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1. Introduction

Consider the equation
−∆u + V (x)u− au = f (1.1)

with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) tending to0 at infinity. Whena ≥ 0, the essential spectrum
of the operatorA : E → F corresponding to the left side of equation (1.1) contains
the origin. As a consequence, such operator does not satisfythe Fredholm property.
Its image is not closed, ford > 1 the dimensions of its kernel and the codimension of
its image are not finite. The present note deals with the studies of some properties of
such operators. Let us note that elliptic problems involving non Fredholm operators
were studied extensively in recent years (see [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], also [6]) along with their potentialapplications to the theory
of reaction-diffusion equations (see [7], [8]). Non Fredholm operators are also used
when studying wave systems with an infinite number of localized traveling waves
(see [1]). In the particular case ofa = 0 the operatorA satisfies the Fredholm
property in certain properly chosen weighted spaces (see [2], [3], [4], [5], [6]).
However, the case ofa 6= 0 is essentially different and the approach developed in
these articles cannot be applied.

1



One of the important issues about problems with non-Fredholm operators con-
cerns their solvability. In the first part of the note we consider the equation

−∆xu+ V (x)u−∆yu+ U(y)u = f(x, y), x, y ∈ R
3. (1.2)

The scalar potential functions involved in (1.2) are assumed to be shallow and short-
range, satisfying the assumptions analogous to ones in [12]and [13].

Assumption 1. The potential functionsV (x), U(y) : R3 → R satisfy the esti-
mates

|V (x)| ≤ C

1 + |x|3.5+ε
, |U(y)| ≤ C

1 + |y|3.5+ε

with someε > 0 and andx, y ∈ R3 a.e. such that
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HereC stands for a finite positive constant andcHLS given on p.98 of [9] is the
constant in the Hardy-Littlewood-Sobolev inequality
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Here and further down the norm of a functionf1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is
denoted as‖f1‖Lp(Rd). Let us denote the inner product of two functions as

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, (1.3)

with a slight abuse of notations when these functions are notsquare integrable. In-
deed, iff(x) ∈ L1(Rd) and g(x) is bounded like, for instance the functions of
the continuos spectrum of the Schrödinger operators discussed below, then the in-
tegral in the right side of (1.3) makes sense. By virtue of Lemma 2.3 of [12] the
Schrödinger operator in the left side of (1.2) is self-adjoint and unitarily equivalent
to−∆x−∆y onL2(R6) via the wave operators. Its essential spectrum fills the non-
negative semi-axis[0,+∞) and therefore such operator fails to satisfy the Fredholm
property. The functions of the continuos spectrum satisfy the Schrödinger equation

[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3,

in the integral form the Lippmann-Schwinger equation

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.4)
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and the orthogonality conditions(ϕk(x), ϕk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3.

The integral operator involved in (1.4)

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ(x) ∈ L∞(R3).

We considerQ : L∞(R3) → L∞(R3) and its norm‖Q‖∞ < 1 under Assumption 1
via Lemma 2.1 of [12]. In fact, this norm is bounded above by the k-independent
quantity. Similarly, for the second operator involved in (1.2) the functions of its
continuous spectrum solve

[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R
3,

in the integral formulation

ηq(y) =
eiqy

(2π)
3

2

− 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uηq)(z)dz, (1.5)

such that the the orthogonality relations(ηq(y), ηq1(y))L2(R3) = δ(q−q1), q, q1 ∈ R3

hold. The integral operator involved in (1.5) is

(Pη)(y) := − 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uη)(z)dz, η(y) ∈ L∞(R3).

For P : L∞(R3) → L∞(R3) its norm‖P‖∞ < 1 under Assumption 1 by virtue
of Lemma 2.1 of [12]. As before, this norm can be estimated above by theq-
independent quantity. The product of these functions of thecontinuous spectrum
ϕk(x)ηq(y) form a complete system inL2(R6). Let us denote by the double tilde
sign the generalized Fourier transform

˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R

3. (1.6)

We will be using the Sobolev space

H2(Rd) = {u(x) : Rd → C | u(x) ∈ L2(Rd), ∆u ∈ L2(Rd)}

equipped with the norm

‖u‖2H2(Rd) = ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd), d ∈ N.

Our first main statement is as follows.

Theorem 2. Let Assumption 1 hold andf(x, y) ∈ L1(R6) ∩ L2(R6). Then
equation (1.2) admits a unique solutionu(x, y) ∈ H2(R6).

Note that the solvability of problem (1.2) was treated before in Theorem 3 of
[13] under the assumption that|x|f(x, y), |y|f(x, y) ∈ L1(R6).
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In the second part of the note we consider the equation

−∆xu−∆yu+ U(y)u = f(x, y), x ∈ R
n, y ∈ R

3 (1.7)

with n ∈ N, n ≥ 2 and the scalar potential function involved in (1.7) is shallow
and short-range under analogous assumptions as before suchthat the operator in-
volved in the left side of (1.7) is self-adjoint and unitarily equivalent−∆x −∆y on
L2(Rn+3). Therefore, its essential spectrum fills the nonnegative semi-axis[0,+∞)
and such operator does not satisfy the Fredholm property. The products of the stan-

dard Fourier harmonics
eikx

(2π)
n
2

and the perturbed plane wavesηq(y) satisfying (1.5)

form a complete system inL2(Rn+3). We consider another generalized Fourier
transform

˜̂
f(k, q) := (f(x, y),

eikx

(2π)
n
2

ηq(y))L2(Rn+3), k ∈ R
n, q ∈ R

3. (1.8)

Our second main statement is as follows.

Theorem 3.Let the potential functionU(y) satisfy Assumption 1 andf(x, y) ∈
L1(Rn+3) ∩ L2(Rn+3), n ≥ 2. Then problem (1.7) possesses a unique solution
u(x, y) ∈ H2(Rn+3).

Note that the solvability of equation (1.7) was establishedbefore in Theorem 6
of [13] under the assumption that|x|f(x, y), |y|f(x, y) ∈ L1(Rn+3).

Let us proceed to the proof of our statements.

2. The solvability of the non Fredholm problems

Proof of Theorem 2.Let us first suppose that problem (1.2) admits two solutions
u1,2(x, y) ∈ H2(R6). Then their differencew(x, y) := u1(x, y) − u2(x, y) ∈
H2(R6) solves the homogeneous equation

−∆xw + V (x)w −∆yw + U(y)w = 0.

Since the operator involved in the left side of this problem does not have any square
integrable zero modes, just the essential spectrum,w(x, y) vanishes a.e. onR6. By
applying the generalized Fourier transform (1.6) to both sides of equation (1.2), we
easily arrive at

˜̃u(k, q) =
˜̃
f(k, q)

k2 + q2
, k, q ∈ R

3.

This enables us to express the norm as

‖u‖2L2(R6) =

∫

R3

dk

∫

R3

dq
| ˜̃f(k, q)|2
(k2 + q2)2

,
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which can be easily written as

∫

k2+q2≤1

dkdq
| ˜̃f(k, q)|2
(k2 + q2)2

+

∫

k2+q2>1

dkdq
| ˜̃f(k, q)|2
(k2 + q2)2

. (2.9)

The second term in (2.9) can be easily estimated from above by
∫

R3

dk

∫

R3

dq| ˜̃f(k, q)|2 = ‖f‖2L2(R6) < ∞

due to one of our assumptions. By virtue of Corollary 2.2 of [12] we have

| ˜̃f(k, q)| ≤ 1

1− ‖Q‖∞
1

1− ‖P‖∞
1

(2π)3
‖f‖L1(R6),

such that the first term in (2.9) can be easily bounded above by

1

2

1

(2π)6
|S6|

1

(1− ‖Q‖∞)2
1

(1− ‖P‖∞)2
‖f‖2L1(R6) < ∞

as assumed in the theorem. Here and belowSd stands for the unit sphere inRd

centered at the origin and|Sd| for its Lebesgue measure. Hence the unique solution
u(x, y) ∈ L2(R6), but since the right side of (1.2) is square integrable and the scalar
potentials involved in it are bounded due to our assumptions, we haveu(x, y) ∈
H2(R6) as well.

Proof of Theorem 3.Assume first that equation (1.7) has two solutionsu1,2(x, y) ∈
H2(Rn+3), such that their differencew(x, y) := u1(x, y) − u2(x, y) ∈ H2(Rn+3)
as well and is a solution of the homogeneous problem

−∆xw −∆yw + U(y)w = 0.

But the operator in the left side of the equation above has just the essential spectrum
and no square integrable zero modes. Hence,w(x, y) = 0 a.e. inRn+3. Let us apply
the generalized Fourier transform (1.8) to both sides of problem (1.7), which yields

˜̂u(k, q) =
˜̂
f(k, q)

k2 + q2
, k ∈ R

n, q ∈ R
3.

Hence we obtain

‖u‖2L2(Rn+3) =

∫

Rn

dk

∫

R3

dq
| ˜̂f(k, q)|2
(k2 + q2)2

,

which can be trivially expressed as

∫

k2+q2≤1

dkdq
| ˜̂f(k, q)|2
(k2 + q2)2

+

∫

k2+q2>1

dkdq
| ˜̂f(k, q)|2
(k2 + q2)2

. (2.10)
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The second term in (2.10) can be trivially bounded above by
∫

Rn

dk

∫

R3

dq| ˜̂f(k, q)|2 = ‖f‖2L2(Rn+3) < ∞

due to one of the assumptions of the theorem. By means of Corollary 2.2 of [12]
we derive

| ˜̂f(k, q)| ≤ 1

(2π)
n+3

2

1

1− ‖P‖∞
‖f‖L1(Rn+3).

This enables us to estimate the first term in (2.10) from aboveby

1

(2π)n+3

1

n− 1

1

(1− ‖P‖∞)2
|Sn+3|‖f‖2L1(Rn+3) < ∞

as assumed in the theorem. Therefore, our unique solutionu(x, y) ∈ L2(Rn+3). By
virtue of our assumptions, the right side of(1.7) is square integrable and the scalar
potentialU(y) in it is bounded, such thatu(x, y) ∈ H2(Rn+3) as well.
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problème ext́erieur de Dirichlet, Comm. Partial Differential Equations,26
(2001), No. 1-2, 315-334.

[6] N. Benkirane,Propriét́e d’indice en th́eorie Holderienne pour des opérateurs
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