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1. Introduction

Consider the equation
—Au+V(z)u —au=f (1.1)

withu € E = H?(RY) andf € F = L*(R%), d € N, a is a constant and the scalar
potential function/ (z) tending to0 at infinity. Whena > 0, the essential spectrum
of the operatod : £ — F corresponding to the left side of equation (1.1) contains
the origin. As a consequence, such operator does not stitesiredholm property.
Its image is not closed, fat > 1 the dimensions of its kernel and the codimension of
its image are not finite. The present note deals with the ssumfisome properties of
such operators. Let us note that elliptic problems invawion Fredholm operators
were studied extensively in recent years (see [10], [11P],[113], [14], [15],
[16], [17], [18], [19], also [6]) along with their potentialpplications to the theory
of reaction-diffusion equations (see [7], [8]). Non Fretth@perators are also used
when studying wave systems with an infinite number of loeairaveling waves
(see [1]). In the particular case af = 0 the operatorA satisfies the Fredholm
property in certain properly chosen weighted spaces (skd3R [4], [5], [6]).
However, the case af # 0 is essentially different and the approach developed in
these articles cannot be applied.



One of the important issues about problems with non-Fredloglerators con-
cerns their solvability. In the first part of the note we calesithe equation

—Ayu+V(x)u — Ayu+Uy)u = f(z,y), =x,y€R. (1.2)

The scalar potential functions involved in (1.2) are assaitode shallow and short-
range, satisfying the assumptions analogous to ones inafi®][13].

Assumption 1. The potential function¥ (z), U(y) : R* — R satisfy the esti-
mates
C C

V < U <
| (:E)| =14+ |{L‘|3'5+€’ | (y)| — 1+ |y|3.5+€

with some:= > 0 and andz, y € R? a.e. such that
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and

\/CHLS”V”L%(R;),) < 4, \/CHLSHUHL%(R3) < 4.

Here C stands for a finite positive constant ang; s given on p.98 of [9] is the
constant in the Hardy-Littlewood-Sobolev inequality

[

< 2 € L2 (R%).
P— < curs|lfill” 5 fi (R”)

L2 (R3)’

Here and further down the norm of a functine LP(R9), 1 <p < oo, d € Nis
denoted a4 f1|.»(r+). Let us denote the inner product of two functions as

(F@) 9@ 2@y = | flo)g(a)d, (1.3)

with a slight abuse of notations when these functions aresquare integrable. In-
deed, if f(x) € L'(R?) andg(z) is bounded like, for instance the functions of
the continuos spectrum of the Schrodinger operators sisszlibelow, then the in-
tegral in the right side of (1.3) makes sense. By virtue of ren®.3 of [12] the
Schrodinger operator in the left side of (1.2) is self-adjand unitarily equivalent
to—A, — A, on L?(R®) via the wave operators. Its essential spectrum fills the non-
negative semi-axi), +oc) and therefore such operator fails to satisfy the Fredholm
property. The functions of the continuos spectrum satis®y3chrodinger equation

[—A, +V(2)|or(z) = KPor(z), k€ R?
in the integral form the Lippmann-Schwinger equation

etk 1 6i\l<:||mfy|

or() = @ I e oy (Veor) (y)dy (1.4)
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and the orthogonality conditionsx(z), pr, (2)) r2rs) = 0(k — k1), k, k1 € R®.
The integral operator involved in (1.4)

1 etlkllz—yl

(Qp)(x) := (Ve)(y)dy, ¢(z) € L2(R?).

dr s [T =yl

We consider) : L=(R?) — L>*(R?) and its norm|Q||.. < 1 under Assumption 1
via Lemma 2.1 of [12]. In fact, this norm is bounded above ®y/ithndependent
quantity. Similarly, for the second operator involved in2)lthe functions of its
continuous spectrum solve

[=Ay +UW)ng(y) = i®ngly), q € R’

in the integral formulation

el 1 etlally—=|
wo) = oy~ g L e e (15)

such that the the orthogonality relatidmg(y), 7, (v)) r2ws) = d(¢—aq1), ¢, @1 € R?
hold. The integral operator involved in (1.5) is

1 etlally—z|

(Pn)(y) = (Un)(z)dz, n(y) € L™(R?).

R s |y — 2|

For P : L>*(R?) — L>*(R3) its norm||P||. < 1 under Assumption 1 by virtue
of Lemma 2.1 of [12]. As before, this norm can be estimatedvallny theg-
independent quantity. The product of these functions ofctir@inuous spectrum
or(z)n,(y) form a complete system ih?(R®). Let us denote by the double tilde
sign the generalized Fourier transform

Flk,q) == (f(z, ), or(@)ng () L2ms)y, ko q € R, (1.6)
We will be using the Sobolev space
H*(RY) = {u(x) : R* = C | u(z) € L*(RY), Au € L*(R%)}
equipped with the norm
lulle gy = ulFaqee) + 180l eqgey,  d €N,
Our first main statement is as follows.

Theorem 2. Let Assumption 1 hold and(z,y) € L'(R®) n L*(R®). Then
equation (1.2) admits a unique solutiofi, y) € H?(RS).

Note that the solvability of problem (1.2) was treated befwr Theorem 3 of
[13] under the assumption thiat| f (z, y), |y|f(z,y) € L*(RS).
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In the second part of the note we consider the equation
-Au—Ayu+Uyu= f(z,y), zeR", ye R3 (1.7)

with n € N, n > 2 and the scalar potential function involved in (1.7) is shall
and short-range under analogous assumptions as beforghaidhe operator in-
volved in the left side of (1.7) is self-adjoint and unitgrdquivalent-A, — A, on
L*(R™+3). Therefore, its essential spectrum fills the nonnegatine-s&is [0, +oc)
and such operator does not satisfy the Fredholm propergypidducts of the stan-

zlm

dard Fourier harmonlc?‘— and the perturbed plane wavggy) satisfying (1.5)

form a complete system in?(R""3). We consider another generalized Fourier
transform

~ eilm
f(ka Q) = (f($7 y)v W”q(y))L2(R"+3)a ke Rna qc Rg' (18)
Our second main statement is as follows.

Theorem 3. Let the potential functiotv(y) satisfy Assumption 1 anfix, y) €
LY(R™3) N L*(R™*3), n > 2. Then problem (1.7) possesses a unique solution
u(z,y) € H*(R"3),

Note that the solvability of equation (1.7) was establishefbre in Theorem 6
of [13] under the assumption that| f(x,v), |y|f(x,y) € L}(R™"3).

Let us proceed to the proof of our statements.
2. The solvability of the non Fredholm problems

Proof of Theorem 2Let us first suppose that problem (1.2) admits two solutions
u1o(z,y) € H?*(R®). Then their differencev(z,y) = ui(z,y) — us(z,y) €
H?(R%) solves the homogeneous equation

—Aw+V(z)w — Ayw + Uy)w = 0.

Since the operator involved in the left side of this problemsinot have any square
integrable zero modes, just the essential spectiu(m, y) vanishes a.e. oR®. By
applying the generalized Fourier transform (1.6) to botlesiof equation (1.2), we
easily arrive at .

o flk)
wk.a) = 5

This enables us to express the norm as

k)
el = /dk/ i T

k,q e R*




which can be easily written as

(k9P (k9P
/lc?+q2<1dkd (kQ ) +/]€2+q >1 dkd (kz ) (2.9)

The second term in (2.9) can be easily estimated from above by

/ i / Al )P = | F 122z < 00
R3 R3

due to one of our assumptions. By virtue of Corollary 2.2 o2][We have

x 1 1 1
(k. q)| < 12 o).
1~ [|Qllee T = [[Ploo (2m)3 " 1 ED

such that the first term in (2.9) can be easily bounded above by

1 1 1 1
— S, f 21 (gey < 00
2@ o = ey e

as assumed in the theorem. Here and befjvstands for the unit sphere R?
centered at the origin and,| for its Lebesgue measure. Hence the unique solution
u(z,y) € L*(R®), but since the right side of (1.2) is square integrable aadtalar
potentials involved in it are bounded due to our assumptiamshaveu(x,y) €
H?(R®) as well. |

Proof of Theorem 3Assume first that equation (1.7) has two solutions(x, y) €
H?(R™*3), such that their difference(z,y) := ui(x,y) — us(x,y) € H*(R"3)
as well and is a solution of the homogeneous problem

—Ayw — Ayw + U(y)w = 0.

But the operator in the left side of the equation above hdshesssential spectrum
and no square integrable zero modes. Hen¢e, y) = 0 a.e. inR™"3, Let us apply
the generalized Fourier transform (1.8) to both sides dbler (1.7), which yields

5 :k
u(k,q) = 152 Q), keR", q¢eR3.

k 2
[— / i / |f q|

which can be trivially expressed as

X k. 9 X k. 9
/ dhdg DL / dhdg I L (2.10)
k2442<1 (k% +¢) k24q2>1 (k* + ¢°)

5

Hence we obtain



The second term in (2.10) can be trivially bounded above by

/ dk /RS dg|f (k. q)|”> = || f|32@nss) < 00

due to one of the assumptions of the theorem. By means of l@ord.2 of [12]

we derive ]

(2m)" 2 1 = [Pl
This enables us to estimate the first term in (2.10) from albgve

1 1 1
(2m)" 30 — 1 (1 = [|Plle

|f(k7Q)| S ||f||L1(Rn+3).

)2 |Sn+3|||f||%1(Rn+3) < o0

as assumed in the theorem. Therefore, our unique solutiory) € L*(R"3). By
virtue of our assumptions, the right side(af7) is square integrable and the scalar
potentialU (y) in it is bounded, such that(x, y) € H*(R""3) as well. u
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