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1. Introduction

In the present article we study the existence of stationary solutions of the integro-

differential equation

∂u

∂t
= −D

√
−∆u+

∫

Rd

K(x− y)g(u(y, t))dy+ f(x), (1.1)

which appears in cell population dynamics. The space variable x is correspondent

to the cell genotype, u(x, t) stands for the cell density as a function of their genotype

and time. The right side of this equation describes the evolution of cell density due

to cell proliferation, mutations and cell influx. Namely, the anomalous diffusion

term corresponds to the change of genotype via small random mutations, and the

nonlocal term describes large mutations. In this context g(u) is the rate of cell birth

which depends on u (density dependent proliferation), and the function K(x − y)
shows the proportion of newly born cells which change their genotype from y to x.
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We assume that it depends on the distance between the genotypes. Finally, the last

term in the right-hand side of this equation describes the influx of cells for different

genotypes.

The square root of Laplacian in equation (1.1) represents a particular case of

superdiffusion intensively studied in relation with various applications in plasma

physics and turbulence [11], [12], surface diffusion [13], [14], semiconductors [15]

and so on. The physical meaning of superdiffusion is that the random process occurs

with longer jumps in comparison with normal diffusion. The moments of jump

length distribution is finite in the case of normal diffusion, but this is not the case

for superdiffusion. The operator
√
−∆ is defined via the spectral calculus. A similar

equation in the case with the standard Laplacian in the diffusion term was treated

recently in [28].

Further we will set D = 1 and will explore the existence of solutions of the

equation

−
√
−∆u+

∫

Rd

K(x− y)g(u(y))dy+ f(x) = 0. (1.2)

Let us consider the case in which the linear part of this operator fails to satisfy the

Fredholm property, such that conventional methods of nonlinear analysis may not

be applicable. We will use solvability conditions for non Fredholm operators along

with the method of contraction mappings.

Consider the problem

−∆u + V (x)u− au = f, (1.3)

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and

the scalar potential function V (x) is either zero identically or converges to 0 at

infinity. For a ≥ 0, the essential spectrum of the operator A : E → F which

corresponds to the left side of equation (1.3) contains the origin. Consequently,

such operator fails to satisfy the Fredholm property. Its image is not closed, for

d > 1 the dimension of its kernel and the codimension of its image are not finite.

The present work is devoted to the studies of some properties of the operators of

this kind. Note that elliptic problems with non Fredholm operators were studied

extensively in recent years. Approaches in weighted Sobolev and Hölder spaces

were developed in [2], [3], [4], [5], [6]. The Schrödinger type operators without

Fredholm property were treated via the methods of the spectral and the scattering

theory in [16], [19], [20], [21], [23]. The Laplacian operator with drift from the

point of view of non Fredholm operators was studied in [22] and linearized Cahn-

Hilliard equations in [24] and [26]. Nonlinear non Fredholm elliptic problems

were treated in [25] and [27]. Important applications to the theory of reaction-

diffusion problems were developed in [8], [9]. Non Fredholm operators arise also

when studying wave systems with an infinite number of localized traveling waves

(see [1]). In particular, when a = 0 the operator A is Fredholm in some properly

chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case of a 6= 0 is
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considerably different and the approach developed in these works cannot be applied.

Front propagation problems with superdiffusion were studied extensively in recent

years (see e.g. [29], [30]).

Let us set K(x) = εK(x), where ε ≥ 0 and suppose that the assumption below

is fulfilled.

Assumption 1. Let f(x) : R3 → R be nontrivial, f(x) ∈ L1(R3) and ∇f(x) ∈
L2(R3). Assume also that K(x) : R3 → R and K(x) ∈ L1(R3).

We choose the space dimension d = 3, which is related to the solvability con-

ditions for the linear Poisson equation (3.20) discussed in Lemma 5. Our results

obtained below can be generalized to d > 3. From the perspective of applications,

the space dimension is not limited to d = 3 due to the fact that the space variable

corresponds to cell genotype but not to the usual physical space.

By means of the standard Sobolev inequality (see e.g. p.183 of [10]) under the

assumption given above we obtain

f(x) ∈ L2(R3).

We consider the Sobolev space

H2(R3) := {u(x) : R3 → C | u(x) ∈ L2(R3), ∆u ∈ L2(R3)}

equipped with the norm

‖u‖2H2(R3) := ‖u‖2L2(R3) + ‖∆u‖2L2(R3). (1.4)

The Sobolev embedding yields

‖u‖L∞(R3) ≤ ce‖u‖H2(R3), (1.5)

where ce > 0 is the constant of the embedding. When the nonnegative param-

eter ε vanishes, we arrive at the linear Poisson equation (3.20). By means of

Lemma 5 below under our Assumption 1 problem (3.20) admits a unique solu-

tion u0(x) ∈ H1(R3) and no orthogonality relations are required. Lemmas 5 yields

that in dimensions d < 3 we need specific orthogonality conditions to be able to

solve equation (3.20) in H1(Rd). Let us not treat the problem in dimensions d > 3
to avoid additional technicalities due to the fact that the proof will rely on similar

ideas (see Lemma 5). By virtue of Assumption 1, using that

‖∆u‖2L2(R3) = ‖∇f(x)‖2L2(R3),

we obtain for the unique solution of our linear problem (3.20) that u0(x) ∈ H2(R3).
Let us seek the resulting solution of the nonlinear equation (1.2) as

u(x) = u0(x) + up(x). (1.6)
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Evidently, we obtain the perturbative equation

√
−∆up = ε

∫

R3

K(x− y)g(u0(y) + up(y))dy. (1.7)

Let us introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H2(R3) | ‖u‖H2(R3) ≤ ρ}, 0 < ρ ≤ 1. (1.8)

We seek the solution of (1.7) as the fixed point of the auxiliary nonlinear problem

√
−∆u = ε

∫

R3

K(x− y)g(u0(y) + v(y))dy (1.9)

in ball (1.8). For a given function v(y) this is an equation with respect to u(x).
The left side of (1.9) contains the operator without Fredholm property

√
−∆ :

H1(R3) → L2(R3). Its essential spectrum fills the nonnegative semi-axis [0,+∞),
such that this operator has no bounded inverse. The analogous situation appeared

in works [25] and [27] but as distinct from the present article, the problems treated

there required orthogonality conditions. The fixed point technique was used in

[18] to estimate the perturbation to the standing solitary wave of the Nonlinear

Schrödinger (NLS) equation when either the external potential or the nonlinear term

in the NLS were perturbed but the Schrödinger operator involved in the nonlinear

problem possessed the Fredholm property (see Assumption 1 of [18], also [7]).

Let us define the interval on the real line

I := [−ce‖u0‖H2(R3) − ce, ce‖u0‖H2(R3) + ce]. (1.10)

We make the following assumption on the nonlinear part of problem (1.2).

Assumption 2. Let g(s) : R → R, such that g(0) = 0 and g′(0) = 0. We also

assume that g(s) ∈ C2(R), such that

a2 := sups∈I |g′′(s)| > 0.

Evidently a1 := sups∈I |g′(s)| > 0 as well, otherwise the function g(s) will be

constant on the interval I and a2 vanishes. For instance, g(s) = s2 clearly satisfies

the assumption above.

Let us introduce the operator Tg, such that u = Tgv, where u is a solution of

equation (1.9). Our main statement is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.9) defines the map

Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε < ε∗ for a certain ε∗ > 0.

The unique fixed point up(x) of the map Tg is the only solution of equation (1.7) in

Bρ.
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Apparently the resulting solution of problem (1.2) given by (1.6) will be nontriv-

ial due to the fact that the source term f(x) is nontrivial and g(0) = 0 as assumed.

We make use of the following elementary lemma.

Lemma 4. Consider the function ϕ(R) := αR +
β

R2
for R ∈ (0,+∞), where the

constants α, β > 0. It attains the minimal value at R∗ =

(
2β

α

) 1

3

, which is given

by ϕ(R∗) =
3

2
2

3

α
2

3β
1

3 .

We proceed to the proof of our main result.

2. The existence of the perturbed solution

Proof of Theorem 3. Let us choose arbitrarily v(x) ∈ Bρ and denote the term

involved in the integral expression in right side of equation (1.9) as

G(x) := g(u0 + v).

We apply the standard Fourier transform (3.25) to both sides of problem (1.9) and

arrive at

û(p) = ε(2π)
3

2

K̂(p)Ĝ(p)

|p| .

Hence for the norm we obtain

‖u‖2L2(R3) = (2π)3ε2
∫

R3

|K̂(p)|2|Ĝ(p)|2
p2

dp. (2.11)

As distinct from works [25] and [27] involving the standard Laplacian operator in

the diffusion term, here we do not try to control the norm

∥∥∥∥∥
K̂(p)

|p|

∥∥∥∥∥
L∞(R3)

.

Let us estimate the right side of (2.11) using (3.26) with R > 0 as

(2π)3ε2
∫

|p|≤R

|K̂(p)|2|Ĝ(p)|2
p2

dp+ (2π)3ε2
∫

|p|>R

|K̂(p)|2|Ĝ(p)|2
p2

dp ≤

≤ ε2‖K‖2L1(R3)

{
1

2π2
‖G(x)‖2L1(R3)R +

1

R2
‖G(x)‖2L2(R3)

}
. (2.12)

Since v(x) ∈ Bρ, we have

‖u0 + v‖L2(R3) ≤ ‖u0‖H2(R3) + 1
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and the Sobolev embedding (1.5) yields

|u0 + v| ≤ ce‖u0‖H2(R3) + ce.

The formula G(x) =

∫ u0+v

0

g′(s)ds with the interval I defined in (1.10) implies

|G(x)| ≤ sups∈I |g′(s)||u0 + v| = a1|u0 + v|.

Thus

‖G(x)‖L2(R3) ≤ a1‖u0 + v‖L2(R3) ≤ a1(‖u0‖H2(R3) + 1).

Obviously, G(x) =

∫ u0+v

0

ds
[ ∫ s

0

g′′(t)dt
]
. Hence, we arrive at

|G(x)| ≤ 1

2
supt∈I |g′′(t)||u0 + v|2 = a2

2
|u0 + v|2,

‖G(x)‖L1(R3) ≤
a2

2
‖u0 + v‖2L2(R3) ≤

a2

2
(‖u0‖H2(R3) + 1)2.

Thus, we obtain the upper bound for the right side of (2.12) as

ε2‖K‖2L1(R3)(‖u0‖H2(R3) + 1)2

{
a22
8π2

(‖u0‖H2(R3) + 1)2R +
a21
R2

}

with R ∈ (0,+∞). Lemma 4 yields the minimal value of the expression above.

Thus

‖u‖2L2(R3) ≤
3

2
2

34π
4

3

ε2‖K‖2L1(R3)(‖u0‖H2(R3) + 1)3
1

3a
2

3

1 a
4

3

2 . (2.13)

Evidently, (1.9) implies

−∆u = ε
√
−∆

∫

R3

K(x− y)G(y)dy

and

∇G(x) = g′(u0 + v)(∇u0 +∇v).

We will use the identity

g′(u0 + v) =

∫ u0+v

0

g′′(s)ds.

Sobolev embedding (1.5) yields

|g′(u0 + v)| ≤ sups∈I |g′′(s)||u0 + v| ≤ a2ce(‖u0‖H2(R3) + 1).

The following inequality can be trivially obtained using the standard Fourier trans-

form, namely

‖∇u‖L2(R3) ≤ ‖u‖H2(R3). (2.14)
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Then we arrive at

‖∆u‖2L2(R3) ≤ ε2‖K‖2L1(R3)a
2
2c

2
e(‖u0‖H2(R3) + 1)4. (2.15)

The definition of the norm (1.4) along with estimates (2.13) and (2.15) imply

‖u‖H2(R3) ≤ ε‖K‖L1(R3)(‖u0‖H2(R3) + 1)2a
2

3

2

√
3

2
2

34π
4

3

a
2

3

1 + a
2

3

2 c
2
e ≤ ρ

for all positive values of ε small enough. Thus u(x) ∈ Bρ as well. If for some

v(x) ∈ Bρ there exist two solutions u1,2(x) ∈ Bρ of problem (1.9), their difference

w(x) := u1(x)− u2(x) ∈ L2(R3) satisfies

√
−∆w = 0.

Since the operator
√
−∆ does not have nontrivial square integrable zero modes,

w(x) = 0 a.e. in R3. Therefore, equation (1.9) defines a map Tg : Bρ → Bρ for

ε > 0 sufficiently small.

The goal is to prove that this map is a strict contraction. We choose arbitrarily

v1,2(x) ∈ Bρ. The argument above yields u1,2 = Tgv1,2 ∈ Bρ as well. (1.9) gives us

√
−∆u1 = ε

∫

R3

K(x− y)g(u0(y) + v1(y))dy, (2.16)

√
−∆u2 = ε

∫

R3

K(x− y)g(u0(y) + v2(y))dy. (2.17)

Let us define

G1(x) := g(u0 + v1), G2(x) := g(u0 + v2)

and apply the standard Fourier transform (3.25) to both sides of problems (2.16)

and (2.17). We obtain

û1(p) = ε(2π)
3

2

K̂(p)Ĝ1(p)

|p| , û2(p) = ε(2π)
3

2

K̂(p)Ĝ2(p)

|p| .

Evidently

‖u1 − u2‖2L2(R3) = ε2(2π)3
∫

R3

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|2
|p|2 dp.

Clearly, it can be bounded from above by means of (3.26) by

ε2‖K‖2L1(R3)

{
1

2π2
‖G1(x)−G2(x)‖2L1(R3)R + ‖G1(x)−G2(x)‖2L2(R3)

1

R2

}
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with R ∈ (0,+∞). Let us use the equality

G1(x)−G2(x) =

∫ u0+v1

u0+v2

g′(s)ds.

Thus

|G1(x)−G2(x)| ≤ sups∈I |g′(s)||v1 − v2| = a1|v1 − v2|.
Therefore

‖G1(x)−G2(x)‖L2(R3) ≤ a1‖v1 − v2‖L2(R3) ≤ a1‖v1 − v2‖H2(R3).

Evidently,

G1(x)−G2(x) =

∫ u0+v1

u0+v2

ds
[ ∫ s

0

g′′(t)dt
]
.

We derive the upper bound for G1(x)−G2(x) in the absolute value as

1

2
supt∈I |g′′(t)||(v1 − v2)(2u0 + v1 + v2)| =

a2

2
|(v1 − v2)(2u0 + v1 + v2)|.

By means of the Schwarz inequality we estimate the norm ‖G1(x) − G2(x)‖L1(R3)

from above by

a2

2
‖v1 − v2‖L2(R3)‖2u0 + v1 + v2‖L2(R3) ≤ a2‖v1 − v2‖H2(R3)(‖u0‖H2(R3) + 1).

Thus we arrive at the upper bound for the norm ‖u1(x)− u2(x)‖2L2(R3) given by

ε2‖K‖2L1(R3)‖v1 − v2‖2H2(R3)

{ a2
2

2π2
(‖u0‖H2(R3) + 1)2R +

a1
2

R2

}
.

Lemma 4 enables us to minimize the expression above over R > 0 to obtain that

‖u1(x)− u2(x)‖2L2(R3) is estimated from above by

ε2‖K‖2L1(R3)‖v1 − v2‖2H2(R3)

3

2
4

3

a
4

3

2

π
4

3

(‖u0‖H2(R3) + 1)
4

3a
2

3

1 . (2.18)

(2.16) and (2.17) imply that

−∆(u1 − u2) = ε
√
−∆

∫

R3

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy.

Thus

‖∆(u1 − u2)‖2L2(R3) ≤ ε2‖K‖2L1(R3)‖∇g(u0 + v1)−∇g(u0 + v2)‖2L2(R3).

We express ∇g(u0 + v1)−∇g(u0 + v2) as

g′(u0 + v1)(∇u0 +∇v1)− g′(u0 + v2)(∇u0 +∇v2) =

8



= (∇u0 +∇v1)

∫ u0+v1

u0+v2

g′′(s)ds+ (∇v1 −∇v2)

∫ u0+v2

0

g′′(s)ds.

This yields the estimate from above for |∇g(u0 + v1)−∇g(u0 + v2)| as

sups∈I |g′′(s)||v1 − v2||∇u0 +∇v1|+ sups∈I |g′′(s)||u0 + v2||∇v1 −∇v2|.

This expression can be trivially bounded from above by means of the Sobolev em-

bedding (1.5) by

a2ce‖v1 − v2‖H2(R3)|∇u0 +∇v1|+ a2ce‖u0 + v2‖H2(R3)|∇v1 −∇v2|.

Hence, by virtue of (2.14) for v1,2 ∈ Bρ we derive the upper bound for the norm

‖∆(u1 − u2)‖2L2(R3) as

4ε2‖K‖2L1(R3)a
2
2c

2
e(‖u0‖H2(R3) + 1)2‖v1 − v2‖2H2(R3). (2.19)

By means of inequalities (2.18) and (2.19) the norm ‖u1 − u2‖H2(R3) is estimated

from above by

ε‖K‖L1(R3)(‖u0‖H2(R3) + 1)a
2

3

2

[ 3

2
4

3

a
2

3

1

π
4

3

+ 4a
2

3

2 c
2
e

] 1

2‖v1 − v2‖H2(R3).

Therefore, the map Tg : Bρ → Bρ defined by equation (1.9) is a strict contraction

for all values of ε > 0 sufficiently small. Its unique fixed point up(x) is the only

solution of problem (1.7) in Bρ. The resulting u(x) ∈ H2(R3) given by (1.6) is a

solution of equation (1.2).

3. Auxiliary results

First we derive the solvability conditions for the following linear Poisson equa-

tion √
−∆u = f(x), x ∈ R

d, d ∈ N. (3.20)

Let us denote the inner product as

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, (3.21)

with a slight abuse of notations when the functions involved in (3.21) are not square

integrable, like for instance the ones present in orthogonality relations (3.22) and

(3.23) below. Indeed, if f(x) ∈ L1(Rd) and g(x) is bounded, then the integral in

the right side of (3.21) is well defined. Our technical result is as follows.

Lemma 5. Let f(x) ∈ L2(Rd), d ∈ N.
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1) When d = 1 and in addition |x|f(x) ∈ L1(R), equation (3.20) admits a

unique solution u(x) ∈ H1(R) if and only if the orthogonality condition

(f(x), 1)L2(R) = 0 (3.22)

holds.

2) When d = 2 and additionally |x|f(x) ∈ L1(R2), problem (3.20) possesses a

unique solution u(x) ∈ H1(R2) if and only if the orthogonality relation

(f(x), 1)L2(R2) = 0 (3.23)

holds.

3) When d ≥ 3 and in addition f(x) ∈ L1(Rd), equation (3.20) has a unique

solution u(x) ∈ H1(Rd).

Proof. Let us first address the uniqueness of solutions for problem (3.20).

Suppose u1,2(x) ∈ H1(Rd) both satisfy equation (3.20). Then their difference

w(x) := u1(x)− u2(x) solves the homogeneous problem
√
−∆w = 0.

Since the operator
√
−∆ in the the whole space does not have nontrivial square

integrable zero modes, w(x) vanishes a.e. in Rd. Note that it would be sufficient to

establish only the square integrability for the solution of (3.20). Indeed, we have a

trivial identity

‖
√
−∆u‖2L2(Rd) = ‖∇u‖2L2(Rd). (3.24)

Since the source term f(x) ∈ L2(Rd) as assumed, we arrive at ∇u ∈ L2(Rd), such

that u(x) ∈ H1(Rd) as well. We will use the standard Fourier transform

f̂(p) :=
1

(2π)
d

2

∫

Rd

f(x)e−ipxdx, d ∈ N. (3.25)

Clearly, we have the estimate

‖f̂(p)‖L∞(Rd) ≤
1

(2π)
d

2

‖f(x)‖L1(Rd). (3.26)

Let us apply (3.25) to both sides of equation (3.20). We obtain

û(p) =
f̂(p)

|p| ,

such that the norm can be expressed as

‖u‖2L2(Rd) =

∫

|p|≤1

|f̂(p)|2
|p|2 dp+

∫

|p|>1

|f̂(p)|2
|p|2 dp. (3.27)
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Evidently, the second term in the right side of (3.27) can be estimated from above

by ‖f‖2
L2(Rd) < ∞ as assumed. Let us estimate the first term in the right side of

(3.27) in dimension d = 1, using the identity

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

Clearly, via definition (3.25)

∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖|x|f‖L1(R) < ∞

due to one of our assumptions. Therefore,

∣∣∣∣∣

∫ p

0
df̂(s)
ds

ds

|p| χ{p∈R | |p|≤1}

∣∣∣∣∣ ≤
1√
2π

‖|x|f‖L1(R)χ{p∈R | |p|≤1} ∈ L2(R).

Here and further down χA stands for the characteristic function of a set A ∈ R
d.

The remaining term
f̂(0)

|p| χ{p∈R | |p|≤1} belongs toL2(R) if and only if f̂(0) vanishes,

which gives us orthogonality relation (3.22) in dimension d = 1.

Then we turn our attention to the case of dimension d = 2. Let us use the

formula

f̂(p) = f̂(0) +

∫ |p|

0

∂f̂

∂s
(s, θ)ds,

where θ stands for the angle variable on the circle. Clearly, definition (3.25) yields

∣∣∣∣∣
∂f̂

∂|p|

∣∣∣∣∣ ≤
1

2π
‖|x|f‖L1(R2) < ∞

as assumed. Thus
∣∣∣∣∣

∫ |p|

0
∂f̂(s,θ)

∂s
ds

|p| χ{p∈R2 | |p|≤1}

∣∣∣∣∣ ≤
1

2π
‖|x|f‖L1(R2)χ{p∈R2 | |p|≤1} ∈ L2(R2).

Finally, the term
f̂(0)

|p| χ{p∈R2 | |p|≤1} ∈ L2(R2) if and only if f̂(0) = 0, such that we

obtain orthogonality condition (3.23) for dimension d = 2.

To complete the proof of the lemma, it remains to study the case of higher

dimensions d ≥ 3. By virtue of inequality (3.26), we easily estimate the first term

in the right side of (3.27) by

1

(2π)d
‖f(x)‖2L1(Rd)|Sd|

1

d− 2
< ∞

11



due to one of our assumptions. Here Sd denotes the unit sphere in the space of d

dimensions centered at the origin and |Sd| stands for its Lebesgue measure.

Note that in dimensions d ≥ 3 under the assumptions given above no orthogo-

nality conditions are needed to solve the linear Poisson equation (3.20) in H1(Rd).

Let us show that it is possible to incorporate a shallow, short-range potential into

the linear Poisson equation considered above and generalize the result of Lemma

5. No orthogonality relations will be required in Lemma 7 below as well. Consider

the following equation

√
−∆+ V (x)u = f(x), x ∈ R

3, (3.28)

with the operator
√
−∆+ V (x) well defined via the spectral calculus, since under

our assumptions the operator −∆ + V (x) on L2(R3) is nonnegative as discussed

below.

Assumption 6. The potential function V (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+ε

with some ε > 0 and x ∈ R3 a.e. such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π.

This is analogous to Assumption 1.1 of [20] under which by virtue of Lemma

2.3 of [20] our Schrödinger operator −∆+V (x) is self-adjoint and unitarily equiv-

alent to −∆ on L2(R3) via the wave operators. Thus the essential spectrum of√
−∆+ V (x) : H1(R3) → L2(R3) fills the nonnegative semi-axis [0,+∞). Hence

such operator does not have a bounded inverse and therefore it fails to satisfy the

Fredholm property. Here C stands for a finite, positive constant and cHLS for the

constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣∣∣

∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy

∣∣∣∣∣ ≤ cHLS‖f1‖2
L

3
2 (R3)

, f1 ∈ L
3

2 (R3)

given on p.98 of [10]. The functions of the continuous spectrum of our Schrödinger

operator satisfy

(−∆+ V (x))ϕk(x) = k2ϕk(x), k ∈ R
3,

12



in the integral formulation the Lippmann-Schwinger equation (see e.g. p.98 of [17])

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (3.29)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3.

They form a complete system in L2(R3). Let us denote by tilde the generalized

Fourier transform with respect to these functions, such that

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3. (3.30)

The integral operator involved in the right side of equation (3.29) is

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).

We consider Q : L∞(R3) → L∞(R3). By virtue of Lemma 2.1 of [20] under

Assumption 6 above on the scalar potential we have ‖Q‖∞ < 1. Moreover, this

norm is bounded above by the quantity, which is independent of the wave vector k

and can be expressed in terms of the appropriate Lp(R3) norms of V (x). Corollary

2.2 of [20] yields the estimate

|f̃(k)| ≤ 1

(2π)
3

2

1

1− ‖Q‖∞
‖f‖L1(R3). (3.31)

We have the following statement.

Lemma 7. Let the potential V (x) satisfy Assumption 6 and f(x) ∈ L1(R3) ∩
L2(R3). Then equation (3.28) has a unique solution u(x) ∈ H1(R3).

Proof. Let us first suppose that problem (3.28) has two solutions u1,2(x) ∈
H1(R3). Then their difference w(x) := u1(x)− u2(x) ∈ L2(R3) solves the homo-

geneous equation √
−∆+ V (x)w = 0,

which cannot have nontrivial square integrable solutions due to the fact that our

self-adjoint operator −∆ + V (x) is unitarily equivalent to −∆ on L2(R3). Hence

w(x) vanishes a.e. in R3.

Let us apply the generalized Fourier transform (3.30) to both sides of equation

(3.28) to obtain

ũ(k) =
f̃(k)

|k| , k ∈ R
3.

13



This enables us to express the norm as

‖u‖2L2(R3) =

∫

|k|≤1

|f̃(k)|2
k2

dk +

∫

|k|>1

|f̃(k)|2
k2

dk. (3.32)

Clearly, the second term in the right side of (3.32) can be bounded from above by

‖f‖2L2(R3) < ∞ as assumed. Let us use (3.31) to estimate from above the first term

in the right side of (3.32) as

1

2π2

1

(1− ‖Q‖∞)2
‖f‖2L1(R3) < ∞

as well. Hence u(x) ∈ L2(R3). A trivial calculation using (3.28) yields

‖f‖2L2(R3) = ‖∇u‖2L2(R3) +

∫

R3

V (x)|u(x)|2dx.

Since f(x) is square integrable and the scalar potential V (x) is bounded as assumed,

we have ∇u(x) ∈ L2(R3) as well, such that the solution u(x) ∈ H1(R3).

Acknowledgements. Valuable discussions with A.Nepomnyashchy are gratefully
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elliptiques dans Rn, CRAS, 307, Série I (1988), 577–580.

[7] S. Cuccagna, D. Pelinovsky, V. Vougalter, Spectra of positive and negative

energies in the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005),

No. 1, 1–29.

[8] A. Ducrot, M. Marion, V. Volpert, Systemes de réaction-diffusion sans pro-
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