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Abstract Any finite dimensional embedded invariant torus of an Hamiltonian sys-
tem, densely filled by quasi-periodic solutions, is isotropic. This property allows us
to construct a set of symplectic coordinates in a neighborhood of the torus in which
the Hamiltonian is in a generalized KAM normal form with angle-dependent co-
efficients. Based on this observation we develop an approach to KAM theory via
a Nash-Moser implicit function iterative theorem. The key point is to construct an
approximate right inverse of the differential operator associated to the linearized
Hamiltonian system at each approximate quasi-periodic solution. In the above sym-
plectic coordinates the linearized dynamics on the tangential and normal directions
to the approximate torus are approximately decoupled. The construction of an ap-
proximate inverse is thus reduced to solving a quasi-periodically forced linear dif-
ferential equation in the normal variables. Applications of this procedure allow to
prove the existence of finite dimensional Diophantine invariant tori of autonomous
PDEs.

1 Introduction

In the last years much work has been devoted to the existence theory of quasi-
periodic solutions of PDEs. The main strategies developed to overcome the well
known “small divisors” problem are:

1. KAM (Kolmogorov-Arnold-Moser) theory,
2. Newton-Nash-Moser implicit function theorems.
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The KAM approach consists in generating iteratively a sequence of canonical
transformations of the phase space which bring, up to smaller and smaller remain-
ders, the Hamiltonian system into a normal form with an invariant torus “at the
origin”: in the new coordinates, the invariant torus is the zero section of the trivial
linear bundle Tν ×Rν ×E π−→ Tν , see section 2. This iterative procedure requires,
at each step, to invert the so called linear “homological equations”. In the usual
KAM scheme the normal form has constant coefficients (see (30)), the homologi-
cal equations have constant coefficients and are solved imposing the “second order
Melnikov” non-resonance conditions. The final KAM torus is linearly stable.

This scheme has been effectively implemented by Kuksin [20] and Wayne [28]
for 1-d nonlinear wave (NLW) and Schrödinger (NLS) equations with Dirichlet
boundary conditions. The required second order Melnikov non resonance condi-
tions are violated in presence of multiple normal frequencies, for example, already
for periodic boundary conditions.

Thus a more direct bifurcation approach was proposed by Craig and Wayne [13],
see also [12], for 1-d NLW and NLS equations with periodic boundary conditions.
After a Lyapunov-Schmidt decomposition, the search of the invariant torus is re-
duced to solve a functional equation by some Newton-Nash-Moser implicit function
theorem in Banach scales of analytic functions of time and space. The main advan-
tage of this approach is to require only the “first order Melnikov” non-resonance
conditions for solving the linearized equations at each step of the iteration. These
conditions are essentially the minimal assumptions. On the other hand, the main
difficulty is that the linearized equations are PDEs with non-constant coefficients,
represented by differential operators that are small perturbations of a diagonal oper-
ator having arbitrarily small eigenvalues. Hence it is hard to estimate their inverses
in high norms. Craig-Wayne [13] solved this problem for periodic solutions and
Bourgain [9] also for quasi-periodic solutions. This approach is particularly useful
for PDEs in higher dimension due to the large (possibly unbounded) multiplicity of
the normal frequencies. It has been effectively implemented by Bourgain [10], [11],
for analytic NLS and NLW with Fourier multipliers on Td , d ≥ 2, and by Berti-
Bolle [4]-[5] for forced NLS and NLW equations with a multiplicative potential
and finite differentiable nonlinearities. In Berti-Corsi-Procesi [8] this scheme has
been then generalized into an abstract Nash-Moser implicit function theorem with
applications to NLW and NLS on general compact Lie groups and homogeneous
spaces.

We remark that in the above papers the transformations used to prove estimates in
high norms for the inverse linearized operators at the approximate solutions are not
maps of the phase space, as in the usual KAM approach, and therefore the dynamical
system structure of the transformed system is lost.

The aim of this Note is to present an approach to normal form KAM theory
based on a Nash-Moser implicit function theorem. Instead of performing directly
a sequence of canonical maps of the phase space which (at the limit) conjugate
the Hamiltonian to another one which possesses an invariant torus “at the ori-
gin”, we construct an embedded invariant torus, with equivalently the normal form
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(28) around it (Theorem 1), by a Nash-Moser iterative scheme in scales of Banach
spaces. Note that the quadratic terms of the KAM normal form (28) are, in general,
angle dependent.

The core of the present approach is to find a set of symplectic coordinates in
which the tangential and the normal linearized equations at an (approximate) torus
are (approximately) decoupled. This reduces the problem to the study of the quasi-
periodically forced linearized equation in the normal directions. This symplec-
tic construction preserves the Hamiltonian dynamical structure of the equations.
Thus it is a decomposition of tangential/normal dynamics sharper than the usual
Lyapunov-Schmidt reduction based on the splitting into bifurcation/range equations.
The present KAM approach applies well also to PDEs whose flow is ill-posed.

As already mentioned, the main difficulty for implementing a Newton-Nash-
Moser iterative scheme is to solve the (non homogeneous) linearized equations at
each approximate quasi-periodic solution. This is a difficult matter for the presence
of small divisors and because the tangential and normal components to the torus of
the linearized equations are coupled by the nonlinearity.

It was noted by Zehnder [29] that, in order to get a “quasi Newton-Nash-Moser”
scheme with still quadratic speed of convergence, it is sufficient to invert the lin-
earized equation only approximately. In [29] Zehnder introduced the precise notion
of approximate right inverse linear operator, see (43). Its main feature is to be an
exact inverse of the linearized equation at an exact solution.

In this approach we construct an approximate right inverse for the functional
equation satisfied by the embedding of an invariant torus of an Hamiltonian system,
see (16), or (34)-(35). Let us explain more in detail the main ideas. The first ob-
servation is that an embedded invariant torus supporting a non-resonant rotation is
isotropic. This is classical for finite dimensional Hamiltonian systems, see [19] or
[17]-Lemma 33. Actually this property is also true for infinite dimensional Hamil-
tonian systems (Lemma 1) since it requires only that the Hamiltonian flow is well
defined on the invariant torus and preserves the symplectic 2-form on it. Near an
isotropic torus it is then possible to introduce the symplectic set of coordinates (23)
in which the torus is “at the origin”. It follows that the existence of an invariant
torus and a nearby normal form like (28) are equivalent statements, see Theorem 1.
Clearly, with second order Melnikov non-resonance conditions, it is also possible to
obtain a constant coefficients normal form as (30), i.e. to prove the reducibility of
the torus.

This observation is the bridge with the usual KAM proof based on normal forms
transformations. The point is that the normal form (28) means more that the exis-
tence of the invariant torus, since it also provides a control of the linearized equa-
tions in the normal bundle of the torus. Actually, in the normal form coordinates,
the linearized equations at the torus simplify, see (31). In particular the second com-
ponent in (31) is decoupled from the others and the system (31) can be solved in a
“triangular” way.

Of course, there is little interest in inverting the linearized equation at a torus that
is already a solution. The point is that, at an approximate invariant torus, it is still
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possible to construct an approximate right inverse of the linearized equation, which
is enough to get a “quasi-Nash-Moser” scheme à la Zehnder.

With this aim, in section 4 we extend the symplectic construction developed in
section 2 for an invariant torus, to an approximate solution. Needless to say, an
approximate invariant torus is only approximately isotropic (Lemma 5). Thus the
first step is to deform it into a nearby exactly isotropic torus (Lemma 6). This enables
to define the set of symplectic coordinates (66) in which the isotropic torus is “at
the origin”. In these new coordinates also the linearized equations (73) simplify
and we may invert them approximately, namely solve only (74)-(75). Such system
is obtained by neglecting in (73) the terms which are zero at an exact solution,
see Lemmata 8 and 3. The linear system (74)-(75) may be solved in a triangular
way, first inverting the action-component equation (76) (see (77)-(78)), which is
decoupled from the other equations.

In the case of a Lagrangian (finite dimensional) torus, there is not the last normal
component in the system (75), and one may immediately solve the equation (82) for
the angle component, see (83)-(84). This completes the construction of an approx-
imate inverse. This is another way to recover the classical results of Zehnder [29]
and Salomon-Zehnder [27] for maximal dimensional tori, and it is closely related to
the method in [14] by De la Llave, Gonzalez, Jorba, Villanueva.

On the contrary, in the general case of an isotropic torus, the present strategy has
reduced the search of an approximate right inverse for the embedded torus equation,
to the problem of solving the linear equation (79). This is a quasi-periodically forced
linear PDE which is a small perturbation of the original linearized PDE, restricted
to the normal directions. The existence of a solution for such an equation is very
simple for partially hyperbolic (whiskered) tori, because there is no resonance in
the normal directions. In the more difficult case of elliptic tori, where small divisors
appear, this equation has the same feature as the quasi-periodically forced linear
PDE restricted to the normal directions. It makes possible to exploit KAM results
that have already been proved for the corresponding forced PDEs, as, for example,
[4], [5], [2], [8].

For finite dimensional systems, this construction is deeply related to the Herman-
Fejoz KAM normal form theorem used in [17] to prove the existence of elliptic
invariant tori in the planetary solar system. Actually le “Théorème de conjugaison
tordue” of Herman (Theorem 38 in [17]) is deduced by a Nash-Moser implicit func-
tions theorem in Fréchet spaces.

This scheme may be effectively implemented for autonomous Hamiltonian PDEs,
like, for example,

1. (NLW) Nonlinear wave equation

ytt −∆y+V (x)y = f (x,y) , x ∈ Td , y ∈ R , (1)

with a real valued multiplicative potential (we may clearly consider also a con-
volution potential V ∗ y as in [11]) and a real valued nonlinearity f .

2. (NLS) Hamiltonian nonlinear Schrödinger equation
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iut −∆u+V (x)u = f (x,u) , x ∈ Td , u ∈ C , (2)

where f (x,u) = ∂ūF(x,u) and the potential F(x,u) ∈ R, ∀u ∈ C, is real valued.
For u = a+ ib, a,b ∈ R, we define the operator ∂ū := 1

2 (∂a + i∂b).
3. (KdV) Quasi-linear Hamiltonian perturbed KdV equations

ut +uxxx +∂xu2 +N (x,u,ux,uxx,uxxx) = 0 , x ∈ T , (3)

where N (x,u,ux,uxx,uxxx) := −∂x
[
(∂u f )(x,u,ux)− ∂x((∂ux f )(x,u,ux))

]
is the

most general Hamiltonian (local) nonlinearity, see (4).

The NLW and NLS equations are studied in [6] and the quasi-linear KdV in [3].
All the above PDEs are infinite dimensional Hamiltonian systems. Also in view

of the abstract setting of section 2, we present their Hamiltonian formulation:

1. The NLW equation (1) can be written as the Hamiltonian system

d
dt

(
y
p

)
=
(

p
∆y−V (x)y+ f (x,y)

)
=
(

0 Id
−Id 0

)(
δyH(y, p)
δpH(y, p)

)
where δyH, δpH denote the L2(Td

x )-gradient of the Hamiltonian

H(y, p) :=
∫

Td

p2

2
+

1
2
(
(∇y)2 +V (x)y2)+F(x,y)dx

and ∂yF(x,y) =− f (x,y). The variables (y, p) are “Darboux coordinates”.
2. The NLS equation (2) can be written as the infinite dimensional complex system

ut = iδūH(u) , H(u) :=
∫

Td
|∇u|2 +V (x)|u|2−F(x,u)dx .

Actually (2) is a real Hamiltonian PDE in the variables (a,b) ∈ R2, real and
imaginary part of u. Denoting the real valued potential W (a,b) := F(x,a + ib),
so that

∂ūF(x,a+ ib) :=
1
2
(∂a + i∂b)W (a,b) = f (x,a+ ib) ,

the NLS equation (2) reads

d
dt

(
a
b

)
=
(

∆b−V (x)b+ 1
2 ∂bW (a,b)

−∆a+V (x)a− 1
2 ∂aW (a,b)

)
=

1
2

(
0 −Id
Id 0

)(
δaH(a,b)
δbH(a,b)

)
with real valued Hamiltonian H(a,b) := H(a + ib) and δa,δb denote the L2-real
gradients.

3. The KdV equation (3) is the Hamiltonian PDE

ut = ∂xδH(u) , H(u) =
∫

T

u2
x

2
− u3

3
+ f (x,u,ux)dx , (4)
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where δH denotes the L2(Tx) gradient. A natural phase space for (4) is

H1
0 (Tx) :=

{
u(x) ∈ H1(T,R) :

∫
T

u(x)dx = 0
}

.

In the present paper we shall focus on the geometric construction of the approxi-
mate right inverse for the equation satisfied by an embedded torus of an Hamiltonian
system, stressing the algebraic aspects of the proof. In the papers [6], [3] the ana-
lytic estimates, and small technical variations, may disturb the geometric clarity of
the approach.

2 Normal form close to an invariant torus

We consider the toroidal phase space

P := Tν ×Rν ×E where Tν := Rν/(2πZ)ν

is the standard flat torus and E is a real Hilbert space with scalar product 〈 , 〉.
We denote by u := (θ , I,z) the variables of P . We call (θ , I) the “action-angle”
variables and z the “normal” variables. We assume that E is endowed with a constant
exact symplectic 2-form

ΩE(z,w) = 〈J̄z,w〉 , ∀z,w ∈ E , (5)

where J̄ : E → E is an antisymmetric bounded linear operator with trivial kernel.
Thus P is endowed with the symplectic 2-form

Ω := (dI∧dθ) ⊕ ΩE (6)

which is exact, namely
Ω = dλ (7)

where d denotes the exterior derivative and λ is the 1-form on P defined by

λ(θ ,I,z) : Rν ×Rν ×E→ R ,

λ(θ ,I,z)[θ̂ , Î, ẑ] := I · θ̂ +
1
2
〈J̄z, ẑ〉 , ∀(θ̂ , Î, ẑ) ∈ Rν ×Rν ×E . (8)

The dot “ · ” denotes the usual scalar product of Rν .

Remark 1. For the NLW equation E = L2×L2 with L2 := L2(Td ,R), the operator

defining the symplectic structure is J̄ =
(

0 −Id
Id 0

)
and 〈 , 〉 is the L2 real scalar

product on E. The transposed operator J̄T =−J̄ (with respect to 〈 , 〉) and the inverse
J̄−1 = J̄T . The same setting holds for the NLS equation with real valued Hamilto-
nian, writing it as a real Hamiltonian system in the real and imaginary part. For the
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KdV equation E = L2
0(T,R) := {z∈ L2(T,R) :

∫
T z(x)dx = 0} the operator J̄ = ∂−1

x
and 〈 , 〉 is the L2 real scalar product. Here the transposed operator J̄T =−J̄ and the
inverse J̄−1 = ∂x is unbounded.

Given a Hamiltonian function H : D ⊂P → R, we consider the Hamiltonian
system

ut = XH(u) , where dH(u)[·] =−Ω(XH(u), ·) (9)

formally defines the Hamiltonian vector field XH . For infinite dimensional systems
(i.e. PDEs) the Hamiltonian H is, in general, well defined and smooth only on a
dense subset D = Tν ×Rν ×E1 ⊂P where E1 ⊂ E is a dense subspace of E. We
require that, for all (θ , I) ∈ Tν ×Rν , ∀z ∈ E1, the Hamiltonian H admits a gradient
∇zH, defined by

dzH(θ , I,z)[h] = 〈∇zH(θ , I,z),h〉 , ∀h ∈ E1 , (10)

and that ∇zH(θ , I,z) ∈ E is in the space of definition of the (possibly unbounded)
operator J := −J̄−1. Then by (9), (5), (6), (10) the Hamiltonian vector field XH :
Tν ×Rν ×E1 7→ Rν ×Rν ×E writes

XH = (∂IH,−∂θ H,J∇zH) , J :=−J̄−1 . (11)

A continuous curve [t0, t1]3 t 7→ u(t)∈Tν×Rν×E is a solution of the Hamiltonian
system (9) if it is C1 as a map from [t0, t1] to Tν ×Rν ×E1 and ut(t) = XH(u(t)),
∀t ∈ [t0, t1]. For PDEs, the flow map Φ t

H may not be well-defined everywhere. The
next arguments, however, will not require to solve the initial value problem, but only
a functional equation in order to find solutions which are quasi-periodic, see (16).

We refer to [21] for a general functional setting of Hamiltonian PDEs on scales
of Hilbert spaces.

Remark 2. In the example of remark 1 for NLW and NLS, we can take E1 := H2×
H2. Then the Hamiltonian vector field J∇zH : H2×H2→ L2×L2. For KdV we can
take E1 = H3

0 (T) so that J∇zH =−∂x∇zH : H3
0 (T) 7→ L2

0(T).

We suppose that (9) possesses an embedded invariant torus

ϕ 7→ i(ϕ) := (θ0(ϕ), I0(ϕ),z0(ϕ)) , (12)

i ∈C1(Tν ,P)∩C0(Tν ,P ∩Tν ×Rν ×E1) , (13)

which supports a quasi-periodic solution with non-resonant frequency vector ω ∈
Rν , more precisely

i◦Ψ
t

ω = Φ
t
H ◦ i , ∀t ∈ R , (14)

where Φ t
H denotes the flow generated by XH and

Ψ
t

ω : Tν → Tν , Ψ
t

ω(ϕ) := ϕ +ωt , (15)

is the translation flow of vector ω on Tν . Since ω ∈ Rν is non-resonant, namely
ω · k 6= 0, ∀k ∈ Zν \ {0}, each orbit of (Ψ t

ω) is dense in Tν . Note that (14) only
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requires that the flow Φ t
H is well defined and smooth on the compact manifold T :=

i(Tν)⊂P and (Φ t
H)|T = i◦Ψ t

ω ◦ i−1. This remark is important because, for PDEs,
the flow could be ill-posed in a neighborhood of T . From a functional point of view
(14) is equivalent to the equation

ω ·∂ϕ i(ϕ)−XH(i(ϕ)) = 0 . (16)

Remark 3. In the sequel we will formally differentiate several times the torus em-
bedding i, so that we assume more regularity than (13). In the framework of a Nash-
Moser scheme, the approximate torus embedding solutions i are indeed regularized
at each step.

We require that θ0 : Tν → Tν is a diffeomorphism of Tν isotopic to the identity.
Then the embedded torus T := i(Tν) is a smooth graph over Tν . Moreover the lift
on Rν of θ0 is a function

θ0 : Rν → Rν , θ0(ϕ) = ϕ +Θ0(ϕ) , (17)

where Θ0(ϕ) is 2π-periodic in each component ϕi, i = 1, . . . ,ν , with invertible Ja-
cobian matrix Dθ0(ϕ) = Id + DΘ0(ϕ), ∀ϕ ∈ Tν . In the usual applications DΘ0 is
small and ω is a Diophantine vector, namely

|ω · k| ≥ γ

|k|τ
, ∀k ∈ Zν \{0} . (18)

In such a case we say that the invariant torus embedding ϕ 7→ i(ϕ) is Diophantine.
The torus T is the graph of the function (see (12) and (17))

j := i◦θ
−1
0 , j : Tν → Tν ×Rν ×E , j(θ) := (θ , Ĩ0(θ), z̃0(θ)) , (19)

namely

T =
{
(θ , Ĩ0(θ), z̃0(θ)) where Ĩ0 := I0 ◦θ

−1
0 , z̃0 := z0 ◦θ

−1
0

}
. (20)

We want to introduce a symplectic set of coordinates (ψ,y,w) near the invariant
torus T := i(Tν) such that T is described by {y = 0,w = 0} and the restricted flow
is simply ψ(t) = ϕ + ωt. We look for a diffeomorphism of the phase space of the
form θ

I
z

= G

ψ

y
w

 :=

θ0(ψ)
I0(ψ)+B1(ψ)y+B2(ψ)w
z0(ψ)+w


where B1(ψ) : Rν →Rν , B2(ψ) : E→Rν are linear operators. Note that in the first
component G is just the diffeomorphism of Tν induced by the torus embedding and
that G is linear in y,w (actually the third component of G is a translation in w).
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Remark 4. The above change of variables G is a particular class of those used by
Moser in [23], which also allow to “rotate” linearly the third component as z0(ψ)+
C1(ψ)y+C2(ψ)w.

In order to find a symplectic set of coordinates as above, namely to find B1(ψ),
B2(ψ) such that G is symplectic, we exploit the isotropy of the invariant torus i(Tν),
i.e. the fact that the 2-form Ω vanishes on the tangent space to i(Tν)⊂P ,

0 = i∗Ω = i∗dλ = d(i∗λ ) . (21)

In other words, the 1-form i∗λ on Tν is closed. It is natural to use such property:
also in the proof of the classical Arnold-Liouville theorem (see e.g. [24]), the first
step for the construction of the symplectic action-angle variables is to show that a
maximal torus supporting an non-resonant rotation is Lagrangian. We first prove the
isotropy of an invariant torus as in [19], [17] (Lemma 5 will provide a more precise
result).

Lemma 1. The invariant torus i(Tν) is isotropic.

Proof. By (14) the pullback

(i◦Ψ
t

ω)∗Ω = (Φ t
H ◦ i)∗Ω = i∗Ω . (22)

For smooth Hamiltonian systems in finite dimension (22) is true because the 2-
form Ω is invariant under the flow map Φ t

H (i.e. (Φ t
H)∗Ω = Ω ). In our setting,

the flow (Φ t
H) may not be defined everywhere, but Φ t

H is well defined on i(Tν) by
the assumption (14), and still preserves Ω on the manifold i(Tν), see the proof of
Lemma 5 for details.

Next, denoting the 2-form (i∗Ω)(ϕ) = ∑i< j Ai j(ϕ)dϕi∧dϕ j, we have

(i◦Ψ
t

ω)∗Ω = (Ψ t
ω)∗ ◦ i∗Ω = ∑i< jAi j(ϕ +ωt)dϕi∧dϕ j ,

and so (22) implies that Ai j(ϕ + ωt) = Ai j(ϕ), ∀t ∈ R. Since the orbit {ϕ + ωt} is
dense on Tν (ω is non-resonant) and each function Ai j is continuous, it implies that

Ai j(ϕ) = ci j , ∀ϕ ∈ Tν , i.e. i∗Ω = ∑i< jci jdϕi∧dϕ j

is constant. But, by (7), the 2-form i∗Ω = i∗dλ = d(i∗λ ) is also exact. Thus each
ci j = 0 namely i∗Ω = 0. ut

We now consider the diffeomorphism of the phase spaceθ

I
z

= G

ψ

y
w

 :=

 θ0(ψ)
I0(ψ)+ [Dθ0(ψ)]−T y−

[
Dz̃0(θ0(ψ))

]T J̄w
z0(ψ)+w

 (23)

where z̃0(θ) := (z0 ◦θ
−1
0 )(θ), see (20). The transposed operator

[
Dz̃0(θ)

]T : E →
Rν is defined by the duality relation
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Dz̃0(θ)

]T w · θ̂ = 〈w,Dz̃0(θ)[θ̂ ]〉 , ∀w ∈ E , θ̂ ∈ Rν .

Lemma 2. Let i be an isotropic torus embedding. Then G is symplectic.

Proof. We may see G as the composition G := G2 ◦G1 of the diffeomorphismsθ

I
z

= G1

ψ

y
w

 :=

 θ0(ψ)
[Dθ0(ψ)]−T y

w


and θ

I
z

 7→ G2

θ

I
z

 :=

 θ

Ĩ0(θ)+ I−
[
Dz̃0(θ)

]T J̄z
z̃0(θ)+ z

 (24)

where Ĩ0 := I0 ◦θ
−1
0 , z̃0 := z0 ◦θ

−1
0 , see (20). We claim that both G1, G2 are sym-

plectic, whence the lemma follows.
G1 IS SYMPLECTIC. Since G1 is the identity in the third component, it is sufficient
to check that (ψ,y) 7→ (θ0(ψ), [Dθ0(ψ)]−T y) is a symplectic diffeomorphism on
Tν ×Rν , which is a direct calculus.
G2 IS SYMPLECTIC. We prove that G∗2λ − λ is closed and so (see (7)) G∗2Ω =
G∗2dλ = dG∗2λ = dλ = Ω . By (24) and the definition of pullback we have

(G∗2λ )(θ ,I,z)[θ̂ , Î, ẑ] =
(
Ĩ0(θ)+ I−

[
Dz̃0(θ)

]T J̄z
)
· θ̂

+
1
2
〈J̄(z̃0(θ)+ z), ẑ+Dz̃0(θ)[θ̂ ]〉 .

Therefore (recall (8))(
(G∗2λ )(θ ,I,z)−λ(θ ,I,z)

)
[θ̂ , Î, ẑ] =

(
Ĩ0(θ)−

[
Dz̃0(θ)

]T J̄z
)
· θ̂ +

1
2
〈J̄z̃0(θ), ẑ〉

+
1
2
〈J̄z̃0(θ),Dz̃0(θ)[θ̂ ]〉+ 1

2
〈J̄z,Dz̃0(θ)[θ̂ ]〉

= Ĩ0(θ) · θ̂ +
1
2
〈J̄z̃0(θ),Dz̃0(θ)[θ̂ ]〉

+
1
2
〈J̄z̃0(θ), ẑ〉+ 1

2
〈J̄Dz̃0(θ)[θ̂ ],z〉 , (25)

having used that J̄T =−J̄. We first note that the 1-form

(θ̂ , Î, ẑ) 7→ 〈J̄z̃0(θ), ẑ〉+ 〈J̄Dz̃0(θ)[θ̂ ],z〉= d(〈J̄z̃0(θ),z〉)[θ̂ , Î, ẑ] (26)

is exact. Moreover

Ĩ0(θ) · θ̂ +
1
2
〈J̄z̃0(θ),Dz̃0(θ)[θ̂ ]〉= ( j∗λ )θ [θ̂ ] (27)

(recall (8)) where j := i◦θ
−1
0 see (19). Hence (25), (26), (27) imply
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(G∗2λ )(θ ,I,z)−λ(θ ,I,z) = π
∗( j∗λ )(θ ,I,z) +d

(1
2
〈J̄z̃0(θ),z〉

)
,

where π : Tν ×Rν ×E→ Tν is the canonical projection.
Since the torus j(Tν) = i(Tν) is isotropic (Lemma 1) the 1-form j∗λ on Tν is

closed (as i∗λ , see (21)). This concludes the proof. ut

Remark 5. A torus which is a graph over Tν , i.e. θ 7→ j(θ) = (θ , I1(θ),z1(θ)) is
isotropic if and only if I1(θ) = γ + dU(θ)− 1

2 [Dz1(θ)]T J̄z1(θ) for some constant
γ ∈ Rν and U : Tν → R. This follows from (27) and Corollary 1.

Since G is symplectic (note that Lemma 2 only requires i to be isotropic), the
transformed Hamiltonian vector field

G∗XH := (DG)−1 ◦XH ◦G = XK , K := H ◦G ,

is still Hamiltonian. By construction (see (23)) the torus {y = 0,w = 0} is invariant
and (16) implies XK(ψ,0,0) = (ω,0,0) (see also Lemma 8). As a consequence,
the Taylor expansion of the transformed Hamiltonian K in these new coordinates
assumes the normal form

K = const +ω · y+
1
2

A(ψ)y · y+ 〈C(ψ)y,w〉+ 1
2
〈B(ψ)w,w〉+O3(y,w) (28)

where O3(y,w) collects all the terms at least cubic in (y,w), and the operators A
and B are symmetric. If, furthermore, ω is Diophantine we can perform, by stan-
dard perturbation theory, a symplectic change of coordinates which conjugates K to
another Hamiltonian of the form

K1 := ω · y+
1
2

Āy · y+ 〈C1(ψ)y,w〉+ 1
2
〈B1(ψ)w,w〉+O3(y,w) (29)

where the constant matrix Ā is the average Ā :=
∫
Tν A(ψ)dψ . This is the general

normal form for a Hamiltonian near a Diophantine invariant torus.
Summarizing we have proved the following theorem:

Theorem 1. Let T = i(Tν) be an embedded torus, see (12)-(13), which is a smooth
graph over Tν , see (19)-(20), invariant for the Hamiltonian vector field XH , and
on which the flow is conjugate to the translation flow of vector ω , see (14)-(15).
Assume moreover that T is ISOTROPIC, a property which is automatically verified,
in particular, if ω is non-resonant.

Then there exist symplectic coordinates (ψ,y,w) in which T is described by
Tν ×{0}×{0} and the Hamiltonian assumes the normal form (28), i.e. the torus
T = G(Tν ×{0}×{0}) where G is the symplectic diffeomorphism defined in (23),
and the Hamiltonian H ◦G has the Taylor expansion (28) in a neighborhood of
the invariant torus. If, moreover, ω is Diophantine, see (18), there is a symplectic
change of coordinates in which the Hamiltonian assumes the normal form (29).
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Remark 6. If the torus T is isotropic, even if it is filled by periodic orbits (resonant
torus), i.e. ω = 2πk/T for some k ∈ Zν , the previous theorem provides the normal
form (28). For an application to Lagrangian tori see [1].

What is usually called a KAM normal form for isotropic Diophantine invariant
tori is an Hamiltonian of the form

K2 := ω · y+
1
2

Āy · y+ 〈C̄y,w〉+ 1
2
〈B̄w,w〉+O3(y,w) (30)

where also the matrices B̄,C̄ are constant, see e.g. [15], [25], [20], [28]. The pos-
sibility to obtain such a normal form is related to the verification of the so called
“second order Melnikov” non resonance conditions. This may be a difficult task for
PDEs in higher space dimension because of the possible multiplicity of the normal
frequencies, see e.g. [16], [26] for NLS.

The normal form (28) is relevant also in view of a Nash-Moser approach, because
it provides a control of the linearized equations in the normal bundle of the torus.
The linearized Hamiltonian system XK at the trivial solution (ψ,y,w)(t) = (ωt,0,0)
is 

ψ̇−A(ωt)y− [C(ωt)]T w = 0
ẏ = 0
ẇ− J

(
B(ωt)w+C(ωt)y

)
= 0.

(31)

For applying the Nash-Moser scheme (section 4) we have to solve, at each step,
the system of equations (31) with non-zero second members. Note that the second
equation is decoupled from the others. Inserting its solution in the third equation
we are reduced to solve a quasi-periodically forced linear equation in w. This may
vary considerably for different PDEs. The difficulty is that B(ωt) is not constant.
A way to solve it is to conjugate it to a constant coefficient equation (with second
order Melnikov non resonance conditions), as for the normal form (30). For PDEs
in higher space dimension this is not always possible and one proceeds with a mul-
tiscale analysis as in [10]-[11], [4]-[8] which requires only the first order Melnikov
non-resonance conditions. Finally one solves the first equation in (31) for the angle
component.

3 A Nash-Moser functional approach to KAM

We now describe the strategy for proving an abstract normal form KAM theorem by
using a Nash-Moser implicit function theorem. We choose the setting of a perturba-
tion of a parameter dependent family of isochronous linear Hamiltonian systems.

Let O ⊂Rν be an open set of parameters. We consider a family of Hamiltonians
H : [0,ε0)×O×P → R like

H = H(ε,α,u) = N (α,θ , I,z)+ εP(ε,α,θ , I,z) , (32)
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which are perturbations of a parameter-dependent normal form

N (α,θ , I,z) = α · I +
1
2
〈N(α,θ)z,z〉 (33)

where N(α,θ) is a symmetric operator. We suppose that, as in (10), (11), the Hamil-
tonian vector fields z 7→ JN(α,θ)z , J∇zP(α,θ , I,z) are well defined and smooth
maps from a dense subspace E1 ⊂ E into E. Note that N may depend on the angle
variables θ (in the normal directions z).

Remark 7. In applications, the parameters α may vary with the “actions” of the
unperturbed invariant tori (this approach was first used in [23]), or depend on the
mass of a planet as in [17], or may be “external” parameters induced, for example,
by the potential as in [21], [28], etc...

The normal form N possesses the invariant torus Tν ×{0}×{0} on which the
motion is endowed by the constant field α .

Remark 8. If the normal form N(α,θ) = N(α) is constant, i.e. it does not depend
on the angles θ , the unperturbed torus Tν ×{0}×{0} is said “reducible”. In appli-
cations this is the common situation in order to start with perturbation theory.

The goal is then to prove that:

• for ε small enough, for “most” Diophantine vectors ω ∈ C ⊂ O , there exists a
value of the parameters α := α∞(ω,ε) = ω + O(ε) and a ν-dimensional em-
bedded torus T = i(Tν) close to Tν ×{0}× {0}, invariant for the Hamilto-
nian vector field XH(ε,α∞(ω,ε),·) and supporting quasi-periodic solutions with fre-
quency ω . In view of (16), this is equivalent to looking for a solution ϕ 7→ i(ϕ)∈
Tν ×Rν ×E, close to (ϕ,0,0), of the embedding equation

(ω ·∂ϕ)i(ϕ)−XH(ε,α∞(ω,ε),·)(i(ϕ)) = 0 , (34)

for some value α := α∞(ω,ε) of the parameters to be determined.

The set of frequencies ω ∈ C ⊂ O for which the invariant torus exists usually
forms a Cantor like set. The measure of the set C (in particular that C 6= /0 ) clearly
depends of the properties of the Hamiltonian H, in particular for infinite dimen-
sional Hamiltonian system. The parameter α := α∞(ω,ε) is adjusted along the it-
erative Nash-Moser proof in order control the average of the first component of the
Hamilton’s equation (36), in particular for solving the linearized equation (82).

The function ω 7→ α∞(ω,ε) is invertible and it may be proved to be smooth in
ω (if the Hamiltonian H is smooth). Then, in applications, one may ask if, given
β ∈ Rν , there exists a value of ω = α−1

∞ (β ) in the Cantor set of parameters C ⊂ O
for which (34) has a solution. In such a case one has proved the existence of a
quasi-periodic solution of the given Hamiltonian β · I + 1

2 〈N(β ,θ)z,z〉+ εP. This
perspective is the spirit of the Théorème de conjugaison hypothétique of Herman
presented in [17].
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Remark 9. Variants are possible. For example we could develop a KAM theorem for
Hamiltonians which are perturbations of a non-isocronous (or Kolmogorov) normal
form

H = α · I +
1
2

L(α,θ)I · I + 〈M(α,θ)I,z〉+ 1
2
〈N(α,θ)z,z〉+ εP .

This is the setting, for example, considered in [29]. Actually this case may be re-
duced to (32) by a rescaling Rε : (I,z) 7→ (ε2aI,εaz). Note that the transformed
symplectic 2-form is R∗ε Ω = ε2aΩ . A technical advantage of dealing with the pa-
rameter dependent family of isochronous normal forms (33) is that the linearized
equations are simpler.

In order to find solutions of (34) we look for zeros of the nonlinear operator

F (ε,X) := (ω ·∂ϕ)i(ϕ)−XHµ (α,·)(i(ϕ)) (35)

=

 ∂ω θ0(ϕ)−∂IH(ε,α, i(ϕ))
∂ω I0(ϕ)+∂θ H(ε,α, i(ϕ))+ µ

∂ω z0(ϕ)− J∇zH(ε,α, i(ϕ))


=

 ∂ω θ0(ϕ)−α− ε∂IP(α, i(ϕ))
∂ω I0(ϕ)+ 1

2 ∂θ 〈N(α,θ0(ϕ))z0(ϕ),z0(ϕ)〉+ ε∂θ P(α, i(ϕ))+ µ

∂ω z0(ϕ)− JN(α,θ0(ϕ))z0(ϕ)− εJ∇zP(α, i(ϕ))


(36)

in the unknowns
X := (α,µ, i(ϕ))

where the torus embedding

i(ϕ) := (θ0(ϕ), I0(ϕ),z0(ϕ)) := (ϕ,0,0)+(Θ0(ϕ), I0(ϕ),z0(ϕ)) (37)

and we use the shorter notation

∂ω := ω ·∂ϕ .

Note that F (ε,X) = 0 is the equation ∂ω i(ϕ)−XHµ (α,·)(i(ϕ)) = 0 for an embedded
invariant torus of the non-exact Hamiltonian system generated by the Hamiltonian

Hµ := Hµ(α, ·) : Rν ×Rν ×E→ R , Hµ := H + µ ·θ . (38)

Remark that the Hamiltonian vector field XHµ
is periodic in θ , unlike Hµ . Non-

exact here means that Ω(XHµ
, ·) = −dH− µ is a closed, non-exact 1-form on the

phase space Tν ×Rν ×E. It is well-known that a non-exact Hamiltonian system
does not possess invariant tori for µ 6= 0. Actually, as proved in Lemma 3 below,
if F (ε,X) = 0 then µ = 0 and so ϕ 7→ i(ϕ) is an invariant torus for XH itself. The
‘counter-term” µ ∈ Rν is introduced as a technical trick to control the average of
the second component of the equation (36), in particular for solving the linearized
equation (76).
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Lemma 3. Let us define the “error function”

Z(ϕ) = (Z1,Z2,Z3)(ϕ) := F (ε, i,α,µ) = (ω ·∂ϕ)i(ϕ)−XHµ (α, ·)(i(ϕ)) (39)

where ϕ ∈ Tν . Then

µ =
1

(2π)ν

∫
Tν

−[DI0(ϕ)]T Z1(ϕ)+ [Dθ0(ϕ)]T Z2(ϕ)+ [Dz0(ϕ)]T J̄Z3(ϕ)dϕ .

(40)
In particular, if ∂ω i(ϕ)−XHµ

(i(ϕ)) = 0 then µ = 0 and so ϕ 7→ i(ϕ) is the embed-
ding of an invariant torus of XH .

Proof. Let iψ0(ϕ) := i(ϕ +ψ0) be the translated torus embedding, for all ψ0 ∈ Tν .
Since H is autonomous the “restricted” Hamiltonian action functional (recall (8))

Φ(ψ0) :=
∫

Tν

λiψ0 (ϕ)[∂ω iψ0(ϕ)]−H(iψ0(ϕ))dϕ = Φ(0)

is constant. Differentiating Φ at ψ0 = 0 and integrating by parts ∂ω we get, for all
ζ ∈ Rν , (see (9))

0 = Dψ0Φ(ψ0)[ζ ] =−
∫

Tν

Ω
(
∂ω i(ϕ)−XH(i(ϕ)),Di(ϕ)[ζ ]

)
dϕ

=−
∫

Tν

Ω
(
Z(ϕ)−µ · ∂

∂ I
,Di(ϕ)[ζ ]

)
dϕ (41)

by the definition of Z in (39), (38), and denoting the vector field (0,µ,0) = µ · ∂

∂ I .
Recalling (6)-(7) the integral∫

Tν

Ω

(
µ · ∂

∂ I
,Di(ϕ)[ζ ]

)
dϕ =

∫
Tν

µ ·Dθ0(ϕ)[ζ ]dϕ = (2π)ν
µ ·ζ

because the periodic function D(θ0− id) = DΘ0 (see (37)) has zero average. Hence,
by (41) we deduce

µ ·ζ =
1

(2π)ν

∫
Tν

Ω
(
Z(ϕ),Di(ϕ)[ζ ]

)
dϕ , ∀ζ ∈ Rν ,

which recalling (5)-(6) gives (40). ut

The optimal expected smallness condition for the KAM existence result, namely
for finding solutions of the nonlinear equation F (X ,ε) = 0, is

εγ
−1� 1 (42)

where γ is the Diophantine constant in (18) of the frequency vector ω . This is cer-
tainly the case for finite dimensional Lagrangian tori (the optimality follows for
example by a time rescaling argument). If ω has to satisfy other Diophantine condi-
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tions of first and second order Melnikov type the required smallness conditions may
be stronger, see e.g. [3].

Remark 10. Other functional formulations are possible. We could look for zeros of

F (ε, j,α,c) =

 ∂ω θ0(ϕ)−∂IH(ε,α, i(ϕ))
H( j(θ))− c

∂ω z0(ϕ)− J∇zH(ε,α, i(ϕ))


where j(θ) = (θ , I1(θ),z1(θ)) defines an isotropic torus as described in remark
5 and i = j ◦ θ0. The unknowns are the diffeomorphism θ0 of Tν , the component
z0 = z1 ◦θ0 of the torus embedding, the constant γ ∈ Rn, the potential U : Tν → R,
and the value of the Hamiltonian c ∈R and α0. Actually, because of the presence of
the parameter α , we may impose γ = 0.

As already said, a solution of the nonlinear equation F (ε,X) = 0 is obtained by
a Nash-Moser iterative scheme. The first approximate solution is

X0 = (ω,0,ϕ,0,0)

(namely α = ω,µ = 0, i(ϕ) = (ϕ,0,0)) so that

F (0,X0) = O(ε) .

Then the strategy is to obtain iteratively better and better approximate solutions of
the equation F (ε,X) = 0 by a quasi-quadratic scheme. Given an approximate solu-
tion X , we look for a better approximate solution X ′ = X +h by a Taylor expansion
(for simplicity we omit to write the dependence on ε)

F (X ′) = F (X +h) = F (X)+dXF (X)[h]+O(|h|2) .

The idea of the classical Newton iterative scheme is to define h as the solution
of F (X)+ dXF (X)[h] = 0. Since the invertibility of the linear operator dXF (X)
may be a quite difficult task, Zehnder [29] noted that it is sufficient to find only an
approximate right inverse of dXF (X), namely a linear operator T (X) such that

dXF (X)◦T (X)− Id = O(|F (X)|) . (43)

Remark that, at a solution F (X) = 0, the operator T (X) is an exact right inverse of
dXF (X). Thus, defining the new approximate solution

X ′ = X +h , h :=−T (X)F (X) , (44)

we get by (43) that

F (X ′) = F (X)−dXF (X)[T (X)F (X)]+O(|h|2) = O(|F (X)|2) . (45)

This scheme can be called a “quasi-Newton” scheme. In typical PDEs applications,
the approximate right inverse T (X) “loses derivatives” due to the small divisors.
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However, since the scheme (44) is quadratic by (45), it can nevertheless converge
to a solution if F (X0) is sufficiently small (depending also on the norm of T ). The
scheme (44) is usually implemented in Banach scales of analytic functions, as, for
example,

Aσ :=
{

u(ϕ) = ∑
k∈Zν

uk eik·ϕ : ‖u‖2
σ := ∑

k∈Zν

|uk|2 e2|k|σ (1+ |k|2s0) < +∞

}
(46)

for some σ > 0, s0 > ν/2. The approximate inverse operator T is usually “un-
bounded”, satisfies Cauchy type estimates like

‖T g‖σ ′ ≤
C

γ(σ −σ ′)τ
‖g‖σ , ∀σ ′ < σ , (47)

and there is β > 0 such that, ∀σ ′ < σ , ∀g ∈ Aσ ,

∥∥(dXF (X)◦T (X)− Id
)
g
∥∥

σ ′ ≤C
‖F (ε,X)‖σ

γ(σ −σ ′)β
‖g‖σ . (48)

The constants τ,β > 0 are the “loss of derivatives”.
On the other hand, in Banach spaces of functions with finite differentiability, as

the Sobolev scale

Hs :=
{

u(ϕ) = ∑
k∈Zν

ukeik·ϕ : ‖u‖2
s := ∑

k∈Zν

|uk|2(1+ |k|2s) < +∞

}
, (49)

the quasi-Newton scheme (44) does not converge because after finitely many steps
the approximate solutions are no longer regular. Following Moser [22], it is neces-
sary to insert a smoothing procedure at each step (Nash-Moser scheme). The ap-
proximate inverse usually satisfies estimates like: there are constants p, ρ > 0 (“loss
of derivatives”) such that, for all s ∈ [s0,S], ∀g ∈ Hs+ρ ,

‖T (X)g‖s ≤C(s,‖X‖s0+p)
(
‖g‖s+ρ +‖g‖s0‖X‖s+ρ

)
, (50)

and∥∥(dXF (X)◦T (X)− Id
)
g
∥∥

s ≤C(s,‖X‖s0+p)
(
‖F (X)‖s0‖g‖s+ρ + (51)

+‖F (X)‖s+ρ‖g‖s0 +‖X‖s+ρ‖F (X)‖s0‖g‖s0

)
.

In this note we will not insist in the analytical aspects of the convergence, for which
we refer to [29], [7], or [3], [6].

The linearized operator of (35) is

dXF (ε,X)[X̂ ] = (ω ·∂ϕ)ı̂−DiXHµ (α,·)(i)[ı̂]−Dα XHµ (α,·)(i)[α̂]− (0, µ̂,0) .

It is rather difficult to invert it because all the components of the Hamiltonian vec-
tor field are coupled by O(ε)-non-constant coefficient terms. In the next section,
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following the ideas of section 2, we present a symplectic change of variable which
approximately decouples the tangential directions (i.e. (θ̂ , Î)) and the normal ones
(i.e. ẑ), and thus enables to find an approximate right inverse of dXF (ε,X).

4 Approximate right inverse

We first report a basic fact about 1-forms on a torus. We regard a 1-form a =
∑

ν
i=1 ai(ϕ)dϕi equivalently as the vector field a(ϕ) = (a1(ϕ), . . . ,aν(ϕ)).
Given a function g : Tν → R with zero average, we denote by u := ∆−1g the

unique solution of ∆u = g with zero average.

Lemma 4. (Helmotz decomposition) A smooth vector field a on Tν may be decom-
posed as the sum of a conservative and a divergence-free vector field:

a = ∇U + c+ρ , U : Tν → R , c ∈ Rν , divρ = 0 ,
∫

Tν

ρdϕ = 0 . (52)

The above decomposition is unique if we impose that the mean value of U vanishes.
We have U = ∆−1(diva), the components of ρ are

ρ j(ϕ) = ∆
−1

∑
ν

k=1∂ϕk Ak j(ϕ) , Ak j := ∂ϕk a j−∂ϕ j ak , (53)

and c j = (2π)−ν
∫
Tν a j(ϕ)dϕ , j = 1, . . . ,ν .

Proof. div(a−∇U) = 0 if and only if diva = ∆U . This equation has the solution
U := ∆−1(diva) (note that diva has zero average). Hence (52) is achieved with ρ :=
a−∇U−c. By taking the ϕ-average we get that each c j = (2π)−ν

∫
Tν a j(ϕ)dϕ . Let

us now prove the expression (53) of ρ j. We have ∂ϕk ρ j−∂ϕ j ρk = ∂ϕk a j−∂ϕ j ak =:
Ak j because ∂ϕ j ∂ϕkU−∂ϕk ∂ϕ jU = 0. For each j = 1, . . . ,ν we differentiate ∂ϕk ρ j−
∂ϕ j ρk = Ak j with respect to ϕk and we sum in k, obtaining

∆ρ j−∑
ν

k=1∂ϕkϕ j ρk = ∑
ν

k=1∂ϕk Ak j .

Since ∑
ν
k=1 ∂ϕkϕ j ρk = ∂ϕ j divρ = 0 then ∆ρ j = ∑

ν
k=1 ∂ϕk Ak j and (53) follows. ut

Corollary 1. Any closed 1-form on Tν has the form a(ϕ) = c+dU for some c∈Rν .

Corollary 2. Let a(ϕ) be a 1-form on Tν , and let ρ be defined by (53). Then a−
∑

ν
j=1ρ j(ϕ)dϕ j is closed.

We quantify how an embedded torus i(Tν) is approximately invariant for the
Hamiltonian vector field XHµ

in terms of the “error function” Z(ϕ), defined in (39).
A torus embedding i(ϕ) = (θ0(ϕ), I0(ϕ),z0(ϕ)) which is only approximately in-
variant may not be isotropic. Consider the pullback 1-form on Tν (see (8))

(i∗λ )(ϕ) = ∑
ν

k=1ak(ϕ)dϕk , (54)
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where

ak(ϕ) :=
[[

Dθ0(ϕ)
]T I0(ϕ)+

1
2
[Dz0(ϕ)]T J̄z0(ϕ)

]
k

= I0(ϕ) · ∂θ0

∂ϕk
(ϕ)+

1
2
〈J̄z0(ϕ),

∂ z0

∂ϕk
(ϕ)〉 . (55)

The 1-form i∗λ is only approximately closed, namely the 2-form (recall (7))

i∗Ω = d(i∗λ ) = ∑k< jAk j(ϕ)dϕk ∧dϕ j , (56)

Ak j(ϕ) = ∂ϕk a j(ϕ)−∂ϕ j ak(ϕ) ,

is small. We call the coefficients (Ak j) the “lack of isotropy” of the approximate
torus embedding ϕ 7→ i(ϕ). In Lemma 5 below we quantify their size in terms of
the error function Z defined in (39).

We first recall that the Lie derivative of a k-form β with respect to the vector field
Y is LY β := d

dt

[
(Φ t

Y )∗β
]
|t=0 where Φ t

Y denotes the flow generated by Y .

Given a function g(ϕ) with zero average, we denote by u := ∂−1
ω g the unique

solution of ∂ω u = g with zero average.

Lemma 5. The “lack of isotropy” coefficients Ak j satisfy, ∀ϕ ∈ Tν ,

(ω ·∂ϕ)Ak j(ϕ) = Ω
(
DZ(ϕ)ek,Di(ϕ)e j

)
+Ω

(
Di(ϕ)ek,DZ(ϕ)e j

)
(57)

where (e1, . . . ,eν) denotes the canonical basis of Rν . Thus, since each Ak j has zero
mean value, if the frequency vector ω ∈ Rν is non-resonant,

Ak j(ϕ) = ∂
−1
ω

(
Ω
(
DZ(ϕ)ek,Di(ϕ)e j

)
+Ω

(
Di(ϕ)ek,DZ(ϕ)e j

))
. (58)

Proof. We use Cartan’s formula Lω(i∗Ω) = d
(
(i∗Ω)(ω, ·)

)
+
(
d(i∗Ω)

)
(ω, ·). Since

d(i∗Ω) = i∗dΩ = 0 by (7) we get

Lω(i∗Ω) = d
(
(i∗Ω)(ω, ·)

)
. (59)

Now we compute, for ψ̂ ∈ Rν (denoting the vector field (0,µ,0) = µ · ∂

∂ I )

(i∗Ω)(ω, ψ̂) = Ω(Di(ϕ)ω,Di(ϕ)ψ̂) = Ω(XH(i(ϕ))+ µ · ∂

∂ I
+Z(ϕ),Di(ϕ)ψ̂)

=−dH(i(ϕ))[Di(ϕ)ψ̂]+ µ ·Dθ0(ϕ)[ψ̂]+Ω(Z(ϕ),Di(ϕ)ψ̂) .

We obtain
(i∗Ω)(ω, ·) = ∑

ν

j=1b j(ϕ)dϕ j

b j(ϕ) = (i∗Ω)(ω,e j) =−∂ (H ◦ i)
∂ϕ j

(ϕ)+ µ · ∂θ0

∂ϕ j
(ϕ)+Ω(Z(ϕ),Di(ϕ)e j) .

Hence, by (59), the Lie derivative
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Lω(i∗Ω) = ∑k< jBk j(ϕ)dϕk ∧dϕ j (60)

with

Bk j(ϕ) =
∂b j

∂ϕk
(ϕ)− ∂bk

∂ϕ j
(ϕ)

=
∂

∂ϕk
(Ω(Z(ϕ),Di(ϕ)e j))−

∂

∂ϕ j
(Ω(Z(ϕ),Di(ϕ)ek))

= Ω(DZ(ϕ)ek,Di(ϕ)e j)+Ω(Di(ϕ)ek,DZ(ϕ)e j) . (61)

Recalling (15) and (56) we have, ∀ϕ ∈ Tν ,

(ψ t
ω)∗(i∗Ω)(ϕ) = i∗Ω(ϕ +ωt) = ∑k< jAk j(ϕ +ωt)dϕk ∧dϕ j .

Hence the Lie derivative

Lω(i∗Ω)(ϕ) = ∑k< j(ω ·∂ϕ)Ak j(ϕ)dϕk ∧dϕ j . (62)

Comparing (60)-(61) and (62) we deduce (57). ut

The previous lemma provides another proof of Lemma 1. For an invariant torus
embedding i(ϕ) the “error function” Z(ϕ) = 0 (see (39)) and so each Ak j = 0. If ω

is Diophantine (see (18)) then, by (58) the following size estimate holds

Ak j = O(Zγ
−1) . (63)

This estimate can be made quantitative once the norms are specified. For example,
in scales of analytic functions as (46), it gives ‖Ak j‖σ ′ ≤ γ−1(σ −σ ′)−(τ+1)‖Z‖σ ,
for all σ ′ < σ . In the Sobolev spaces (49) it implies ‖Ak j‖s ≤ γ−1‖Z‖s+τ+1. Since
in the sequel of this note we will only focus on the algebraic aspect of the proof,
we shall write only formal estimates as (63). We refer to [6], [3] for the analytic
quantitative estimates.

We now prove that near an approximate isotropic torus there is an isotropic torus.

Lemma 6. (Isotropic torus) The torus embedding iδ (ϕ) = (θ0(ϕ), Iδ (ϕ),z0(ϕ))
defined by

Iδ (ϕ) = I0(ϕ)− [Dθ0(ϕ)]−T
ρ(ϕ) , ρ j := ∆

−1
(
∑

ν

k=1∂ϕ j Ak j(ϕ)
)

(64)

is isotropic. Thus Iδ − I0 = O(γ−1Z).

Proof. By Corollary 2 the 1-form i∗λ −ρ is closed with ρ j defined in (64), see also
(53), (54). Actually i∗λ−ρ = i∗

δ
λ is the pullback of the 1-form λ under the modified

torus embedding iδ defined in (64), see (55). Thus the torus iδ (Tν) is isotropic. ut

Let
Zδ (ϕ) := F (ε, iδ ,α,µ) = ∂ω iδ (ϕ)−XHµ (α,)(iδ (ϕ)) (65)
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be the error function of the isotropic torus embedding iδ . We now show that the
isotropic torus embedding iδ is a good approximate solution as i. This is needed
for proving the convergence of the iterative Nash-Moser scheme under the minimal
smallness condition εγ−1� 1, see (42).

Lemma 7. Zδ = O(Z).

Proof. Let Zδ (ϕ) = (Z1,δ ,Z2,δ ,Z3,δ )(ϕ). Since the difference between the torus
embeddings iδ and i affects only the I-component (Lemma 6), and the normal
form Hamiltonian vector field XN is independent of I (see (35)), the components
Z1,δ ,Z3,δ differ from Z1,Z3 for O(ε|Iδ − I0|) = O(Zγ−1ε) = O(Z). Moreover

Z2,δ −Z2 = ∂ω(Iδ − I0)+ ε
(
∂θ P(iδ )−∂θ P(i)

)
=−∂ω v+O(εZγ

−1)

where v(ϕ) := [Dθ0(ϕ)]−T ρ(ϕ). We claim that ∂ω v = O(Z) whence the lemma
follows. We have ∂ω v = (∂ω [Dθ0(ϕ)]−T )ρ + [Dθ0(ϕ)]−T ∂ω ρ . The second term[
Dθ0(ϕ)

]−T
∂ω ρ = O(Z) because (see (64)) each ∂ω ρ j = ∆−1

∑
ν
k=1∂ϕ j ∂ω Ak j =

O(Z) by (57). We now prove that also the first term (∂ω [Dθ0(ϕ)]−T )ρ = O(Z).
Since ρ = O(Zγ−1) (see (63), (64)) it is sufficient to prove that

∂ω [Dθ0(ϕ)]−T =−
[
Dθ0(ϕ)

]−T (
∂ω [Dθ0(ϕ)]T

)[
Dθ0(ϕ)

]−T = O(ε) .

Differentiating in ϕ the first component ∂ω θ0(ϕ) = α +ε(∂IP)(α, i(ϕ))+Z1(ϕ) of
(36), we deduce

∂ω Dθ0(ϕ) = εDi(∂IP)(i(ϕ))Di(ϕ)+DZ1(ϕ)
= ε(Dθ (∂IP)Dθ0 +DI(∂IP)DI0 +Dz(∂IP)Dz0)(ϕ)+DZ1(ϕ)

and so its transposed ∂ω

[
Dθ0(ϕ)

]T = O(ε +Z) = O(ε). ut

In analogy with section 2 we now introduce a symplectic set of coordinates
(ψ,y,w) near the isotropic torus Tδ := iδ (Tν) via the symplectic diffeomorphismθ

I
z

= Gδ

ψ

y
w

 :=

 θ0(ψ)
Iδ (ψ)+ [Dθ0(ψ)]−T y−

[
Dz̃0(θ0(ψ))

]T J̄w
z0(ψ)+w

 (66)

where z̃0 := z0 ◦θ
−1
0 . The map Gδ is symplectic by Lemma 2 because iδ is isotropic

(Lemma 6). In the new coordinates (ψ,y,w) the isotropic torus embedding iδ is
trivial, namely iδ (ψ) = Gδ (ψ,0,0).

Under the symplectic change of variable (66), the Hamiltonian vector field XHµ

changes into
XKµ

= G∗
δ

XHµ
= (DGδ )−1XHµ

◦Gδ (67)

where (recall (38))

Kµ := Hµ ◦Gδ = K +θ0(ψ) ·µ , K := H ◦Gδ . (68)
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In the above formula, θ0 is the lift to Rν of the first componant of iδ (see Lemma 6).
The Taylor expansion of the new Hamiltonian Kµ : Rν ×Rν ×E → R at the trivial
torus (ψ,0,0) is

Kµ = θ0(ψ) ·µ +K00(α,ψ)+K10(α,ψ) · y+ 〈K01(α,ψ),w〉 (69)

+
1
2

K20(α,ψ)y · y+ 〈K11(α,ψ)y,w〉+ 1
2
〈K02(α,ψ)w,w〉+K≥3(α,ψ,y,w)

where K≥3 collects all the terms at least cubic in the variables (y,w). The Taylor
coefficients of K (in the sequel we may omit to write their dependence on α) are
K00(ψ) ∈ R, K10(ψ) ∈ Rν , K01(ψ) ∈ E, K20(ψ) ∈Mat(ν×ν) is a real symmetric
matrix, K02(ψ) is a self-adjoint operator of E and K11(ψ) ∈L (Rν ,E).

The Hamiltonian system associated to Kµ then writes
ψ̇ = K10(α,ψ)+K20(α,ψ)y+KT

11(α,ψ)w+∂yK≥3(ψ,y,w)
ẏ =−[Dθ0(ψ)]T µ−∂ψ K00(α,ψ)− [Dψ K10(α,ψ)]T y− [Dψ K01(α,ψ)]T w
−∂ψ

( 1
2 K20(α,ψ)y · y+ 〈K11(α,ψ)y,w〉+ 1

2 〈K02(α,ψ)w,w〉+K≥3(ψ,y,w)
)

ẇ = J
(
K01(α,ψ)+K11(α,ψ)y+K02(α,ψ)w+∇wK≥3(ψ,y,w)

)
.

(70)
As seen in section 2, if iδ were an invariant torus embedding, the coefficient
K00(ψ) = const, K10(ψ) = ω and K01(ψ) = 0. Moreover also µ = 0 by Lemma
3. We now express these coefficients in terms of the error function Zδ of iδ defined
in (65) (equivalently Z, by Lemma 7).

Lemma 8. The vector field

XKµ
(ψ,0,0) (70)=

 K10(α,ψ)
−[Dθ0(ψ)]T µ−∂ψ K00(α,ψ)

JK01(α,ψ)


=

ω

0
0

− (DGδ (ψ,0,0)
)−1Zδ (ψ) . (71)

Proof. By (67) and iδ (ψ) = Gδ (ψ,0,0), we have

XKµ
(ψ,0,0) = DGδ (ψ,0,0)−1XHµ

(iδ (ψ)) = DGδ (ψ,0,0)−1(
∂ω iδ (ψ)−Zδ (ψ)

)
and (71) follows because DGδ (ψ,0,0)−1Diδ (ψ)[ω] = (ω,0,0). ut

We now write the coefficient K10(α,ψ) which describes in (69) and (70) how
the tangential frequencies vary with respect to α , and the coefficients K11(α,ψ),
K20(α,ψ) which are O(ε).

Lemma 9. The coefficients
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K10(α,ψ)=[Dθ0(ψ)]−1
α + ε[Dθ0(ψ)]−1(∂IP)(ε,α, iδ (ψ))

K11(α,ψ)=εDI∇zP(iδ (ψ))[Dθ0(ψ)]−T+ ε J̄(Dz̃0)(θ0(ψ))(D2
I P)(iδ (ψ))[Dθ0(ψ)]−T

K20(α,ψ)=ε[Dθ0(ψ)]−1(D2
I P)(iδ (ψ)))[Dθ0(ψ)]−T

Proof. Differentiating K = H ◦Gδ we get K10(ψ) = [Dθ0(ψ)]−1(∂IH)(iδ (ψ)) and
the lemma follows by (32), (33). Similarly we deduce that

K11(ψ) = DI∇zH(iδ (ψ))[Dθ0(ψ)]−T+ J̄(Dθ z̃0)(θ0(ψ))(D2
I H)(iδ (ψ))[Dθ0(ψ)]−T

K20(ψ) = [Dθ0(ψ)]−1(D2
I H)(iδ (ψ)))[Dθ0(ψ)]−T

and by (32)-(33) the lemma follows. ut

Under the linear change of variable (obtained linearizing (66) at (ψ,y,w) =
(ϕ,0,0))  θ̂

Î
ẑ

= DGδ (ϕ,0,0)

 ψ̂

ŷ
ŵ

 (72)

the linearized operator di,α,µF (ε, iδ ,α0,µ0) is transformed approximately (see (88)
for the precise expression of the error) into the one obtained when we linearize the
Hamiltonian system (70) at (ψ,y,w) = (ωt,0,0) and differentiating also in α , µ at
α0,µ0, namely

L(ψ̂, ŷ, ŵ, α̂, µ̂) := (73)
∂ω ψ̂−Dα K10(α,ϕ)[α̂]−Dψ K10(α,ϕ)[ψ̂]−K20(α,ϕ)ŷ−KT

11(α,ϕ)ŵ
∂ω ŷ+[Dθ0(ϕ)]T µ̂ +[D2θ0(ϕ)ψ̂]T [µ0]+∂ψ

(
Dα K00(α,ϕ)[α̂]

)
+Dψψ K00(α,ϕ)ψ̂ +[Dψ K10(α,ϕ)]T ŷ+[Dψ K01(α,ϕ)]T ŵ

∂ω ŵ− J
(
Dα K01(α,ϕ)[α̂]+Dψ K01(α,ϕ)[ψ̂]+K11(α,ϕ)ŷ+K02(α,ϕ)ŵ

)
 .

For the convergence of the Nash Moser scheme, it is sufficient to invert the operator
L defined in (73) only approximately, namely, in view of Lemmata 8 and 3, solve
only the linear system

D(ψ̂, ŷ, ŵ, α̂, µ̂) := g(ϕ) =

g1(ϕ)
g2(ϕ)
g3(ϕ)

 (74)

with the “simpler” operator

D(ψ̂, ŷ, ŵ, α̂, µ̂) := ∂ω ψ̂−Dα K10(α,ϕ)[α̂]−K20(α,ϕ)ŷ−KT
11(α,ϕ)ŵ

∂ω ŷ+[Dθ0(ϕ)]T µ̂ +∂ψ

(
Dα K00(α,ϕ)[α̂]

)
∂ω ŵ− J

(
Dα K01(α,ϕ)[α̂]+K11(α,ϕ)ŷ+K02(α,ϕ)ŵ

)
 . (75)
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D is obtained from L in (73) neglecting the terms which are zero at an exact solution
(α0,µ0, i0) (with µ0 = 0) . System (74) may be solved in a triangular way. We first
solve the second equation

∂ω ŷ =−∂ψ

(
Dα K00(α0,ϕ)[α̂]

)
− [Dθ0(ϕ)]T µ̂ +g2 . (76)

We choose µ̂ such that the ϕ-average of the right hand side

〈〈−∂ψ(Dα K00(α0,ϕ)[α̂])− [Dθ0(ϕ)]T µ̂ +g2〉〉= 0 .

Note that the average of the total derivative ∂ψ

(
∂α K00(α0,ϕ)[α̂]

)
is zero, and the

averaged matrix 〈〈[Dθ0(ϕ)]T 〉〉= Id +〈〈[DΘ0(ϕ)]T 〉〉= Id because Θ0(ϕ) is periodic
in ϕ . Hence we find

µ̂ := 〈〈g2〉〉 , (77)

and, by (76), we define

ŷ =−∂
−1
ω

(
∂ψ

(
Dα K00(α0,ϕ)[α̂]

)
+[Dθ0(ϕ)]T 〈〈g2〉〉−g2

)
+ c1 (78)

for some c1 ∈ Rν .
Next we consider the third equation

∂ω ŵ− JK02(α0,ϕ)ŵ = J(Dα K01(α0,ϕ)[α̂])+ JK11(α0,ϕ)ŷ+g3 . (79)

Remark that (79) is a linear quasi-periodically forced PDE with a self adjoint oper-
ator K02 which is a perturbation of the normal form operator N(α,θ) in (33). The
solvability of (79) has to be checked case by case for a given PDE. We can say some-
thing when N(α,θ) = N(α) does not depend on θ , see remark 8. What is relevant
is the nature of spectrum of the Hamiltonian vector field JN(α): if their eigenvalues
are real or purely imaginary, simple or multiple, their asymptotic expansions, etc...
If, for example, JN(α) has real spectrum, bounded away from zero, then also the
linear operator

∂ω − JK02(α0,ϕ) (80)

is invertible with good bounds for the inverse. This is the case for the continuation
of isotropic tori of hyperbolic type, as considered in [29] and in [18]. If JN(α)
has purely imaginary discrete spectrum (elliptic tori) the main work is to prove that
for “most” frequencies ω the quasi-periodic linear operator (80) is invertible, and
its inverse satisfies good estimates in high norms. This may be hard work, see the
forced PDEs [4], [5], [2], [8]. However, if it is solved, it is possible to define the
solution ŵ of the linear equation (79) by

ŵ :=
(
∂ω − JK02(α0,ϕ)

)−1
(

J(Dα K01(α0,ϕ)[α̂])+ JK11(α0,ϕ)ŷ+g3

)
. (81)

Finally we solve also the first equation of (75), namely

∂ω ψ̂ = Dα K10(α0,ϕ)[α̂]+K20(α0,ϕ)ŷ+KT
11(α0,ϕ)ŵ+g1 . (82)



A Nash-Moser approach to KAM theory 25

We look for α̂ such that the right hand side in (82) has zero average, namely

〈〈Dα K10(α0,ϕ)〉〉[α̂]+ 〈〈K20(α0,ϕ)ŷ〉〉+ 〈〈KT
11(α0,ϕ)ŵ〉〉+ 〈〈g1〉〉= 0 . (83)

By Lemma 9, Dα K10(α0,ϕ) = Dθ0(ϕ)−1 +O(ε), hence

〈〈Dα K10(α0,ϕ)〉〉= 〈〈Dθ0(ϕ)−1〉〉+O(ε) = Id +O(εγ
−1)

because Dθ0 = Id + O(εγ−1). Note that ŷ and ŵ depend on α̂ (see (78), (81)) but,
since K20, KT

11 are O(ε) by Lemma 9, the equation (83) takes the form

(Id +Rε)[α̂] = Γ with Rε → 0 as ε → 0

For ε small enough, Id +Rε is invertible and (83) has a unique solution α̂ .

Remark 11. Above we suppose that, for example, the size of the inverse (∂ω −
JK02(α0,ϕ))−1 = O(γ−1) and εγ−1 is small. Variants are possible.

Next, from (82) we find

ψ̂ = ∂
−1
ω

(
Dα K10(α0,ϕ)[α̂]+K20(α0,ϕ)ŷ+KT

11(α0,ϕ)ŵ+g1
)
+ c2 (84)

for some constant c2 ∈ Rν .

Remark 12. The constants c1,c2 ∈Rν in the definition of ŷ in (78) and ψ̂ in (84) are
free (we can set for instance c1 = c2 = 0). Thus the operator di,α,µF (ε, i,α,µ) has
only a right inverse. About c1, the presence of the parameter α gives the freedom to
impose an additional condition for I0 (for instance I0(0) = 0, or the mean value of
I0 vanishes). The presence of the constant c2 is connected to the fact that if i(ϕ) is
a solution then all the translates i(ϕ + c) are solutions too. It is usual to impose that
the mean value of θ(ϕ)−ϕ is 0.

In conclusion, the solution of the linear system (74) is

D−1g :=
(
ψ̂, ŷ, ŵ, α̂, µ̂

)
defined in (77), (78), (81), (83), (84). Recalling (72) we finally define the linear
operator

Ti,α,µ := DG̃δ (ϕ,0,0)◦D−1 ◦DGδ (ϕ,0,0)−1 , (85)

where we include in G̃δ also the parameters components, namely

G̃δ (ψ,y,w,α,µ) :=
(
Gδ (ψ,y,w),α,µ

)
.

By construction, the operator Ti,α,µ is an approximate right inverse of di,α,µF , be-
cause it has been obtained neglecting terms which vanish at an exact solution: we
first substituted the approximate torus embedding i with the isotropic one iδ (which
coincide at a solution by Lemma 6) and then we neglected the terms K00, K10, K01,
µ0 which are naught at a solution (Lemmata 8, 3). Let us give a more formal proof.
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Lemma 10. The operator Ti,α,µ is an approximate right inverse of di,α,µF (ε, i,α,µ).

Proof. By (35), since XN does not depend on I, and iδ differs from i only for the I
component, we have

di,α,µF (i,α0)−di,α,µF (iδ ,α0) = ε
(
di,α,µ XP(i,α0)−di,α,µ XP(iδ ,α0)

)
(86)

= ε

∫ 1

0
∂Idi,α,µ XP(iδ + s(i− iδ ),α0)[I0− Iδ ]ds

=: E0

which is O(Z) by Lemma 6 and (42).
We denote by u := (ψ,y,w) the symplectic coordinates induced by Gδ in (66).

Under the symplectic map Gδ , the nonlinear operator F in (35) is transformed into

F (Gδ (u(ϕ)),α,µ) = DGδ (u(ϕ))
(
∂ωu(ϕ)−XKµ

(u(ϕ),α)
)

(87)

where Kµ = Hµ ◦Gδ , see (68). Differentiating (87) at the trivial torus embedding
uδ (ϕ) := G−1

δ
(iδ (ϕ)) = (ϕ,0,0) for the values of the parameters (α,µ) = (α0,µ0),

we get

di,α,µF (iδ ,α0,µ0) = DGδ (uδ )
(
∂ω −du,α,µ XKµ

(uδ ,α0,µ0)
)
DG̃δ (uδ )−1 +E1 ,

E1 := D2Gδ (uδ )
[
DGδ (uδ )−1F (iδ ,α0,µ0), DGδ (uδ )−1

Π [·]
]
, (88)

where Π is the projection (ı̂, α̂, µ̂) 7→ ı̂. In expanded form du,α,µ XKµ
(uδ ,α0,µ0) is

provided in (73). We split ∂ω −du,α,µ XKµ
(uδ ,α0,µ0) = D+RZ where D is defined

in (75) and RZ is the part which vanishes in Z. By (86) and (88)

di,α,µF (i,α) = DGδ (uδ )◦D◦DG̃δ (uδ )−1 +E0 +E1 +E2

E2 := DGδ (uδ )◦RZ ◦DG̃δ (uδ )−1 .

Applying T defined in (85) to the right, since D◦D−1 = Id we get

di,α,µF (i,α0,µ0)◦T − Id = E ◦T

where E := E0 +E1 +E2 is O(Z). ut

Remark 13. In order to construct an approximate inverse for dF , it is sufficient to
have an approximate inverse of D in (74), i.e. we need in (81) only an approximate
inverse for ∂ω − JK02(α0,ϕ).

The operator T usually satisfies estimates like (47)-(48) (in an analytic setting)
or (50)-(51) (in a Sobolev scale) and the Nash-Moser iterative scheme with approx-
imate right inverse converges.
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