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Abstract. In this paper we prove Hopf’s boundary point lemma for the fractional Lapla-
cian. With respect to the classical formulation, in the non-local framework the normal
derivative of the involved function u at z ∈ ∂Ω is replaced with the limit of the ratio
u(x)/(δR(x))

s, where δR(x) = dist(x, ∂BR) and BR ⊂ Ω is a ball such that z ∈ ∂BR.
More precisely, we show that

lim inf
B∋x→z

u(x)

(δR(x))s
> 0 .

Also we consider the overdetermined problem
(−∆)s u = 1 in Ω

u = 0 in RN \ Ω
lim

Ω∋x→z

u(x)
(δΩ(x))s

= q(|z|) for every z ∈ ∂Ω .

Here Ω is a bounded open set in RN , N ≥ 1, containing the origin and satisfying the
interior ball condition, δΩ(x) = dist(x, ∂Ω), and (−∆)s, s ∈ (0, 1), is the fractional Laplace
operator defined, up to normalization factors, as

(−∆)s u(x) = P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy .

We show that if the function q(r) grows fast enough with respect to r, then the problem
admits a solution only in a suitable ball centered at the origin. The proof is based on a
comparison principle proved along the paper, and on the boundary point lemma mentioned
before.

1. Introduction

Fractional non-local operators are subject to extensive investigation for both their theo-
retical interest and the multiplicity of their applications. Indeed, fractional and non-local
operators appear in concrete applications in many fields such as, just to name a few, op-
timization, finance, phase transitions, stratified materials, anomalous diffusion, crystal dis-
location, soft thin films, semipermeable membranes, flame propagation, conservation laws,
ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, multiple scattering,
minimal surfaces, materials science, water waves, thin obstacle problem, optimal trans-
port, image reconstruction, as well as diffusion problems (see, for instance, [2,9,28] and the
references therein).

A special role is played by the fractional Laplace operator (−∆)s, s ∈ (0, 1), which is the
(linear) integro-differential operator whose symbol is |ξ|2s (see, for instance, [7, Section 3.1]
and [12, p. 2]). The fractional Laplacian may also be defined equivalently as follows (see,
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e.g., [11]):

(−∆)s u(x) = cN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy

= cN,s lim
ε→0+

∫
|x−y|>ε

u(x)− u(y)

|x− y|N+2s
dy ,(1.1)

where u : RN → R is any semicontinuous function such that the last integral has a finite
value for positive ε, as well as a finite limit as ε → 0+ for every fixed x ∈ RN . This is
certainly the case if u ∈ C2(RN ) ∩ L∞(RN ). In particular, the convergence for ε → 0+

follows by Taylor expansion of u(y) around the point y = x. The abbreviation P.V. stands
for principal value, and the constant cN,s (which is found, for instance, in [7, Remark 3.11])
is given by

cN,s =
4s sΓ(N2 + s)

π
N
2 Γ(1− s)

.

Fractional Laplacian and problems driven by this operator and its generalizations have
been widely studied in the literature. In the present paper we are mainly interested in the
fractional counterpart of Hopf’s boundary point lemma and on overdetermined problems in
a fractional non-local setting.

1.1. Hopf’s lemma. Hopf’s boundary point lemma, firstly proved by Hopf in [23], provides
a subtle analysis of the outer normal derivative of a subharmonic function at a boundary
maximum point, under the assumption that an interior ball condition holds there.

Even though the maximum principle for elliptic equations was proved by Hopf indepen-
dently of the boundary point lemma, the lemma may be used as a tool for proving the
validity of the strong maximum principle for second order uniformly elliptic operators (see,
for instance, [15, Lemma 3.4 and Theorem 3.5]).

Along this paper we prove that Hopf’s boundary point lemma holds true also for the
fractional Laplacian. The main difference between its classical formulation and the one
given here is that the normal derivative of a function u at a boundary point z ∈ ∂Ω is
replaced with the limit of the ratio u(x)/(δR(x))

s, where δR is the function defined as
follows

(1.2) δR(x) = dist(x, ∂BR) ,

BR being an interior ball at z. A precise statement is the following.

Definition 1.1 (Interior ball condition). A set Ω ⊆ RN , N ≥ 1, satisfies the interior ball
condition at z ∈ ∂Ω if there exists a ball BR ⊆ Ω such that z ∈ ∂BR.

With this definition we can state the following result.

Lemma 1.2 (Fractional Hopf’s boundary point lemma). Let Ω ⊆ RN , N ≥ 1, be an open
set satisfying the interior ball condition at z ∈ ∂Ω, and let c ∈ L∞(Ω). Consider a lower
semicontinuous function u : RN → R satisfying

(1.3) (−∆)s u(x) ≥ c(x)u(x)

pointwise in Ω.
(i) In the case when Ω is bounded, if u ≥ 0 in RN \ Ω and c(x) ≤ 0 in Ω, then either u

vanishes identically in Ω, or

(1.4) lim inf
BR∋x→z

u(x)

(δR(x))s
> 0 ,

where BR is the ball in Definition 1.1, and δR is as in (1.2).
(ii) If u ≥ 0 in all of RN , then either u vanishes identically in Ω, or (1.4) holds true.
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1.2. Fractional non-local overdetermined problems. A typical question concerning
free boundary problems is: what is the shape of the free boundary? The question often
arises in connection with overdetermined problems, i.e., when some redundant condition is
imposed on the free boundary.

For instance, consider a bounded domain Ω ⊆ RN whose boundary is a priori unknown,
apart from some degree of regularity. Then, a celebrated result by Serrin and Weinberger
(see [27,29]) states that if the solution u of the torsion problem

(1.5)

{
−∆u = 1 in Ω
u = 0 on ∂Ω

satisfies the additional condition −∂u
∂ν = c (constant) along ∂Ω (here ν is the outer normal

to ∂Ω), then the domain Ω is a ball. Due to the translation-invariance of the problem, that
ball can be centered at any point in RN .

Thus, a further question arises: what additional condition on the free boundary, in place
of Serrin-Weinberger’s condition −∂u

∂ν = c, may force the domain to be a ball centered at a
prescribed point? In [20] the author shows that if Ω contains the origin, and if the solution
u to the torsion problem in Ω satisfies −∂u

∂ν (x) = c |x| on ∂Ω, then Ω is a ball centered at
the origin. This explains the meaning of “constrained symmetry”.

The result obtained in [20] is not at all obvious, since there exist non-spherical domains
(for instance, ellipses) such that the solution u of the torsion problem satisfies −∂u

∂ν (x) =
q(|x|) on the boundary, where q is a function depending only on the distance from x to the
origin (see [17, Problem (6)] and [20, Section 5]). Therefore, some assumption on q has to
be done in order to prove that Ω is a ball and that this ball is centered at a prescribed
point.

One of the aims of this paper is to study fractional counterparts of the overdetermined
problem described above. In order to do this, first of all we have to replace the classical
notion of outer normal derivative with a fractional one.

At this purpose, let us consider the fractional counterpart of the torsion problem (1.5),
that is the non-local linear problem

(1.6)

{
(−∆)s u = 1 in Ω

u = 0 in RN \ Ω,

where Ω is a (possibly non-smooth and disconnected) bounded open set in RN , N ≥ 1. A
solution of (1.6) is a continuous function u : RN → R satisfying pointwise the equation and
the outer condition in there. Such kind of solutions are sometimes called classical (see, for
instance, [13]).

A probabilistic interpretation of this problem is the following: consider the symmetric
stable process in RN of index α = 2s, which is a Lévy process as the usual Brownian motion,
but admitting jumps in the paths. Then, u(x) expresses the average time needed for the
particle starting at x ∈ Ω to exit from Ω (see [4–6,14]).

In the case when Ω is the ball BR of radius R > 0 centered at the origin, the solution
u = uR of (1.6) is known explicitly (see [14,26]) and it is given by

(1.7) uR(x) = γN,s ((R
2 − |x|2)+)s , x ∈ RN ,

where the exponent + denotes the positive part, and γN,s is the following constant:

(1.8) γN,s =
Γ(N2 )

4s Γ(1 + s) Γ(N2 + s)
.

Due to the exponent s < 1, the radial solution uR in (1.7) does not belong to the class
C1(BR). However, it turns out that the ratio uR(x)/(δR(x))

s is continuous in the closed
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ball BR : indeed, taking into account that in this case δR(x) = R− |x|, we easily compute

(1.9) lim
BR∋x→z

uR(x)

(δR(x))s
= 2s γN,sR

s for every z ∈ ∂BR.

This boundary value may be thought of as a fractional replacement of the inner derivative
−∂uR/∂ν.

More generally, if u is a solution of (−∆)s u(x) = g(x) in a sufficiently smooth bounded
domain Ω, satisfying u = 0 in RN \ Ω, the boundary regularity of the ratio u(x)/(δΩ(x))

s,
where δΩ = dist(x, ∂Ω), has been investigated in [26, Theorem 1.2]. In particular, the
authors prove that the mentioned ratio is Hölder continuous up to the boundary of Ω.

Therefore, a non-local fractional counterpart of the overdetermined problem described
before can be formulated as follows:

(1.10)


(−∆)s u = 1 in Ω

u = 0 in RN \ Ω
lim

Ω∋x→z

u(x)
(δΩ(x))s

= q(|z|) for every z ∈ ∂Ω .

Suppose that problem (1.10) is solvable, i.e., there exists a continuous function u ∈
C0(RN ) such that the ratio u(x)/(δΩ(x))

s has a continuous extension to Ω and the three
conditions prescribed in there are satisfied. Can we infer that the domain Ω is a ball?

In the sequel we show that if the function q(r) grows fast enough with respect to r, then
problem (1.10) possesses a solution only in suitable balls centered at the origin. The radii r
of such balls are the positive solutions to (1.13) below (if there are some). More precisely,
our result is the following:

Theorem 1.3 (Constrained radial symmetry). Let Ω be a bounded open set in RN , N ≥ 1,
containing the origin and satisfying the interior ball condition at any z ∈ ∂Ω, and let q(r)
be a non-negative function of the variable r > 0. Assume that either

(1.11) the ratio
q(r)

rs
is strictly increasing in r > 0 ,

or the set Ω is connected and

(1.12) the ratio
q(r)

rs
is non-decreasing in r > 0.

Then, problem (1.10) admits a solution if and only if Ω is a ball Br, centered at the
origin, whose radius r > 0 solves the equation

(1.13) q(r) = 2s γN,s r
s,

where γN,s is the constant given in (1.8).

Alternatively, if the boundary ∂Ω is regular enough to have an outer normal ν at each
point, then we may consider the following variant of problem (1.10):

(1.14)


(−∆)s u = 1 in Ω

u = 0 in RN \ Ω
−(∂ν)

s u(z) = q(|z|) for every z ∈ ∂Ω,

where the fractional inner derivative −(∂ν)
s u is defined as

(1.15) −(∂ν)
s u(z) = lim

ε→0+

u(z − ε ν)

εs
, z ∈ ∂Ω.

A solution of problem (1.14) is a continuous function u ∈ C0(RN ) such that the limit
in (1.15) exists for every z ∈ ∂Ω and the three conditions prescribed in (1.14) are satisfied.
Now it is not required that the ratio u(x)/(δΩ(x))

s has a continuous extension to Ω.
The case when q = const. is considered in [12]: assuming that Ω is a bounded open

set with a C2 boundary, in this paper the authors prove that such a problem is solvable
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only if the domain is a ball, thus extending to the fractional case the celebrated result by
Serrin [27] and Weinberger [29] (see also [10] for the case N = 2 and s = 1

2).
Under the conditions on q given in Theorem 1.3, problem (1.14) is solvable only if Ω is a

ball centered at the origin, as stated in the following result:

Theorem 1.4 (Constrained radial symmetry with fractional inner derivative). Let Ω be a
bounded open set in RN , N ≥ 1, containing the origin and such that its boundary ∂Ω has
an outer normal ν at each point. Then, the statement of Theorem 1.3 continues to hold if
problem (1.10) is replaced with (1.14).

Note that in Theorem 1.4 the interior ball condition is not required. Furthermore, The-
orem 1.4 (as well as Theorem 1.3) does not apply to the case q = constant, and this is
not a surprise, because when q is constant one cannot expect the center of Ω to occur at a
prescribed point.

Results similar to Theorem 1.3 and Theorem 1.4 for the case s = 1 (which corresponds
to the classical Laplacian), with extensions to the p-Laplacian and other quasilinear op-
erators can be found in [17, 18, 20]. There, a non-linear right-hand side is also taken into
consideration.

Constrained radial symmetry for local operators in domains with cavities is also investi-
gated in [16,19,21], while singular solutions of the Laplace equation are considered in [1].

The method of proof for this kind of results is outlined in [20], and it is based on the
comparison with radial solutions. Without entering into details for the moment, we observe
that when the radius R is let vary, formula (1.9) shows that the boundary value of the ratio
uR(x)/(δR(x))

s increases as fast as Rs. Assumption (1.11), instead, requires the function
q(r) to grow faster than rs: using the comparison principle, this leads to a contradiction
unless Ω is a ball centered at the origin. The argument is a refinement of the one used in [22]
to investigate overdetermined problems associated to the Laplace operator in domains with
cavities.

The present paper is organized as follows. In Section 2 we establish the strong minimum
principle for inequality (1.3), and derive a monotonicity property of the solution of the non-
local linear problem (1.6) with respect to the domain. Section 3 is devoted to Hopf’s lemma
for the fractional Laplacian, while Section 4 focuses on the overdetermined problems (1.10)
and (1.14). Finally, in Appendix A we give some comments on boundary regularity.

2. Minimum principle and monotonicity

In this section we establish a minimum principle for solutions of inequality (1.3), and a
monotonicity result for problem (1.6). Both are essential for the subsequent development.

Theorem 2.1 (Strong minimum principle). Let u : RN → R be a lower semicontinuous
function satisfying (1.3) pointwise in an open set Ω ⊆ RN , N ≥ 1, and let c : Ω → R be
any real-valued function.

(i) In the case when Ω is bounded, if u ≥ 0 in RN \ Ω and c(x) ≤ 0 in Ω, then either u
vanishes identically in Ω, or u > 0 in Ω.

(ii) If u ≥ 0 in all of RN , then either u vanishes identically in Ω, or u > 0 in Ω.

Proof. First of all, we show that, under the assumptions of assertion (i), the function u is
non-negative in RN .

At this purpose, let us assume that u ≥ 0 in RN \ Ω and c ≤ 0 in Ω bounded. Now, we
argue by contradiction. If u were negative somewhere in Ω, then, by compactness of Ω and
using the fact that u ≥ 0 in RN \Ω, u would reach its (negative) minimum at some x0 ∈ Ω.
By (1.1) we may write

(−∆)s u(x0) ≤ cN,s P.V.

∫
Ω

u(x0)− u(y)

|x0 − y|N+2s
dy + cN,s

∫
RN\Ω

u(x0)

|x0 − y|N+2s
dy.
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Since the first integral is non-positive and the second one is strictly negative (being u(x0) the
negative minimum of u), we see that (−∆)s u(x0) < 0. However, c(x0) ≤ 0 by assumption,
hence c(x0)u(x0) ≥ 0, thus contradicting (1.3). Hence, u ≥ 0 in all of RN , as claimed.

To complete the proof of Theorem 2.1, we refine the argument above, taking into account
that u is non-negative in RN . Here, the sign of c(x) is not relevant.

Both for proving (i) and (ii), we have to show that either u vanishes identically in Ω, or
u > 0 in Ω.

Suppose that u ̸≡ 0 in Ω. We claim that u > 0 in all of Ω. By lower semicontinuity, there
exists x1 ∈ Ω and ε1 > 0 such that u(y) ≥ ε1 for all y ∈ B1 = B(x1, ε1) ⊂ Ω. If, contrary
to the claim, u(x̄) = 0 at some x̄ ∈ Ω \B1, then we have

(−∆)s u(x̄) ≤ cN,s P.V.

∫
RN\B1

−u(y)

|x̄− y|N+2s
dy + cN,s

∫
B1

−ε1
|x̄− y|N+2s

dy.

Again, the first integral is non-positive and the second one is strictly negative, hence
(−∆)s u(x̄) < 0. Since c(x̄)u(x̄) = 0, a contradiction with (1.3) is reached. Thus, we
must have u > 0 in Ω, and the proof is complete. �

Now we focus our attention on the linear problem (1.6). Firstly, the comparison principle
is derived. To be more precise, we prove the monotonicity of the solution u with respect
to the domain Ω. We also notice that uniqueness of the solution of problem (1.6) follows
immediately.

Lemma 2.2 (Monotonicity). Let Ω1 ⊆ Ω2 be two bounded open sets in RN , N ≥ 1 and let
ui be a (continuous) solution of (1.6) in Ω = Ωi, i = 1, 2. Then, u1 ≤ u2 in RN .

Proof. Since (−∆)s u2 ≥ 0 in Ω2, by using Claim (i) of Theorem 2.1 with c(x) ≡ 0 we
get u2 ≥ 0 in RN . Furthermore, since u1 = 0 in RN \ Ω1 by assumption, the difference
w = u2 − u1 satisfies

w ≥ 0 in RN \ Ω1 .

Also, since the equation in (1.6) is linear, we have

(−∆)sw = 0 in Ω1 .

A further application of Claim (i) of Theorem 2.1 yields w ≥ 0 in all of RN , and the
conclusion follows. �

Corollary 2.3 (Uniqueness). Let Ω be a bounded open set in RN , N ≥ 1. Then, prob-
lem (1.6) admits at most one solution.

Proof. The corollary follows by letting Ω1 = Ω2 = Ω in Lemma 2.2. �

3. Hopf’s lemma

This section is devoted to the fractional counterpart of Hopf’s boundary point lemma.
As outlined in the Introduction, with respect to the classical result proved by Hopf in [23],
in our formulation we replace the normal derivative at a boundary point with the inferior
limit of the ratio u(x)/(δR(x))

s, which estimates from below the fractional inner derivative
in (1.15) whenever such a derivative exists.

For simplicity, first of all we prove Hopf’s lemma for the operator (−∆)s in the case
when Ω is a ball. The extension to any open set Ω satisfying the interior ball condition
is considered afterwards. Throughout the present section, the function u is required to be
just lower semicontinuous, the definition of the operator being as in (1.1).
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3.1. The case of the ball. In this subsection we prove Hopf’s lemma in the ball. The
argument is based on a suitable barrier method.

Lemma 3.1 (Hopf’s lemma in the ball). Let u : RN → R be a lower semicontinuous function
satisfying (1.3) in a given ball BR, R > 0, and let c ∈ L∞(BR).

(i) If u ≥ 0 in RN \ BR and c(x) ≤ 0 in BR, then either u vanishes identically in BR,
or (1.4) holds true at every z ∈ ∂BR.

(ii) If u ≥ 0 in all of RN , then either u vanishes identically in BR, or (1.4) holds true
at every z ∈ ∂BR.

Proof. Assuming that u does not vanish identically in BR, let us prove (1.4). Observe,
firstly, that in both cases (i) and (ii) we have

(3.1) u(x) > 0 for all x ∈ BR

by Theorem 2.1. More precisely, for every compact subset K ⊂ BR we have

(3.2) inf
y∈K

u(y) > 0.

To simplify the computation assume, without loss of generality, that the ball BR is
centered at the origin. Recall that the radial function uR in (1.7) satisfies

(3.3) (−∆)s uR = 1 in BR.

Letting vn(x) = 1
n uR(x) for x ∈ RN and n = 1, 2, . . . , we aim to show that there exists

some n̄ ∈ N such that

(3.4) u ≥ vn̄ in RN ,

which implies (1.4), thanks to (1.9).
The argument for proving (3.4) is by contradiction. Suppose that for every n ∈ N the

difference
wn = vn − u

is positive in RN .
Since vn = 0 ≤ u in RN \BR, the upper semicontinuous function wn attains its positive

maximum at some xn ∈ BR. Taking into account that wn(xn) > 0 and (3.1) holds true, we
may write 0 < u(xn) < vn(xn). As a consequence of this and of the fact that

(3.5) vn → 0 uniformly in RN ,

we have

(3.6) lim
n→+∞

u(xn) = 0.

This and (3.2) imply |xn| → R as n → +∞. Consequently, as long as y ranges in the ball
B R

2
⊂ BR, the difference xn − y keeps far from zero when n is large. Hence, there exist

constants c1, c2 > 0, independent of n, such that

(3.7) c1 <

∫
BR

2

dy

|xn − y|N+2s
< c2 for n large.

In view of this, let us rewrite the inequality c(xn)u(xn) ≤ (−∆)s u(xn), which holds true
by assumption, as follows:

(3.8) c(xn)u(xn) ≤ cN,s

∫
BR

2

u(xn)− u(y)

|xn − y|N+2s
dy + cN,s P.V.

∫
RN\BR

2

u(xn)− u(y)

|xn − y|N+2s
dy.

To estimate the first integral, observe that by (3.2) there exists a positive constant c3 > 0
such that u(y) ≥ c3 for y ∈ BR

2
. This, (3.6) and (3.7) imply

(3.9) lim sup
n→+∞

∫
BR

2

u(xn)− u(y)

|xn − y|N+2s
dy ≤ −c1 c3 < 0.
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To deal with the second integral in (3.8), we recall that wn(y) ≤ wn(xn) for all y ∈ RN

(being xn the maximum of wn in RN ), hence

u(xn)− u(y) ≤ vn(xn)− vn(y) .

Therefore, we have

(3.10) P.V.

∫
RN\BR

2

u(xn)− u(y)

|xn − y|N+2s
dy ≤ P.V.

∫
RN\BR

2

vn(xn)− vn(y)

|xn − y|N+2s
dy.

To study the behavior as n → +∞, it is preferable to write

(3.11) P.V.

∫
RN\BR

2

vn(xn)− vn(y)

|xn − y|N+2s
dy = (−∆)s vn(xn)−

∫
BR

2

vn(xn)− vn(y)

|xn − y|N+2s
dy.

By (3.3) and the definition of vn we get

(−∆)s vn(xn) =
1

n
→ 0 as n → +∞ .

Hence, as a consequence of this and of (3.5) and (3.7), the right-hand side in the equal-
ity (3.11) vanishes as n → +∞, which yields

lim
n→+∞

P.V.

∫
RN\BR

2

vn(xn)− vn(y)

|xn − y|N+2s
dy = 0

and so, by (3.10)

(3.12) lim sup
n→+∞

P.V.

∫
RN\BR

2

u(xn)− u(y)

|xn − y|N+2s
dy ≤ 0.

Taking into account that c(x) is bounded by assumption, and (3.6), we also have

(3.13) lim
n→+∞

c(xn)u(xn) = 0.

Inserting (3.12) and (3.9) into (3.8), we get a contradiction with (3.13). Hence, (3.4) must
hold true for some n̄, as claimed. �

3.2. The general case. The fractional boundary point lemma holds in any (possibly un-
bounded and disconnected) open set Ω satisfying an interior ball condition, as stated in
Lemma 1.2.

Proof of Lemma 1.2. In both cases (i) and (ii), by Theorem 2.1 we conclude that either u
vanishes identically in Ω, or u > 0 in all of Ω.

If u > 0 in Ω, then, in particular, u > 0 in BR and u ≥ 0 in RN \BR. Thus, by Lemma 3.1
we immediately deduce that (1.4) holds. �

3.3. Some remarks. (i) The main ingredient in the proof of the fractional Hopf’s bound-
ary point lemma is the construction of the barrier vn̄, starting from the solution uR of
problem (1.6) in a ball. This construction differs from the original procedure used by Hopf
in [23].

A boundary point lemma for the inequality (1.3) is also found in [12, Proposition 3.3]: the
proof is based on the construction of a suitable barrier, still involving the radial function uR.
Comparison is achieved using energy estimates.

The same function uR is used in [26] to estimate the solution φ2 of (−∆)s φ2 = 0 in an
annulus, taking two constant values in the two connected components of the complement
(see the proof of [26, Lemma 3.2]).

(ii) If we let s = 1 in (1.4), then the limit becomes obviously infinite and this was observed
in the statement of [3, Lemma 4.3], which is a boundary point lemma dealing with the case
c(x) ≡ 0.
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An inspection in the proof of [3, Lemma 4.3] shows that an estimate with a power function
was also found by the authors. Lemma 1.2 generalizes the cited statement, also putting
into evidence the importance of the boundedness of Ω when the sign of u in Ω is unknown.
In fact, if u is negative in an unbounded domain Ω, then, in general, Lemma 1.2 does not
hold, as the following counterexamples show.

Counterexamples. Let us check that Claim (i) of Lemma 1.2 fails if the set Ω is not
bounded. Indeed, consider c(x) ≡ 0 in Ω = RN \ {0}. Of course, in this case, ∂Ω = {0},
and we must take z = 0.

(a) The claim fails even in the classical case. Indeed, the function u(x) = −|x|2 satisfies
−∆u > 0 in RN and vanishes on RN \ Ω = {0}. However, inequality (1.4) with s = 1 does
not hold because Du(0) = 0.

(b) A counterexample in the fractional case is the following. Let s ∈ (12 , 1). We claim
that the concave function u(x) = −|x|α, α ∈ [1, 2s), satisfies

(3.14) (−∆)s u(x) > 0 for all x ∈ Ω = RN \ {0}

and

(3.15) lim inf
BR∋x→z

u(x)

(δR(x))s
= 0 ,

where BR is any ball with z = 0 ∈ ∂BR. Let us show that (3.14) holds true. Since u
is of class C2 in a neighborhood of every fixed x ̸= 0, and α < 2s, the integral in (1.1)
converges. The idea for estimating its value is that u(x) < u(y) if and only if |x| > 0 and
y ∈ B = B(0, |x|). The contribution of the ball B is compensated by the reflected ball B′

given by

B′ = { y′ ∈ RN : y + y′ = 2x, y ∈ B }.
More precisely, the integral in (1.1) may be splitted as follows:

(−∆)su(x) = cN,s P.V.

(∫
B∪B′

u(x)− u(y)

|x− y|N+2s
dy +

∫
RN\(B∪B′)

u(x)− u(y)

|x− y|N+2s
dy

)
.

By concavity we have u(y) + u(y′) ≤ 2u(x), hence u(x) − u(y) + u(x) − u(y′) ≥ 0. This
shows that the first integral is non-negative. On the other hand, the second one is positive,
since u(x) < u(y) in RN \ (B ∪B′). As a consequence we have that

(−∆)su(x) = cN,s P.V.

∫
B∪B′

u(x)− u(y)

|x− y|N+2s
dy

+ cN,s P.V.

∫
RN\(B∪B′)

u(x)− u(y)

|x− y|N+2s
dy > 0 ,

as claimed.
However, if BR is any ball as in Definition 1.1 with z = 0 ∈ ∂BR, then (3.15) is satisfied,

because α ≥ 1 > s.

4. Fractional nonlocal overdetermined problems

This section is devoted to the overdetermined problems (1.10) and (1.14). Here we prove
Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3. First of all, let us show that if Ω is a ball whose radius satisfies
equation (1.13), then problem (1.10) is solvable. If equation (1.13) has a solution r = R0 > 0,
then we let R = R0 in (1.7), thus getting a radial solution of the Dirichlet problem (1.6)
with Ω = BR0 . Such a solution also satisfies the third condition in (1.10) because it behaves
as in (1.9) near the boundary: hence, the overdetermined problem (1.10) is solvable.
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To complete the proof, assume that problem (1.10) has a solution u in an unknown open
set Ω, bounded, containing the origin and satisfying the interior ball condition. Define the
radii R1 ≤ R2 as follows:

R1 = min
z∈∂Ω

|z|, R2 = max
z∈∂Ω

|z|.

By definition, the ball BR1 (respectively, BR2) is the largest (smallest) ball centered at the
origin and contained in (containing) Ω, and there exist boundary points zi ∈ ∂Ω, i = 1, 2,
satisfying |zi| = Ri.

Let us prove that R1 = R2. Denote by uRi the solution of the Dirichlet problem (1.6)
when Ω = BRi , i = 1, 2. By Lemma 2.2 we have

(4.1) uR1 ≤ u ≤ uR2 in RN .

Let us compare the limit

(4.2) lim
BR1

∋x→z1

uR1(x)

(δR1(x))
s
= 2s γN,sR

s
1,

which follows from (1.9), and

(4.3) lim
Ω∋x→z1

u(x)

(δΩ(x))s
= q(|z1|),

which holds by the third condition in (1.10). This comparison is not immediate because
both the numerator and the denominator in (4.2) are smaller than the corresponding terms
in (4.3). Therefore, we argue as follows. Let ν1 be the outer normal to ∂B1 at z1. When
the point x = z1 − t ν1 runs along the ray r of B1 passing through z1, i.e. for t ∈ [0, R1], we
have

δR1(x) = t = |x− z1| = δΩ(x).

In particular, the last equality holds because BR1 ⊆ Ω, and therefore dist(x, z1) ≤ dist(x, z)
for all x as above and for all z ∈ ∂Ω. Since the denominators in (4.2) and (4.3) coincide
along r, and uR1(x) ≤ u(x), we may write

(4.4) 2s γN,sR
s
1 = −(∂ν1)

s uR1(z1) ≤ −(∂ν1)
s u(z1) = q(|z1|) = q(R1).

To go further, we need to compare the limits

lim
BR2

∋x→z2

uR2(x)

(δR2(x))
s
= 2s γN,sR

s
2

and

lim
Ω∋x→z2

u(x)

(δΩ(x))s
= q(|z2|).

Now we use the interior ball BR ⊆ Ω with z2 ∈ ∂BR, which exists by assumption. Since
BR ⊆ BR2 , the outer normal ν2 to ∂BR2 at z2 is also normal to ∂BR. Hence, letting
x = z2 − t ν2 for t ∈ [0, R], we have

δR2(x) = t = |x− z2| = δΩ(x)

and, arguing as above, we get that

(4.5) q(R2) = q(|z2|) = −(∂ν2)
s u(z2) ≤ −(∂ν2)

s uR2(z2) = 2s γN,sR
s
2.

Hence, from (4.4) and (4.5) we deduce

(4.6)
q(R2)

Rs
2

≤ 2s γN,s ≤
q(R1)

Rs
1

.

Now, let us consider separately the two cases in the statement of Theorem 1.3. If (1.11)
holds true, that is the ratio q(r)/rs is strictly increasing, from (4.6) we deduce R1 = R2.
Consequently Ω = BR1 = BR2 , which concludes the proof of Theorem 1.3 in this case.

Finally, suppose that Ω is connected and (1.12) occurs. In this case, to complete the
proof we apply Lemma 3.1 to the difference w = u − uR1 , which is non-negative in RN
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by (4.1), and satisfies (−∆)sw = 0 in BR1 . The argument is the following. Since the
ratio q(r)/rs is non-decreasing, equalities must hold in (4.6), and consequently also in (4.4).
Hence (∂ν1)

sw(z1) = 0. From this we get

(4.7) lim inf
BR1

∋x→z1

w(x)

(δ(x))s
= 0.

By Lemma 3.1 (both claims apply) it follows that w = 0 in BR1 , i.e. u = uR1 in BR1 .
Consequently, u(x) = 0 when |x| = R1. However, u is positive in Ω by Claim (i) of

Theorem 2.1, hence ∂BR1 ̸⊆ Ω. Since Ω is connected, it must coincide with BR1 , and the
proof is complete. �

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. In particular, after hav-
ing established inequality (4.1), one derives (4.4) and (4.5) directly from the third condition
in (1.14), without the need of an interior ball BR. Afterwards, the argument proceeds as
before. �

Remark 4.1. In Theorem 1.3 we assume that Ω satisfies the interior ball condition at any
point of its boundary, just for simplicity in the statement of the result. In fact, this condition
can be weakened. More precisely, an inspection in the proof shows that Theorem 1.3 still
holds if the third condition in (1.10) is replaced with

lim
Ω∋x→zi

u(x)

(δ(x))s
= q(|zi|), i = 1, 2,

where z1, z2 are extremal points in ∂Ω. The interior ball condition, which is automatically
satisfied at z1, is needed only at z2.

Similarly, Theorem 1.4 continues to hold if the third condition in (1.14) is replaced with
−(∂ν)

s u(zi) = q(|zi|), i = 1, 2. Thus, it is enough that the domain Ω has an outer normal ν
at z1 and z2.

Appendix A. Some comments on Hölder continuity

Let Ω be a smooth domain in RN , N ≥ 1, and let ν be its outer normal. In this section
we put into evidence that when a function u belongs to the Hölder class Cs(Ω), s ∈ (0, 1),
it is not told that the fractional inner derivative in (1.15) is well defined for all z ∈ ∂Ω.
A one-dimensional counterexample is constructed below. Multidimensional examples are
readily derived.

Consequently, assuming u ∈ Cs(Ω) in Theorem 1.4 would not ensure that the third
condition in (1.14) makes sense. One must still suppose that the derivative in there is well
defined.

We also would like to note that the fractional case differs from the borderline cases s = 0
and s = 1. Indeed, the functions in Cs(Ω) are continuous up to the boundary, and in case
s = 0 the limit in (1.15) trivially exists (and equals zero). If, instead, s = 1, then the limit
in (1.15) is the inner derivative −∂u/∂ν, which exists for all u ∈ C1(Ω).

The following example also shows that the limit

(A.1) lim
Ω∋x→z

u(x)

(δ(x))s
,

which appears in the third condition of problem (1.10), need not exist even though u ∈
Cs(Ω).

Let us construct a function u = u(x) for x ∈ Ω = [0, 1] belonging to the class Cs(Ω),
s = 1

2 , and such that the limit

(A.2) (∂ν)
1
2 u(0) = lim

ε→0+

u(0)− u(ε)√
ε
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does not exist. The function u (which is not required to satisfy any equation) is bounded
between v1 and v2 given by vi(x) = (−1)i

√
x , i = 1, 2, whose graphs are dotted in the

picture.

-

6

x2j

x2j+1

x2j+2
0

Figure 1. Construction of u ∈ C
1
2 ([0, 1]) not possessing fractional deriva-

tive (∂ν)
1
2 u(0).

The graph of u is made up of a countable sequence of suitable arcs joining the origin to
the points defined as follows. For k = 0, 1, 2, . . . let

(A.3) uk(x) = (−1)k
(√

xk − 2
√
xk − x

)
for x ≤ xk .

Here x0 = 1, and xk+1 is the unique positive solution t < xk of

(A.4) uk(t) + (−1)k
√
t = 0,

which exists thanks to the coefficient 2 in (A.3). In fact, any coefficient a > 1 in place of 2
would suffice. Let u be defined as follows:

u(x) =

{
0, x = 0;

uk(x), xk+1 < x ≤ xk.

Then, u belongs to the Hölder class C
1
2 ([0, 1]) because

|u(x)− u(y)| ≤ 2
√

|x− y| for all x, y ∈ [0, 1].

Furthermore, we have

lim inf
ε→0+

u(ε)√
ε

= −1; lim sup
ε→0+

u(ε)√
ε

= 1.

Hence, the limit in (A.2) does not exist, as claimed, nor do the limit in (A.1) at z = 0.
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