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1 Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach
space F has the Fredholm property when its image is closed, the dimension of its kernel and
the codimension of its image are finite. As a consequence, the equation Lu = f is solvable
if and only if φk(f) = 0 for a finite number of functionals φk from the dual space F ∗. These
properties of Fredholm operators are broadly used in various methods of linear and nonlinear
analysis.

Elliptic equations studied in bounded domains with a sufficiently smooth boundary sat-
isfy the Fredholm property when the ellipticity condition, proper ellipticity and Lopatinskii
conditions are satisfied (see e.g. [1], [13], [20]), which is the main result of the theory of
linear elliptic equations. When working in unbounded domains, these conditions may not
be sufficient and the Fredholm property may not be fulfilled. For example, for the Laplace
operator, Lu = ∆u considered in Rd Fredholm property does not hold when the problem
is studied either in Hölder spaces, such that L : C2+α(Rd) → Cα(Rd) or in Sobolev spaces,
L : H2(Rd) → L2(Rd).
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For linear elliptic equations considered in unbounded domains the Fredholm property is
satisfied if and only if, in addition to the conditions stated above, the limiting operators
are invertible (see [21]). In some trivial cases, the limiting operators can be constructed
explicitly. For example, when

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

with the coefficients of the operator having limits at infinity,

a± = limx→±∞a(x), b± = limx→±∞b(x), c± = limx→±∞c(x),

the limiting operators are given by

L±u = a±u
′′ + b±u

′ + c±u.

Because the coefficients here are constants, the essential spectrum of the operator, which
is the set of complex numbers λ for which the operator L − λ does not have the Fredholm
property, can be found explicitly via the standard Fourier transform, such that

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

The limiting operators are invertible if and only if the origin does not belong to the essential
spectrum.

For general elliptic equations the analogous assertions hold. The Fredholm property
is satisfied when the essential spectrum does not contain the origin or when the limiting
operators are invertible. These conditions may not be written explicitly.

For non-Fredholm operators we may not apply the standard solvability conditions and
in a general case solvability conditions are unknown. However, solvability conditions were
obtained recently for some classes of operators. For example, consider the following problem

Lu ≡ ∆u+ au = f (1.1)

in Rd, d ∈ N with a positive constant a. Here the operator L and its limiting operators
coincide. The corresponding homogeneous problem has a nontrivial bounded solution, such
that the Fredholm property is not satisfied. Because the differential operator contained
in (1.1) has constant coefficients, we are able to obtain the solution explicitly by applying
the standard Fourier transform. In [31] we derived the following solvability relations. Let
f(x) ∈ L2(Rd) and xf(x) ∈ L1(Rd). Then equation (1.1) has a unique solution in H2(Rd) if
and only if (

f(x),
eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.

Here and below Sd
r denotes the sphere in Rd of radius r centered at the origin. Thus, although

the Fredholm property is not satisfied for this operator, we can formulate solvability relations
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similarly. Note that this similarity is only formal because the range of the operator is not
closed. In the situation when the operator contains a scalar potential, such that

Lu ≡ ∆u+ b(x)u = f,

we are not able to use the standard Fourier transform directly. However, solvability relations
in three dimensions can be obtained by virtue of the spectral and the scattering theory of
Schrödinger type operators (see [23]). Analogously to the constant coefficient case, solvabil-
ity relations are expressed in terms of orthogonality to solutions of the adjoint homogeneous
equation. We derive solvability conditions for several other examples of non Fredholm linear
elliptic operators (see [21] – [29], [31]).

Solvability relations are crucial in the analysis of nonlinear elliptic problems. In the
presence of non-Fredholm operators, in spite of some progress in studies of linear equations,
nonlinear non-Fredholm operators were analyzed only in few examples (see [7]– [9], [30],
[31]). Evidently, this situation can be explained by the fact that the majority of methods of
linear and nonlinear analysis rely on the Fredholm property. In the present article we study
some systems of N nonlinear integro-differential reaction-diffusion type equations, for which
the Fredholm property may not be satisfied:

∂uk

∂t
= −

√
−∆uk +

∫

Ω

Gk(x− y)Fk(u1(y, t), u2(y, t), ..., uN(y, t), y)dy + akuk, 1 ≤ k ≤ N.

(1.2)
Here {ak}Nk=1 are nonnegative constants, Ω ⊆ Rd, d = 1, 2, 3 are the more physically rel-
evant dimensions. The operator

√
−∆ is defined via the spectral calculus. System (1.2)

describes a particular case of superdiffusion actively treated in the context of various appli-
cations in plasma physics and turbulence (see e.g. [6], [19]), surface diffusion (see e.g. [14],
[16]), semiconductors (see e.g. [18]) and so on. The superdiffusion can be understood as a
random process of particle motion characterized by the probability density distribution of
jump length. The moments of this density distribution are finite for normal diffusion, but
this is not the case for superdiffusion. Asymptotic behavior at infinity of the probability
density function determines the value of the power of the negative Laplacian (see e.g. [15]).

In population dynamics the integro-differential equations are used to describe biological
systems with intra-specific competition and nonlocal consumption of resources (see e.g. [2],
[4], [10]). The stability issues for the travelling fronts of reaction- diffusion type problems
with the essential spectrum of the linearized operator crossing the imaginary axis were also
treated in [3] and [11]. Note that the single equation of (1.2) type has been studied in [32].
Reaction-diffusion type problems in which in the diffusion term the Laplacian is replaced by
the nonlocal operator with an integral kernel were treated in [17].

The nonlinear terms of system (1.2) will fulfill the following regularity requirements.

Assumption 1. Functions Fk(u, x) : R
N × Ω → R, 1 ≤ k ≤ N are such that

√√√√
N∑

k=1

F 2
k (u, x) ≤ Q|u|RN + h(x) for u ∈ R

N , x ∈ Ω, (1.3)
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with a constant Q > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Furthermore, they are Lipschitz
continuous functions, such that

√√√√
N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ l|u(1) − u(2)|RN for any u(1),(2) ∈ R
N , x ∈ Ω,

(1.4)
where a constant l > 0.

Here and below we use the notations for a vector u := (u1, u2, ..., uN) ∈ RN and its norm

|u|RN :=
√∑N

k=1 u
2
k. Evidently, the stationary solutions of problem (1.2), if any exist, will

satisfy the system of nonlocal elliptic equations

−
√
−∆uk +

∫

Ω

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy + akuk = 0, ak ≥ 0, 1 ≤ k ≤ N.

For the technical purposes we consider the auxiliary semi-linear system

√
−∆uk − akuk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, 1 ≤ k ≤ N. (1.5)

We denote (f1(x), f2(x))L2(Ω) :=
∫
Ω
f1(x)f̄2(x)dx, with a slight abuse of notations in the case

when these functions do not belong to L2(Ω), like for example those used in the orthogonality
relations of the assumption below. Indeed, if f1(x) ∈ L1(Ω) and f2(x) is bounded there, then
the integral over Ω mentioned above is well defined. We begin the article with the treatment
of the whole space case, such that Ω = Rd and the corresponding Sobolev space is equipped
with the norm

‖u‖2H2(Rd, RN ) :=

N∑

k=1

‖uk‖2H2(Rd) =

N∑

k=1

{‖uk‖2L2(Rd) + ‖∆uk‖2L2(Rd)},

where u(x) : Rd → RN . The primary obstacle in solving problem (1.5) is that operators√
−∆ − ak : H2(Rd) → L2(Rd), ak ≥ 0 fail to satisfy the Fredholm property. The similar

situations in linear equations, which can be self- adjoint or non self-adjoint involving non
Fredholm second, fourth and sixth order differential operators or even systems of equations
including non Fredholm operators have been treated actively in recent years (see [23]-[29]).
We are able to prove that system of equations (1.5) defines a map Ta : H2(Rd, RN) →
H2(Rd, RN), ak ≥ 0, 1 ≤ k ≤ N , which is a strict contraction under stated technical
conditions. We make the following assumption on the integral kernels contained in the
nonlocal parts of system (1.5).

Assumption 2. Let Gk(x) : R
d → R, Gk(x) ∈ W 1,1(Rd), 1 ≤ k ≤ N, 1 ≤ d ≤ 3 and

1 ≤ m ≤ N − 1, m ∈ N with N ≥ 2.
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I) Let ak > 0, 1 ≤ k ≤ m, assume that xGk(x) ∈ L1(Rd) and

(
Gk(x),

e±iakx

√
2π

)

L2(R)

= 0 when d = 1. (1.6)

(
Gk(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0 for p ∈ Sd
ak

a.e. when d = 2, 3. (1.7)

II) Let ak = 0, m+ 1 ≤ k ≤ N , assume that xGk(x) ∈ L1(Rd) and

(Gk(x), 1)L2(Rd) = 0. (1.8)

Let us use the hat symbol here and below to designate the standard Fourier transform, such
that

Ĝk(p) :=
1

(2π)
d
2

∫

Rd

Gk(x)e
−ipxdx, p ∈ R

d. (1.9)

Thus

‖Ĝk(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖Gk‖L1(Rd).

Let us introduce the following auxiliary quantities

Mk := max

{∥∥∥∥
Ĝk(p)

|p| − ak

∥∥∥∥
L∞(Rd)

,

∥∥∥∥
p2Ĝk(p)

|p| − ak

∥∥∥∥
L∞(Rd)

}
, 1 ≤ k ≤ m. (1.10)

Mk := max

{∥∥∥∥
Ĝk(p)

p

∥∥∥∥
L∞(Rd)

,

∥∥∥∥pĜk(p)

∥∥∥∥
L∞(Rd)

}
, m+ 1 ≤ k ≤ N. (1.11)

Note that expressions (1.10) and (1.11) are finite by virtue of Lemma A1 in one dimension
and Lemma A2 for d = 2, 3 of the Appendix of [32] under our Assumption 2. Therefore, we
define

M := maxMk, 1 ≤ k ≤ N (1.12)

with Mk given by (1.10) and (1.11). We have the following proposition.

Theorem 3. Let Ω = Rd, d = 1, 2, 3, Assumptions 1 and 2 hold and
√
2(2π)

d
2Ml < 1.

Then the map Tav = u on H2(Rd, RN) defined by the system of equations (1.5) possesses a
unique fixed point va(x) : R

d → RN , which is the only stationary solution of problem (1.2)
in H2(Rd, RN ). This fixed point va(x) is nontrivial provided the intersection of supports of

the Fourier transforms of functions suppF̂k(0, x)(p)∩suppĜk(p) is a set of nonzero Lebesgue
measure in Rd for some 1 ≤ k ≤ N .

Then we turn our attention to the studies of the analogous problem on the interval
Ω = I := [0, 2π] with periodic boundary conditions for the solution vector function and its
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first derivative. We assume the following about the integral kernels present in the nonlocal
parts of system (1.5) in such case.

Assumption 4. Let Gk(x) : I → R, Gk(x) ∈ W 1,1(I) with Gk(0) = Gk(2π), 1 ≤ k ≤ N ,
where N ≥ 3 and 1 ≤ m < q ≤ N − 1, m, q ∈ N.

I) Let ak > 0 and ak 6= n, n ∈ N for 1 ≤ k ≤ m.
II) Let ak = nk, nk ∈ N and

(
Gk(x),

e±inkx

√
2π

)

L2(I)

= 0 for m+ 1 ≤ k ≤ q. (1.13)

III) Let ak = 0 and

(Gk(x), 1)L2(I) = 0 for q + 1 ≤ k ≤ N. (1.14)

Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, ..., N .

We introduce the Fourier transform for periodic functions on the [0, 2π] interval as

Gk, n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z (1.15)

and define the following expressions

Pk := max

{∥∥∥∥
Gk, n

|n| − ak

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk, n

|n| − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ m. (1.16)

Pk := max

{∥∥∥∥
Gk, n

|n| − nk

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk, n

|n| − nk

∥∥∥∥
l∞

}
, m+ 1 ≤ k ≤ q. (1.17)

Pk := max

{∥∥∥∥
Gk, n

n

∥∥∥∥
l∞

,

∥∥∥∥nGk, n

∥∥∥∥
l∞

}
, q + 1 ≤ k ≤ N. (1.18)

By virtue of Lemma A3 of the Appendix of [32] under Assumption 4 the quantities given by
(1.16), (1.17) and (1.18) are finite, which allows us to define

P := maxPk, 1 ≤ k ≤ N

with Pk stated in formulas (1.16), (1.17) and (1.18). To study the existence of stationary
solutions for our system we use the corresponding functional space

H2(I) = {v(x) : I → R | v(x), v′′(x) ∈ L2(I), v(0) = v(2π), v′(0) = v′(2π)},

aiming at uk(x) ∈ H2(I), 1 ≤ k ≤ m. Then we introduce the following auxiliary constrained
subspaces

H2
k(I) :=

{
v ∈ H2(I) |

(
v(x),

e±inkx

√
2π

)
L2(I)

= 0

}
, nk ∈ N, m+ 1 ≤ k ≤ q,
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with the goal of having uk(x) ∈ H2
k(I), m+ 1 ≤ k ≤ q. And, finally

H2
0 (I) = {v ∈ H2(I) | (v(x), 1)L2(I) = 0}, q + 1 ≤ k ≤ N.

Our goal is to have uk(x) ∈ H2
0 (I), q + 1 ≤ k ≤ N . The constrained subspaces defined

above are Hilbert spaces as well (see e.g. Chapter 2.1 of [12]). The resulting space used for
establishing the existence of solutions u(x) : I → RN of problem (1.5) will be the direct sum
of the spaces mentioned above, namely

H2
c (I, R

N ) := ⊕m
k=1H

2(I)⊕q

k=m+1 H
2
k(I)⊕N

k=q+1 H
2
0 (I),

such that the corresponding Sobolev norm is given by

‖u‖2H2
c (I, RN ) :=

N∑

k=1

{‖uk‖2L2(I) + ‖u′′
k‖2L2(I)},

where u(x) : I → RN . Let us prove that the system of equations (1.5) in such case defines a
map on the space mentioned above, which will be a strict contraction under given conditions.

Theorem 5. Let Ω = I, Assumptions 1 and 4 hold and 2
√
πP l < 1. Then the map

τav = u on H2
c (I,R

N) defined by the system of equations (1.5) has a unique fixed point
va(x) : I → RN , the only stationary solution of system (1.2) in H2

c (I,R
N). This fixed point

va(x) is nontrivial provided the Fourier coefficients Gk, nFk(0, x)n 6= 0 for some k = 1, ..., N
and some n ∈ Z.

Note that the constrained subspaces H2
k(I) and H2

0 (I) involved in the direct sum of spaces
H2

c (I,R
N) are such that the operators

√
− d2

dx2
− nk : H2

k(I) → L2(I) and

√
− d2

dx2
: H2

0 (I) → L2(I)

having the Fredholm property, possess trivial kernels.

Finally, we turn our attention to the studies of our problem in the layer domain, which is
the product of the two spaces, such that one is the I interval with periodic boundary condi-
tions as in the previous part of the work and another is the whole space of dimension either
one or two, namely Ω = I × Rd = [0, 2π]× Rd, d = 1, 2 and x = (x1, x⊥), where x1 ∈ I and

x⊥ ∈ Rd. The cumulative Laplacian in this context will be given by ∆ :=
∂2

∂x2
1

+∆⊥, where

∆⊥ :=

d∑

s=1

∂2

∂x2
⊥, s

. The corresponding Sobolev space for our problem will be H2(Ω, RN) of

vector functions u(x) : Ω → RN , such that for k = 1, ..., N

uk(x),∆uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),
∂uk

∂x1
(0, x⊥) =

∂uk

∂x1
(2π, x⊥),
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where x⊥ ∈ Rd a.e. It is equipped with the norm

‖u‖2H2(Ω, RN ) =

N∑

k=1

{‖uk‖2L2(Ω) + ‖∆uk‖2L2(Ω)}.

Analogously to the whole space case treated in Theorem 3, the operators
√
−∆ − ak :

H2(Ω) → L2(Ω) for ak ≥ 0 do not possess the Fredholm property. Let us show that system
(1.5) in such case defines a map ta : H

2(Ω, RN ) → H2(Ω, RN), which is a strict contraction
under the corresponding technical conditions stated below.

Assumption 6. Let Gk(x) : Ω → R, Gk(x) ∈ W 1,1(Ω), Gk(0, x⊥) = Gk(2π, x⊥) and
Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd a.e., u ∈ RN , d = 1, 2 and k = 1, ..., N . Let N ≥ 3
and 1 ≤ m < q ≤ N − 1 with m, q ∈ N.

I) Assume for 1 ≤ k ≤ m that we have nk < ak < nk+1, nk ∈ Z+ = N∪{0}, x⊥Gk(x) ∈
L1(Ω) and

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

a2
k
−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk for d = 1, (1.19)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
a2
k
−n2

a.e., |n| ≤ nk for d = 2. (1.20)

II) Assume for m+ 1 ≤ k ≤ q that we have ak = nk, nk ∈ N, x2
⊥Gk(x) ∈ L1(Ω) and

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

n2
k
−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk − 1 for d = 1, (1.21)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
n2
k
−n2

a.e., |n| ≤ nk − 1 for d = 2, (1.22)

(
Gk(x1, x⊥),

e±inkx1

√
2π

)

L2(Ω)

= 0,

(
Gk(x1, x⊥),

e±inkx1

√
2π

x⊥, s

)

L2(Ω)

= 0, 1 ≤ s ≤ d. (1.23)

III) Assume for q + 1 ≤ k ≤ N that we have ak = 0, x⊥Gk(x) ∈ L1(Ω) and

(Gk(x), 1)L2(Ω) = 0. (1.24)

Let us use the Fourier transform for functions on such a product of spaces, such that

Ĝk, n(p) :=
1

(2π)
d+1

2

∫

Rd

dx⊥e
−ipx⊥

∫ 2π

0

Gk(x1, x⊥)e
−inx1dx1, p ∈ R

d, n ∈ Z, k = 1, ..., N.

(1.25)
Hence

‖Ĝk, n(p)‖L∞
n,p

:= sup{p∈Rd, n∈Z}|Ĝk, n(p)| ≤
1

(2π)
d+1

2

‖Gk‖L1(Ω).
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We define the following quantities

Rk := max

{∥∥∥∥
Ĝk, n(p)√
p2 + n2 − ak

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk, n(p)√

p2 + n2 − ak

∥∥∥∥
L∞
n,p

}
, k = 1, ..., m. (1.26)

Rk := max

{∥∥∥∥
Ĝk, n(p)√
p2 + n2 − nk

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk, n(p)√

p2 + n2 − nk

∥∥∥∥
L∞
n,p

}
, k = m+ 1, ..., q. (1.27)

Rk := max

{∥∥∥∥
Ĝk, n(p)√
p2 + n2

∥∥∥∥
L∞
n,p

,

∥∥∥∥
√

p2 + n2Ĝk, n(p)

∥∥∥∥
L∞
n,p

}
, k = q + 1, ..., N. (1.28)

Assumption 6 along with Lemmas A4, A5 and A6 of the Appendix of [32] yield that the
expressions given by (1.26), (1.27) and (1.28) are finite. This enables us to define

R := maxRk, k = 1, ..., N

with Rk given in (1.26), (1.27) and (1.28). The final proposition of our article is as follows.

Theorem 7. Let Ω = I×Rd, d = 1, 2, Assumptions 1 and 6 hold and
√
2(2π)

d+1

2 Rl < 1.
Then the map tav = u on H2(Ω, RN), which is defined by the system of equations (1.5)
admits a unique fixed point va(x) : Ω → RN , which is the only stationary solution of problem
(1.2) in H2(Ω, RN). This fixed point va(x) is nontrivial provided that the intersection of

supports of the Fourier images of functions suppF̂k(0, x)n(p)∩suppĜk, n(p) is a set of nonzero
Lebesgue measure in Rd for some k = 1, ..., N and some n ∈ Z.

Note that the maps discussed in the theorems above are applied to real valued vector
functions by means of the assumptions on Fk(u, x) and Gk(x), k = 1, ..., N present in the
nonlocal terms of problem (1.5).

2 The System in the Whole Space

Proof of Theorem 3. First let us suppose that when Ω = Rd, d = 1, 2, 3 there exists
v(x) ∈ H2(Rd, RN) such that system (1.5) admits two solutions u(1),(2)(x) ∈ H2(Rd, RN).
Thus the difference vector function w(x) := u(1)(x)− u(2)(x) ∈ H2(Rd, RN) is a solution of
the homogeneous system of equations

√
−∆wk = akwk, 1 ≤ k ≤ N.

Because the
√
−∆ operator does not have any nontrivial eigenfunctions belonging to L2(Rd),

we obtain wk(x) = 0 a.e. in Rd for k = 1, ..., N .
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Let us choose arbitrarily a vector function v(x) ∈ H2(Rd, RN) and apply the standard
Fourier transform (1.9) to both sides of problem (1.5). This implies

ûk(p) = (2π)
d
2

Ĝk(p)f̂k(p)

|p| − ak
, k = 1, ..., N. (2.1)

Here f̂k(p) stands for the Fourier image of Fk(v(x), x). We obtain the elementary estimates
using expressions (1.10) and (1.11)

|ûk(p)| ≤ (2π)
d
2Mk|f̂k(p)| and |p2ûk(p)| ≤ (2π)

d
2Mk|f̂k(p)|, k = 1, ..., N.

This gives us the upper bound for the norm

‖u‖2H2(Rd, RN ) ≤ 2(2π)d
N∑

k=1

M2
k‖Fk(v(x), x)‖2L2(Rd) < ∞

by virtue of inequality (1.3) of Assumption 1. Therefore, for any v(x) ∈ H2(Rd, RN) there
exists a unique vector function u(x) ∈ H2(Rd, RN ), which satisfies system (1.5) and its
Fourier image is given by (2.1). Hence the map Ta : H2(Rd, RN) → H2(Rd, RN) is well
defined.

This enables us to choose arbitrary v(1),(2)(x) ∈ H2(Rd, RN) and obtain their images
under the map u(1),(2) := Tav

(1),(2) ∈ H2(Rd, RN ) and derive easily the bounds for k = 1, ..., N
∣∣∣∣û

(1)
k (p)− û

(2)
k (p)

∣∣∣∣ ≤ (2π)
d
2M

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣,
∣∣∣∣p2û

(1)
k (p)− p2û

(2)
k (p)

∣∣∣∣ ≤ (2π)
d
2M

∣∣∣∣f̂
(1)
k (p)− f̂

(2)
k (p)

∣∣∣∣.

In this context
̂
f
(1),(2)
k (p) stand for the Fourier transforms of Fk(v

(1),(2)(x), x). This yields
the bound on the corresponding norm of the difference of vector functions

‖u(1) − u(2)‖2H2(Rd, RN ) ≤ 2(2π)dM2
N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(Rd).

By virtue of the Sobolev embedding theorem for k = 1, ..., N we have v
(1),(2)
k (x) ∈ H2(Rd) ⊂

L∞(Rd), 1 ≤ d ≤ 3. Inequality (1.4) trivially gives us

‖Tav
(1) − Tav

(2)‖H2(Rd, RN ) ≤
√
2(2π)

d
2Ml‖v(1) − v(2)‖H2(Rd, RN ).

The constant in the right side of this bound is less than one by means of the assumption of
the theorem. Therefore, the Fixed Point Theorem implies the existence of a unique vector
function va(x) ∈ H2(Rd,RN), such that Tava = va. This is the only stationary solution of
system (1.2) in H2(Rd, RN ). Finally, let us assume that va(x) = 0 a.e. in Rd. This will yield
the contradiction to the condition that for some k = 1, ..., N the Fourier images of Gk(x)
and Fk(0, x) do not vanish simultaneously on some set of nonzero Lebesgue measure in Rd.

10



3 The System on the [0, 2π] Interval

Proof of Theorem 5. We first suppose that for some v(x) ∈ H2
c (I,R

N) there exist two
solutions u(1),(2)(x) ∈ H2

c (I,R
N) of system (1.5) with Ω = I. Then the difference vector

function w(x) := u(1)(x)− u(2)(x) ∈ H2
c (I,R

N) will be a solution of the system of equations

√
− d2

dx2
wk = akwk, k = 1, ..., N.

Due to Assumption 4, we have ak 6= n, n ∈ Z+ = N ∪ {0} when k = 1, ..., m and as a

consequence, they are not the eigenvalues of the operator

√
− d2

dx2
on L2(I) with periodic

boundary conditions. Hence, wk(x) vanishes a.e. in I when k = 1, ..., m. For k = m+1, ..., q
the values of ak are identical to the nonzero eigenvalues of the square root of the negative
second derivative operator with periodic boundary conditions on the [0, 2π] interval but wk

belong to the constraned subspaces H2
k(I). Thus, wk = 0 a.e. in I for k = m+ 1, ..., q since

they are orthogonal to the eigenfunctions
e±inkx

√
2π

. By virtue of Assumption 4 the constants ak

are zeros for k = q+1, ..., N . But wk belong to the constrained subspace H2
0 (I) of functions

orthogonal to the zero mode of

√
− d2

dx2
on L2(I) with periodic boundary conditions. Thus,

wk(x) vanishes a.e. in I when k = q + 1, ..., N as well.
We assume that v(x) ∈ H2

c (I,R
N) is arbitrary. Let us apply the Fourier transform (1.15)

to both sides of the system of equations (1.5) considered on the interval [0, 2π] and obtain

uk, n =
√
2π

Gk, nfk, n

|n| − ak
, n ∈ Z, (3.1)

where fk, n := Fk(v(x), x)n. Apparently, the Fourier coefficients of the second derivatives are
given by

(−u′′
k)n =

√
2π

n2Gk, nfk, n

|n| − ak
, n ∈ Z.

We trivially obtain the estimate from above

‖u‖2H2
c (I, RN ) =

N∑

k=1

{ ∞∑

n=−∞
|uk, n|2 +

∞∑

n=−∞
|n2uk, n|2

}
≤ 4π

N∑

k=1

P 2
k ‖Fk(v(x), x)‖2L2(I) < ∞,

which comes from inequality (1.3) of Assumption 1. Thus, for an arbitrarily chosen vector
function v(x) ∈ H2

c (I, RN ) there exists a unique u(x) ∈ H2
c (I, RN), which satisfies the

system of equations (1.5) and its Fourier coefficients are given by formula (3.1), such that
the map τa : H2

c (I, RN) → H2
c (I, RN) is well defined. Note that orthogonality relations

(1.13) and (1.14) along with (3.1) yield that for k = m + 1, ..., q components uk(x) are

11



orthogonal to Fourier harmonics
e±inkx

√
2π

in L2(I) and for k = q+1, ..., N functions uk(x) are

orthogonal to 1 in L2(I), since the corresponding Fourier coeffients can be made equal to
zero.

Then we choose arbitrary vector functions v(1),(2)(x) ∈ H2
c (I, R

N), such that their images
under the map defined above are u(1),(2) := τav

(1),(2) ∈ H2
c (I, RN) and arrive easily at the

estimate

‖u(1) − u(2)‖2H2
c (I, RN ) =

N∑

k=1

{ ∞∑

n=−∞
|u(1)

k, n − u(2)
k, n|2 +

∞∑

n=−∞
|n2(u(1)

k, n − u(2)
k, n)|2

}
≤

≤ 4π
N∑

k=1

P 2
k ‖Fk(v

(1)(x), x)− Fk(v
(2)(x), x)‖2L2(I).

Evidently, by means of the Sobolev embedding theorem v
(1),(2)
k (x) ∈ H2(I) ⊂ L∞(I) for

k = 1, ..., N . Using (1.4) we easily obtain

‖τav(1) − τav
(2)‖H2

c (I, RN ) ≤ 2
√
πP l‖v(1) − v(2)‖H2

c (I, RN ).

The constant in the right side of this bound is less than one by virtue of the assumption of
the theorem. Therefore, the Fixed Point Theorem implies the existence and uniqueness of
a vector function va(x) ∈ H2

c (I, RN), which satisfies τava = va. This is the only stationary
solution of the system of equations (1.2) in H2

c (I, RN). Finally, we suppose that va(x)
vanishes a.e. in the interval I. This will imply the contradiction to our assumption that the
Fourier coefficients Gk, nFk(0, x)n 6= 0 for some k = 1, ..., N and some n ∈ Z.

4 The System in the Layer Domain

Proof of Theorem 7. First of all we suppose that there exists v(x) ∈ H2(Ω, RN) generating
u(1),(2)(x) ∈ H2(Ω, RN), which satisfy system (1.5). Then the difference of such vector
functions w(x) := u(1)(x) − u(2)(x) ∈ H2(Ω, RN) will be a solution to the homogeneous
system of equations √

−∆wk = akwk, k = 1, ..., N.

We apply the partial Fourier transform with respect to the first variable to this system and
obtain √

−∆⊥ + n2wk, n(x⊥) = akwk, n(x⊥), k = 1, ..., N, n ∈ Z

with wk, n(x⊥) :=
1√
2π

∫ 2π

0

wk(x1, x⊥)e
−inx1dx1. Clearly,

‖wk‖2L2(Ω) =

∞∑

n=−∞
‖wk, n‖2L2(Rd).

12



Therefore, wk, n(x⊥) ∈ L2(Rd), k = 1, ..., N, n ∈ Z. But the operator
√
−∆⊥ + n2 consid-

ered on L2(Rd) does not have any nontrivial eigenfunctions. This implies that w(x) = 0 a.e.
in Ω.

Let us choose an arbitrary vector function v(x) ∈ H2(Ω, RN ) and apply the Fourier
transform (1.25) to both sides of problem (1.5). This yields

ûk, n(p) = (2π)
d+1

2

Ĝk, n(p)f̂k, n(p)√
p2 + n2 − ak

, k = 1, ..., N, n ∈ Z, p ∈ R
d, d = 1, 2, (4.1)

where f̂k, n(p) stands for the Fourier image of Fk(v(x), x). Apparently, for the above men-
tioned values of k, n and p we have the bounds in terms of the quantities given by (1.26),
(1.27) and (1.28) as

|ûk, n(p)| ≤ (2π)
d+1

2 Rk|f̂k, n(p)| and |(p2 + n2)ûk, n(p)| ≤ (2π)
d+1

2 Rk|f̂k, n(p)|.
By virtue of (1.3) of Assumption 1 we arrive at

‖u‖2H2(Ω, RN ) =
N∑

k=1

{ ∞∑

n=−∞

∫

Rd

|ûk, n(p)|2dp+
∞∑

n=−∞

∫

Rd

|(p2 + n2)ûk, n(p)|2dp
}

≤

≤ 2(2π)d+1
N∑

k=1

Rk
2‖Fk(v(x), x)‖2L2(Ω) < ∞.

Hence, for any vector function v(x) ∈ H2(Ω, RN ) there exists a unique u(x) ∈ H2(Ω, RN)
which solves the system of equations (1.5) and its Fourier image is given by formula (4.1).
Therefore, the map ta : H

2(Ω, RN ) → H2(Ω, RN) is well defined.
We choose two arbitrary vector functions v(1),(2) ∈ H2(Ω, RN) such that their images

under the map discussed above are u(1),(2) := tav
(1),(2) ∈ H2(Ω, RN ). Hence

‖u(1) − u(2)‖2H2(Ω, RN ) =
N∑

k=1

∞∑

n=−∞

∫

Rd

dp

{
|û(1)

k, n(p)− û(2)
k, n(p)|2+

+|(p2+n2)(û(1)
k, n(p)−û(2)

k, n(p))|2
}

≤ 2(2π)d+1R2
N∑

k=1

‖Fk(v
(1)(x), x)−Fk(v

(2)(x), x)‖2L2(Ω).

Obviously, by virtue of the Sobolev embedding theorem v
(1),(2)
k (x) ∈ H2(Ω) ⊂ L∞(Ω) for

k = 1, ..., N . By means of (1.4) we easily derive the estimate

‖tav(1) − tav
(2)‖H2(Ω, RN ) ≤

√
2(2π)

d+1

2 Rl‖v(1) − v(2)‖H2(Ω, RN )

with the constant in its right side less than one due to our assumption. Therefore, the Fixed
Point Theorem gives us the existence and uniqueness of a vector function va(x) ∈ H2(Ω, RN),
for which tava = va holds. This is the only stationary solution of problem (1.2) inH2(Ω, RN).
Finally, we suppose that the vector function va(x) = 0 a.e. in Ω. This will contradict
to the assumption of the theorem that there exists k = 1, ..., N and n ∈ Z, such that

suppF̂k(0, x)n(p) ∩ suppĜk, n(p) is a set of nonzero Lebesgue measure in Rd.
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5 Discussion

We will conclude the article with a brief discussion of biological interpretations of the results
obtained above. All tissues and organs in a biological organism are characterized by cell
distribution with respect to their genotype. Without mutations all cells would have an
identical genotype. Because of mutations, the genotype changes and represents a certain
distribution around its principal value. Stationary solutions of such system give stationary
cell distribution with respect to the genotype. Existence of such stationary distributions is a
significant property of biological organisms allowing their existence as steady state systems.

Existence of stationary solutions is established in the spaces of integrable functions de-
caying at infinity, with periodic boundary conditions on an interval and in a mixed situation
in a layer.

Biologically this implies that the cell distribution with respect to the genotype decays as
the distance from the principal genotype increases. The results of the article establish that
conditions should be imposed on cell proliferation, mutations and influx/efflux to obtain
such distributions.

In the context of population dynamics, such result is applicable also to biological species
which individuals are distributed around a certain average genotype. In such case, existence
of stationary solutions is related to the existence of biological species (see [5]).
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