Moser Theorem of hypothetical conjugation. The expected quasi-periodic solutions of the
autonomous Hamiltonian system ([L.I4) will have shifted frequencies @; — to be found — close to the
linear frequencies w;(h) in (LI9). The perturbed frequencies depend on the nonlinearity and on the
amplitudes §;. Since the Melnikov non-resonance conditions are naturally imposed on w, it is convenient
to use the functional setting of Theorem [E.]] where the parameters are the frequencies w € R” and we
introduce a “counter-term” o € R” in the family of Hamiltonians H, defined in (5.12)).

Then the goal is to prove that, for € small enough, for “most” parameters (w,h), there exists a value
of the constants a := as(w,h,e) = w + O(ey~%) and a v-dimensional embedded torus 7 = i(T"),
close to T x {0} x {0}, that is invariant for the Hamiltonian vector field Xu, ., and supports
quasi-periodic solutions with frequency w. This is equivalent to looking for a zero of the nonlinear
operator F (i, ,w, h,€) = 0 defined in (B.I3]). This equation is solved in Theorem 5.1 by a Nash-Moser
iterative scheme. The value of & := ao(w, h,€) is adjusted along the iteration in order to control the
average of the first component of the Hamilton equation ([.I3]), especially for solving the linearized

equation (G36]), in particular (G40).

The set CZ, of parameters (w, h) for which the invariant torus exists is the explicit set defined in (5.23)),
where we require w to satisfy, in addition to the Diophantine property

w- €] 27077, Ve "\ {0},

the first and second Melnikov non-resonance conditions stated in (5.23).

Note that the set CZ, is defined in terms of the “final torus” i (see (B20))) and the “final eigenvalues”
in (&2I) which are defined for all the values of the frequency w € R and h € [hy,hy] by a Whitney
extension argument (we shall use the abstract Whitney extension theorem reported in Appendix [A]).
This formulation completely decouples the Nash-Moser iteration (which provides the torus i (w,h,¢)
and the constant ao(w,h,e) € RY) from the discussion about the measure of the set of parameters
where all the non-resonance conditions are indeed verified. This simplifies the analysis of the measure
estimates, which are verified once and for all in Section

In order to prove the existence of quasi-periodic solutions of the water waves equations (IL14), and not
only of the system with modified Hamiltonian H, with & := as(w,h, &), we have then to prove that
the curve of the unperturbed linear frequencies

[hi,hy] > h— d(h) := (v/j tanh(hyj));es+ € R”

intersects the image ao(CY)) of the set CX, under the map ao, for “most” values of h € [hy, hy]. This is
proved in Theorem 5.2 by degenerate KAM theory. For such values of h we have found a quasi-periodic
solution of (LI4)) with Diophantine frequency we (h) := a2 (d(h),h), where a!(-,h) is the inverse of
the function a(-,h) at a fixed h € [hy, ho].

The above perspective is in the spirit of the Theorem of hypothetical conjugation of Herman proved by
Féjoz [29] for finite dimensional Hamiltonian systems. A relevant difference is that in [29], in addition
to «, also the normal frequencies are introduced as independent parameters, unlike in Theorem (.11
Actually for PDEs the present formulation seems to be more convenient: it is a major point of the
work to deduce the asymptotic expansion (L33)) of the Floquet exponents.

11



3. Degenerate KAM theory and measure estimates. In Theorem we prove that for all the values of
h € [hy,hy) except a set of small measure O(y'/%0) (the value of k% € N is fixed once and for all in
Section M) the vector (az!(&(h),h),h) belongs to the set C1, see the set G. in (5.26). As already said,
we use in an essential way the fact that the unperturbed frequencies h — wj;(h) are analytic and simple
(on the subspace of the even functions), they grow asymptotically as j 1/2 and they are non-degenerate
in the sense of [I1]. This is verified in Lemma as in [II] by analyticity and a generalized Van der
Monde determinant. Then we develop degenerate KAM theory which reduces this qualitative non-
degeneracy condition to a quantitative one, which is sufficient to estimate effectively the measure of
the set G. by the classical Riissmann lemma. We deduce in Proposition B4] that there exist kj > 0,

po > 0 such that, for all h € [hy, hy],

[max |08 (S(h) - £+ Q;(h) — Qs (R))]| = po(€), VEA0, j,j' € NT\ST, (1.37)
and similarly for the 0-th, 1-st and 2-nd order Melnikov non-resonance condition with the 4 sign. Note
that the restriction to the subspace of functions with zero average in = eliminates the zero frequency
wo = 0, which is trivially resonant (this is used also in [27]). Property (L37) implies that for “most”
parameters h € [hy, hy] the unperturbed linear frequencies (& (h), (b)) satisfy the Melnikov conditions
of 0-th, 1-st and 2-nd order (but we do not use it explicitly). Actually, condition (I37) is stable under
perturbations that are small in Cko-norm, see Lemma [5.4l Since the perturbed Floquet exponents in
(EZ9) are small perturbations of the unperturbed linear frequencies y/j tanh(hj) in C*°-norm, with
ko := k§ +2, the “transversality” property (L37) still holds for the perturbed frequencies we(h) defined
in (527). As a consequence, by applying the classical Riissmann lemma (Theorem 17.1 in [57]) we
prove that the set of non-resonant parameters G. has a large measure, see Lemma and the end of
the proof of Theorem

We conclude this discussion underlining two important points (that we have already mentioned):

(a) It is possible to use effectively h as a parameter to impose the second order Melnikov non-resonance
conditions, even though h moves the linear frequencies w;j(h) = 4/jtanh(hj) in (LI9) just of
exponentially small terms.

(b) The second Melnikov conditions that we (can) impose are very weak. The loss of derivatives that
they produce will be compensated by the reduction to constant coefficients up to very regularizing
remainders as we explain below.

Analysis of the linearized operators. The other crucial point is to prove that the linearized operators obtained
at any approximate solution along the Nash-Moser iterative scheme are, for most values of the parameters,
invertible, and that their inverse satisfies tame estimates in Sobolev spaces (with, of course, loss of deriva-
tives). This is the key assumption to implement in Section[Ifla convergent differentiable Nash-Moser iterative
scheme in scales of Sobolev spaces.

Linearizing the water waves equations (LI4)) at a time-quasi-periodic approximate solution (7, ¥)(wt, ),
and changing 0; into the directional derivative w - d,, we obtain (see (L)) the operator

(1+ BV,) +BG(n)B V8, — BG(n) (1.38)

L=w-0,+ ( 9V +Gn)B =G(n) )
where the functions B,V are given in [8.2). It turns out that (V, B) = V, ,® is the velocity field evaluated
at the free surface (z,n(wt, z)).

By the symplectic procedure developed in Berti-Bolle [16] for autonomous PDEs, and implemented in
[8]-[9], [21], it is sufficient to prove the invertibility of (a finite rank perturbation of) the operator £ restricted
to the normal subspace Ilg; introduced in (L25), see (ZE). We refer to [23] for a similar reduction which
applies also to PDEs which are not Hamiltonian, but for example reversible.

In Sections [THIH we conjugate the operator £ in (IL38)) to a diagonal system of infinitely many decoupled,
constant coefficients, scalar linear equations, see (IL40) below. Our approach involves two well separated
procedures that we shall describe in detail:

12



1. Symmetrization and diagonalization of L up to smoothing operators. The goal of Sections [(HI4] is to
conjugate £ to an operator of the form

W+ Dpt+imy [D|? tanh? (b|D|) + ir(D) + Ro () (1.39)

where my ~ 1 is a real constant, independent of ¢, the symbol r(§) is real and independent of (g, x),

of order S~1/2, and the remainder Ro(¢), as well as 85730 for all |8] < Bo large enough, is a small,
still variable coefficient operator, which is regularizing at a sufficiently high order, and satisfies tame
estimates in Sobolev spaces.

2. KAM reducibility. In Section [[5 we implement an iterative diagonalization scheme to reduce quadrat-
ically the size of the perturbation Ro(p) in (IL39), completing the conjugation of £ to a diagonal,
constant coefficient system of the form

w - Oy +10p(p;) (1.40)

where pu; = m%|j|% tanh%(h|j|) + r(j) + 7(j) are real and 7(j) are small. The numbers iu; are the
perturbed Floquet exponents of the quasi-periodic solution.

We underline that all the transformations performed in Sections are quasi-periodically-time-dependent
changes of variables acting in phase spaces of functions of x (quasi-periodic Floquet operators). Therefore,
they preserve the dynamical system structure of the conjugated linear operators.

All these changes of variables are bounded and satisfy tame estimates between Sobolev spaces. As
a consequence, the estimates that we shall obtain on the final system (L40) directly provide good tame
estimates for the inverse of the operator (L38) in the original physical coordinates.

We also note that the original system L is reversible and even and that all the transformations that we
perform are reversibility preserving and even. The preservation of these properties ensures that in the final
system (LA0) the u; are real valued. Under this respect, the linear stability of the quasi-periodic standing
wave solutions proved in Theorem [[.Tlis obtained as a consequence of the reversible nature of the water waves
equations. We could also preserve the Hamiltonian nature of £ performing symplectic transformations, but
it would be more complicated.

The above procedure — which we explain in detail below — is quite different from the approach developed
in the pioneering works of Plotnikov-Toland [52] and Iooss-Plotnikov-Toland [41] for time periodic gravity
waves. There are two main differences. The first one is that not all the transformations used in these works
are periodically-time-dependent changes of variables acting in the phase space of functions on z, and therefore
the dynamical system structure of the final conjugated system is lost. The second difference is that, when
searching for time periodic solutions, it is sufficient to invert the linearized operator simply by a Neumann
argument, as it is done in [1, [41], [37], [38], [52]. This approach does not work in the quasi-periodic case.
The key difference is that, in the time periodic problem, a sufficiently regularizing operator in the space
variable is also regularizing in the time variable, on the characteristic Fourier indices which correspond to
the small divisors. This is clearly not true for quasi-periodic solutions.

We now explain in detail the steps for the conjugation of the quasi-periodic linear operator (L38) to
an operator of the form (L40). We underline that all the coefficients of the linearized operator £ in (L38])
are C* in (p, z) because each approximate solution (n(y, ), (p,x)) at which we linearize along the Nash-
Moser iteration is a trigonometric polynomial in (p,z) (at each step we apply the projector II,, defined in
([@I61)) and the water waves vector field is analytic. This allows us to work in the usual framework of C*°
pseudo-differential symbols, as recalled in Section 2.3l

1. Linearized good unknown of Alinhac. The first step is to introduce in Section [[1] the linearized good
unknown of Alinhac, as in [I] and [21I]. This is indeed the same change of variable introduced by
Lannes [45] for the local existence theory, see also [46] and Alazard-Metivier [5]. The outcome is the
more symmetric system in (ZI3)

VvV -G Vo, 0 V, -G
£0w~8¢+<a Vé”))w-a¢+<o V@)+<a 0(77)>, (1.41)
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where the Dirichlet-Neumann operator admits the expansion
G(n) = |D| tanh(h|D|) + R¢

and R¢g is an OPS~°° smoothing operator. In Section [l we provide a self-contained proof of such
a representation, by transforming the elliptic problem (L3]), which is defined in the variable fluid
domain {—h < y < n(z)}, into the elliptic problem (B.45]), which is defined on the straight strip
{—h — ¢ <Y <0} and can be solved by an explicit integration.

. Straightening the first order vector field w - 0, + V (¢, 2)0,. The next step is to conjugate the variable
coefficients vector field (we regard equivalently a vector field as a differential operator)

w-0p + V(p,2)0y

to the constant coefficient vector field w-d, on the torus T, x T, for V (¢, x) small. This a perturbative
problem of rectification of a close to constant vector field on a torus, which is a classical small divisor
problem. For perturbation of a Diophantine vector field this problem was solved at the beginning of
KAM theory, we refer e.g. to [62] and references therein. Notice that, despite the fact that w € R¥
is Diophantine, the constant vector field w - 0, is resonant on the higher dimensional torus Tg x Ty.
We exploit in a crucial way the reversibility property of V(p,x), i.e V(p, ) is odd in ¢, to prove that
it is possible to conjugate w - d, + V (¢, )0, to the constant vector field w - 9, without changing the
frequency w.

From a functional point of view we have to solve a linear transport equation which depends on time in
quasi-periodic way, see equation ([83]). Actually we solve equation (B) for the inverse diffeomorphism.
This problem amounts to prove that all the solutions of the quasi periodically time-dependent scalar
characteristic equation & = V(wt,z) are quasi-periodic in time with frequency w, see Remark [B]]
[52], [41] and [5I]. We solve this problem in Section Bl using a Nash-Moser implicit function theorem.
Actually, after having inverted the linearized operator at an approximate solution (Lemma [B2)), we
apply the Nash-Moser-Hormander Theorem [B1] proved in Baldi-Haus [10]. The main advantage of
this approach is to provide in Theorem [R3] the optimal higher order regularity estimates (818]) of the
solution in terms of V.

Finally we remark that, when searching for time periodic solutions as in [41], [52], the corresponding
transport equation is not a small-divisor problem and has been solved in [52] by a direct ODE analysis.

Applying this change of variable to the whole operator £y in ([L4I]), the new conjugated system has

the form, see (832]),

Li=w-0,+ (Zl *a2|D|tan}B(h|D|) +R1)
3

where the remainder R; is in OPS™°.

. Change of the space variable. In Section [0l we introduce a change of variable induced by a diffeomor-
phism of T, of the form (independent of ¢)

y=z+ a(zr) & r=y+ay). (1.42)
Conjugating £1 by the change of variable u(x) — u(z + a(z)), we obtain an operator of the same form

a4 70,5|D|Th + Ro
ag 0

Lo=w-0,+ ( ) , Ty := tanh(h|D]),

see (@A), where Ro is in OPS~°, and the functions as, ag are given by

as = [az(p, ) (1 + ag(2))] ,as = az(p,y +a(y)) .

|z=y+a(y)

We shall choose in Section [[2] the function a(x) in order to eliminate the space dependence from the
highest order coefficients, see (I2Z.23). The advantage to introduce at this step the diffeomorphism
(CZ2) is that it is easy to study the conjugation under this change of variable of differentiation and
multiplication operators, Hilbert transform, and integral operators in OPS™°°, see Section [2.4]
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4. Symmetrization of the highest order. In Section [I0 we apply two simple conjugations (with a Fourier
multiplier and a multiplication operator) whose goal is to obtain a new operator of the form

1
“ —a7|D|3 T2
ay a7|D|2 h> n

Eg :wa¢+ 1 1
ar| D3 T 0

see (IOI0)-([I0.I4), up to lower order operators. The function a7 is close to 1 and a4 is small in €, see
({I0I7). In the complex unknown h = 7+ i) the first component of such an operator reads

(h,]) > w - O,k + iaz|DI¥T b+ ash + Psh+ Qsh

(which corresponds to (I neglecting the projector illy) where P5(¢) is a ¢-dependent families of
pseudo-differential operators of order —1/2, and @5() of order 0. We shall call the former operator
“diagonal”, and the latter “off-diagonal”, with respect to the variables (h, h).

5. Symmetrization of the lower orders. In Section 1] we reduce the off-diagonal term Q5 to a pseudo-
differential operator with very negative order, i.e. we conjugate the above operator to another one of
the form (see Lemma [IT.3)

(h, ) = w - Doh + iar(p, 2)| DIFT b+ ash + Psh + Qeh, (1.43)

where Py is in OPS™2 and Qg € OPS— for a constant M large enough fixed in Section [[H in view
of the reducibility scheme.

6. Time and space reduction at the highest order. In Section[I2] we eliminate the ¢- and the x-dependence
1
from the coefficient of the leading operator iaz(p, z)|D|2T;?. We conjugate the operator (L43) by the
time-1 flow of the pseudo-PDE )
Oru =iB(p,x)|D|Zu
where (g, ) is a small function to be chosen. This kind of transformations — which are “semi-Fourier
integral operators”, namely pseudo-differential operators of type (%, %) in Hormander’s notation — has
been introduced in [I] and studied as flows in [21].

Choosing appropriately the functions 8(p, z) and a(x) (introduced in Section [@), see formulas (I2.21])
and (IZ.29)), the final outcome is a linear operator of the form, see (IZ33)),

(hy ) = w- ,h + imy | DIF T2 b+ (as + agH)h + Prh + To(h, 1),

where H is the Hilbert transform. This linear operator has the constant coefficient mi A 1 at the highest

order, while P; is in OPS~'/2 and the operator 77 is small, smoothing and satisfies tame estimates
in Sobolev spaces, see (IZ41]). The constant m1 collects the quasi-linear effects of the non-linearity at
the highest order.

7. Reduction of the lower orders. In Section [[3] we further diagonalize the linear operator, reducing it
to constant coefficients up to regularizing smoothing operators of very negative order |D|=™. This is
realized by applying an iterative sequence of pseudo-differential transformations that eliminate the -
and the z-dependence of the diagonal symbols. The final system has the form

(h,h) = w- Dh + imy [DI3 T b+ ir(D)h + Ro(p) (h, h) (1.44)
where the constant Fourier multiplier (£) is real, even r(§) = r(=£), it satisfies (see (I3.79))
4= @MA1)

sup |2 |r;|"7 S e
JEZ

and the variable coefficient operator Ro(p) is regularizing and satisfies tame estimates, see more pre-
cisely properties ([L45). We also remark that this final operator (L44) is reversible and even, since all
the previous transformations that we performed are reversibility preserving and even.
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Our next goal is to diagonalize the operator (LZ4)); actually, it is sufficient to “almost-diagonalize” it
by the KAM iterative scheme of Section The expression “almost-diagonalize” refers to the fact
that in Theorem the remainders R,, that are left in (I5.40) are not zero, but they are as small
as O(ey 2+ N—2 ) (and this is because we only require the finitely many Diophantine conditions

([5.44)).

8. KAM-reducibility scheme. In order to decrease quadratically the size of the perturbation Ry we apply
the KAM diagonalization iterative scheme of Section [[3l to the linear operator (I44). Such a scheme
converges because the operators

(D)™ PR (D)™ HPH Gt (D) R (DY i =1, ., (1.45)

satisfy tame estimates for some b := b(7,kg) € N and m := m(kg) which are large enough (indepen-
dently of s), fixed in (I5I0), see precisely conditions (I5I3)-({I5IH). Such conditions are verified to
hold in Lemma [[5.3] under the assumption that M (the order of regularization of the remainder) is
chosen large enough as in ([I5.16) (essentially M = O(m +b)). This is the property that compensates,
along the KAM iteration, the loss of derivatives in ¢ and x produced by the small divisors in the
second order Melnikov non-resonance conditions.

The big difference of the KAM reducibility scheme of Section with respect to the one developed
in [21] is that the second order Melnikov non-resonance conditions that we impose are very weak, see
([@I529), in particular they lose regularity, not only in the @-variable, but also in the space variable z.
For this reason we apply at each iterative step a smoothing procedure also in the space variable.

After the above diagonalization of the linearized operator we invert it, by imposing the first order Melnikov
non-resonance conditions, see Lemma [I5.71] Since all the changes of variables that we performed in the
diagonalization process satisfy tame estimates in Sobolev spaces, we finally conclude the existence of an
approximate inverse of the linearized operator which satisfies tame estimates, see Theorem

Finally, in Section [[6] we implement a differentiable Nash-Moser iterative scheme (Theorem [[6.2) that
provides an embedded torus which is invariant under the flow of the Hamiltonian vector field Xg, ., for
most values of the parameters (w,h). Section [[6.0] concludes the proof of the Nash-Moser Theorem [B.1] of
hypothetical conjugation.

1.2 Notation

We organize in this subsection the most important notation used in the paper.

We denote by N := {0,1,2,...} the natural numbers including {0} and N* := {1,2,...}. We denote the
“tangential” sites by

ST cN' and weset S:=STU(-ST), So:=STU(-STHU{0}CZ, S5:=7Z\So. (1.46)
The cardinality of the set S* is also denoted by |[ST| = v. We look for quasi-periodic solutions with
frequency w € R”. The depth parameter h is in the interval [hy,hs] with hy > 0. In the paper all the
functions, operators, transformations, etc ..., depend on the parameter

A= (w,h) € Apg CRY x [hl,hg],

in a kg times differentiable way, either in a classical or in a Whitney sense, as discussed in Section 2.1l and in
Appendix [Al We will often not specify the domain Ag which is understood from the context. Given a set B
we denote by N (B, n) the open neighborhood of B of width n (which is empty if B is empty) in R” X [hy, ho],
namely

N(B,n) :={X € R x [h1,hy] : dist(B, \) < n}. (1.47)
We use the multi-index notation: if k = (k1,...,ky,41) € N*Fland A = (A1,...,A\11) € R¥TL we denote
the derivative 8’; = 8’/\“ . 8;?"“ and
1 v+l
k= Fi 4ot kgr, Eli=klo k!, AR =2k (1.48)
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Given j € Z, we set (j) := max{1, |j|} and for any vector £ = (¢1,...,¢,) € Z",
(0) :=max{1, [/}, |f] =max;=1,. ,|l].

With a slight abuse of notation, given £ € Z,j € Z, we write (¢, j) := max{1, |¢|, |j|}.

Sobolev spaces. We denote by H*(T**!) the Sobolev space of both real and complex valued functions
defined by

1= ) = Lulpa) = 3 g = 3 ()P el < +oo ),
(€T JETL (€T JETL

see (L20). In the paper we shall use H* Sobolev spaces with index s in a finite range of values

1
s € [s0,5], where sp:= [%} +1€N,

see (L2I)), and the value of S is fixed in the Nash-Moser iteration in Section [I6 see (I6.12).

We shall also use the notation H: := H*(T,) for Sobolev spaces of functions of the space-variable x € T,
and H = H S(T;) for Sobolev spaces of the periodic variable ¢ € T”. Moreover we also define the subspace
HY(T,) of HY(T,) of functions depending only on the space variable 2 with zero average, i.e.

HM(T,) = {u € HY(T) : /Tu(z) dz = o}. (1.49)

Given a function u(p, z) we write that it is even(yp)even(z), if it is even in ¢ for any x and, separately, even in
x for any . With similar meaning we say that u(p, x) is even(p)odd(x), odd(p)even(x) and odd(p)even(zx).

Pseudo-differential operators and norms. A pseudo-differential operator with symbol a(z, §) is denoted
by Op(a) or a(z, D), see Definition 28 The set of symbols a(z, ) of order m is denoted by S™ and the
class of the corresponding pseudo-differential operators by OPS™. We also set

OPS™% = NperOPS™.

We shall denote by OPS™ also matrix valued pseudo-differential operators with entries in OPS™.
Along the paper we have to consider symbols a(}, ¢, x, &) that depend on ¢ € T” and on a parameter
A € Ag C R¥*L. The symbol a is kg times differentiable with respect to A and C* with respect to (i, z, £).
For the corresponding family of pseudo-differential operators A(\) = a(\, ¢, z, D) we introduce in Definition
the norms
lAlR 2o = > 7™ sup |05AMN) o0 (1.50)
i<k AEho

indexed by kg € N, v € (0,1), m € R, s > sg, @ € N, where

AN |mos.a := max sup [|8%a(),-, -, &)||s(€)"™HF .
AWl 1= e sup [0Fa(As-,+,)11-(6)

DFo-tame and D*-modulo-tame operators. In Definition .25 we introduce the class of linear operators
A = A()) satisfying tame estimates of the form

sup sup M [[(OFAN))ulls < Ma(so)[wllsto + IMa(s)llullsoto
|k|<ko AEAq

which we call D*o-g-tame operators. The constant 904 (s) is called the tame constant of the operator A.
When the “loss of derivatives” o is zero, we simply write D*-tame instead of DF0-0-tame.

In Definition we introduce the subclass of D*0-modulo tame operators A = A()) such that for any
k € N"*1|k| < ko, the majorant operator |05 A| satisfies the tame estimates

sup sup 7*[[05 Alulls < 9 (s0)l|ulls + D (5)]Julls, -
|k|<ko AEAo
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The majorant operator |A| is introduced in Definition 2711, by taking the modulus of the entries of the
matrix which represents the operator A with respect to the exponential basis. We refer to smﬁ, (s) as the
modulo tame constant of the operator A.

Along the paper several functions, symbols and operators will depend on the torus embedding ¢ — i(p)
(the point at which we linearize the nonlinear equation) and we shall use the notation

Ajou = uliz) — u(iy)

to denote the increment of such quantities with respect to .

Finally we use the following notation: a Ss o b means that a < C(s,a, M)b for some constant
C(s,a, M) > 0 depending on the Sobolev index s and the constants «, M. Sometimes, along the pa-
per, we omit to write the dependence <, x, with respect to sg, ko, because s (defined in (LZI)) and ko
(determined in Section M) are considered as fixed constants. Similarly, the set ST of tangential sites and its
cardinality v = |S*| are also considered as fixed along the paper.

2 Functional setting

2.1 Function spaces

In the paper we will use Sobolev norms for real or complex functions u(w, h, ¢, x), (p,x) € T X T, depending
on parameters (w,h) € F in a Lipschitz way together with their derivatives in the sense of Whitney, where
F is a closed subset of R¥*1. We use the compact notation A := (w,h) to collect the frequency w and the
depth h into a parameter vector.

Also recall that || ||s denotes the norm of the Sobolev space H*(T**!,C) = H}

(o.z) Introduced in (L20).
We now define the “Whitney-Sobolev” norm || - ||¥%17.

Definition 2.1. (Whitney-Sobolev functions) Let F' be a closed subset of RVT1. Let k > 0 be an integer,
v € (0,1], and s > so > (v + 1)/2. We say that a function u: F — HE, belongs to Lip(k + 1, F, s,7v) if
there exist functions

w9 F— HE, ., jEN, 0<|j| <k,

with u®) =, and a constant M > 0 such that, if R;(\, \o) := R§-u)()\,)\0) is defined by

. 1 ..
W)= 3 FuI00) (A= M)+ Ri(A ), A€ F, (2.1)
LENVHL:|j4e|<k

(recall the multi-index notation (LA])) then
PPN < M, AR Ao)lls < MIA = Ao[*H7H1 vA X € F, ] <& (2.2)

An element of Lip(k + 1, F, s,7) is in fact the collection {u") : |j| < k}. The norm of u € Lip(k + 1, F, s,7)
is defined as
[l 507 o= ul| B = inf{M > 0 : @2) holds}. (2.3)

If F = R""! by Lip(k + 1,R"*!, s,v) we shall mean the space of the functions u = u®) for which there exist
ul?) = Ru, |j| < k, satisfying Z2), with the same norm (23)).

‘We make some remarks.

L. If F = R"*! and u € Lip(k + 1, F,s,v) the u¥), |j| > 1, are uniquely determined as the partial
derivatives u) = Hu, |j| < k, of u = u®. Moreover all the derivatives u, |j| = k are Lipschitz.
Since H* is a Hilbert space we have that Lip(k + 1,R**! s ) coincides with the Sobolev space
Wk+17OO(RV+1,HS)_
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2. The Whitney-Sobolev norm of v in (Z3]) is equivalently given by

Bty 41 EHL gup 12 (A Ao) s } (2.4)

7 = max {W‘ sup [[u@ (A)]|s, e+ 1]

u
= Il i<k AEF Ao [A = Ao

lulls

3. The exponent of v in (Z2]) gives the number of “derivatives” of w that are involved in the Taylor
expansion (taking into account that in the remainder there is one derivative more than in the Taylor
polynomial); on the other hand the exponent of |\ — Ag| gives the order of the Taylor expansion of u(/)
with respect to A. This is the reason for the difference of |j| between the two exponents. The factor ~
is normalized by the rescaling (A.7).

Theorem [A2] and (AI0Q) provide an extension operator which associates to an element u € Lip(k +
1,F,s,7) an extension @ € Lip(k + 1,R**1 s,v). As already observed, the space Lip(k + 1,R**! s v)
coincides with Wk+1ee(R¥+1 H*) with equivalence of the norms (see (A.9))

k+1,
lullg 5

~vk Ha||Wk+1*°°*7(R"+1,H5) = Z 'Yla‘||a§a”Lao(Ru+1,Hs) .
la|<k+1

By Lemma [A.3] the extension 4 is independent of the Sobolev space H*.

We can identify any element u € Lip(k + 1, F, s,7) (which is a collection u = {u®) : |j| < k}) with the
equivalence class of functions f € Wk+1.o°(R¥+1 H*)/~ with respect to the equivalence relation f ~ g when
RF(A) = g(N) for all X € F, for all |j| < k+ 1.

For any N > 0, we introduce the smoothing operators

(Myu)(p,z) o= Y uge @™ Ty o=T1d - Tly. (2.5)
(€,j)<N

Lemma 2.2. (Smoothing) Consider the space Lip(k+ 1, F, s,7) defined in Definition[Z1l The smoothing
operators Iy, Il satisfy the estimates

|yul+5Y < N|ul|*T27 0<a<s (2.6)
[Ty w757 < N=(ul| 527, a>o0. (2.7)
Proof. See Appendix [Al O

Lemma 2.3. (Interpolation) Consider the space Lip(k + 1, F, s,7y) defined in Definition 21
(i) Let s1 < sa. Then for any 6 € (0,1) one has

ull 787 < (ulls )P Al S0, s o= 051+ (1= 0)s2. (2.8)

(i1) Let ag,bgp > 0 and p,q > 0. For all € > 0, there exists a constant C(e) := C(e,p,q) > 0, which
satisfies C(1) < 1, such that

ot 10llgta” < ellullagisgllolly ™ + CO)lully ™ lolly, (2.9)

||u||a0+p bo+q — ao+p+q bo+p+q *

Proof. See Appendix [Al O

Lemma 2.4. (Product and composition) Consider the space Lip(k+1, F, s,7) defined in Definition 2]
For all s > sg > (v +1)/2, we have

luv][§57 < Cls, ) ull S ollE + Clso, B Jull &5 [l 17 (2.10)
Let ||6||§:)1+"{ < (80, k) small enough. Then the composition operator

B:uws Bu, (Bu)(p,z):=u(e,z+ B(p,x)),
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satisfies the following tame estimates: for all s > s,

k k41, k+1, k41,
[1Bulls™7 Sep lull gty + 1815 lullgy s - (2.11)

Let ”6”;:0{%7%2 < 8(s0, k) small enough. The function [ defined by the inverse diffeomorphism y = x+5(p, )
if and only if x = y + ﬂ(gﬁ,y), satisfies
o ft 1,
1B S 18I - (2.12)
Proof. See Appendix [Al O

If w belongs to the set of Diophantine vectors DC(«y, 7), where

DC(y,7) :

v . Y v
{wER et 2 g Ve \{0}}, (2.13)

the equation w - O,v = u, where u(p, x) has zero average with respect to ¢, has the periodic solution
20,) Ty = M ieptia)
(w-0p) u: Z e . (2.14)
LezZrv\{0},j€Z
For all w € R” we define its extension
1 X(w - y~HO)7) ¢
(W 0p)emrulep, @) := Z o7 Uy, j eltptiz) (2.15)
(,5)ezv+1

where y € C*°(R, R) is an even and positive cut-off function such that

() = {0 i el <

1 2
Lo e Dex(€) > 0 vge( ) (2.16)

373

W W=

Note that (w - 0,). 4t = (w - ) 'u for all w € DC(y,T).

Lemma 2.5. (Diophantine equation) For all u € WkTLooY(RV L {51 we have

- B)abull“5hn < Oy ™ ull*F o, e= k1 7k +2). (2.17)

Moreover, for F C DC(vy,T) X R one has

1 k41, - E+1,
(@ - 0p) tullge ™™ < Cl)yHulllu k- (2.18)

Proof. See Appendix [Al O
We finally state a standard Moser tame estimate for the nonlinear composition operator
u(p, ) = £(u)(p, 2) := flo, @, u(p, x)).
Since the variables (¢, ) := y have the same role, we state it for a generic Sobolev space H*(T?).

Lemma 2.6. (Composition operator) Let f € C*(T¢ x R,C) and Cy > 0. Consider the space Lip(k +
1,F,s,7) given in Definition 2. If u(\) € H*(T4,R), A € F is a family of Sobolev functions satisfying
|\u|\k+1’7 < Cy, then, for all s > so > (d+1)/2,

[£(u) |57 < Cls, ks £,Co)(1+ [Jull S5 7). (2.19)

The constant C(s, k, f,Co) depends on s, k and linearly on || f|lcm(raix gy, where m is an integer larger than
s+k+1, and B C R is a bounded interval such that uw(\,y) € B for all A € F, y € T, for all ||u||k+1’V < ().

Proof. See Appendix [Al O
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2.2 Linear operators

Along the paper we consider p-dependent families of linear operators A : T — L(L*(T,)), ¢ — A(y) acting
on functions u(x) of the space variable z, i.e. on subspaces of L?(T,), either real or complex valued. We
also regard A as an operator (which for simplicity we denote by A as well) that acts on functions u(yp, ) of
space-time, i.e. we consider the corresponding operator A € L(L?(T" x T)) defined by

(Au)(p, x) := (Alp)ulep,-))(x).

We say that an operator A is real if it maps real valued functions into real valued functions.
We represent a real operator acting on (n,%) € L?(T**1,R?) by a matrix

K (Z}) B (é g) (Z) (2.20)

where A, B, C, D are real operators acting on the scalar valued components 1, € L2(T**1 R).
The action of an operator A € L(L?*(T” x T)) on a scalar function u := u(yp,z) € L*(T" x T,C) that we
expand in Fourier series as

u(p, @) = D ui()e? = Y g et (2.21)

JEZL LEL JEL
iS -/ P -/ . .
Au(p,x) = D AL (pJuy(p)e¥ = > > A= yup et (2:22)
J,j' €L LELY JEL U ELY j' €L

We shall identify an operator A with the matrix (A;i/ (- gl))j,j’eZ,é,WGZV'

Note that the differentiated operator d,,, A(¢), m =1,...,v, is represented by the matrix with elements
il — E;R)Agl (¢ —1¢'), and the commutator [0, A] := 0,0 A— Aod, is represented by the matrix with entries
i(j - 347 (L= 0).

Also note that the operator norm || Al|z g+ := sup{||Ah|s : ||h||s = 1} of a bounded operator A : H* —

H* and its matrix entries Agl (¢ — 0 satisty

Do IAT =P < Az (€30, V() ezt (2.23)
0.

To prove ([Z23), consider h = e!(¢"3") (#.2),
Definition 2.7. Given a linear operator A as in (Z22)) we define the operator
1. |A| (majorant operator) whose matriz elements are |A§, (£—2,

2. IxyA, N € N (smoothed operator) whose matriz elements are

y A=y i (=0 j—j)<N
Iy ) (¢~ )= {5 -0 1 E=0i=0) < (2.24)
J 0 otherwise .
We also denote Hﬁ = 1d — Iy,
3. (0p2)?A, b € R, whose matriz elements are (£ — (', j — j’>bA§/(€ =,
Given linear operators A, B we have that (see Lemma 2.4 in [21])
1A+ Blulls < [[|Alu] ls + [ B[ fulls,  [[|ABlulls < |[|A[|B] Jul [|s, (2.25)
where, for a given a function u(p, ) expanded in Fourier series as in ([2.21]), we define the majorant function
lul(p,2) i= D" Jugle o) (2.26)
L€T” GET

Note that the Sobolev norms of u and |u| are the same, i.e.

[ulls = lullls- (2.27)
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2.3 Pseudo-differential operators

In this section we recall the main properties of pseudo-differential operators on the torus that we shall use in
the paper, similarly to [1], [2I]. Pseudo-differential operators on the torus may be seen as a particular case
of the theory on R™, as developed for example in [34]. They can also be directly expressed through Fourier
series, for which we refer to [58].

Definition 2.8. (¥DO) A linear operator A is called a pseudo-differential operator of order m if its symbol
a(x, ) is the restriction to R X Z of a function a(x, &) which is C*°-smooth on R x R, 27-periodic in =, and
satisfies the inequalities

0207 a(x,€)| < Capl&™ 7, Ya,BeN. (2.28)
We call a(z,&) the symbol of the operator A, which we denote

AZOp(a):a(x,D), D:=D,:= _az-

We denote by S™ the class of all the symbols a(x,§) satisfying 228), and by OPS™ the associated set of
pseudo-differential operators of order m. We set OPS™° := Ny, cgOPS™.
For a matriz of pseudo differential operators

(A A , L
A_(A3 A4), A, €0OPS™, i=1,...,4 (2.29)

we say that A € OPS™.

When the symbol a(z) is independent of j, the operator A = Op(a) is the multiplication operator by the
function a(x), i.e. A : u(x) — a(z)u(z). In such a case we shall also denote A = Op(a) = a(x).
We underline that we regard any operator Op(a) as an operator acting only on 27-periodic functions

u(x) =3 g uie” as
(Au)(z) := Op(a)[u](z) := Za(m,j)ujeijm
JEZ
We recall some fundamental properties of pseudo-differential operators.

Composition. If A = a(z,D) € OPS™, B = b(z,D) € OPS™, m,m’ € R, are pseudo-differential
operators, then the composition operator AB := Ao B = oap(x, D) is a pseudo-differential operator in
OPS™™ with symbol

oan(r,€) =Y (e, &+ )b, = > alj’ — 5 &+ )b, eV

JEZ J,J' €L

where 7 denotes the Fourier coefficients of the symbols a(x,&) and b(z, &) with respect to z. The symbol
o 4p has the following asymptotic expansion

oap(x,&) ~ Z—aﬁ z&@ﬁb(x ),

B3I
B>0 A
that is, for all N > 1
N—
oap(z,§&) = Z (2,6) 0%b(x, &) + 7 (x,€) where ry i=rNap € S™T N (2.30)

The remainder ry has the explicit formula

N (@,8) =y an (e, €) = )/ (1= )N @ a) (. €+ ) (VD) (G, ) dr . (2.31)

iN(N —
JEZ

22



Adjoint. If A = a(x,D) € OPS™ is a pseudo-differential operator, then its L?-adjoint is the pseudo-
differential operator

A*=0p(a*)  withsymbol — a*(z,£) := > a(j,& - j)eli™. (2.32)
JEZ
Along the paper we consider ¢-dependent families of pseudo-differential operators
(Au)(p,2) =) alp,@, j)us(p)e ™
jez

where the symbol a(yp,z,§) is C*-smooth also in ¢. We still denote A := A(p) = Op(a(ep,-)) = Op(a).
Moreover we consider pseudo-differential operators A(X) := Op(a(A, p, x,&)) that are ko times differentiable
with respect to a parameter A := (w,h) in an open subset Ag C R” x [h1,hs]. The regularity constant kg € N
is fixed once and for all in Section 4l Note that

oA =O0p(0%a), VkeNTI |k <k.
We shall use the following notation, used also in [I], [2I]. For any m € R\ {0}, we set

|D|™ := Op(x(£)€]™) , (2.33)

where y is the even, positive C* cut-off defined in [2.I6). We also identify the Hilbert transform H, acting
on the 2m-periodic functions, defined by

/H(eijm) — *iSigH(j)eijI , Vi#£0, H(1):=0, (2.34)
with the Fourier multiplier Op( - isign(f)x(f)), Le.
H = Op( —isign(§)x(¢)) -

We shall identify the projector 7y, defined on the 27-periodic functions as

1
mou 1= 5 11‘u(z) dx , (2.35)

with the Fourier multiplier Op(l — X(f)), ie.

m = Op(1— x(¢)),
where the cut-off x () is defined in (2I6). We also define the Fourier multiplier (D)™, m € R\ {0}, as

(D)™ :=mo +|D|™ := Op ((1 = x(§)) + x(§)EI™), E€R. (2.36)

We now recall the pseudo-differential norm introduced in Definition 2.11 in [21] (inspired by Métivier [49],
chapter 5), which controls the regularity in (@, z), and the decay in £, of the symbol a(y, x, &) € S™, together
with its derivatives Gga € S™# 0 < B < a, in the Sobolev norm || ||s.

Definition 2.9. (Weighted YDO norm) Let A(\) := a(\, p,2,D) € OPS™ be a family of pseudo-
differential operators with symbol a(X\, p,x,&) € S™, m € R, which are ko times differentiable with respect to
A€ Ao CRYFL Forv € (0,1), a €N, s >0, we define the weighted norm

| =Y A sup [0FAN) | sa (2.37)

‘k‘SkU AEAg

where 5
AN m.s.a := max sup ||0Fa(N, -, -, &) (&), 2.38
AW sca = e sup [9Za(r, - E)ls () (2.38)

For a matriz of pseudo differential operators A € OPS™ as in [229), we define its pseudo differential norm

koyy ._ ko,
| Al 5o = max Al Jo -
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For each kg, ~y, m fixed, the norm (237) is non-decreasing both in s and «, namely

Vs<sia<a, |Imla<Ilnda e <l (2.39)

m,s,o = m,s’,a m,s,o = m,s,a’
and it is non-increasing in m, i.e.
Vm<m', | e <1 RTa (2.40)

m,s,x

Given a function a(\, ¢, x) that is C* in (¢, z) and ko times differentiable in A, the “weighted ¥DO norm”
of the corresponding multiplication operator Op (a) is

)|k :
10p (@)]g%0 = > A" SHP 185a(M)ls = lallwroor(ag. o) ~ko llalls®, Vo €N, (2.41)
k| <ko
see (A9). For a Fourier multiplier g(\, D) with symbol g € S™, we simply have
10p(9) 1530 = 10D 0 < Clm g, ko), Vs 2 0. (2.42)

m,s,x m,0,a —
Given a symbol a(\, ¢, z,£) € S™, we define its averages
1 1
A = A d +(NE) = —— Ao, 8)dedr.
@)= 5 [ apade . (@ealhO) = Gy [ ahpa g deds

One has that (a), and (a), . are symbols in S™ that satisfy

[0p({a))lnda S 10P(a)ld Vs >0, (2.43)
10p((@)e) 07 S 10P(@) 15 Vs 2 0. (2.44)

The norm | |o,s,0 controls the action of a pseudo-differential operator on the Sobolev spaces H®, see Lemma

229 The norm | |57, is closed under composition and satisfies tame estimates.

Lemma 2.10. (Composition) Let A = a(}, P, T, D), B = b(\, p,z,D) be pseudo-differential operators
with symbols a(\, p,z,&) € 8™, b(A, ¢, x,€) € S™, m,m' € R. Then A(X) o B(\) € OPS™™" satisfies, for
alla € N, s > sq,

|ABI s o0 S C(s)| Al 1Bl +C(s0) AR o | Bl : (2.45)

m+m’,s,a ~M,kKo m,s,a m/,so+a+|m|,a m,s0,a m’,st+a+|m|,a

Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (230Q) satisfies
| Ryl S C) AT ol Bl

m4+m/—N,s,a ~m,N,a ko m,s,N+a m/,s0+2N+|m|+a,a

. (2.46)
+C(SO)"A"m,so,N+a"B|m s+2N+|mi+aa
Both (248)-246) hold with the constant C(sg) interchanged with C(s).
Analogous estimates hold if A and B are matriz operators of the form (2:29).
Proof. See Lemma 2.13 in [21]. O

For a Fourier multiplier g(\, D) with symbol g € S™" we have the simpler estimate

K ko, :
|40 g(D) s 50 Skowa 1AL 201OD(9) iy 0 Shosim’ 1AL o (2.47)

By ([230) the commutator between two pseudo-differential operators A = a(z,D) € OPS™ and B =
b(z, D) € OPS™ is a pseudo-differential operator [A, B] € OPS™™™ =1 with symbol a * b, namely

[A,B] = Op(axb). (2.48)
By (Z30) the symbol a b € S™™ =1 admits the expansion
axb=—i{a,b} + ra(a,b) where {a,b} := 8:a D,b — Dpadeb € S™H 1 (2.49)

is the Poisson bracket between a(x,&) and b(z, €), and
rg(a, b) ‘=T, AB —T2,BA € Sm+m,_2 . (2.50)

By Lemma [2.10] we deduce the following corollary.
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Lemma 2.11. (Commutator) Let A = a(}, P, D), B = b(\, ¢, z,D) be pseudo-differential operators
with symbols a(X, ¢, x, &) € S™, b(A, p,x,8) € S™, m,m’ € R. Then the commutator [A, B] := AB— BA €
OPS™+t™ —1 satisfies

ko, ko,
|[A7 B“n’?ﬁm’fl,s,a Sm,m/,a,kg C(S)||A||'rr?,s’y+2+|m’|+a a+1||B|m’ so+2+|m|+a,a+1

oAt o (2.51)
+ (SO)" ||m750+2+\m/|+a,oz+1" lm’,8+2+\m|+a,a+1'
Proof. Use the expansion in (230) with N =1 for both AB and BA, then use [2.46) and (2:39). O

Iterating estimate (Z51), given A € OPS™ and B € OPS™ | we get estimates of the operators Ad" (B),
n € N, defined inductively by

Ada(B):=[A,B], Ad}T(B):=[A,Ad%(B)], ne€N.
Lemma 2.12. Let A€ OPS™, B € OPS’"/, m,m’ € R. Then for any n,a € N, s > sq,

| (B) ) Sm,me (1AL )" 1Bl (2.52)

nm+m’—n,s,a ~m,m’,s,a,ko m,so+cn(m,m’,a),a+n m/,s+cy, (m,m’,a),a+n

+ (ALY AL 1B,

m,so+cn(m,m’,a),a+n m,s+cn (m,m’,a),a+n m’,so+cn (m,m’,a),a+n
where the constants cp,(m, m’, «) are

n(n—1)
2

Proof. Estimate (2.52) follows by applying iteratively (Z.51). Bound @2351) gives [252) for n = 1 with
c1 = 2+ a+max{|m|,|m’|}. The induction step requires that 2+ a+|m|+c,(m,m’;a+1) < cpp1(m,m’, a)

and 24+ a+ |nm+m’ —n| < cpp1(m,m’; ) for all n > 1, which is satisfied by ([2Z53]). O

cn(m,m’,a) :==n(2+a) + + (n — 1)|m| + max{|m|,|m'|}, n>1. (2.53)

The pseudo-differential norm of the adjoint A* of a pseudo-differential operator A = Op(a) € OPS™
(see ([2.32)) may be estimated in terms of that of A.

Lemma 2.13. (Adjoint) Let A = a(\, p,x, D) be a pseudo-differential operator with symbol a(\, ¢, x, &) €
S™, m € R. Then the adjoint A* € OPS™ satisfies

A5 S 14127

m,s,0 Nm m,s+so+|m|,0
The same estimate holds if A is a matriz operator of the form (2Z29).
Proof. See Lemma 2.16 in [21]. O
Finally we report a lemma about inverse of pseudo-differential operators.

Lemma 2.14. (Invertibility) Let ® := Id+ A where A := Op(a(\, p, z,€)) € OPS®. There exist constants
C(so,a, ko), C(s,a, ko) > 1, 8 > so, such that, if
Cls0 @, ko) |Al6%) a0 < 1/2, (2.54)
then, for all \, the operator ® is invertible, ®~!1 € OPS° and, for all s > sq,
|01 —1d[5%7, < C(s, a, ko) Al g o - (2.55)

0,s,a 0,s4a,a

The same estimate holds for a matriz operator ® = Iy + A where Iy = (I(()i I?i) and A has the form (2.29)]).

Proof. By a Neumann series argument. See Lemma 2.17 in [21]. O
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2.4 Integral operators and Hilbert transform

In this section we consider the integral operators with a C* kernel, which are the operators in OPS™>°. As
in the previous section, we deal with families of such operators that are kg times differentiable with respect
to a parameter \ := (w,h) in an open subset Ag C R X [hy, ho].

Lemma 2.15. Let K := K(\,-) € C®°(T” x T x T). Then the integral operator

(Ru)(p, z) == / K\ gz, y)ule,y) dy (2.56)

is in OPS™° and, for all m,s,a € N,

IRIZ o < Clm, s, 00 ko) [ K (62 - (2:57)

Proof. See Lemma 2.32 in [21]. O

An integral operator transforms into another integral operator under a change of variables

Pu(p, ) :=u(p,z + plp,x)). (2.58)

Lemma 2.16. Let K(A,:) € C®°(T” x T x T) and p(\,-) € C®(T” x T,R). There exists § := §(so, ko) > 0
such that if ||p||250_i_k0_,’_1 < 4, then the integral operator R in ([2.50) transforms into the integral operator

(P7'RP)u /K Lo @, y)u(e, y) dy

with a C*° kernel

o

K\ p,2,2) = (1+ 9.9\, ¢,2)) K\, 0,2 + q(\, ¢, ), 2 + (N, p, 2)), (2.59)

where z — z + q(A\, p, 2) is the inverse diffeomorphism of x — = + p(\, ¢, x). The function K satisfies the
estimates

s ko, ko, ko,
K507 < Cls ko) (1K 1250 + Iples s 1K el s) Vs > s0. (2.60)

Proof. See Lemma 2.34 in [21]. O
We now recall some properties of the Hilbert transform H defined as a Fourier multiplier in (2:34]).

The Hilbert transform also admits an integral representation. Given a 2m-periodic function wu, its Hilbert
transform is

1 u(y) vy
(Hu)(x) = %P-V-/dey *Eh_%_ﬂ / /Jrg tan( % (x—y)) a-

The commutator between the Hilbert transform H and the multiplication operator by a smooth function a
is a regularizing operator in OPS~°, as stated for example in Lemma 2.35 in [21] (see also Lemma B.5 in
[6], Appendices H and I in [41] for similar statements).

Lemma 2.17. Let a(A,-,-) € C°(TY x T,R). Then the commutator [a,H] is in OPS™ and satisfies, for
allm,s,a € N,

ko, ko,
o, H]| =5 0 < Clms s, s ko)llall S5 4 14ma

We also report the following classical lemma, see e.g. Lemma 2.36 in [2I] and Lemma B.5 in [6] (and
Appendices H and I in [4I] for similar statements).
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Lemma 2.18. Let p = p(A,-) be in C°(T**1) and P := P()\,-) be the associated change of variable defined
in [Z58)). There exists 6(so, ko) > 0 such that, if ||p||§201k0+1 < §(s0, ko), then the operator P~YHP — H is
an integral operator of the form

(PT'HP —H)u /K s, 2)ulp, 2) dz
where K = K(\,-) € C®(T" x T x T) is given by
K(Aa QQ,SC,Z) = 7;8210g(1+g(>‘5 507:672))7 (261)

with

(q(A,w,w) - q(A,%Z))

xr — Z) Sin(%(Q(/\v P, 1') - Q(/\v P Z)))
2

2 sin(3(x — 2))

—1+cos(
2

g\, @, 2, 2) := cos (2.62)

where z — q(\, , z) is the inverse diffeomorphism of © — x+p(\, p,x). The kernel K satisfies the estimate

k ko,
KN30 < Cls, ko) Pl 542 Vs = 0.

We finally provide an estimate for the integral kernel of a family of Fourier multipliers in OPS™°.

Lemma 2.19. Let g(\, ¢,€) be a family of Fourier multipliers with 0%g(\, p,-) € S=°°, for all k € N"*1,
|k| < ko. Then the operator Op(g) admits the integral representation

[Op(9)u] (¢, 2) =/TKg(A,<p,:E,y)U(so,y) dy,  Ks\ @)= — Zg )@Y (2.63)
362

and the kernel K, satisfies, for all s € N, the estimate
ko, ko, ko,
[Kglle™ S 10PN oy s0.0 + 1OPOIZ 4, 10,0 - (2.64)

Proof. Tt is straightforward to verify formula ([Z63). For any k € N**1 |k| < kg, a € N” and for any
S, 81,82 € N with |a| + s1 + s2 = s, one has

@ 0S So 1 :81+82 So :S1+S2 « A ij(x—
aiawamlay Kg(/\,x,y) = % Zl - (71) J * a];agag(/\%])ej( v)
JEZ
1 .S So :81+82 pax ~ -\ il ij(x—
~ o Z i°(=1)%255 T2 008G\, £, el el )
LELY JETL

Hence, using the Cauchy-Schwarz inequality, one gets

yHIokor ogo Kyl <A™ 37 PR asgO ) SAM YT (6 0)0195g (N € )]

(£,g)ezv+1 (£.g)ezv+t

(X o)

(&g)ezv+t

[

AU <f>2<8+80>|a’;a<x,e,j>|2)%+w‘( > GPeTIoka0 )P

(&J’)EZ"+1 (.g)ezr+t
l

< 7'“(2 ZEXZ:' 0)26+90) (V2|98 G(N, £, 5)] )

(Y # 3 G ok, 6 ) )

JEZ Lezv

ko, ko,
S |Op(g)|701,’ys+50,0 + ||Op(g)||7oszsofl,070 ’
which implies estimate (2.64]). O
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2.5 Reversible, Even, Real operators
We introduce now some algebraic properties that have a key role in the proof.

Definition 2.20. (Even operator) A linear operator A := A(p) as in [222]) is EVEN if each A(p), p € TV,
leaves invariant the space of functions even in x.

Since the Fourier coefficients of an even function satisfy u_; = u; for all j € Z, we have that
. j/ —j/ _ j/ —j/ . .y v
Aiseven < A (p)+A;7 (p) =AL(p)+ AT (), Vi j €Z, peT”, (2.65)
Definition 2.21. (Reversibility) An operator R as in (2.20)) is
1. REVERSIBLE if R(—¢) o p=—poR(yp) for all p € T", where the involution p is defined in (LI,

2. REVERSIBILITY PRESERVING if R(—p) o p = poR(p) for all ¢ € T".

The composition of a reversible operator with a reversibility preserving operator is reversible. It turns
out that an operator R as in (Z.20)) is

1. reversible if and only if ¢ — A(y), D(¢) are odd and ¢ — B(p), C(p) are even,
2. reversibility preserving if and only if ¢ — A(p), D(p) are even and ¢ — B(p), C(p) are odd.

We shall say that a linear operator of the form £ := w - 9, + A(yp) is reversible, respectively even, if A(¢)
is reversible, respectively even. Conjugating the linear operator £ := w - 9, + A(p) by a family of invertible
linear maps ®(p) we get the transformed operator

Ly =0 N p)LP(p) =w- Dy, + As(p),
Ay (p) =2 () (W 0p®(p)) + 271 (0) A(0)D() -

It results that the conjugation of an even and reversible operator with an operator ®(y) that is even and
reversibility preserving is even and reversible.

Lemma 2.22. Let A := Op(a) be a pseudo-differential operator. Then the following holds:
1. If the symbol a satisfies a(—x, —&) = a(x,§), then A is even.

2. If A = Op(a) is even, then the pseudo-differential operator Op(a) with symbol

a(x,€) = 5 (a(z, &) + a(—z, =€) (2.66)

N =

coincides with Op(a) on the subspace E := {u(—x) = u(x)} of the functions even in x, namely
Op(a)|r = Op(a) k-

3. A is real, i.e. it maps real functions into real functions, if and only if the symbol a(x,—¢&) = a(x, §).

4. Let g(&) be a Fourier multiplier satisfying g(§) = g(=¢£). If A = Op(a) is even, then the operator
Op(a(x,&)g(&)) = Op(a)oOp(g) is an even operator. More generally, the composition of even operators
is an even operator.

We shall use the following remark.

Remark 2.23. By item[2, we can replace an even pseudo-differential operator Op(a) acting on the sub-
space of functions even in x, with the operator Op(a) where the symbol a(x,€) defined in ([266) satisfies
a(—z,—¢&) = a(z, ). The pseudo-differential norms of Op(a) and Op(a) are equivalent. Moreover, the space
average

@10 = 3= [a@de  satises  (@).(~9) = (@),

and, therefore, the Fourier multiplier (@), (D) is even.
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. . . A B . . .
It is convenient to consider a real operator R = < ) as in (Z20), which acts on the real variables

C D
(n,7) € R?, as a linear operator acting on the complex variables (u, %) introduced by the linear change of
coordinates (n,v) = C(u, @), where

C:= % (_11 }) , = G _11) : (2.67)

We get that the real operator R acting in the complex coordinates (u, %) = C~1(n,) takes the form

R=C'RC:= (%1 %) :
. 2 ™ . (2.68)
Ri:= 5{(A+D) —i(B-0)}, Ry:= 5{(A7D) +i(B+0C)}
where the conjugate operator A is defined by
A(u) := A(a). (2.69)

We say that a matrix operator acting on the complex variables (u, @) is REAL if it has the structure in (Z.G8))
and it is EVEN if both Ry, Ro are even. The composition of two real (resp. even) operators is a real (resp.
even) operator.

The following properties of the conjugated operator hold:

1. AB=AB.

-/

2. If (Agl) is the matrix of A, then the matrix entries of A are (A );l =A").

3. If A = Op(a(z,§)) is a pseudo-differential operator, then its conjugate is A = Op(a(x, —£)). The
pseudo differential norms of A and A are equal, namely |A|ko-7 = |A]koy

In the complex coordinates (u, %) = C~1(n,1) the involution p defined in (LTI reads as the map u — .
Lemma 2.24. Let R be a real operator as in (Z68). One has
1. R is reversible if and only if Ri(—¢) = —Ri(p) for all p € T, i = 1,2, or equivalently
i’ _ N—d v : YA _ N v
(Ri)j (=) ==(Ri)Zj (¢) Yo eT”, e (Ri)j(€)=—(R); () VLeZ”. (2.70)
2. R is reversibility preserving if and only if R;(—p) = Ri(p) for all p € T?, i = 1,2, or equivalently

4 / /

(R (—¢) = (R (9) Yo eT”, e (R (6)=(R)I () ez (2.71)

J

2.6 D'-tame and modulo-tame operators

In this section we recall the notion and the main properties of D*0-tame and modulo-tame operators that
will be used in the paper. For the proofs we refer to Section 2.2 of [21] where this notion was introduced.

Let A := A()) be a linear operator ko times differentiable with respect to the parameter A in the open
set Ag C R¥T1L.

Definition 2.25. (D*o-o-tame) A linear operator A := A()) is D¥o-o-tame if the following weighted tame
estimates hold: there exists o > 0 such that, for all so < s < S, possibly with S = +o0, for all u € H%7,

sup sup M| (OXAN)Julls < Ma(s0)l|ullsto + 9Mals)l|ullsoro , (2.72)
k| <ko AEAq

where the functions s — Ma(s) > 0 are non-decreasing in s. We call M4 (s) the TAME CONSTANT of the
operator A. The constant M4 (s) := Ma(ko, 0, s) depends also on ko, o but, since ko, o are considered in this
paper absolute constants, we shall often omit to write them.
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When the “loss of derivatives” o is zero, we simply write D -tame instead of D -0-tame.
For a real matriz operator (as in (2.68)))

(A A

we denote the tame constant M4 (s) := max{M 4, (s), M4, (s)}.

Remark 2.26. In Sections [}I3 we work with D¥o-o-tame operators with a finite S < +oo, whose tame
constants M (s) may depend also on S, for instance M4 (s) < C(S)(1 + ||30||§‘jrl), for all sp < s < S.

An immediate consequence of (Z72) (with k =0, s = s¢) is that

Al £(rs0te 10y < 2 a(s0) - (2.74)

Also note that representing the operator A by its matrix elements (Agi/ (- E’))é vemw jiren 8 in (222) we
have, for all |k| < ko, j' € Z, ¢! € 7,

,72%\ Z<€’j>2s|a]/\€A§/ (f o fl)|2 < Q(WA(So))2<€/,j/>2(S+G) + Q(WA(S))2<fl,j/>2(SO+U) . (2.75)
£,5

The class of D*0-g-tame operators is closed under composition.

Lemma 2.27. (Composition) Let A, B be respectively D0 -0 4-tame and D*0 -0 g-tame operators with tame
constants respectively Ma(s) and Mp(s). Then the composition A o B is D¥ (o4 + op)-tame with tame
constant

Map(s) < C(ko)(Ma(s)Mp(so + oa) +Mal(so)Mp(s+04)).
The same estimate holds if A, B are matriz operators as in (2.73).

Proof. The proof is straightforward (see Lemma 2.20 in [21]). O

We now discuss the action of a D*-g-tame operator A()\) on Sobolev functions u()\) € H® which are kg
times differentiable with respect to A € Ag C R¥*1.

Lemma 2.28. (Action on H®) Let A := A()\) be a D*0-o-tame operator. Then, ¥s > sq, for any family
of Sobolev functions u = uw(\) € HT7 which is ko times differentiable with respect to A, the following tame
estimate holds:
ko, ko,
[ Au][$7 Sko M a(s0) ulls%a + Ma(s)lull s,

so+o *

The same estimate holds if A is a matriz operator as in 2.73).
Proof. The proof is straightforward (see Lemma 2.22 in [21]). O
Pseudo-differential operators are tame operators. We shall use in particular the following lemma.

Lemma 2.29. Let A = a()\, ¢,x,D) € OPS® be a family of pseudo-differential operators that are ko times
differentiable with respect to . If ||A||]O€°sv0 < 400, 5 > 8¢, then A is Do -tame with tame constant

Ma(s) < C(s)|A[ - (2.76)
AS a consequence k k
| AR||Eor < C (s, ko) |AIGT oI BIIF0Y + O(s, ko) | AIG B0 (2.77)

The same statement holds if A is a matriz operator of the form ([2773).
Proof. See Lemma 2.21 in [2I] for the proof of (Z70), then apply Lemma 22§ to deduce (Z77]). O

In view of the KAM reducibility scheme of Section 5, we also consider the stronger notion of D¥o-
modulo-tame operator, which we need only for operators with loss of derivatives o = 0.
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Definition 2.30. (D*°-modulo-tame) A linear operator A := A()\) is D -modulo-tame if, for all k €
N+ k| < ko, the majorant operators |05 A| (Definition[2.7) satisfy the following weighted tame estimates:
forall so < s< S, ue H?,

sup sup ¥ |05 Alulls < M (so)[[ulls + M, ()]|uls, (2.78)
|k|<ko AE€Ao

where the functions s — 931&(5) > 0 are non-decreasing in s. The constant 931&(5) is called the MODULO-
TAME CONSTANT of the operator A.
For a matriz operator as in [273) we denote the modulo tame constant M’ (s) := maX{SﬁA (5), 2, (s)}

If A, B are D¥-modulo-tame operators, with |A§, ()| < |B§-, (£)], then 931?4(5) < sm”B (s).

Lemma 2.31. An operator A that is Do -modulo-tame is also D*o-tame and Ma(s) < fm%(s). The same
holds if A is a matriz operator as in (Z13).

Proof. For all k € N**! with |k| < ko and for all u € H*, one has

\ 2 i’ 2 \ 28 i’ 2
1O AYullZ =D (6] D ONAL (€= yuwr | <D (6> (D 10KAT (€= )[Juwr 1)” = [1OSAI(Jul)II3 -
£,5 4,5

é/7j/ el,j/

Then the thesis follows by (2:27)) and by Definitions 225 and 230 O
The class of operators which are D*0-modulo-tame is closed under sum and composition.

Lemma 2.32. (Sum and composition) Let A, B be D -modulo-tame operators with modulo-tame con-
stants respectively 931&(5) and sm‘iB (s). Then A+ B is D -modulo-tame with modulo-tame constant

M, p(5) < M (s) + M (s). (2.79)
The composed operator A o B is D* -modulo-tame with modulo-tame constant
Ny 5 (5) < C(ho) (M ()M (s0) + My (s0) M (5)) (2.80)

Assume in addition that (D, ;)°A, (0, .)°B (see Definition [2.7) are D* -modulo-tame with modulo-tame
constant respectively Dﬁga%ﬂm(s) and fm?a%m)bB(s). Then (Dp,.)°(AB) is D* -modulo-tame with modulo-
tame constant satisfying

My o (5) < C(b)C(kO)(zm'j o (5)ME (50) + MM, 0 (50) MW (5) s
+ 9 ()M, (s0) + mg(so)sn‘gaww(s))

for some constants C(kg), C(b) > 1. The same statement holds if A and B are matriz operators as in (273).

Proof. PROOF OF (2779), (280). These estimates have been proved in Lemma 2.25 of [21].
PRrOOF OF (Z&I)). For all |k| < ko we have (use the first inequality in (2:25))

[1400,2)° [05(AB)] [ul|, < C(ko)D

Next, recalling Definition 27 of the operator (9, ,)° and (2.26]), we have

k1+k2:km< o) [(aklA) 03*B) ”|U|H (2.82)

1@ (@ @B 1| = St (10— 25— 7710} A B (¢~ &) e 1)

£,3 £,

<X PP A - @B~ Ol ) (283)
2

£,3" 81,51
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Since (0 — 0/, — 7V° Sp (€ — 1,5 — J1)° + (€1 — £, 51 — j')°, we deduce that

@S 0 S0 (X e g - @AY~ IO B (6~ Ol )

4,5 2,5 £1,j1
. - 2
(D ORIl — o — IO B (0 — )l )
4,j 258,51
< b klA ko 2 klA b/ aka 2
So [|[(0p,2)" (03 A) | 103> Bl |ul] Lt 03 Al [1{0,2)° (95 B) ||ul] . (2.84)

Hence (2.82)-(2:84), (278) and 2.27) imply
11405.00° (95 (AB)] [u|, < C0IC o)y~ ¥ (3,4 (50)WE (s0) + Dy (s0) M, (0) s
+ OOy M (s ()0 (50) + Dy (s0)ME ()
D ()Mo (s0) + M (50)MEyyos(5) )l

which proves (Z.8T]). O
By (Z.80), if A is D*0-modulo-tame, then, for all n > 1, each A" is D*0-modulo-tame and

M, (5) < (20 (ko) (50)) "~ 9 (). (2.85)

Moreover, by (2XI) and (Z8H), if (J,.)°A is D¥-modulo-tame, then, for all n > 2, each (9, ,)°A" is
DFo-modulo-tame with

m%a(ﬂﬁmq% (S) S (4C(b)0(k}0))n—1 (mga%::)bA (S) [m%(SO)} nt + m§a¢,z>bA(50)m%(s) [m% (SO)] n72) . (286)

Estimates (2.88]), (Z.806]) hold also in the case when A is a matrix operator of the form (2.73).

Lemma 2.33. (Invertibility) Let ® :=Id + A, where A and (D, .)°A are Do -modulo-tame. Assume the
smallness condition
4C (b)C (ko )9, (s0) < 1/2. (2.87)

Then the operator ® is invertible, A :== &1 —Id is D¥ -modulo-tame, as well as <8¢7I>b/1, and

M (s) < 20ME (), M,

() <205, 4 (5) +BC(B)C(ko)MY, . 4 (50) My (s) -
The same statement holds if A is a matriz operator of the form ([2773).
Proof. The lemma follows by a Neumann series argument, using (Z.79) and (2.85))- (2.80)). O

We also have the following consequence.

Corollary 2.34. Let m € R, ® :=Id + A where (D)™ A(D)™™ and (0p,)*(D)™A(D)~™ are D* -modulo-
tame. Assume the smallness condition

4C(b)0(k0)m§D>mA<D>,m(so) <1/2. (2.88)

Let A:= &~ —1d. Then the operators (D)™ A(D)™™ and (9, )°(D)™A(D)™™ are D* -modulo-tame, with

ot

oy Ay () < 20,

(Dym A(D)—m (3) )
# f # f
M0 (Dym Aoy —m (8 S2Meyoipymay=r (8)+H8COICHE)Mp oy a(py = (50) My = (5) -

The same statement holds if A is a matriz operator of the form ([2773).
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Proof. Let us write ®,,, := (D)™ ®(D)™™ = Id + A, with Ay, := (D)™A(D)~™. The corollary follows by
Lemma 233 since the smallness condition ([2.38) is (Z81) with A = A,,, and @} =1d+ (D)™ A(D)"™. O

Lemma 2.35. (Smoothing) Suppose that (9, .,)°A, b > 0, is D*-modulo-tame. Then the operator Il A
(see Definition [2.7) is D*0 -modulo-tame with tame constant

M, 4 (s) SN, (s), ML (s) < O (s). (2.89)

miA LA
The same estimate holds when A is a matriz operator of the form (273).

Proof. For all |k| < ko one has, recalling ([2:24]),

. 2
| ok A2 <S> (> 105AT (€~ O)lfuey )

0 (e=2',j—j"y>N
./ 2
SNBSS €5~ 08T (6= ) |uery )
Z,j el,j/

= N7 [{9p.2)" (O3 )| [lulllZ

and, using ZT8), Z2Z7), we deduce the first inequality in (Z8J). Similarly we get || [IIxofAJul? <
| 105 Al Ju] |2, which implies the second inequality in (ZXJ). O

The next lemmata will be used in the proof of the reducibility Theorem [I5.4
Lemma 2.36. Let A and B be linear operators such that |A|, (0 +)°Al, |Bl, [(0p,+)°B| € L(H®®). Then
LA+ Blllgcasoy < [1Allleca=oy + 1Bl c(zrvo),
2. |[1AB||lz(zsoy < Al 2z 1Bl 220y 5
3. 140p.)*(AB)ll 10y Sb 11K0p,2)°Alll 2(150) Il Blll 2120y + 1Al £(rro0) (04,2)° Blll 2210
4 M All rreoy < N70N[0p,0) " Alll ceroy, 1T Alll 2eroy < Al £ezrv0)-

The same estimates hold if A and B are matriz operators of the form (ZT3), by replacing in the estimates
L(H®) by L(H?®® x H*).

Proof. Ttems 1-2 are a direct consequence of ([2:25]) and (227]). Ttems 3-4 are proved arguing as in Lemmata
2.32] and 2.35] O

Lemma 2.37. Let &, :=1d + ¥;, : = 1,2, satisfy
Wil g0y <1/2, i=1,2. (2.90)
Then ®; " =1d+ U, i = 1,2, satisfy [|[[V1 — Wa|| im0y < 4[| ¥1 — Vol £(zre0) and
[1{00,2)° W1 — Vol £(rre0) S [1{0p,2)° W1 — Yol (100
+ (L4 11400,2) W lll a0y + 11{0p.2) > alll (r20)) W1 — Wall| £(ar50) -

The same statements hold if U1 and Wy are matriz operators of the form R13) (where L(H?®0) stands for
L(H?® x H®)).

Proof. Use ¥y — Wy = &7 — &5 = &7 H(Uy — U,)®, ! and apply Lemma 236, using 90). O
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Lemma 2.38. Let m € R, ®; :=1d + ¥,;, i = 1,2, satisfy
KDY WD) || gm0y < 1/2, i=1,2. (2.91)
Then <I)Z-_1 =Id+V,, i = 1,2, satisfy
I[{D)™(¥1 = W) (D)™™ (|| £(ars0y < 4[[(D)™(¥1 = W2 )(D) ™|l £ (a0
and
10,2 (D)™ (1 = W) (D)™™ (|| £(10) S 1{0,2)° (D)™ (¥1 = W2 )(D) ™" ||| (1)
+ (L4 [0,2)> (D)™ U1 (D)™ [l (o) + [11{Dp,0) (D)™ (D) ™™ || 20 ) (D)™ (¥ = W2){D) ™" [[| g0 -

The same statements hold if U1 and Wy are matriz operators of the form R2203) (where L(H®) stands for
L(H®® x H®)).

Proof. The lemma follows writing ®;,,, = Id + U, ,,, and ¥;,, := (D)™¥;(D)~™, i = 1,2, by applying
Lemma 237 O

Lemma 2.39. Let mo be the projector defined in 235) by mou := 5= [ru(x)dx. Let A, B be p-dependent
families of operators as in [Z22) that, together with their adjoints A*, B* with respect to the L2 scalar product,
are Do -o-tame. Let my,ma >0, By € N. Then for any 8 € N, |B| < Bo, the operator (D)™ (85(A7T0B —
7T0)) (D)™ js DFo-tame with tame constant satisfying, for all s > s,

m([))ml (6£(A7rovaro))<D)m2 (5) Sm,s,ﬁg,ko 9:nAfld(S + ﬂO + ml)(l + 9;nB*fld(SO + m2))

(2.92)
+ Mp-_1a(s + Bo + m2) (1 + Ma—1a(so +m1)).

The same estimate holds if A, B are matriz operators of the form (ZI3) and o is replaced by the matriz
operator Iy defined in (IT2).

Proof. Writing AmgB — mg = (A — Id)moB + 7p(B — Id) and using the identity (D)"my = 7y we get
<D>m1 (ATroB — 7T0) <D>m2 [h] = gl(h, QQ)Li + (h, gg)Li (293)

where g1, g2, g3 are the functions

LDy (A1), g = (D)™ B[], g5 1= — (D)™ (B* —1d)[1]

g 21

(thus the operator (2.93) has the “finite dimensional” form as in ([T3])). We estimate
lgulle” Ske Ma-1a(s +ma),  Ngalle™” Sk 1+ Mp-—1a(s +ma),  Ngslls®” Sk Mp-—1a(s +ma2). (2.94)

For 8 € NV, k € N*T! with || < B, |k| < ko, the operator obtained differentiating (2.93) is

0505 ((DY™ (AmoB — mo)(D)™*)[h] = > C(Br, Ba, k1, k2)05 02 g1 (h,a’;za&gz)% + (h,a’;aggg)% .

B1+pB2=p
k1 +ko=k

Bound ([292) follows, recalling Definition 225 applying (2I0), 23), 294). O

2.7 Tame estimates for the flow of pseudo-PDEs

We report in this section several results concerning tame estimates for the flow ®! of the pseudo-PDE

{&u = ia(¢p, z)|D|%u

€T, zeT, 2.95
u(0,2) = uo(x) ® (2.95)
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where a(p,z) = a(\, ¢, ) is a real valued function that is C°° with respect to the variables (¢, ) and ko
times differentiable with respect to the parameters A = (w,h). The function a := a(¢) may depend also on
the “approximate” torus i(p). Most of these results have been obtained in the Appendix of [21].

The flow operator ®¢ := ®(t) := ®(\, ¢, ) satisfies the equation

O, ®(t) =i D]z ®(t
1 ®(t) = ia(p, z)|D|2 (1) (2.96)
o(0) =1d.
Since the function a(p,x) is real valued, usual energy estimates imply that the flow ®(¢) is a bounded
operator mapping HZ to H:. In the Appendix of [2I] it is proved that the flow ®(t) satisfies also tame
estimates in H? ., see Proposition [240] below. Moreover, since (2.95]) is an autonomous equation, its flow

@,a
D (i, t) satisfies the group property

D, t1+t2) = Do, t1) 0 Bp,t2), D, t) " = Dy, 1), (2.97)

and, since a(},-) is ko times differentiable with respect to the parameter A, then D(A, p,t) is ko times
differentiable with respect to A as well. Also notice that ®~1(t) = ®(—t) = ®(t), because these operators
solve the same Cauchy problem. Moreover, if a(p, z) is odd(¢)even(x), then, recalling Section [Z3] the real

operator
_ (®let) 0
20~ ("5 50)

is even and reversibility preserving.

Proposition 2.40. Assume that ||laflss,12 < 1 and [|all2s,4+1 < 0(s) for some 6(s) > 0 small. Then the
following tame estimates hold:

sup || ®(t)uolls Ss lluolls s Vs € [0,s0 + 1], (2.98)
t€[0,1]
sup [[@(t)uolls Ss lluolls + llallsysrgluollso s Vs > so. (2.99)
te0,1]

Proof. The proof is given in Proposition A.5 in [21]. O

The operator 8’;8{2@ loses | Dy e derivatives, which, in (ZI0I) below, are compensated by (D)~

on the left hand side and (D)~™2 on the right hand side, with my, ms € R satisfying m; + mo = L;r‘k‘
The following proposition provides tame estimates in the Sobolev spaces H, ,.

Proposition 2.41. Let By, ko € N. For any 8,k € N” with |8| < Bo, |k| < ko, for any m1,ma € R with

|81+
2

mi +mg = , for any s > sq, there exist constants o(|5],|k|, m1,mz2) > 0, §(s,m1) > 0 such that if

N <1, (2.100)

lallaegtms o2 < 0s,ma)s 10122 50 o <

then the following estimate holds:

—ma —mg - ko,
2 140)"* 08052 (0D) "l Setmms 7 (Wl + U251y W) - (2101
€10,

Proof. We take h € C>(T"*1), so that 8’/\“83(1)(@% is C* for any |B| < Bo, |k| < ko. We argue by induction
on (k, ). We introduce the following notation:

e Notation: given &/, k € N**1 we say that k' < k if each component k!, < k,, forallm =1,...,v+1
and k' # k. Given (K, 3"), (k, ) € N*T1 x N, we say that (k',8') < (k, B) if k!, < ku, 8., < B, for all
m=1,...,v+1landalln=1,...,v, and (¥, # (k, B).
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Proor or ([2ZI0I) FOrR kK = B = 0. Since m; + mg = W\Qﬂ = 0, we need to estimate the operator
D, (t) := (D)™ ®(t)(D)~™ where m := —my = mg € R. By (2.96), the operator ®,,(t) solves

8, @ (t) = ia|D|2 Py () + Apy®rn (t) e U m
{<I>m(0)1d, Ap = [(D)™,ia|D|Z](D)~™ .

Then Duhamel’s principle implies that
t
Bp(t) = D) + Un(),  Win(t) = / B(t — 7) A Do (7) dr (2.102)
0

By ([247), 240) and Lemma 2171 (applied for ky = 0), we deduce that
|Am"0,s,0 S,s,m ||a||s+\m|+27 Vs > 50 - (2103)

Applying (2.102), estimates (2.99), (2.103), and Lemma 229 (applied for ko = 0), for [laflss,1 < 1,
llallsg+mj+2 < 1 we obtain, for all s > s,

sup [ (t)hlls Ssm [[hlls + llallsqsor 2 1Allso + llallsotimi+2 sup ([P (E)R]]s
te[0,1] te[0,1] (2 104)

+ (lallstimire + lallsysorz) sup [[@m(®)h]ls, -
te(0,1]

For C(so, m)([|allsgtm|+2 + llallaso41) < 1 (which is implied by @I00)), ZI04) at s = so implies that
supseo,1] [ Pm (H)hllse Sim l|Pllso- Plugging this bound in (2.104) gives, for s > so and C(s,m)||all g4 m|+2 < i
see (ZI0M)).

Sup 1@ ()hlls Ss,m 17lls + lallsmaxtsor imi+23 1 2llso -
€l

This proves (ZIOI) for 8 = k = 0, with (0,0, m, —m) := max{so + 3 , |m| + 2}.
Proor oF (ZI0T)): INDUCTION STEP. Let us suppose that (2I01) holds for all (k1,51) < (k, 8), |k| < ko,
18] < Bo, m1,me € R with m; + mg = W%ﬂ We have to prove the claimed estimate for the operator

(D>_m18§8gfl)(D>_m2, with mq,ma € R, mq +mo = W‘Qﬂ Differentiating (2.96) and using Duhamel’s
principle we get

t
RoLe(t) = / Ot — 7)Fp (1) dr
0
where
Fou(r):= Y. Clky ks, B, B2)(052052) | D|2 05 021 (7).
k1+ko= k:

B1+p2=
(k1,51)-<(k B)

For any m1, my € R satisfying my + mo = W\Qﬂ, for any t,7 € [0, 1], we write
(D)™™ ®(t = 1) Fp p(7)(D)™"* = (D)~ ®(t — 7)(D)™ (D)™™ F 1(7){D)~"™ .
Then for any ki + ko = k, 51 + B2 = B, (k1, 81) < (k, B) we write
(D)= (952 02a) D[ 395 0 () (D)2
Lk | 181141k |

—mi 2 2 5 —mz M m2— 1 1 —mz2
= (D)™™ (92 0a)| D3 (D) T (D) 0N O ®(r)(D)™™2

and we have to estimate, uniformly in ¢, 7 € [0, 1],

(D)™ @t = )D)™ ) (D)™ (@520 a)| DI (D) =+ 54 ) (e

1B11+1k1]
2

a’;lagl@(mprmz) :
(2.105)
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For any s > s, using the induction hyphothesis, one has that

—mi ma k7
1Dt = THDY™ Bl Soams Wls + 10152 00, oy 12l (2.106)
m \51\+\1\ k1 —m k k
(D)™ 5 0 02 0(7) (D) hlls Sapogms vl a7 Al
(2.107)

Using the fact that my + mq = |5‘J2r|k|, and that (81, k1) < (8, k), we obtain

k -8l — k| +1 k
L Bl t el _ Bl k4 1+ (B + ]

2 2 2

—mi1 — Mo + =

Therefore the operator (D)~™1 (94?922 a)|D|2 (D)””ﬁw belongs to OPS® and by Lemma 210, (Z40),
2.47), @A), we get

(D)™ (85202 a)|D|? (D)~

\51\+U€1\ — ko,
mat |0 5,0 Ss,80,kosmims Y V| ”aHsi\leH-Wﬂ ’ (2.108)

Applying (2I05)-(ZI08), recalling Lemma [229] the smallness condition ([ZI00) and setting

Bl + [Ka
’ ka ) = 0503 y ) ) k » ) )
o8], b, ma) = max  max {0(0,0,mu, —ma), o (|, al, ~mz + P ma), (6] +
we deduce (ZI0T)) for h € C*. The thesis follows by density. O

Proposition 2.42. Assume ZI00). For all k € N1 k| < ko, s > so, the flow ®(t) := ®(\, ¢,t) of
@97) satisfies

_ ko,

2 10820 S~ (1ol + 105, g0, ). (2:109)
€0,

sup [|05(@(t) = 1d)hlls So v M (lall 5o 1Al e + llall2D Ly lBll, ) - (2.110)
ey o % s+3 stsotko+5 1 so+ =5

Proof. See Proposition A.11 in [2I]. Note that [2I0T) with m; = 0,8 = 0,m2 = |k|/2, and h replaced by
(D)™ implies ZI09) with loss o/(0, |k|,0, &) instead of so + [k| + 1. O

We consider also the dependence of the flow ® with respect to the torus i := i(yp).

Proposition 2.43. Let s1 > so, Bo € N. For any § € N, |8] < By, for any mi,ma € R satisfying

my +my = WTH there exists a constant o(|3|) = o(|B|,m1,m2) > 0 such that if ||alls,+0(5,) < 0(s1) with
d(s1) > 0 small enough, then the following estimate holds:

sup (D)™ 0] An®(t)(D)""hlls, S [Av2alls,+oqppllhlls: (2.111)

where A1o® := P(iz) — P(i1) and Ajza := a(iz) — aliy).
Proof. The proposition can be proved arguing as in the proof of Proposition 2411 O

We also consider similar properties for the adjoint flow operator. Let ® := ®(1) denote the time-1 flow
of ([295) and ®* its adjoint with respect to the L? scalar product.

Proposition 2.44. (Adjoint) Assume that ||a||12€201§+k0 < 1, |lall2sp+1 < 6(s) for some 6(s) > 0 small

enough. Then for any k € NYT1 |k| < ko, for all s > s,

_ ko,
@52l <oy~ M Uzt + a2 g 1 1)
_ ko,
050" — Thlls S (lall 50 Bl s + [l o pall ol )
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Proof. See Proposition A.17 in [21]. O

Finally we estimate the variation of the adjoint operator ®* with respect to the torus ().

Proposition 2.45. Let s; > so and assume the condition ||al|s;+so+3 < 1, ||alls;+s0+1 < 0(s1), for some
8(s1) > 0 small. Then, for all s € [sg, 1],

[A12@7hlls Ss 1 A120]|s 5042 1Al 541 -

Proof. Tt follows by Proposition A.18 in [21]. O

3 Dirichlet-Neumann operator

We collect some fundamental properties of the Dirichlet-Neumann operator G(7), defined in (LH), which are
used in the paper.

The mapping (7, %) — G(n) is linear with respect to ¥ and nonlinear with respect to 1. The derivative
with respect to 7 is called the “shape derivative”, and it is given by (see e.g. [45], [46])

G'(m)il = lim %{G(n +eny — Gy = —Gn)(Bn) — (Vi) (3.1)

where

Nata + Gy
B = B(T/a V) = Tn; ) V= V(T/a V) = 1hy — By . (32)
It turns out that (V, B) = V, ,® is the velocity field evaluated at the free surface (x,n(z)). The operator
G(n) is even according to Definition
Let n € C®(T). It is well-known (see e.g. [46], [5], [39]) that the Dirichlet-Neumann operator is a
pseudo-differential operator of the form

G(n) = G(0) + Re(n), where G(0) = |D|tanh(h|D|) (3.3)

is the Dirichlet-Neumann operator at the flat surface n(z) = 0 and the remainder R (n) is in OPS™°° and it
is O(n)-small. Note that the profile n(z) := n(w,h, ¢, x), as well as the velocity potential at the free surface
Y(x) := ¥ (w,h, p,z), may depend on the angles ¢ € T and the parameters A := (w,h) € R” X [h1, ho].

In Proposition Bl we prove formula (B3] and we provide the quantitative estimate ([3.5]). For simplicity
of notation we sometimes omit to write the dependence with respect to ¢ and A. For the sequel, it is useful
to introduce the following notation. Let X and Y be Banach spaces and B C X be a bounded open set. We
denote by C}(B,Y) the space of the C! functions B — Y bounded and with bounded derivatives.

Proposition 3.1. (Dirichlet-Neumann) Assume that 9%n(\,-,-) is C*° for all |k| < ko. There exists
d(s0, ko) > 0 such that, if

ko,
H77H22012k0+1 < 4(s0, ko) , (3.4)

then the Dirichlet-Neumann operator G(n) may be written as in B3) where Rg(n) is an integral operator
with C* kernel K¢g (see (230)) which satisfies, for all m,s,« € N, the estimate

ko, ko, ko,
[Ra (M2 5.0 < Clsym, asko) [ Kall g2 imia < Cssm, a, ko)l s5 56 1ok +msats - (3.5)

Let s1 > 2sg + 1. There exists §(s1) > 0 such that the map {||n|s;+6 < 0(s1)} — H=(TY x T x T),
= Ka(n), is Cy.

The rest of this section is devoted to the proof of Proposition 3.1l

In order to analyze the Dirichlet-Neumann operator G(7) it is convenient to transform the boundary
value problem ([3) (with A = h) defined in the closure of the free domain D, = {(z,y) : —h < y < n(z)}
into an elliptic problem in a flat lower strip

{(X,)Y):=h—c<Y <0}, (3.6)
via a conformal diffeomorphism (close to the identity for 1 small) of the form

r=UX,Y)=X+pX,Y), y=V(X,Y)=Y +¢(X,Y). (3.7)
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Remark 3.2. The requirement that (31) s a conformal map implies that the system obtained transforming
@3) is simply BAD) (the Laplace operator and the Neumann boundary conditions are transformed into
itselves).

We require that
X —q(X,)Y), p(X,Y) are 2r—periodic, (3.8)

so that (3.7) defines a diffeomorphism between the cylinder T x [-h—¢, 0] and D,,. The bottom {Y = —h—c}
is transformed in the bottom {y = —h} if

V(X,-h—¢)=-h & g(X,~h—¢)=c, VX e€eR, (3.9)
and the boundary {Y = 0} is transformed in the free surface {y = n(z)} if
V(X,0)=nU(X,0)) &  ¢(X,0)=n(X+p(X,0). (3.10)
The diffeomorphism (B.7) is conformal if and only if the map
U(X,Y) +iV(X,Y)
is analytic, which amounts to the Cauchy-Riemann equations
Ux =W, Uy =-Vx, i.e. Px =qvy, Py = —¢x - (3.11)
The functions (U, V), i.e. (p,q), are harmonic conjugate. Moreover, (89) and (BI1) imply that
Uy(X,-h—c¢)=py(X,-h—¢) =0. (3.12)
The most general function p which is harmonic, namely Ap = 0, and satisfies (3.8) and BI12) is

p(X,Y) =B+ Z B cosh(|k|(Y + h + ¢))e*X
k+£0
where By € R, B € C, k € Z \ {0}, are fixed by specifying the value of p at the boundary {Y = 0}, namely
p(X,0) = =Ppo+ Zpke (3.13)
k+£0
As a consequence, the solution p(X,Y) of
Ap=0, pX,0)=pX), py(X,-h—¢)=0, 2m-periodicinX, (3.14)
is

cosh(|k|[(Y +h+¢)) ux
A 3.15
= P cosh([k[(b + ) (3.15)

k€EZ

The most general function ¢ which is harmonic, namely Ag = 0, and satisfies (3.8) and [B.9) is

a(X,Y) = ag + 0;10;;5/ + " cpesinh([k|(Y + 1+ e)e*X (3.16)
k40
where ag € R, o, € C, k € Z\ {0}. By BII), BI5), (BI6) we get

) sign(k)
ag=c, op=Ilppj———""——
0= AT PR h(k[(h+ o))
so that ¢ is uniquely determined as
. sign(k) . ikX
XY= —=> 7 sinh(|k|[(Y +h . 3.17
q(X,Y) c+}§)1pkcosh(|k|(h+c)) sinh(|k[(Y +h+c))e (3.17)
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We still have to impose the condition (BI0). By (BI7) we have
q(X,0) = c+ ) isign(k)tanh(|k|(h + c))pre™™ = ¢ — H tanh((n + ¢)|D|)p(X) (3.18)
k#0
where p(X) is defined in (3I3) and H is the Hilbert transform defined as the Fourier multiplier in (2Z34]).
By 13), BI7), the condition (BI0) amounts to solve
¢ — Htanh((h + ¢)|D|)p(X) = n(X + p(X)). (3.19)

Remark 3.3. If we had required ¢ = 0 (fizing the strip of the straight domain B8] ), equation BI9) would,
in general, have no solution. For example, if n(x) = no # 0, then —H tanh((h + ¢)|D|)p(X) = no has no
solutions because the left hand side has zero average while the right hand side has average ng # 0.

Since the range of H are the functions with zero average, equation ([B.19) is equivalent to
c=(n(X +p(X))), —Htanh((n+c)|D))p(X) = m3n(X +p(X)) (3.20)

where (f) = fo = mof is the average in X of any function f, my is defined in (Z35)), and 75 := Id — mp. We
look for a solution (c¢(¢), p(p, X)), where p has zero average in X, of the system

H

= (X +p(X)), p(X) = m Dy

[n(X +p(X))].- (3.21)

Since H? = —ng, if p solves the second equation in (B.21]), then p is also a solution of the second equation
in (3.20).

Lemma 3.4. Let n(\, ¢, x) satisfy O5n(A,-,-) € C(T"*1) for all |k| < ko. There exists 5(so, ko) > 0 such
that, if ||n||§§(’)1k0+2 < 0(s0, ko), then there exists a unique C* solution (c(n),p(n)) of system B2I) satisfying

ko,
P17 el S Sopo Inlls3R,  ¥s = so. (3.22)

Moreover, let sy > 2so + 1. There ezists 6(s1) > 0 such that the map {|[nls,+2 < d(s1)} — HZ' x H*',
1= (c(n),p(n)) is Cy.
Proof. We look for a fixed point of the map

®(p) :=HE((h +)|D))[n(- +p())],  where £(¢):= §#0, (3.23)

1
tanh(€)’

and ¢ := (n(X +p(X))). We are going to prove that ® is a contraction in a ball Bos,4+1(r) := {||p||§go_|r1 <
(p) = 0} with radius r small enough. We begin by proving some preliminary estimates.
The operator Hf ((h + c)|D|) is the Fourier multiplier, acting on the periodic functions, with symbol

—isign(§)x ()£ ((h + c(\ ))[E]) =t g(h+c(X, 9),€),  where g(y,&) := —isign(§)x()E(y[¢]) Vy >0,
where the cut-off x () is defined in (ZI6). For all n € N, one has

g(y, ) = —isign(&)x ()™ (yl€])I€|"- (3.24)

For all z € R\ {0}, denoting, in short, T := tanh(z), one has £'(z) = —T2(1 —T?), £"(z) = 2T73(1 - T?),
and, by induction, £ (z) = P,(T?)T~""1(1 — T?) for all n > 2, where P, is a polynomial of degree n — 2.
Since 1 — tanhQ(x) vanishes exponentially as + — o0, for every p > 0, n € N, there exists a constant
C(n, p) > 0 such that

|t (2)]z™ < C(n,p), Yz >p. (3.25)
Since x(§) = 0 for |¢] < 1/3, by B24) and (3.28) (with p = hy/6) we deduce that for every n € N there
exists a constant Cy,(h;) > 0 such that
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We consider a smooth extension §(y, &) of g(y, &), defined for any (y,£) € R x R, satisfying the same bound
B26). Now |c(\, )| < |Inlle= < C||nllsy, and therefore h + c(), p) > h;/2 for all A, ¢ if ||n||s, is sufficiently
small. Then, by Lemma 26 the composition g(h + ¢(), ¢), £) satisfies

130 + ¢ IS Sskomna 1+ [lells™”

uniformly in £ € R (the dependence on hy,hs is omitted in the sequel, as usual). As a consequence, we
have the following estimates for pseudo-differential norms (recall Definition 2.9) of the Fourier multiplier in

B23): for all s > s,

ko, ko, s
|HE((0+ o)D) 0% [HIDIE (R + )[D)0%h Ssuro 1+ lellz? (3.27)

Estimate (211 with k41 = ko implies that, for ||p||§2011 < 6(s0, ko), the function ¢ = ¢(n, p) = (P(X+p(X)))
satisfies, for all s > sq,

ko, , ko,
lellz Ssiko Inllsay + 1PN Il g4 - (3.28)
Therefore by B27), (B:28) we get, for all s > sq,
ko, ko, ko, . ko,
|HE (0 + o)D) 0%, 1HIDIE (h+ D)% Ssiko 1+ IS5, + IRl 1l 41 (3.29)

Now we prove that @ is a contraction in the ball Bags,+1(r) := {||p||’2€20'ﬁrl <r, (p) =0}.

STEP 1: CONTRACTION IN LOW NORM. For any [[p[s27, < r < 8(so, ko), by @&T7), (329), @II), and

using the bound ||77||I:8;:k0+1 <1, we have, Vs > so,

ko, ko, ,
IS Sako 0l + Il g llRIS™ (3.30)
In particular, (330) at s = 250 + 1 gives
12 (@) 155,71 < Clsos ko) (1mll507% posr + 10150 kg1 PN 1) (3.31)
250+1 — S0, Ko M2so+ko+1 Mlso+ko+111Pll2sg+1) - .

We fix r := 2C(so, k0)||n||§§(’)1k0+1 and we assume that r < 1. Then, by B31]), ® maps the ball Bag,+1(r)

into itself. To prove that ® is a contraction in this ball, we estimate its differential at any p € Bag,+1(r) in
the direction p, which is

?'(p)[p] = A(mp), (3.32)

where the operator A and the function m are
A(h) = (h)HE'((h + ¢)| D)) D|[n(X + p(X))] + HE(( + ) [D])[A],  m:= 1o (X +p(X)). (3.33)
To obtain ([B.32)-B33), note that d,¢[p] = (mp). By (ZIT)), for all s > sq,
(YIS 7] A | J il e (3.34)

By 217), (329), (ZI1)), using the bounds ||n||f§fk0+1 < 1 and ||p[[¥7 <1, we get, for all s > s,

ko, ko, , ko,
|Alo%0 Ssiko L+ Inllso2, + IRlE 7 Il o g 11 - (3.35)
By (.32), @45), (3:34), (335) we deduce that, for all s > s,
k ko, koS
19" (0)[0%0 Ssoko 1M11550 11 + RISl o0 o 42 - (3.36)

In particular, by (336) at s = 2so + 1, and (Z11), we get

-1 11ko, ko, k ko,
12" (®)[B] ll5, 41 < Cls0, ko) Il ey g2 lIBll25s 41 < 2||p||2(;011 (3.37)
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provided C|(so, k0)||77||12€§;1k0+2 < 1/2. Thus ® is a contraction in the ball Bag,+1(r) and, by the contraction

mapping theorem, there exists a unique fixed point p = ®(p) in Bas,+1(r). Moreover, by [B30), there is
C(s0, ko) > 0 such that, for all s € [sg,2s0 + 1],

ko, ko, :
Bl = @@)IE < Clso, ko)llnll 4, + C o ko)llnll o0 TIPS

and, for C(so, ko)|nl|%*7y 41 < 1/2, we deduce the estimate [[p||*Y <y, 9|37 for all s € [so, 250 + 1].
By B28), using that [[n]¥7, ., <1, we obtain |[c[|®" <, .k, [Il|5%7, for all s € [so, 250 + 1]. Thus we have

proved [3.:22) for all s € [so, 259 + 1].

STEP 2: REGULARITY. Now we prove that p is C* in (p, ) and we estimate the norm [|p[|*>7 as in (3.22)
arguing by induction on s. Assume that, for a given s > 2s9 + 1, we have already proved that

Fo,
IRl NelE Soeo Il - (3.38)

We want to prove that ([B.38]) holds for s + 1. We have to estimate ||p||]:i? ~ max{||p||%-7, ||0xpl|/F,
10,,pl/%7, i = 1,...,v}. Using the definition [(3.23) of ®, we derive explicit formulas for the derivatives
Oxp, Oy, p in terms of p,n, dx1, 0,,n. Differentiating the identity p = ®(p) with respect to X we get

px = HE((h+ )| D)) [1:(X +p(X)(1 + px)] = @' (p)[px] + A(m) (3.39)

where the operator ®'(p) is given by (BEZI) and A,m are defined in (333) (note that (n,(X + p(X))(1 +
px(X))) =0). By 830) at s = sq, for ||77||S Vhot2 < 6(0, ko) small enough, condition ([2.54) for A = —®/(p)
(with @ = 0) holds. Therefore the operator Id — ®'(p) is invertible and, by (Z53) (with o = 0), (B38) and
(277), its inverse satisfies, for all s > so,

ko, ,
1(Id — & (p)) " RIS Soke RIS + Il o 21150 (3.40)
By (3:39), we deduce that px = (Id—®'(p)) "L A(m). By @77), (3:34)-([3.35) and (3.385)), we get ||A(m) |7 <,
ko, . Ko,
[nlls%y+1- Hence, by @Z0), using [[n]lg) s, 10 < 1, we get
ko,
P 157 S IMM15% R0 11 - (3.41)

Differentiating the identity p = ®(p) with respect to p;, i = 1,...,v, by B23) we get
0.0 = (9, c)HE (1 + ) DY) [DIIn(X + pUX))] + He (1 + )| D]) (D) (X + (X))
+HE((h+ )| D) [0 (X + (X)) 0y, p]
= @'(p)[04,p] + A[(0,m) (X + p(X))] (3.42)
where A is defined in ([3:33). To get (3:42) we have used that d,,¢ = ((p,n)(- +P(*))) + (N2 (- + p(-))Dp, P)-
Therefore 9y, p = (Id — @'(p)) "1 A[(9,,n)(X + p(X))] and, by BA0), B35), ZII), ZTD), B38), we get

ko, .
[106:Pl1s°7 Sooo 1Ml sSRgs1s =1, 0. (3.43)

Thus (338), (341) and (343)) imply (BBEI) at s+ 1 for p. By (828)), the same estimate holds for ¢, and the
induction step is proved. This completes the proof of (322]).

The fact that the map {|[n]ls, 42 < 6(s1)} = H3' x H*' defined by 1 — (c(n),p(n)) is C* follows by the
implicit function theorem using the C' map

F: HS (T x HIY(TY) x H(TVHY) — HSH(TY) x H* (T,
- (X +p(X)))

Fmep)eX) =1, x) - m[n@x +p(p, X))]

Since F(0,0,0) = 0 and 8., F(0,0,0) = Id, by the implicit function theorem there exists d(s1) > 0 and a C*
map {nlla sz < 8(s1)} — H2 (1) x HA (T4, 5 o5 (e(n), p(n)), such that, E(y, c(s), p(n)) = 0. Moreover
it can be proved that the map n +— (c(n),p(n)) is C} using that F is bounded with all its derivatives on any
bounded subset of the space H***2(T*!) x H5(T”) x H* (T"+1). O
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Notice that ([B4]) implies the smallness condition of Lemma [34 We have proved the following;:

Lemma 3.5. (Conformal diffeomorphism) Assume 34). Then the transformation

cosh([k|(Y +h+¢)) inx
U =X :
(X +Z Pk cosh(|k|(h + ¢)) ¢
h70 (3.44)
VX,Y):=Y +ct > ipe Sten(k) o h(B(Y + b+ ))e

s cosh(|k|(h + ¢))

where ¢ and p are the solutions of B.21)) provided by Lemma[3.], is a conformal diffeomorphism between the
cylinder T x [-h — ¢,0] and D,,. The conditions [39), BI0) hold: the bottom {Y = —h — ¢} is transformed
into the bottom {y = —h} and the boundary {Y = 0} is transformed into the free surface {y = n(x)}.

We transform ([3]) via the conformal diffeomorphism ([B:44]). Denote
(Pu)(X) :=u(X +p(X)).

The velocity potential
P(X,Y) :=2U(X,Y),V(X,Y))

satisfies, using the Cauchy-Riemann equations (3.I1]), and 9)-(B.12),
Ap=0in{-h—c<Y <0}, ¢X,0)=(Py)X), ¢v(X,-h—c)=0. (3.45)
We calculate explicitly the solution ¢ of (345]), which is (see (313])
o5 cosh([E|(Y +h+c)) gx
X)Y) = P !
o(X.Y) =D (P); cosh(k[h+ o) -

kEZ

where @k denotes the k-th Fourier coefficient of the periodic function Pi. Therefore the Dirichlet-
Neumann operator in the domain {—h — ¢ <Y < 0} at the flat surface Y = 0 is given by

6y (X,0) = 3" (PY), tanh([k| (b + c))[k[e™* = D] tanh((n + )| D])(P¥)(X) . (3.46)
k=0

Lemma 3.6. G(n) = 0, P~'H tanh((h + ¢)|D|) P
Proof. Using ([B.11]), we have

¢xUx + ¢y Uy & — ¢y Ux — ¢xUy

o, — , - 3.47
Uz + U3 Y Us + Uy (3.47)

Moreover, since V(X,0) = n(U(X,0)) (see (BI0)) we derive that
—Uy(X,0) = Vx(X,0)=n,(U(X,0))Ux(X,0). (3.48)

By the definition (3] of the Dirichlet-Neumann operator we get, at © = U(X,0),

G(n)y(z) D610 ﬁ (qu(—Uy —n.Ux) + ¢y (Ux — anY)) v
em 1 E13), @10 1
= TR (x0) oy (X,0) T (X |D| tanh((h + ¢)|D|)(Py)(X)
~ (s IDlanb(@+ D) PU o + )
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where X = x 4 p(z) is the inverse diffeomorphism of = X + p(X). In operatorial notation, and writing
|D| = HOx we have

1 1
_ p-1
Gn)=P T ox OxH tanh((h + ¢)|D|)P =1x “Tox

P~'oxP P 'Htanh((h + ¢)|D|)P

T 1+P lpx (14 P~ 'px) 8, P~'"H tanh((h + ¢)|D|)P = 9, P~"H tanh((h + ¢)|D|) P

by the rule P~19x P = (1 + P~ 'px) 8, for the changes of coordinates. O

PRrROOF OF PROPOSITION [3.1] CONCLUDED. By Lemma we write the Dirichlet-Neumann operator as

G(1) = 0, P~ 'H tanh((h + ¢)| D|)P = |D|tanh(b|D|) + Re(n), Re(n) :=RE () + RS (),

where
RG) () == 8, (P~"H tanh((n + ¢)|D|)P — H tanh((a + ¢)|D|)) (3.49)
RE) () := 8, tanh((h 4 ¢)| D|) — tanh(h| D)) . (3.50)

We analyze separately the two operators R\ )( ), R (2)( ) in (3.49), (350).

ANALYSIS OF ’R(G)(n). Since tanh(z) =1 — recalling the notation ([233]), for any h > 0 one has

1_;’_62: ’

2 —0o0
tanh(h|D|) =1Id + Op(Th), Th(g) = 7% es (351)

where the cut-off function y is defined in (ZTI6]). According to (B5]) and recalling (349) one gets
RG (1) = 0u(P™"HP = H) + 02(P~ HOD(re) P — HOP(rusc))

k
Since, by [3.22) and @), [Ipll5er kg1 Ssooko ||77||250+2k0+1 < (80, ko), we can apply Lemma 2T obtaining
that the operator d,(P~1HP — H) is an integral operator with kernel K satisfying

E22)
K5 Somo RIS 48 Ssoko I0I5S3, (3.52)
1ils ~s,ko |IP s+ko+3 ~s,ko n s+2ko+3 :

By B.351), the operator Ay := HOp(n+c) is a Fourier multiplier in OPS~°° and, reasoning similarly as in

(m)'(m)a we get

|Ah,c|k°7 < 1+||c||§°’7, Vm >0,s>sy, VaeN.

msammsako

Hence, by Lemma 219 the operator Ay . is an integral operator with a C* kernel Ky . satisfying

K el 27 Somo 1+ 1lel532) Semo 1+ InllE52 Vs > (3.53)
h,clls ~s,ko Clls+sg ~s,ko M s+s0+ko s 2 850- .

By formula (259) one has that the operator 9, (P~*HOp(rntc)P — HOp(rntc)) is an integral operator with
a C* kernel K5 defined as

KQ()‘a ¥, T, Z) = aﬂc (Kh,c()‘a Y, T + f)()‘a ©, $), z+ f)()‘a P, Z)) - Khuc(A’ P T, Z))

(3.54)
+ 0, (030 9. 2) Kn O 0,7 + B, 9,2), 2 + BN 9, 2)))
where z — p(\, ¢, 2) is the inverse diffeomorphism of z — p(A, ¢, ). By Lemma [2:4] one gets
< (| ko,y k()a ko,
||p||& ’ N‘S ko ||p||s+k0 ~8,ko ||n||s+2k0 ’ Vs Z 50, (355)

44



and therefore, using also the mean value theorem to estimate the first term in (354)), and B53), (350,

23), 21Tl the kernel Ko satisfies

1120 Sk 1115504205+ V5 > s0. (3.56)
Hence Rg)(n) is an integral operator with kernel Kg) = K1 + K> and by B52), B356]) it satisfies

IS 50 <o 101 Vs > sg. (3.57)

S+SU+2]€0+3 )
ANALYSIS OF ’Rg) (n). By B350), (BEI) we write the Fourier multiplier
R (1) = 0,HOD(rase — ra) = ¢ O, HOD(Fae) € OPS™ (3.58)

where

2exp{2(h + tc)|€]|x(€)}
(1 + exp{2(h + tc)[¢|x(£)})?

Frte(©) — () = Facl©) e, Tel€) == 211X (€) /0 dt € 5. (3.59)

By a direct verification we have that

||Op(rh+c - Th)"ko'n?s « §m1s7a1k0 ||c||156017 ) Vm > 07 s 2 S0, Va € N. (360)

Applying Lemma 2.19] we get that ’Rg) (n) is an integral operator with C* kernel K g ) and, using (3.22),

B.60),

2 ko,
IES 50 Soo 101500 L4y W8 2 s0. (3.61)

Finally, defining K¢ := Kg) + K, the claimed estimate B3) follows by (2.57), B.51), (B.61).

DIFFERENTIABILITY OF ) — Kg(n). Let s1 > 259 + 1. By applying Lemma B4l (with s; 4 4 instead of s1),
the map

{Inllsi+6 < 8(s1)} = HR < H2 s (c(n),p(n)) is Cy - (3.62)

Then, since p(p, ) = —p(¢, z +P(p, x)), by the implicit function theorem, for p small in | - |5, 44 norm, also
the map p — p(p) € H***2 is C} implying that

{Inlls;+6 < 8(s1)} = H**2, e p(n) is Gy (3.63)
By composition, using (2.61)-262), (3.62), BE3) the map {[|7lls,+s < d(s1)} — H*', n = Ki(n) is Cy,
where K is the kernel of the integral operator d,(P~'HP — H). Let us analyze the kernel K» in (3.54)

of the operator 0, (P~ *HOp(ratc)P — HOp(ratc)). Recalling B.54) and using (3.62), (3.63), one gets that
{Inlls;+6 < d(s1)} — H®', n+— Ko(n) is C}. Therefore, recalling that Kg) = K + K> we get that

{nllsyrs < 6(s1)} = H* . s KG () is ¢
The fact that the map {[|7]|s,+6 < 6(s1)} — H*, 5 K5 () is C} follows by recalling (359), (358), 63)

and ([B.62)). Then the proposition follows since K¢g = Kg) + Kg).

4 Degenerate KAM theory

In this section we verify that it is possible to develop degenerate KAM theory as in [I1] and [21].

Definition 4.1. A function f := (f1,..., fn) : [h1,ha] — RY is called non-degenerate if, for any vector
c:= (c1,...,cn) € RV \ {0}, the function f-c = fic1 + ...+ fnen is not identically zero on the whole
interval [hy,hs].
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From a geometric point of view, f non-degenerate means that the image of the curve f([h1,hs]) C RY
is not contained in any hyperplane of RY. For such a reason a curve f which satisfies the non-degeneracy
property of Definition 1] is also referred to as an essentially non-planar curve, or a curve with full torsion.
Given ST € N* we denote the unperturbed tangential and normal frequency vectors by

@(h) == (wj(h))jes+ Q(n) = (25(h))jenr\st+ = (wj(h))jen+\s+ (4.1)
where w;(h) = \/j tanh(hj) are defined in (LI9).
Lemma 4.2. (Non-degeneracy) The frequency vectors @(h) € R, (&(h),1) € R¥*! and
(@(0), 2(h)) € R, (@(h),Q;(h), Qy (0)) € RVFZ, Vj,j" € NFAST, j#,
are non-degenerate.

Proof. We first prove that for any N, for any wj, (h),...,w;,(h) with 1 < j; < jo < ... < jn the function
[h1,ho] 3 h > (wj, (h),...,w;y (k) € RY is non-degenerate according to Definition LT} namely that, for all
c € RV \ {0}, the function h + cjwj, (h) + ... + cywjy (h) is not identically zero on the interval [hy, ho]. We
shall prove, equivalently, that the function

h > ciwj, (bY) + ...+ evwjy ()
is not identically zero on the interval [hi, hi]. The advantage of replacing h with h* is that each function
h +— w;(h?*) = /j tanh(h%5)

is analytic also in a neighborhood of h = 0, unlike the function w;(h) = 1/j tanh(hyj). Clearly, the function

g1(h) := y/tanh(h*) is analytic in a neighborhood of any h € R\ {0}, because g; is the composition of
analytic functions. Let us prove that it has an analytic continuation at h = 0. The Taylor series at z = 0 of
the hyperbolic tangent has the form

oo 3 9
tanh(z) = ZTn22n+1 =z — % + 1—525 + ..,
n=0

and it is convergent for |z| < m/2 (the poles of tanh z closest to z = 0 are +in/2). Then the power series

12

- 2
tanh(z4) = ZTnZ4(2n+1) _ z4(1 + ZTnZ8n) — 4 % + 1_51220 +.
n=0 n>1

is convergent in |z| < (7/2)}/%. Moreover |3, <, T,,2%"| < 1 in a ball |z| < §, for some positive § sufficiently
small. As a consequence, also the real function

12 X psnt2 Bl0
h) := wq (b*) = /tanh(h?) = h?(1 T, h8" =y b,— =h?— — ... 4.2
91(0) = w1 (1) = /tanh(?) (+§1 ) > b3 —+ (4:2)

is analytic in the ball |z| < §. Thus g; is analytic on the whole real axis. The Taylor coeflicients b,, are
computable. We expand in Taylor series at h = 0 also each function, for j > 1,

+oo
gi(8) := wj(k*) = V/jv/sanh(alj) = Vg1 (j/*n) = Y baj* !

n=0

h8n+2

(8n+2)!’ (43)
which is analytic on the whole R, similarly as g;.

Now fix N integers 1 < j; < j2 < ... < jn. We prove that for all ¢ € RY \ {0}, the analytic function
c19;,(h) + ... + cngjy (R) is not identically zero. Suppose, by contradiction, that there exists ¢ € RY \ {0}
such that

Clgjl(h)+---+cNng(h) =0 VheR. (44)
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The real analytic function g;(h) defined in ([@2]) is not a polynomial (to see this, observe its limit as h — 00).
Hence there exist N Taylor coefficients b,, # 0 of g1, say bp,,...,bny With n; < no < ... < ny. We
differentiate with respect to h the identity in ([@4]) and we find

c1 (D§8n1+2)9j1)(h) +...+en (Dl(mgnl+2)ng) (h)=0
(DY g, ) (m) + .4 en (DY g, ) () = 0

et (D™ g ) (0) + .+ en (DE™ g5, ) () = 0.

As a consequence the N x N-matrix

s R W
Ay = [ (O 0)0) - (O ) ) (49
(D)) (D g, )m)

is singular for all h € R, and so the analytic function
det Ah) =0 VheR (4.6)

is identically zero. In particular at h = 0 we have det. A(0) = 0. On the other hand, by ([@3)) and the
multi-linearity of the determinant we compute

-2n1+1 -2n1+1 -2n1+1 2n1+1
bnljal R bn1]]2\[1 ) ]al Lo jévl )
:2n2+ 2no+ :2no+ 2n2+
naJ1 2 bnz]N2 1 2 jNZ
det A(0) := det _ _ _ = by, ... bny det _
2nny+1 2ny+1 2ny+1 2ny+1
banl N . b’lejNN J1 N JNN

This is a generalized Van der Monde determinant. We use the following result.

Lemma 4.3. Let x1,...,xN,Q1,...,an be real numbers, with 0 < x1 < ... <zxy anday < ... < ayn. Then
it 2
det : : >0.
N2y
Proof. The lemma is proved in [56]. O

Since 1 < j; < j2 < ... < jn and the exponents a; := 2n; + 1 are increasing o < ... < ap, Lemma (3]
implies that det . A(0) # 0 (recall that b,,,...,bn, # 0). This is a contradiction with (6]).

In order to conclude the proof of Lemma [£2] we have to prove that, for any N, forany 1 < j; < jo < ... <
jn, the function [h1,hs] 2 b+ (1,wj, (h),...,w;, (k) € R¥*1 is non-degenerate according to Definition 1]
namely that, for all ¢ = (co,c1,...,cn) € RVTE\ {0}, the function h + ¢y + crwj, (h) + ... + eywjy (b)
is not identically zero on the interval [h1,ha]. We shall prove, equivalently, that the real analytic function
h— o + ciwj, (b?) + ... + eywjy (B?) is not identically zero on R.

Suppose, by contradiction, that there exists ¢ = (co,c1,...,cn) € RVT1\ {0} such that

Co+Clg]1(h>++CNng(h):0 VhER (47)

As above, we differentiate with respect to h the identity (&7, and we find that the (N 4 1) x (N + 1)-matrix

) o T pe
B Z (Dy :gﬁ)(h) (Dy :ng><h> ws)
0 (D™ g )m) ... (D, ) (h)
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is singular for all h € R, and so the analytic function det B(h) = 0 for all h € R. By expanding the
determinant of the matrix in (£8) along the first column by Laplace we get det B(h) = det .A(h), where the
matrix A(h) is defined in [@3]). We have already proved that det .A(0) # 0, and this gives a contradiction. O

In the next proposition we deduce the quantitative bounds (£9)-[{I2)) from the qualitative non-degeneracy
condition of Lemma 2] the analyticity of the linear frequencies w; in (ILI9), and their asymptotics ([24).

Proposition 4.4. (Transversality) There exist ki € N, pg > 0 such that, for any h € [hy, hs],

max 04 {@(8) - (}] 2 po(0), ¥ €7\ {0}, (4.9)

max [0 {@(B) £+ Q@)Y > polf), V€2’ jENF\SF, (4.10)

a0 {3(1) - £+ () = Q)| = polf) . Y€ ZY\ {0}, .5 € NF\S*, (4.11)
max 0 (3(1) - €+ ©(0) + 0 W) = polf) . V€2’ J.J ENF\SF (4.12)

where &(h) and Q;(h) are defined in [@I). We recall the notation (£) := max{1,|£|}. We call (following
[57]) po the “amount of non-degeneracy” and ki the “index of non-degeneracy”.

Note that in (£I1) we exclude the index ¢ = 0. In this case we directly have that, for all h € [hy, hs]

Sy,
1, (h) — Qj (h)] > e1]V/G — V5| = clw V4,5 € NT, where ¢; := y/tanh(hy). (4.13)
Vit Vi
Proof. All the inequalities ([@9)-(@I2) are proved by contradiction.
ProoOF oF ([@3)). Suppose that for all k§ € N, for all py > 0 there exist £ € Z” \ {0}, h € [hy,hs] such
that maxg<; [Op{&(h) - £}| < po(f). This implies that for all m € N, taking k§ = m, po = there exist
U € 7V \ {0}, hy, € [hy,hy] such that

1+m?

1
k- )
I]?Sa%dah{w(hm) Cm}| < 1 +m<£m>
and therefore ¢ 1
VEeN, Ym>k, |y, —|< ——. 4.14
€ ) m = ) hw( ) <€m> < 1+m ( )

The sequences (hy,)men C [h1,ho] and (€5, /(€ ))men C R” \ {0} are bounded. By compactness there exists
a sequence m, — +oo such that h,,, — h € [hy,hs|, €, /(¢m, ) — € # 0. Passing to the limit in (@I4) for
my, — +oo we deduce that 9F&(h) - ¢ = 0 for all K € N. We conclude that the analytic function h — &(h) - ¢
is identically zero. Since ¢ # 0, this is in contradiction with Lemma 2]

Proor or ([@I0). First of all note that for all h € [hi, hy], we have |[J(h)-£+Q;(h)] > Q;(h) — |&(h)-£] >
c1jt? — Cle| > |¢] if /2 > Col¢| for some Cy > 0. Therefore in {@I0) we can restrict to the indices
(¢,7) € Z" x (Nt \ ST) satisfying

§% < Colt]. (4.15)
Arguing by contradiction (as for proving ([49)), we suppose that for all m € N there exist ¢,, € ZV,
Jjm € NT\'ST and h,, € [hy,hs], such that

b Qi () 1
k)= . m Jm \m
max | {m) TR H<1 Tm
and therefore ' 9 () )
k >k klG(hy,) - Jm (o m . 4.1
VkeN, VYm>k, ah{w( R T }] — (4.16)

Since the sequences (hy,)men C [hi,ha] and (£, /{€m))men € RY are bounded, there exists a sequence

m,, — +oo such that
fmn,

(lm,.)

hy,, — h € [hy,hy], —ceR”. (4.17)
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We now distinguish two cases.

that

Case 1: (b, ) C Z¥ is bounded. In this case, up to a subsequence, £,,,, — £ € Z", and since |j,,| < C|f,|?
for all m (see ([@I3), we have j,,, — 7. Passing to the limit for m,, — +oo in [@I8) we deduce, by (EI7),

OH{G(h)-c+Q;

(b)(/)"'} =0, VkeN.
Therefore the analytic function h — &(h) - ¢ + (f)fl
contradiction with Lemma

Q;

(h) is identically zero. Since (¢, (£)~1) # 0 this is in
Case 2: (Up,,) is unbounded. Up to a subsequence, |{p,, | — +o0o. In this case the constant ¢ in ([{I7) is
nonzero. Moreover, by ([@I3]), we also have that, up to a subsequence,

G ()t s deR. (4.18)
By ([L24), @.I17), [{I8), we get
Qj (hm ) ‘77%1 r(jm h,, ) 7 ij (hm ) kT(jm hp, )
ma ) I wotme) g, g Dimaltme) _ ghme s Zmad g gy >
o) ) ) P ey T ()
contradiction with Lemma

(4.19)
as my — +oc. Passing to the limit in @I6), by @I9), @I7) we deduce that 9F{F(h) ¢+ d} =0, for all
k € N. Therefore the analytic function h — &(h) - ¢+ d = 0 is identically zero. Since (

¢
G

) # 0 this is in
PrOOF OF ([@I1)). For all h € [hy,hs], by (£I3) and (LI9), we have

B(m) - €4 Q;(0) — Qy (B)] > [25(0) — Qyr (8)] = [B(B)[[6] = a2 — j'2| = Ol = (0)

provided |5z — j/2| > C}(¢), for some C; > 0. Therefore in [@II)) we can restrict to the indices such that
52 = 32| < Cu(h) .

(4.20)
Moreover in (£I1]) we can also assume that j # j', otherwise (£I1) reduces to ([@3]), which is already proved.
If, by contradiction, (£I1]) is false, we deduce, arguing as in the previous cases, that, for all m € N, there
exist £, € Z¥ \ {0}, 4m, jh, € NT\ST, 4, # 5/, hyy € [hy, ho], such that
VkeN, Vm>k,

- Em Qjm (hm) Qjﬁn (hm) 1
o4 {@(mn) - T SR T S T }
such that

1+m’
As in the previous cases, since the sequences (b )men, (¢m/(€m))men are bounded, there exists m,, — +oo

(4.21)
hy,, — h € [hy,ho],
We distinguish again two cases.

b, [ (ln,) — €€ RV \ {0}.

(4.22)
Case 1 : (Ly,,) is unbounded. Using ([@20) we deduce that, up to a subsequence,

G2 — 52 () = dER.

(4.23)
Hence passing to the limit in (£2I)) for m,, — 400, we deduce by [@22)), (23), (L24)) that
of{&(h)-¢4+dy =0 VkeN.

Therefore the analytic function h + @&(h) - ¢ + d is identically zero. This in contradiction with Lemma
Case 2 : (by,,) is bounded. By ([@20), we have that [v/jm — /75| < C and so, up to a subsequence, only
the following two subcases are possible:
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(1) jm,Jjm < C. Up to a subsequence, jm, — J, jm. —> 7 lm, — £ # 0 and h,,, — h. Hence passing to
the limit in (£2I) we deduce that

a{f{w(ﬁ) et ;(h)} =0 VkeN.
Hence the analytic function h — @&(h) - ¢+ (Q5(h) — Qy (0))(2) " is identically zero, which is a contra-
diction with Lemma
(43) Jm, g — +oo. By @23)) and ([[24), we deduce, passing to the limit in [@2T]), that
H{GM)-e+d} =0 VkeN,
Hence the analytic function h ~ & (h) - ¢+ d is identically zero, which contradicts Lemma

ProoF of ([{I2). The proof is similar to (I0). First of all note that for all h € [hy, hs], we have
B(h) - €+ Q;(0) + Qs (B)] = (h) + 2y () = [&(R) - €] = e1/G + /5 = COlel = |¢]
if 7+ V7 > Colf| for some Cp > 0. Therefore in ([LI0) we can restrict the analysis to the indices

(¢,7,5") € Z" x (Nt \ ST)? satisfying
Vit i < Coltl. (4.24)

Arguing by contradiction as above, we suppose that for all m € N there exist £,,, € Z”, j,, € NT\ ST and
hy, € [h1,ho] such that

VkeN, Vm>k,

U () Qy () H 1 (4.25)

ak{ S(hy,) - .
) Y T T S Tem
Since the sequences (hy,)men C [h1,he] and (45, /{(€m))men € RY are bounded, there exist m,, — 400 such
that

fmn,
(lm,.)

hy,, — h € [hy,hy], —ceR”. (4.26)
We now distinguish two cases.

Case 1: ({,,) C 7V is bounded. Up to a subsequence, £, — £ € 7', and since, by (@24, also
Jms Jm < C for all m, we have j,,, — 7, j,,, — J. Passing to the limit for m,, — +oc in (23] we deduce,
by (£26]), that

OE{B(E) -+ QEND " + L E)D 1} =0 VkeN.
Therefore the analytic function h + @(h) - ¢ + (@71
contradiction with Lemma

Case 2: (Up,,) is unbounded. Up to a subsequence, |¢p,, | — +o0o. In this case the constant ¢ in ([4.26)) is
nonzero. Moreover, by ([£24), we also have that, up to a subsequence,

Q;(h) + (£)~1Qy(h) is identically zero. This is in

1 1 _
(i + o )i, ) = d ER. (4.27)
By ([L24), (£20), ([£27), passing to the limit as m, — +oo in [@2F) we deduce that 8y {G(h) - ¢ + d} =0
for all k& € N. Therefore the analytic function h — &(h) - ¢+ d = 0 is identically zero. Since (¢, d) # 0, this
is in contradiction with Lemma O
5 Nash-Moser theorem and measure estimates
We rescale the variable u = e with & = O(1), writing (IL.I4)) (after dropping the tilde) as
Ou = JQu+eXp_(u) (5.1)
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where J{ is the linearized Hamiltonian vector field in (II6]) and

e !(G(en,h) — G(0,h))¢y
Xp.(u,h) := Xp, (u) == <_1 21 (G(sn,hwﬂnwa)Z) : (5.2)
5%+ 3 T (ens )2
System (B.1)) is the Hamiltonian system generated by the Hamiltonian
He(u) := e 2H(eu) = Hr(u) + eP-(u)
where H is the water waves Hamiltonian (LT)) (with g = 1 and depth h), Hy, is defined in (LI7)) and
Pulu) = Pa(w) = - (0. (Glen) = GO.D)Y) e 63)
We decompose the phase space
H gyon = {03= (1,0) € HU(TL) x HY(TL), u(x) = u(—2) } (5.4)
as the direct sum of the symplectic subspaces
Hp ovon = Hev @ Hgy (5.5)
as
Hgy = {v = Z (ZJ]) cos(jx)}, Hgy = {z = (Z}) = Z (Z;) cos(j:z:)}.

JEST JENT\S+

We now introduce action-angle variables on the tangential sites by setting

2 2 _ . .
= ;%1'/2\/53‘ + I cos(0;), ;= \/;wj VG T sin(0;), jeST,

where & >0, j =1,...,v, the variables I; satisfy |I;| < &;, and we leave unchanged the normal component
z. The symplectic 2-form in (L8] reads

W= (Zjewdej AdI;) & Wi = dA, (5.6)
where A is the Liouville 1-form
~ ~ 1 R
Aorl0,1,3] ==Y 16, — 5(Jz;, 2) .- (5.7)
jest

Hence the Hamiltonian system (5.I)) transforms into the new Hamiltonian system
0=0rH(0,1,2), [ =—8gH.(0,1,2), 2z =JV.H.(0,1,z)

generated by the Hamiltonian
H.:=H.oA=e¢2HocA (5.8)

— o 2 (w1 cos(6;) ,
A0,1,2) :=v(0,1)+ 2z := jg \/; <w]]1/2\/ﬁ cin0;) cos(jx) + z. (5.9)

where

We denote by
XHE = (a]HE, 789H5,JVZHE)

the Hamiltonian vector field in the variables (6, 1,z) € TY x R” x Hg. The involution p in (LI} becomes

p:(0,1,2)— (—0,1,pz). (5.10)
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By (7)) and (&.8) the Hamiltonian H, reads (up to a constant)

1
§(Z,QZ)L2, P:=P.oA, (5.11)

where (h) is defined in [@1]) and Q in (LI6). We look for an embedded invariant torus

H, =N 4¢P, N::HLOAZLD'(h)-I+

i: T — T xR x Hgy, @ i(p) = (0(9), I(¢), 2(p))

of the Hamiltonian vector field X, filled by quasi-periodic solutions with Diophantine frequency w € R”
(and which satisfies also first and second order Melnikov non-resonance conditions as in (5.23))).

5.1 Nash-Moser theorem of hypothetical conjugation

For a € R”, we consider the modified Hamiltonian
1
H,:=N,+ecP, N, ::a-I+§(z,Qz)Lz. (5.12)

We look for zeros of the nonlinear operator

F(i,a) == F(i,a,w,h,e) i= w - 0pi(p) — Xn, (i(p)) = w- 0pi(p) — (Xn, +eXp)(i(p)) (5.13)
- 0,0(¢) — . — €0rP(i(p))
= w - 0,1(p) 4 €dg P(i())
w - 0,2(p) — J(Q2(p) + V. P(i(p)))

where O(y) = 0(¢) —¢ is (2m)”-periodic. Thus ¢ — i(p) is an embedded torus, invariant for the Hamiltonian
vector field Xy and filled by quasi-periodic solutions with frequency w.

Each Hamiltonian H, in (B.12) is reversible, i.e. H, op = H, where the involution p is defined in (5I0).
We look for reversible solutions of F(i, ) = 0, namely satisfying pi(¢) = i(—¢) (see (5I0)), i.e.

0(=p) = =0(p), I(=p)=1(p), z(=¢)=(pz)(¥). (5.14)
The norm of the periodic component of the embedded torus
I(p) = i(9) = (#,0,0) := (O(0), (), 2(¢)) ,  O(p) := () — ¢, (5.15)
is
~|kos ko, ko, 0,
13187 = Ol + I + =l (5.16)

where [[2[[57 = [|n]|5>7 + [[¢][ 507, We define
ko = ki + 2, (5.17)

where k¢ is the index of non-degeneracy provided by Proposition 44, which only depends on the linear
unperturbed frequencies. Thus kg is considered as an absolute constant, and we will often omit to explicitly
write the dependence of the various constants with respect to kyg. We look for quasi-periodic solutions with
frequency w belonging to a d-neighborhood (independent of €)

Q:= {w € R” : dist(w, G[h1, h]) < 6}, 0>0 (5.18)

of the unperturbed linear frequencies @hy, ho] defined in (&I]).

Theorem 5.1. (Nash-Moser theorem) Fiz finitely many tangential sites ST C NT and let v := |ST|.
Let 7 > 1. There exist positive constants ag,cq, k1,C depending on ST,v, ko, T such that, for all v = &%,
0 <a < ag, for alle € (0,e¢), there exist a ko times differentiable function

Qoo : RY X [, ho] = RY | apo(w,h) =w + 7e(w,h), with |re|*7 < Cey™t, (5.19)
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a family of embedded tori i defined for allw € RY and h € [hy,hs] satisfying the reversibility property (5.14)
and
liso () = (10,0,0)[I507 < Cey ™!, (5.20)

a sequence of ko times differentiable functions p3° : R” x [hy,ho] = R, j € NT\ ST, of the form

15°(w,B) = nF (w, B)(j tanh(B))? +r5°(w, b) (5.21)
satisfying .
|m3° — 1|k“"7 < Ce, sup j5|r;-’°|k°"7 < Cey™™ (5.22)
2 JENH\S+

such that for all (w,h) in the Cantor like set

clL = {(w,h) €0 x [hy,ho] : |w- €] > 8y(0)"7, Ve e 2V \ {0}, (5.23)
w - €+ p3(w, )| > 4yj3(0)77, VL€ Z¥, j € N*\ ST,
o £ 5w, 0) + (@) > (G + )0, W TV, . j € NTAST,
- £ 15 ) — 3, B)| > 4%, VEE B, i €NPASY, (65,6 # (0,5,0))
the function is(¢) = ico(w,h,e)(p) is a solution of F(ico,deo(w,h),w,h,e) = 0. As a consequence the

embedded torus ¢ — oo (p) is invariant for the Hamiltonian vector field X and it is filled by quasi-
periodic solutions with frequency w.

oo (w;h)

Theorem [B.1] is proved in Section 6.1l The very weak second Melnikov non-resonance conditions in
(E23) can be verified for most parameters if d is large enough, i.e. d > %ka‘, see Theorem below. The
loss of derivatives produced by such small divisors is compensated in the reducibility scheme of Section
by the fact that in Sections [(H{I4] we will reduce the linearized operator to constant coefficients up to very
regularizing terms O(|D,|~™) for some M := M(d, 7), fixed in({I5.16), large enough with respect to d and

7 by (IE510).
5.2 Measure estimates

The aim is now to deduce Theorem [[T] from Theorem BT}
By (BI9) the function aoo(-,h) from Q into the image a (R, h) is invertible:

B =ax(wh)=w+r(wh) +— w= a;ol(ﬂ,h) = B+ 7(B,h) with |7*8|k‘w < Cey~t. (5.24)

We underline that the function ag!(-,h) is the inverse of oo (-, h), at any fixed value of h in [hy, ho]. Then, for
any f € aso(CL), Theorem [B.1] proves the existence of an embedded invariant torus filled by quasi-periodic
solutions with Diophantine frequency w = a!(3,h) for the Hamiltonian

1
Hﬂ:6-1+§(z,Qz)Lz +eP.

Consider the curve of the unperturbed linear frequencies

[hi,hy] > h— d(h) := (/jtanh(hj));es+ € R”.

In Theorem below we prove that for “most” values of h € [hy, hs] the vector (ag!(d(h),h),h) is in CL.
Hence, for such values of h we have found an embedded invariant torus for the Hamiltonian H. in (511,
filled by quasi-periodic solutions with Diophantine frequency w = a2 }(&(h),h).

This implies Theorem [[LT] together with the following measure estimate.
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Theorem 5.2. (Measure estimates) Let

kg

vy=¢*, 0<a<min{ag,1/(ko+r1)}, T7>kilv+4), da> 1

(5.25)

where kg is the index of non-degeneracy given by Proposition and ko = ki + 2. Then the measure of the
set
Ge = {h € [h1,hy] : (e} (@(h),h),h) € CL} (5.26)

satisfies |G-| = ha —h; ase — 0.

The rest of this section is devoted to the proof of Theorem By (524)) the vector

we(h) == a(G(h),h) = G(h) + rc(h), rc(h):=7(F(h),h), (5.27)
satisfies
|OFr.(h)| < Cery™ 1 YO<Kk<kg. (5.28)
We also denote, with a small abuse of notation, for all j € NT \ §*,
13 (B) = p5° (we(B),b) = w3 (B)(j tanh(n)) 2 +r5° (), (5.29)
where
m‘?(h) = m?(we(h), h), 73°(h) := r;°(we(h), h). (5.30)
By (5.22), (530) and (5.27)-(5-28), using that ey~*~1 < 1 (which by (5.25) is satisfied for £ small), we get
OF@P () — 1) < Cey™7%, sup  jE[oFr® )| < Cey ™7k VO <k <ko. (5.31)
2 JENT\ST

By (523), (527), (529)), the Cantor set G, in (5.20) becomes
G. = {h € [h1, hol: [we(h) - €] > 8y(0)~7, W0 € Z¥ \ {0},
we(B) - £+ p(h)| > 4752 ()7, VL € 27, j € NT\ ST,

Jwe(R) - €+ 3o () + S (0)] > 4y (% + j2){0)77, W€ ¥, j,j' € N\ ST,

4v(6)~T . . .
foce) €+ 57 (0) — P )] 2 0T W € 2 G € NS (00D £ 0.5} (632)

We estimate the measure of the complementary set
c 0 I IT IT
gi=nl\ 0= (R u (URD)v(Uei)u( U R) 633
040 0,5 2,5, (4,5,3")#(0,5.5)

where the “resonant sets” are

R := {n € [hy,hy] : [we(h)- €] < 8y()""} (5.34)

R = {n € [0y : Jwe(n) - €+ ()] < 4y (0) 7 (5.35)

QU = {n € [y ha] ¢ fwe () - €+ p2°(0) + pSF (0)] < 49(5% +53)(0)77) (5.36)
E —T

Réﬁ? = {h € [h1, ho] ¢ |we(h) - £+ p5° (h) — p57 (h)] < 4Z"<ij>’d } (5.37)

with j, 7/ € NT \ ST. We first note that some of these sets are empty.

Lemma 5.3. Fore, v € (0,7) small, we have that

1. If R #0 then j < C(0).
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2. IfRZJI-,) # 0 then |j% —j'%| < C{¢). Moreover, RO”, =0, for all j # 7.
3. If QL) # 0 then j3 + 5 < O(0).

Proof. Let us consider the case of R(H) If Re # () there is h € [h1,hs] such that

o 5 4y {67
) — P )] < L el €] < (0. (5.38)
On the other hand, (£29), (5.31)), and (@I3]) imply
0o 0o 0o . . —K1 & . -
5 (0) - ()] > mFel /G — V7] - Cov ™ 2 ST - V- 1. (5.39)

Combining (538)) and (IBEQI) we deduce |j§ — 3| < C).

Next we prove that RO”, =0, Vj # 7. Recalling (5:29), (531)), and the definition Q;(h) = /j tanh(hj),
we have
Cey=r  (Cey™™

j? (7)*
Csy P10 Cey™
Mffl - (5.40)
(42

Now we observe that, for any fixed j € N, the minimum of |\/_ — /7’| over all j/ € N\ {j} is attained at
j' = j + 1. By symmetry, this implies that |/ — v/77| is greater or equal than both (v/5+ 1 + /7)~! and
(V7 F1++/7)"'. Hence, with ¢ := 1/(1 + v/2), one has

1 Co

|f—\/j7|200max{%,ﬁ}>co(f \/_) T Vj,j € Nt, j £ 5. (5.41)

k5% (h) — p37 (0)] = m‘;" (0)[€2;(h) — ;s (0)] —

As a consequence of (5A40) and of the three inequalities in ([4Tl), for ey~ "' small enough, we get for all

Ji#d
) = i )] > §1VF = V7 2 .

for 4 small, since d > 1/4. This proves that RO”, =0, for all j # j'.
The statement for Rg) and ng,) is elementary. O

By Lemma [5.3] the last union in (5.33]) becomes

H II
(€,3,5")#(0,5,5) £#£0
IVi—=V7I<C(e)

In order to estimate the measure of the sets (0.34)-(E37) that are nonempty, the key point is to prove that
the perturbed frequencies satisfy estimates similar to (£9)-([@I2]) in Proposition L4

Lemma 5.4. (Perturbed transversality) For e small enough, for allh € [hy,hs],

o 0f {w:(n )= 50 weezr\{o}, (5.43)
max [0f {w(b) - £+ u ()} > () Wee ¥, je NSt 1 <O, (5.44)

ma)*<|8,’f{w5(h)-E—l—,u;?o(h)—,u;?,o(h)ﬂ>@@) veezv\ {0}, .7 € NT\St:|jz —j’2| < C(t), (5.45)

k<k} - 2
max |Of {we (B) - €+ p° (0) + p3F W)} = B2(0) veez”, jj' e NFAST 2+ < O(0), (5.46)

where k¢ is the index of non-degeneracy given by Proposition [{4).
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Proof. The most delicate estimate is (5.45). We split
p5 (B) = Q;(b) + (157 — ;) (h)
where Q;(h) := j2(tanh(jh))2. A direct calculation using (I24) and (5.41) shows that, for h € [hy, hy),
08 {Q;() — Qp (W)} < Ciljz — 32| V> 0. (5.47)
Then, using ([E.31]), one has, for all 0 < k < ko,

O (157 — 57) (0) — (Q — Q) ()} < [ (0T (0) — 1)(;(R) — Qe (1)) }]
+ 1075 ()] + 075 ()]

W=

)}

EZD)
< Cpey TR - g (5.48)

G0 11 | N —
< Cro{er VRl =4 ey R (T + ()

Recall that ko = kg + 2 (see (5.17)). By (528) and (548), using |j= — 52| < C(£), we get

max |0 {we(B) - £+ p3°(B) — p () }] > max 0E{B(h) - £+ Q;(h) — Qs (h)}] — Cey™UFHRo) ||

k<
— ey~ thitm)|jd b
> max |08 {(0) - €+ () — (W)} — Coy~ K5+ )
=Ko

&1D .
> po(l) — Cey~Rotm) () > po(0) /2

provided ey~ (Fo+#1) < py/(2C), which, by ([5.25), is satisfied for ¢ small enough. O
As an application of Riisssmann Theorem 17.1 in [57] we deduce the following

Lemma 5.5. (Estimates of the resonant sets) The measure of the sets in (5.34)-(E37) satisfies

_(r = 1o (r =
RIS (") w0, RGNS (0 T0)
0=+ 2= 11 —(r =
RGPS ()T A0 QDS (U )
Proof. We prove the estimate of RZJI-,) in . The other cases are simpler. We write

(In _ . 4y
Ry = {h € [h1,ho] : | fej5 (h)] < W}
where f;;(h) := (we(h) - € + p°(h) — 29 (0))(¢) L. By (BE42), we restrict to the case |j2 — 52| < C(¢) and

¢ # 0. By (543),

max |0f fozy (8)] > po/2, Vh € [y, ho).
k<ky

In addition, (527)-(G31) and Lemma 53] imply that maxg<k, |0F fr;;-(h)| < C for all h € [hy,hs], provided
ey~ (kot+#1) i5 small enough, namely, by (5.25), ¢ is small enough. In particular, fej+ belongs to Lip(ko), and
therefore it is of class C¥o~1 = C*+!. Thus Theorem 17.1 in [57] applies, whence the lemma follows. O
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PROOF OF THEOREM COMPLETED. By Lemma [53] (in particular, recalling that RZJI.,) is empty for £ =0

and j # j', see (.42))) and Lemma [55] the measure of the set G¢ in (B33)) is estimated by

ge1 < S RY |+Z|R<” S IRG+ D leg)

£#0 (€,5,5")#(0,5,9) £,4,5
0 I II II
<> IRY| + Z RO+ >0 RS+ YD Qi)
40 J<C(0)? 0 ' <Ce)?
IVG—VF1<C(8)
1 .1 1 1 .1 gL 1
Y 3 v)2 33 o 53 fy(]z +]’2) F
=)+ X (=) X (gema)”+ ¥ ()"
¢ J<C(ey? WVi—VFTI<C(8) 3,47 <C(8)?
= 1 1
<ori{Y ==t Y ) (5.49)
iezv (€)™ IWG—v7T1<C ey (€) *o j*o j *o

The first series in (5.49) converges because ;= — 4 > v by (5.25). For the second series in (5.49), we
0

observe that the sum is symmetric in (4, ;') and, for j < j’, the bound |\/5 — /7’| < C(£) implies that

J <7 <5+ C*0)? +2CVj(l). Since

Jj+p Jj+p p—|— 1
Ve, 7, Z — <Z — ., pi=C02 42050
=y 5 ji=j j"o g

the second series in (5.49) converges because T+01 2>vand 2% — 3 >1by (E20). By G49) we get

1
|G| < Cr % .

In conclusion, for v = &2, we find |G| > hy — h; — Ce®* and the proof of Theorem 2 is concluded.

6 Approximate inverse

6.1 Estimates on the perturbation P

We prove tame estimates for the composition operator induced by the Hamiltonian vector field Xp =
(01 P, —0g P, JV.P) in (I3).

We first estimate the composition operator induced by v(6,y) defined in (B.9). Since the functions
I — /& + I, 0 — cos(0), 0 — sin(f) are analytic for |I| < r small, the composition Lemma [2.6] implies
that, for all ©,y € H*(T,R"), |®]]s0, [¥llso < 7, setting 0(¢) := ¢ + O(y),

10507 0(0(-), IO Ss L+ |3)57, Vo, 8 €N, o] + 5] < 3. (6.1)

Lemma 6.1. Let 3(p) in (510) satisfy ||3||§§(’)12k0+5 < 1. Then the following estimates hold:

. ko,
IXP(I1E Ss 1+ 1T05% 5020045 5 (6.2)
and for all7:= (0,1,%)
, ko, ko,
i X p @RI So 11557 + 1T153300 420 a5 (6.3)
ko, ko, ~ ko, ko,
12 X P ()3 30115° S 1SS Il sy + NI S amo 5 (20 1)? (6.4)

Proof. By definition (5I1]), P = P- o A, where A is defined in (59) and P: is defined in (5.3]). Hence

Xp = ([8[1)(0,I)]TVPE(A(G,I,Z)), —[0pv(0, DTV P-(A(0,1,2)) H;JVPE(A(o,z,z))) (6.5)
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where Ilg; is the L2-projector on the space Hg; defined in (55). Now VP, = —JXp_ (see (1)), where

Xp, is the explicit Hamiltonian vector field in (&2]). The smallness condition of Proposition Bl is fulfilled
ko, ko, ~ ko,

because 71527, 50 15 < €IAOC), 100, 2 NI gress < Clso)e(+ [I1E0 5) < Calso)e < 8(son ko)

for € small. Thus by the tame estimate ([B3.5]) for the Dirichlet-Neumann operator (applied for m, « = 0), the

interpolation inequality (2I0), and (6.1I), we get
ko, ~ ko,
IVP-(ADC), LC), 2o S TAGC), IC)s 20D o001 2m043 S 1+ 1T 30012003 -

Hence (6.2)) follows by (6.3]), interpolation and (G.1I).

Estimates (6.3)), (6.4) for d; X p and d? X p follow by differentiating the expression of Xp in (6.5]), applying
the estimates of Proposition Bl on the Dirichlet-Neumann operator and estimate (GII) on v(f,y) and using
the interpolation inequality (Z.10). O

6.2 Almost-approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,«) = 0 we construct
an almost-approrimate right inverse of the linearized operator

d@a]:(l'o, Oéo)[/l\, a] =Ww- Gﬁ— diXHa (Zo((p))m — (a, O, 0) .

Note that d; o F (i0, o) = d; o F (ig) is independent of oy, see (B.I3]) and recall that the perturbation P does
not depend on a.

We implement the general strategy in [16], [8], and we shall closely follow [21I]. An invariant torus ig with
Diophantine flow is isotropic (see e.g. [L6]), namely the pull-back 1-form i§A is closed, where A is the 1-form in
(7). This is tantamount to say that the 2-form W = i§dA = difA = 0. For an “approximately invariant”
torus ip the 1-form i§A is only “approximately closed”. In order to make this statement quantitative we
consider

igA = Z:zlak(‘P)d‘Pk , o ar(p) == —([0,00(0)] " To(9)), — %(%zo(so), J20(9)) L2 (1,) (6.6)

and we quantify how small is

igWV = digh = Zl<k<j<VAkj(<P)dsﬁk Ndpj, Akj(p) = 0p,a;(p) — Op, ar(e) (6.7)
in terms of the “error function”
Z(p) := (Z1, Z2, Z3) () := Fio, a0)(¢) = w - Oypio(p) — X, (io(), o) - (6.8)

Along this section we will always assume the following hypothesis, which will be verified at each step of the
Nash-Moser iteration.

e ANSATZ. The map (w,h) — Jo(w,h) :=ig(p;w,h) — (¢, 0,0) is ko times differentiable with respect to
the parameters (w,h) € R” x [hy,ho], and for some p := p(7,v) >0, v € (0,1),

1Foll507, + lao — w|* < Cey ™, (6.9)

For some k := k(7,v) > 0, we shall always assume the smallness condition ey™" <« 1.

We suppose that the torus igp(w,h) is defined for all the values of (w,h) € R X [h;, ho] because, in the
Nash-Moser iteration we construct a ko times differentiable extension of each approximate solution on the
whole R” x [hl, hg].

Lemma 6.2. || Z||%7 <. ey =1+ [|30] 593

Proof. By EI3), 62), €. O
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Lemma 6.3. Assume that w belongs to DC(vy, ) defined in 2I3). Then the coefficients Ay, in [@1) satisfy
ko, - ko, ko, ko,
AR5 <o v 215 ko + 1210 13008 g 1) o) - (6.10)

Proof. The coefficients Ay; satisfy the identity (see [16], Lemma 5) w - O, Agj = W(0pZ()ey,, pio(p)e;)+
W (8yio(@)ey, 0,2 (p)e;) where e, denotes the k-th versor of R. Then by (B3) we get

ko, ko, ~ |1ko,
lw - O Akj 157 S 1ZIET + 1215711301157 - (6.11)

Then (GI0) follows applying (w - d,) !, since, by Lemma 3, ||« - 9,) " gll5" <o v g% o syones D

As in [16], [§] we first modify the approximate torus ip to obtain an isotropic torus is which is still
approximately invariant. We denote the Laplacian A, :=>"7_; 8?%

Lemma 6.4. (Isotropic torus) The torus is(¢) := (6o(¢), Is(¥), 2z0(p)) defined by

Iy i= I+ [0,00(0)] Tpl9),  p3(0) = AT 0, Aki(9) (6.12)

is isotropic. There is o := o(v, T, ko) such that

115 = Toll& < |1 Toll 7 (6.13)

175 = Toll S v (1211537 + 1211507 19011557 (6.14)

1F (s, 01527 S 1201557 + 1 Z1s02s 1 Toll352 (6.15)

10:lis] @115 S IR1E + | Toll 357 750 - (6.16)

In the paper we denote equivalently the differential by 9; or d;. Moreover we denote by o := o (v, T, ko)

possibly different (larger) “loss of derivatives” constants.

Proof. Estimates (6.13]), (G.I4) follow as in [8] by (612), (66), (67), (GI0), [G3). The difference

0
Flis, a0) — Flio,a0) = | w-0p(Is — Io) | +e(Xp(is) — Xp(io))
0

where, as proved in [16], [§],

w - 0p(Is — 1) = [0,00(0)] " "w - Opp() — ([0p00(0)] ™" (w - 0,[0:00(2)]" ) [0,.00()] ") ple) ,
W+ 05[0,00(p)] = €0,(0r P)(io(p)) + 0pZ1(¢p) -

Then (6.15) follows by ([6.3), (6.14), (6.9), Lemma [6.2] (611, (€I0). The bound (6.16) follows by (lBj:ZI)
@.1), ©.6), ©3)-

In order to find an approximate inverse of the linearized operator d; o F (is), we introduce the symplectic
diffeomorpshim Gy : (¢, y,w) — (0,1, z) of the phase space T" x R” x HSJ; defined by

0 ¢ 00(9) ,
I =G5 |y | = | 1s(0) + [000()] "y — [(F620)(00(0))] Jw (6.17)
z w 20(0) +w

where Zo(6) := 2zo(0; *(0)). Tt is proved in [I6] that G's is symplectic, because the torus is is isotropic (Lemma
[64). In the new coordinates, is is the trivial embedded torus (¢,y,w) = (¢,0,0). Under the symplectic
change of variables G5 the Hamiltonian vector field X, (the Hamiltonian H, is defined in (5.12])) changes
into

Xk, = (DGs) ' Xy, 0oGs  where  K,:=H,0Gs. (6.18)
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By (BI4)) the transformation Gy is also reversibility preserving and so K, is reversible, K, o p = K,.
The Taylor expansion of K, at the trivial torus (¢, 0,0) is

1
Ko(9,y,w) = Koo, @) + K10(9, @) -y + (Ko1(¢, ), w) p2(t,) + §K2o(¢)y Yy
1

+ (K11(¢)y7 ’LU) L2(Ty) + 5 (K02(¢)w; w) L2(T,) + KZ3(¢5 Y, ’LU) (619)

where K>3 collects the terms at least cubic in the variables (y,w). The Taylor coefficient Koo(¢, ) € R,
Kio(¢, @) € R”, Ko1(¢, @) € Hgy, Koo(9) is a v x v real matrix, Ko2(¢) is a linear self-adjoint operator of
Hg; and K11(¢) € L(R”, Hgy).

Note that, by (5.12) and (G.I7), the only Taylor coefficients that depend on « are Ko, K19, Ko1-

The Hamilton equations associated to ([G.I19) are

¢ = K1o(¢, a) + Kao()y + K (d)w + 9y K>3(¢, y, w)
y = 0pKoo(9, @) — [05K10(¢, )]y — [0 Kor(h, )" w

—5¢(%K20(¢)y "y + (K11(¢)ya w)L2('J1‘I) + %(KOQ((b)’LU, w)LZ('[FI) + K23(¢, Y, w))
W = J(Koi(¢, @) + K11(8)y + Koz(d)w + Vi K>3(¢,y,w))

(6.20)

where 9, K7, is the v x v transposed matrix and 9,KJ;, K{; : H&: — R” are defined by the duality relation
(8¢K01[<,5], w)pz = b [0sKo1)Tw, Vo e R, we HSJJ;, and similarly for K. Explicitly, for all w € HSJJ;, and
denoting by e, the k-th versor of R”,

v

T v T v
K (p)w = Zk:l (K11(¢)w 'Qk)Qk = Zk:l (w, Kll((b)gk)Lz(Tm)Qk eR”. (6.21)
The coefficients Koo, K10, Ko1 in the Taylor expansion (6.19) vanish on an exact solution (i.e. Z = 0).
Lemma 6.5. We have

196 Koo (-, a0) |57 + [ K10 (- a0) = wl| £ + [ Koa (- ao)lI87 s 1211557 + 121507 1T0lle%s - (6:22)

soto
Proof. In Lemma 8 of [I6] or Lemma 6.4 of [§] the following identities are proved
9y Koo(¢, a0) = —[0500(0)]" (= Z2,5 — [0415)[0400] " Z1,5 — [(D0Z0) (B0 ()] T Z3.5
~ [(90%0)(0(6))]" T 0520(9)[0600(0)] ™' Z1.5) ,
K10(¢, ) = w — [0500(¢)] ™' Z1,5(9) ,
Koy(¢, 00) = J Z3,6 — J0s20(6)[0600(9)] ™" Z1,5(6) ,
where Zs = (Z1,5, 22,5, Z3,5) := F(is, ap). Then (69), (6€.14), (6.I15) imply (6.22). O

We now estimate the variation of the coefficients Koo, K19, Ko1 with respect to . Note, in particular,
that 0, K719 ~ Id says that the tangential frequencies vary with o € R”. We also estimate Koy and Ki;.

Lemma 6.6. We have
[0aE ool + [|0aK10 — Id||50Y + [[00Kor]|57 <o 1T0l15%7 . [ Kaollfo" <o (14 11T0)15%7)
ko, R , ko, ko, ko,
[Kyl5e7 Sse(llyli + 1Tollss 2yl KL wlE” Soe(lwllsys + 1Tollshallwll2:) -

Proof. By [16], [8] we have

OaKoo(9) = Is(8),  0aK10(9) = [0500(4)] ™",  BaKo1(e) = JOoZo(00(9)),
Kao(p) = €[0,00()] 011 P(is())[0,00 ()] ",
K11(p) = e(01V.P(is(9))[0,00(0)] " + J(99Z0)(Bo(9))(011P)(i5())[000()] ") -

Then 6.2), 6.9), (6.13) imply the lemma (the bound for K{; follows by (6.21))). O
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Under the linear change of variables

¢ 0g00(¢) 0 0 ¢
DGs(,0,0) | 7 | == | 9sLs(®) [0s00(0)]™"  —[(BZ0) (00 ()] T Y (6.23)
w 0g20(¢) 0 I W

the linearized operator d; oF (i5) is transformed (approximately) into the one obtained when one linearizes
the Hamiltonian system ([6.20) at (¢, y, w) = (¢, 0, 0), differentiating also in a at o, and changing 0y ~» w-0,,
namely

W 0o — 0pK10(0)[0] — DaK10(9)[@] — Kao(0)7 — KT ()
= | W+ 0,7 + 0ppKoo(9)[6] + 0p0a Koo () [a] + [0 K10()] Y + [5¢K01( T |- (6.24)
w - 0pW — J{0sKo1(#)[¢] + 0aKo1(p)[a] + K11(9)Y + Koa2(p)w}

Q) Eyw)©)

As in []], by (©23), (69), (6I3), the induced composition operator satisfies: for all 7:= (5, Y, W)

- ~ ko,
IDG5(,0,0)[@]15°7 + | DGs(10,0,0) " AN S 1157 + [ Toll a5 (6.25)

~ ~ ~ ~ Ko,y |12 | ko, :
ID?Gs(, 0,001, ] 157 S B8 [Tallsg ™ + 1150 B lls + IToll o3 1l 55 22l sg ™ - (6.26)

In order to construct an “almost-approximate” inverse of (6.24) we need that

Lo =Tl (w: 0p = TKoa(9)) . (6:27)
is “almost-invertible” up to remainders of size O(N,,?,) (see precisely (6.31])) where
Nn:=KP, Yn>0, (6.28)
and B
K, =K, x:=3/2 (6.29)

are the scales used in the nonlinear Nash-Moser iteration. Let H (T**!) := H*(T*™') N Hg; (we recall that
the phase space contains only functions even in z, see ([5.4))).

e ALMOST-INVERTIBILITY ASSUMPTION. There exists a subset A, C DC(7y, 7) X [hy,hs] such that, for all
(w,h) € A, the operator L, in (6.27) may be decomposed as

L,=L5+Ru+RS (6.30)

where L5 is invertible. More precisely, there exist constants Ko, M, o, u(b),a,p > 0 such that for any
50 < s < S, the operators R, R} satisfy the estimates

_ ko, ~ ko, ko,
IRGAIET Ss ey > MAIN2 (1R115%7 + 1T0ll5 7 o4 1215000 (6.31)
_ ko, ko, ko,
IRLPISY Ss Ky (Ilhllsfifbﬂr +13ollseuwyrosnllbllseds) s VO >0, (6.32)
ko, ~ ko, ko,
RGP Ss l1RllsSs + 11T0ll s oy o 1Pl sols - (6.33)

Moreover, for every function g € H5"7(T+1,R?) and such that g(—¢) = —pg(¢p), for every (w,h) € A,
there is a solution h := (L5)7'g € H5 (T, R?) such that h(—p) = ph(yp), of the linear equation
LSh = g. The operator (£S)™! satisfies for all sp < s < S the tame estimate

~1_1ko, - ko, k ko
L) glle Ss v llglls%a + 1Tolle ) 4o 19lsels) - (6.34)
This assumption shall be verified at the n-th step of the Nash-Moser nonlinear iteration in Section [16] by

applying Theorem It is obtained by the process of almost-diagonalization of £, up to a remainder
R, of size O(N,2,) and an operator R which acts on high frequencies (it contains the projector 1% )
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In order to find an almost-approximate inverse of the linear operator in ([6.24) (and so of d; o F (is)), it is
sufficient to almost-invert the operator

-~ w'awfg*aafﬁo(@)[a] — Kx(p)y — K{) (p)w
D[¢, ¥, W, a] := w - 8,7 + 0p0a Koo (p)[a] : (6.35)
(L£5)w — JOuKoi(p)a] — JKu(9)y

The operator D in (6.35]) is obtained by neglecting in (6.24)) the terms 9y K10, 06 Koo, Op Koo, OpKo1 (which
vanish at an exact solution by Lemma [65), and the small remainders R,,, R appearing in ([630). We look
for an exact inverse of D by solving the system

- g1
D¢, 7, w,a] = | g2 (6.36)
g3
where (g1, g2, g3) satisfy the reversibility property
91(0) = g1(=9),  g2(0) = —g2(=¢), gs(p) = —(pgs)(—¢). (6.37)

We first consider the second equation in (6.36]), namely w - 0,§ = g2 — 0,04 Koo(¢)[@]. By reversibility, the
p-average of the right hand side of this equation is zero, and so its solution is

7= (- 0,7 (92 — 0 Koo(¢)[d]) (6.38)

Then we consider the third equation (£3)w = g3 + JK11(¢)¥ + JOoKo1(p)[@], which, by the inversion
assumption ([6.34]), has a solution

@ = (£3)7 (g3 + TE 0 (97 + J0uKor (9)[d]) (6.39)

Finally, we solve the first equation in (G.36]), which, substituting (6.38]), ([G39), becomes

W+ 0ph = g1 + M1 (p)[a] + Ma(¢)g2 + M ()gs , (6.40)

where
Mi(p) == 0aKi10(p) — M2(0)0a0p Koo () + M3z(p)JOaKor(p) , (6.41)
My () = Kao(@)w - 0] " + K1 (0)(L£5) TKu(p)[w - 0] ™", Ms(p) := Ky (9)(£5) " (6.42)

In order to solve equation (G.40) we have to choose & such that the right hand side has zero average. By
Lemma [6.6] (63), the p-averaged matrix is (M7) = Id + O(ey~!). Therefore, for ey~! small enough, (M;)
is invertible and (M;)~! = Id + O(ey~!). Thus we define

a = — (M) ({g1) + (Maga) + (Msgs)) . (6.43)

With this choice of @, equation (640) has the solution
¢ = (w:0,)"" (g1 + Mi(p)[a] + Ma(p)g2 + Ms()gs) - (6.44)

In conclusion, we have obtained a solution (qAﬁ, U, W, @) of the linear system (6.30)).

Proposition 6.7. Assume (69) (with p = w(b) + o) and (©34). Then, for all (w,h) € A,, for all

) 9
(91,92, 93) even in x and satisfying 6.37), system [6.36) has a solution D™1g := (¢, 7, @, Q), where (¢, 7, W, Q)
are defined in ([6.44)), [@38), [@39), [©43), which satisfies BI4) and for any so < s < S

1 1k _ ko, ko, ko,
1Dl S v (g2 + 13015740 15025, (6.45)
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Proof. Recalling (6.42), by Lemma 6.6, (6.34), (63), we get || Mag]|5o:7 + || Msg]|%o-r < C||g||]§‘0)j:’(7 Then, by
@©43) and (My)~! =1d + O(ey~1) = O(1), we deduce |a[*7 < C||g||**? and E3T) implies

so+o
~ — ko, ko,
17157 <o v (19152 + 1301597 )10 Nl ) -

Bound (6.45) is sharp for @ because (£35) g3 in (639) is estimated using ([6.34). Finally also ¢ satisfies
(645) using (6.44), (€.42)), ([€34) and Lemma [6.61 O

Finally we prove that the operator
Ty = To(ip) := (DG5)(,0,0) o D" o (DGy)(1,0,0) " (6.46)

is an almost-approximate right inverse for d; F (ig) where ég(qﬁ, y,w, ) := (Gs(¢,y,w),a) is the identity
on the a-component. We denote the norm ||(¢,y, w, a)|/*7 := max{||(¢, y, w)||%o7, |a|*o7}.

Theorem 6.8. (Almost-approximate inverse) Assume the inversion assumption (630)-@34). Then,
there exists & := a(7,v, ko) > 0 such that, if [€3) holds with u = pu(b) + 7, then for all (w,h) € A,, for all
g := (91, 92, g3) even in x and satisfying (6.3T), the operator T defined in ([6.40) satisfies, for all sp < s < S,

- ko, ko, ko,
ITogll e s v~ (Iglla%a + 13015 )5 1ol o) - (6.47)
Moreover Ty is an almost-approzimate inverse of d; o F (ig), namely
d; o F(ig) 0 To — Id = P(io) + Pu(io) + Pa (d0) (6.48)

where, for all sp < s <5,

- - ko, ko,
1Pl s 97 (I1F o, o) 15075 91523

. ko, . Ko,y 11~ I1ko, ko,
o+ {IF o, 00) 1553 + |17 Gio, 00) 1505 1901 7y 4 015225 ) (6.49)
_oM— _ ko, ko, ko,
1Pugllo Ss e 2M N2 (g2 + 1300197 5 91507 | (6.50)
ko, k ko,
1P gl Ssw v K (Il + 1301207,y sms 0l 20,) . Vo> 0, (6.51)
(6.52)

1 1k — , ~ 11k k
||7)w g”sO”y 55 v 1(”9”51; + ||JO||SiZ(b Jra”g”SgJ:&) .

Proof. Bound (6.47) follows from (6.46), (6.45), (625). By (&I3), since X does not depend on I, and is
differs by i only in the I component (see ([6.12])), we have

1
Eo = di o F (i) — di,oF(is) = f—:/ 0rd; Xp (0o, Is + s(Io — Is), z0) Lo — 15, 11[ -] ]ds (6.53)
0

where II is the projection (7, @) — 7. Denote by u := (¢, y,w) the symplectic coordinates induced by Gs in
(6I7). Under the symplectic map G, the nonlinear operator F in (.13) is transformed into

F(Gs(u(p)), @) = DGs(u(p)) (Puu(p) — Xk, (u(p), a)) (6.54)

where K, = H, o Gy, see (G.I8)) and (620). Differentiating (654 at the trivial torus us(p) = Ggl(ia)(go) _
((P,0,0), at a = Qp, We get

di,a]:(ié) ZDGa(ua)(w : 84/, - du@XKa (u(5, ao))Dé(g(u(;)_l + & R (655)

&1 =DGy(us) [DGs(us) ™' F(is, c0), DGo(us)~[-]] (6.56)

In expanded form w - 0, — dy,o Xk, (us, o) is provided by (@.24). By (€35), (621), (6.30) and Lemma

we split
w-0p — dy o Xr (us,0) =D+ Rz + R, + RS (6.57)
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where

~

- —0sK10(p, a0)9]
Rz[9,9,W,a] == | OspKoo(p, a0)[@] + [0pK10(p, o))" y+ + [0 Ko1 (@, ao)]Tw |

—J{0sKo1 (e, ao)[¢]}

and
R 0 R 0
Ry [¢, 9, W, a] := 0 ) Ri_[(b’ Y, w,a] = 0
R[] R[]
By (€53), (655), [654), [G51) we get the decomposition
d; o F(io) = DGs(us) oD o DGs(us) ' + & + &, + EF (6.58)
where B _
E=E+E& + DG&(Ua)RzDG(;(u(s)_l , &= DG(;(U(;)RMDG(;(U(;)_l , (6.59)
& = DGs(us)REDGs (us) 7. (6.60)

Applying Ty defined in ([6.46) to the right hand side in (E58)) (recall that us(¢) := (i, 0,0)), since DoD~! = Id
(Proposition [6.7), we get

diva}—(io)OTO_Id:P‘i"Pw—f—'Pj,
P:=EoTy, P,:=EoTy, P =& oTo.

By 63), 6:22), G13), GI), 6I5), 625)-26) we get the estimate
~ 111k ko, ko, ko, ko, ko, ko, ko,
IE17 a1 Ss 121l soi o lillsSa + 121150 10l soie + 1211 5o o 21l 5o [ ol s5a (6.61)

where Z := F(ig, ap), recall [G.8]). Then ([@49) follows from (647), [CEI), [€T). Estimates ([G.50), (EE]])
(6.52) follow by (6.31)-(6.33), (6.47), (6.25), (6.13), (6.9).

7 The linearized operator in the normal directions

In order to write an explicit expression of the linear operator £, defined in (627)) we have to express the
operator Kpa(¢) in terms of the original water waves Hamiltonian vector field.

Lemma 7.1. The operator Koa(¢) is
Kox(¢) = 120,V H(T5(9)) + eR(¢) (7.1)

where H is the water waves Hamiltonian defined in (L) (with gravity constant g =1 and depth h replaced
by h), evaluated at the torus

T5(¢) == eA(is(9)) = eA(00(9), 15(0), z0()) = cv(0o(9), Is()) + £20(¢) (7.2)
with A(0,1,z), v(0,I) defined in [B3). The operator Koz(¢) is even and reversible. The remainder R(¢)

has the “finite dimensional” form
1L
RO =D o (h:9j) x5, VheHgi, (7.3)
for functions g;,x; € Hsﬁ which satisfy the tame estimates: for some o := o(r,v) > 0, Vs > so,

~ ko,
g 157 + 187 Se 1+ 13slls37 s 19iglllls + 10X llls Ss fillsto + 1Tl etolllso+o - (7.4)

Proof. The lemma follows as in Lemma 6.1 in [21]. O
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By Lemma [Tl the linear operator £, defined in (627 has the form
L, =Tz (L + eR)jgs,  where  Li=w-0,— JONH(Ts(p)) (7.5)

is obtained linearizing the original water waves system (LI4), (L) at the torus u = (n,%) = T5(p) defined
in (Z2), changing 9; ~» w - 0,. The function 7n(yp, z) is even(p)even(z) and ¥ (p, z) is odd(p)even(x).
Using formula ([B.0]), the linearized operator of (I.I4)) is represented by the 2 x 2 operator matrix

9.V +G(n)B —~G(n) )

(1+ BV,)+BGn)B Vd, — BG(n) (7.6)

L:=w-0,+ <
where B,V are defined in [82). The function B is odd(y)even(z) and V is odd(¢)odd(x). The operator £
acts on HY(T) x H(T).

The operators L, and L are real, even and reversible.

We are going to make several transformations, whose aim is to conjugate the linearized operator to a
constant coefficients operator, up to a remainder that is small in size and regularizing at a conveniently high
order. It is convenient to ignore all projections at first, and consider the linearized operator as an operator
on the whole of H(T) x H'(T). At the end of the conjugation procedure, we shall restrict ourselves to the
phase space H} (T) x H'(T) and perform the projection on the normal directions Hg: . The finite dimensional
remainder € R transforms under conjugation into an operator of the same form and therefore it will be dealt
with only once at the end of Section [I4]

For the sequel we will always assume the following ansatz (that will be satisfied by the approximate solu-
tions obtained along the nonlinear Nash-Moser iteration of Section [I6): for some constant g := po(7,v) > 0,
7€ (0,1),

[FolléeFs <1, and so, by @I3), [sll507, <2- (7.7)
In order to estimate the variation of the eigenvalues with respect to the approximate invariant torus, we

need also to estimate the derivatives (or the variation) with respect to the torus i(¢) in another low norm
I |s;, for all the Sobolev indices s such that

s1+00<sp+pg, for some og:=op(r,v)>0. (7.8)
Thus by (1) we have
olfo,, <1 and so, by @I, 3]0, < 2. (7.9)

The constants pp and og represent the loss of derivatives accumulated along the reduction procedure of
Sections What is important is that they are independent of the Sobolev index s. Along Sections
[(HI3] we shall denote by o := o(ko,7,v) > 0 a constant (which possibly increases from lemma to lemma)
representing the loss of derivatives along the finitely many steps of the reduction procedure.
As a consequence of Moser composition Lemma [2.6] the Sobolev norm of the function u = Ts defined in
[T2) satisfies, Vs > so,
lullse = [l 5 + @157 < eC(s) (L + [[Toll5*) (7.10)

(the function A defined in (59) is smooth). Similarly

10ulilllsy Sy ellillsys  1A12ulls Sy €lliz —ialls, (7.11)

~

where we denote Ajou := u(iz) — u(i1); we will systematically use this notation.
In the next sections we shall also assume that, for some & := k(7,v) > 0, we have

ey " <46(5),

where §(S) > 0 is a constant small enough and S will be fixed in (I6I2). We recall that Jy := Jo(w,h)
is defined for all (w,h) € R” x [h1,hs] by the extension procedure that we perform along the Nash-Moser
nonlinear iteration. Moreover all the functions appearing in £ in (Z.6) are C* in (¢, z) as the approximate
torus u = (n,v) = Ts(¢). This enables to use directly pseudo-differential operator theory as reminded in
Section
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7.1 Linearized good unknown of Alinhac

Following [I], [2I] we conjugate the linearized operator £ in (6] by the multiplication operator

Z:= (; (1)) z7t = (_13 (1)) : (7.12)

where B = B(yp, ) is the function defined in (3:2]), obtaining

Lo=ZLZ=w 0, + (azv _‘/%(")) (7.13)
where a is the function
a:=a(p,z) =1+ (w-90,B)+VB,. (7.14)

All a, B,V are real valued periodic functions of (¢, x) — variable coefficients — and satisfy
B = odd(p)even(x), V =odd(p)odd(x), a = even(p)even(z).

The matrix Z in (T12) amounts to introduce, as in Lannes [45]-[46], a linearized version of the good unknown
of Alinhac, working with the variables (7,¢) with ¢ := ¢ — B, instead of (1, ).

Lemma 7.2. The maps Zt! —Id are even, reversibility preserving and DFo-tame with tame constant sat-
isfying, for all s > sq,

M1 1a(s), Meze1_1ay-(s) Ss (1 + [[Tol|57) - (7.15)
The operator Ly is even and reversible. There is o := o(7,v) > 0 such that the functions
lla = 1187 + [[VI[2 + | B &7 S e(+ 130/15%7) - (7.16)
Moreover
10salillls, + 10V [illls, + 10 B[illlsy Ssi ellollsi+o (7.17)
10:(Z= @DAls,  10:((ZF) [DAllsy Ssr ellilsirollPlls, - (7.18)
Proof. The proof is the same as the one of Lemma 6.3 in [21]. O

We expand Ly in (CI3) as

Vo, 0 V., -G
Lo=w-0,+ ( 0 vaz) + (a 0(”)) : (7.19)

In the next section we deal with the first order operator w - 9, + V0,.

8 Straightening the first order vector field

The aim of this section is to conjugate the variable coefficients operator w - 9, + V (¢, )0, to the constant

coefficients vector field w - J,,, namely to find a change of variable B such that

B w-0,+V(p,2)0:)B=w-0,. (8.1)

Quasi-periodic transport equation. We consider a ¢-dependent family of diffeomorphisms of T, of the
space variable

y=x+B(p,)

where the function 3 : T, x T, — R is odd in x, even in ¢, and |8 (¢, z)| < 1/2 for all (p,z) € T+, We
denote by B the corresponding composition operator, namely

B:hw— Bh, (Bh)(g,z):=h(p,z+ B(p,x)). (8.2)
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Let us compute the conjugated operator in the left hand side in (81]). The conjugate B~!fB of a multipli-
cation operator f : u + f(p,2)u is the multiplication operator (B=1f) : u — (B~1f)(p,y)u. The conjugate
of the differential operators 0, and w - 9, by the change of variable B are

B0, B= (14 B7'8,) 0y, B lw-0,B=w-0,+ (B 'w-0,p) dy.
Therefore w - 0, + V (¢, )0, is transformed into
B w0, + V(p,2)0:)B=w-0,+clp,y)dy (8.3)

where ¢(p, y) is the periodic function

c(p,y) =B~ w08+ V(L +B2))(¢,y).- (8.4)
In view of (B3)-(B4) we obtain BI) if 3(p, z) solves the equation
w'awﬁ((pax) +V((P,$)(1 +ﬁm(‘pax>) =0, (85)

which can be interpreted as a quasi-periodic transport equation.

Quasi-periodic characteristic equation. Instead of solving directly (8.3 we solve the equation satisfied
by the inverse diffeomorphism

r+B(pr)=y <= z=y+PBpy), VYr,yeR, pcT”. (8.6)

v

It turns out that equation B3] for B(p, x) is equivalent to the following equation for (¢, y):

w- 0,80, y) = Vg, y + Be,y)) (8.7)

which is a quasi-periodic version of the characteristic equation & = V(wt, x).

Remark 8.1. We can give a geometric interpretation of equation BT in terms of conjugation of vector
fields on the torus TV x T. Under the diffeomorphism of T x T defined by

(i) B <y+ﬂuw(w,y)) » the system % (i) = (V(:, x))

transforms into

% (Qyﬂ) - ({ —w-9,B(1,y) +V(w,yiﬁ(w,y))}(1 +By(w,y))_1) '

The vector field in the new coordinates reduces to (w,0) if and only if &X) holds. In the new variables the
solutions are simply given by y(t) = ¢, ¢ € R, and all the solutions of the scalar quasi-periodically forced
differential equation © =V (wt,x) are time quasi-periodic of the form x(t) = ¢ + f(wt, c).

In the rest of the section we solve equation (87]), for V (¢, ) small, and for w in the set of Diophantine
vectors DC(y,7) defined in (2I3]), by applying the Nash-Moser-Hormander implicit function theorem in
Appendix [Bl

We rename 3 — u, y — , and write equation B20) as

F(u)(p,z) :=w-0pu(p,z) = V(p,z +u(p,z)) =0. (8.8)
The linearized operator at a given function u(p, ) is
Flu)h = w- 0,h— qlp.a)h,  ale,a) = Va(p,a + ulp,a) (8.9)

In the next lemma we solve the linear problem F'(u)h = f.
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Lemma 8.2. (Linearized quasi-periodic characteristic equation) Let ¢ := 3ko + 27(ko + 1) + 2 =
2u+ ko + 2, where p is the loss in (ZI8)) (with k+ 1 = ko), and let w € DC(27, 7). Assume that the periodic
function u is even(y)odd(x), that V is odd(yp)odd(x), and

all 32 + M VIS < do (8.10)

so+s so+¢

with dg small enough. Then, given a periodic function f which is odd(p)odd(x), the linearized equation

F'(u)h = f (8.11)
has a unique periodic solution h(p,x) which is even(p)odd(x) having zero average in @, i.e.
1
h x::—/htp,x dp=0 VxeT. 8.12)
W)ola) = 7 [ H0) (

This defines a right inverse of the linearized operator F'(u), which we denote by h = F'(u)~'f. The right
inverse F'(u)~! satisfies
_ _ ko, — ko, ko, ko, ;
1F" (@) 71 FI52 S v IS+ AVIRED + el S IV I 2o F 1l ™) (8.13)
for all s > sq, where || - ||*7 denotes the norm of Lip(ko,DC(27,7), s,7).

Proof. Given f, we have to solve the linear equation w - d,h — gh = f, where ¢ is the function defined in
[®3). From the parity of u,V it follows that ¢ is odd(yp)even(x). By variation of constants, we look for
solutions of the form h = we", and we find (recalling (214]))

(woe’)
<6U><p

This choice of g, and hence of w, is the only one matching the zero average requirement (812); this gives
uniqueness of the solution. Moreover

vi=(w-0,) g, wi=wo+g, wo:=(w-9,) e f), g=glz):=—

v =even(p)even(x), wo= even(p)odd(z), g(z)=odd(z),

whence h is even(p)odd(z). Using 2I0), @110, (ZI8), @I9), (8I0), and (Z3) one has

_ ko, _ ko, ko, ko,
[oll57 S v Hlallskn Ss v VIS ko rr + Nl IV I T 42) »

- ko, ko, ,
lwll$ S A (IS + Il S5 ) -
Using again (2100, (Z19), (8I0), and (29), the proof of (8I3) is complete. O

We now prove the existence of a solution of equation (8.8)) by means of the Nash-Moser-Hérmander
theorem proved in [10], whose statement is given in Appendix [Bl The main advantage of using such a result
consists in providing estimate (B8] of the high norm of the solution v in terms of the high norm of V' with
a fixed loss of regularity p.

Theorem 8.3. (Solution of the quasi-periodic characteristic equation (83)) Let ¢ be the constant
defined in Lemma [82, and let so := 2s9 + 3¢+ 1, p := 3¢ + 2. Assume that V is odd(p)odd(x). There
exist 6 € (0,1),C > 0 depending on <, sg such that, for all w € DC(27, 1), if V € Lip(ko,DC(2v,7), s2 + p,7)
satisfies

Y VIR, <6, (8.14)

then there exists a solution u € Lip(ko,DC(2v,7), $2,7) of F(u) = 0. The solution u is even(y)odd(x), it has
zero average in @, and satisfies

_ ko,
5™ < Cy=HIVIlsely- (8.15)
If, in addition, V € Lip(ko,DC(2v,7),s + p,7) for s > sa2, then u € Lip(ko,DC(2v,7), s,7), with
_ ko,
lullf7 < Coy M VIS (8.16)

for some constant Cs depending on s,<, sg, independent of V., .
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Proof. We apply Theorem [B1] of Appendix [Bl For a,b > 0, we define

E, = {u € Lip(ko,DC(27v,7),2s0 + a,7) : u = even(p)odd(x), (u),(x) = O}, lullg, == ||u||§201a, (8.17)
Fy := {g € Lip(ko,DC(2v,7),250 + b,7) : g = odd(p)odd(z)}, lgllz, = llgli5e’,  (8.18)

(so is in the last term of (RIJ), while 2s¢ appears in the composition estimate (2.11)). We consider Fourier
truncations at powers of 2 as smoothing operators, namely

Sp  u(p,x) = Z ug;e!CerIT i (Su)(p,x) == Z wugjelEetiT) (8.19)
(¢,j)ezv+t (0,j)y<2m

on both spaces E, and F,. Hence both F, and F}, satisfy (B)-(B.1), and the operators R,, defined in (B.f)
give the dyadic decomposition 2" < (¢, j) < 2"*1. Since S, in ([8I9) are “crude” Fourier truncations, (B.)
holds with “=" instead of “<” and C = 1. As a consequence, every g € Fjp satisfies the first inequality
in (BI12) with A =1 (it becomes, in fact, an equality), and, similarly, if g € Fsi. then (B.I5) holds with
A, =1 (and “=").

We denote by V the composition operator V(u)(y, z) := V(p,z + u(p, x)), and define ®(u) := w - d,u —
V(u), namely we take the nonlinear operator F in (8.8) as the operator ® of Theorem [BIl By Lemma 24l if
||“||12€(s’011 < qo7 (where we denote by Jp7 the constant § of Lemma 2.4)), then V(u) satisfies (2.11]), namely
for all s > sg

V@I S0 VIR, + Tl VIR s (8.20)
and its second derivative V" (u)[v, w] = Vi (@, 4+ u(p, x))vw satisfies

ko, , ) ) )
V" (@), w][l27 <s IIVIISSJkU+3(||v||’§° Mwllse™ + ol llwllee ”)

ko, ko, ko, ko, ko,
VI Trgrallell S + IV T2 Hlvlss Tl (8.21)

We fix p,U of Theorem BIlas p := 1, U := {u € Ey : |lullg, < dgzg}. Thus ® maps U — Fy and
UNEqt, — F, for all a € 0, az — 1], provided that ||V||’2€2’07+a271+k0 < 00 (a2 will be fixed below in (B.27]).
Moreover, for all a € [0,as — 1], ® is of class C?(U N Eq4,, F,) and it satisfies (BI0) with ag := 0,

Mi(a) = C@| Vg s Ma(a) = Mi(a), Ms(a) := C(a)|[V[507 1y 240 (8.22)

We fix a1, 01 of Theorem [Blas a; := ¢, where ¢ = 3kg + 27(ko + 1) + 2 is the constant appearing in Lemma
B2 and §; := %m, where 4g7 is the constant dp of Lemma B2 TIf 7_1||V||§gf< < 41 and [jv|g,, < 61,
then, by Lemma B2 the right inverse ¥(v) := F’(v)~! is well defined, and it satisfies

1@ (v)glle, < Li(a)|lgllF.. + (L2(a)l[v]| e, + La(a))llgllr (8.23)
where
Li(a):=C(a)y™", La(a) = Cla)y 2|VIIL,  Ls(a) == C@)y 2 VI50 o (8.24)

We fix o, 3, ay of Theorem [B.1] as
B:=4¢+1, a:=3¢+1, as:=>5¢+ 3, (8.25)

so that (B.9) is satisfied. Bound [823)) implies (BII) for all a € [a1, as] provided that ||V||]2€2$1(12+g < 00.
All the hypotheses of the first part of Theorem [B.1lare satisfied. As a consequence, there exists a constant

qp14 (given by (B.14) with A = 1) such that, if ||g|r, < qzz, then the equation ®(u) = ®(0) + g has
a solution v € E,, with bound (BI3). In particular, the result applies to ¢ = V, in which case the
equation ®(u) = ®(0) + g becomes ®(u) = 0. We have to verify the smallness condition ||g||r, < qp17

Using (822), 824), (814), we verify that qp7g > Cv. Thus, the smallness condition [|gllr, < 517

is satisfied if ||V||’2€2’01a2+<'y’1 is smaller than some ¢ depending on ¢, sg. This is assumption [8I4]), since

2s0 +az + ¢ = s2 +p. Then (BI3), recalling B25), gives |ul/*o7 < C’y_1||V||I;;’f<, which implies (815
since p > .
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We finally prove estimate (8I6). Let ¢ > 0. If, in addition, ||V||]2€g(,)1az+c+§ < 00, then all the assumptions

of the second part of Theorem [B.]] are satisfied. By ([822), (824) and (B.I4), we estimate the constants
defined in (B.I7)-(BI8) as

gl S CC772||V||§(;[;1(12+C+§) g2 S 00’7713 z S Cc

for some constant C. depending on ¢. Bound (BI6]) implies (8.I6) with s = s2 + ¢ (the highest norm of V' in
(BIG) does not come from the term ||V f,, . of (B.I6), but from the factor G;). The proof is complete. [

The next lemma deals with the dependence of the solution u of (B8] on V (actually it would be enough
to estimate this Lipschitz dependence only in the “low” norm s; introduced in (Z.8))).

Lemma 8.4 (Lipschitz dependence of uw on V). Let ¢, s2,p be as defined in Theorem [83 Let V1,V satisfy
®I4d), and let uy,us be the solutions of

w - Opu; — Vi(p,x +ui(p,z)) =0, 1=1,2,
given by Theorem[83. Then for all s > so — p (where p is the constant defined in (218))

_ ko, — ko, ko,
||U1 - ’LL2||IS6077 SS ')/ 1||‘/1 - ‘/2”53-;/—1-1% + 84 2 ?:121%)5 ||‘/1||52L;,u+p||vl - ‘/2||52_:k.0- (826)

Proof. The difference h := u; — us is even(p)odd(x), it has zero average in ¢ and it solves w - d,h — ah = b,
where

a(p,x) := /0 (0: V1) (@, +tur + (1 — t)ug) dt, blp,z) := (V1 — Va)(p,x + us) .

The function a is odd(p)even(z) and b is odd(p)odd(x). Then, by variation of constants and uniqueness,
h = we?, where (as in Lemma [82))

—1 -1/ _—v <’LU0€U>[P
vi=(w-0p) ta, wi=wo+g, wo:=(w-9,) (7)), g=g(x):=— o
)
By @11), B14), B.15), (8.IG), one has
ko, , ko, _ ko, ko,
lall57 <o Vaallseps  IBIEY So Vi = Vallghmy + 7 HIVellsSp Ve = Vallgotkyra Vs = so,

where ||V1,2||§°’V = max;=12 |V;||¥o-7, and, like in Theorem B3l so := 259 + 3¢ + 1, p := 3¢ + 2. By [2I])
and (Z19),

- ko. : - ko.
[oll57 S v IViallships el S 1+ M Vil sSny, Vs > 52— p,

where p is defined in (2I8). Then

— ko, — ko, ko,
||w0||ls€0ﬁ 55 v 1||V1 - ‘/2”8-0‘1-3-'1-]60 + Y 2||‘/112||53»;;1.+p”v1 - ‘/2”820-‘:/]60

for all s > so — u, and wpe?, g, h satisfy the same bound. O

In Theorem B3, for any A = (w,h) € DC(2v,7) x [h1,hy] we have constructed a periodic function u = /3
that solves (B8], namely the quasi-periodic characteristic equation ([81), so that the periodic function 3,
defined by the inverse diffeomorphism in ([80]), solves the quasi-periodic transport equation (8I).

By Theorem A2 we define an extension & (u) = Ex(8) =: Peat (With k+1 = ko) to the whole parameter
space R” x [hy,hs]. By the linearity of the extension operator & and by the norm equivalence (AL6]), the
difference of the extended functions & (u1) — Ex(uz) also satisfies the same estimate B26]) as u; — us.

We define an extension S, of 8 to the whole space A € R” X [h1,hs] by

Y=2+ Beat(p,2) & T=y+Beat(py) Yr,yeT, p T
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(note that, in general, B..+ and & (B) are two different extensions of 8 outside DC(vy,7) X [hy,hs]). The

extended functions fBezt, Bert induce the operators Begq, B;zlt by

(Bewth) ((Pa :E) = h(@a T+ ﬁezt(@a :L'))a (Be_mlth)((pa y) = h((pa Yy + Bezt ((Pa y))a Bezt o Be_zlt = Ida

and they are defined for A € R” x [hy, ho].
Notation: for simplicity, in the sequel we will drop the subscript “ext” and we rename

Bext == 3, Bezt = ﬂua Beyt == B, B;zlt =B (827)
We have the following estimates on the transformations B and B~1.

Lemma 8.5. Let 3, 3 be defined in ®Z0). There exists o := o(t,v, ko) such that, if (1) holds with ug > o,
then for any s > sa,
o) — ~ k 5
1811507, 181157 Ss ey~ (1 + 1T0ll5%5) - (8.28)

The operators A = BT —1d, (B! — 1d)* satisfy the estimates

_ ko, ~ 11ko, ko,
14BN S oyt (1A, o0 + 102NN D ) Vs 2 52, (5.29)

Let i1,i9 be two given embedded tori. Then, denoting A28 = B(ie) — B(i1) and similarly for the other
quantities, we have

||A12ﬁ||81a ||A12B||51 Ser 5771”"’1 - i2||51+0 ) (8'30)
[(A12A)[B]lls, Ssy €y Hlir —dallsyrollbllsisr, A e{B*', (B}, (8.31)

where s1 is introduced in ().
Proof. The bound (®828) for § follows, recalling that § = u, by (8I6) and (ZI6). Estimate [828) for 3
follows by that for 5, applying inequality (2.12]). We now prove estimate ([829) for B — Id. We have

(B 1d)h = / Bolhadr,  Bilfl(ea) = fgx+ 7B(p.2)).

Then ([R29) follows by applying (Z1I1)) to the operator B, using the estimates on 3, ansatz (7)) and the
interpolation estimate ([2I0). The estimate for B~ — Id is obtained similarly. The estimate on the adjoint
operators follows because

B*h(p.y) = (14 B, y)h(e,y + Ble.y), (B hp,x) = (1+ B(p,))h(p,x + Bp,x)).

Estimate (830) for A2/ follows by Lemma B4, and by (ZI6)-(ZI7). The estimate for A543 is proved using
the identities

9

ﬂk(@ﬂz)+ﬂk(@ﬂz+ﬂk(@ﬂz)) :Oa ﬂk = /B(Zk)v k:172;

whence
A12B(p,2) = —BuBlp + Bi(e,2)) + (Balez + Bile,2)) = Bale,w + Bl )
so that, by ([T9), (829), (B28)) and by the estimates on composition of functions of Lemma 2.4 one gets

||A126||51 551 ||A126v||81 +57_1||A12ﬁ||81 :
Estimate (830) for A2 follows by taking ey~! small enough with respect to some constant C(s;) > 0. O

We now conjugate the whole operator £y in (TI3) by the diffeomorphism B.

71



Lemma 8.6. Let 3,53,B8,B~" be defined in 82Z7). For all X € DC(y,7) x [h1,hs], the transformation B
conjugates the operator Lo defined in [TI3) to

Ly=BLoB=w-0,+ (Zl *‘LQayHOTh * Rl) , (8.32)
3
T,, := tanh(h|D,|) := Op (tanh(hx(¢)[¢])), (8.33)

where ay,as,asz are the functions

ar(p,y) == (B7Va)(@,y), az(e,y) =1+ (B~ '8)(,9), as(e,y) == (B~ a)(p,), (8.34)

and R1 is a pseudo-differential operator of order OPS~°. Formula [834) defines the functions a1, az,as
on the whole parameter space RY X [h1,hs]. The operator Ry admits an extension to RY X [h1,ha] as well,
which we also denote by Ry. The real valued functions 3, a1, as,as have parity

B = even(yp)odd(x); a1 = odd(yp)even(y); az,ag = even(p)even(y). (8.35)

There exists 0 = o(1,v, ko) > 0 such that for any m,a > 0, assuming (1) with po > o +m + «, for any
s > 8o, on R” X [h1,hs] the following estimates hold:

las |57 + llaz = 137 + flas — LJE7 So ey~ (1 + |T0]13%7). (8.36)

ko, - ~ ko,
"Rl ||70'rr7,s,a S/myS,a ey 1(1 + ||J0||59r;+m+a) . (837)
Finally, given two tori i1,12, we have

[A12a1|s, + |Ar2a2]ls, + [[Ar2as]ls, Ssy &7 Av2ill sy 40 (8.38)

||A12R1|7m,sl,a Sm,sl,a 5’)’_1”A12i”51+a’+m+a . (839)

Proof. By (19) and [B3)-(&X) we have that

-1
Ly=BLoB=w-0,+ (Z; o OG(”)B) (8.40)

where the functions a1 and as are defined in ([834). We now conjugate the Dirichlet-Neumann operator
G(n) under the diffeomorphism B. Following Proposition Bl we write

G(n) = |Dy|tanh(h|D,|) + Re¢ = 0. HTw + Re, Ty, := tanh(h|D,|), (8.41)
where R¢ is an integral operator in OPS™>. Recall the decomposition ([B.51]), which is

2

Ty = Id + Op(m), m(§) = "1+ emEXE)

€§=>. (8.42)

Since B~ 9, B = a8, where the function as is defined in (834), we have
B0, HTWB = (B10,.B)(B~'HB)(B~'TnB)
= as0y{H + (B~ '"HB — H)}(B~'ToB)
as0y H{Ty + [B~0p(ra)B — (Th — 1d)]} + a20,(B~*HB — H) (B~ T,B)
= a20,HTy + a20, H[B~'Op(ra) B — Op(rn)] + a20, (B~ *HB — H)(B~'TnB) . (8.43)

Therefore by (841)-(®43) we get

- B 'G(n)B = —a20,HTy + R1, (8.44)
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where R is the operator in OPS™>° defined by

Ry =Ry + R + R

R\ = —B~'R¢B,

R 1= —ay0,H[B~ Op(ry) B — Op(r)] ,
R = —a20,(B~'HB — H)B~'T,5.

(8.45)

Notice that B~1RgB and B~1Op(ry)B are in OPS~ since Rg and Op(ry), defined in (841)-(8.42), are in
OPS~. The operator B~'HB — H is in OPS~ by Lemma 218

In conclusion, 840) and ®Z4) imply (832)-(@34), for all A in the Cantor set DC(v,7) X [h1,ho]. By
formulas [84H), R is defined on the whole parameter space R” X [hy, ha].

Estimates (830), (R3]) for a1, as,az on R X [h1,hy] follow by (CI6), (CI7) and Lemma B35 We now
prove the bounds [837), (839). We estimate separately the three terms in (8.45).

ESTIMATE OF Rgl). By Proposition Bl and Lemma 2.16] B~'RsB is an integral operator with C> kernel

IU(G(‘Pa €T, Z) = (1 + azﬂu(sav Z))KG(QOa T+ B(W?x)a z+ B(Sﬁv Z)) )

where K¢ is the C* kernel of R¢. Applying (2Z57), (Z:60), Proposition Bl and using (ZI0), (ZI1) and the
estimates of Lemma [85] we get (837) and (839) for Rgl).

ESTIMATE OF ’R?). Since the symbol r, € S™° (see (842)), by Lemma the operator B~1Op(ry)B —
Op(ry) is an integral operator with C* kernel

(14 0.8(¢. 2)) K, (y + Blo,y), 2+ Blg, 2)) — K (y, ),

where K,, is the C* kernel associated to m, (see (Z63)). Hence the kernel associated to ’R?) is given by

K (0., 2) 1= ax(p, y)Hy Dy ((1+ 086, 2)) Koy + B, w), 2 + B, 2)) = Koy, 2)

(note that H, is the Hilbert transform with respect to the variable y). By Lemmata 2.16] 219, by the
estimates of Lemma B3] and using also (CI0), (C11), (836), (B3])), one gets

2) ko, - ko, 2 - .
IE P50 v Soimia 7 L+ 130059 s aso) s ALK lgortmta Ssima €7 A L2i]ls +mtato

for oo, m > 0, for some o = o(7,v, ko) > 0. Estimates (837), (839) for ’R?) follow by Lemma 215
ESTIMATE OF ’Rgg). Let Kg be the C* kernel of the operator B~'HB — H given in 2.61)), [Z.62) with 8
instead of p and S instead of g. One has

R u(p,y) = *az(sa,y)ay/TKB(%y,Z)(B’lThBU)(%Z)dZ
= —aQ(ga,y)ay/E(B*Th(B_l)*KB(cp,y,z))u(g&,z) dz (8.46)

) given by

using that 73" = Ty. Hence Rgg) is an integral operator with kernel K fg’
3 * —1\*
K (p,2,2) = —az(i0,)0, (B*Tu(B~") Kl y.2) )
Then by Lemmata [2.18] and by (CI0), (ZI1I), (836), B38), we get

3) ko, - ko, 3 — .
I B e Soma 0 L+ 19015 rano) s ALK D [[corimia Sopima €7 1 Av2ills +mtacto

for m,a > 0, for some o = (7, v, ko) > 0. Thus estimates [837), (839) for ,Rgs) follow by Lemma T8 O

73



Remark 8.7. We stress that the conjugation identity (832) holds only on the Cantor set DC(vy, )X [h1, ha]. It
is technically convenient to consider the extension of ay, az,as, R1 to the whole parameter space RY x [hy, ha],
in order to directly use the results of Section [2.3 expressed by means of classical derivatives with respect to
the parameter \. Formulas (834) and [B4H) define a1, a9, a3, R1 on the whole parameter space RY X [h1,hs].
Note that the resulting extended operator L1 in the right hand side of (832) is defined on R X [h1,hs], and
in general it is different from B=1LoB outside DC(v,T) x [h1,ha].

In the sequel we rename in (832)-(838) the space variable y by .

9 Change of the space variable
We consider a p-independent diffeomorphism of the torus T of the form
y=x+ a(zr) with inverse x=y+a(y) (9.1)

where « is a C*°(T,) real valued function, independent of ¢, satisfying ||a, ||~ < 1/2. We also make the

following ansatz on « that will be verified when we choose it in Section[I2 see formula (IZ25]): the function

ais odd(x) and a = a(\) = a(),ig(N)), A € R¥T! is ko times differentiable with respect to the parameter

A € R"HL with 0Fa € C(T) for any k € NY*1 |k| < ko, and it satisfies the estimate
laflf7 S er™ (14 [T0ll357) . Vs = 5o,

o 9.2)
[A2als, Ssi a7 I A12i]|sy 40,

for some o = o(ko,7,v) > 0. By ([@2) and Lemma [2:4] arguing as in the proof of Lemma R one gets

lafls Ss ev ™ L+ 11T0ll357) . Vs > so,

) . 9.3)
[Ar2ct]]s, Sy €7 Ar2ilsy 40,

for some o = o(ko,7,v) > 0. Furthermore, the function &(y) is odd(y).
We conjugate the operator £; in ([832]) by the composition operator

(Au)(p,2) == u(p,z + a(z)), (A7) (p,y) = ulp,y + aly)). (9.4)
By (832)), using that the operator A is ¢-independent, recalling expansion ([B.51]), namely

2

Th:Id+Op(Th), Th(f):*m S

ST,

and arguing as in (843) to compute the conjugation A~!( — a28,HT3)A, one has

EQ — AflﬁlA - w- 8Lp + <Zz *a5ay7'LOTh +R2> , (95)
where a4, as, ag are the functions
as(p,y) = (A1) (g, y) = a1,y + aly)), (9-6)
as(p,y) = (A" (a2(1 + a2))) (0, y) = {a2(p, ) (1 + @2 (2)) Hazyracw)
as(,y) = (A" a3) (¢, y) = as(p,y + a(y))
and R, is the operator in OPS~*° given by
Ro i= —a50y,H[A" Op(ra)A — Op(rn)| — as0y (A HA — H)(A' T A) + AR A. (9.9)
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Lemma 9.1. There exists a constant o = o(ko,7,v) > 0 such that, if (1) holds with uo > o, then the
following holds: the operators A € {A*! —1d, (AT —1d)*} are even and reversibility preserving and satisfy

HARJEY S ey (RIS T 41 + 130l IRl Ty a) V5 = s0,

s+ko+1 so+ko+2 (910)
(A2 A)hls; Sor 7™M Ar2illsyto | allsi+1-
The real valued functions ag,as,ag in (Q0)-@8) satisfy
as = odd(p)even(y), as, ag = even(p)even(y) , (9.11)
and .
laall§7, las — 11507 [las = 1|57 So ey~ (1 + [[TollsSs) (9.12)

[Arzaalls, , [[A12a5]ls, 5 [ Ar2ae]ls, Ssi €7 Av2i 5140 -

The remainder Ro defined in ([Q9) is an even and reversible pseudo-differential operator in OPS~°°. More-
over, for any m,a >0, and assuming (T1) with o +m + a < ug, the following estimates hold:

|R2|]io7g,s,a Sma&a 57_1(1 + ||jo||]sc$;+m+a) ) VS Z S0

: (9.13)

|A12R2 ||7m,sl,a S,m,sl,a 577 |A12i||51+a+m+a .

Proof. The transformations A*! —Id, (A*! —1d)* are even and reversibility preserving because a and & are
odd functions. Estimate ([@I0) can be proved by using ([@.2)), (@3), arguing as in the proof of Lemma [85
Estimate ([@I2) follows by definitions ([@.6])-(@.8), by estimates ([@.2), (@3), @I0), B34), (83]), and by

applying Lemma 24
Estimates (@.13) of the remainder Ry follow by using the same arguments we used in Lemma to get
estimates ([837), (839) for the remainder R;. O

In the sequel we rename in (@.5)-(@.9) the space variable y by x.

10 Symmetrization of the highest order

The aim of this section is to conjugate the operator Lo defined in (O.3]) to a new operator £4 in which the
highest order derivatives appear in the off-diagonal entries with the same order and opposite coefficients (see
(I0I0)-(I014)). In the complex variables (u, @) that we will introduce in Section [II] this amounts to the
symmetrization of the linear operator at the highest order, see (I1.1))-(I13).

We first conjugate Lo by the real, even and reversibility preserving transformation

An O
My = ( " 1), (10.1)
0 A

where Ay is the Fourier multiplier, acting on the periodic functions,

1 1
Ay =7+ |D|%Th4 , with inverse At =mo + |D|_%Th 1 (10.2)

with T, = tanh(h|D|) and 7o defined in ([235]). The conjugated operator is

—1 -1/ —1
EB = M;1£2M2 = w- 890 + <AKhaC;£j\/:1h Ah ( a5817'€)Th +R2)Ah ) = w- 8Lp 4 (gg B;)g) . (103)

We develop the operators in (I03) up to order —1/2. First we write

Az = A;1a4Ah = a4+ Ra, where Ra, = [A;l, as)Ay, € OPS™! (10.4)
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by Lemma2TI1l Using that |D|™mg = mo|D|™ = 0 for any m € R and that 73 = 7o on the periodic functions,
one has

Oy = AnagAn = agA2 + [An, ag]An = ag(mo + [D|3T5)? + [An, ag)An
= a6|D|%Th% + 7m0+ Rey where Re, = (ag — 1)mo + [An, ag]An - (10.5)
Using that |D| = H9,,, (I02) and |D|my = 0 on the periodic functions, we write Bs in (I03]) as
By = Ay Y (—a50, HTw + R2)A; 't = —as|D|Tay % — [AL Y as]|D|TulAy ' + Ay ' RoAL?
= —as|D|Tu(mo + D7 3Ty 1) = (A7, as]| DITaA; ! + Ay ' RoA;
— —as|DP’TE + Rp,  where Ry, = —[A7Y as]|DITaAL ! + AT RoASL. (10.6)
In the next lemma we provide some estimates on A, and the remainders Ra,, Rp,, Rcs-

Lemma 10.1. The operators Ay € OPST, At e OPS~% and Ras, Ry, Re, € OPS~%. Furthermore,
there exists o(ko,T,v) > 0 such that for any o > 0, assuming [T1) with po > o + «, then for all s > sy,

ko, “1yko,
Ay AT Sa (10.7)
ko, - ~ ko, _ .
||R||_0;s7a Ss,a &gy 1(1 + ||JO||SSr;+a) ) ||A12R||—%,sl,a 551@ ey 1||A12’||51+0+a (10-8)

for all R € {Ra,,RBs,Rcs}- The operator Lg in [I03) is real, even and reversible.

Proof. The lemma follows by the definitions of R4,, Rp,, Re, in (I0.4), (I0.6), (I0.5), by Lemmata 210l
and 2ZTT], recalling (241)) and using (@.12)), (O.13). O

Consider now a transformation M3 of the form

0 _ -1
Ms = (g 1), M31:<p0 1), (10.9)

where p(ip, ) is a real-valued periodic function, with p— 1 small, that we shall fix in (I0.14]). The conjugated
operator is

-1 . -1 -1

where, recalling (I0.4), (I0.6), (I0.5), one has

Ay =td4+Ra,, Gg:=as+p (w- 0op), Ra,:= p ' Ra,p (10.11)
1 1

By = —p tas|D|?Ty? + Rp,, Rp, :=p 'R, (10.12)

Cy=aep|D|? T2 + 70+ Rey . Re, = agl| DT, pl +mo(p — 1) + Reup (10.13)

and therefore R,, Rp,, Rc, € OPS™z. The coefficients of the highest order term in B, in (1Y) and C
in (I0I3) are opposite if agp = p~las. Therefore we fix the real valued function

a

5 _

pi= e agp = p tas = Jasag =: a7 . (10.14)

Lemma 10.2. There exists 0 := o(7,v, ko) > 0 such that for any « > 0, assuming (1) with o > o+« then
for any s > so the following holds. The transformation Ms defined in (I09) is real, even and reversibility

preserving and satisfies
ko, _ ~ ko,
Mzt —T1d]g%T Ss ey (14 190ll5%7) - (10.15)
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The real valued functions a4, ar defined in (IOIT), (IQT4) satisfy
a4 = odd(p)even(z), a7 = even(p)even(z) , (10.16)

and, for any s > so,
][5, llaz = 11507 S ey~ (1 +1|T0]15%7) - (10.17)

The remainders Ra,, Rp,, Rc, € OPS™2 defined in (I01L)-(I013) satisfy

|,R'|ko7’y <s a €Y (1 + ||30||§?i-7<’7y+a) ’ R e {RA4’RB4’RC4} ’ (10'18)

7,SaN

Let 11,12 be given embedded tori. Then

[ALMF 0,610 S €7 [ Ar2i]l 540 (10.19)
[Av2d4ls,, [|Ar2a7]ls; Soi €7 | Ar2ils 40 (10.20)
||A12R|7%7517a 551704 57_1||A12i||51+0+a ) R € {RA47RB47RC4} . (1021)

The operator L4 in [IOIQ) is real, even and reversible.

Proof. By ([@.I1)), the functions a5, ag are even(yp)even(z), and therefore p is even(p)even(z). Moreover, since
a4 is odd(p)even(z), we deduce (I0.I6). Since p is even(p)even(z), the transformation M3 is real, even and
reversibility preserving.

By definition (I0.14]), Lemma [2Z8] the interpolation estimate (2I0) and applying estimates (@12) on as
and ag, one gets that p satisfies the estimates

_ ko,
||pi1 - 1”5077 ,Ss ey 1(1 + ||30||si;) ) ||A12pi1||51 ~s1 €Y 1||A12’L||s1+0 (1022)

for some o = o(7,v,kg) > 0. Hence estimates (IILI5), ([LI9) for MZ' follow by definition (IILJ), using

estimates (2.41]), (10.22).
Estimates (I0.I7), (I0.20) for a4, a; follow by definitions (I0.11]), (I0.14) and applying estimates (0.12)

on a4, as and ag, estimates (I0.22)) on p, Lemma [2.6] and the interpolation estimate (2I0I).

Estimates (I0I8), (I02T)) follow by definitions (DID:[I) ([I013), estimate (247), Lemmataandm
bounds [@I2) on ay, as,as, ([0.22) on p, and Lemma [[0.1]

11 Symmetrization of the lower orders

To symmetrize the linear operator £4 in (I0I0), with p fixed in (I0.T4]), at lower orders, it is convenient
to introduce the complex coordinates (u, @) := C~1(n,1), with C defined in ([Z87), namely u = 1 + i1,
@ =mn — iy). In these complex coordinates the linear operator £4 becomes, using (Z68) and (I0.14),

L5:=C L€ =w-0,+iar|DPTZY + agly +illg + Ps + Q5,  as = % , (11.1)

where the real valued functions a7, a4 are defined in (I0.14), (I0I1) and satisty (I0.I6]),

(1 0 1 (m m (10
s (L 0). med(™ m). e () 0), 112

7o is defined in (Z35), and
P 0 0
P55<5 —>, Q55<— Q5>7
0 Ps @ 0 (11.3)

1 1
= 3{Ra +i(Re, =R} Qs =as+ 5 {Ra, +i(Re, + R}
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By the estimates of Lemma [10.2] we have

lar — 157 So ey (1+190l1557) s Awazlls, Soy &7 1 A12i]l 140 (11.4)
lasl| ¥ S ey (L4 1T0ll537) (1 Ar2as]lsy Sor 7 Ml Ar2ills, 4o (11.5)
|Ps |k°l o 1951050 Sea e (14 1190]15%740) (11.6)
[A1Ps]_1 5 a5 1812950610 Sora €7 Ar2ills; +ota - (11.7)

Now we define inductively a finite number of transformations to remove all the terms of orders > —M from
the off-diagonal operator Q5. The constant M will be fixed in (I5.10).

Let Ego) = Ls, P5(0) := P5 and Qéo) = 5. In the rest of the section we prove the following inductive
claim:

e SYMMETRIZATION OF ﬁgo) IN DECREASING ORDERS. For m > 0, there is a real, even and reversible
operator of the form

£ = w0, +iar|D|P TS + asly + iy + P{™ + Q™ (11.8)
where ) )
pim — ™0 Qi — 0 5
—-(m) ’ —(m) )
0 P s 0 (11.9)

Pi™ = Op(pm) € OPS™ 7, Q™ = Op(gm) € OPS™%

For any o € N, assuming (7)) with po > R4(m, @) 4+ o, where the increasing constants N4 (m, «) are
defined inductively by

R4 (0, ) == a, Ry(m+1,a) := N4(m,a+1)+%+2a+4, (11.10)
we have
1P o 1957 - g0 Smasia &7 (L4 1301557, (a4 - (11.11)
1802P5™ |1 oo 18120812 10 Somsia €77 A2l eyt () o (11.12)
For m > 1, there exist real, even, reversibility preserving, invertible maps ®,,_1 of the form
By =T+ Uy, Uy = (m 1/””1(5’:”’1))) : (11.13)
with ¥,—1(p,x, D) i 2, such that
£ =ao-t Ve, (11.14)

Initialization. The real, even and reversible operator Ego) = L5 in ([IIT)) satisfies the assumptions (ILJ)-
(III2) for m = 0 by (IL6)-(17).
Inductive step. We conjugate Eém) in (IT) by a real operator of the form (see (ITI3))

L L 0 T/Jm(@,z;D))
®,=L+v,,, v, = (Q/Jm( ,

¢, z, D) 0 (11.15)
U (@, 2, D) == Op(thy,) € OPS™ %77 .
We compute
L@, = 0, (w- 9, +iar| DT TES + agly + illy + PL™)
+ [iar|DETES + agly + iy + P{™, W,0] + (w - 9p0,0) + Q™ + QW . (11.16)

In the next lemma we choose ¥, to decrease the order of the off-diagonal operator Qém)
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Lemma 11.1. Let

X()gm (@, 2, €) i e

- 1 1 > l’ _m_ 1
Vi (:2,€) == < 2iar(ep, x)|¢|% tanh? (b[¢]) 3 Ym €S™ET, (11.17)
0 if ¢ <3,

where the cut-off function x is defined in (ZI8). Then the operator ¥, in (ILID) solves

i[ar| DIFT 2, W, ] + QL™ = Qy, (11.18)

where

0 qy (‘PﬂzﬂD) —m_]
Qy,, = <7 " : eSSzt 11.19
w quL (SD’ ZC, D) qw ( )

Moreover, there exists o(ko,7,v) > 0 such that, for any o > 0, if (1) holds with pg > Ng(m,a+ 1) + o +
T +o+4, then

k k
|q7ﬁm(90a1' D)| 07; 1sa§sa57 (1+||‘J0||si;ly4ma+1)+ +a+a+4) (11.20)

The map ¥, is real, even, reversibility preserving and

ko, — ko,
[vm (@, 2 DI | Smsa €7 (14 130055 a0y ) (11.21)
|A12wm(90ﬂ x D)lf%fl,sl,a /Sm7511a ey ||A12Z||s1+U+N4(m,a) ) (1122)
|A12qwm(%$ D)"———l 1,00 Sms1,00 57_1||A12@'||51+N4(m,a+1)+%+a+a+4- (11.23)

Proof. We first note that in (ILI7) the denominator az|¢|2 tanh(h|€])2 > ¢[¢|2 with ¢ > 0 for all |€] > 1/3,

since az — 1 = O(ey™!) by (I0I7) and (Z7). Thus the symbol v, is well defined and, by ([LI7), Z47)
and (II.I1), (I0.I7), Lemma 2.6, (1) we have, for all s > s,
(02, DGy S 15154 o+ llar = 1[0 71Q5™ 12

—3.s,a — 3,50,

Sm,s,a €Y (1 + ||J0||s+a+}l4(m a))

proving (IT21)).
1
Recalling the definition (TLJ) of ¥, the vector valued commutator i[az|D|2 T2 %, ¥,,] is given by
. 1,1 0 A . 1,1 1.1
ilar DPTER, ] = ;) A=i(ar|DI2T Op(vm) + Op(vhm)az| D> T;?) . (11.24)

By (II.24), in order to solve (ILI8) with a remainder Q,, € OPS~% ~! as in (ITIY), we have to solve the
equation

1 1 m
iaz| D2 T, Op(thm) +i0p(¥m)az| D|* T + Op(gm) = Op(gy,,) € OPS™ %71 (11.25)
1 1
By (230)), applied with N =1, A = a7|D|2T;?, B = ¥m(p, x, D), and ([Z33)), we have the expansion
1 1
a7| D2 T2 ¢ (9,7, D) + Y (g, 2, D)ag| D> T
1 1
= Op(2ar¢]# tanh? (B¢ (¢, 2.€) ) + O(an, (,2,)) (11.26)

where, using that azy(&)[¢|2 tanh%(hx(§)|§|) € 52 and ¢, (o, x,€) € S™% 72, the symbol

G, = 71,48 + 11,54 + 2a7[€|? (tanh? (x(€)€])x(€) — tanh? (W[¢]))m(p,2,€) € STE71,  (11.27)
recalling that 1 — x(£§) € S~ by (2Id). The symbol ¥, (¢, z, &) in (IIIT) is the solution of
2iar|€|* tanh® (b|€]) e (0, 2,€) + X(E)qm (g, 2,€) = 0, (11.28)
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and therefore, by (I1.20)-([I1.28)), the remainder gy, (¢, z,&) in (I1.25) is
4 (p,2,8) = iqy,, (s 2,8) + (1 = x(§))gm(p, x,§) € STE (11.29)

This proves (ITIS)-(TTI9).
L1
We now prove (IL20). We first estimate (IL27). By (248) (applied with N = 1, A = a7|D|2T}2,
B = ¢p(p,2,D), m =1/2, m = -2 — % and also by inverting the role of A and B), and the estimates

2
(T21), T4, @T) we have
ko, ~ |1kos
|90, (2,2, D28 1 oo Smosia €77 (1+ 1300537 0y (moact 1) 4 2 4acta) (11.30)

and the estimate (IT20) for gy, (¢, =, D) follows by (I1.29) using (ITI1)), recalling that 1 —x(§) € S~ and
by applying (2.47) with g(D) =1 — x(D) and A = ¢ (v, x, D). Bounds ([1.22)-(I1.23) follow by similar
arguments and by a repeated use of the triangular inequality.

Finally, the map ¥,, defined by (IIT.15), (ITIXT) is real, even and reversibility preserving because ng)
is real, even, reversible and a7 is even(p)even(z) (see (I0IG)). O

For ey~! small enough, by (IT21)) and (1) the operator ®,, is invertible, and, by Lemma 214}

120" = Ll6% Soa [Wmleilh Sea e (14117057 ). (11.31)

0,8, ~S,0 s+o+R4(m,a)

y (I1.I6) and (II.18]), the conjugated operator is
L0 = oL, = w8, + iag| DIFTE Y + asly + illg + PL™ + P (11.32)
where ,ﬁm_l,_l =&, 1Pr | and
Pry = Qo + [0, U] + [asla + P 0,0 ] + (- 0,0,,) + QT .. (11.33)

Thus (ITI4) at order m + 1 is proved. Note that P41 and II, are the only operators in (IL32) containing
off-diagonal terms.

Lemma 11.2. The operator ,ﬁm.l,_l € OPS—%-3. Furthermore, for any o > 0, assuming () with
o > o+ Ny(m + 1, ), the following estimates hold:

= ko, _ ko,
||7>m+1|_°%7_%75,a Smsaey M1+ 130038 s m 1)) V8 2 S0, (11.34)
|A12Prmt1]_m 1 gy 0 Smsva € 1A 120 ]|y 4oty (m1,0) (11.35)

where the constant Rq(m + 1, «) is defined in (ILI0).

Proof. We prove the estimate (I1.34). The operator Qy defined in (ILIY) is in OPS~%~! c OPS~ %2
and satisfies (IT.20). The operator [IIy, ¥,,,] € OPS~°° satisfies, by (I1.21),

ko, - ko,
”HO’ \I/m“_o%;y_%,s,a vas’o‘ ey 1(1 + ||30||513+N4(m,a)) :

Recalling (IT9), (ITI5), we have
m) 0 A . (m)
lasly + P5™, W] = (5 ), A= (as + PE™)Op(¥m) — Op(vm) (as + PI™)
and (2.43), (IT3), (ITII), (IT2T) imply

(m) k ~ ko,
|| [agﬂz + P5 7\Ilm]| 0%7__ s, Sm ENeY ey (1 + ||J0||53-;+N4(m,a)+%+%+a) .
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The operator (w - 0,¥,) € OPS~% "7 satisfies
ko, ko, - ko,
o Opml 2y o SNl o S o1+ 130032 1)

by (IL.21).
Finally Q'™ W,, € OPS~™~% C OPS~%~% and by (Z40) and (245) (applied with A = Q™ B =,
(—%,—% — 3) instead of (m,m’)), ((LII), (L2ZT) we get

ko, ko, AAILLE
||Q5m)\I/m" " ,8, < "Q m)\I] " o ,8,Q Sm S, &y (1 + ||JO||S?H’TY+N4(7TL,O¢)+O¢+%) ’

Collecting all the previous estimates we deduce that Py, ; defined in (IL33) is in OPS =% =3 (the highest
order term is w - 9,¥,,) and

ko,
||P72+1||,0%’Y,%7S,a Sm,s,a 57 (1 + ||jO||s+g+N4(m a+1)+ +Ot+4) (1136)
In conclusion (Z4H) (applied with m =0, m’ = —2 — 1) ([I31), ([136) imply
P51 40 =190 P s L
1yko, ko, Lykos ko,
Sm P L |Oosva|| +1||,Oj,, sotaa T |, "005:7 [P +1||,Oj,, sta,a

—1 Ko,y
,Sm,s,a ey (1 + ||J0||510‘+N4(m7a+1)+%+2a+4)
which is (IT.34)), recalling (ITI0). Estimate (IT35) can be proved by similar arguments. O

The operator Lémﬂ) in (IT332) has the same form (IL8) as Kg with diagonal operators P(mH) and
off-diagonal operators Q") like in (IIH), with

Pém+1) + Qém+1) - P5m) + 75m+1 )
satisfying (ITII)-(TT.12) at the step m+ 1 thanks to (IT34)-(IT35) and (IITII)-(ITI2) at the step m. This

proves the inductive claim.
Applying it 2M times (the constant M will be fixed in (I5I6)), we derive the following lemma.

Lemma 11.3. For any « > 0, assuming (1) with pug > Ns5(M,«) + o where the constant Ns(M, a) =
N4 (2M, @) is defined recursively by ([(IIIQN), the following holds. The real, even, reversibility preserving,
invertible map

@M = (I)OO...Oq)QM,1 (1137)
where O, m=0,...,2M — 1, are defined in (ILIH), satisfies
ko, k
1237 — Tl 1( @37 — ) I Senr o7 (14 190038 gar)) - Y5250, (1138)
1812873/ 0,510 1812(23) 0,500 Swsr €7 11216404305 (11,0) - (11.39)

The map ®p; conjugates L to the real, even and reversible operator

1
Lo :=®, Ls®y = w- Oy +ia7| D7 T2 S + aglly + illy + Ps + Qg (11.40)
where the functions az,as are defined in (I014), (ITI), and
_ (P O —1 _ (0 Qs -M
P = <0 P6> € OPS Qg := <§6 o) € OPS (11.41)
giwen by Pg := Pé2M), Qg := Q?M) in (ILR)-IL3) for m = 2M, satisfy
ko, k
IIPGI,"; 161" 57 4 o St €7 M1+ ||J0||S+U+N5(M a)) Vs > s, (11.42)
[A12P6 |1 5, 0 + [212Q6] 0,510 Shs1,0 7 D126, o5 (M) - (11.43)
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Proof. Estimates (I1.42)-({I1.43) are (ILII)-II2) at m = 2M. Let us prove (IL38). For all 0 < m <

2M — 1, s > sg, we have

=D
ko,y IIDD ko, - ~ ko, - ~ ko,
|®m — Lo 0?5:6 =" ¥ 0?s70 Sso €Y 1(1 + ”JO“s:L;er(m,o)) Ss €Y 1(1 + ||J0||52L;+N4(2M,0)) )

then the estimate (IT.38) for ®,; — I follows by applying iteratively the estimate (2.45) of Lemma2.I0 The
estimate for &' —I, follows since by (IL31), ®,; = ®,,, ,0...0®; ", using (IL31) and applying iteratively
the estimate (243) of Lemma I The estimate on the adjoint operator (®3} —Iy)* follows similarly since
Lemma 213 implies |(®1! — Hg)*lg::{) S |@E — 1T ||§?S’15070. Also ([I1.39) is proved analogously. O

12 Reduction of the highest order

We have obtained the operator Lg in (IT40), where Ps is in OPS ~% and the off-diagonal term Qg is in

1
OPS~M _ The goal of this section is to reduce to constant coefficient the leading term iaz (i, z)|D|2 T2 2. To
this end, we study how the operator Lg transforms under the action of the flow of the p-dependent family
of pseudo-PDEs

0,u = iB(p. ) D] u o)
U(O, ¥ SC) = uO(‘Pﬂ :L')
where (g, ) is a real valued smooth function, which will be defined in (I22I]). We also write
1
A= A(p) = B(p,x)|D|2 . (12.2)
Let ®(7) := ®(1,¢) denote the time 7 flow of equation (IZT]), namely
LB (1) = iB(p, )| D]z ®
o(0) =1d.

Since the function B(y,z) is real valued, usual energy estimates imply that the flow ®(7,¢) is a bounded
operator mapping H: to H:. In the Appendix of [21] it is proved that the flow ®(7,¢) also satisfies tame
estimates in H , as well as 8;8’;4)(7, v) with losses of (|r| + |k|)/2 derivatives, see Section [Z71

Let ® := ®(p) := ®(1,¢) be the time one flow of (IZI). Note that ®~! = & (see Section E.7) and
by =79 = D g (12.4)

because, when the datum wug(p,z) = ug(e) in (IZI) does not depend on x, the solution of ([IZT]) is
u(T, @, ) = uo(p) for all 7, z.
We write the operator Lg in (IL40) as

(0)

P

ng'8¢+iﬂo+<_6 23))
Qs P

where Iy is defined in (IT.2), Q¢ in (IT41)), and
1
PG(O) = Pﬁ(o)(go,x, D)= ia7|D|%Th2 +ag + Py (12.5)

with Py defined in (IT4T)). Conjugating L with the real operator

P = (%’ %) (12.6)

we get, since @111 ® = I1o® by (2.4,

1PV - 1QD
6 @® ) (12.7)

L= 1 Lg®=w-0,+P (w-0,P)+ill(®+ | __ 5 1 ——
7 6 © ( © ) 0 3 1Q6(I) 3 1Pé0)q)
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Let us study the operator
Lii=w-0,+® ' (w-9,0) + o 'P"o. (12.8)

ANALYSIS OF THE TERM &~ 1P\ ®. Recalling (TZ3) and (T22) the operator
—1 (0
P(r,¢) = @(r,0) " P 0(7. )

satisfies the equation
. - 0
0-P(r.¢) = —i®(r,¢) ' [Alp). I ] 2(7. ).
Iterating this formula, and using the notation

Aday P = [Alp), BT,

we obtain the following Lie series expansion of the conjugated operator

2M , \n
_ . —1 n
a(1.o) PV0(1 ) = PO A PP + 3 OV Ay RO
n=2 ’

i 1(1 — 7)Mo (7,0) LA PO (1, ) dr (12.9)

(QM)' 0 9 90 A(‘P) 6 9 90 . .
The order M of the expansion will be fixed in (I5I6). We remark that (I2.9]) is an expansion in operators
with decreasing orders (and size) because each commutator with A(¢) = (¢, z)|D|? gains 1 order (and it

has the size of 8). By (IZ2) and (I2.3),

—i[A, P”] = [BIDI*, a7|D|*] + [BIDI*, ar|D|* (i —1d)] —i[BID|*, as + Ps) (12.10)
Moreover, by ([2.48), ([2.49) one has
[BIDI¥, a7 DI*] = Op (= H{BX()IE1¥, arx(©)I€]*} + ra(Bx(©)I€]}, arx(€)[€1%)) (12.11)

= i0p( ((9s8)ar — B(0:an) X(©)I€IF 0 (x(©)I€]?) ) + Op(z2(Bx()IE]E, arx()I¢[F))
= (0. 8)a7 — A(2sa7)) Op( 5x*()sign(€) + X(E)Iex(€)le]) + Op(e2(Ax(E)[e]:, arx(€)le[))

where the symbol ra(8x(€)|€]2, arx(€)[¢]2) € S~ is defined according to (ZH0). Therefore ([ZI0), (T2IT)
imply the expansion

i[A, O] = _% ((0:B)ar — BDaar))H + Ry o (12.12)

where the remainder

Ry g0 = 1((0:B)ar — B(0.07)) O (M(O)ex (€] + 5((€) — x(€))sign(€) )

+ Op(r2(Bx(6)[€]%, arx(€)[€]%)) + [BID|?, ar| DI (T —1d)] —i[B|D|%,as + Ps]  (12.13)

is an operator of order —% (because of the term [8|D|2, as)).
ANALYSIS OF THE TERM w - 0, + @ Hw - 9,8} = &~ ow - d, o ®. We argue as above, differentiating

(97{@(7', 50)71 ow - 890 °© @(Tﬂ 50)} = 71(1)(7_7 90)71 [A(QD),CU ’ a«P} (I)(Tv 90)
= —i®(7, )" (Ada(pyw - 0,)@(T, ) .
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Therefore, by iteration, we get the Lie series expansion

( ) 2M+1

. —1 i
®(1,0) tow: 0,0 ®(1,9) =w- 0y —iAda(pyw - I + ~——— 5 A(sa) -0y + Z d(pyw - 9y
+ (i /1(1 — )M P (1, ) (A Pw - 0,) @(, ) dr. (12.14)
(2M +1)! /, ’ Alp) T
We compute the commutator
Adow 9y = [A(p).w - 8,] = —(w- 9pA(g) "B —(w - 8.B(p,x))|D[? (12.15)

and, using (Z48), (Z49),
Add w0 - 9 = [(w- 0, A()), Alp)] = [(w-9,8)D|7, B|D|?]
= 0p( = i{ (w- 0 B)X(E)IE1%, BX(©)I&1 } +ral(w - DAX(O)IEIE. Bx(©)I€l)) -
According to (2:49) the term with the Poisson bracket is
(- D AX(EIEI BX(OIEl?) = (B - 0pBx — B - 9,8) (3 (6 sign(6) + x(©)ex(le])
and therefore

_i)2
%Adi(w (Bw - 8,Bz — Baw - 0,B)H + Rawa, (12.16)

»I>I>—‘

where
Rawo, == —i (Bw - 0B — Baw - 0,P) Op((><(€)2 — x(&))sign(§) + 2x(£)0ex (& )I£|)

— 50D (ea2((w - 20N(©)lelE, Ax©)lel)). (1217)

is an operator in OPS™! (the first line of (IZIT) reduces to the zero operator when acting on the periodic

functions, because x? — x and 9¢x vanish on Z).

Finally, by (IZ14), (I215) and ([I2.16), we get

B(1,0)  ow 0p0®(1,p) = w -y +i(w - Ipf)(p,2)| D% + i(ﬂ(w +0pB:) = Ba(w - 0,8))H + Raw.a,

2M+1( )
= Y o Ad (@ 9A(p) (12.18)
n=3
(*1)2M+2 ' 2M+1 2M+1
m/o (1 —7)*MH (1, 0) (AdA((P) (w-0,A(p)))®(7, ) dr .

This is an expansion in operators with decreasing orders (and size).

In conclusion, by (ZX), (Z9), (Z5), ((Z12), (ZIR), the term of order |D|2 in L; in (IZR) is given
by

1 1

i((w-0,8) +arTi?)| D= . (12.19)

Choice of the functions §(¢,z) and «(r). We choose the function (¢, z) such that

1
(W 0:8)(p, ) + ar(p,x) = (ar)(2),  (ar)p(x) := @n)” / ar(p, x) de. (12.20)
For all w € DC(y, 7), the solution of ([I2.20) is the periodic function

Blg,x) = —(w - 0y) " (ar(p,x) — (a7)o(x)) , (12.21)
which we extend to the whole parameter space R” x [h1,hs] by setting Best := —(w - 9,) 4 (a7 — (a7),) via

the operator (w - 9,,),.; defined in Lemma 5 For simplicity we still denote by 3 this extension.
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Lemma 12.1. The real valued function (8 defined in (IZ21) is odd(y)even(x). Moreover there exists
o(ko,7,v) > 0 such that, if [T10) holds with pg > o, then B satisfies the following estimates:

1811507 <o ev 2 (L+1130157) s llw - 0Bl <o ey (1 +1130l15%7) (12.22)
||A126||51 Ser 57_2||A12i||81+0 ) Hw : 8¢A126H51 Se 57_1||A12i||51+0- (12-23)

Proof. The function a7 is even(p)even(z) (see (I0.10))), and therefore, by (IZ21)), § is odd(yp)even(z). Esti-
mates (I222)-([1223)) follow by (I220), (IZ21)), (IT4) and Lemma 25 O

By (I013), (1), (@) one has
ar = V/asas = /A {az) A (ag) A1+ ag) = A~ (Vazaz) A (VIT o).

We now choose the 2m-periodic function a(z) (introduced as a free parameter in (9.I])) so that

(a7)p(z) =m (12.24)

=

is independent of x, for some real constant my. This is equivalent to solve the equation

(/@233 ) (@) VIF (@) = m,

whose solution is

1 dx -3 1 1
mo= (0 [ ——m ) P a@) =00 (2 —1). 12.25
2 (27r/11~ <‘/a2a3>i(z)) (2) ((,/agag >a(:c) ) ( )
Lemma 12.2. The real valued function a(x) defined in (IZ25) is odd(x) and ([@2) holds. Moreover
my =17 Sey™h, [Amy] Sey A, - (12.26)

Proof. Since ag,ag are even(x) by (83H), the function a(z) defined in (IZ25) is odd(z). Estimates (I2.26])
follow by the definition of my in ([228) and ®34), B3]), (T1), applying also Lemma and (2I0).
Similarly « satisfies (0.2)) by (830), (838), (1226), Lemma 2.6 and (ZI0). O

By (I220) and (I2Z24)) the term in (TZI9) reduces to

i(w- 0,8(p,7) + ar(, )T )|DI* = imy T, |DI* + Ry (12.27)
where Rg is the OP S~ operator defined by
R = i(w- 9,8)(1d — T,7 )| D% . (12.28)
Finally, the operator Ly in (I2J) is, in view of (I2.9)), (IZ3), (Z12), (I21]), (IZ27),
Ly=w-0,+imy T [D|* +as +agH + Pr + T (12.29)
where ag is the real valued function
a9 = aol(p,2) = 1 (Bu ar — B(0rar)) — 1 (8o 0,8 — B 08) (12.30)
P; is the operator in OPS~'/2 given by
2M+1 .\, 2M |, .p
Pr = RA,P§0> + Rawa, — Z (:11!) Ad’ﬁ@) (w-9pA(p)) + Z (;Lll) Adg(@)PéO) + B +Rs (1231
n=3 ) n=2 ’
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(the operators R, ), R wa,, Ps,Rps are defined respectively in (I2.13), (I2Z17), (IT41), (I2.28§)), and
()

(—i)2M+2 ! 2M+1 2M+1
T .- m/0 (1= )M (r,0) 7! (AdG] (- 9,A(p))) (7, ) dr (12.32)
(71)2M+1 9 1 2M+1 p(0) |
+W/o(17) Mo (r, o) A R R (7, ) dr

(T stands for “tame remainders”, namely remainders satisfying tame estimates together with their deriva-
tives, see (I2.41]), without controlling their pseudo-differential structure). In conclusion, we have the following
lemma.

Lemma 12.3. Let B(p,x) and a(z) be the functions defined in (I2Z21)) and (I2Z2H). Then L7 := ®~1L;P
in (I2Z7) is the real, even and reversible operator

L7 =w-dy+im T |DIFX +illy + (as + agH)l + Pr + T (12.33)
where my s the real constant defined in (IZ20), as, a9 are the real valued functions in (ILI), (IZ30),
as = odd(yp)even(z) , ag = odd(yp)odd(x) , (12.34)
and P, Tz are the real operators
P, 0 1 . T 0
Pr = < 07 B > € OPS Tz = illp(® — o) + ' Qs ® + (0 T ) (12.35)

where Pr is defined in (IZ31) and T7 in (1232).

Proof. Formula (IZ:33)) follows by (I2Z7)) and (I2:29). By Lemma [[2] the real function 8 is odd(p)even(x).
Thus, by Sections 25 and [Z7] the flow map ® in (TZ0) is real, even and reversibility preserving and therefore
the conjugated operator L7 is real, even and reversible. Moreover the function az is even(y)even(z) by (EIIEEI)
and ag defined in (IZ.30) is odd(p)odd(z).

Note that formulas (I2.30) and (I237)) (via (I231)), (I232))) define ag and P, T7 on the whole parameter
space R” X [hy, ho] by means of the extended function 8 and the corresponding flow ®. Thus the right hand

side of (IZ33) defines an extended operator on R” x [hy,hs], which we still denote by L.
In the next lemma we provide some estimates on the operators P7; and 7.

Lemma 12.4. There exists o(ko,T,v) > 0 such that, if (T0) holds with o > o, then
lagll¥7 So ey (L +[1T0l5%3) s Ys =50, [Araaglle; Sor &7 1 Arillsy 4o - (12.36)
For any s > sq there exists d(s) > 0 small enough such that if ey=2 < §(s), then
x - ko, ~ 1kos ko,
I(@*! = Td)n[l7, [[(@° = TA)Alle>Y Ss ey 2 (I1Al5T + 1Toll TRl ) (12.37)

so+o

181285 hlls, So €72 Arzillsirollhll 11 - (12.38)

The pseudo-differential operator Py defined in (I230) is in OPS~2. Moreover for any M,o > 0, there
exists a constant Ng(M, o) > 0 such that assuming (1) with po > Ne(M, ) + o, the following estimates
hold:

k k
1P, o Sarso €72 (L4 130l5%0 (00) ) - (12.39)
[A12P7 |1 51 0 SMs10 €Y N1 A126 |6y 16 (a1,0) 4o - (12.40)

Let S > so, Bo €N, and M > $(Bo + ko). There exists a constant Ng(M, By) > 0 such that, assuming ([T1)
with po > N§(M, Bo) + o, for any my,ma > 0, with my +mg < M — %(ﬁo + ko), for any 8 € N, |B| < So,
the operators (D)mlﬁg’ﬁ<D>m2, <D>m18£A12T7<D>m2 are D¥o _tame with tame constants satisfying

m<D>m1afZ7’7<D>m2 (s) Sms 57_2(1 + ||30||5+Ng(M,Bo)+U) ) Vsp <s<S (12.41)
(D)™ A1205 T2 (D)™ | 2errery Sarss €7 2l Av2ill sy x (M, 50)+o - (12.42)
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Proof. Estimates (I2Z30)) for ag defined in (IZ30) follow by (I1.4), (1Z22), (1Z23), I0) and (7).
Proor or ([IZ31)-[TZ38). It follows by applying Propositions 2242 2-44] estimates (IZ22)-([I223]) and
using formula 9% ((®*1 —Id)h) = 3=, L4, C(k1, k2)OV (®FL —1d)942 h, for any k € N+1, |k| < ko.
Proor oF (I2Z39)-([1240). First we prove (I2.39), estimating each term in the definition (I231)) of P;.
The operator A = (¢, x)|D|2 in ([Z2) satisfies, by A7) and ([Z22),

IAIkm S 1817 Soa ey > (L4 1190]1557) - (12.43)

y S,

The operator P in (IZ0) satisfies, by (IT4), (ILH), @47), (IT42),

0) ko, ko,
|Ps”| 2o SMsa L 1303, (ara) 4o - (12.44)

The estimate of the term — Y2V CE1U Ady ! o (W9, A(p )+ 32 CAdy (w)P in (I2337)) then follows

Tl
by ((243), (IZ44) and by applying Lemmata I?:]Il The term RB € OPS~® deﬁned in (IZ2]) can
be estimated by (Z47) (applied with A := w - 8,8, g(D) := (T;2 —1d)|D|2 € OPS~>) and using ([Z22),
BXE1). The estimate of the terms R, P(o),RAw a, in (IZ31) follows by their definition given in (I2.13),
([217) and by estimates (IT.4)), (IT.3), (I]]EI) ([222), 2I0), 247), and Lemmata 210, 21Tl Since Pg
satisfies (IT.42)), estimate (I2.39) is proved. Estimate (I2:40) can be proved by similar arguments.

ProOF oF ([Z41), (I2Z42). We estimate the term ®71Q¢® in (I235). For any k € N¥*1 3 € N¥,
k| < ko, |B] < Bo, A = (w,h), one has

ROL(®T1Qe®) = Y C(B1,Ba,Bs b, ko, k) (95 00 @7 1)(952 052 Q) (052 00°®) . (12.45)

B1+B2+4B3=p4
k1+ko+kz=Fk

For any my,ms > 0 satisfying m; +mo < M — %(ﬁo + ko), we have to provide an estimate for the operator

(D)y™ (002 ® 1) (052052 Q6 ) (92 02 ®) (D)™ . (12.46)

We write
(228 = (D)™ of o &' (D)~ 5 ) (12.47)
o (D) e ko gDy ) (12.48)

1831+1ks|
2

o (<D>_m2_

The terms (IZ.47)-([I2:49) can be estimated separately. To estimate the terms (I2.47) and (IZ49), we apply
21000 of Proposition 24Tl (Z.ITT) of Proposition 243 and (I222))-([I2:23)). The pseudo-differential operator
in (I248) is estimated in | |o,s,0 norm by using 2:42), (245)), (Z47), bounds (IT.42)), (I1.43) on Qg, and the
fact that W%ﬂ +mq + w +meo — M < 0. Then its action on Sobolev functions is deduced by Lemma
As a consequence, each operator in (I2.40]), and hence the whole operator (I245), satisfies (TZ4T]).
The estimates of the terms in (I2.32]) can be done arguing similarly, using also Lemma 2.12] and (I2:43])-
(244). The term (D)mlagﬂo(i’ — I;)(D)™2 can be estimated by applying Lemma 239 (with A = T,

B = @) and (I12Z37), (12.22), (12.23). O

a’;safjs@wwz) . (12.49)

13 Reduction of the lower orders

In this section we complete the reduction of the operator £; in (I233) to constant coefficients, up to a
regularizing remainder of order |D|=M. We write

L; 0 .
Lr = <07 Z7> +illo + 77, (13.1)
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where . )
L, ::w-&w—f—im%TﬂDP + ag + agH + Pr, (13.2)

the real valued functions ag,ag are introduced in (IIT)), (I230), satisfy (I2.34), and the operator P; €
OPS~7 in (IZ3]) is even and reversible. We first conjugate the operator Ly.

13.1 Reduction of the order 0

In this subsection we reduce to constant coefficients the term ag + agH of order zero of L7 in (I3.2]). We
begin with removing the dependence of ag + agH on . It turns out that, since ag, ag are odd functions in
¢ by (IZ34)), thus with zero average, this step removes completely the terms of order zero. Consider the
transformation

WO = Id+f0(§0,$) +go(50,:c)7-[, (133)

where fy, go are real valued functions to be determined. One has
L:Wo =Wy (w- 0y + im%Th% |D|%) + as + agH + (w- 9y fo) + (w - Dpgo)H + (as + agH) (fo + goH)
+ [imy T3 [D|2, Wo] + PrWo. (13.4)
Since H? = —Id + 7o on the periodic functions, where 7 is defined in ([2.35]), we write

(as + agH) (fo + goH) = asfo + asgoH + agH fo + agHgoH
= (asfo — asgo) + (asgo + ag fo)H + as[H, fo] + as[H, go]H + asgomo . (13.5)

Then, by (I34), (I33), one has
LyWo = Wo(w -8, +imy T, |D[?) + (w- 9, fo + as + as fo — aggo)
+ (w - Dpg0 + ag + asgo + ag fo)H + Pr (13.6)
where P; € OPS™2 is the operator
Py = ag[H. fo] + ag[H, go[H + [imy T3 [ DI, Wo] + PrWo + asgomo (13.7)

In order to eliminate the zero order terms in (I3.0) we choose the functions fo, go such that

{W'agafo-l-as-i—asfo—asago =0 (13.8)
w - Opg0 + ag + aggo +agfo =0.
Writing zo = 1 + fo + igo, the real system (I3.8)) is equivalent to the complex scalar equation
w - 0pzo + (ag +1ag)zo = 0. (13.9)
Since ag, ag are odd functions in ¢, we choose, for all w € DC(+y, 7), the periodic function
20 :=exp(po), po:=—(w-09,) *(as +iag), (13.10)
which solves (I39). Thus the real functions
fo :=Re(zp) — 1 = exp(—(w - 9,) tas) cos((w - ) tag) — 1, (13.11)
go := Im(zp) = — exp(—(w - 0y,) " tag) sin((w - 9,) 'ag)
solve (I3.8), and, for w € DC(~, 7), equation (I3.4) reduces to
LiWo = Wo(w - 9, + imy T, [D| ) + Py (13.12)

We extend the function py in (I3.I0) to the whole parameter space R” x [h1,hs] by using the extended
operator (w0, ), introduced in Lemma2Fl Thus the functions 2o, fo, go in (I3.10), (I3.11]) are defined on
R” X [hy, ho] as well.
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Lemma 13.1. The real valued functions fo, go in (I311) satisfy
fo = even(p)even(z), go = even(y)odd(x). (13.13)

Moreover, there exists o(ko,T,v) > 0 such that, if (L) holds with ug > o, then

_ ~ ko, _ .
foll5> ™ Mlgolls” Ss ev > (14 1Tollssa) A1z follsrs [1A1290]ls1 Sov €7 | Ar2illsy 4o - (13.14)

The operator Wy defined in (I33) is even, reversibility preserving, invertible and for any a > 0, assuming
T2 with uo > o+ o, the following estimates hold:

IWo =150 Ssa ey (L4 1T0i%010) » 12125 ossa Sera 2721 A121 sy +acko - (13.15)

0,s,a ~S,x ~

Proof. The parities in (I3.13) follow by (I311) and (IZ34)). Therefore Wy in (I33) is even and reversibility

preserving. Estimates (I314) follow by (I311), (ITH), (IZ34), (I0), @I7), @I9). The operator Wy
defined in ([3.3)) is invertible by Lemma 214, (I3.14), (1), for ey~3 small enough. Estimates (I3.15) then
follow by (I314), using (Z41)), (Z47) and Lemma 214 O

For w € DC(y, 7), by (I3:1Z) we obtain the even and reversible operator
LY = Wil LeWo =w - 0, +my T2 [D|* + PV, P =W (13.16)

where Py is the operator in OPS™2 defined in (I3.7). 5
Since the functions fy, go are defined on R” x [hy, ho], the operator P; in (I37) is defined on R” x [hy, hs],

and w - 0, + im%Th% |D|= + P7(1) in (I3.16]) is an extension of L;l) to R” x [h1,hs], which we still denote by
L.

Lemma 13.2. For any M,a > 0, there exists a constant N(71)(M, a) > 0 such that if (1) holds with
1o > N(71)(M, «), the remainder P7(1) € OPS™2, defined in (I314), satisfies
P(l) koy <« ca v 3147 ko,y ,
PO Satia v (4 13010 ) -
’|

1 _ .
18022714y o Satsria & A28l w0 (010 -

Proof. Estimates (I3.17) follow by the definition of P7(1) given in (I3.10), by estimates (I3.14), (I3.15),
([226), (236), (IZ39), {240), by applying (Z41), (Z43), 247), 25I) and using also Lemma 217

The fact that P7(1) has size ey~ is due to the term [im%Th%|D|%,WO] = [im%Th%|D|%,WO — 1d], because
mp =1+ O(ey™1!) and Wy — Id = O(ey™3). O

We underline that the operator L(71) in (I316) does not contain terms of order zero.

13.2 Reduction at negative orders

In this subsection we define inductively a finite number of transformations to the aim of reducing to constant
coefficients all the symbols of orders > —M of the operator Lgl) in (I3I6). The constant M will be fixed in

@5.16)

In the rest of the section we prove the following inductive claim:

e DIAGONALIZATION OF Lgl) IN DECREASING ORDERS. For any m € {1,...,2M}, we have an even and
reversible operator of the form
L™ = w8, + Ap(D) + P{™, P cOPS™%, (13.18)
where . ) )
A (D) = im%Th§|D|E + (D), rm(D) € OPS™2. (13.19)
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The operator r,,(D) is an even and reversible Fourier multiplier, independent of (p,x). Also the

(m)

operator ;" is even and reversible.

For any M, a > 0, there exists a constant Ngm)(M, a) > 0 (depending also on T, ko, V) such that, if
(7)) holds with po > Ngm)(M , ), then the following estimates hold:

D, Sat 27 1Ara(D- g aya Sata 27N Ansil, o aray . (13:20)
P12 o St ™D (L4 130012 o o) (13.21)
1812 PF™ | 10 Satsra €97 Dzl o (47 0 - (13.22)

Note that by (I3.19), using (12.26), (I3.20) and 2.42) (applied for g(D) = Th% |D|2) one gets
IAm (DY), Saal, 18128m(D)ly 4 0 Sara ey "] sl (13.23)

s14+R™ (M,a)

5151,

For m > 2 there exist real, even, reversibility preserving, invertible maps w0 Wﬁzl of the form

m—1>

Wé?zl = Id+ w,(g),l(ga,:c,D) with U’ES)A(%»’C’O € SimTfl )

(13.24)
Woly=Td 4wyl (@ D) with  wp)(@,9) :
such that, for all w € DC(v, 7),
L = (W) 7wl )L wil (18.25)

Initialization. For m = 1, the even and reversible operator Lgl) in (I316) has the form (I3.I8)-(I3.19)
with
ri(D) =0, Ay(D)=inT;¢ D (13.26)

Since A1 (D) is even and reversible, by difference, the operator P7(1) is even and reversible as well. At m =1,
estimate (I3.20) is trivial and (I321)-([I3:22)) are (I317).

Inductive step. In the next two subsections, we prove the above inductive claim, see (I3.61)-(I3.63) and
Lemma [[3.6] We perform this reduction in two steps:

1. First we look for a transformation Wm) to remove the dependence on ¢ of the terms of order —m/2
of the operator L( ™) n (I318), see (I3.29). The resulting conjugated operator is L( b n (I3:36]).

2. Then we look for a transformation W to remove the dependence on x of the terms of order —m/2

of the operator L in (I330), see (I3.49)) and ([I353).

13.2.1 Elimination of the dependence on ¢

In this subsection we eliminate the dependence on ¢ from the terms of order —m/2 in P7(m) ([31]). We
conjugate the operator L(7 in (I31I8) by a transformation of the form (see (I3:24))

W =1d+w (g2, D), with w((p,z,6) €57, (13.27)
which we shall fix in (I331)). We compute

LYW = WO (w- 8, + A (D)) + (w - 9wl (o, z, D) + P™
+ [Am(D), wf,g) (p,x, D)] + P;m)wfg) (p,2,D). (13.28)
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Since A, (D) € OPS?% and the operators P7(m), © )(<p,:1c D) are in OPS™%, with m > 1, we have that
the commutator [A, (D), wY (¢, 2, D)] is in OPS~%~% and P\™wY (p,z, D) is in OPS~—™ C OPS~%~%.
Thus the term of order —m/2 in (EBEEI) is

(w - 0w (e, , D)+P7(m).

Let pg (o, 2,€) € S™% be the symbol of P7(m) We look for 'l )(ga,:c,f) such that

w- 9,w (g, 2,6) + py™ (,2,€) = (P (2, €) (13.29)
where )
0o (0.6) = g [ i e (13.30)

For all w € DC(v, 7), we choose the solution of (I3:29)) given by the periodic function
W (p,2,8) = (@ 0,) " ("o (@,€) = 1™ (0,2,)) (13.31)

We extend the symbol wl i n (I331) to the whole parameter space R x [h1,hs] by using the extended
operator (w - d,).. introduced in Lemma 5 As a consequence, the operator W in ([I3:27) is extended
O (o

accordingly. We still denote by wp, these extensions.

Lemma 13.3. The operator W defined in (I327), (I331)) is even and reversibility preserving. For any
a, M > 0 there exists a constant N(7m 1)(M, «) > 0 (depending also on ko, 7,v), larger than the constant

Ngm)(M, a) appearing in (320)-I323) such that, if (CT) holds with py > Ngm’l)(M, «), then for any
s > So
(0)\ ko, < —(m+3) ko,y
|0p(w® >||,%,s,a Shtion (L 301 ) (13.32)

"AHOP(MSS))' s1a SM,st,a E'?’7(m+3)||A12i||51+?<(7m’1)(M,cu) : (13.33)

As a consequence, the transformation W) defined in I327), (I331)) is invertible and

[(WOYE — 1d1EY, Sapaar ey~ (14 ||30||]:0+’§;m,1)(M a)) (13.34)
[ A1 (W 0 o 0 Shrsra 57—(m+3)||A121||51+N§m,1>(M7a) . (13.35)

Proof. We begin with proving (I332). By (2317)-(2.38)) one has

T8 9B (... )|
10p(wi)I™5 | o Skow 53%)§]§2E< )20 wi) (- )|

By ([[331)) and 2I7), for each £ € R one has

102wl s O Sk 7|02 (B (€)= ™ - ) 147

s+

where p is defined in (ZI]) with &+ 1 = ko. Hence

k ) — )1ko,
0P o Skow 7P

ostp,a0

and (I3.32)) follows by (I3.2I)). The other bounds are proved similarly, using the explicit formula (331,
estimates ([3.21))-([I3:22) and [21I7), (248), and Lemma [ZT4 O
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By (13:28) and ([I329) we get
LW = WD (w0 + A (D)) + (™) o, D) + [Am(D), wl) (.2, D)) + P{™wil (o, 2, D)
= WD (w- 0y + Am(D) + (7)o (. D) = wl) (¢, 2, DYp™ ), D)
+ [Am (D), wl (¢, 2, D)] + P w® (¢, 2, D)
and therefore we obtain the even and reversible operator
L™V = (W) LW = w - 0, + A (D) + (") o, D) + PV (13.36)
where

P = (W) ([An(D), wl?) (o2, D)) + P wlD (0,2, D) = wld) (o, 2, D) (pi™ )y (@, D)) (13.37)

m

is in OPS~% "3, as we prove in Lemma [[3.4 below. Thus the term of order —2 in ([3.38) is (pgm)>¢(:1:, D),
which does not depend on ¢ any more.

Lemma 13.4. The operators (pgm)m(:c D) and P(m’l) are even and reversible. The operator P7(m’1) n

(337) is in OPS~%~2. For any o, M > 0 there exists a constant N(m 2)(]\4, a) > 0 (depending also on
ko,7,v), larger than the constant N(7m’ (M, @) appearing in Lemma [I3.3, such that, if () holds with
1o > N(7m’2)(M, a), then for any s > sg

(m.1) | ko, < —(m+3) koY
| P7 |~ m_15a ~Msa gy (1+ ||jo|| N(m’z)(M,a)) , (13.38)

1A0P™ V] w1 Siana 7| A (13.39)

5148 (Ma)
Proof. Since P{™ (z, D) is even and reversible by the inductive claim, its g-average (pi™ ), (x, D) defined
in (I330) is even and reversible as well. Since A,,(D) is reversible and W,g? ) is reversibility preserving we
obtain that P7(m’1) in (I3:37) is even and reversible.

Let us prove that P7(m’1) is in OPS~%~2. Since A, (D) € OPS? and the operators P( ™), (0)(<p, x, D)
are in OPS~% , with m > 1, we have that [A,, (D),w,(,?)(go,m,D)] is in OPS~%~7 and P(m) (0)(@,90 D) is

in OPS—™ C OPS~%~%. Moreover also w, )(cp, x, D)(p;m)M(:c, D) € OPS~™ C OPS~% 2, since m > 1.
Since (W{?)~! is in OPSO, the remainder P is in OPS~%~%. Bounds m-m follow by the
explicit expression in (I3.37), Lemma [33] estimates ([3:20)-[I3:23), and (Z43), 245), (Z51). O

13.2.2 Elimination of the dependence on =

In this subsection we eliminate the dependence on z from (pgm))w(x D), which is the only term of order

—m/2 in (I330). To this aim we conjugate L(m Ui n (I336) by a transformation of the form
WL 1

W =1d+w) (2, D), where w()(z,&)e S5 512 (13.40)

is a -independent symbol, which we shall fix in (I351) (for m = 1) and [I3353) (for m > 2). We denote
the space average of the function (pgm))w(x, €) defined in (I330) by

" 1 [ m 1 -
0ol = 52 (08w de = s [ ) dods. (13.41)

2w
By ([I3:36]), we compute
LW = W (w0 + An(D) + ™)) + [An(D), D (@, D)] + (™) o (2, D) = ™) (D)

+ (05 o (2, DYV (zr, D) — w2, D) (™) o (D) + P DWLD (13.42)
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By formulas (230), (Z31)) (with N = 1) and (Z48), 249,

(B, DYty (2, D) = Op (™) (&, )l (@,€)) + 70y 0 (. D). (13.43)
W (@, D)™ )2 (D) = Op(wld) (2, ™) (€)) + 70 oy (@, D), (13.44)
[Am (D), wD (@, D)] = Op( = i0Am(€)2rw (2,€) ) + r2(Am, wiD)(w, D) (13.45)
where
Ty w® o Tl iy € ST C §TE T ro(Ap, w)(z,D) € S™F~1 Cc S~% 3. (13.46)

Let xo € C*°(R,R) be a cut-off function satisfying

Xol€) = xo(~€) VEER, xo(6) =0 V<3, xole) =1 Vie|2 <. (13.47)

By ([342)-(I3486), one has
LWL = Wi (-0, + An(D) + (9" .2(D))
+ Op (= i0eAm () DD (2, ) + x0() (™) () = (B ).0(6))
+ 30O (B (@,6) = (™) 0.0 (€)) 0D (2, ))

+0p( (1= x0(©) (™) () = ™) (©)) (1 + 0D (@,€)) )
+ 72y W)@ D)+ 7m0 (@ D) = Ty pomy (@ D)+ FOWD L (13.48)

m

The terms containing 1 — xo(§) are in S~°°, by definition (I3.47). The term

O (= 10 Am(€)00Y) (2, ) + x0(€) (™) (@,€) = (™ )0(€)) )

is of order — 7. The term

Op (Xo({ (B4 (@,6) = (P ()} (2,))

is of order —m + %, which equals — for m = 1, and is strictly less than —7 for m > 2. Hence we split the
two cases m = 1 and m > 2.

First case: m = 1. We look for w,(,p(:c,f) = wgl)(z,é) such that
— 101 (€2t (2,) + x0(€) (1) (@, €) = ()0 () ) (1 + i (@,€)) = 0. (13.49)

By ([I3.:26]) and recalling ([Z33)), 2I6), for || > 4/5 one has A1(§) = imy tanh? (h|¢])|€|Z. Since, by [[Z26),

my| > 1/2 for ey~" small enough, we have

inf [€]%10eA1(€)] = 6> 0, (13.50)

l€1>%

where ¢ depends only on hy. Using that <p(71)>90 - (1)(71))%3E has zero average in x, we choose the solution of

(I349) given by the periodic function

1 0@ (0F) o) = (0F)2(£)
wg )(.T,f) ‘= exp (gl($,§)) -1 gl(m,f) = 18§A1(§)
0 if [¢] <

EE=35 (1351

Gl Gl

93



Note that, by the definition of the cut-off function x given in (I3:47), recalling (I3:20), (I3.50) and applying
estimates (2.42)), (12.26)), the Fourier multiplier X0(8) s 5 symbol in S% and satisfies

9eA1(8)
|op(a§(f()§)) i“;a Sal, “Auop(aﬁ(f()g)) s oo S Al (13.52)
Therefore the function g (x,€) is a well-defined symbol in S°.
Second case: m > 2. We look for w (x,€) such that
— 10 A () (@,€) + x0(€) (™) () = (™) p0(€)) = 0. (13.53)

Recalling (I3:19)-([I3:20) and (I3:50), one has that

inf_ [¢]2]0cAm(€)] > inf |§|%|85A1<5>|fzggmﬁwgrm(snza—hm(D)u_%,o,l

l€1>2 l€1>3
—(m+1) 5 O
> 06— Cey > 5 (13.54)
for ey~ (™1 small enough. Since (p7 >¢($ &) — ( >%1 (&) has zero average in x, we choose the solution
of (I353) given by the periodic function
X0 (0F)ol@. ) = W™)0s(©) 5 0
wi) (x,€) = 10 A (€) =3 (13.55)
0 if ¢ < 2.

By the definition of the cut-off function x¢ in (I3.47), recalling (I328), (I319), (I354), and applying

estimates (242)), (12:26), (I3220), the Fourier multiplier X"(g() 7 is a symbol in § 2 and satisfies

Xo(&) ko,y Xo(&) - 1 .
0 (7) <mal, VA 0 (7) <nta ey~ MDA . . (1356
| OeAm(§)/ 15,0 ~A 2P IeAm(€) 181,00 ~Moe €Y I 12’L||81+N§ )(M,a) ( )
By ([3.54), the function wiy (:c €) is a well-defined symbol in S~ % +2.
In both cases m = 1 and m > 2, we have eliminated the terms of order —2 from the right hand side of

([@3.49).

Lemma 13.5. The operators W) defined in ([340), @35 for m =1, and [I3E0) for m > 2, are even
and reversibility preserving. For any M,a > 0 there exists a constant Ngm’s)(M, a) > 0 (depending also
on ko, T,v), larger than the constant N;m’z)(M, «) appearing in Lemma [137], such that, if (LX) holds with
1o > Ngm’g)(M, ), then for any s > so

k m k
10p(wi )20 4 | o Sarsa ey (1 4130 R (a1.0) (13.57)
|A12Op(w§n))||7%+%,sl,a Satsva € TN Avil om0 - (13.58)

As a consequence, the transformation Wr(nl) is invertible and

[(WED)YH = 1d]6%7 Sarsa ey (141302 20D (31.0y) (13.59)
|A12(W$))i1|0,51,a ,SM,sl,a ey (m+3)||A121||51+N;m,3)(M7a) . (13_60)

Proof. The lemma follows by the explicit expressions in ([3:40), (I3.51]), (I3.59), (I341), by estimates (242)),
@44), ZZ1), Lemmata 210, 2ZXTT] 2XT4] and estimates (I3:21)), (I3:22), (I352)), (I3:54). O
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In conclusion, by (I3:48), (I3:49) and (I353), we obtain the even and reversible operator

L = (WYL DWW = 4 9, 4 Ay (D) + PTY (13.61)
where
m . 1 1
Ami1(D) = An(D) + (0" 2(D) = imy 17 D]* + 741 (D) (15.62)
Fmi1(D) = (D) + (P42 (D),
and

P = (WD) (A, wfl)) (@, D) 47y 0 (@.D) =1y oy (D) + B IWD
+ X220 (x0(€) (™) (@,€) = ™) 5.0() Y (2,))
+ 0p((1 = X0 (@) (™) (@.6) = (™) (©) (L + 0D (.)) ) } (13.63)

with X (m,>2) equal to 1 if m > 2, and zero otherwise.

Lemma 13.6. The operators Apy1(D), Tmi1(D), P7(m+1) are even and reversible. For any M,a > 0
there exists a constant N;mﬂ)(M, a) > 0 (depending also on ko, T,v), larger than the constant N;m’g)(M, @)
appearing in Lemma I3, such that, if (1) holds with o > Ngmﬂ)(M, a), then for any s > so
Pt (D)1, Saa €™ At (D), 0 Sha €7 Ao (13.64)
5 2,51, s1+N; (M,e)

N

+1) ko, - ~ 1Ko,
|P7(m )"70%77%75,01 SMosa €Y (m+3)(1 + ||JO||S:';/;m+1)(M a)) ) (13.65)

|A12P7(m+1)"—%_%751,a sM,sha 577(m+3)”A12i”51+ (13'66)

N;m«#l) (M,Ot) .
Proof. Since the operator (pgm)>¢($,D) is even and reversible by Lemma [[34 the average (pgm)>%m(D)
defined in (I341)) is even and reversible as well (we use Remark 2:23). Since r,,(D), A, (D) are even and
reversible by the inductive claim, then also 7,,4+1(D), Ap41(D) defined in (I3.62) are even and reversible.

Estimates (I3:64))-([I3.64) for 7,,+1(D) and P7(m+1) defined respectively in (I3.62) and (I3.63) follow by
the explicit expressions of (pgm)>%m(§) in (I341) and wi in (3EI) and @3353) (for m = 1 and m > 2
respectively), by applying (244), (242), (I3.59)-1360), (I337)-[1339), 241), Lemmata 210, 211 and
the inductive estimates (I3.20)-(I3:23). O

Thus, the proof of the inductive claims (I320)-(I3:25)) is complete.

13.2.3 Conclusion of the reduction of Lgl)

Composing all the previous transformations, we obtain the even and reversibility preserving map

W :=Wyo Wl(o) o Wl(l) 0...0 VVQ(]OV)[71 o W2(§2171 , (13.67)
where Wy is defined in (I33)) and for m = 1,...,2M — 1, Wi Wi are defined in (I327), (I340). The
order M will be fixed in (IZI6). By (I3I8), I319), (I325) at m = 2M, the operator L7 in (I32) is

conjugated, for all w € DC(«y, 7), to the even and reversible operator
Ls:= L™ = WL,W = w- 8, + Aops (D) + Pans (13.68)
where Py = P7(2M) € OPS™™ and

Aoar(D) = imy T;Z |D|* +raag (D), ran(D) € OPS™5 (13.69)
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Lemma 13.7. Assume (1) with pg > NgQM) (M,0). Then, for any s > s, the following estimates hold:

ko, - _ .
[rane (D21, o Sar e CMAD | Araranr (D) -1 4,0 Sm ey~ M| A REM (4r,0) 13.70
|Pans 1557 o 0 Sars 7 2D (14 (|30 ) 13.71

s+REM) (M,0)

|A12P2M|—M 51,0 SM,S1 EV_Q(MH)||A12i||sl+NgZM>(M,o) )

+1 koY < —2(M+1) o[ P07
[WE —1d|6%% Sars €7 (1+ ||JO||5+N(72M)(M,O)) g

1AW * o.6.0 Sis 5772(M+1)||A12i||sl+N§2M)(M,O) :

Proof. Estimates (I3.70), (I3.71)), (I3.72) follow by [I3.20), (I3.21)), (I3:22) applied for m = 2M. Estimates
373)-[{374) for the map W defined in (I3.67), and its inverse W1, follow by (3.15), ([3.34), @333[)
(359), (I3:60), applying the composition estimate ([Z45]) (with m = m/ = a = 0).

Since Agp (D) is even and reversible, we have that

Aopr(§),ram (€) € iR and Aopi (&) = Aoni (=8), rom (&) = ram (=€) . (13.75)

In conclusion, we write the even and reversible operator Lg in (I3.68)) as

Lg :w'&p +1D8+P2M (1376)

where Dyg is the diagonal operator
Dy i= —iMon (D) = diag;ez (1), pyj o=my|j|? tanh(h|j])> +7;, r; = —iran(j), (13.77)
pisry €R,pj=pog, ry=r_;, VjEL, (13.78)

with r; € R satisfying, by (I3.70),

—(@M+1) (13.79)

a1
Sup 1312 |y %07 Sar ey sup |2 [Arar;| Sar ey~ GMHD 1Azl @0 a0

JE JEL

and Py € OPS™M satisfies (I3.71)-(I3.72).

From now on, we do not need to expand further the operators in decreasing orders and we will only
estimate the tame constants of the operators acting on periodic functions (see Definitions [Z25] and 230).

Remark 13.8. In view of Lemma [Z29, the tame constants of Papr can be deduced by estimates (I3.71)-
[@I312) of the pseudo-differential norm |Panr|—nr.s,o with o = 0. The iterative reduction in decreasing orders
performed in the previous sections cannot be set in | |—ar,s.0 norms, because each step of the procedure requires
some derivatives of symbols with respect to & (in the remainder of commutators, in the Poisson brackets of
symbols, and also in (I350) ), and o keeps track of the reqularity of symbols with respect to &.

13.3 Conjugation of L,

In the previous subsections [3.IHI3.2l we have conjugated the operator L; defined in (I32) to Lg in (I3.68),
whose symbol is constant in (¢, z), up to smoothing remainders of order —M. Now we conjugate the whole
operator L7 in (I3.)) by the real, even and reversibility preserving map

W e (Vg %) (13.80)

where W is defined in (I3.67)). By (I3.65), (I370) we obtain, for all w € DC(«y, 7), the real, even and reversible
operator
Ls:=WLW =w 0, +iDs +illy + Tg (13.81)
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where Dy is the diagonal operator

([ Dg 0
Dg = ( 0 —Ds) , (13.82)
with Dg defined in (I3.77), and the remainder Tg is
oy ay—1 . 1 Py 0
Ts =W oW —illg + W TW + Panr,  Pon = 0 Por (13.83)

with Paps defined in (I3.68). Note that Tg is defined on the whole parameter space R” X [hy, ha]. Therefore
the operator in the right hand side in (I387)) is defined on R” X [h1,hs] as well. This defines the extended
operator Lg on R” x [hy, hs].

Lemma 13.9. For any M > 0, there exists a constant Ng(M) > 0 (depending also on T,v, ko) such that, if
T2 holds with pg > Ng(M), then for any s > s

ko, * ko, ko,
W= —Td[§%%, IW = Td[6%% S ey MY (14 1Toll 33 % (ary) » (13.84)
|ALWE o610, [A12W 0,510 Satsy 72N | Avaifs, g (ar) - (13.85)

Let S > so, Bo €N, and M > (8o + ko). There exists a constant Ng(M, By) > 0 such that, assuming (T1)

with po > Rg(M, Bo), for any my,my > 0, with my +mg < M — §(Bo + ko), for any B € N, |8 < By, the
operators (D)™ (95Ts) (D)™, (D)™ A15(05Ts)(D)™ are D*-tame with tame constants satisfying

m([))ml(agnxmw(s) SM,s 5772(M+1)(1 =+ ||30||5+Ng(M,ﬂo)) ) Vsog<s<S (13.86)

(D)™ A2 (D5 Te) (D)™ |l ccrreny Saas €y 2 M| Availl gy s (11,60) - (13.87)

Proof. Estimates (I3.84), (I3.85) follow by definition (I3:80), by estimates (I3.73), (I3.74) and using also

Lemma 2.T3] to estimate the adjoint operator. Let us prove (I3.86) (the proof of (I3.87) follows by similar
arguments). First we analyze the term W W. Let my,ma > 0, with mq +mo < M — %(ﬁo + ko) and
B € N” with || < Bp. Arguing as in the proof of Lemma 2.4 we have to analyze, for any S, 82, 83 € N¥
with 1 + 82 + B3 = 3, the operator

(O W (02T (032 W) -

We write
(D)™ (DG W (02 T7) (92 W)(D) ™
_ (<D>m18£1W<D>_m1) 0 (<D>mla§277<p>m2) o (<D>_m28£3W<D>m2) . (13.88)
For any m > 0, 3 € N”, |B] < B, by (2T6), [@242), @7, 23), one has
My oy oy (5) S [{DYT @EWEN) (D)™ B0y < JOEWH 80T o S IVH BT 5

and ||Wi1||§?5’150+m70 can be estimated by using (I3.84]). The estimate of (I3.88]) then follows by (I2:41))

and Lemma 227 The tame estimate of <D>m185P2M<D>m2 follows by @270), (I371), (I372). The tame
estimate of the term i(D)™ 97 (W™IyW — o) (D)™ follows by Lemma 239 (applied with A = W~*
B=W) and (£75), (I351), (5. o
14 Conclusion: reduction of £, up to smoothing operators

By Sections [(HI3] for all A = (w,h) € DC(y,7) X [h1, ha] the real, even and reversible operator £ in (78] is
conjugated to the real, even and reversible operator Lg defined in (I3.81]), namely

PILP = Lg =w- 0, +iDs +illy + Ts, (14.1)
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where P is the real, even and reversibility preserving map
P = ZB.AMQMgC‘I’M(I’W (142)

Moreover, as already noticed below ([I3.83), the operator Lg is defined on the whole parameter space R” x
[h1, hol.

Now we deduce a similar conjugation result for the projected linearized operator £, defined in (6.27),
which acts on the normal subspace Hg:, whose relation with £ is stated in (ZH). The operator L,, is even
and reversible as stated in Lemma [7.1]

Let S=ST U (—ST) and Sp := SU {0}. We denote by Ils, the corresponding L2-orthogonal projection
and IIg; := Id — IIg,. We also denote Hg := Ilg L*(T) and H$ := H*(T"*') N Hg..

Lemma 14.1. Let M > 0. There exists a constant opr > 0 (depending also on ko, T,v) such that, assuming
[T with po > o, the following holds: for any s > sg there exists a constant 6(s) > 0 such that, if
ey 2(MHD) < §(s), then the operator

P = Ilg, Pllg, (14.3)
is invertible and for each family of functions h := h(\) € H T x Ht7™ it satisfies
+ ko, ko, ko,
IPE RIS Sats I1AI557, + 1Tollssa Il 5o, - (14.4)
(AP lsy Sarsy v MV Agill sy von 1ol syt - (14.5)

The operator P is real, even and reversibility preserving. The operators P,P~1 also satisfy [([Z4), ([Z5).

Proof. By applying ([2.77)) together with (715, (829), (@10), (I017), (I0.I15), (Z67), (IT38), (IZ37), (I3.84)

one has that

ko, ko, ~ 11kos ko, +1 Al g1 gkl g t] sl g4l gl yaEl
AR S RIS + 130l 1Pl s s A€ {ZT, BT AT My, M, CF0 @y, @70 W
for some pps > 0. Then by the definition (IZ2) of P, by composition, one gets that |[PT1h|kor <p/
||h||§i;M + ||30||§2L’;M||h||§gﬁ0M for some constant opr > 0 larger than s > 0, thus P+ satisfy ([44). In
order to prove that P, is invertible, it is sufficient to prove that Ils,Plls, is invertible, and argue as in the
proof of Lemma 9.4 in [I], or Section 8.1 of [§]. This follows by a perturbative argument, for ey~2(M+1)

small, using that Ilg, is a finite dimensional projector. The proof of (I43]) follows similarly by using (ZI3),

B30, @10), [0.19), [T.39), [2.38), (3.85). =

Finally, for all A = (w,h) € DC(~y, 7) X [h1,hs], the operator L, defined in (627 is conjugated to

Ly =P 'L,P =g LsIIg + R (14.6)

where
Rar := PTIE, (PTg, LsT1E, — L1, PIIE + eRP ) (14.7)
= Py, Plls, Tellg, + P ' 5, JO.V W H(Ts())s, PIlg, + P g, RPL (14.8)

is a finite dimensional operator. To prove (IZ8)-([IZT) we first use (ZE) and ([ZL3) to get L, Py = g, (£ +
eR)IIg PIlg , then we use (ILI) to get g LPIlg = Ilg PLsIlg , and we also use the decomposition
I, = Mg, + II5; . To get (I48), we use (4T, (ZH), and we note that Ilg, w - 0, IIg: = 0, I w - d,, I, = 0,
and I, iDsIIg = 0, by ([3.82) and (I377).

Lemma 14.2. The operator Ry has the finite dimensional form (3). Moreover, let S > so and M >
%(ﬂo + ko). For any B € N”, |B] < B, there exists a constant No(M, By) > 0 (depending also on ko, T,v)
such that, if [T) holds with ug > No(M, Bo), then for any my,ma > 0, with my +ma < M — %(ﬁo + ko),
one has that the operators (D)™ 85 Ry (D)™, (D)™ 05 A12Ray (D)™ are DX-tame with tame constants

— ~ ko,
M pyma 92 Ry (Dymz (8) Sh,s €Y 20041) (1 4 13011558 (ar,80)) Vsp <s<S (14.9)
(D)™ A1205 Ras (D)™ || ccrrory Snans €72 MV | Al sy g (a1, 50) - (14.10)
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Proof. To prove that the operator Rj; has the finite dimensional form (Z3)), notice that in the first two
terms in (IZ.8) there is the finite dimensional projector Ilg,, that the operator R in the third term in (I48)
already has the finite dimensional form (Z3]), and use the property that P, (a(p)h) = a(p)PLh for all
h = h(p,z) and all a(yp) independent of z, see also the proof of Lemma (and Lemma 6.30 in [21] and
Lemma 8.3 in [§]). To estimate Ry, use (I44)), (I4H) for P, (I3.86), (I3.817) for Ts, (CH), (Ca), (TIG),
17), BE) for JOLV.H(T5(e)), @3), @A) for R. The term Ilg JO,V,H (T5(¢))ls, is small because
I3, (9 ~Ptanh®D)) T1g s zero. O

By (I4.8) and ([I3:1]) we get
Kl:w-&,g]ll—i-ﬂ)l—i—Rl (14.11)
where I} denotes the identity map of HSLO (acting on scalar functions u, as well as on pairs (u, @) in a diagonal

manner),

D, 0
D, :(0 _DL>7 D, :=1lg, Dsllg, , (14.12)

and R, is the operator

(14.13)

Rii R
Ry =g TsIlg + Rar, RL:( — M).

Ri2 Ria

The operator R | in (I4I3)) is defined for all A = (w,h) € R¥ x [hy, hg], because Tz in (I3:83)) and the operator
in the right hand side of (I4.8) are defined on the whole parameter space R” x [h1,hs]. As a consequence,
the right hand side of (IZII]) extends the definition of £, to R” x [hj,hs]. We still denote the extended
operator by L .

In conclusion, we have obtained the following proposition.

Proposition 14.3. (Reduction of £, up to smoothing remainders) For all A = (w,h) € DC(y,T) X
[h1,ho], the operator L, in (A1) is conjugated via [IZB) to the real, even and reversible operator L, . For
all A € RY x [hy,hy|, the extended operator L, defined by the right hand side of (ILI1) has the form

Klzw-awh—i—iDl—i—Rl (14.14)

where D is the diagonal operator
D 0 .
D, = ( OJ_ DJ_) , D, = diagjege 1 » g = i, (14.15)
with eigenvalues p;, defined in (I3.17), given by
pj =my|j|? tanh? (W]j]) + 1 ER, =1, (14.16)

where my,7; € R satisfy (IZ26), (I379). The operator R, defined in (ILI3) is real, even and reversible.

Let S > so, 6o € N, and M > %(ﬂo + ko). There exists a constant X(M, By) > 0 (depending also on
ko, T,v) such that, assuming ([T1) with ug > V(M, By), for any my, mg > 0, with my +me < M — %(ﬁo +ko),
for any B € N, |8 < o, the operators (D)™ d5R (D)™, (D)™ 05 A15R 1 (D)™ are D*-tame with tame
constants satisfying

_ ~ 11ko,
M pymios | (Dyms () SM.s €Y 20M+1) (1 4 1301155 R ar 50)) » Vsg<s<S (14.17)
(D)™ A1208 R 1L (D)™ | (o) Saas €7 M| Availl gy 4a1,50) - (14.18)

Proof. Estimates (I4.17)-({I4I8) for the term HSU’E;HSU in (I£13) follow directly by (I3.86), (I3.87). Esti-
mates (I4I7)-({I4IY) for Ry are (I4.9)-(TLI0). O
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15 Almost-diagonalization and invertibility of L,

In Proposition [[4.3] we obtained the operator £, = £ () in (IZI4) which is diagonal up to the smoothing
operator R . In this section we implement a diagonalization KAM iterative scheme to reduce the size of
the non-diagonal term R .

We first replace the operator £, in (I4I4) with the operator £V defined in (I5J) below, which
coincides with £ on the subspace of functions even in x, see Lemma [[5.01 We define the linear operator

L7, acting on HSLU, as
RS asym
LY = w- 9,1 +iD; +RY™, RY™ = | —mmr =3 | » (15.1)
Ry, RYL
where R, i = 1,2, are defined by their matrix entries
g’ R0+ (R () it jj' >0
Ry (0) = § Rty (O (Reag7 (O HIT>00 G hregs iz, (15.2)
’ 0 if j5' <0,

and Ry ;, i = 1,2 are introduced in (IZI3). Note that, in particular, (Riwln);’ = 0,7 = 1,2 on the
anti-diagonal j' = —j.

Lemma 15.1. The operator R7Y"™ coincides with R on the subspace of functions even(z) in HSJ[‘) X HSJ;,
namely

Rih=RY"h, VheHg x Hg., h=h(p,x)=even(z). (15.3)
RY™ is real, even and reversible, and it satisfies the same bounds (IZIT), (IZI8) as R, .
Proof. For any function h € HSJ; that is even(x), for i = 1,2, by (I2.2) one has

RYTh(x) = Y (RYT) hjre = > [(RL)) + (Ria);? hje?®

J,J' €S Jji’>0
-/ P -/ P -/ .. -/ P
_ J 19T —J 1) J 1T —J 1)
=D (R e+ (Rua);7 hyjee?™ + > (RS hype™ + > (R1i); 7 el
>0 3>0 j<0 j<0
3'>0 §'>0 j'<0 §'<0
/
= E RJ_»L /eljz+ E RJ_l /elszr E RJ_l /€1JI+ E RJ_»L /ej (15.4)
j>0 j>0 j<0 j<0
j'>0 j'<0 j'<0 j'>0
-/ ..
_ j _
= Y (Ru)j hye’ =Ry ih(z)
J,J' €S

where to get (I5.4) we have used that h_; = hj in the second and fourth sum.
The operator R7’™ is real by (I51)), it is even by (I5.3]) because R is even, and it is reversible by (I5.2)
and (Z70). Using definition (I5.2), the fact that Ry is an even operator, and (Z.60), we deduce that

(RIS = RYM] V5,5 €85 (15.5)
Moreover, using (I5.2)) and (I5.5]), one proves that for all n € S§, n > 0,
RV eos(na)] = Y (RYT)) cos(jz) = Ry ifcos(na)],  RYT[sin(na)] =Y (RYT)}sin(jz)  (15.6)
>0 >0

where (R7]")7 are the matrix elements defined in (I5.2).
Finally we consider the decomposition L?(T) := L2 ., @ Lodd, h = heyen + hodd, Where heyen is even(x)

even
and hoqq is odd(x), and we define the isometry M : L2, — L2 .., M]sin(nz)] := cos(nz), n > 1, which

preserves all Sobolev norms. Hence, by (I5.0)),
RT’T}L Rsymheven + Rsymhodd = RJ_,iheVen + M_lRJ_yiMhodd Vh € HSLO .

even’

We deduce that [|RY7"h]|s S [|RLhls, and similarly with Whitney norms || [|-7. O
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As a starting point of the recursive scheme, we consider the real, even, reversible linear operator £7/™
in [I5.), acting on Hg:, defined for all (w,h) € R” X [hy,hy], which we rename

EO = Ej;ym =w - GW]IL —|— IDO + RO , DO = DL, RO = Rj_ym , (157)
with
po—(Po 0 Do — di 0 0 .= my|j|? tanh? ([j]) + r; (15.8)
o={0o —p,)° 0 = dlag;ese My 5 My i=mi{]]? tan J 75, :
where mi :=my (w,h) € R satisfies (TZ20), r; := rj(w,h) € R, r; = r_; satisfy (I379), and
RO RO '
Ro = (_%0) ). BRY:HE s HE,  i=1.2. (15.9)
R, Ry

Notation. In this section we shall use the following notation:
1. Given an operator R, the expression 97 (D)™ R(D)™ denotes the operator (D)™ (Qf)iR(ga)) o (D)™.

(¢]
Similarly, (9,,5)°(D)™R(D)™ denotes the operator (D)™o ({0, ,)®R)o(D)™, where (0, ;)® is introduced
in Definition 27

2. To avoid confusion with the induction index v = 0, 1,2, ... appearing in Theorem [[5.4] we shall denote
the cardinality of the set ST of tangential sites by |ST| (instead of v, as it was denoted in the previous
sections).

The operator Ry in (I5.9]) satisfies the following tame estimates, which we verify in Lemma [[5.3] below.
Define the constants

b:=[a]+2€N, a:=max{3nr,x(r+1)(4d+1)+1}, x:=3/2,

ko (15.10)
11 :=7(ko + 1) + ko +m, m::d(k0+1)+3,
where d > 2k, by (5.25).
e (Smallness of Ry). The operators
(D)™ Ro (D)™ (DY Ro (D)™, Vi=1,...,|S"], (15.11)
(D)™ PR (D)™ HPHL 90t (D) R (D) (15.12)

where m,b are defined in (I5.10), are D*o-tame with tame constants, defined for all s < s < S,

MO (S) = l:fna)‘(sﬂ {m(D>‘“R0 <D>m+l (S), maig (D)‘“Ro (D)“H’l (S)} (1513)

My (s,b) : i:lI,I.l.Eﬁ(Sﬂ {m(D>m+bRU<D>m+b+l (s), mt623+b<D>m+bRo<D>m+b+l (S)} (15.14)
satisfying

Mo (s0,b) := max{My(so), Mo(so,b)} < C(S)ey 2M+1) (15.15)

Remark 15.2. The condition a > x(7 + 1)(4d + 1) + 1 in (I5I0) will be used in Section [Id in order to
verify inequality (IG.3).

Proposition [4.3] implies that the operator Ry = R}’ satisfies the above tame estimates by fixing the
constant M large enough (which means performing sufficiently many regularizing steps in Sections [[1] and

[[3), namely
b+ s + ko

M= 2m+2b+1+f}+1€N (15.16)
where [ -] denotes the integer part, and m and b are defined in (I5I0). We also set
p(b) :=R(M,so +b), (15.17)

where the constant (M, s + b) is given in Proposition 4.3
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Lemma 15.3. (Tame estimates of Ry := RY") Assume (1) with po > p(b). Then the operator
Ro :=RV" defined in (I5), (I52) satisfies, for all sp < s < S,

Dﬁo(s,b) = maX{Mo(S),Mo(S,b)} SS 57—2(M+1)(1 + HJOHISCEJF,Z('D)) (15.18)

where My (s), My(s,b) are defined in (I5I13), (5I4). In particular (IEIH) holds. Moreover, for all i =
1,...,[S*], B €N, B < s9+Db, the operators 95 (D)™ A1aRo(D)™+, 85 (D)™ *A13Ro(D)™°+ satisfy the
bounds

105,(D)™ A12Ro (D)™ || (120, 102, (D)™ TP A1 Ro (D)™ | £ 4ro0y S5 €7 > MV Arail| gy - (15.19)

Proof. Estimate (I5I8) follows by Lemma [I51] by (IZI7) with my = m, mg = m + 1 for My(s), with
m; =m+Db, my =m+b+ 1 for My(s,b), and by definitions (IEI0), (I5.16), (I5I17). Estimates (I5.19)

follow similarly, applying (I£I8) with the same choices of my, mo and with s; = sq. O

We perform the almost-reducibility of £y along the scale
N_y:=1, N,:=N} Ww>0, y=3/2, (15.20)
requiring inductively at each step the second order Melnikov non-resonance conditions in ([5.29).

Theorem 15.4. (Almost-reducibility of £y: KAM iteration) There exists 7o := 72(7,|ST|) > 71 + a
(where 11,a are defined in (II0)) such that, for all S > sg, there are Ny := Ny(S,b) € N, §p := 60(S,b) €
(0,1) such that, if

57—2(M+1) < 50, Na—zmo(so,b)')/_l <1 (1521)

(see (I5IM)), then, for alln € N, v =0,1,...,n:

(S1), There exists a real, even and reversible operator

L, =w-0,1, +iD, +R,, D, := (% _%y) . D, = diag;eg: 1 | (15.22)

defined for all (w,h) in RISTI % [h1, ho] where pf are ko times differentiable functions of the form
(1 (w,h) == pd(w,h) + 7% (w,h) € R (15.23)

where ug are defined in (I5.8)), satisfying

pl=pt s deord =1V, R < O(S,b)ey M7 v e S (15.24)
and, for v >1,
W — T < LI (s0) < C(S,D)er 2D L (15.25)
The remainder ) )
R Ry
R, = (_%y) _%V)> (15.26)
Ry Ry
satisfies
(RY)] (6) = (RE)] () =0 ¥(t,5.4"), §i' <0, (15.27)

and it is D* -modulo-tame: more precisely, the operators (D)™ R, (D)™ and (D, .)*(D)™R, (D)™ are
DFo-modulo-tame and there exists a constant Cy := Ci(s9,b) > 0 such that, for any s € [sg, ],

C.Mo(s,b)
m%D>mRy<D>m(S) S N+ ) m%a‘p’x>b<D>mR'/<D>m(S) S C’*Qﬁo(s,b)Ny,l. (1528)
v—1
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(S3),

Define the sets A} by A} := DC(27,7) x [h1,hs], and, for all v > 1,

A = AY(3) = {)\ = (w,h) €}, :

Wl pf = = T 2y T TT VL = < Noeas 4,30 € NTASY, (6,4,57) # (0,4, 4),

jw - £ T TN 2 (VI VIO TT L= < N, Gt €NT \S*} : (15.29)

For v > 1, there exists a real, even and reversibility preserving map, defined for all (w,h) in RISTI x
[h1,hs], of the form
V11 Yo

(I)V—l = ]IL + \I]u—l ) \I]u—l = (@ 1o @ 1 1) (1530)

such that for all X\ = (w,h) € &) the following conjugation formula holds:

L,=d1 2L, 10, . (15.31)

The operators (D)E™W,,_1(DYT™ and (D, ,)°(D)*™ W, _1(D)F™ are D* -modulo-tame on RIS"Ix[hy, hy]
with modulo-tame constants satisfying, for all s € [sg,S], (11,2 are defined in (5.10))

M pyem, _, (py=nl8) < Clso,0)y ™ N N, %Mo(s,b) (15.32)
Sm%a%m)bw)im\yu,l<D>¢m(5) < C(s0,0)y 'NJL 1 Ny—2My(s,b) (15.33)
911,,,1(5) < C(s0,)y 'NJ N, 2,0 (s,b). (15.34)

Let i1(w,h), ia(w,h) be such that Ro(i1), Ro(i2) satisfy (IID). Then for all (w,h) € AY (i1) NAJ2(iz)
with v1,7v2 € [v/2,27], the following estimates hold

(D)™ A12Ry (D)™ [[| £ 120y Sso €7 2 MTIN2 (i1 — d2|sg 4 ) (15.35)
11{0,2) (D)™ A12 R (D)™ ||| 2120y S5 €7 2 MFIN, 1 [li1 — 2[5 -4 u0) - (15.36)

Moreover for v > 1, for all j € S§,
|Ara(ry = 5] Sow ey 2V TN 2 iy — ol sg o) (15.37)
| A1 | S ey 2D G172 iy — da | gt o) - (15.38)
Let i1, iz be like in (S2), and 0 < p < /2. Then

CS)NTAVIH =iy — iy [y S = AJ(02) C MY (in). (15.39)

v

We make some comments:

1.

. Since the second Melnikov conditions |w - £+ p*

Note that in (I5.37)-(I5.38) we do not need norms | |07, This is the reason why we did not estimate
the derivatives with respect to (w,h) of the operators A15R in the previous sections.

v—1

¥ */L]V-/_1| > |77 7%(€)~" lose regularity both in ¢
and in z, for the convergence of the reducibility scheme we use the smoothing operators Iy, defined in
[224), which regularize in both ¢ and z. As a consequence, the natural smallness condition to impose
at the zero step of the recursion is the one we verify in Lemma [I5.601 Thanks to (I5.52), to verify such
a smallness condition it is sufficient to control the tame constants of the operators (I5.12).

An important point of Theorem [[5.4]is to require bound [I521]) for My(sp, b) only in low norm, which
is verified in Lemma[I5.3] On the other hand, Theorem [[5.4] provides the smallness (I5.28)) of the tame

constants S)Jt'gmmnyw>m (s) and proves that Sm%% )B(D)m R, (DY (s,b), v > 0, do not diverge too much.
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Theorem [I5.4] implies that the invertible operator
U, =®go...00,_1, n>1, (15.40)
has almost-diagonalized Lo, i.e. (I5:45) below holds. As a corollary, we deduce the following theorem.

Theorem 15.5. (Almost-reducibility of Ly) Assume (1) with po > p(b). Let Ro = RY™, Lo = L™
in (B)-052). For all S > so there exists No := No(S,b) > 0, dg := 00(S) > 0 such that, zf the smallness
condition

N2ey~ M+ < g, (15.41)
holds, where the constant 7o := 72(7,|S1|) is defined in Theorem [I5.7] and M is defined in (I5I6), then, for

alln € N, for all A = (w,h) € RIS x [h1, ho], the operator U, in ([I5.40) and its inverse U, 1 are real, even,
reversibility preserving, and D -modulo-tame, with

—_ T ko,
gﬁgﬁlih (s) s e~ CMHFINT (1 4 1T0llsS ) Vso<s<S, (15.42)

where 71 is defined in (I510).
The operator L, = w - 0,1 +1iDy + R, defined in [[5.22) (with v =n) is real, even and reversible. The
operator (D)™R,, (D)™ is D¥ -modulo-tame, with

ngW‘Rn(D)"‘(S) Ss ey 2MAD N2 (14 ||To||P07 ) Vso < s<S. (15.43)

s+pu(b)
Moreover, for all A = (w,h) in the set
N = (A} (15.44)
defined in (I529), the following conjugation formula holds:
L, =U"Loldy . (15.45)

Proof. Assumption (IEZI]) of Theorem [[5.4] holds by (IEIS), (C1) with up > u(b), and (I54I). Estimate
([I543) follows by (I5:28) (for v = n) and (IZIY). It remains to prove (I5.42). The estimates of Dﬁiflih (s),

v =0,...,n — 1, are obtained by using (I5.34)), (I5.21) and Lemma 233l Then the estimate of L' — 1
follows as in the proof of Theorem 7.5 in [2I], using Lemma [2.32] O

15.1 Proof of Theorem [15.4]

PROOF OF (S1),. The real, even and reversible operator Ly defined in (I5.7)-(I5.9) has the form [I5.22)-
[I523) for v = 0 with r%(w h) =0, and (I5:24)) holds trivially. Moreover (I5.27) is satisfied for v = 0 by the
definition of Ry := R¥"™ in ([I5.2). We now prove that also (I5.28) for v = 0 holds:

Lemma 15.6. 9ﬁ<D mRo(D)m ( ) m<6¢’1>b<D>mRU<D>m(S) 550,b mo(sﬂb)'

Proof. Let R € {R1°>,R§O } and set A := (w,h). For any «,8 € N, the matrix elements of the operator
93, (DYPR(D)A*! i=1,...,|St|, are

(6 — £ Y RY (0 — ) ()P
Then, by (m with o = 0, and (I5.13), ([5.14) we have that V|k| < ko, so < s < S, ¢' € ZIS"I j € Sg,
YT, (6G)P )P OER] (€= €)X < M (so){E,5) + 2ME()E, 5 (15.46)
P, (6 QSw G20 ()™ OE RT (£ — )P ()Y < oM (s0) (£, 7')%° + 2MR(s)(, )2, (15.47)
2"“‘2 (€,5)% (G2 AERY (0 — £)]2 () 2D < OMB(s0, ) (€', ') + 2MB(s, b)(¢', 5/) %0, (15.48)
Q\k\z f J 25|€ £I|2(so+b)< >2(m+b)|akRJ (f £1)| < >2(m+b+1)

< 2M 2(s0,D)(',§")%% + 2M2 (s, D) (¢, 5')>0 . (15.49)
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Using the inequality (£ — ¢')>* So 14+ max;—1 s+ |0 — £5]** for v = 50 and a = 59 + b, and recalling the
definition of My(s,b) in (IBIF), estimates (I5.40)-([I249) imply

PN, (63— 020 GY™MORR] (¢ = )P Sy 9 (50, 0)(¢', ) + M (5, 0)(¢' )7 (15.50)
2|klz f j 25 f €/>2(50+b)< >2(m+b)|akRJ (f £1)| < >2(m+b+1)
5b imo(so, b){(¢,5')% + M (s, )L, 5')>0 . (15.51)

We now prove that (9, ,)°(D)™R(D)™ is D*-modulo-tame. For all |k| < ko, by Cauchy-Schwarz inequality
and using that

(=05 =30 Ko (0=0)°G =50 e (€= L)((G)° + (7)) Se (€= 0)°()°(G")° (15.52)

we get

0 (DY R RDIBIZ 0 37, (0,397 (3,, 1~ PGP0k RY (¢~ €)™ o 1)

S 3, (00 (32, 4= O GO RY (€= O e )
Saow D, LAY, A= P G RRT ()P (7 g

Saon Dy ey By, (65— )20t )20 |9 RY (0 — )2 (5 2(m+o+ D)

S v”"“'Ze,yj,|he/,j/|2(m3<50,b><6’,j’>25 + 5 (s, B) (¢, ')

o 7 (0 (s0, ) |+ 905 (5. )| 2,) (15.53)

using ([2.27). Therefore (recall (2.78)) the modulo-tame constant Qﬁt(iaw )o(Dym R(D)m (s) Sso0 Mo(s,b). Since
([553) holds for both R = R” and R = R\, we have proved that

#
Mo, 235(D)mRo (D) (5) Sso.p Mo(s,b).

The inequality im%D)"'Ro(DW (s) < Mo(s,b) follows similarly by (I550). O
ProoOF OF (S2),. We prove (I5.36) at v = 0, namely we prove that, for R = R(O) or R= R(O)

11{0,2)> (D)™ Ao R(D)™ A2, Ssp (€7 > M) iy — a2, 4 ) I3, . Vh € H™. (15.54)
By (I5I9) we get

(D)™ A1 R(D)™ | £ (gr00y, 1020 (D)™ P A R(D)™ 4 £ 400y Ssiw 7 >N li1 — a4 (o)

foralll=1,...,|ST|. Using [223)) we deduce that, for all £’ € 75", e S,

3l G)P (0 — )20 (YRR (A gy RYT (£ — ) 2(5) 2D S g (ey 2D iy — |2 (€512
4,5

Using (I552), and arguing as in (I5.53), we get (I5.54). The proof of (I530) at v = 0 is analogous.
PROOF OF (83),. It is trivial because, by definition, Aj = DC(27, 7)x [h1, hs] € DC(2y—2p, 7)x [h1, ho] = Aj ™ ”.
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15.1.1 The reducibility step

In this section we describe the inductive step and show how to define £,41 (and ¥,, ®,, etc). To simplify
the notation we drop the index v and write + instead of v+ 1, so that we write £ := L,, D:=D,, D := D,,
i = MJV, R:=R,, Ry := ng),Rg = Réy), and L4 = L,41, D4 := D,41, and so on.

We conjugate the operator £ in (I5:22)) by a transformation of the form (see (I5.30))

. (Y Py
O:=1, +7, U= (@2 @1) . (15.55)
We have
L =D (w-0,1, +iD) + (w- 0,V +i[D, V] +IINR) + HJ]\‘,R + RY (15.56)

where the projector Iy is defined in (224)), Iy :=I> — [y, and w - 9, ¥ is the commutator [w - 9, ¥]. We
want to solve the homological equation

w- 0,V +i[D, V] +IINR = [R] (15.57)
where
R] = ([1;1] [R%]) L [Ry] = dinges (R1)0). (15.58)
By ([[522), (I520), (259, equation (I.571) is equivalent to the two scalar homological equations
w- 0,0, +i[D, 0] + IyRy = [R1],  w-0,Us +i(DUy+ UyD) + Ty Ry =0 (15.59)

(note that [R;] = [lIx R1]). We choose the solution of (I5.59) given by

v Oy 4 0, - 1 < N,
(¥1)5 (0) == (w04 p; — pir) - (15.60)
0 otherwise;
(R2)] () R
1 - Y, 5,5) € ZTT x S¢ x S§, 1¢], 15 — 5’| < N,
(\112); (0) := (w4 115 + 50 (4,5.3") 0 0, el 17 —J'1 < (15.61)
0 otherwise.

Note that, since p; = p—; for all j € S§ (see (I5.24)), the denominators in (I5.60), (I561) are different from
zero for (w,h) € A}, (see (I529) with v ~» v + 1) and the maps Wi, ¥y are well defined on A} ;. Also
note that the term [R;] in (I5.58) (which is the term we are not able to remove by conjugation with ¥; in
(I5E59)) contains only the diagonal entries j* = j and not the anti-diagonal ones j' = —j, because R is zero
on j' = —j by (I521). Thus, by construction,

(W1)5 (0) = (W2)j (€) =0 V(£,5,5), jj' <0. (15.62)

Lemma 15.7. (Homological equations) The operators U1, ¥y defined in (I5.60), (I5.61]) (which, for
all X € A}, solve the homological equations (I5EY)) admit an extension to the whole parameter space

RIS x [hy,ho]. Such extended operators are DF° -modulo-tame with modulo-tame constants satisfying

m%D>im\D(D>;m (S) Sko NTlfyilm%D)m'R%D)m (5)5 (15.63)
f 71 . —1lomt

9ﬁ(63<;,,gg)b(D)=*="‘\IJ(D)¥"‘ (S) Sko Ny m(a%m>b(D>lqu<D>m (S) (1564)

MY, (5) Sk N7y~ M (s) (15.65)

where T1,b,m are defined in (I510).
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Given i1, ia, let AoV := V(i) — W(i1). If y1,72 € [7/2,27], then, for all (w,h) € AJY | (i1) NA)7 (i2),

- 1 . . .
(D)™ A2 W (D) T™ | ggrrooy S N2 2y (I [(D)™ R(i2) (D)™ | | careoy i1 = izl so (o)

+ | (D)™ A2 R(DY™ | || £ #120)) 5 (15.66)
11(0g,2) (D)™ Ao W (DYT™| || (areoy S N2 2571 (|| [(0,2)* (D)™ R(i2) (D)™ || 2oy llin = 2l 4 o)
+ [11{8p,2)° (D)™ A1 R(D)™ | || £ 120)) - (15.67)

Moreover U is real, even and reversibility preserving.

Proof. For all A € A}y, (£,7,7") # (0,4,£7), j, 5" € S§ [€],|7 — j'| < N, we have the small divisor estimate

T

|w - €+ g — pje| = lw - 4wy — pyey | =137 17O

by ([[5:29), because |[j| — ||| < |7 — j'| < N. As in Lemma [A14] we extend the restriction to F' = A)_; of
the function (w - £+ pu; — pj )~ to the whole parameter space RIS % [hy,hy] by setting

xX(fN)p™)
fo

where x is the cut-off function in ([ZI6). We now estimate the corresponding constant M in (AI4). For
n>1,z >0, the n-th derivative of the function tanh? (x) is Py(tanh(x)) tanhéfn(:n)(l — tanh®(z)), where
P, is a polynomial of degree < 2n — 2. Hence |8{f{tanh% (hlj)} < Cforallm =0,..., ko, for all h € [hy, ho],

for all j € Z, for some C = C(ko,hy) independent of n,h, j. By (I5.23), ((5.24), (I58), (I226), (I3.79) (and

recalling that j; here denotes %), since ey~ 2(M+1) <~ we deduce that

gejj(A) == JO) i=w-l4pj— e, p=~0) T35,

Yoo ;| < v1j1F Vo e NETHL 1 <ol < k. (15.68)
Since ¥/*[05 (w - £)| < ~|¢| for all |a| > 1, we conclude that
NG @ €+ 1y — )| S 10+ 131 + 1515 SAOLIRTE, V1< Jal < ko. (15.69)

Thus (AI4) holds with M = C~(¢)|j|2|5/|2 (which is > p) and (AIF) implies that
k
[ge.g.ge 07 S A HOTEFDR GG with = (ko + 1)d+ 5 (15.70)

defined in (I5I0). Formula ([I560) with (w - £ + uj — i)~ replaced by grj;/(A) defines the extended
operator Uy to RISl x [hy,hy]. Analogously, we construct an extension of the function (w - £ + w4 pg)
to the whole RIS™I x [h1,hs], and we obtain an extension of the operator ¥y in (I5.61]).

Proor or ([I5.63), (I5.64), (I565). We prove (I5.64) for ¥, then the estimate for ¥y follows in the
same way, as well as ([I5.63), ([5.65). Furthermore, we analyze the operator (D)™d¥W;(D)~™, since
(D)~™0%W (D)™ can be treated in the same way. Differentiating (\Ill)gl(ﬁ) = ggyjﬁj/(Rl);:, (£), one has that,
for any |k| < ko,

YWD (O1S D 18 ges 1082 (RS (01 < Y- v Millge s o [Fo1052 (Ry) % (0)]

k1+ko=k ki1+ko=k
(s 3c0) M
< <€>T(ko+1)+ko|j|m|j/|m,y—1—\k\ Z ,ylkz\wl;z(Rl);_ (0)]. (15.71)
[k2|<|k|

For |[j —j'| £ N, j,j' # 0, one has

P S 1A+ 1 = ) S LA N S LN (15.72)
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Hence, by (I5X1) and (IE1D), for all |k| < ko, j,j € S§, £ € ZISTI 16| < N, |j — /| < N, one has
IO (W0)F (O] 7™ < N7y~ Y T Rl a2 (R (Ol (15.73)
k2| <||

where 71 = 7(ko + 1) 4+ ko + m is defined in (I5ZI0). Therefore, for all 0 < |k| < ko, we get
11(D,2) (D)™ O3 @1 (D)™™ | A2
<SS (N = PR (€= O b )
4 |&'—2),|5'—§I<N
G N0 S el Z (== PP R (€= ) )
|k2|<|k| .5

Sho N2y 720HED R 7 2l ) 3¢,m>b<D>m5’§2(Rl)<D>"‘|[IhI]Hi

|k2|<|k|

< 271, —2(14]|k|) # 2

Sk, NPTy (9. e oy py () llso I sy oy (50) ) (15.74)
and, recalling Definition 230} inequality (I5.64) follows.

Proor or (I5.66)-(I5.67). By (I5.60), for all (w,h) € A)!(i1) N A% (i2), one has

) Ars(Ry ) (¢ " 12
a0 = 25T - o 01T,

where we highlight the dependence of the operators and divisors on 41, i2. By ([5.23)), (I5.8)), (12:26), (I3:79),
([538), and s1 + XM (M1, 0) < 5o + p(b), we get

5@jj/ = i(w -0+ wi — ,LLj/)

|Av26gj50| = [A12(pj — 1) < [Avapi] + |Arzpy |
< |Asomy [(1]? tanh (b]j]) + [5'|# tanh? (a]§'])) + [Asor;| + [Asary| + [Asor| + | Asor)|
S ey 2513|513 iy — allsgp )

2M -3

Since 71,72 € [v/2, 2], for ey~ small enough, one has

A2 (W) (0)] S N2y~ L2452 2 (|Ar(Ry)] (0] + (R (0)(i)[[lin — iallsgrney) - (15.75)
For |j — j'| < N, recalling that m > 2d + 1 by ([I5.I0), we have
F e Ve N N (TR U R T )
SLGI™ (N2 4|5 |™) S N2H2 |
and, by ([I5.70), we deduce
Y™ A2 (T1)] (O] (5) ™™ S N2y~ LG)m (0™ (|(Ry)T (0) (i) i — d2lsguce) + 1A12(B1)Y (£)])

The operator A2 satisfies a similar estimate and (I5.66]), (I5.67) follow arguing as in (I5.74).

Finally, since R is even and reversible, (I5.60), (I5.61) and (270)-@27I) imply that ¥ is even and
reversibility preserving. O

If U, with Uy, Uy defined in (I5.60)-(I5.61), satisfies the smallness condition

40(0)C (ko )M, (s0) < 1/2, (15.76)
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then, by Lemma 233, ® is invertible, and (I5.56), (I5.57) imply that, for all A € A,

Ly=0"LO=w- 0,1, +iDy+ Ry (15.77)
which proves (I531)) and (I5:22) at the step v + 1, with
iD} :=iD+[R], Ry :=o (xR +RY - Y[R]). (15.78)
We note that R, satisfies
(B4 )1 (R+)2) P i Ny
R, = (= 2 (R () = [(Re)o)) (0) =0 YL, 4,5, §§' <0, 15.79
= (0 ) o 0= Roal 0 =0 v(ed.d). i (15.19)

similarly as R, in ([5.27)), because the property of having zero matrix entries for jj° < 0 is preserved
by matrix product, and R, ¥, [R] satisfy such a property (see (I527), (I562), (I55])), and therefore, by
Neumann series, also 1 does.

The right hand sides of (I5.77)-([I5.78) define an extension of £ to the whole parameter space RISTI x
[h1,hs], since R and ¥ are defined on RISTI x [h1, hol.

The new operator £, in (I5.77) has the same form as £ in (I5.22), with the non-diagonal remainder R ;.
defined in (I5.78) which is the sum of a quadratic function of ¥, R and a term II{;R supported on high
frequencies. The new normal form D, in (I5T78) is diagonal:

Lemma 15.8. (New diagonal part). For all (w,h) € RIS x [hy,hy] we have

. . (D 0 .
iDy =iD+ [R] =i ( 0+ —D+> , Dy := dlagjegsuj W=t ER, (15.80)

with vy =r_j, pf = p*; for all j € S§, and, on RIS % [hy, by,
3]0 =t — g 07 S 7172 (o). (15.81)
Moreover, given tori i1(w,h), i2(w,h), the difference
x5 (i1) — x;(i2)| S 7172 (D)™ A2 R(D)™ || £ (o) - (15.82)

Proof. Identity (I5.80) follows by (I522) and (I55S) with r; := fi(Rl)g(O). Since R; satisfies (I5.2T) and
it is even, we deduce, by ([2.60)), that r_; = r;. Since R is reversible, (Z70) implies that r; := fi(Rl)j: (0)
satisfies r; = T—;. Therefore r; =T_; =T, and each r; € R.

Recalling Definition 230, we have [||0%((D)™R1(D)™)|h||s, < 27_|k|93?§D>mR1<D>m(so)||h||50, for all A =
(w,h), 0 < |k| < ko, and therefore (see (Z773]))

|a§(R1);(O)| 5 |j|72m77|k|m§D>le(D>m (SO) S |j|72m77‘k‘m§D>mR(D>lxx (SO)
which implies (I5.81]). Estimate (I5.82)) follows by |A12(R1)§(0)| ST HD)™ A2 R(D)Y™ ||| £(#r20).- O

15.1.2 The iteration

Let n > 0 and suppose that (S1),-(S3), are true for all v = 0,...,n. We prove (S1),4+1-(S3),,4+1. For
simplicity of notation (as in other parts of the paper) we omit to write the dependence on ko which is
considered as a fixed constant.

PROOF OF (S1),11. By (I5.63)-(I5.65), (I5.28), and using that M (s) S M py e pyw (), the operator
U, defined in Lemma [[5.7 satisfies estimates ([5.32)-([I5.34) with v = n+ 1. In particular at s = sg we have

M s, oy (50) 5 My (50) < Cls0, )N N2y~ Mo (s0,b) (15.83)
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Therefore, by (I[583), (I5I0), (I521), choosing 72 > 71, the smallness condition (I576) holds for Ny :=
No(S,b) large enough (for any n > 0), and the map ®,, =1, + ¥, is invertible, with inverse

=1, +%,, =" ). (15.84)
\Iln,2 \Ijn,l

Moreover also the smallness condition ([288)) (of Corollary [Z34) with A = ¥,,, holds, and Lemma [Z33]

Corollary 2234 and Lemma [[5.7] imply that the maps ¥,,, (D)*™¥,, (D)T™ and (0, ,)°(D)*™ ¥, (D)™ are

D*o_modulo-tame with modulo-tame constants satisfying

# i ‘r1 —1
m\i/n (8)5 m<D>im¢/n(D)¥m(s) ~S0,b N m( )"‘Rn<D>"‘(S) (1585)
=23, »
Ssop N Ny 2y~ Mo(s,b), (15.86)
and
f ‘r1 —1lamt
m(aw,z>b<D>im\i;n<D>q:m (S) ,Sso b N m(a ’I>b<D>mRn<D>m(s)
+ NaT Y ey oy (50) My (g (5) (15.87)
[1=23),,, . =10), @521
sSo,b N:;l n71771m0(5;b) . (1588)
Conjugating £, by ®,, we obtain, by (I5.77)-[{518), for all X € A) ;,
Logr =0, Ly®n = w- 0,11 +iDpi1 + Ruga, (15.89)
namely (I5.31) at v = n + 1, where
iD’thl :=1D, + [Rn] ) 7?/ThLl = (I)El(nﬁan +Rn¥y — \pn[Rn]) . (1590)

The operator £,11 is real, even and reversible because ®,, is real, even and reversibility preserving (Lemma

[I5.7) and £, is real, even and reversible. Note that the operators D,, 41, Ry4+1 are defined on RISTI x [h1, ho],
and the identity (I5.89) holds on A} ;.

By Lemma [I5.8] the operator D,,; is diagonal and, by [I&I15), (I528), (I5IS), its eigenvalues u?“
RIS™! % [hy,hy] — R satisfy

|rn|ko,’y _ |Mn+1 I |ko,v < |J| 2m9ﬁ(D)“‘R (D>m(30) < C(S, b)57_2(M+1)|j|_2mNn__a1a

which is (I525) with ¥ = n + 1. Thus also (I5.24) at ¥ = n + 1 holds, by a telescoping sum. In addition,
by (I579) the operator R,4+1 satisfies (I2Z7) with v = n + 1. In order to prove that (I5.28) holds with
v =n+ 1, we first provide the following inductive estimates on the new remainder R, 41.

Lemma 15.9. The operators (D)™ R, 4+1(D)™ and (0 »)°(D)™Rp+1(D)™ are D* -modulo-tame, with
N
Y

mﬁ

; ;
(D)1 () () Soow N "My soipyn, oy () + =My ()M ),y (0) 5 (15:91)

Mo Dy Ross () (5) S0 M, o(pyn, oy )
NI M ey, oy (50T pyn, () ) (15.92)
Proof. By (T500) and (T58d), we write
(D)"Ry41 (D)™ = (D)™ Iy, Ry, <D> (<D> v, <D> m)(<D>mHL Rn(D)™)
+ (1 + (D)8 (D)) (D)™ R (D) ><<D>*wn<D>m>)
— (1o + (D)™, (D)™™ ) (D)™ W, (D) ™) (D)™ [R, (D)™ ) . (15.93)

110



The proof of (T5.9])) follows by estimating separately all the terms in (I5.93]), applying Lemmata 2.35] 2232
and (I5.63), (I585), (I5.28)),, (I5I0), (I5.21). The proof of (I5.92) follows by formula (I5.93), Lemmata
2.32 235 and estimates ([5.63), (I5.64), [I5.85), (I5.28)),, (I5.10), (@5.21). O

In the next lemma we prove that (I528) holds at ¥ = n + 1, concluding the proof of (S1),41.
Lemma 15.10. For Ny = Ny(S,b) > 0 large enough we have
m%D)“‘RnJrl(D)“‘( ) < C (SO? ) ’rjamo(sﬂb)
f
m<5%m>b<D>mRn+l<D>m (3) < C. (SOab)Nan(Sab) .
Proof. By (I591) and (I5:28) we get
‘mﬁmmnmmm( ) Ssob Ny PNp1Mo (s, ) + Ny~ "9 (s,0)Mo (s0, b) N, 25
< Ci(s0,b) N, *Mo(s,b)
by [I&I0), (I521), taking No(S,b) > 0 large enough and 75 > 71 + a. Then by (I5.92), (I528) we get that
My iy (pyn (5) Ssop Nam19o(s,B) + N7t Ny =3y~ 9o (s, )Mo (s0, b)
S C* (So, b)Nnmo(S, b)
by [@5I0), (I521I) and taking Ny(S,b) > 0 large enough. O
PROOF OF (S2),,4+1. At the n-th step we have already constructed the operators

Rn(i1), Yro1(i1), Ruliz), ¥p_1(i2),

which are defined for any (w,h) € RISTI % [h1,ho] and satisfy estimates (I5.2]), (I5.32), (I5.33). We now
estimate the operator A1aR, 41 for any (w,h) € A} (i1) N A%, (i2). For (w,h) € M) (1) NA)% (i2), by

([@5.60), @.74), [5.28), ([5.15), [[5.35) we get

2742 —a —30 - .
(D)™ A2 W (DYF™ | a0y Ssp NoT T2 2 N2 ey M3y — | 4o - (15.94)
Moreover, using ([5.67), (Z74), ((5.28), ((5.15), (I530), we get
2‘1’—‘,—2{1-‘,—2 _ _ . .
1 1(0p,)*(DYE™ A1 W, (DYF™ | || 21120y S50 N Noo167 M3 li — iz gt o) (15.95)

By (I5.83)), (I5.10), (I5:20), (I521)), using that 72 > 71 (and taking Ny large enough), the smallness condition
[@.971)) is verified. Therefore, applying Lemma 238 together with estimates (15.94), (I5.93), (I5.80), (I5.8]),
@14) and using (I5.10), (I521), we get

x 2742 —a —30 .
11A12(DYE™ T (DYF™| || £(rr0) Ssp Neo' d+2N 206y M3 iy — ol o) - (15.96)

¥ 2‘1’—‘,—2{1-‘,—2 _ _ . .
1 1(0p.) > (D)™ A1 U (D) F™| || 27170y Ss,p N Noo1ey M3 iy — il sg 4 uo) - (15.97)

Estimates (I5.30), (I5.36) for v = n + 1 for the term A13Rp4+1 (where R,11 is defined in (I590)) follow by
recalling (I5.93)), by a repeated application of triangular inequality, by Lemma [2Z:30] using estimates (I5.96)),

(I597), [I5.86), (I588), (15.94), (I595), 274), (5.28), (I5.32), (15.33), (I5.35), (I5.34), (I5.15), taking
No(S,Db) > 0 large enough, recalling (I5.10) and using the smallness condition (I5.2T]).

The proof of (I537) for v =n + 1 follows estimating Aia(r ntl r7) = Appr} by (I5.82) of Lemma 5.8
and by (I5.33) for v = n. Estimate (I538) for v =n +1 follows by a telescopmg argument using ([5.37)

and ([5.33).

PROOF OF (S3),,+1. First we note that the non-resonance conditions imposed in ([[5:29) are actually finitely
many. We prove the following
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e CLAIM: Letw € DC(2y, 7) and ey~2(M+1) < 1. Then there exists Cy > 0 such that, for any v = 0, ..., n,
for all |¢|,]j — j'| < N,, j,j" € Nt \ St if

min{j, j'} > CoN2T+1A~2, (15.98)
then |w - €+ plf — pl [ >y (€)77.
PROOF OF THE CLAIM. By ([5.23), (I5:24) and recalling also (I3.79), one has

p = m%j% tanh? (hj) + o, =4y, sup j%|tj”,|ko,v <g ey 2MHD) (15.99)
jES*e

For all j,j' € N\ {0}, one has

Vi) - Ve < P (15.100)

Then, using (I5.I00) and that w € DC(2v, 7), we have, for |j — j'| < N,, |[¢| < N,,

C(h) S
O = ] > w e ) = my | ——— | — 5| = 4] = [t%
jw - €+ g — ] > |w - |m§|mm{\/3’¢j_,}ly = 1651 = [
220 (5T 2y 2C(h)N, C(S)ey™2(M+1) @EIE) ~

S G VARV VA S

where the last inequality holds for Cj large enough. This proves the claim.
Now we prove (S3), ,,, namely that
CS)NTHIEH iy — iy | gorpe) Sp = M)y (in) C A5 (in) - (15.101)

Let A € A}, (i1). Definition (I5.29) and (I5.39) with v = n (i.e. (S3),,) imply that A} (i1) C A)(i1) C

AY~=P(i3). Moreover A € AY~P(ig) C A;YL/Q(Z'Q) because p < /2. Thus A} (i1) € A} (i2) C A;Y/Q(ig). Hence

A1 (1) C AY(in) N A% (i), and estimate (T5.38) on |Arr| = (A i2(A)) — 77 (A, i1 (A))] holds for any
A € A}, (i1). By the previous claim, since w € DC(2v,7), for all ||, [j — j'| < N, satisfying (I5.98) with
v = n we have
, , v v y=p
A4 (N ia(N) = b (N ia( V)] > = > S—
jw € g (A i2(N) = s (A i ()] = (7 = [0y 578 = ()7 a5
It remains to prove that the second Melnikov conditions in ([5.29) with ¥ = n+1 also hold for 7, j* violating

[598)|,=n, namely that

- €+ (i (X)) — b (A i (V)] >

Trgege T =3 S Na mingj ' < Gy R (15.102)

The conditions on 7, j' in (I5.102) imply that
max{j, j'} = min{j,j'} + |j — 5’| < CoNZTTVy 72 + N, < 20Ny 72, (15.103)

Now by ((5.23)), (15.24), (I5.100), recalling (I226), (I3.79), (I5.38) and the bound ey~ 2(M+1) < 1, we get

(1 = 15 Aia(N) = (1 = ) s i ()] < 1 = 15 (A i2(N) = (1 — 13 ) (A i (V)]
+ [r7 (A i2(A) = 77 (A i (A) ] + 75 (A i2(A)) = rfi (A, i (A))]
C(S)N,,

<———||lig — 1 . 15.104
> min{\/j,\/j_’}”w Zl”so-l-u(b) ( )
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Since A € A} (i1), by (I5I04) we have, for all [¢| < N, |j — j'| < Ny,

jw - €4 i (in) — pifi(i2)| = |w - €4 pj (1) — pf ()] = [ — p) (i2) = (uf — pgo) ()]
. e amw i N
- io — i1]|s
=07 min{ gy e
v L =P

= e OO il = e
provided C(S)N,(€)77%" i — i1l sg4pw) < p- Using that |¢] < N,, and (I5.I03), the above inequality is
implied by the inequality assumed in (I5.I0T). The proof for the second Melnikov conditions for w-£+p7 + Wi
can be carried out similarly (in fact, it is simpler). This completes the proof of (I539) with v =n+1. O

15.2 Almost-invertibility of L,

By ([I44), £, = ’PLELPIR where P is defined in (T42)), (I43). By ([545), for any A € A}, we have that
Lo = U LU Y, where U, is defined in (I5A0), Lo = L™, and L™ = £, on the subspace of functions

n 7

even in z (see (I5.3). Thus
Lo =Vulo V)l Vyi=PilU,. (15.105)

By Lemmata 228 23T by estimate (I[5.42)), using the smallness condition (I5.41)) and 75 > 71 (see Theorem
[[5.4)), the operators U1 satisfy, for all sp < s < 9,

I Rl Ss IRNEY + 1 3oll5S 0w I1AIIR ™ - (15.106)

Therefore, by definition (I5.105) and recalling (IZ4), (I5.106), (I5.16), (I5.17), the operators VX! satisfy,

for all sg < s < 5, the estimate

Koy o 1j~|[kos Fo,
Vbl Ss IAlSST + 130l IRl s (15.107)

for some o = o(ko,T,v) > 0.
In order to verify the inversion assumption (6.30)-(G.34]) that is required to construct an approximate in-
verse (and thus to define the next approximate solution of the Nash-Moser nonlinear iteration), we decompose

the operator £, in (I5.45) as
Ly=85+Ry+Rit (15.108)

where
gy =1k, (w- 0,1 +iDn)lk, + g, , Ry =g (w-9,0L +iDy)lx, — 1, , (15.109)
the diagonal operator D,, is defined in (I5.22)) (with v = n), and
K, =K}, Ki>0
is the scale of the nonlinear Nash-Moser iterative scheme.

Lemma 15.11. (First order Melnikov non-resonance conditions) For all A = (w,h) in
AL = A6 = (AN ERY x [y ho) s |w- £+ | > 2953 (077, V(| < K., jENT\ST},  (15.110)

the operator £ in (IINQ) 4s invertible and there is an extension of the inverse operator (that we denote
in the same way) to the whole R X [h1,ho] satisfying the estimate
k 71 ko,

IE)~ alle Swo v llgllssn (15.111)

where p = ko + 7(ko + 1) is the constant in 2I8)) with ko =k + 1.
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Proof. By ([5.68), similarly as in (I5.69) one has v/*/|og/(w - £ + SIS ~(0)|j]z for all 1 < |a| < ko. Hence
Lemma [A.4] can be applied to f(A) = w- £+ pf(A) with M = Cy(0)]4]2 and p = 2y52 (£)~7. Thus, following
the proof of Lemma 28 with w - £ + u? (\) instead of w - £, we obtain ([5.1TT). O

Standard smoothing properties imply that the operator R;- defined in (I5.109) satisfies, for all b > 0,

— ko, R ko,
IR RS S K IRl en s IR RIET S HIRNGET - (15.112)

By (I5.108), (I5.108), Theorem [I5.5] Proposition[T4.3] and estimates (I5.111]), (I5.112), (I5.101), we deduce

the following theorem.

Theorem 15.12. (Almost-invertibility of £,) Assume [@9). Let a,b as in (ILI0) and M as in (I510).
Let S > sg, and assume the smallness condition (ILAI). Then for all

(wh)e A} :=A) (@) =N 1N AZ’+1 (15.113)
(see (I54d)), (ILII0)) the operator L, defined in [©27) (see also [TH)) can be decomposed as
L,=LS+Ry+RE, (15.114)

LS =V, 85V Ry =V,RV, !, RE=V.RIVL,

where LS is invertible and there is an extension of the inverse operator (that we denote in the same way) to
the whole RY x [h1,ha| satisfying, for some o := o(ko,7,v) > 0 and for all so < s < S, the estimates

1L ™ gllEo s v (lgl87 + 130112 ) o g2, ) (15.115)
(with p(b) defined in (IIT)) and
IRAIEY S5 ey 2MHDNZ2 (RIS + 130l157 oy 4o IRIE,) | (15.116)
IREh|k <5 K <||h||’:3’ﬂb+,, 130117 s IBIET) . VB> 0, (15.117)
IRSAIE™ Ss 1RISST + 19011257 w40 IR 1507 - (15.118)

Notice that (I5I110)-({I5II8) hold on the whole R” X [h1,hs].

This theorem provides the decomposition (6.30) with estimates ([6.31))-([G.34). As a consequence, it allows
to deduce Theorem

16 The Nash-Moser iteration

In this section we prove Theorem 51l It will be a consequence of Theorem [16.2] below where we construct
iteratively a sequence of better and better approximate solutions of the equation F(i,«) = 0, with F (¢, «)
defined in (B.I3]). We consider the finite-dimensional subspaces

By = {3(¢) = (0,1,2)(¢), ©=T,0, [=TI,I, 5 =TIz}

where II,, is the projector

T, = Ty, : 2(p, ) — Z Ze’jei(l-aerjm) — I, 2(p, @) = Z Ze’jei(l-aerjx) (16.1)
0€Zv FESS [(6)<Kn

with K,, = Kg‘n (see (6.2)) and we denote with the same symbol IL,p(¢) = >y <k, peett¥. We define

I} := Id — II,. The projectors II,,, IT;- satisfy the smoothing properties (Z6), (Z7) for the weighted
Whitney-Sobolev norm || - [|%0+7 defined in ([23).
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In view of the Nash-Moser Theorem [16.2] we introduce the following constants:

aj := max{6c; + 13, xp(7 + 1)(4d + 1) + x(u(b) + 2071) + 1}, as == x ‘a1 — pu(b) — 201, (16.2)
w1 = 3(u(b) + 201) + 1, by :=a; + u(b) + 301 + 3 + x ", X =3/2, (16.3)
o1 = max{7, s9 + 2ko + 5}, (16.4)

where ¢ := 6(7,v,kp) > 0 is defined in Theorem [6.8 so + 2ko + 5 is the largest loss of regularity in the
estimates of the Hamiltonian vector field Xp in Lemma 6.1 u(b) is defined in (I5.IT), b is the constant
b:=[a] + 2 € N where a is defined in (I5I0), and the exponent p in (628) satisfies

1 3
pa> (x —1)a; + xo1 = 721 + 201 (16.5)
By (I5I0), a > x(7 + 1)(4d + 1) + 1. Hence, by the definition of a; in ([I6.2), there exists p := p(7,v, ko)
such that (I6.3]) holds. For example we fix

e 3(u(b) +a301 +1) . (16.6)

Remark 16.1. The constant a; is the exponent in (IGII). The constant ag is the exponent in (16.9).
The constant py is the exponent in (P3),. The choice of the constants p1,b1,a1 allows the convergence
of the iterative scheme (EES:ZZI) [I623), see Lemma [16.4 The conditions required along the iteration are
a; > (201 +4)x/(2—x) = 601+ 12, by > a3 + pu(b) + 301 + 2+ x L1, as well as pa > (x — 1)a; + xo1 and
i > 3(u(b) + 200).

In addition we require a1 > xp(7+1)(4d+ 1)+ x(u(b)+201) so that ag > p(7+1)(4d+1). This condition
is used in the proof of Lemma [16.5.

In this section, given W = (7, 8) where J = J(\) is the periodic component of a torus as in (5.15]), and
B = B(A\) € R” we denote ||[W|/57 := max{||J||*07, |8]ko7}, where ||T||¥o-7 is defined in (E.I8).

Theorem 16.2. (Nash-Moser) There exist dy, Cy > 0, such that, if

1
KSSE,Y—QM—?’ < (50, T3 = ma.X{pTQ, 2014+a; +4}, KO = ry_l’ Y= Ea’ O0<a< m s (167)
3

where the constant M is defined in (I5I6) and 7 := To(T,v) is defined in Theorem[I5.4), then, for alln > 0:

(P1),, there exists a ko times differentiable function W, : R x [hy,ho] = Ep_1 X RY, A = (w,h) = W, (\) :=
(Tp, G, — w), forn > 1, and Wy := 0, satisfying

= ko, _
IWall oo oy or < Cuer ™t (16.8)

Let U, := Uy + W,, where Uy := (p,0,0,w). The difference H, :=U, —U,_1, n> 1, satisfies

k — k az
LR oraoy < Gty s IHlR0 4y s0, < Ceer K%, VR 2 2. (16.9)

(P2),, Setting in, := (¢,0,0) + Ty, we define
go =0 X [hl,hg] , gn+1 = gn n A;YH_I(Z”) y n Z 0, (1610)
where A} | (in) is defined in (I5IL3). Then, for all X € G, setting K_y := 1, we have

|F (U507 < CueK 2 (16.11)

(P3), (High norms). |[W,[|%7, < Cuey 'KEL, for all X € G,.
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Proof. To simplify notation, in this proof we denote || |[*o7 by || ||.
STEP 1: Proof of (P1,P2,P3)o. One has | F(Up)|s < e by (BI3), (62), then take C, large enough.

STEP 2: Assume that (P1,P2,P3), hold for some n > 0, and prove (P1,P2,P3)n+1. We are going to
define the next approximation U,1; by a modified Nash-Moser scheme. To this aim, we prove the almost-
approximate invertibility of the linearized operator

Ly, = Ln(>\) = dz,af(zn(/\))

by applying Theorem to L,(X). To prove that the inversion assumptions (G.30)-([G34) hold, we apply
Theorem [5.12 with ¢ = 7,. By (I6.7) (and recalling the relation Ny = K} in (628)), the smallness condition
([I541) holds for e small enough. Therefore Theorem applies, and we deduce that (6.30)-([6.34) hold

for all A € A} (i), see (ILII3).

Now we apply Theorem [6.8 to the linearized operator L, () with A, = A, (i,) and
S =s9+b1 where by is defined in ([I63). (16.12)
It implies the existence of an almost-approximate inverse T,, := T,, (), 7,(\)) satisfying
ITugle Seoton 7~ (lgllesor + nllctuorsosloloson) ¥so<s<so+by,  (1613)
ITngllso Ssotvr ¥~ 19llso+on (16.14)

because o1 > & by [[6.4), where & is the loss in [E47). For all A € G,11 = G, NA) (i) (see (IEID)), we
define

Upsr :=Up + Huy1, Hpg1 = Gpi1,0ng1) i= I, T, I, F(U,) € E, x R (16.15)
where IL, is defined by (see (I6.1]))
IL,(J3,0) = (I,3,a), I} (3,a):=1:3,0), VY(J,a). (16.16)

We show that the iterative scheme in (I6.I5]) is rapidly converging. We write

F(Upt1) = F(Un) + LnHny1 + Qn (16.17)

where L,, := diﬁa]-'(ﬁn) and @, is defined by difference. Then, by the definition of H,,41 in (I6.IH), we have
(recall also (IG.I0))

]:(Un+1) = }—( Nn) - LanTan]:(Un) + Qn
= F(U,) — L, T, 11, F(U,) + L ,JI: T, 1L, F(U,) + Qn
= F(Upn) — 0, L, T, 11, F(Uy,) + (LI — I L) T IL F(Un) + Qn
=1 F(U,) + Ry + Qn + Py, (16.18)
where
Ry := (L,dIr —1L-L,)T .10, F(U,), P, := —I0,(L,T, — IO, F(U,). (16.19)

We first note that, for all A € Q x [y, hs], s > sg, by triangular inequality and by (BI13), (63)), (I6.4), (I6.8))
we have

IFT)lls Ss IFUo)s + IF(Tn) = F(Uo) s Ss &+ [Walls+on (16.20)

and, by ([I6.8), (I67), 3 3
Y IFOn)llso 1. (16.21)

We now prove the following inductive estimates of Nash-Moser type.

Lemma 16.3. For all X € G,,11 we have, setting pz := u(b) + 301,

p2—bi

T o g € —pa gro ]
(& + 1 Wallsorw,) + K27 PIF OIS, + ams KT ED IIF(Un)llse (16:22)

K
||]:(Un+1)||80 580+b1 72M+3 n

IWillsoror Ssovon €771 IWatallsornn Ssorwn KA 27197 e+ [Wallsg4n,), n> 1. (16.23)
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Proof. We first estimate H,+1 defined in (IG.IH).
Estimates of H, ;. By (I613) and 26), 2.7), (I613), (I6.14), (I6.8)), we get

| Hgtllso4r Ssotbr ¥ (KT IF (O lsotor + KEOT2 T, Lot |F (U)o )

(20, (62D )
Ssoton KEDPEIT e 4 [Waalsgto, ) - (16.24)

1 Hns1lls0 Ssoron v ETHIF(On) 5o - (16.25)
Now we estimate the terms @, in (I6.17) and P,, R, in (I6.19)) in || ||s, norm.

Estimate of Q,. By ([I6.8), (I6.4), [2.6), (16.25), (I6I1), and since 307 —a; < 0 and a < 1/(1 + 301)
(see ([[62), (I6.T)), one has [|W,, + tHp11l|2s0+2k0+5 S 1 for all ¢ € [0,1]. Hence, by Taylor’s formula, using

@617, GI3), 6.4), (16.25), [28), and ey~2 < 1, we get
1Qnllso Ssotbs 5||Hn+1||§0+1 Ssotby K72101+2||-7:(0n)||§0. (16.26)

Estimate of P,. By (6.48), L,T, — Id = P(in) + P.(in) + PL(in). Accordingly, we decompose P, in
as P, = —P\" — P, — Pt where
(6.19) w = P,

PWY =1L, P )0, F(U,),  Pauw:=1LPu(in) 0, F(U,), Pl o= TL,Py (i), F(Uy).
By @.8)-&1),
||]:(Un)||50+01 < ||Hn]:(0n)||80+01 + ||H#]:(Un)||50+01 < K’gl(H‘F(Un)HSU +K;b1||]:(ﬁn)||50+b1)- (16-27)
By (629), (I65), ([6.27), and then (IG0), (Z8), we obtain
1P 5o Ssoton ¥ K27 IF O llso IF (Un)llso + E > 1 F(Un) s 46,
Ssoton 7V KL F (U lso IF(Un)llso + K271 (e + [[Wallso4s:))- (16.28)
By @30, (T63), (Z8), we have
||Pn,w||80 Sso+by 5'772M73Nn_—alKgl||]:(Un)||80a (16-29)
where a is defined in (I5I0). By (@51), 26), (I63), (I6I1), and then ([I6.20), [26]), we get

||Pn%w||50 550+b1 Kg(b)+2gl_b1 _1(||‘F(0n)||50+b1 + EHWTI”SOJHH)

v
Seotvy KEOH 0101 L 1T, |10 1, ) (16.30)

~

Estimate of R,. For H := (3,d) we have (L,JI> — IIXL)H = &[d; Xp(i,), 1113 where Xp is the
Hamiltonian vector field in (513). By @3), @1), (I&4), (I63),

(LT =T L) Hl|sy Ssor €505 (1T lsor + 1T llsgros [T so41) - (16.31)

Hence, by (I619), (IG31), (I613), (IE8), 216), and then (I620), [26), (I621]), we get

||Rn||50 Sso+bs 57_1Kﬁ(b)+201_b1(HHH}—(Un)HSO+b1 + ||Wn||80+b1 HHWF(UH)HSU-‘:-M)
Seotor KEOFT20 (e [ W, | sg 40,)- (16.32)

~

We can finally estimate F(U+1). By (I6.15), (), (621, (T532), (628), (T525)- (IE30), (I5F), we get
([622). By (I6.15) and (I6I3)) we have bound (I623) for W, := H;, namely

||W1||50+b1 = ||H1||So+b1 550+b1 771||‘F(U0)||50+b1+01 580+b1 5771 .

Estimate (I8.23) for Wy,y1 := Wy, + Hy 1, n > 1, follows by ([6.24). O
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Now that Lemma[16.3] has been proved, we continue the proof of Theorem[16.2] As a corollary of Lemma
[6.3 we get the following lemma, where for clarity we use the extended notation || [|¥7 (instead of ||| used
above).

Lemma 16.4. For all A\ € G,, 1, we have

[ F(Uns)|[507 < CueK, 2, [Wosa |50, < Cuey KT (16.33)
k — o1 —a
LR rvoy S Cv ™Y Hud 10 )y Soo €7 L2 R 2 > 1 (16.34)

Proof. First note that, by (IG.I0), if A € G,,4+1, then A € G,, and so (I6.I1)) and the inequality in (P3),, hold.
Then the first inequality in ([6.33) follows by [@6.22), (P2)n, (P3)n, v ! = Ko < Ky, ey 2M73 < ¢ small,

and by ([I6.2), (I6.3), (I6.5)-{I6.8) (see also Remark [[6.1]). For n = 0 we use also (I6.7).
The second inequality in (I6:33) for n = 0 follows directly from the bound for Wy in (I6.23)); for n = 1,2

one proves, by (I6.23)), that

ko, — b)+2 ko,
[Wall50,, Seosny &7 2K T2 W50 <y ey 2 (KB )P F20,

whence the second inequality in ([I6.33) for n = 1,2 follows by the choice of pu; in (I63) and Ky = v~ !
large enough (i.e., € small enough); the second inequality in (I6.33]) for n > 3 is proved inductively by using

[@I623), (P3),, the choice of 1 in (I63) and Ky large enough.
Since Hy = W, the first inequality in (IG.34) follows by the first inequality in ([623). For n > 1,

estimate (I6.34) follows by (24), (I625) and ([IEIT). O

By Theorem [A.2] we define a ko times differentiable extension H,,; of (Hn11)(g,., to the whole R x
[h1,ho], which satisfies the same bound for H,; in (I6.34) and therefore, by the definition of as in (I6.2),
the estimate (I6.9) at n + 1 holds.

Finally we define the functions

Wn+1 = Wn + HnJrl 3 UnJrl = 071 + I:In+1 = UO + Wn + I:In+1 = UO + I/T/YnJrl 5
which are defined for all A € R” x [h;, ho] and satisfy
Wn-‘,—l = Wn-‘,—l 5 Un-‘,—l = Un+1 5 V}\ S gn_;,_l .

Therefore (P2),+1, (P3)n+1 are proved by Lemma [[6.41 Moreover by (I6.9), which has been proved up to
the step n 4+ 1, we have

ko, n+1 ko, _1
HW”"'le[o):# (b)+0o1 < Zkzln klls[o):u (b)+o1 — < Ciey

and thus (I6.8) holds also at the step n + 1. This completes the proof of Theorem [[6.2 O

16.1 Proof of Theorem 5.1

Let v = ¢ with a € (0,a0) and ag := 1/(2M + 3 + 73) where 73 is defined in (I&7). Then the smallness
condition given by the first inequality in (I6.7)) holds for 0 < € < £¢ small enough and Theorem [I6.2] applies.
By (I6.9) the sequence of functions

Wa = Un = (#,0,0,w) := (In, G = w) = (in = (,0,0), Gin — w)
is a Cauchy sequence in || |50 and then it converges to a function

Weo = lim W,,  with W :RY x [hy, ho] = H® x HY x H, x R”.

n—-+o0o

We define
Uso = (oo, o) = (,0,0,w) + W .
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By ([I6.8) and ([I69) we also deduce that

Ko, - Ko, |
1Uso = UollE7 oy < Coer™" s Uso = U2 )40y < Cov K7™, n>1, (16.35)

Moreover by Theorem [[6.2}(P2),,, we deduce that F (A, Us(A)) = 0 for all A belonging to
M G =600 () A1) =7 Gonr [ () 13G00)] 0 [ ) 437G )] (16.36)
n>0 n>1 n>1 n>1

where Gp = Q X [h1,hs] is defined in (I6.I0). By the first inequality in ([I6.35) we deduce estimates (5.19])
and (520).

To conclude the proof of Theorem [5.I] now we prove that the Cantor set CX, in (5.23) is contained in
Ny>0 Gn- We first consider the set

Goo = Go N { M A2 OO)} N [ N Afﬂ’f(ioo)} . (16.37)
n>1 n>1
Lemma 16.5. Goo C (1,50 Gn, where G, is defined in (IG.10).
Proof. We are going to apply the inclusion property (I5.39). By (I6.35), (6.28), we have, for all n > 2,
C(S)Nfzztl)(éld-i_l)'yizld”ioo - inflnso—i-u(b)—i-(n < O(s)KP(T+1)(4d+1)C€ —-1- 4dK az <~

taking ¢ small enough, by ([I67) and using as > p(7 + 1)(4d + 1) (see (I62)). For n = 1 we get as
well C(S) N{TTDaH) Y lico — @0l sp+u(v)+0, < 7 using the first inequality in ([6.35) and recalling that
Ko=~"1 v=c¢%and a]2+4d+p(7+1)(4d+1)] < 1. Recall also that S has been fixed in (I6.12). Therefore
(EIESEI) in Theorem [[5.4+(S3), gives

A2 (ioo) C A (Tn—1), Yn>1.
By similar arguments we deduce that A2V (i) C AY(7,,_1), and the lemma is proved. O

Then we define the “final eigenvalues”
W = Qi) +75°, j ENT\SF, (16.38)
where 49 (io) are defined in (I5.8) (with m1,7; depending on i) and

r0 = lim r}(is), jeNT\ST, (16.39)

J n——+00

with r7 given in Theorem [I5.4H(S1),. Note that the sequence (r7 (ioo))nen is a Cauchy sequence in | [*o-7 by
. As a consequence its limit function r$°(w,h) is well defined, it is ko times differentiable and satisfies
J

15 = 75 (o) [T < Coy2MFD[j| 72 N2, 0 > 0. (16.40)

In particular, since 9(is) = 0, we get [r°[F0:Y < Cey2MHD|j|=2™ (here C := C(S, ko), with S fixed in

({I612)). Now consider the final Cantor set C1, in (5.23)).
Lemma 16.6. C), C Go,, where G is defined in ([6.31).

Proof. By ([[6.37), we have to prove that C1, C A2 (is,), Vn € N. We argue by induction. For n = 0 the
inclusion is trivial, since A} (iso) = @ X [h1,hy] = Go. Now assume that C2, C A27 (i) for some n > 0. For

all A € €3, € A7 (o), by ([5.23), (I6.38), (I6.40), we get

[ — ) (o) — (U5° — pP)| < Cey2MADN 2 (572 4 5/2m)

119



Therefore, for any |£], j — j'| < N, with (£, j,57) # (0, j) (recall (5223)) we have

jw €t 15 (ie) = i (o) | > w € 5° — i3 | = CeqT2MFUNTE, (720 4 5172)
> 4,y<€>7'rjfdj/7d _ 05/772(M+1)Nn_—al (j72m + jlfzm)
> 29(0) 7574
provided
05772M73Nn—7alN771' (j*Qm +j/72m)jd‘j/d S 1.
Since m > d (see (I5.10)), one has (j + N,,)4j972™ <4 N2 for all j > 1. Hence, using |j — j'| < Ny,

_ —2my d j" j JH+ N G+ Na)?
(j am +jl 2m)jdjld = j2m7d + j/2m7d < ( j?mfd + ( j/2m7d Sd Ng (1641)

Therefore, for some C; > 0, one has, for any n > 0,
06772M73Nn—7alN77; (j72m + j/72m)jdj/d < 015772M73N71_31N7:+d < 1

for & small enough, by (I5I0), (I6.7) and because 73 > p(7 4 d) (that follows since 75 > 7 + a where 72 has
been fixed in Theorem [[5.4]). In conclusion we have proved that C2, C Ai11(ioo) (for the second Melnikov
conditions with the + sign in (I5.29) we apply the same argument). Similarly we prove that CI. C A2V (i)
for all n € N. O

Lemmata [[6.5] [6.6] imply the following inclusion.

Corollary 16.7. CJ, C (50 Gn, where G, is defined in (16.10).

A Whitney differentiable functions

In this Appendix we recall the notion of Whitney differentiable functions and the Whitney extension theorem,
following the version of Stein [59]. Then we prove the lemmata stated in Section[2.1] The following definition
is the adaptation of the one in Section 2.3, Chapter VI of [59] to Banach-valued functions.

Definition A.1. (Whitney differentiable functions) Let F' be a closed subset of R", n > 1. LetY be
a Banach space. Let k > 0 be an integer, and k < p < k+ 1. We say that a function f : FF — Y belongs to
Lip(p, F,Y) if there exist functions

fO:F Y, jeN", 0<|j| <k,
with f©O = f, and a constant M > 0 such that if Rj(x,y) is defined by
f(])((E) = Z Efo-i_é)(y) (‘T_y)e—’—Rj(xay)a T,y € Fa (Al)
LN o<k

then
IfD@)ly <M, Rz, y)lly < Mlz—ylPV, Va,yeF, [jl<k. (A.2)

An element of Lip(p, F,Y) is in fact the collection {f\9) : |j| < k}. The norm of f € Lip(p, F,Y) is defined
as the smallest M for which the inequality (A2) holds, namely

[ FllLip(o,r,yy = Inf{M >0 : (A2) holds} . (A.3)

If F = R" by Lip(p,R™,Y) we shall mean the linear space of the functions f = O for which there exist
fO =05 f, |j| <k, satisfying (BZ).
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Notice that, if F = R, the fU), |j| > 1, are uniquely determined by f(°) (which is not the case for a
general F' with for example isolated points).

In the case FF =R"™, p=k+1 and Y is a Hilbert space, the space Lip(k + 1,R",Y) is isomorphic to the
Sobolev space Wk+1:0(R" Y, with equivalent norms

Cillfllwrsr.oo@n,yy < [ fllLiptrt1,r0,v) < Coll fllwrt1.00mny) (A.4)

where C1,Cs depend only on k,n. For Y = C this isomorphism is classical, see e.g. [59], and it is based
on the Rademacher theorem concerning the a.e. differentiability of Lipschitz functions, and the fundamental
theorem of calculus for the Lebesgue integral. Such a property may fail for a Banach valued function, but
it holds for a Hilbert space, see Chapter 5 of [12] (more in general it holds if Y is reflexive or it satisfies the
Radon-Nykodim property).

The following key result provides an extension of a Whitney differentiable function f defined on a closed
subset F' of R™ to the whole domain R"™, with equivalent norm.

Theorem A.2. (Whitney extension Theorem) Let F' be a closed subset of R™, n > 1, Y a Banach
space, k > 0 an integer, and k < p < k + 1. There exists a linear continuous extension operator & :
Lip(p, F,Y) — Lip(p,R™,Y) which gives an extension Ef € Lip(p,R™,Y) to any f € Lip(p, F,Y). The
norm of &, has a bound independent of F,

€k f [Lip(o,rn,v) < Cllf lLip(p,ryy»  Vf € Lip(p, F}Y), (A.5)
where C' depends only on n,k (and not on F,Y ).

Proof. This is Theorem 4 in Section 2.3, Chapter VI of [59]. The proof in [59] is written for real-valued
functions f : F — R, but it also holds for functions f : FF — Y for any (real or complex) Banach space Y,
with no change. The extension operator & is defined in formula (18) in Section 2.3, Chapter VI of [59], and
it is linear by construction. O

Clearly, since & f is an extension of f, one has

I fllLip(o, vy < €k flILip(orm,y) < Cllf lLip(p,7,v) - (A.6)

In order to extend a function defined on a closed set F' C R™ with values in scales of Banach spaces (like
H*(T"*1)), we observe that the extension provided by Theorem [A.2] does not depend on the index of the
space (namely s).

Lemma A.3. Let F' be a closed subset of R, n > 1, let k > 0 be an integer, and k < p < k—+1. LetY C Z
be two Banach spaces. Then Lip(p, F,Y) C Lip(p, F, Z). The two extension operators EIEZ) : Lip(p, F, Z) —
Lip(p,R™, Z) and Eéy) : Lip(p, F,Y) — Lip(p, R™,Y") provided by Theorem A satisfy

Z Y .
g7 f=ef Vfelin(pFY).
As a consequence, we simply denote & the extension operator.

Proof. The lemma follows directly by the construction of the extension operator & in formula (18) in Section
2.3, Chapter VI of [59]. The explicit construction relies on a nontrivial decomposition in cubes of the domain
R™ only. O

Thanks to the equivalence (A.f), Lemmal[A.3] and (A4 which holds for functions valued in H®, classical
interpolation and tame estimates for products, projections, and composition of Sobolev functions can be
easily extended to Whitney differentiable functions.

The difference between the Whitney-Sobolev norm introduced in Definition 2. I]and the norm in Definition
ATl (for p=Fk+1,n=v+1, and target space Y = H*(T"*1 C)) is the weight v € (0,1]. Observe that the
introduction of this weight simply amounts to the following rescaling R.: given u = (u(j))‘ jl<k, we define
Ryu=U = (UD)} < as

A=qp, AP =D () = U () =UD(vN),  U:=Ru. (A7)
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Thus u € Lip(k + 1, F, s,7) if and only if U € Lip(k + 1,7 1F, s, 1), with

all S = OIS e (A.8)

sy"1F
Under the rescaling R, (A4) gives the equivalence of the two norms

k+1,
I lwessoe o mey = D0 YN0 fllpss@ors ey ~unn 1 ISR - (A.9)
la|<k+1

Moreover, given u € Lip(k + 1, F, s,7), its extension

= R;lé’k’Rvu € Lip(k + 1,R"™! 5,7) satisfies ||u||];';17 ~u |alF R (A.10)

s,Rv+1
Proof of Lemma Inequalities (Z8)-(27) follow by
(M) P () =Ty [P V)], B (0, 20) = T [R5 (0, do)],
for all 0 < [j] < k, A\, Ao € F, and the usual smoothing estimates ||IIyf|s < N/ f|ls—a and [[IIx f]ls
N=%||f|ls+a for Sobolev functions. D

Proof of Lemma[2.3] Inequality (ZX) follows from the classical interpolation inequality [|ul|s < [jul|% ||u]:
s =0sg+ (1 — 6)sy for Sobolev functions, and from the Definition [ZT] of Whitney-Sobolev norms, since

. . ; i — k+1, k+1,
Y@ s < D W) 1s0)? P D )116) =0 < (ully) 770 Q7)1

YR 20)lls < (F IR 20) o) P FHIR; ( 20) 1607 < (Jlull) 77)° (IIUIIW’”)H’IA* Ao[FHEL,

so,F' s1,F

Inequality (2.9) follows from (2.8)) by using the asymmetric Young inequality (like in the proof of Lemma
2.2 in [21]). O

Proof of Lemma 2.4l By (A.9)-(A10), the lemma follows from the corresponding inequalities for functions
in Whtlheoy(R¥+1 %) which are proved, for instance, in [21] (formula (2.72), Lemma 2.30). O

For any p > 0, we define the C*° function h, : R — R,

ho(y) == Xpy(y) - X(y;’_l) . Yy eR\ {0}, h,(0):=0, (A.11)

where x is the cut-off function introduced in (2I6)), and x,(y) := x(y/p). Notice that the function h,, is of
class C* because h,(y) = 0 for |y| < p/3. Moreover by the properties of x in (ZI6) we have

1 2 3
holw) ==, VIl 2 5 ()l < 5, vy ER. (A.12)

To prove Lemma 28] we use the following preliminary lemma.
Lemma A.4. Let f:R**! — R and p > 0. Then the function
g(N) = hy(f(N), YA eR", (A.13)

where h,, is defined in (A1), coincides with 1/f()\) on the set F :={\ € R"T1:|f(\)] > p}.
If the function f is in WkTL(R¥+HL R) | with estimates

FelagfN) < M, YaeNT' 1<|o<k+1, (A.14)

for some M > p, then the function g is in W*+tLo(RV+1 R) and

k+1

Fagg\)| < Ch—=—-, YaeN*t 0<|a|<k+1. (A.15)

k+2 ’
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Proof. By (A12), g(\) =1/f()) for all A € F. The derivatives of h,(y) are

m m X y —1m st - —Mma—
hi™ (y) = oy ( ol )): > Corvmap” ™ O X))y, m >0,

mi1+mo=m

that we may bound — we have just to consider |y| > p/3 (otherwise h,(y) = 0) — as

W) S Y o™ YT S pT ™, VY ER, (A.16)

mi1+mo=m

Using the Faa di Bruno formula, for |a] > 1 we compute the derivatives of the composite function

B9V = hy(f(N)) = D Y Coorna, M (FO)OT FA) ... O3 F (),

1<q<]ar| o1t Fog=0,
0 #0,5=1,...,q

and, using (AT6), we get, for all |a| > 1,

089N < Ca Y Yo AN [OS FV)]

1<g¢<|a] o1t - Fog=a,
<q=< o

0,5=1,...,q
EID
< C, Z p~ T Iylelpre < ¢ prlel=1a=lalpylol

1<q<]al
Formula (A13) for a = 0 holds by (A12]). O
Proof of Lemma The function (w - dy).,u defined in ZI5) is

((w- asa)e_mltu) A g z) = —i Z ge(Nug j(N) eéetio)
(¢,g)ezv+1

where go(\) = hy(w - ) in (AI3]) with p=~(¢)"" and f(A) = w - £. The function f(\) satisfies (A.14) with
M = ~|¢|. Hence g¢(\) satisfies (AIH]), namely

Aag g\ < Coy HO* Ya e NHL 0< |o| <k 41, (A.17)

where =k + 1+ (k + 2)7 is defined in (ZI8). One has

0(9eNuejN) = Y Caraa (031 90) N (052 ue ) (N,

a]ta=a

whence, by (A7), we deduce

(0% [e% - - k 17
YOS (- Bp)zaru) Nl < Oy Hlull T, 2

and therefore (ZI7). The proof is concluded by observing that the restriction of (w - 8,),4u to F gives

(w- 8,) " 'u as defined in (Z14)), and ([2I3) follows by (AI0). O

Proof of Lemma Given u € Lip(k + 1, F, s,7), we consider its extension @ € Lip(k + 1,R**1 s ~)
provided by (AJ0Q). Then we observe that the composition f£(@) is an extension of £(u), and therefore
one has the inequality [|£(w)||¥%"7 < |£(@) | 5500 ~ [1£(@)|lwest.om g1, 5o by (BJ). Then ZIJ) follows
by the Moser composition estimates for || ||]:£1U11 (see for instance Lemma 2.31 in [21]), together with the

equivalence of the norms in (A9)-(A10). O
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B A Nash-Moser-Hormander implicit function theorem

In this section we state the Nash-Moser-Hérmander theorem of [10], which we apply in Section [§ as a black
box to prove Theorem
Let (Eq)a>0 be a decreasing family of Banach spaces with continuous injections Ep < Eq,

lulle, <llulle, fora<bd. (B.1)

Set Eo = Ng>0E, with the weakest topology making the injections Eo, — E, continuous. Assume that
there exist linear smoothing operators S; : Ey — Eo for j = 0,1,..., satisfying the following inequalities,
with constants C' bounded when a and b are bounded, and independent of j,

ISulle, < Cllullg, for all a; (B.2)
1S;ull g, < C2C~|S;ullg, if a <b; (B.3)
u— Sjul|g, <C279 ) ||lu — Sjul g, if a > b; (B.4)
1(Sj41 — Sj)ullg, < C27C=D|(S;11 — Sj)ullg, for all a,b. (B.5)
Set

Rou = Slu, Rju = (Sj+1 - Sj)u, ] Z 1. (BG)

Thus ‘
|Rjull g, <C2C~Y||Rullg, for all a,b. (B.7)

Bound (B for j > 1 is (B.A), while, for j = 0, it follows from (B.)) and (B.3]). We also assume that
lull, <CY IRullh, Va0, (B.8)
=0

with C' bounded for a bounded (a sort of “orthogonality property” of the smoothing operators).
Suppose that we have another family F, of decreasing Banach spaces with smoothing operators having
the same properties as above. We use the same notation also for the smoothing operators.

Theorem B.1 ([10]). (Existence) Let a1, a2, , 3, a9, 1 be real numbers with

0<ap<p<a, a1+§<a<a1+ﬂ, 2c0 < a1 + as. (B.9)

Let U be a convex neighborhood of 0 in E,. Let ® be a map from U to Fy such that ® : U N Eqy, — Fy, s
of class C? for all a € [0,a — ], with

12" (W), wlllr, < Mi@)([vllE.., wlle., + 1v]e., lvie...,.)
+{Ma(a)llu]l g, + Ms(a)}v]|e., [w] 2., (B.10)
for allu e UNEqqy, v,w € Eqyy, where M; : [0,a2 — p] — R, i = 1,2,3, are positive, increasing functions.
Assume that ®'(v), for v € Es NU belonging to some ball ||v||g,, < d1, has a right inverse W(v) mapping
Fy to E,,, and that
W ()glle, < Li(a)llgllr,, s + {L2(a)l|vllE.. s + Ls(@)}gllr,  Va € a1, as], (B.11)

where L; : [a1,a2] = R, i = 1,2, 3, are positive, increasing functions.
Then for all A > 0 there exists § > 0 such that, for every g € Fg satisfying

> IRigllE, < A2llglZ,.  lglle, <6, (B.12)
7=0
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there exists u € Eq solving ®(u) = ®(0) + g. The solution u satisfies
lullg. < CLi2s(az)(1 + A)llgl s, (B.13)
where Lias = L1+ Lo + Lg and C' is a constant depending on ay,as,, 3. The constant ¢ is
6 =1/B, B=C"Lis(az)max{1/61,14 A, (1 + A)L1s3(az)Mia3(az — p)} (B.14)

where Myo3 = My + Mo + M3 and C' is a constant depending on a1, as,a, 3.

(Higher regularity) Moreover, let ¢ > 0 and assume that (BIQ) holds for all a € [0,a2 + ¢ — p], ¥(v)
maps Foo t0 Egyte, and (BII) holds for all a € a1, a2+ c|. If g satisfies (BI2) and, in addition, g € Fay.
with -
> IRigl,,. < AlllgllZ, . (B.15)
j=0

for some A., then the solution u belongs to Fqy., with

[ullBore < CAGI(A+ A)llgllm, +Go(1+ A)l|gll 7 } (B.16)

where
g1 = Eg + Elg(nglg + L123(GQ)M3)(1 + ZN), 92 = Elg(l + ZN), (Bl?)
z = ngg(al)Mlgg(O) =+ E12M12, (B18)

Lig:=Li+ Lo, L := Li(ay +¢), i =1,2,3; My := My + My, M; := M(az +c—p), i =1,2,3; N is a
positive integer depending on c,ay,«, 3; and C. depends on ay,as,, 3, c.

This theorem is proved in [10] using an iterative scheme similar to [33]. The main advantage with respect
to the Nash-Moser implicit function theorems as presented in [62] [I7] is the optimal regularity of the solution
u in terms of the datum g (see (B13), (B.I6)). Theorem [B1l has the advantage of making explicit all the
constants (unlike [33]), which is necessary to deduce the quantitative Theorem
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