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Abstract The aim of this paper is to recover displacement interpolations
of probability measures, in the sense of the Optimal Transport theory, by
semiclassical measures associated with solutions of Schrödinger’s equations
defined on the flat torus. Under some additional assumptions, we show the
completing viewpoint by proving that a family of displacement interpolations
can always be viewed as such time dependent semiclassical measures.
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1 Introduction

Let Tn := (R/2πZ)n, V ∈ C∞(Tn). Let us consider the Schrödinger equation

i~∂tψ~(t, x) = − ~2

2m
∆xψ~(t, x) + V (x)ψ~(t, x). (1)

The Schrödinger dynamics can be given by the one parameter group of unitary

operators U~(t) := e−iĤt/~, Ĥ := −~2∆x/2m+V (x), acting on L2(Tn). Thus,
we consider the solution of (1) as ψ(t, x) := (U~(t)ϕ~)(x) for initial data in a
class of WKB - wave functions

ϕ~(x) = a~(x) eiS+(x)/~, (2)

the related semiclassical probability measures ωt ∈ P(Tn × Rn) associated
with the path ψ~(t, · )|0≤t≤1 and study σt := π] ωt ∈ P(Tn). In order to select
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(2) we fix the phase as a Lipschitz continuous weak KAM solution of positive
type for the following Hamilton-Jacobi equation (see [8])

1

2m
|∇xS+(x)|2 + V (x) = max

y∈Tn
V (y). (3)

The reason why we select such solutions is the time forward invariance property
of the graph under the Hamiltonian flow of H := |p|2/2m + V (x), namely
φtH(Graph(∇xS+)) ⊆ Graph(∇xS+) ∀t ≥ 0, as shown by Thm 4.9.3 in [8].
The amplitudes in (2) are selected by a~ ∈ H1(Tn;R) where ‖a~‖L2 = 1,
‖~∇a~‖L2 → 0 as ~ → 0, a2(x)dx ⇀ σ0 weakly as measures on Tn, and such
that supp(σ0) ⊆ dom(∇S+), σ0 ∈ Pac(Tn), i.e. Borel probability measures
which are absolutely continuous with respect to Lebesgue. As we will see,
the assumption of the absolute continuity of σ0 with respect to the Lebesgue
measure Ln turns out to be useful in order to make a full relationship between
a class of optimal transport problems of measures on Tn and the semiclassical
measures arising from our Schrödinger equation (1).

The first result of our paper show that the above family of projected semi-
classical measures (σt)0≤t≤1 is a displacement interpolation between the Borel
probability measures σ0, σ1 ∈ P(Tn) in the sense of Optimal Transport theory
(see Thm 7.21 in [14]). More precisely, here we deal with the minimum curves
for the Action functional

inf
γ

(∫
Ω

∫ 1

0

m

2
|γ̇(t, ζ)|2 + V (γ(t, ζ))dt dP(ζ)

)
(4)

where the infimum is over all the random curves γ : [0, 1]×Ω −→ Tn such that
Law(γ(t, · )) = σt. In particular, we are interested to deal with the family of the
above displacement interpolations coming from solutions σ ∈ C([0, 1];P(Tn))
of the continuity equation in the measure sense

∂tσt(x) + divx

( 1

m
∇xS+(x)σt(x)

)
= 0 (5)

for arbitrary fixed σ0 ∈ Pac(Tn).
Before to state precisely the main results of the paper, we underline that they
are mainly based on some meaningful arguments of semiclassical Analysis and
Optimal Transport theory. The first one is that the continuous paths of semi-
classical measures ωt associated to the solution of the Schrödinger equation
solve the Liouville equation in the measure sense,

∂t ωt(x, p) + p · ∇x ωt(x, p)−∇xV (x) · ∇p ωt(x, p) = 0 (6)

as firstly shown in [13] within the euclidean setting (and many others under
various assumptions, see [3] and the references therein) and recently in [16]
within the toroidal setting. The second main ingredient is that all the semi-
classical measures of ϕ~ as in (2) take the form

ω0(x, p) = δ(p−∇xS+(x))σ0(x). (7)
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This property becomes meaningful in view of the time forward invariance prop-
erty of Graph(∇xS+) under the Hamiltonian flow, as proved in [8]. Further-
more, we take into account the equations linked to displacement interpolations
of measures, as described in [14], exhibiting in our paper the simple form (5).
Finally, we take into account the results on the existence of the transport
maps Tt : Pac(Tn)→ P(Tn) which solve the Monge problem (see [9], [10], [11]

and the references therein) for the cost function c0,t(x, y) := infγ
∫ t
0
L(γ, γ̇)dτ ,

L := m|ξ|2/2−V (x), γ are at least C1 and fulfill γ(0) = x, γ(t) = y, and they
provide displacement interpolations by

σt = (Tt)]σ0. (8)

In fact, it turns out that any of such transport map read Tt = π◦φtH(x,∇xf(x))
for some Lipschitz functions f : Tn → R which is convex with respect to
the cost function c0,1(x, y) namely for some f̄ : Tn → R it holds f(x) =
supy∈Tn(f̄(y) − c0,1(x, y)). In our paper, f = S+ as we will easily see in the
Remark 1. In the paper [4], the convex condition for S+ is shown from a more
general viewpoint involving Monge-Kantorovich duality.

We are now ready to provide the first result of the paper

Theorem 1 Let ϕ~ be as in (2) and ω0 ∈ P(Tn×Rn) be an associated semi-
classical measure. Let φtH : Tn × Rn → Tn × Rn be the Hamiltonian flow of
H = |p|2/2m + V (x). Then, the ωt := (φtH)]ω0 is a semiclassical measure
associated with ψ~(t, · ) and takes the form ∀ 0 ≤ t ≤ 1

ωt(x, p) = δ(p−∇xS+(x))σt(x) (9)

and the path (σt)0≤t≤1 ∈ P(Tn) equals for L1 - a.e. 0 ≤ t ≤ 1 a continuous
displacement interpolation between σ0 and σ1 in the sense of (4) and (5). By
defining Ψ t(x) := π ◦ φtH(x,∇xS+(x)) it holds σt = (Ψ t)](σ0) ∀0 ≤ t ≤ 1, i.e.∫

Tn

g(x)dσt(x) =

∫
Tn

g(Ψ t(x))dσ0(x) ∀g ∈ C∞(Tn). (10)

In the paper [16], time propagated semiclassical measures taking the form
ωt(x, p) = δ(p − P − ∇xS±(P, x))σt(P, x) are studied when P ∈ `Zn with
` > 0, ~−1 ∈ `−1N, S± are weak KAM solutions of positive or negative type
for the Hamilton-Jacobi equation

1

2m
|P +∇xS±(P, x)|2 = H̄(P ) (11)

where H̄(P ) = supx infv∈C∞
1

2m |P +∇xv(x)|2 +V (x) is the so-called effective
Hamiltonian (see for example [7]). In particular, any such σt are absolutely
continuous with respect to the projected (on Tn) π](µP ) where µP are flow
invariant and Action-minimizing measures for

A[µ] =

∫
Tn×Rn

m

2
|ξ|2 − V (x)− P · ξ dµ(x, ξ). (12)
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This setting ensures the possibility to deal with continuity equation (5) for
positive or negative times, and in particular to study the propagated densities
g± ∈ L1(Tn) satisfying σt(P, x) = g±(t, P, x)π](µP ).
We underline that the time propagation under the Hamiltonian flow of mea-
sures with a graph structure as in (7) with different low regularity momentum
profiles, have been also recently studied in [5] as an application to the semi-
classical limit of quantum propagation of WKB type wave functions.

In the next, we provide the second result of the paper by a complementary
viewpoint with respect to Theorem 1.

Theorem 2 Let σ0 ∈ Pac(Tn) and assume the uniqueness for solutions σ ∈
C([0, 1];P(Tn)) of (5). Define the lift ωt := δ(p − ∇xS+)σt ∈ P(Tn × Rn).
Then, there exists ϕ~ in the form (2) such that ω0 is the unique linked semi-
classical measure. Moreover, any ωt is a semiclassical measure associated with
ψ~(t, x) := (U~(t)ϕ~)(x).

Notice that here we have assumed the uniqueness for the solution σ of the
continuity equation (5) in C([0, 1];P(Tn)) where P(Tn) is equipped with the
Lévy-Prokhorov distance of probability measures which metrizes the weak
convergence. In view of Theorem 3.1 shown in [2], such an assumption is
equivalent to the pointwise uniqueness for the solutions of γ̇ = 1

m∇xS+(γ).
In the Lemma 1, we provide a solution γ = π ◦ φtH(x,∇xS+(x)). However,
S+ : Tn → R is Lipschitz continuous and x → ∇xS+(x) is continuous on
its domain, and this low regularity does not guarantees this property. On the
other hand, one can assume the additional regularity ∇xS+ ∈ W 1,∞

loc (Tn;Rn)
and apply the Remark 2.1 in [2] to ensure such a uniqueness, and thus recover
the setting for Theorem 2.

Before to conclude, we underline a remarkable open problem about the link
between Optimal transport theory and semiclassical Analysis. More precisely,
to prove the existence and related properties for a bigger set of initial data
wave functions ϕ~ taking a more general form than our (2) and recovering,
in the semiclassical limit, an arbitrary continuous displacement interpolation
as prescribed in (4) and without the assumption of absolute continuity of the
initial measure with respect to Lebesgue.

The content of the paper is the following: in Section 2 we introduce some
preliminaries on Toroidal Pseudodifferential Operators, Weyl quantization and
the well posed setting for semiclassical measures on Tn × Rn. Within the
Section 3 we provide a resume on some central results of the weak KAM
theory for Hamilton-Jacobi equations. In the Section 4 we recall some basics
on the Optimal transport of probability measures and in particular about the
equations of displacement interpolation. The final Section is devoted to prove
the main results of the paper.
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2 Semiclassical measures

Let us consider the flat torus Tn := (R/2πZ)n. The class of symbols b ∈
Smρ,δ(Tn × Rn), m ∈ R, 0 ≤ δ, ρ ≤ 1, consist of those functions in C∞(Tn ×
Rn;R) which are 2π-periodic in x (that is, in each variable xj , 1 ≤ j ≤ n) and
for which for all α, β ∈ Zn+ there exists Cαβ > 0 such that ∀ (x, η) ∈ Tn × Rn

|∂βx∂αη b(x, η)| ≤ Cαβm〈η〉m−ρ|α|+δ|β| (13)

where 〈η〉 := (1 + |η|2)1/2. In particular, the set Sm1,0(Tn × Rn) is denoted by
Sm(Tn × Rn). The toroidal Pseudodifferential Operator reads

b(X,D)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(x, κ)ψ(y)dy, ψ ∈ C∞(Tn;C),

(14)
see [17]. In particular, notice that it is given a map b(X,D) : C∞(Tn) −→
D′(Tn). We recall that u ∈ D′(Tn) are the linear maps u : C∞(Tn) −→ C such
that ∃ C > 0 and k ∈ N, for which |u(φ)| ≤ C

∑
|α|≤k ‖∂αxφ‖∞ ∀φ ∈ C∞(Tn).

Given a symbol b ∈ Sm(Tn × Rn), the (toroidal) Weyl quantization reads

Opw~ (b)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(y, ~κ/2)ψ(2y−x)dy, ψ ∈ C∞(Tn).

(15)
In particular, it holds

Opw~ (b)ψ(x) = (σ(X,D) ◦ Tx ψ)(x) (16)

where Tx : C∞(Tn) → C∞(Tn) defined as (Txψ)(y) := ψ(2y − x) is linear,
invertible and L2-norm preserving, and σ is a suitable toroidal simbol related

to b, i.e. σ ∼
∑
α≥0

1
α!4

α
ηD

(α)
y b(y, ~η/2)

∣∣
y=x

, see Th. 4.2 in [17] or also Th.

2.1 in [15].
We say that a positive Radon measure with finite mass ω ∈M+(Tn×Rn) is a
semiclassical measure associated with ψ~ ∈ L2(Tn), ‖ψ~‖L2 ≤ 1 if there exists
~j → 0+ as j → +∞ such that

lim
j→+∞

〈ψ~j
,Opw~j

(φ)ψ~j
〉L2 =

∫
Tn×Rn

φ(x, ξ)dω(x, ξ) (17)

for any test function φ ∈ C∞(Tn × Rn) satisfying the phase space Fourier
representation (see [12])

φ(x, ξ) = (2π)−n
∫
Rn

∑
q∈Zn

φ̂(q, p)ei(〈p,ξ〉+〈q,x〉)dp (18)

for some compactly supported φ̂ : Zn × Rn → R, see Section 2.1.3 in [16].
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3 A quick overview of weak KAM theory

The weak KAM theory deals with a class of Lipschitz continuous solutions of
the Hamilton-Jacobi equation

H(x,∇xv(x)) = c[0] (19)

in the general assumption of Tonelli Hamiltonians H ∈ C∞(Tn×Rn;R), that is
to say, for functions H such that η 7→ H(x, η) is strictly convex and uniformly
superlinear in the fibers of the canonical projection π : Tn × Rn −→ Tn. The
value c[0] is called the critical value for which there exist solutions, and it can
be expressed by the inf-sup formula

c[0] = inf
v∈C∞(Tn;R)

sup
x∈Tn

H(x,∇xv(x)) (20)

see for example [7]. If H = |p|2/2m+ V (x) then

c[0] = max
y∈Tn

V (y). (21)

The Lax-Oleinik semigroup of positive and negative type is defined as

T∓t u(x) := inf
γ

{
u(γ(0))±

∫ t

0

L(γ(s), γ̇(s)) ds
}
, u ∈ C0,1(Tn;R),

where the infimum is taken over all continuous piecewise C1 curves γ : [0, 1]→
Tn such that γ(t) = x. In particular, by defining A0,t(γ) :=

∫ t
0
L(γ(τ), γ̇(τ))dτ

ht(y, x) := inf
γ
A0,t(γ) (22)

with γ(0) = y and γ(t) = x, one can prove (see for example Prop. 4.1 in [9])
that ht is continuous. Furthermore, it follows that

T−t u(x) = min
y∈Tn

{u(y) + ht(y, x)} , T+
t u(x) = max

y∈Tn
{u(y)− ht(x, y)} .

A function S− ∈ C0,1(Tn;R) is said to be a weak KAM solution of negative
type for (19) if ∀ t ≥ 0

T−t S− = S− − t c[0], (23)

whereas it is said to be a weak KAM solution of positve type if ∀ t ≥ 0

T+
t S+ = S+ + t c[0], (24)

see Def. 4.7.6 in [8]. For any weak KAM solution it holds

Graph(∇xS±) ⊂ {(x, η) ∈ Tn × Rn | H(x, η) = c[0]}. (25)

Furthermore, the graphs are invariant under the backward (resp. forward)
Hamiltonian flow, namely

φtH(Graph(∇xS−)) ⊆ Graph(∇xS−) ∀t ≤ 0 (26)

φtH(Graph(∇xS+)) ⊆ Graph(∇xS+) ∀t ≥ 0 (27)
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see Theorems 4.9.2 and 4.9.3 in [8]. Moreover, it is proved that the maps
x 7−→ (x,∇xS±) are continuous on dom(∇xS±) := {x ∈ Tn | ∃ ∇xS±(x)}.
As showed within Th. 7.6.2 of [8], all the Lipschitz continuous weak KAM
solutions of negative type coincide with the so-called viscosity solutions in the
sense of [6].

4 The equations of displacement interpolation

Let X,Y be sets and c : X × Y −→ (−∞,+∞]. A function ψ : X −→
R ∪ {+∞} is said to be c-convex if it is not identically +∞ and there exists
ζ : Y −→ R ∪ {±∞} such that ψ(x) = supy∈Y (ζ(y) − c(x, y)) ∀x ∈ X. Let

L ∈ C2(Tn × Rn) be a Tonelli Lagrangian, and A0,1(γ) :=
∫ 1

0
L(γ(τ), γ̇(τ))dτ

the related Lagrangian Action. Define the cost function

c0,1(x, y) := inf
γ
A0,1(γ) (28)

over all continuous piecewise C1 curves γ : [0, 1]→ Tn such that γ(0) = x and
γ(1) = y. The related optimal transport cost reads

C0,1(µ, ν) := inf
π∈Π(µ,ν)

∫
Tn×Tn

c0,1(x, y) dπ(x, y). (29)

Let σ0, σ1 ∈ P(Tn) be such that C0,1(σ0, σ1) < +∞. Let {σt}0≤t≤1 ∈ P(Tn)
be a displacement interpolation of σ0 and σ1 with respect to the Lagrangian
Action A0,1(γ). More precisely, the path {σt}0≤t≤1 is linked to a minimizing
curve for

inf
γ

∫
Ω

∫ 1

0

L(γ(τ, ω), ∂tγ(τ, ω))dτ dP(ω) (30)

where the infimum is over all the random curves γ : [0, 1] × Ω −→ Tn such
that Law(γ(τ, · )) = στ for 0 ≤ τ ≤ 1; see Theorem 7.21 in [14]. Then, the
following equations of displacement interpolation are fulfilled

a. ∂tσt(x) + divx(ξ(t, x)σt(x)) = 0
b. ∇vL(x, ξ(t, x)) = ∇xu(t, x)
c. ∂tu(t, x) +H(x,∇xu(t, x)) = 0 u(0, · ) is c - convex,

where the cost fuction is c = c0,1(x, y) as briefly outlined in chapter 13 of [14].
In this setting, the vector field in the continuity equation can be equivalently
written as ξ(t, x) = ∇pH(x,∇xu(t, x)).

Remark 1 In our paper H = |p|2/2m+V (x) and hence ξ(t, x) = ∇xu(t, x)/m.
Furthermore, our initial data is u(0, · ) = S+, namely a weak KAM solution of
positive type for the stationary Hamilton-Jacobi equation. Whence, ∀t ≥ 0

T+
t S+ − t c[0] = S+ (31)

namely
max
y∈Tn

{S+(y)− ht(x, y)} − t c[0] = S+(x) (32)
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which reads in the c - convex condition

max
y∈Tn

{S+(y)− t c[0]− ht(x, y)} = S+(x). (33)

For t = 1 the cost function is in fact h1(x, y) = c0,1(x, y). Now, easily see that
the function S+(x) − t c[0] is a solution of the equation c (equivalently S+

solves the stationary H-J) and that the related continuity equation

∂tσt(x) + divx

( 1

m
∇xS+(t, x)σt(x)

)
= 0

is solved by σt = (Ψ t)](σ0) with Ψ t(x) := π ◦ φtH(x,∇xS+(x)), as shown in
Lemma 2. We now recall the equivalence between optimal transport problems
(i) - (iii) in Theorem 7.21 of [14], namely the link between optimal transference
plans and displacement interpolations with respect to the Lagrangian Action.
Moreover, in view Theorem 12 - Proposition 1 of [4] about Kantorovich op-
timal pairs (in our paper (S+, S−)) we can apply Theorem 4.2 of [9] in the
assumption σ0 ∈ Pac(Tn). Thus, the path of measures σt = (Ψ t)](σ0) is a
displacement interpolation in the sense of (4).

5 Main results

Proof of Theorem 1 Thanks to the setting of ϕ~, any semiclassical measure
ω0 ∈M+(Tn × Rn) associated with ϕ~ given by (2) takes the form

ω0(x, p) = δ(p−∇xS+(x))σ0(x) (34)

where σ0 ∈ Pac(Tn), see Remark 2. Hence, ω0 ∈ P(Tn × Rn).
Let H := 1

2m |p|
2 + V (x) and φtH : Tn × Rn → Tn × Rn the Hamiltonian flow.

Applying Lemma 1, the push forward ωt := (φtH)]ω0 ∈ P(Tn × Rn) reads for
t ≥ 0

ωt(x, p) = δ(p−∇xS+(x))σt(x) (35)

where σt ∈ P(Tn). Thanks to Lemma 2, this is a distributional solution for

∂tσt(x) + divx

( 1

m
∇xS+(x)σt(x)

)
= 0 (36)

which is fulfilled also by a continuous representative in the sense of Lemma
8.2.1 shown in [1].
Any semiclassical limit w for the Wigner transform of ψ(t, x) := (U~(t)ϕ~)(x)
in L∞([0, 1];A′) solves the Liouville equation in the distributional sense∫ 1

0

∫
Tn×Rn

[∂sf(s, x, p) + {H, f}(s, x, p)]dws(x, p)ds = 0 (37)

∀f ∈ C∞c ((0, 1) × Tn × Rn;R) and moreover it holds the additional reg-
ularity C([0, 1];P(Tn × Rn)), as shown by Theorem 4.1 - Remark 4.2 in
[16]. To conclude, the Liouville equation (37) is linked to a smooth vector
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field (p,−∇xV (x)) and hence it holds the uniqueness for the solutions in
C([0, 1];P(Tn × Rn)) which gives wt = (φtH)]ω0. This implies, the equality
wt = ωt for all t ≥ 0. By recalling Remark 1 we conclude that π](ωt) = σt for
a.e. 0 ≤ t ≤ 1 equals a path of continuous displacement interpolations in the
sense of (4) and (5). 2

Remark 2 To prove that any semiclassical measure ω0 ∈M+(Tn×Rn), in the
sense of (17), associated with ϕ~ as in (2) takes the form

ω0(x, p) = δ(p−∇xS+(x))σ0(x) (38)

we apply the same arguments shown in Theorem 4.9 of [16]. In fact, the proof
is based on the application of the following properties which recover the ones
assumed in the present paper:

i. a~ ∈ H1(Tn;R) where ‖a~‖L2 = 1, ‖~∇a~‖L2 → 0 as ~→ 0, a2(x)dx ⇀ σ0
weakly as measures on Tn,

ii. supp(σ0) ⊆ dom(∇S+),
iii. S+ : Tn → R is Lipschitz continuous,
iv. x 7→ ∇xS+(x) is continuous on dom(∇S+).

The main difference here is that we are dealing with a less general class of
Hamilton-Jacobi equations (i.e. when P = 0) and furthermore we are not
assuming the absolute continuity σ0 � π](µP ) where µP is some invariant
and Action minimizing measure. In our paper we additionally assume that
σ0 � Ln but this is not necessary for the proof of the semiclassical convergence
to the monokinetic measures ω0.

Lemma 1 Let S+ : Tn → R a Lipschitz continuous weak KAM solution of
positive type for the H-J equation 1

2m |∇xS+(x)|2 + V (x) = maxy∈Tn V (y) and
for some σ0 ∈ P(Tn) assume supp(σ0) ⊆ dom(∇xS+). Define ω0(x, p) :=
δ(p−∇xS+(x))σ0(x). Let H := 1

2m |p|
2 +V (x) and denote by φtH : Tn×Rn →

Tn × Rn the Hamiltonian flow. Then, the push forward ωt := (φtH)]ω0 ∈
P(Tn × Rn) reads for t ≥ 0

ωt(x, p) = δ(p−∇xS+(x))σt(x) (39)

with σt ∈ P(Tn) as in (46).

Proof For any test function f ∈ C∞c (Tn × Rn;R) it holds∫
Tn×Rn

f(x, p) dωt(x, p) =

∫
Tn×Rn

f ◦ φtH(x, p) dω0(x, p) (40)

and, by the assumption on ω0,∫
Tn×Rn

f(x, p) dωt(x, p) =

∫
Tn

f ◦ φtH(x,∇xS+(x)) dσ0(x). (41)
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Indeed, we recall that the map x 7−→ (x,∇xS+) is continuous when restricted
on the set dom(∇xS+) := {x ∈ Tn | ∃ ∇xS+(x)} which is a Borel set. Thus,

x 7→ f ◦ φtH(x,∇xS+(x)) (42)

is a continuous map on dom(∇xS+) and hence also on supp(σ0). Whence, the
integral (41) is well posed. Furthermore, remind that

φtH(Graph(∇xS+)) ⊆ Graph(∇xS+) (43)

for any t ≥ 0. Thus, for Ψ t(x) := π ◦ φtH(x,∇xS+(x)) and t ≥ 0

φtH(x,∇xS+(x)) = (Ψ t(x),∇xS+(Ψ t(x))) (44)

In particular, any map Ψ t : dom(∇xS+)→ Ψ t(dom(∇xS+)) ⊆ dom(∇xS+) is
continuous and one to one. In addition, notice that t 7→ Ψ t(x) is absolutely
continuous for any x ∈ dom(∇xS+). To conclude, thanks to (44) the integral
(41) can be rewritten as∫

Tn

f(Ψ t(x),∇xS+(Ψ t(x))) dσ0(x). (45)

By defining

σt := (Ψ t)]σ0 (46)

we recover for (40) the form∫
Tn

f(x,∇xS+(x)) dσt(x). (47)

2

Lemma 2 Let σt := (Ψ t)](σ0) be as in (46). Then,∫ 1

0

∫
Tn

|∇xS+(x)| dσt(x) < +∞ (48)

and ∀f ∈ C∞c ((0, 1)× Tn;R)∫ 1

0

∫
Tn

(
∂tf(t, x) +∇xf(t, x) · 1

m
∇xS+(x)

)
dσt(x)dt = 0. (49)

Morever, there exists a narrowly continuous curve t ∈ [0, 1] → σ̃t ∈ P(Tn)
such that σt = σ̃t for L1 - a.e. t ∈ (0, 1).

Proof About the first condition, we recall the setting of σt and the assumption
supp(σ0) ⊆ dom(∇xS+),∫ 1

0

∫
Tn

|∇xS+(x)| dσt(x) =

∫ 1

0

∫
Tn

|∇xS+(Ψ t(x))| dσ0(x). (50)
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In particular, recalling (25) and (27), it follows directly

sup
x∈supp(σ0)

|∇xS+(Ψ t(x))| ≤ sup
y∈dom(∇xS+)

|∇xS+(y)| < +∞. (51)

Furthermore, the integral in (49) reads∫ 1

0

∫
Tn

(
∂tf(t, Ψ t(x)) +∇xf(t, Ψ t(x)) · 1

m
∇xS+(Ψ t(x))

)
dσ0(x)dt (52)

and recalling the setting of Ψt(x)∫ 1

0

∫
Tn

(
∂tf(t, Ψ t(x)) +∇xf(t, Ψ t(x)) · d

dt
Ψ t(x)

)
dσ0(x)dt. (53)

This expression reads equivalently∫ 1

0

∫
Tn

d

dt
f(t, Ψ t(x)) dσ0(x)dt =

∫
Tn

∫ 1

0

d

dt
f(t, Ψ t(x))dtdσ0(x) (54)

=

∫
Tn

f̃(t, Ψ t(x))|10 dσ0(x). (55)

To conclude, we notice that any test functions f ∈ C∞c ((0, 1) × Tn;R) the
(vanishing) smooth extention f̃ at t = 0 and t = 1 fulfills f̃(t = 0, Ψ t=0(x)) =
f̃(t = 1, Ψ t=1(x)) = 0. By applying Lemma 8.1.2 of [1] it follows the existence
of a narrowly continuous curve t ∈ [0, 1] → σ̃t ∈ P(Tn) such that σt = σ̃t for
L1 - a.e. t ∈ (0, 1). 2

Remark 3 Working with narrowly continuous curves t ∈ [0, 1] → σ̃t ∈ P(Tn)
means that σ̃ ∈ C([0, 1];P(Tn)) and P(Tn) is equipped with the Lévy-Prokhorov
distance of measures which metrizes the weak convergence.

Proof of Theorem 2 Fix σ0 ∈ Pac(Tn). In view of Proposition 4.6 in [15] and
Theorem 4.9 in [16] there exists ϕ~ as in (2) such that ω0 = δ(p−∇xS+)σ0 is
the unique related semiclassical measure.
We suppose that the continuity equation∫ 1

0

∫
Tn

(
∂tf(t, x) +∇xf(t, x) · 1

m
∇xS+(x)dσt(x)dt

)
= 0 (56)

with f ∈ C∞c ((0, 1)× Tn;R) has a unique solution in C([0, 1];P(Tn)). Hence,
this solution must coincide with a continuous representative σ̃t of σt := (Ψ t)](σ0)
as in (46).
Define the cotangent bundle lift ω̂t := δ(p − ∇xS+)σ̃t. In particular, since
the map x 7→ ∇xS+(x) is continuous on its domain, the lift ω̂t fulfills ω̂ ∈
C([0, 1];P(Tn × Rn)). Recalling Lemma 1, any ω̂t equals ωt := (φtH)]ω0.
Solutions ωt of the Liouville equation with the class of test functions f ∈
C∞c ((0, 1)× Tn ×Rn;R) are unique in C([0, 1];P(Tn ×Rn)). Recalling Theo-
rem 4.1 and Remark 4.2 in [16], it follows that the solution ωt coincides with
the continuous path of semiclassical measures linked to the solution of the
Schrödinger equation with our class of initial data ϕ~. 2
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