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Abstract

We define an entropy function for scaling limits of permutations,
called permutons, and prove that under appropriate circumstances,
both the shape and number of large permutations with given con-
straints are determined by maximizing entropy over permutons with
those constraints. We also describe a useful equivalent version of per-
mutons using a recursive construction.

This variational principle is used to study permutations with one
or two fixed pattern densities. In particular, we compute (sometimes
directly, sometimes numerically) the maximizing permutons with fixed
density of 12 patterns or of fixed 123 density or both; with fixed 12
density and sum of 123 and 132 densities; and with finally with fixed
123 and 321 densities. In the last case we study a particular phase
transition.
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1 Introduction

Suppose something is known about the permutation π ∈ Sn for n large, e.g.
the relative fraction of “321” patterns (double inversions) in π. How many
permutations are there with that relative fraction? What do they look like?
In this work we approach such problems by showing that the size of many
classes of permutations can be estimated by maximizing a certain function
over limit objects called permutons. Furthermore when—as is usually the
case—the maximizing permuton is unique, properties of “most” permutations
in the class can then be deduced from it.

To a permutation π ∈ Sn one can associate a probability measure γπ on
[0, 1]2 as follows. Divide [0, 1]2 into an n×n grid of squares of size 1/n×1/n.
Define the density of γπ on the square in the ith row and jth column to be
the constant n if π(i) = j and 0 otherwise. In other words, γπ is a geometric
representation of the permutation matrix of π.

Define a permuton to be a probability measure γ on [0, 1]2 with uniform
marginals:

γ([a, b]× [0, 1]) = b− a = γ([0, 1]× [a, b]), for all 0 ≤ a ≤ b ≤ 1. (1)

Note that γπ is a permuton for any permutation π ∈ Sn. Permutons were
introduced in [12, 13] with a different but equivalent definition; the measure
theoretic view of large permutations can be traced to [21] and was used in
[10] as an analytic representation of permutation limits equivalent to that
used in [12, 13]; the term “permuton” first appeared, we believe, in [10].

Let Γ be the space of permutons. There is a natural topology on Γ
defined by the metric d� given by d�(γ1, γ2) = max |γ1(R) − γ2(R)|, where
R ranges over aligned rectangles in [0, 1]2. This topology is the same as that
given by the L∞ metric on the cumulative distribution functions Gi(x, y) =
γi([0, x]× [0, y]). It is also the weak topology on probability measures.

We say that a sequence of permutations πn with πn ∈ Sn converges as
n → ∞ if the associated permutons converge in the above sense. More
generally, let νn be a probability measure on Sn. Associated to νn is the
permuton that is the νn-expectation of the permuton of π as π ranges over
Sn. We can then consider permuton convergence of a sequence of probability
measures νn on Sn as n→∞.

A pattern τ is a permutation in Sk for some fixed k. Given a permu-
ton γ, the pattern density of τ in γ, denoted ρτ (γ), is by definition the
probability that, when k points are selected independently from γ and their
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x-coordinates are ordered, the permutation induced by their y-coordinates
is τ . For example, for γ with density g(x, y)dx dy, the density of pattern
12 ∈ S2 in γ is

ρ12(γ) = 2

∫
x1<x2∈[0,1]

∫
y1<y2∈[0,1]

g(x1, y1)g(x2, y2)dx1dy1dx2dy2. (2)

It follows from results of [12, 13] that two permutons are equal if they
have the same pattern densities (for all k).

1.1 Results

Our main result, Theorem 1 below, is a variational principle for permutons: it
describes explicitly how many large permutations lie ‘near’ a given permuton.
The statement is essentially that the number of permutations in Sn lying near
a permuton γ is

n!e(H(γ)+o(1))n, (3)

where H(γ) is the “permuton entropy” (defined below).
A corollary to Theorem 1 is Theorem 3, which describes both the number

and (when uniqueness holds) limit shape of permutations in which a finite
number of pattern densities have been fixed. The theorem states that the
number of such permutations is determined by the entropy maximized over
the set of permuton(s) having those fixed pattern densities.

Only in special cases have we been able to prove uniqueness of the entropy
maximizers, although we suspect that the maximizers are unique for generic
densities.

One can describe a permuton via a family of insertion measures {µt}t∈[0,1],
which is analgous to building a permutation by inductively inserting one
element at a time into a growing list: for each i ∈ [n] one inserts i into
a random location in the permuted list of the first i − 1 elements. This
point of view is used to describe explicitly the entropy maximizing permutons
with fixed densities of patterns of type ∗∗ · · · ∗ i (here each ∗ represents an
element not exceeding the length of the pattern, so that ∗ ∗ 2 represents
the patterns 132 and 312). We prove that for this family of patterns the
maximizing permutons are analytic, and the entropy function as a function
of the constraints is analytic and strictly concave.
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The most basic example, the entropy-maximizing permuton for a fixed
density ρ12 of 12 patterns, has the cumulative distribution function (CDF)

G(x, y) =
1

r
log

(
1 +

(erx − 1)(ery − 1)

er − 1

)
, (4)

where r is an explicit function of ρ12. See Figure 1.

Figure 1: The permuton with fixed density ρ of pattern 12, shown for ρ =
.2, .4, .8.

While maximizing permutons can be shown to satisfy certain explicit
PDEs (see Section 9), they can also exhibit a very diverse set of behaviors.
Even in one of the simplest cases, that of fixed density of the two patterns 12
and 123, the variety of shapes of permutons (and therefore of the approximat-
ing permutations) is remarkable: see Figure 7. In this case we prove that the
feasible region of densities is the so-called “scalloped triangle” of Razborov
[25, 26] which also describes the space of feasible densities for edges and tri-
angles in the graphon model. (Here by feasible region we mean the closure
of the set of achievable densities).

Another example which has been studied recently [8, 14, 15] is the case
of the two patterns 123 and 321. In this case we describe a phase transition
in the feasible region, where the maximizing permuton changes abruptly.

The variational principle can be applied directly to analyze classes of
permutations which are defined by constraints that are continuous in the
permuton topology. For constraints that are not continuous, for example the
number of cycles of a fixed size, one can analyze an analogous “weak” charac-
teristic, which is continuous, by applying the characteristic to patterns. For
example, while the number of fixed points of a permuton is not well-defined,
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we can compute the expected number of fixed points for the permutation
in Sn obtained by choosing n points independently from the permuton, and
analyze the large-n limit of this quantity.

1.2 Analogies with graphons

For those who are familiar with variational principles for dense graphs [7,
6, 22, 23], we note the following differences between the graph case and the
permutation case (see [19] for background on graph asymptotics):

1. Although permutons serve the same purpose for permutations that
graphons serve for graphs, and (being defined on [0, 1]2) are superfi-
cially similar, they are measures (not symmetric functions) and repre-
sent permutations in a different way. (One can associate a graphon with
a limit of permutations, via comparability graphs of two-dimensional
posets, but these have trivial entropy in the Chatterjee-Varadhan sense
[7] and we do not consider them here.)

2. The classes of constrained (dense) graphs considered in [7] have size
about ecn

2
, n being the number of vertices and the (nonnegative) con-

stant c being the target of study. Classes of permutations in Sn are of
course of size at most n! ∼ en(logn−1) but the constrained ones we con-
sider here have size of order not ecn logn for c ∈ (0, 1), as one might at
first expect, but instead en logn−n+cn where c ∈ [−∞, 0] is the quantity
of interest.

3. The “entropy” function, i.e., the function of the limit structure to be
maximized, is bounded for graphons but unbounded for permutons.
This complicates the analysis significantly for permutations.

4. The limit structures that do maximize the entropy function tend, in
the graph case, to be combinatorial objects: step-graphons correspond-
ing to what Radin, Ren and Sadun call “multipodal” graphs [24]. In
contrast, maximizing permutons at interior points of feasible regions
seem always to be smooth measures with analytic densities. Although
they are more complicated than maximizing graphons, these limit ob-
jects are more suitable for classical variational analysis, e.g., differential
equations of the Euler-Lagrange type.
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2 Variational principle

For convenience, we denote the unit square [0, 1]2 by Q.
Let γ be a permuton with density g defined almost everywhere. We

compute the permutation entropy H(γ) of γ as follows:

H(γ) =

∫
Q

−g(x, y) log g(x, y) dx dy (5)

where “0 log 0” is taken as zero. Then H is finite whenever g is bounded
(and sometimes when it is not). In particular for any σ ∈ Sn, we have
H(γσ) = −n(n log n/n2) = − log n and therefore H(γσ) → −∞ for any
sequence of increasingly large permutations even though H(lim γσ) may be
finite. Note that H is zero on the uniform permuton (where g(x, y) ≡ 1) and
negative (sometimes −∞) on all other permutons, since the function z log z
is concave downward. If γ has no density, we define H(γ) = −∞.

Theorem 1 (The Large Deviations Principle). Let Λ be a set of permutons,
Λn the set of permutations π ∈ Sn with γπ ∈ Λ. Then:

1. If Λ is closed,

lim
n→∞

1

n
log
|Λn|
n!
≤ sup

γ∈Λ
H(γ); (6)

2. If Λ is open,

lim
n→∞

1

n
log
|Λn|
n!
≥ sup

γ∈Λ
H(γ). (7)

Since we will be approximating H by Riemann sums, it is useful to define,
for any permuton γ and any positive integer m, an approximating “step-
permuton” γm as follows. Fixing m, denote by Qij the half-open square
((i−1)/m, i/m] × ((j−1)/m, j/m]; for each 1 ≤ i, j ≤ m, we want γm to be
uniform on Qij with γm(Qij) = γ(Qij). In terms of the density gm of γm, we
have gm(x, y) = m2γ(Qij) for all (x, y) ∈ Qij.

In order to prove Theorem 1 we will need the following result.

Theorem 2. For any permuton γ, limm→∞H(γm) = H(γ), with H(γm)
diverging downward when H(γ) = −∞.
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And finally we make a connection with our applications to large con-
strained permutations. Let us fix some finite set P = {π1, . . . , πk} of pat-
terns, that is, permutations of various sizes. Let α = (α1, . . . , αk) be a vector
of desired pattern densities. We then define two sets of permutons:

Λα,ε = {γ ∈ Γ | |ρπj(γ)− αj| < ε for each 1 ≤ j ≤ k} (8)

and
Λα = {γ ∈ Γ | ρπj(γ) = αj for each 1 ≤ j ≤ k}. (9)

With that notation, and the understanding that Λα,ε
n = Λα,ε ∩ Sn, we

have:

Theorem 3.

lim
ε↓0

lim
n→∞

1

n
log
|Λα,ε

n |
n!

= max
γ∈Λα

H(γ).

The value maxγ∈Λα H(γ) (which is guaranteed by the theorem to exist,
but may be −∞) will be called the constrained entropy and denoted by s(α).
In the next two sections, we will prove Theorems 2, 1 and 3 (in that order); in
subsequent sections, we will study the properties of maximizing permutons
and use them to compute properties of some classes of permutations defined
by pattern densities.

3 Proof of Theorem 2

In what follows we will, in order to increase readability, we write∫ 1

0

∫ 1

0

−g(x, y) log g(x, y)dxdy (10)

as just
∫
Q
−g log g. Also for the sake of readability, we will for this section

only state results in terms of g log g rather than −g log g; this avoids clutter
caused by a multitude of absolute values and negations. Eventually, however,
we will need to deal with an entropy function H(γ) =

∫
Q
−g log g that takes

values in [−∞, 0].
Define

gij = m2γ(Qij). (11)
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We wish to show that the Riemann sum

1

m2

∑
0≤i,j≤m

gij log gij, (12)

which we denote by Rm(γ), approaches
∫
Q
g log g when γ is absolutely con-

tinuous with respect to Lebesgue measure, i.e., when the density g exists a.e.,
and otherwise diverges to ∞. There are thus three cases:

1. g exists and
∫
Q
g log g <∞;

2. g exists but g log g is not integrable, i.e., its integral is ∞;

3. γ is singular.

Let A(t) = {(x, y) ∈ Q : g(x, y) log g(x, y) > t}.
In the first case, we have that lim sup

∫
A(t)

g log g = 0, and since g log g ≥ t

on A(t), we have lim sup |A(t)|t = 0 where |A| denotes the Lebesgue measure
of A ⊂ Q. (We need not concern ourselves with large negative values, since
the function x log x is bounded below by −1/e.)

In the second case, we have the opposite, i.e., for some ε > 0 and any s
there is a t > s with t|A(t)| > ε.

In the third case, we have a set A ⊂ Q with γ(A) > 0 but |A| = 0.
In the proof that follows we don’t actually care that γ has uniform

marginals, or that it is normalized to have γ(Q) = 1. Thus we restate
Theorem 2 in greater generality:

Theorem 4. Let γ be a finite measure on Q = [0, 1]2 and Rm = Rm(γ).
Then:

1. If γ is absolutely continuous with density g, and g log g is integrable,
then limm→∞Rm =

∫
Q
g log g.

2. If γ is absolutely continuous with density g, and g log g is not integrable,
then limm→∞Rm =∞.

3. If γ is singular, then limm→∞Rm =∞.

Proof. We begin with the first case, where we need to show that for any
ε > 0, there is an m0 such that for m ≥ m0,∫

Q

g log g − 1

m2

m∑
i,j=0

gij log gij < ε . (13)
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Note that since x log x is convex, the quantity on the left cannot be negative.

Lemma 5. Let ε > 0 be fixed and small. Then there are δ > 0 and s with
the following properties:

1. |
∫
A(s)

g log g| < δ2/4;

2. |A(s)| < δ2/4;

3. for any u, v ∈ [0, s+ 1], if |u− v| < δ then |u log u− v log v| < ε/4;

4. for any B ⊂ Q, if |B| < 2δ then
∫
B
|g log g| < ε/4.

Proof. By Lebesgue integrability of g log g, we can immediately choose δ0

such that any δ < δ0 will satisfy the fourth property.
We now choose s1 so that

∫
A(s1)

g log g < ε2/4, and t|A(t)| < 1 for all

t ≥ s1. Since [0, s1] is compact we may choose δ1 < δ0 such that for any
u, v ∈ [0, s1 + 1], |u − v| < δ1 implies |u log u − v log v| < ε/4. We are done
if |A(s1)| < δ1 but since δ1 depends on s1, it is not immediately clear that
we can achieve this. However, we know that since d

du
u log u = 1 + log u, the

dependence of δ1 on s1 is only logarithmic, while |A(s1)| descends at least as
fast as 1/s1.

So we take k = dlog(δ/2)/ log(ε/2)e and let δ = δ1/k, s = sk1. Then
u, v ∈ [0, s+ 1] and |u− v| < δ implies |u log u− v log v| < ε/4, and∫

A(s)

g log g ≤
(∫

A(s1)

g log g

)k
< (ε/2)2 log(δ/2)/ log(ε/2) = δ2/4 (14)

as desired. Since u log u > u > 1 for u > e, we get |A(s)| < δ2/4 as a
by-product.

Henceforth s and δ will be fixed, satisfying the conditions of Lemma 5.
Since g is measurable we can find a subset C ⊂ Q with |C| = |A(s)| < δ2/4
such that g, and thus also g log g, is continuous on Q \ C. Since

∫
B
g log g

is maximized by B = A(s) for sets B with B = |A(s)|, |
∫
C
g log g| <∫

A(s)
g log g, so |

∫
A(s)∪C g log g| < δ2/2. We can then find an open set A

containing A(s) ∪ C with |A| and
∫
A
g log g both bounded by δ2.

We now invoke the Tietze Extension Theorem to choose a continuous
f : Q → R with f(x, y) = g(x, y) on Q \ A, and f log f < s on all of Q.
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Since f is continuous and bounded, f and f log f are Riemann integrable.
Let fij be the mean value of f over Qij, i.e.,

fij = m2

∫
Qij

f . (15)

Since, on any Qij, inf f log f ≤ fij log fij < sup f log f , we can choose m0

such that m ≥ m0 implies∣∣∣∣∣
∫
Q

f log f − 1

m2

∑
ij

fij log fij

∣∣∣∣∣ < ε/4 . (16)

We already have

|
∫
Q

g log g −
∫
Q

f log f | = |
∫
A

g log g −
∫
A

f log f |

≤ |
∫
A

g log g| − |
∫
A

f log f | < 2δ2 << ε/4. (17)

Thus, to get (13) from (16) and (17), it suffices to bound∣∣∣∣∣ 1

m2

∑
ij

gij log gij −
1

m2

∑
ij

fij log fij

∣∣∣∣∣ (18)

by ε/2.
Fixing m > m0, call the pair (i, j), and its corresponding square Qij,

“good” if |Qij ∩ A| < δ/(2m2). The number of bad (i.e., non-good) squares
cannot exceed 2δm2, else |A| > 2δm2δ/(2m2) = δ2.

For the good squares, we have

|gij − fij| = m2

∣∣∣∣∣
∫
Qij∩A

(g − f)

∣∣∣∣∣ ≤ m2

∣∣∣∣∣
∫
Qij∩A

2g

∣∣∣∣∣ ≤ 2(δ/2) = δ (19)

with fij ≤ s, thus fij and gij both in [0, s+ 1]. It follows that

|gij log gij − fij log fij| < ε/4 (20)

and therefore the “good” part of the Riemann sum discrepancy, namely

1

m2

∣∣∣∣∣ ∑
good ij

(gij log gij − fij log fij)

∣∣∣∣∣ , (21)
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is itself bounded by ε/4.
Let Q′ be the union of the bad squares, so |Q′| < m22δ/(2m2) = 2δ; then

by (16) and convexity of u log u,

1

m2

∣∣∣∣∣ ∑
bad ij

gij log gij − fij log fij

∣∣∣∣∣ < 2

∣∣∣∣∫
Q′
g log g

∣∣∣∣ < 2(ε/8) = ε/4 (22)

and we are done with the case where g log g is integrable.

Suppose g exists but g log g is not integrable; we wish to show that for
any M , there is an m1 such that m ≥ m1 implies 1

m2

∑
gij log gij > M .

For t ≥ 1, define the function gt by gt(x, y) = g(x, y) when g(x, y) ≤ t,
i.e. when (x, y) 6∈ A(t), otherwise gt(x, y) = 0. Then

∫
Q
gt log gt → ∞ as

t→∞, so we may take t so that
∫
Q
gt log gt ≥M + 1. Let γt be the (finite)

measure on Q for which gt is the density. Since gt is bounded (by t), gt log gt

is integrable and we may apply the first part of Theorem 4 to get an m1 so
that m ≥ m1 implies that Rm(γt) > M .

Since t ≥ 1, g log g ≥ gt log gt everywhere and hence, for every m,
Rm(γt) ≤ Rm(γ). It follows that Rm(γ) > M for m ≥ m1 and this case
is done.

Finally, suppose γ is singular and let A be a set of Lebesgue measure zero
for which γ(A) = a > 0.

Lemma 6. For any ε > 0 there is an m2 such that m > m2 implies that
there are εm2 squares of the m×m grid that cover at least half the γ-measure
of A.

Proof. Note first that if B is an open disk in Q of radius at most δ, then
for m > 1/(2δ), then we can cover B with cells of an m × m grid of total
area at most 64δ2. The reason is that such a disk cannot contain more than
d2δ/(1/m)e2 < (4δm)2 grid vertices, each of which can be a corner of at most
four cells that intersect the disk. Thus, rather conservatively, the total area
of the cells that intersect the disk is bounded by (4/m2) · (4δm)2 = 64δ2. It
follows that as long as a disk has radius at least 1/(2m), it costs at most a
factor of 64/π to cover it with grid cells.

Now cover A with open disks of area summing to at most πε/64. Let bn
be the sum of the gamma-measures of the disks of radius in the half-open
interval [1/(2n), 1/(2n − 2)), so that

∑∞
n bn ≥ a, and take m2 so that the

partial sum
∑m2

n bn exceeds a/2, to get the desired result.
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Let M be given and use Lemma 6 to find m2 such that for any m ≥ m2,
there is a set I ⊂ {1, . . . ,m}2 of size at most δm2 such that γ(

⋃
I Qij) > a/2,

where Qij = ((i−1)/m, i/m] × ((j−1)/m, j/m] as before and δ is a small
positive quantity depending on M and a, to be specified later. Then

Rm(γ) =
∑
ij

1

m2
gij log gij

≥ −1/e+
1

m2
δm2ḡ log ḡ = −1/e+ δḡ log ḡ (23)

where ḡ is the mean value of gij over (i, j) ∈ I, the last inequality following
from the convexity of u log u. The−1/e term is needed to account for possible
negative values of g log g.

But
∑

I gij = m2γ(
⋃
I Qij) > m2a/2, so ḡ > (m2a/2)/(δm2) = a/(2δ).

Consequently

Rm(γ) > −1

e
+ δ

a

2δ
log

a

2δ
= −1

e
+
a

2
log

a

2δ
. (24)

Taking

δ =
a

2
exp

(
−2

(
M + 1

e

)
a

)
(25)

gives Rm(γ) > M as required, and the proof of Theorem 2 is complete.

4 Proof of Theorem 1

We begin with a simple lemma.

Lemma 7. The function H : Γ→ R is upper semicontinuous.

Proof. Let γ1, γ2, . . . be a sequence of permutons approaching the permuton
γ (in the d�-topology); we need to show that H(γ) ≥ lim supH(γn).

If H(γ) is finite, fix ε > 0 and take m large enough so that |H(γm) −
H(γ)| < ε; then since H(γmn ) ≥ H(γn) by concavity,

lim sup
n
H(γn) ≤ lim sup

n
H(γmn ) = H(γm) < ε+H(γ) (26)

and since this holds for any ε > 0, the claimed inequality follows.
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If H(γ) = −∞, fix t < 0 and take m so large that H(γm) < t. Then

lim sup
n
H(γn) ≤ lim sup

n
H(γmn ) = H(γm) < t (27)

for all t, so lim supnH(γmn )→ −∞ as desired.

Let B(γ, ε) = {γ′|d�(γ, γ′) ≤ ε} be the (closed) ball in Γ of radius ε > 0
centered at the permuton γ, and let Bn(γ, ε) be the set of permutations
π ∈ Sn with γπ ∈ B(γ, ε).

Lemma 8. For any permuton γ, limε↓0 limn→∞
1
n

log(|Bn(γ, ε)|/n!) exists and
equals H(γ).

Proof. Suppose H(γ) is finite. It suffices to produce two sets of permutations,
U ⊂ Bn(γ, ε) and V ⊃ Bn(γ, ε), each of size

exp
(
n log n− n+ n(H(γ) + o(ε0)) + o(n)

)
(28)

where by o(ε0) we mean a function of ε (depending on γ) which approaches
0 as ε → 0. (The usual notation here would be o(1); we use o(ε0) here and
later to make it clear that the relevant variable is ε and not, e.g., n.)

To define U , fix m > 5/ε so that |H(γm) − H(γ)| < ε and let n be a
multiple of m with n > m3/ε. Choose integers ni,j, 1 ≤ i, j ≤ m, so that:

1.
∑n

i=1 ni,j = n/m for each j;

2.
∑n

j=1 ni,j = n/m for each i; and

3. |ni,j − nγ(Qij)| < 1 for every i, j.

The existence of such a rounding of the matrix {nγ(Qij)}i,j is guaranteed by
Baranyai’s rounding lemma [1].

Let U be the set of permutations π ∈ Sn with exactly ni,j points in the
square Qij, that is, |{i : (i/n, π(i)/n) ∈ Qij}| = ni,j, for every 1 ≤ i, j ≤ m.
We show first that U is indeed contained in Bn(γ, ε). Let R = [a, b]× [c, d] be
a rectangle in [0, 1]2. R will contain all Qij for i0 < i < i1 and j0 < j < j1 for
suitable i0, i1, j0 and j1, and by construction the γπ-measure of the union of
those rectangles will differ from its γ-measure by less than m2/n < ε/m. The
squares cut by R are contained in the union of two rows and two columns of
width 1/m, and hence, by the construction of π and the uniformity of the
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marginals of γ, cannot contribute more than 4/m < 4ε/5 to the difference in
measures. Thus, finally, d�(γπ, γ) < ε/m+ 4ε/5 < ε.

Now we must show that |U | is close to the claimed size

exp
(
n log n− n−H(γ)n

)
(29)

We construct π ∈ U in two phases of m steps each. In step i of Phase I, we
decide for each k, (i−1)n/m < k ≤ in/m, which of the m y-intervals π(k)
should lie in. There are(

n/m

ni,1, ni,2, . . . , ni,m

)
= exp

(
(n/m)hi + o(n/m)

)
(30)

ways to do this, where hi = −
∑m

j=1(ni,j/(n/m)) log(ni,j/(n/m)) is the en-
tropy of the probability distribution ni,·/(n/m).

Thus, the number of ways to accomplish Phase I is

exp
(
o(n) + (n/m)

∑
i

hi
)

= exp
(
o(n)−

∑
i,j

ni,j log(ni,j/(n/m))
)

= exp

(
o(n)−

∑
i,j

ni,j(log(ni,j/n) + logm)

)

= exp

(
o(n)− n logm−

∑
i,j

ni,j log γ(Qij)

)

= exp

(
o(n)− n logm− n

∑
i,j

γ(Qij) log γ(Qij)

)
. (31)

Recalling that the value taken by the density gm of γm on the points of Qij

is m2γ(Qij), we have that

H(γm) =
∑
i,j

1

m2

(
−m2γ(Qij) log(m2γ(Qij))

)
= −

∑
i,j

γ(Qij)(log γ(Qij) + 2 logm)

= −
∑
i,j

γ(Qij)(log γ(Qij) + 2 logm)

= −2 logm−
∑
i,j

γ(Qij) log γ(Qij) . (32)
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Therefore we can rewrite the number of ways to do Phase I as

exp
(
n logm+ nH(γm) + o(n)

)
. (33)

In Phase II we choose a permutation πj ∈ Sn/m for each j, 1 ≤ j ≤ m,
and order the y-coordinates of the n/m points (taken left to right) in row j
according to πj. Together with Phase I this determines π uniquely, and the
number of ways to accomplish Phase II is

(n/m)!m =
(

exp
( n
m

log
n

m
− n

m
+ o(n/m)

))m
= exp

(
n log n− n− n logm+ o(n)

)
(34)

so that in total,

|U | ≥ exp
(
n logm+ nH(γm) + o(n)

)
exp

(
n log n− n− n logm+ o(n)

)
= exp

(
n log n− n+ nH(γm) + o(n)

)
(35)

which, since |H(γ)−H(γm)| < ε, does the job.
We now proceed to the other bound, which involves similar calculations

in a somewhat different context. To define the required set V ⊃ Bn(γ, ε) of
permutations we must allow a wide range for the number of points of π that
fall in each square Qij— wide enough so that a violation causes Qij itself to
witness d�(γπ, γ) > ε, thus guaranteeing that if π 6∈ V then π 6∈ Bn(γ, ε).

To do this we take m large, ε < 1/m4, and n > 1/ε2. We define V to be
the set of permutations π ∈ Sn for which the number of points (k/n, π(k)/n)
falling in Qij lies in the range [n(γ(Qij) −

√
ε), n(γ(Qij) +

√
ε)]. Then, as

promised, if π 6∈ V we have a rectangle R = Qij with |γ(R) − γπ(R)| >√
ε/m2 > ε.

It remains only to bound |V |. Here a preliminary phase is needed in which
the exact count of points in each square Qij is determined; since the range for

each ni,j is of size 2n
√
ε, there are at most (2n

√
ε)
m2

= exp
(
m2 log(2n

√
ε)
)

ways to do this, a negligible factor since m2 log(n
√
ε) = o(n). For Phase I we

must assume the ni,j are chosen to maximize each hi but since the entropy
function h is continuous, the penalty shrinks with ε. Counting as before, we
deduce that here the number of ways to accomplish Phase I is bounded by

exp
(
n logm+n(H(γm)+o(ε0))+o(n)

)
= exp

(
n logm+n(H(γ)+o(ε0))+o(n)

)
.

(36)
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The computation for Phase II is exactly as before and the conclusion is that

|V | ≤ exp
(
n logm− n+ n(H(γ) + o(ε0)) + o(n)

)
· exp

(
n log n− n− n logm+ o(n)

)
= exp

(
n log n− n+ nH(γ) + o(n)

)
(37)

proving the lemma in the case where H(γ) > −∞.
If H(γ) > −∞, we need only the upper bound provided by the set V . Fix

t < 0 with the idea of showing that 1
n

log |Bn(γ,εγ)|
n!

< t. Define V as above,
first insuring that m is large enough so that H(γm) < t−1. Then the number
of ways to accomplish Phase I is bounded by

exp
(
n logm+n(H(γm)+o(ε0))+o(n)

)
< exp

(
n logm+n(t−1+o(ε0))+o(n)

)
(38)

and consequently |V | is bounded above by

exp
(
n log n− n+ n(t−1) + o(n)

)
< exp

(
n log n− n+ nt

)
. (39)

We are finally in a position to prove Theorem 1. If our set Λ of permutons
is closed, then, since Γ is compact, so is Λ. Let δ > 0 with the idea of showing
that

lim
n→∞

1

n
log
|Λn|
n!
≤ H(µ) + δ (40)

for some µ ∈ Λ. If not, for each γ ∈ Λ we may, on account of Lemma 8,
choose εγ and nγ so that 1

n
log |Bn(γ,εγ)|

n!
< H(γ) + δ/2 for all n ≥ nγ. Since a

finite number of these balls cover Λ, we have too few permutations in Λn for
large enough n, and a contradiction has been reached.

If Λ is open, we again let δ > 0, this time with the idea of showing that

lim
n→∞

1

n
log
|Λn|
n!
≥ H(µ)− δ . (41)

To do this we find a permuton µ ∈ Λ with

H(µ) > sup
γ∈Λ

H(γ)− δ/2 , (42)

and choose ε > 0 and n0 so that Bn(µ, ε) ⊂ Λ and 1
n

log
(
|Bn(µ,ε)|

n!

)
> H(µ)−

δ/2 for n ≥ n0.

This concludes the proof of Theorem 1.
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5 Proof of Theorem 3

In Theorem 3, the set Λα,ε of permutons under consideration consists of those
for which certain pattern densities are close to values in the vector α. Note
first that since the density function ρ(π, ·) is continuous in the topology of
Γ, λα is closed and by compactness H(γ) takes a maximum value on Λα.

Again by continuity of ρ(π, ·), Λα,ε is an open set and we have from the
second statement of Theorem 1 that for any ε,

lim
n→∞

1

n
log
|Λα,ε

n |
n!
≥ max

γ∈Λα,ε
H(γ) ≥ max

γ∈Λα
H(γ) (43)

from which we deduce that

lim
ε↓0

lim
n→∞

1

n
log
|Λα,ε

n |
n!
≥ max

γ∈Λα
H(γ). (44)

To get the reverse inequality, fix a γ ∈ Λα maximizing H(γ). Let δ > 0;
since H is upper semi-continuous and Λα is closed, we can find an ε′ > 0 such
that no permuton γ′ within distance ε′ of Λα has H(γ′) > H(γ) + δ. But
again since ρ(π, ·) is continuous, for small enough ε, every γ′ ∈ Λα,ε is indeed
within distance ε′ of Λα. Let Λ′ be the (closed) set of permutons γ′ satisfying
ρ(πj, γ

′) ≤ ε; then, using the first statement of Theorem 1, we have thus

lim
n→∞

1

n
log
|Λ′n|
n!
≤ H(γ) + δ (45)

and since such a statement holds for arbitrary δ > 0, the result follows.

Theorem 3 puts us in a position to try to describe and enumerate permu-
tations with some given pattern densities. It does not, of course, guarantee
that there is just one γ ∈ Λα that maximizes H(γ), nor that there is one
with finite entropy. As we shall see it seems to be the case that interior
points in feasible regions for pattern densities do have permutons with finite
entropy, and usually just one “winner.” Points on the boundary of a feasible
region (e.g., pattern-avoiding permutations) often have only singular permu-
tons, and since the latter always have entropy −∞, Theorem 3 will not be
of direct use there.
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6 Insertion densities

A permuton γ can be described in terms of its insertion measures. This is
a family of probability measures {νx}x∈[0,1], with measure νx supported on
[0, x]. This is a continuum version of the process of building a permutation
on [n] by, for each i, inserting i at a random location in the permutation
formed from {1, . . . , i− 1}. Any permutation measure can be built this way.
We describe here how a permuton measure can be built from a family of
insertion measures, and conversely, how every permuton arises from a family
of independent insertions.

We first describe how to reconstruct the insertion measures from the
permuton γ. Let Yx ∈ [0, 1] be the random variable with law γ|{x}×[0,1]. Let
Zx ∈ [0, x] be the random variable (with law νx) giving the location of the
insertion of x (at time x), and let F (x, ·) be its CDF. Then

F (x, y) = Pr(Zx < y) = Pr(Yx < ỹ) = Gx(x, ỹ) (46)

where ỹ is defined by G(x, ỹ) = y.
More succinctly, we have

F (x,G(x, ỹ)) = Gx(x, ỹ). (47)

Conversely, given the insertion measures, equation (47) is a differential
equation for G. Concretely, after we insert x0 at location X(x0) = Zx0 , the
image flows under future insertions according to the (deterministic) evolution

d

dx
X(x) = Fx(X(x)), X(x0) = Zx0 . (48)

If we let Ψ[x,1] denote the flow up until time 1, then the permuton is the
push-forward under Ψ of νx:

γt = (Ψ[x,1])∗(νx). (49)

See an example in the next section.
Another way to see this correspondence is as follows. Project the graph

of G in R3 onto the xz-plane; the image of the curves G([0, 1]×{ỹ}) are the
flow lines of the vector field (48). The divergence of the flow lines at (x, y)
is f(x, y), the density associated with F (x, y).

The permuton entropy can be computed from the entropy of the insertion
measures as follows.

18



Lemma 9.

H(γ) =

∫ 1

0

∫ x

0

−f(x, y) log(xf(x, y))dy dx. (50)

Proof. Differentiating (47) with respect to ỹ gives

f(x,G(x, ỹ))Gy(x, ỹ) = g(x, ỹ). (51)

Thus the RHS of (50) becomes∫ 1

0

∫ x

0

− g(x, ỹ)

Gy(x, ỹ)
log

xg(x, ỹ)

Gy(x, ỹ)
dy dx. (52)

Substituting y = G(x, ỹ) with dy = Gy(x, ỹ)dỹ we have∫ 1

0

∫ 1

0

−g(x, ỹ) log
xg(x, ỹ)

Gy(x, ỹ)
dỹ dx = H(γ) −

∫ 1

0

∫ 1

0

g(x, ỹ) log x dỹ dx

+

∫ 1

0

∫ 1

0

g(x, ỹ) logGy(x, ỹ) dỹ dx. (53)

Integrating over ỹ the first integral on the RHS is∫ 1

0

− log x dx = 1, (54)

while the second one is∫ 1

0

∫ 1

0

∂

∂x
(Gy logGy −Gy) = −1, (55)

since G(1, y) = y and G(0, y) = 0. So those two integrals cancel.

7 Inversions

The number of occurrences k(π) of the pattern 12 in a permutation of Sn
has a simple generating function:

∑
π∈Sn

xk(π) =
n∏
j=1

(1 + x+ · · ·+ xj) =

(n2)∑
i=0

Cix
i. (56)
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One can see this by building up a permutation by insertions: when i is
inserted into the list of {1, . . . , i − 1}, the number of 12 patterns created is
exactly one less than the position of i in that list.

Theorem 3 suggests that to sample a permutation with a fixed density
ρ ∈ [0, 1] of occurrences of pattern 12, we should choose x in the above expres-
sion so that the monomial C[ρn2/2]x

[ρn2/2] is the maximal one, and then use
the insertion probability measures which are (truncated) geometric random
variables with rate x.

Here x is determined as a function of ρ by Legendre duality (see below
for an exact formula). Let r be defined by e−r = x. In the limit of large n,
the truncated geometric insertion densities converge to truncated exponential
densities

f(x, y) =
re−ry

1− e−rx
1[0,x](y). (57)

We can reconstruct the permuton from these insertion densities as follows.
Note that the CDF of the insertion measure is

F (x, y) =
1− e−ry

1− e−rx
. (58)

We need to solve the ODE (47), which in this case (to simplify notation we
changed ỹ to y) is

1− e−rG(x,y)

1− e−rx
=
dG(x, y)

dx
. (59)

This can be rewritten as

dx

1− e−rx
=

dG

1− e−rG(x,y)
. (60)

Integrating both sides and solving for G gives the permuton

G(x, y) =
1

r
log

(
1 +

(erx − 1)(ery − 1)

er − 1

)
(61)

which has density

g(x, y) =
r(1− e−r)

(er(1−x−y)/2 − er(x−y−1)/2 − er(y−x−1)/2 + er(x+y−1)/2)2
. (62)

See Figure 1 for some examples for varying ρ.
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The permuton entropy of this permuton is obtained from (50), and as a
function of r it is, using the dilogarithm,

H(r) = −2Li2 (er)

r
+
π2

3r
− 2 log (1− er) + log (er − 1)− log(r) + 2. (63)

The density of inversions ρ is the integral of the expectation of f :

ρ(r) =
r (r − 2 log (1− er) + 2)− 2Li2 (er)

r2
+
π2

3r2
; (64)

see Figure 2 for the inversion density as a function of r.
See Figure 3 for the entropy as a function of the inversion density.
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Figure 2: Inversion density as function of r.
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Figure 3: Entropy as function of inversion density.
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8 Star models

Equation (56) gives the generating function for patterns 12, i.e. occurrences
of pattern 12. For a permutation π let k1 = k1(π) be the number of 12
patterns. Let k2 be the number of ‘∗∗3’ patterns, that is, patterns of the
form 123 or 213.

A similar argument to the above shows that the joint generating function
for k1 and k2 is

(n2)∑
k1=0

Ck1,k2x
k1yk2 =

n∏
j=1

(∑
i

xiyi(i−1)/2

)
. (65)

More generally, letting k3 be the number of patterns ∗∗2, that is, 132 or
312, and k4 be the number of ∗∗1 patterns, that is, 231 or 321. The joint
generating function for these four types of patterns is

(n2)∑
k1=0

Ck1,k2,k3,k4x
k1yk2zk3wk4 =

n∏
j=1

(
j∑
i=0

xiyi(i−1)/2zi(j−i)w(j−i)(j−i−1)/2

)
.

(66)
One can similarly write down the joint generating function for all patterns
of the type ∗ ∗ . . . ∗ i, with a string of some number of stars followed by
some i in [n]. (Note that with this notation, 12 patterns are ∗2 patterns.)
These constitute a significant generalization of the Mallows model; see [27]
for background.

The term star model was suggested by analogy with subgraph densities
of graphons. The pattern 1∗∗∗, for example, corresponds to the subgraph
K1,3.

8.1 The ∗2/ ∗∗3 model

By way of illustration, let us consider the simplest case of ∗2 (that is, 12)
and ∗∗3.

Theorem 10. The feasible region for (ρ∗2, ρ∗∗3) is the region bounded below
by the parametrized curve

(2t− t2, 3t2 − 2t3)t∈[0,1] (67)
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and above by the parametrized curve

(1− t2, 1− t3)t∈[0,1]. (68)

One can show that the permutons on the boundaries are unique and
supported on line segments of slopes ±1, and are as indicated in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Feasible region for (ρ∗2, ρ∗∗3).

Proof. While this can be proved directly from the generating function (65),
we give a simpler proof using the insertion density procedure. During the
insertion process let I12(x) be the fractional number of 12 patterns in the
partial permutation constructed up to time x, that is, I12(x) =

∫ x
0
Yt dt,

where Yt is the random variable giving the location of the insertion of t. By
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the law of large numbers we can replace Yt here by its mean value. Let I∗∗3(x)
likewise be the fraction of ∗∗3 patterns created by time x. We have

I∗∗3(x) =

∫ x

0

Y 2
t /2 dt. (69)

Let us fix ρ12 = I12(1). To maximize I∗∗3(x), we need to maximize∫ 1

0

(I ′12(t))2 dt subject to

∫ 1

0

I ′12(t) dt = ρ12. (70)

This is achieved by making I ′12(t) either zero or maximal. Since I ′12(t) ≤ t, we
can achieve this by inserting points at the beginning for as long as possible
and then inserting points at the end, that is, Yt = 0 up to t = a and then
Yt = t for t ∈ [a, 1]. The resulting permuton is then as shown in the figure:
on the square [0, a]2 it is a descending diagonal and on the square [a, 1]×[a, 1]
it is an ascending diagonal.

Likewise to minimize the above integral (70) we need to make the deriva-
tives I ′12(t) as equal as possible. Since I ′12(t) ≤ t, this involves setting
I ′12(t) = t up to t = a and then having it constant after that. The re-
sulting permuton is then as shown in the figure: on the square [0, a]2 it is an
ascending diagonal and on the square [a, 1]× [a, 1] it is a descending diagonal.

A short calculation now yields the algebraic form of the boundary curves.

Using the insertion density procedure outlined earlier, we see that the
permuton as a function of x, y has an explicit analytic density (which cannot
be written in terms of elementary functions, however). The permutons for
various values of (ρ∗2, ρ∗∗3) are shown in Figure 5.

The entropy s(ρ∗2, ρ∗∗3) is plotted in Figure 6. It is strictly concave (see
Theorem 11 below) and achieves its maximal value, zero, precisely at the
point 1/2, 1/3, the uniform measure.

8.2 Concavity and analyticity of entropy for star mod-
els

Theorem 11. For a star model with a finite number of densities ρ1, . . . , ρk
of patterns τ1 . . . , τk respectively, the feasible region is convex and the entropy
H(ρ1, . . . , ρk) is strictly concave and analytic on the feasible region.
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Figure 5: Permutons with (ρ∗2, ρ∗∗3) = (.5, .2), and (.5, .53) respectively.

Figure 6: The entropy function on the parameter space for ρ12, ρ∗∗3.
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Proof. The generating function for permutations of n counting patterns τi is

Zn(x1, . . . , xk) =
∑
π∈Sn

xn1
1 . . . xnkk (71)

where ni = ni(π) is the number of occurrences of pattern τi in π. As discussed
above, Zn can be written as a product generalizing (66). Write xi = eai . Then
the product expression for Zn is

Zn =
n∏
j=1

j∑
i=0

ep(i,j), (72)

where p(i, j) is a polynomial in i and j with coefficients that are linear in the
ai. For large n it is necessary to normalize the ai by an appropriate power
of n: write

xi = eai = eαi/n
ki−1

(73)

where ki is the length of the pattern τi.
Writing i/n = t and j/n = x, the expression for logZn is then a Riemann

sum, once normalized: In the limit n → ∞ the “normalized free energy” F
is

F := lim
n→∞

1

n
(logZn − log n!) =

∫ 1

0

[
log

∫ x

0

ep̃(t,x) dt

]
dx (74)

where p̃(t, x) = p(nt, nx) + o(1) is a polynomial in t and x, independent of
n, with coefficients which are linear functions of the αi. Explicitly we have

p̃(t, x) =
k∑
i=1

αi
tri(x− t)si
ri!si!

(75)

where ri + si = ki − 1 and, if τi = ∗. . . ∗`i then si = ki − `i.
We now show that F is concave as a function of the αi, by computing its

Hessian matrix. We have

∂F

∂αi
=

∫ 1

0

∫ x
0
tri(x− t)siep(t,x)dt∫ x

0
ep(t,x)dt

dx =

∫ 1

0

〈tri(x− t)si〉dx (76)

where 〈·〉 is the expectation with respect to the measure on [0, x] with (un-
normalized) density ep(t,x).
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Differentiating a second time we have

∂2F

∂αj∂αi
=

∫ 1

0

〈tri+rj(x− t)si+sj〉 − 〈tri(x− t)si〉〈trj(x− t)sj〉dx

=

∫ 1

0

Cov(tri(x− t)si , trj(x− t)sj) dx (77)

where Cov is the covariance. By independence of the variables for different
values of x, the integral of the covariance is the covariance of the integrals:

= Cov(T ri(x− T )si , T rj(x− T )sj) (78)

where

T =

∫ 1

0

∫ x
0
tep(t,x)dt∫ x

0
ep(t,x)dt

dx. (79)

Thus we see that the Hessian matrix is the covariance matrix of a set
of random variables with no linear dependencies, and so is positive definite.
This completes the proof of strict concavity of the free energy F .

Since Zn is the (unnormalized) probability generating function, the vector
of densities as a function of the {αi} is obtained for each n by the gradient
of the logarithm

(ρ1, . . . , ρk) =
1

n
∇ logZn(α1, . . . , αn). (80)

In the limit we can replace ∇ logZn by ∇F ; by strict concavity of F its
gradient is injective, and surjective onto the interior of the feasible region.
The entropy function H is the Legendre dual of the free energy F , that is,

H(ρ1, . . . , ρk) = max
{αi}
{F (α1, . . . , αk)−

∑
αiρi}. (81)

Since F is analytic, so is H.

9 PDEs for permutons

For permutations with constraints on patterns of length 3 (or less) one can
write explicit PDEs for the maximizers. Let us first redo the case of 12-
patterns, which we already worked out by another method in Section 7.
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9.1 Patterns 12

The density of patterns 12 is given in (2). Consider the problem of maxi-
mizing H(γ) subject to the constraint I12(γ) = ρ. This involves finding a
solution to the Euler-Lagrange equation

dH + α dI12 = 0 (82)

for some constant α, for all variations g 7→ g + εh fixing the marginals.
Given points (a1, b1), (a2, b2) ∈ [0, 1]2 we can consider the change in H and

I12 when we remove an infinitesimal mass δ from (a1, b1) and (a2, b2) and add
it to locations (a1, b2) and (a2, b1). (Note that two measures with the same
marginals are connected by convolutions of such operations.) The change in
H to first order under such an operation is δ times (letting S0(p) := −p log p)

− S ′0(g(a1, b1))− S ′0(g(a2, b2)) + S ′0(g(a1, b2)) + S ′0(g(a2, b1))

= log
g(a1, b1)g(a2, b2)

g(a1, b2)g(a2, b1)
. (83)

The change in I12 to first order is δ times

2∑
i,j=1

(−1)i+j

(∫
ai<x2

∫
y2<bj

g(x2, y2)dx2 dy2 +

∫
x1<ai

∫
bj<y1

g(x1, y1)dx1 dy1

)

= 2
2∑

i,j=1

(−1)i+j
∫
ai<x2

∫
y2<bj

g(x2, y2)dx2 dy2. (84)

Differentiating (82) with respect to a = a1 and b = b1, we find

∂

∂a

∂

∂b
log g(a, b) + 2αg(a, b) = 0. (85)

One can check that the formula (62) satisfies this PDE.

9.2 Patterns 123

The density of patterns 123 is

I123(γ) = 6

∫
x1<x2<x3, y1<y2<y3

g(x1, y1)g(x2, y2)g(x3, y3)dx1 dx2 dx3 dy1 dy2 dy3.

(86)

28



Under a similar perturbation as above the change in I123 to first order is δ
times

dI123 =
2∑

i,j=1

(−1)i+j

(∫
ai<x2<x3, bj<y2<y3

g(x2, y2)g(x3, y3)dx2 dx3 dy2 dy3

+

∫
x1<ai<x3, y1<bj<y3

g(x1, y1)g(x3, y3)dx1 dx3 dy1 dy3

+

∫
x1<x2<ai, y1<y2<bj

g(x1, y1)g(x2, y2)dx1 dx2 dy1 dy2

)
. (87)

The middle integral here is a product∫
x1<ai, y1<bj

g(x1, y1)dx1 dy1

∫
ai<x3, bj<y3

g(x3, y3)dx3 dy3

= G(ai, bj)(1− ai − bj +G(ai, bj)). (88)

Differentiating each of these three integrals with respect to both a = a1

and b = b1 (then only the i = j = 1 term survives) gives, for the first integral

g(a, b)

∫
a<x3, b<y3

g(x3, y3)dx3 dy3 = g(a, b)(1− a− b+G(a, b)), (89)

for the second integral

g(a, b)(1− a− b+ 2G(a, b)) +Gx(a, b)(−1 +Gy(a, b))

+Gy(a, b)(−1 +Gx(a, b)), (90)

and the third integral

g(a, b)

∫
x1<a, b<y1

g(x1, y1)dx1 dy1 = g(a, b)G(a, b). (91)

Summing, we get (changing a, b to x, y)

(dI123)xy = 2Gxy(1− x− y + 2G) + 2GxGy −Gx −Gy. (92)

Thus the Euler-Lagrange equation is

(logGxy)xy + α
(
2Gxy(1− x− y + 2G) + 2GxGy −Gx −Gy

)
= 0. (93)
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This simplifies somewhat if we define K(x, y) = 2G(x, y) − x − y + 1.
Then

(logKxy)xy +
α

2
(2KxyK +KxKy − 1) = 0. (94)

In a similar manner we can find a PDE for the permuton with fixed
densities of other patterns of length 3. In fact one can proceed similarly for
longer patterns, getting systems of PDEs, but the complexity grows with the
length.

10 The 12/123 model

When we fix the density of patterns 12 and 123, the feasible region has a
complicated structure, see Figure 7.

Theorem 12. The feasible region for ρ12 versus ρ123 is the same as the
feasible region of edges and triangles in the graphon model.

Proof. Let R denote the feasible region for pairs
(
ρ12(γ), ρ123(γ)

)
consisting

of the 12 density and 123 density of a permuton (equivalently, for the closure
of the set of such pairs for finite permutations).

Each permutation π ∈ Sn determines a (two-dimensional) poset Pπ on
{1, . . . , n} given by i ≺ j in Pπ iff i < j and πi < πj. The comparability
graph G(P ) of a poset P links two points if they are comparable in P , that
is, x ∼ y if x ≺ y or y ≺ x. Then i ∼ j in G(Pπ) precisely when {i, j}
constitutes an incidence of the pattern 12, and i ∼ j ∼ k ∼ i when {i, j, k}
constitutes an incidence of the pattern 123. Thus the 12 density of π is equal
to the edge density of G(Pπ), and the 123 density of π is the triangle density
of G(Pπ)—that is, the probability that three random vertices induce the
complete graph K3. This correspondence extends perfectly to limit objects,
equating 12 and 123 densities of permutons to edge densities and triangle
densities of graphons.

The feasible region for edge and triangle densities of graphs (now, for
graphons) has been studied for many years and was finally determined by
Razborov [25]; we call it the “scalloped triangle” T . It follows from the above
discussion that the feasibility region R we seek for permutons is a subset of
T , and it remains only to prove that R is all of T . In fact we can realize T
using only a rather simple two-parameter family of permutons.
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Figure 7: The feasible region for ρ12 versus ρ123, with corresponding permu-
tons at selected points.

31



Let reals a, b satisfy 0 < a ≤ 1 and 0 < b ≤ a/2, and set k := ba/bc.
Let us denote by γa,b the permuton consisting of the following diagonal line
segments, all of equal density:

1. The segment y = 1− x, for 0 ≤ x ≤ 1−a;

2. The k segments y = (2j−1)b−1+a−x for 1−a+(j−1)b < x ≤ 1−a+jb,
for each j = 1, 2, . . . , k;

3. The remaining, rightmost segment y = 1+kb−x, for 1−a+kb < x ≤ 1.

(See Fig. 8 below.)

Figure 8: Support of the permutons γ.7,.2 and γ.7,0.

We interpret γa,0 as the permuton containing the segment y = 1 − x,
for 0 ≤ x ≤ 1−a, and the positive-slope diagonal from (1−a, 0) to (1, 1−a);
finally, γ0,0 is just the reverse diagonal from (0, 1) to (1, 0). These interpre-
tations are consistent in the sense that ρ12(γa,b) and ρ123(γa,b) are continuous
functions of a and b on the triangle 0 ≤ a ≤ 1, 0 ≤ b ≤ a/2. (In fact, γa,b is
itself continuous in the topology of Γ, so all pattern densities are continuous.)

It remains only to check that the comparability graphons corresponding
to these permutons match extremal graphs in [25] as follows:
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• γa,0 maps to the upper left boundary of T , with γ0,0 going to the lower
left corner while γ1,0 goes to the top;

• γa,a/2 goes to the bottom line, with γ1,1/2 going to the lower right corner;

• For 1/(k+2) ≤ b ≤ 1/(k+1), γ1,b goes to the kth lowest scallop, with
γ1,1/(k+1) going to the bottom cusp of the scallop and γ1,1/(k+2) to the
top.

It follows that (a, b) 7→
(
ρ12(γa,b), ρ123(γa,b)

)
maps the triangle 0 ≤ a ≤ 1,

0 ≤ b ≤ a/2 onto all of T , proving the theorem.

It may be prudent to remark at this point that while the feasible region
for 12 versus 123 density of permutons is the same as that for edge and
triangle density of graphs, the topography of the corresponding entropy func-
tions within this region is entirely different. In the graph case the entropy
landscape is studied in [22, 23, 24]; one of its features is a ridge along the
“Erdős-Rényi” curve (where triangle density is the 3/2 power of edge den-
sity). There is a sharp drop-off below this line, which represents the very high
entropy graphs constructed by choosing edges independently with constant
probability. The graphons that maximize entropy at each point of the feasi-
ble region all appear to be very combinatorial in nature: each has a partition
of its vertices into finitely many classes, with constant edge density between
any two classes and within any class, and is thus described by a finite list of
real parameters.

The permuton topography features a different high curve, representing the
permutons (discussed above) that maximize entropy for a fixed 12 density.
Moreover, the permutons that maximize entropy at interior points of the
region appear, as in other regions discussed above, always to be analytic.

We do not know explicitly the maximizing permutons (although they
satisfy an explicit PDE, see Section 9) or the entropy function.

11 123/321 case

The feasible region for fixed densities ρ123 versus ρ321 is the same as the
feasible region B for triangle density x = d(K3, G) versus anti-triangle density
y = d(K̄3, G) of graphons [15]. Let C be the line segment x+ y = 1

4
for 0 ≤

x ≤ 1
4
, D the x-axis from x = 1

4
to x = 1, and E the y-axis from y = 1

4
to y =

1. Let F1 be the curve given parametrically by (x, y) = (t3, (1−t)3+3t(1−t)2),
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Figure 9: The feasible region for ρ123, ρ321. It is bounded above by the
parametrized curves (1− 3t2 + 2t3, t3) and (t3, 1− 3t2 + 2t3) which intersect
at (x, y) = (.278..., .278...). The lower boundaries consist of the axes and the
line x+ y = 1/4.
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for 0 ≤ t ≤ 1, and F2 its symmetric twin (x, y) = ((1 − t)3 + 3t(1 − t)2, t3).
Then B is the union of the area bounded by C, D, E and F1 and the area
bounded by C, D, E and F2.

The curves F1 and F2 cross at a concave “dimple” (r, r) where r = s3 =
(1− s)3 + 3s(1− s)2), with s ∼ .653 and r ∼ .278; see Fig. 9 below.

To see that B is also the feasible region for 123 versus 321 density of
permutons, an argument much like the one above for 12 density versus 123
can be (and was, by [8]) given. Permutons realizing various boundary points
are illustrated in Fig. 9; they correspond to the extremal graphons described
in [15]. The rest are filled in by parameterization and a topological argument.

Of note for both graphons and permutons is the double solution at the
dimple. These solutions are significantly different, as evidenced by the fact
that their edge-densities (12 densities, for the permutons) differ. This mul-
tiplicity of solutions, if there are no permutons bridging the gap, suggests a
phase transition in the entropy-optimal permuton in the interior of B in a
neighborhood of the dimple. In fact, we can use a stability theorem from [14]
to show that the phenomenon is real.

For 0 ≤ p ≤ 1, let Mp = max
(
(1 − p1/3)3 + 3p1/3(1 − p1/3)2, (1 − q)1/3

)
where q is the unique real root of q3 + 3q2(1− q) = p.

Theorem 13 (special case of Theorems 1.1 and 1.2 of [14]). For any ε > 0
there is a δ > 0 and an N such that for any n-vertex graph G with n > N
and d(K̄3, G) > p and |d(K3, G) − Mp| < δ is ε-close to a graph H on n
vertices consisting of a clique and isolated vertices, or an independent set
whose vertices are adjacent to all other vertices of the graph. Here Mp :=
max

(
(1− p1/3)3 + 3p1/3(1− p1/3)2, (1− q)1/3

)
where q is the unique real root

of q3 + 3q2(1 − q) = p; that is, Mp is the largest possible value of d(K3, G)
given d(K̄3, G) = p.

(Two n-vertex graphs are ε-close if one can be made isomorphic to the
other by adding or deleting at most ε ·

(
n
2

)
edges.)

From Theorem 13 we conclude:

Lemma 14. There is a neighborhood of the point (r, r) in the feasible region
for patterns 123 and 321 within which no permuton has 12-density near 1

2
.

Proof. There are in fact many permutons representing the dimple (r, r), but
only two classes if we consider permutons with isomorphic comparability
graphs to be equivalent. The class that came from the curve F1 has 12
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density s2 ∼ .426, the other 1 − s2 ∼ .574. (Interestingly, the other end
of the F1 curve—represented uniquely by the identity permuton—had 12
density 1, while the F2 class “began” at 12 density 0. Thus, the 12 densities
crossed on the way in from the corners of B.)

Taking, say, ε = .07 in Lemma 14, we find a δ > 0 with the stated
property. Let δ′ = (Mr−δ − r)/2, so that if p = r − δ′, we get |Mp −
ρ123(γ)| < δ as required by the hypothesis of Theorem 13 (noting that ρ123(γ)
is the triangle density of the comparability graph corresponding to γ). We
conclude that any permuton γ for which (ρ123(γ), ρ321(γ)) lies in the square
[r − δ′, r] × [r − δ′, r] has 12-density within .07 of either .426 or .574, thus
outside the range [.496, .504].
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graphons and permutons, J. Comb. Thy B 110 (2015) 112–135.
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