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Abstract. We consider the boundary-value problem for the Helmholtz
equation connected with an in…nite wedge with an impedance boundary on
its face. The scheme of solution includes applying the Kontorovich-Lebedev
(KL) transform, derivation of an integral equation satis…ed by the KL spec-
tral amplitude and obtaining near and far …eld representations together with
the conditions of validity of these representations.
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1 Introduction

One of the important problems of acoustic …eld theory concerns the evalua-
tion of source excited acoustic …elds in the presence of an impedance wedge.
This class of boundary conditions is usually considered to approximate im-
perfectly re‡ecting surfaces. In fact, near …eld evaluation as well as the
scattering and di¤raction of waves by an impedance wedge are very di¢cult
problems to solve in closed form analytically. To this day, there is no ex-
plicit closed-form solution for these problems. The problem was …rst solved
by Malyuzhinets [1] in the form of a Sommerfeld integral with a new special
function, namely the Malyuzhinets function. The formulation presented here
is an attempt to adapt the technique of the KL-transform to the problem thus
allowing for alternative representations for the near and far …elds.

In section 2 the problem is formulated. Section 3 derives the integral
equation satis…ed by the KL spectral function. In section 4 the …eld rep-
resentations are given. Conclusions are given in section 5. Appendix A
presents a scheme to numerically solve the integral equation. In Appendix B
the singularities of the KL spectral function are identi…ed and quanti…ed.

It should be mentioned that, in analogy with the impedance cone problem



2 Formulation

We consider the problem of scattering of harmonic acoustic waves by an
in…nite impedance wedge imbedded in an in…nite medium. In what follows
(  ) denotes the usual cylindrical coordinates such that on the surface of
the wedge one has  = § with 0    .  = f0   1 ¡    
¡1    1g de…nes the region external to the wedge. A time factor
expf¡g is assumed and omitted throughout.   and  are respectively
the wave number, density and incompressibility of the medium in . Since
the problem under consideration is one of scattering and di¤raction the wave
number  is real (complex) for the lossless (lossy) case. However, for a while
we shall assume that  are such that

 = arg  =


2
 (1)

The condition in Eq. (1) has been shown by Osipov [4] to guarantee
the convergence of the subsequent KL integral representations, which in turn
is required for the possibility to use the boundary conditions conveniently,
leading to the derivation of an integral equation on the KL spectrum. Once
an integral equation is derived and a numerical scheme is proposed to solve
it, we examine the restrictions under which  could be extended to real or
complex values (to tackle the original scattering and di¤raction problem)
while maintaining the validity of the numerical scheme.

The acoustic …eld is describable by the pressure  and velocity V obeying
the Euler …eld equations [5]

¡


+rV = ¡, (2a)

r¡ V = ¡f . (2b)

The excitation terms  and f represent the scalar particle source and
the impressed vector force densities, respectively; r is the spatial gradient
operator.



With  and  assumed constant and from Eqs. (2a) and (2b), the acoustic
pressure in , ( ), satis…es the inhomogeneous Helmholtz equation

(r2 + 2)( ) = ¡
( ¡ 0) (¡ 0)

0
, (3)

with the impedance boundary condition on its face

(§) = (§). (4)

 = 

,  =

q


is the acoustic speed. r2 stands for the Laplacian.( )

is the component of the velocity …eld, V( ), normal to the wedge surface
with

V( ) =
¡


[r0



+ Á0

1






]( ). (5)

The …elds are required to decay exponentially to zero as  ! 1. This
replaces the Sommerfeld radiation condition for the Im  = 0 case.

Following the condition of Meixner [6], we assume that the energy stored
in any …nite neighborhood of the edge of the wedge must be …nite, that is,

Z



(jVj2 +
1

2
2) ! 0 (6)

as the surface  contracts to the neighborhood of the edge. Owing to this
condition the …eld behavior near the edge of the wedge is

 = () jVj = (¡1)  ! 0   0. (7)

By using the symmetry of the problem structure with respect to the planes
 = 0§, we split the problem into two independent sub-problems. The
boundary conditions on the symmetry planes correspond to either a hard
wall (normal velocity is zero on the wall) or a soft wall (acoustic pressure is
zero on the wall). Without loss of generality, we con…ne our attention to the
case of a soft wall only and the angular domain 0 ·  · .



( ) =
1

2

Z 1

¡1

() ( ) (9)

where () and 
(1)
 () are the standard Bessel and Hankel functions

respectively and  is purely imaginary.
Since [5]


(1)
¡ () = 

(1)
 () (10a)

the de…nition in Eq. (10a) implies that

 (¡ ) =  ( ). (10b)

There are two additional ways of writing the inverse transform of Eq. (9):
a) Making use of

() =
1

2
[(1)

 () +(2)
 ()] (11a)


(2)
¡ () = 

¡(2)
 () (11b)

we obtain

( ) =
1

4

Z 1

¡1

(1)
 () ( ). (12)

b) Substituting with Eqs. (10) in Eq. (12), we obtain

( ) =
¡

2

Z 1

0

 sin (1)
 () ( ). (13)

The velocity …eld is derived from Eq. (5). Relevant to the problem under
consideration is the velocity component normal to the wedge surface, namely
( )

¡1 1 
Z 1

 (1) . (14)



Applying the KL-transform to Eq. (3) , we get the ordinary di¤erential
equation

[
2

2
+ 2] ( ) = ¡(1)

 (0)(¡ 0) 0 ·   , (16)

From Eqs. (5) and (13), the impedance boundary condition now reads





1



Z 1

0

 sin(1)
 ()




 ( ) = 

Z 1

0

 sin (1)
 () ( )

(17)
where 


 ( ) stands for 


 ( )j=, which notation will be used

throughout.
We represent the …eld in  as the sum over an unperturbed …eld (0)V(0)

plus a scattered …eld (1)V(1) due to the presence of the wedge. Hence

( ) = (0)( ) + (1)( ) (18)

leading to

 ( ) =  (0)( ) +  (1)( ). (19)

2.1 The unperturbed …eld

 (0)( ) satis…es the source conditions of Eq. (16), namely
a)  (0)( ) is continuous across  = 0

 (0)( 0 ¡ 0) =  (0)( 0 + 0), (20a)

b) 

 (0)( ) is discontinuous across  = 0




 (0)( )j0+0 ¡




 (0)( )j0¡0 = ¡

(1)
 (0). (20b)

From the two conditions in Eqs. (20) and the soft boundary requirement




(0)
 ( ) is thus given by


(0)
 ( ) =

¡1

21

1



Z 1

0

 sin (1)
 ()




 (0)( ) (22a)

where, for   0




 (0)( ) = ¡


(1)
 (0) cos([ ¡ ]) sin(0)

sin()
(22b)

and for   0




 (0)( ) =


(1)
 (10) sin([ ¡ 0]) cos()

sin()
. (22c)

2.2 The scattered …eld

Since  ( ) must satisfy the soft boundary condition at  = 0 we represent
the scattered …eld by

 (1)( ) = () sin(). (23)

() is a KL spectrum to be determined from the impedance boundary
condition. Eq. (10b) enforces

(¡) = ¡() (24)

Additionally, the convergence of the KL integrals [4] at  =  implies
that, when Im  ! +1, the spectral function must vanish as

() =  [exp(¡ Im )] 

From the above we obtain

(1)( ) =
¡
Z 1

 sin(1)()() sin(), (25a)



leading to





Z 1

0

 sin (1)
 ()[1() + () cos()] =



Z 1

0

 sin (1)
 ()[2() +() sin()] (26a)

where

1() = ¡

(1)
 (0)

sin()
sin(0) cos([ ¡ ]), (26b)

2() =

(1)
 (0)

 sin()
sin([ ¡ ]) sin(0). (26c)

3 The integral equation derivation

The integral equation on() is derived bymultiplying Eq. (26a) by
(1)
 ()

and integrating with respect to  from 0 to 1. Making use of [8, formula
6.576 (4)],

Z 1

0

¡(¡)(¡) =
2¡2¡(¡)¡+¡1(¡)

¡(1¡ )
1(  )2(  )

where

1(  ) = ¡(
1¡ + + 

2
)¡(

1¡ ¡ + 

2
)¡(

1¡ + ¡ 

2
)¡(

1¡ ¡ ¡ 

2
),

2(  ) =  (
1¡ + + 

2

1¡ ¡ + 

2
; 1¡ ; 1¡2)



cosh(¡ ) cosh(+ ) =
1

2
(cosh 2+ cosh 2)

we obtain

Z 1

0

(1)
 ()(1)

 () =
¡2


¡(+)2 1

cos + cos
. (27a)

From [10] we get

Z 1

0

(1)
 ()(1)

 ()



=

2

 sin
¡(+)2[(Im ¡Im)+(Im +Im)]

(27b)
For the particular case which is considered here ( Im  0, Im   0),

the (Im  + Im) in Eq. (27b) will be removed.
We obtain the integral equation on ()

() +




Z 1

0

( ) sin () =  cos() Im > 0Re = 0

(28)
where

() = 1() + 2(), (29a)

1() = ¡1(), (29b)

2() =




Z 1

0

( )2(), (29c)

Additionally,

(¡)2 sin 



In order to adapt the integral equation for the numerical scheme of Ap-
pendix A, we re-write Eq. (28) as

~() +



sin

Z 1

0

( ) ~() =  cos ~() Im > 0Re = 0

(31a)
where

~() = 2() + sin(), (31b)

~() = (1)
 (0) sin0. (31c)

In Appendix A an approximate solution for the integral equation in Eq.
(31a) using a collocation method is given. The scheme is inspired by the one
used by Antipov [11]. In Appendix B the spectrum of () is analytically
continued from the imaginary axis into the right half of the complex -plane.

4 Field representations

With the results of Appendices A and B, we proceed to derive near and far
…eld representations.

4.1 The near …eld

As was shown in Appendix B, () is a meromorphic function whose only
singularities in the complex -plane are poles. The conditions under which
some of these poles are of second order have also been established. The
second order poles that may be present indicate that the acoustic pressure
(velocity) …eld near the edge of the wedge may contain the logarithm of the
distance in addition to its power, namely  log  (¡1 log ).

For   0, making use of the KL representation in Eq. (9) we obtain

Z



(1)( ) = 
(1)
1 ( ) + 

(1)
2 ( ) + 

(1)
3 ( ) (33)

where


(1)
1 ( ) = ¡

X



()Res[()] sin() (34)

where the residues Res[2()] are given in Eq. (B.9c) in Appendix B.
Eq. (34) is valid for …rst order poles only. The series summand is dominated
by

()
(1)


(0)  !1. (35)

From [5]

() s
1

p
2

(
2


)¡,  !1, (36a)

(1)
 () s

1
p
2

(
2


),  !1 (36b)

Eq. (35), characterizing the dominant behavior of the series summand,
reduces to

1


(


0
)  !1. (37)

Modi…cations are required for second order poles if they exist.
Since it is possible for the poles  to accumulate at in…nity, forming a

dense set on the real line, in addition to the possibility of higher order poles,
either of these possibilities could avoid the convergence of the residue sum.
The truncated residue sum should, therefore, be understood as giving some
asymptotic approximation to the …eld in terms of …rst identi…ed poles.


(1)
2 ( ) = ¡

1X
()Res[1()] sin() (38)



and the series converges exponentially.


(1)
3 ( ) = ¡

1X

=1

()Res[1()] sin() (40)

The residues are given in Eq. (B.9b) and the dominant behavior of the
series summand is

1


(


0
) !1, (41)

and the series converges exponentially.
Finally we add the contribution from (0)( ) in order to get the total

near …eld

(0)( ) = ¡
1X

=1

(¡1)(1)
 (0)() sin([ ¡ ]) sin() (42)

The series summand behaves as given in Eq. (41) and the series converges
exponentially.

The above …eld representation is valid for all observation angles in 
and, due to the exponential convergence, only few poles are needed to get an
accurate representation for the near …eld.

Meanwhile, if the main interest is to compute the singular behavior of the
…eld near the edge of the wedge (i¤   2), then one could use

()( ) = ¡()Res[()] sin([ ¡ ])  =


2
 (43)

whose velocity …eld, as per Eq. (5) gives the singular …eld near the edge
of the wedge.

4.2 The far …eld

It is known [5] that the Kontorovich-Lebedev representation diverges when



cumbersome for the impedance wedge problem. We propose an alternative
to calculate the far …eld. That is, to invoke the reciprocity principle.

The …eld expressions are similar to those given above with ( ) and
(0 0) interchanged. The convergence properties of the series representa-
tions is as discussed before in Sec. 4.1.
Remark. The above residue sums cannot be used to derive far …eld results

for plane wave illumination, since the convergence is an asymptotic result for
source near the edge of the wedge.

4.3 The plane wave illumination case

The far …eld due to a normally (with respect to ) incident plan wave is
recovered by:

a) Replacing 
(1)
 (0) by exp(¡2)

b) Substituting in Eq. (9) with [8]

() =
¡2

2

Z



 cos+ (44)

where  is the Sommerfeld integration path going from¡
2
+1 to 3

2
+1

in the complex  plane.
We obtain the far …eld representation

( ) =

Z



 cos() (45)

where

() =  (0)() + 
(1)
1 () + 

(1)
2 () + 

(1)
3 () (46)

with

 (0)() =
¡

2

1X

=1

¡2 sin() sin([ ¡ ]) (47a)

X




(1)
3 () =

¡

2

1X

=1

¡2Res[()] sin() (47d)

The series in Eqs. (47a), (47c) and (47.d) converge exponentially and the
truncated residue sum in Eq. (47b) understood as giving some asymptotic
approximation in terms of …rst identi…ed poles.

5 Conclusion

The integral equation satis…ed by the KL spectral function, (), has been
given in Eq. (26). A collocation scheme for the numerical evaluation of the
KL spectral function in Eq. (31) was constructed in Appendix A. In Ap-
pendix B, analytic continuation was utilized to establish the meromorphic
nature of () and to identify its pole singularities. Representations for the
near and far …elds, in terms of the singularities of (), were given in Sec.
4. Situations under which these representations turns into an asymptotic
approximation were discussed. The approach of this paper is applicable for
2- and 3-D problems of thermal conductivity, electromagnetics and elastody-
namics in a wedge and a cone con…guration with boundary conditions, both
of the continuity and impedance types, on the radial direction.

Appendix A. Numerical scheme to solve the integral equation
in Eq. (31)

The scheme used here is inspired by the one used by Antipov [11].
Let f¡1g, = 1 2 +1 be a set of points de…ned on the imaginary

axis of the complex -plane such that

¡1 =  (¡ 1),   0,   0. (A.1a)

Let also

 = (¡1 + )2  = 1 2  . (A.1b)



~() = ¤()+
 sin

 cos

X

=1

Z 

¡1

1( ) ~()
sin ()

cos () + cos ()


(A.2a)
with  = 1 2  and

1( ) = 
(¡)2, (A.2b)

¤() =
~()

 cos
 (A.2c)

Eq. (A.2a) is further approximated as

~() = 
¤() +

 sin

 cos

X

=1

1(̂ ) ~()  = 1 2 

(A.3a)
where

̂ = (¡1 + )2, (A.3b)

 =

Z 

¡1

sin ()

cos () + cos ()
. (A.3c)

The integral in Eq. (A.3c) is given by

 =
¡1


ln(

cos () + cos ()

cos (¡1) + cos ()
). (A.3d)

Thus we re-write the linear system as

~A = s¤ +C¤ ~A (A.4a)

with ~A and s¤ as vectors and C¤ as the matrix



(1)
 () s jj(


2
¡arg )jj12  ! 1

we infer that

¤() = (
¡jj(+¡

2
¡0)jj

32) !1. (A.5a)

Therefore, ¤() decays exponentially as !1 ( ! 1) when



2
+ 0   + . (A.5b)

Additionally, for  …xed and !1, writing  as

 =
¡1


[ln(1 +

cos ()

cos ()
)¡ [ln(1 +

cos (¡1)

cos ()
)], (A.6a)

followed by the series representation

ln(1 + ) = ¡
2

2
+(3)   1 (A.6b)

we obtain

 = (¡jj) !1 is …xed. (A.6c)

Hence, we estimate the behavior of ¤ as  ! 1 ( ! 1),  is
…xed, as

¤ = (¡jj

2 jj) !1 is …xed, (A.7)

and ¤ decays exponentially as !1,  is …xed.
Additionally, for  …xed and !1

 s
¡1


ln

cos ()

cos (¡1)
! ¡( ¡ ¡1) (A.8a)

leads, on account of Eq. (A.1a), to



where we have made use of the fact that ̂ and  are practically equal
for !1.

Thus ¤ decays exponentially as !1,  is …xed.
Assuming that the inequality in Eq. (A.5b) is satis…ed and that an inverse

exists for the matrix f¡
¤
g ( = 1 2 ) then the approximate

solution ~() converges to the exact one ~¤ and the rate of convergence is
exponential (see [11]).

The inequality in Eq. (A.5b) could be changed by a slight modi…cation
to the numerical scheme through a normalization process. This is outlined
as follows:

a) Normalize ~() in Eq. (31a) as

~() = ̂()¡(
2
+0¡) (A.10)

leading to modifying Eq. (31a) to

̂() = ̂()+̂()

Z 1

0

̂1( )̂()
sin ()

cos () + cos ()
 Im > 0Re = 0

(A.11a)
where

̂() = ~()(

2
+0¡), (A.11b)

̂() =
 sin

 cos
(


2
+0¡), (A.11c)

̂1( ) = 1( )
¡(

2
+0¡). (A.11d)

b) Use the numerical scheme to …nd ̂()
Assuming that the involved matrix has an inverse and that the inequalities

  0 (A.12a)



Hence the two inequality in Eq. (A.5b) is changed to Eqs. (A.12a)-
(A.12b).

Appendix B. Poles and Residues of () in Eq. (26)
Let us cast Eq. (26) as

() =
1

 cos
f¡1()+

¡2

2

Z 1

¡1

( )[2()+() sin ]gRe = 0 Im 2 (¡11)

(B.1)
where

( ) =
¡2

cos  + cos
 (B.2)

Eq. (B.1) de…nes () on the imaginary axis of the complex -plane and
is also valid for the strip 0 : fRe 2 (¡1 1) Im 2 (¡11)g and reveals
that the singularities of () in 0 are:

(A) I¤   
2
: a pole located at ,

 =


2
 (B.3a)

(C) A pole located at

 = 1. (B.3b)

To continue () into the strip 1 : fRe 2 (1 3) Im 2 (¡11)g
we collect two residue contributions from the poles of ( ) located at
 = § + 1. Poles of ( ) at  = § ¡ 1 are located in the left-hand
side of the complex -plane and, therefore, are not captured by the process
of analytic continuation to Re  0.

Utilizing Eq. (24), () in the 1 strip is given by

() =
1

 cos
f¡1()+

¡2

2
(+12 ()++1()(¡1)+

Z 1

¡1

( )[2()+() sin ])g,



+1() = 4̂ sin ̂̂2. (B.4c)

Thus for  2 1, () has the singularities:
(A) Poles at  for which

cos = 0, 1    3 (B.5a)

(B) Poles satisfying

cos(1 ¡ 1) = 0, 1  1  3 (B.5b)

(C) Two poles located at

 = 2 3. (B.5c)

We generalize to the  strip  : fRe 2 (2 ¡ 1 2 + 1) Im 2
(¡11)g  = 2 3 ,

() =
1

 cos
f¡1()+

¡2

2
(

=X

=1

+
2 ()++()(¡2+1)+

Z 1

¡1

( )[2()+() sin ])g,

(B.6a)
where

+
2 () =

¡4 sin ̂0 sin ̂( ¡ )
(1)
̂ (0)

̂2

sin
, ̂ = ¡ 2 + 1 (B.6b)

+1() = 4̂ sin ̂̂2. (B.6c)

We infer from Eq. (B.6a) that for  2 ,  ¸ 1, () has the singulari-
ties:

(A) Poles at  for which



(C) Two poles at

 = 2 ¡ 1  = 2. (B.7c)

Throughout we will adopt the terminology:
(i)  for poles of type (A),

cos = 0  = 1 2 3 1. (B.8a)

(ii)  for poles of type (B),

 =  + 2 ¡ 1  = 1 2 1;  = 1 2 3 1 (B.8b)

with  satisfying Eq. (B.8a).
(iii)  for poles of type (C),

 =   = 1 2 1. (B.8c)

Remarks.
1. The number of poles of types (A) and (B) in each strip depends on

the value of  as per Eqs. (B.7a)-(B.7b).
2. Second order poles will exist when  is a rational multiple of  under

either of the following conditions:
i)  = 


with  even integer,  ¸ 4. All the  poles will coalesce with

some of the  poles rendering second order poles.
ii)  = 


,  odd and  even. Some of the  poles will coalesce with

some of the  poles rendering second order poles.
iii)  = 


,  odd. Some of the  poles will coalesce with some of the 

poles rendering second order poles.

Residues Computation
a) Poles of the type  in the  strip
The residue is given by

Res[( )] =
¡1

f¡ ( ) +
¡2

(

=X
+( ) ++( )( ¡ 2 + 1) +



Res[()] =
(¡1) sin 

 cos
f¡1() +

¡2

2

=X

=1

+
2 ()g. (B.9b)

c) Poles of the type 

The residues of these poles are computed once the  residues are com-
puted and are given by

Res[())] = f
1

 cos

¡2

2
+()g(),  = 1 2 3 1

(B.9c)
The residues of second order poles, if they exist, are not detailed here but

are straightforward and require the utilization of the second order residue
formula instead of the …rst order formula used in this analysis.
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