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Abstract: H-theorem states that the entropy production is nonnegative and, therefore, the
entropy of a closed system should monotonically change in time. In information processing,
the entropy production is positive for random transformation of signals (the information
processing lemma). Originally, the H-theorem and the information processing lemma
were proved for the classical Boltzmann-Gibbs-Shannon entropy and for the correspondent
divergence (the relative entropy). Many new entropies and divergences have been proposed
during last decades and for all of them the H-theorem is needed. This note proposes
a simple and general criterion to check whether the H-theorem is valid for a convex
divergence H and demonstrates that some of the popular divergences obey no H-theorem.
We consider systems with n states Ai that obey first order kinetics (master equation). A
convex function H is a Lyapunov function for all master equations with given equilibrium
if and only if its conditional minima properly describe the equilibria of pair transitions
Ai 
 Aj . This theorem does not depend on the principle of detailed balance and is valid
for general Markov kinetics. Elementary analysis of pair equilibria demonstrates that the
popular Bregman divergences like Euclidean distance or Itakura-Saito distance in the space
of distribution cannot be the universal Lyapunov functions for the first-order kinetics and can
increase in Markov processes. Therefore, they violate the second law and the information
processing lemma. In particular, for these measures of information (divergences) random
manipulation with data may add information to data. The main results are extended to
nonlinear generalized mass action law kinetic equations. In Appendix, a new family of the
universal Lyapunov functions for the generalized mass action law kinetics is described.

Keywords: Markov process; Lyapunov function; non-classical entropy; information
processing; quasiconvexity; directional convexity; Schur convexity
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1. The Problem

The first non-classical entropy was proposed by Rényi in 1960 [1]. In the same paper he discovered
the very general class of divergences, the so-called f -divergences (or Csiszár-Morimoto divergences
because of the works of Csiszár [2] and Morimoto [3] published simultaneously in 1963):

Hh(p) = Hh(P‖P ∗) =
∑
i

p∗ih

(
pi
p∗i

)
(1)

where P = (pi) is a probability distribution, P ∗ is an equilibrium distribution, h(x) is a convex function
defined on the open (x > 0) or closed x ≥ 0 semi-axis. We use here the notation Hh(P‖P ∗) to stress
the dependence of Hh on both pi and p∗i .

These divergences have the form of the relative entropy or, in the thermodynamic terminology, the
(negative) free entropy, the Massieu-Planck functions [4], or F/RT where F is the free energy. They
measure the deviation of the current distribution P from the equilibrium P ∗.

After 1961, many new entropies and divergences were invented and applied to real problems,
including Burg entropy [5], Cressie-Red family of power divergences [6], Tsallis entropy [7,8], families
of α-, β- and γ-divergences [9] and many others (see the review papers [10,11]). Many of them have the
f -divergence form, but some of them do not. For example, the squared Euclidean distance from P to P ∗

is not, in general, a f -divergence unless all p∗i are equal (equidistribution). Another example gives the
Itakura-Saito distance: ∑

i

(
pi
p∗i
− ln

pi
p∗i
− 1

)
(2)

The idea of Bregman divergences [12] provides a new general source of divergences different from the
f -divergences. Any strictly convex function F in an closed convex set V satisfies the Jensen inequality

DF (p, q) = F (p)− F (q)− (∇qF (q), p− q) > 0 (3)

if p 6= q, p, q ∈ V . This positive quantity DF (p, q) is the Bregman divergence associated with F . For
example, for a positive quadratic form F (x) the Bregman distance is just DF (p, q) = F (p − q). In
particular, if F is the squared Euclidean length of x then DF (p, q) is the squared Euclidean distance.
If F is the Burg entropy, F (x) = −

∑
i ln pi, then DF (p, q) is the Itakura-Saito distance. The

Bregman divergences have many attractive properties. For example, the mean vector minimizes the
expected Bregman divergence from the random vector [13]. The Bregman divergences are convenient
for numerical optimization because generalized Pythagorean identity [14]. Nevertheless, for information
processing and for many physical applications one more property is crucially important.

The divergence between the current distribution and equilibrium should monotonically decrease in
Markov processes. It is the ultimate requirement for use of the divergence in information processing and
in non-equilibrium thermodynamics and kinetics. In physics, the first result of this type was Boltzmann’s
H-theorem proven for nonlinear kinetic equation. In information theory, Shannon [15] proved this
theorem for the entropy (“the data processing lemma”) and Markov chains.

In his well-known paper [1], Rényi also proved that Hh(P‖P ∗) monotonically decreases in Markov
processes (he gave the detailed proof for the classical relative entropy and then mentioned that for
the f -divergences it is the same). This result, elaborated further by Csiszár [2] and Morimoto [3],
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embraces many later particular H-theorems for various entropies including the Tsallis entropy and
the Rényi entropy (because it can be transformed into the form (1) by a monotonic function, see for
example [11]). The generalized data processing lemma was proven [16,17]: for every two positive
probability distributions P,Q the divergence Hh(P‖Q) decreases under action of a stochastic matrix
A = (aij)

Hh(AP‖AQ) ≤ α(A)Hh(P‖Q) (4)

where

α(A) =
1

2
max
i,k

{∑
j

|aij − akj|

}
(5)

is the ergodicity contraction coefficient, 0 ≤ α(A) ≤ 1. Here, neither Q nor P must be the equilibrium
distribution: divergence between any two distributions decreases in Markov processes.

Under some additional conditions, the property to decrease in Markov processes characterizes the
f -divergences [18,19]. For example, if a divergence decreases in all Markov processes, does not change
under permutation of states and can be represented as a sum over states (has the trace form), then it is
the f -divergence [11,18].

The dynamics of distributions in the continuous time Markov processes is described by the master
equation. Thus, the f -divergences are the Lyapunov functions for the master equation. The important
property of the divergences Hh(P‖P ∗) is that they are universal Lyapunov functions. That is, they
depend on the current distribution P and on the equilibrium P ∗ but do not depend on the transition
probabilities directly.

For each new divergence we have to analyze its behavior in Markov processes and to prove or refute
the H-theorem. For this purpose, we need a simple and general criterion. It is desirable to avoid any
additional requirements like the trace form or symmetry. In this paper we develop this criterion.

It is obvious that the equilibrium P ∗ is a global minimum of any universal Lyapunov function H(P )

in the simplex of distributions (see the model equation below). In brief, the general H-theorem states
that a convex function H(P ) is a universal Lyapunov function for the master equation if and only if
its conditional minima correctly describe the partial equilibria for pairs of transitions Ai 
 Aj . These
partial equilibria are given by proportions pi/p∗i = pj/p

∗
j . They should be solutions to the problem

H(P )→ min subject to pk ≥ 0 (k = 1, . . . , n),
n∑
k=1

pk = 1, and given values of pl (l 6= i, j)
(6)

These solutions are minima of H(P ) on segments pi + pj = 1 −
∑

l 6=i,j pl, pi,j ≥ 0. They depend on
n− 2 parameters pl ≥ 0 (l 6= i, j,

∑
l 6=i,j pl < 1).

Using this general H-theorem we analyze several Bregman divergences that are not f -divergences
and demonstrate that they do not allow the H-theorem even for systems with three states. We present
also the generalizations of the main results for Generalized Mass Action Law (GMAL) kinetics.
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2. Three Forms of Master Equation and the Decomposition Theorem

We consider continuous time Markov chains with n states A1, . . . , An. The Kolmogorov equation
or master equation for the probability distribution P with the coordinates pi (we can consider P as a
vector-column P = [p1, . . . , pn]T ) is

dpi
dt

=
∑
j, j 6=i

(qijpj − qjipi) (i = 1, . . . , n) (7)

where qij (i, j = 1, . . . , n, i 6= j) are nonnegative. In this notation, qij is the rate constant for the
transition Aj → Ai. Any set of nonnegative coefficients qij (i 6= j) corresponds to a master equation.
Therefore, the class of the master equations can be represented as a nonnegative orthant in Rn(n−1) with
coordinates qij (i 6= j). Equations of the same class describe any first order kinetics in perfect mixtures.
The only difference between the general first order kinetics and master equation for the probability
distribution is in the balance conditions: the sum of probabilities should be 1, whereas the sum of
variables (concentrations) for the general first order kinetics may be any positive number.

It is useful to mention that the model equation with equilibrium P ∗ and relaxation time τ

dpi
dt

=
1

τ
(p∗i − pi) (i = 1, . . . , n) (8)

is a particular case of master equation for normalized variables pi (pi ≥ 0,
∑

i pi = 1). Indeed, let us
take in Equation (7) qij = 1

τ
p∗i .

The graph of transitions for a Markov chain is a directed graph. Its vertices correspond to the states
Ai and the edges correspond to the transitions Aj → Ai with the positive transition coefficients, qij > 0.
The digraph of transitions is strongly connected if there exists an oriented path from any vertex Ai to
every other vertex Aj (i 6= j). The continuous-time Markov chain is ergodic if there exists a unique
strictly positive equilibrium distribution P ∗ (p∗i > 0,

∑
i p
∗
i = 1) for master equation (7) [20,21]. Strong

connectivity of the graph of transitions is necessary and sufficient for ergodicity of the corresponding
Markov chain.

A digraph is weakly connected if the underlying undirected graph obtained by replacing directed
edges by undirected ones is connected. The maximal weakly connected components of a digraph are
called connected (or weakly connected) components. The maximal strongly connected subgraphs are
called strong components. The necessary and sufficient condition for the existence of a strongly positive
equilibrium for master equation (7) is: the weakly connected components of the transition graph are its
strong components. An equivalent form of this condition is: if there exists a directed path from Ai to Aj ,
then there exists a directed path from Aj to Ai. In chemical kinetics this condition is sometimes called
the “weak reversibility” condition [22,23]. This implies that the digraph is the union of disjoint strongly
connected digraphs. For each strong component of the transition digraph the normalized equilibrium is
unique and the equilibrium for the whole graph is a convex combination of positive normalized equilibria
for its strong components. If m is the number of these components then the set of normalized positive
equilibria of master equation (P ∗: p∗i > 0,

∑
i p
∗
i = 1) is a relative interior of a m − 1-dimensional

polyhedron in the unit simplex ∆n. The set of non-normalized positive equilibria (P ∗: p∗i > 0) is a
relative interior of a m-dimensional cone in the positive orthant Rn

+.
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We reserve notation Rn
+ for the positive orthant and for the nonnegative orthant we use Rn

+ (the closure
of Rn

+)
The Markov chain in Equation (7) is weakly ergodic if it allows the only conservation law: the sum

of coordinates,
∑

i pi ≡ const. Such a system forgets its initial condition: the distance between any two
trajectories with the same value of the conservation law tends to zero when time goes to infinity. Among
all possible norms, the l1 distance (‖P − Q‖l1 =

∑
i |pi − qi|) plays a special role: it does not increase

in time for any first order kinetic system in master equation (7) and strongly monotonically decreases
to zero for normalized probability distributions (

∑
i pi =

∑
i qi = 1) and weakly ergodic chains. The

difference between weakly ergodic and ergodic systems is in the obligatory existence of a strictly positive
equilibrium for an ergodic system. A Markov chain is weakly ergodic if and only if for each two vertices
Ai, Aj (i 6= j) we can find such a vertex Ak that is reachable by oriented paths both from Ai and from
Aj . This means that the following structure exists [24]:

Ai → . . .→ Ak ← . . .← Aj . (9)

One of the paths can be degenerated: it may be i = k or j = k.
Now, let us restrict our consideration to the set of the Markov chains with the given positive

equilibrium distribution P ∗ (p∗i > 0). We do not assume that this distribution is compulsory unique.
The transition graph should be the union of disjoint strongly connected digraphs (in particular, it may be
strongly connected). Using the known positive equilibrium P ∗ we can rewrite master equation (7) in the
following form

dpi
dt

=
∑
j, j 6=i

qijp
∗
j

(
pj
p∗j
− pi
p∗i

)
(10)

where p∗i and qij are connected by the balance equation

∑
j, j 6=i

qijp
∗
j =

(∑
j, j 6=i

qji

)
p∗i for all i = 1, . . . , n (11)

For the next transformation of master equation we join the mutually reverse transitions in pairs Ai 


Aj in pairs (say, i > j) and introduce the stoichiometric vectors γji with coordinates:

γjik =


−1 if k = j,

1 if k = i,

0 otherwise
(12)

Let us rewrite the master equation (7) in the quasichemical form:

dP

dt
=
∑
i>j

(w+
ij − w−ij)γji (13)

where w+
ij = qijp

∗
j
pj
p∗j

is the rate of the transitions Aj → Ai and w−ij = qjip
∗
i
pi
p∗i

is the rate of the reverse
process Aj ← Ai (i > j).

The reversible systems with detailed balance form an important class of first order kinetics. The
detailed balance condition reads [25]: at equilibrium, w+

ij = w−ij , i.e.,

qijp
∗
j = qjip

∗
i (= w∗ij) i, j = 1, . . . , n (14)
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Here, w∗ij is the equilibrium flux from Ai to Aj and back.
For the systems with detailed balance the quasichemical form of the master equation is especially

simple:
dP

dt
=
∑
i>j

w∗ij

(
pj
p∗j
− pi
p∗i

)
γji (15)

It is important that any set of nonnegative equilibrium fluxes w∗ij (i > j) defines by Equation (15) a
system with detailed balance with a given positive equilibrium P ∗. Therefore, the set of all systems with
detailed balance presented by Equation (15) and a given equilibrium may be represented as a nonnegative
orthant in R

n(n−1)
2 with coordinates w∗ij (i > j).

The decomposition theorem [26,27] states that for any given positive equilibrium P ∗ and any positive
distribution P the set of possible values dP/dt for Equations (13) under the balance condition (11)
coincides with the set of possible values dP/dt for Equations (15) under detailed balance condition
(14).

In other words, for every general system of the form (13) with positive equilibrium P ∗ and any given
non-equilibrium distribution P there exists a system with detailed balance of the form (15) with the
same equilibrium and the same value of the velocity vector dP/dt at point P . Therefore, the sets of the
universal Lyapunov function for the general master equations and for the master equations with detailed
balance coincide.

3. General H-Theorem

Let H(P ) be a convex function on the space of distributions. It is a Lyapunov function for a master
equations with the positive equilibrium P ∗ if dH(P (t))/dt ≤ 0 for any positive normalized solution
P (t). For a system with detailed balance given by Equation (15)

dH(P (t))

dt
= −

∑
i>j

w∗ij

(
pj
p∗j
− pi
p∗i

)(
∂H(P )

∂pj
− ∂H(P )

∂pi

)
(16)

The inequality dH(P (t))/dt ≤ 0 is true for all nonnegative values of w∗ij if and only is it holds for
any term in Equation (16) separately. That is, for any pair i, j (i > j) the convex function H(P ) is a
Lyapunov function for the system (15) where one and only one w∗ij is not zero.

A convex function on a straight line is a Lyapunov function for a one-dimensional system with single
equilibrium if and only if the equilibrium is a minimizer of this function. This elementary fact together
with the previous observation gives us the criterion for universal Lyapunov functions for systems with
detailed balance. Let us introduce the partial equilibria criterion:

Definition 1 (Partial equilibria criterion). A convex function H(P ) on the simplex ∆n of probability
distributions satisfies the partial equilibria criterion with a positive equilibrium P ∗ if the proportion
pi/p

∗
i = pj/p

∗
j give the minimizers in the problem (6).

Proposition 1. A convex function H(P ) on the simplex ∆n of probability distributions is a Lyapunov
function for all master equations with the given equilibrium P ∗ that obey the principle of detailed
balance if and only if it satisfies the partial equilibria criterion with the equilibrium P ∗.
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Figure 1. The triangle of distributions for the system with three states A1, A2, A3 and the
equilibrium p∗1 = 4

7
, p∗2 = 2

7
, p∗3 = 1

7
. The lines of partial equilibria Ai 
 Aj given by the

proportions pi/p∗i = pj/p
∗
j are shown, for A1 
 A2 by solid straight lines (with one end at

the vertex A3), for A2 
 A3 and for A1 
 A3 by dashed lines. The lines of conditional
minima of H(P ) in problem (6) are presented for the partial equilibrium A1 
 A2 (a) for
the squared Euclidean distance (a circle here is an example of the H(P ) level set) and (b)
for the Itakura-Saito distance. Between these lines and the line of partial equilibria the “no
H-theorem zone” is situated. In this zone,H(P ) increases in time for some master equations
with equilibrium P ∗. Similar zones (not shown) exist near other partial equilibrium lines too.
Outside these zones, H(P ) monotonically decreases in time for any master equation with
equilibrium P ∗.
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b) 

Combination of this Proposition with the decomposition theorem [26] gives the same criterion for
general master equations without hypothesis about detailed balance

Proposition 2. A convex function H(P ) on the simplex ∆n of probability distributions is a Lyapunov
function for all master equations with the given equilibrium P ∗ if and only if it satisfies the partial
equilibria criterion with the equilibrium P ∗.

These two propositions together form the general H-theorem.

Theorem 1. The partial equilibria criterion with a positive equilibrium P ∗ is a necessary condition for
a convex function to be the universal Lyapunov function for all master equations with detailed balance
and equilibrium P ∗ and a sufficient condition for this function to be the universal Lyapunov function for
all master equations with equilibrium P ∗.

Let us stress that here the partial equilibria criterion provides a necessary condition for systems with
detailed balance (and, therefore, for the general systems without detailed balance assumption) and a
sufficient condition for the general systems (and, therefore, for the systems with detailed balance too).

4. Examples
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The simplest Bregman divergence is the squared Euclidean distance between P and P ∗,
∑

i(pi−p∗i )2.
The solution to the problem (6) is: pi − p∗i = pj − p∗j . Obviously, it differs from the proportion required
by the partial equilibria criterion pi

pj
=

p∗i
p∗j

(Figure 1a).

For the Itakura-Saito distance (2) the solution to the problem (6) is: 1
pi
− 1

p∗i
= 1

pj
− 1

p∗j
. It also differs

from the proportion required (Figure 1b).
If the single equilibrium in 1D system is not a minimizer of a convex function H then dH/dt > 0 on

the interval between the equilibrium and minimizer of H (or minimizers if it is not unique). Therefore,
if H(P ) does not satisfy the partial equilibria criterion then in the simplex of distributions there exists an
area bordered by the partial equilibria surface for Ai 
 Aj and by the minimizers for the problem (6),
where for some master equations dH/dt > 0 (Figure 1). In particular, in such an area dH/dt > 0 for
the simple system with two mutually reverse transitions, Ai 
 Aj , and the same equilibrium.

If H satisfies the partial equilibria criterion, then the minimizers for the problem (6) coincide with the
partial equilibria surface for Ai 
 Aj , and the “no H-theorem zone” vanishes.

The partial equilibria criterion allows a simple geometric interpretation. Let us consider a sublevel
set of H(P ) in the simplex ∆n: Uh = {P ∈ ∆n | H(P ) ≤ h}. Let the level set be Lh = {P ∈
∆n | H(P ) = h}. For the partial equilibrium Ai 
 Aj we use the notation Eij . It is given by the
equation pi/p∗i = pj/p

∗
j . The geometric equivalent of the partial equilibrium condition is: for all i, j

(i 6= j) and every P ∈ Lh ∩Eij the straight line P +λγij (λ ∈ R) is a supporting line of Uh. This means
that this line does not intersect the interior of Uh.

We illustrate this condition on the plane for three states in Figure 2. The level set of H is represented
by the dot-dash line. It intersects the lines of partial equilibria (dashed lines) at points B1,2,3 and C1,2,3.
For each point P from these six intersections (P = Bi and P = Ci) the line P + λγjk (λ ∈ R) should
be a supporting line of the sublevel set (the region bounded by the dot-dash line). Here, i, j, k should
all be different numbers. Segments of these lines form a hexagon circumscribed around the level set
(Figure 2b).

The points of intersection B1,2,3 and C1,2,3 cannot be selected arbitrarily on the lines of partial
equilibria. First of all, they should be the vertices of a convex hexagon with the equilibrium P ∗ inside.
Secondly, due to the partial equilibria criterion, the intersections of the straight line P + λγij with the
partial equilibria Eij are the conditional minimizers of H on this line, and therefore should belong to the
sublevel set UH(P ). If we apply this statement to P = Bi and P = Ci, then we will get two projections
of this point onto partial equilibria Eij parallel to γij (Figure 2a). These projections should belong to the
hexagon with the vertices B1,2,3 and C1,2,3. They produce a six-ray star that should be inscribed into the
level set.

In Figure 2 we present the following characterization of the level set of a Lyapunov function for
the Markov chains with three states. This convex set should be circumscribed around the six-ray star
(Figure 2a) and inscribed in the hexagon of the supporting lines (Figure 2b).

All the f -divergences given by Equation (1) satisfy the partial equilibria criterion and are the universal
Lyapunov functions but the reverse is not true: the class of universal Lyapunov functions is much wider
than the set of the f -divergences. Let us consider the set “PEC” of convex functions H(P‖P ∗), which
satisfy the partial equilibria criterion. It is closed with respect to the following operations
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Figure 2. Geometry of the Lyapunov function level set. The triangle of distributions for the
system with three states A1, A2, A3 and the equilibrium p∗1 = 4

7
, p∗2 = 2

7
, p∗3 = 1

7
. The lines

of partial equilibria Ai 
 Aj given by the proportions pi/p∗i = pj/p
∗
j are shown by dashed

lines. The dash-dot line is the level set of a Lyapunov function H . It intersects the lines of
partial equilibria at points B1,2,3 and C1,2,3. (The points Bi are close to the vertices Ai, the
points Ci belong to the same partial equilibrium but on another side of the equilibrium P ∗.)
For each point Bi, Ci the corresponding partial equilibria of two transitions Ai 
 Aj (j 6= i)
are presented (a). These partial equilibria should belong to the sublevel set of H . They are
the projections of Bi, Ci onto the lines of partial equilibria Ai 
 Aj (j 6= i) with projecting
rays parallel to the sides [Ai, Aj] of the triangle (i.e., to the stoichiometric vectors γji (12)).
The six-ray star with verticesBi, Ci should be inside the dash-dot contour (a). Therefore, the
projection of Bi onto the partial equilibrium Ai 
 Aj should belong to the segment [Ck, P

∗]

and the projection of Ci onto the partial equilibrium Ai 
 Aj should belong to the segment
[Bk, P

∗] (a). The lines parallel to the sides Aj, Ak of the triangle should be supporting lines
of the level set of H at points Bi, Ci (i, j, k are different numbers) (b). Segments of these
lines form a circumscribed hexagon around the level set (b).
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• Conic combination: if Hj(P‖P ∗) ∈ PEC then
∑

j αjHj(P‖P ∗) ∈ PEC for nonnegative
coefficients αj ≥ 0.

• Convex monotonic transformation of scale: if H(P‖P ∗) ∈ PEC then F (H(P‖P ∗)) ∈ PEC for
any convex monotonically increasing function of one variable F .

Using these operations we can construct new universal Lyapunov functions from a given set.
For example,

1

2

∑
i

(pi − p∗i )2

p∗i
+
∏
j

exp
(pj − p∗j)2

2p∗j

is a universal Lyapunov function that does not have the f -divergence form because the first sum is an
f -divergence given by Equation (1) with h(x) = 1

2
(x − 1)2 and the product is the exponent of this

f -divergence (exp is convex and monotonically increasing function).
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The following function satisfies the partial equilibria criterion for every ε > 0.

1

2

∑
i

(pi − p∗i )2

p∗i
+

ε

4n2

∏
i,j,i6=j

(pip
∗
j − pjp∗i )2 (17)

It is convex for 0 < ε < 1. (Just apply the Gershgorin theorem [28] to the Hessian and use that all pi, p∗i ≤
1.) Therefore, it is a universal Lyapunov function for master equation in ∆n if 0 < ε < 1. The partial
equilibria criterion together with the convexity condition allows us to construct many such examples.

5. General H-Theorem for Nonlinear Kinetics

5.1. Generalized Mass Action Law

Several formalisms are developed in chemical kinetics and non-equilibrium thermodynamics for the
construction of general kinetic equations with a given “thermodynamic Lyapunov functional”. The
motivation of this approach “from thermodynamics to kinetics” is simple [29,30]: (i) the thermodynamic
data are usually more reliable than data about kinetics and we know the thermodynamic functions better
than the details of kinetic equations, and (ii) positivity of entropy production is a fundamental law and
we prefer to respect it “from scratch”, by the structure of kinetic equations.

GMAL is a method for the construction of dissipative kinetic equations for a given thermodynamic
potential H . Other general thermodynamic approaches [31–33] give similar results for a given
stoichiometric algebra. Below we introduce GMAL following [29,30,34].

The list of components is a finite set of symbols A1, . . . , An.
A reaction mechanism is a finite set of the stoichiometric equations of elementary reactions:∑

i

αρiAi →
∑
i

βρiAi (18)

where ρ = 1, . . . ,m is the reaction number and the stoichiometric coefficients αρi, βρi are nonnegative
numbers. Usually, these numbers are assumed to be integer but in some applications the construction
should be more flexible and admit real nonnegative values. Let αρ, βρ be the vectors with coordinates
αρi, βρi correspondingly.

A stoichiometric vector γρ of the reaction in Equation (18) is a n-dimensional vector γρ = βρ − αρ
with coordinates

γρi = βρi − αρi (19)

that is, “gain minus loss” in the ρth elementary reaction. We assume αρ 6= βρ to avoid trivial reactions
with zero γρ.

One of the standard assumptions is existence of a strictly positive stoichiometric conservation law, a
vector b = (bi), bi > 0 such that

∑
i biγρi = 0 for all ρ. This may be the conservation of mass, of the

total probability, or of the total number of atoms, for example.
A nonnegative extensive variable Ni, the amount of Ai, corresponds to each component. We call the

vector N with coordinates Ni “the composition vector”. The concentration of Ai is an intensive variable
ci = Ni/V , where V > 0 is the volume. The vector c = N/V with coordinates ci is the vector of
concentrations.
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Let us consider a domain U in n-dimensional real vector space Rn with coordinates N1, . . . , Nn ≥ 0

(U ⊂ Rn
+). For each Ni, a dimensionless entropy (or free entropy, for example, Massieu, Planck,

or Massieu-Planck potential that corresponds to the selected conditions [4]) S(N) is defined in U .
“Dimensionless” means that we use S/R instead of physical S. This choice of units corresponds to
the informational entropy (p log p instead of kBp ln p).

The dual variables, potentials, are defined as the partial derivatives of H = −S:

µ̌i =
∂H

∂Ni

, µ̌ = ∇NH (20)

This definition differs from the chemical potentials [4] by the factor 1/RT . We keep the same sign as for
the chemical potentials, and this differs from the standard Legendre transform for S. (It is the Legendre
transform for the function H = −S.) The standard condition for the reversibility of the Legendre
transform is strong positive definiteness of the Hessian of H .

For each reaction, a nonnegative quantity, reaction rate rρ is defined. We assume that this quantity has
the following structure (compare with Equations (4), (7), and (14) in [32] and Equation (4.10) in [33]):

rρ = ϕρ exp(αρ, µ̌) (21)

where (αρ, µ̌) =
∑

i αρiµ̌i is the standard inner product. Here and below, exp( , ) is the exponent of the
standard inner product. The kinetic factor ϕρ ≥ is an intensive quantity and the expression exp(αρ, µ̌) is
the Boltzmann factor of the ρth elementary reaction.

In the standard formalism of chemical kinetics the reaction rates are intensive variables and in kinetic
equations for N an additional factor—the volume—appears. For heterogeneous systems, there may be
several “volumes” (including interphase surfaces).

A nonnegative extensive variable Ni, the amount of Ai, corresponds to each component. We call
the vector N with coordinates Ni “the composition vector”. N ∈ Rn

+. The concentration of Ai is an
intensive variable ci = Ni/V , where V > 0 is the volume. If the system is heterogeneous then there are
several “volumes” (volumes, surfaces, etc.), and in each volume there are the composition vector and the
vector of concentrations [30,34]. Here we will consider homogeneous systems.

The kinetic equations for a homogeneous system in the absence of external fluxes are

dN

dt
= V

∑
ρ

rργρ = V
∑
ρ

γρϕρ exp(αρ, µ̌) (22)

If the volume is not constant then the equations for concentrations include V̇ and have different form
(this is typical for combustion reactions, for example).

The classical Mass Action Law gives us an important particular case of GMAL given by Equation
(21). Let us take the perfect free entropy

S = −
∑
i

Ni

(
ln

(
ci
c∗i

)
− 1

)
(23)

where ci = Ni/V ≥ 0 are concentrations and c∗i > 0 are the standard equilibrium concentrations.
For the perfect entropy function presented in Equation (23)

µ̌i = ln

(
ci
c∗i

)
, exp(αρ, µ̌) =

∏
i

(
ci
c∗i

)αρi
(24)
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and for the GMAL reaction rate function given by (21) we get

rρ = ϕρ
∏
i

(
ci
c∗i

)αρi
(25)

The standard assumption for the Mass Action Law in physics and chemistry is that ϕ and c∗ are functions
of temperature: ϕρ = ϕρ(T ) and c∗i = c∗i (T ). To return to the kinetic constants notation and in particular
to first order kinetics in the quasichemical form presented in Equation (13), we should write:

ϕρ∏
i c
∗
i
αρi

= kρ (26)

5.2. General Entropy Production Formula

Thus, the following entities are given: the set of components Ai (i = 1, . . . , n), the set of m
elementary reactions presented by stoichiometric equations (18), the thermodynamic Lyapunov function
H(N, V, . . .) [4,30,35], where dots (marks of omission) stand for the quantities that do not change in
time under given conditions, for example, temperature for isothermal processes or energy for isolated
systems. The GMAL presents the reaction rate rρ in Equation (21) as a product of two factors: the
Boltzmann factor and the kinetic factor. Simple algebra gives for the time derivative of H:

dH

dt
=
∑
i

∂H

∂Ni

dNi

dt

=
∑
i

µ̌iV
∑
ρ

γρiϕρ exp(αρ, µ̌)

= V
∑
ρ

(γρ, µ̌)ϕρ exp(αρ, µ̌)

(27)

An auxiliary function θ(λ) of one variable λ ∈ [0, 1] is convenient for analysis of dS/dt (see
[29,34,36]):

θ(λ) =
∑
ρ

ϕρ exp[(µ̌, (λαρ + (1− λ)βρ))] (28)

With this function, Ḣ defined by Equation (27) has a very simple form:

dH

dt
= −V dθ(λ)

dλ

∣∣∣∣
λ=1

(29)

The auxiliary function θ(λ) allows the following interpretation. Let us introduce the deformed
stoichiometric mechanism with the stoichiometric vectors,

αρ(λ) = λαρ + (1− λ)βρ , βρ(λ) = λβρ + (1− λ)αρ (30)

which is the initial mechanism when λ = 1, the reverted mechanism with interchange of α and β when
λ = 0, and the trivial mechanism (the left and right hand sides of the stoichiometric equations coincide)
when λ = 1/2. Let the deformed reaction rate be rρ(λ) = ϕρ exp(αρ(λ), µ̌) (the genuine kinetic factor
is combined with the deformed Boltzmann factor). Then θ(λ) =

∑
ρ rρ(λ).

It is easy to check that θ′′(λ) ≥ 0 and, therefore, θ(λ) is a convex function.
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The inequality
θ′(1) ≥ 0 (31)

is necessary and sufficient for accordance between kinetics and thermodynamics (decrease of free energy
or positivity of entropy production). This inequality is a condition on the kinetic factors. Together with
the positivity condition ϕρ ≥ 0, it defines a convex cone in the space of vectors of kinetic factors ϕρ
(ρ = 1, . . . ,m). There exist two less general and more restrictive sufficient conditions: detailed balance
and complex balance (known also as semidetailed or cyclic balance).

5.3. Detailed Balance

The detailed balance condition consists of two assumptions: (i) for each elementary reaction∑
i αρiAi →

∑
i βρiAi in the mechanism (18) there exists a reverse reaction

∑
i αρiAi ←

∑
i βρiAi.

Let us join these reactions in pairs ∑
i

αρiAi 

∑
i

βρiAi (32)

After this joining, the total number of stoichiometric equations decreases. We distinguish the reaction
rates and kinetic factors for direct and inverse reactions by the upper plus or minus:

r+
ρ = ϕ+

ρ exp(αρ, µ̌) , r−ρ = ϕ−ρ exp(βρ, µ̌) (33)

The kinetic equations take the form

dN

dt
= V

∑
ρ

(r+
ρ − r−ρ )γρ (34)

The condition of detailed balance in GMAL is simple and elegant:

ϕ+
ρ = ϕ−ρ (35)

For the systems with detailed balance we can take ϕρ = ϕ+
ρ = ϕ−ρ and write for the reaction rate:

rρ = r+
ρ − r−ρ = ϕρ(exp(αρ, µ̌)− exp(βρ, µ̌)) (36)

M. Feinberg called this kinetic law the “Marselin-De Donder” kinetics [37].
Under the detailed balance conditions, the auxiliary function θ(λ) is symmetric with respect to change

λ 7→ (1− λ). Therefore, θ(1) = θ(0) and, because of convexity of θ(λ), the inequality holds: θ′(1) ≥ 0.
Therefore, Ḣ ≤ 0 and kinetic equations obey the second law of thermodynamics.

The explicit formula for Ḣ ≤ 0 has the well known form since Boltzmann proved his H-theorem in
1872:

dH

dt
= −V

∑
ρ

(ln r+
ρ − ln r−ρ )(r+

ρ − r−ρ ) ≤ 0 (37)

A convenient equivalent form of Ḣ ≤ 0 is proposed in [38]:

dH

dt
= −V

∑
ρ

(r+
ρ + r−ρ )Aρ tanh

Aρ

2
≤ 0 (38)
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where
Aρ = −(γρ, µ̌) (= −(γρ, µ)/RT , where µ is the chemical potential)

is a normalized affinity. In this formula, the kinetic information is collected in the nonnegative factors,
the sums of reaction rates (r+

ρ + r−ρ ). The purely thermodynamic multiplier A tanh(A/2) ≥ 0 is positive
for non-zero A. For small |A|, the expression A tanh(A/2) behaves like A2/2 and for large |A| it behaves
like the absolute value, |A|.

The detailed balance condition reflects “microreversibility”, that is, time-reversibility of the dynamic
microscopic description and was first introduced by Boltzmann in 1872 as a consequence of the
reversibility of collisions in Newtonian mechanics.

5.4. Complex Balance

The complex balance condition was invented by Boltzmann in 1887 for the Boltzmann equation [39]
as an answer to the Lorentz objections [40] against Boltzmann’s proof of the H-theorem. Stueckelberg
demonstrated in 1952 that this condition follows from the Markovian microkinetics of fast intermediates
if their concentrations are small [41]. Under this asymptotic assumption this condition is just the
probability balance condition for the underlying Markov process. (Stueckelberg considered this property
as a consequence of “unitarity” in the S-matrix terminology.) It was known as the semidetailed or cyclic
balance condition. This condition was rediscovered in the framework of chemical kinetics by Horn and
Jackson in 1972 [42] and called the complex balance condition. Now it is used for chemical reaction
networks in chemical engineering [43]. Detailed analysis of the backgrounds of the complex balance
condition is given in [34].

Formally, the complex balance condition means that θ(1) ≡ θ(0) for all values of µ̌. We start from
the initial stoichiometric equations (18) without joining the direct and reverse reactions. The equality
θ(1) ≡ θ(0) reads ∑

ρ

ϕρ exp(µ̌, αρ) =
∑
ρ

ϕρ exp(µ̌, βρ) (39)

Let us consider the family of vectors {αρ, βρ} (ρ = 1, . . . ,m). Usually, some of these vectors
coincide. Assume that there are q different vectors among them. Let y1, . . . , yq be these vectors. For
each j = 1, . . . , q we take

R+
j = {ρ |αρ = yj} , R−j = {ρ | βρ = yj} (40)

We can rewrite Equation (39) in the form

q∑
j=1

exp(µ̌, yj)

∑
ρ∈R+

j

ϕρ −
∑
ρ∈R−j

ϕρ

 = 0 (41)

The Boltzmann factors exp(µ̌, yj) are linearly independent functions. Therefore, the natural way to meet
these conditions is: for any j = 1, . . . , q ∑

ρ∈R+
j

ϕρ −
∑
ρ∈R−j

ϕρ = 0 (42)
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This is the general complex balance condition. This condition is sufficient for the inequality Ḣ = θ′(1) ≤
0, because it provides the equality θ(1) = θ(0) and θ(λ) is a convex function.

It is easy to check that for the first order kinetics given by Equation (10) (or Equation (13)) with
positive equilibrium, the complex balance condition is just the balance equation (11) and always holds.

5.5. Cyclic Decomposition of the Systems with Complex Balance

The complex balance conditions defined by Equation (42) allow a simple geometric interpretation.
Let us introduce the digraph of transformation of complexes. The vertices of this digraph correspond to
the formal sums (y, A) (“complexes”), where A is the vector of components, and y ∈ {y1, . . . , yq} are
vectors αρ or βρ from the stoichiometric equations of the elementary reactions (18). The edges of the
digraph correspond to the elementary reactions with non-zero kinetic factor.

Let us assign to each edge (αρ, A) → (βρ, A) the auxiliary current—the kinetic factor ϕρ. For these
currents, the complex balance condition presented by Equation (42) is just Kirchhoff’s first rule: the sum
of the input currents is equal to the sum of the output currents for each vertex. (We have to stress that
these auxiliary currents are not the actual rates of transformations.)

Let us use for the vertices the notation Θj: Θj = (yj, A), (j = 1, . . . , q) and denote ϕlj the fluxes for
the edge Θj → Θl.

The simple cycle is the digraph Θi1 → Θi2 → . . . → Θik → Θi1 , where all the complexes Θil

(l = 1, . . . , k) are different. We say that the simple cycle is normalized if all the corresponding auxiliary
fluxes are unit: ϕij+1 ij = ϕi1 ik = 1.

The graph of the transformation of complexes cannot be arbitrary if the system satisfies the complex
balance condition [22].

Proposition 3. If the system satisfies the complex balance condition (i.e. Equation (42) holds) then every
edge of the digraph of transformation of complexes is included into a simple cycle.

Proof. First of all, let us formulate Kirchhoff’s first rule (42) for subsets: if the digraph of transformation
of complexes satisfies Equation (42), then for any set of complexes Ω∑

Θ∈Ω,Φ/∈Ω

ϕΘΦ =
∑

Θ∈Ω,Φ/∈Ω

ϕΦΘ (43)

where ϕΦΘ is the positive kinetic factor for the reaction Θ → Φ if it belongs to the reaction mechanism
(i.e., the edge Θ → Φ belongs to the digraph of transformations) and ϕΦΘ = 0 if it does not.
Equation (43) is just the result of summation of Equations (42) for all (yj, A) = Θ ∈ Ω.

We say that a state Θj is reachable from a state Θk if k = i or there exists a non-empty chain of
transitions with non-zero coefficients that starts at Θk and ends at Θj: Θk → . . . → Θj . Let Θi↓ be the
set of states reachable from Θi. The set Θi↓ has no output edges.

Assume that the edge Θj → Θi is not included in a simple cycle, which means Θj /∈ Θi↓. Therefore,
the set Ω = Θi↓ has the input edge (Θj → Θi) but no output edges and cannot satisfy Equation (43).
This contradiction proves the proposition.
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This property (every edge is included in a simple cycle) is equivalent to the so-called “weak
reversibility” or to the property that every weakly connected component of the digraph is its strong
component.

For every graph with the system of fluxes, which obey Kirchhoff’s first rule, the cycle decomposition
theorem holds. It can be extracted from many books and papers [20,26,44]. Let us recall the notion of
extreme ray. A ray with direction vector x 6= 0 is a set {λx} (λ ≥ 0). A ray l is an extreme ray of a cone
Q if for any u ∈ l and any x, y ∈ Q, whenever u = (x+ y)/2, we must have x, y ∈ l. If a closed convex
cone does not include a whole straight line then it is the convex hull of its extreme rays [45].

Let us consider a digraph Q with vertices Θi, the set of edges E and the system of auxiliary fluxes
along the edges ϕij ≥ 0 ((j, i) ∈ E). The set of all nonnegative functions on E, ϕ : (j, i) 7→ ϕij , is a
nonnegative orthant R|E|+ . Kirchhoff’s first rule (Equation (42)) together with nonnegativity of the kinetic
factors define a cone of the systems with complex balance Q ⊂ R|E|+ .

Proposition 4 (Cycle decomposition of systems with complex balance). Every extreme ray of Q has a
direction vector that corresponds to a simple normalized cycle Θi1 → Θi2 → . . . → Θik → Θi1 , where
all the complexes Θil (l = 1, . . . , k) are different, all the corresponding fluxes are unit, ϕij+1 ij = ϕi1 ik =

1, and other fluxes are zeros.

Proof. Let a function φ : E → R+ be an extreme ray of Q and suppφ = {(j, i) ∈ E |φij > 0}. Due
to Proposition 3 each edge from suppφ is included in a simple cycle formed by edges from suppφ. Let
us take one this cycle Θi1 → Θi2 → . . . → Θik → Θi1 . Denote the fluxes of the corresponding simple
normalized cycle by ψ. It is a function on E: ψij+1 ij = ψi1 ik = 1 and ψij = 0 if (i, j) ∈ E but
(i, j) 6= (ij+1, ij) and (i, j) 6= (i1, ik) (i, j = 1, . . . , k, i 6= j).

Assume that suppφ includes at least one edge that does not belong to the cycle Θi1 → Θi2 → . . . →
Θik → Θi1 . Then, for sufficiently small κ > 0, φ ± κψ ∈ Q and the vector φ ± κψ is not proportional
to φ. This contradiction proves the proposition.

This decomposition theorem explains why the complex balance condition was often called the “cyclic
balance condition”.

5.6. Local Equivalence of Systems with Detailed and Complex Balance

The class of systems with detailed balance is the proper subset of the class of systems with complex
balance. A simple (irreversible) cycle of the length k > 2 gives a simplest and famous example of the
complex balance system without detailed balance condition.

For Markov chains, the complex balance systems are all the systems that have a positive equilibrium
distribution presented by Equation (11), whereas the systems with detailed balance form the proper
subclass of the Markov chains, the so-called reversible chains.

In nonlinear kinetics, the systems with complex balance provide the natural generalization of the
Markov processes. They deserve the term “nonlinear Markov processes”, though it is occupied by a
much wider notion [46]. The systems with detailed balance form the proper subset of this class.

Nevertheless, in some special sense the classes of systems with detailed balance and with the complex
balance are equivalent. Let us consider a thermodynamic state given by the vector of potentials µ̌ defined
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by Equation (20). Let all the reactions in the reaction mechanism be reversible (i.e., for every transition
Θi → Θj the reverse transition Θi ← Θj is allowed and the corresponding edge belongs to the digraph
of complex transformations). Calculate the right hand side of the kinetic equations (34) with the detailed
balance condition given by Equation (35) for a given value of µ̌ and all possible values of ϕ+

ρ = ϕ−ρ .
The set of these values of Ṅ is a convex cone. Denote this cone QDB(µ̌). For the same transition
graph, calculate the right hand side of the kinetic equation (22) under the complex balance condition
(42). The set of these values of Ṅ is also a convex cone. Denote it QCB(µ̌). It is obvious that
QDB(µ̌) ⊆ QCB(µ̌). Surprisingly, these cones coincide. In [26] we proved this fact on the basis of
the Michaelis-Menten-Stueckelberg theorem [34] about connection of the macroscopic GMAL kinetics
and the complex balance condition with the Markov microscopic description and under some asymptotic
assumptions. Below a direct proof is presented.

Theorem 2 (Local equivalence of detailed and complex balance).

QDB(µ̌) = QCB(µ̌) (44)

Proof. Because of the cycle decomposition (Proposition 4) it is sufficient to prove this theorem for
simple normalized cycles. Let us use induction on the cycle length k. For k = 2 the transition graph is
Θ1 
 Θ2 and the detailed balance condition (35) coincides with the complex balance condition (42).
Assume that for the cycles of the length below k the theorem is proved. Consider a normalized simple
cycle Θ1 → Θ2 → . . .Θk → Θ1, Θi = (yi, A). The corresponding kinetic equations are

dN

dt
=(y2 − y1) exp(µ̌, y1) + (y3 − y2) exp(µ̌, y2) + . . .

+ (yk−1 − yk) exp(µ̌, yk−1) + (yk − y1) exp(µ̌, yk)
(45)

At the equilibrium, all systems with detailed balance or with complex balance give Ṅ = 0. Assume that
the state µ̌ is non-equilibrium and therefore not all the Boltzmann factors exp(µ̌, yi) are equal. Select
i such that the Boltzmann factor exp(µ̌, yi) has minimal value, while for the next position in the cycle
this factor becomes bigger. We can use a cyclic permutation and assume that the factor exp(µ̌, y1) is the
minimal one and exp(µ̌, y2) > exp(µ̌, y1).

Let us find a kinetic factor ϕ such that the reaction system consisting of two cycles, a cycle of the
length 2 with detailed balance Θ1

ϕ


ϕ

Θ2 (here the kinetic factors are shown above and below the arrows)

and a simple normalized cycle of the length k − 1, Θ2 → . . .Θk → Θ2, gives the same Ṅ at the state µ̌
as the initial scheme. We obtain from Equation (45) the following necessary and sufficient condition

(y1−yk) exp(µ̌, yk)+(y2−y1) exp(µ̌, y1) = (y2−yk) exp(µ̌, yk)+ϕ(y2−y1)(exp(µ̌, y1)− exp(µ̌, y2))

. It is sufficient to equate here the coefficients at every yi (i = 1, 2, k). The result is

ϕ =
exp(µ̌, yk)− exp(µ̌, y1)

exp(µ̌, y2)− exp(µ̌, y1)

By the induction assumption we proved that theorem for the cycles of arbitrary length and, therefore, it
is valid for all reaction schemes with complex balance.
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The cone QDB(µ̌) of the possible values of Ṅ in Equation (34) is a polyhedral cone with finite set of
extreme rays at any non-equilibrium state µ̌ for the systems with detailed balance. Each of its extreme
rays has the direction vector of the form

γρsign(exp(µ̌, αρ)− exp(µ̌, βρ)) (46)

This follows from the form of the reaction rate presented by Equation (36) for the kinetic equations (34).
Following Theorem 2, the cone of the possible values of Ṅ for systems with complex balance has the
same set of extreme rays. Each extreme ray corresponds to a single reversible elementary reaction with
the detailed balance condition (35).

5.7. General H-Theorem for GMAL

Consider GMAL kinetics with the given reaction mechanism presented by stoichiometric equations
(32) and the detailed balance condition (35). The reaction rates of the elementary reaction for the kinetic
equations (34) are proportional to the nonnegative parameter ϕρ in Equation (36). These m nonnegative
numbers ϕρ (ρ = 1, . . . ,m) are independent in the following sense: for any set of values ϕρ ≥ 0 the
kinetic equations (34) satisfy the H-theorem in the form of Equation (38):

dH

dt
= −V

∑
ρ

ϕρ(exp(αρ, µ̌) + exp(βρ, µ̌))Aρ tanh
Aρ

2
≤ 0 (47)

Therefore, nonnegativity is the only a priori restriction on the values of ϕρ (ρ = 1, . . . ,m).
One Lyapunov function for the GMAL kinetics with the given reaction mechanism and the

detailed balance condition obviously exists. This is the thermodynamic Lyapunov function H used
in GMAL construction. For ideal systems (in particular, for master equation) H has the standard form∑

iNi(ln(ci/c
∗
i )−1) given by Equation (23). Usually, H is assumed to be convex and some singularities

(like c ln c) near zeros of c may be required for positivity preservation in kinetics (Ṅi ≥ 0 if ci = 0). The
choice of the thermodynamic Lyapunov function for GMAL construction is wide. We consider kinetic
equations in a compact convex set U and assume H to be convex and continuous in U and differentiable
in the relative interior of U with derivatives continued by continuity to U .

Assume that we select the thermodynamic Lyapunov function H and the reaction mechanism in the
form (32). Are there other universal Lyapunov functions for GMAL kinetics with detailed balance
and given mechanism? “Universal” here means “independent of the choice of the nonnegative kinetic
factors”.

For a given reaction mechanism we introduce the partial equilibria criterion by analogy to
Definition 1. Roughly speaking, a convex function F satisfies this criterion if its conditional minima
correctly describe the partial equilibria of elementary reactions.

For each elementary reaction
∑

i αρiAi 

∑

i βρiAi from the reaction mechanism given by the
stoichiometric equations (32) and any X ∈ U we define an interval of a straight line

IX,ρ = {X + λγρ |λ ∈ R} ∩ U. (48)



Entropy 2014, 16 2426

Definition 2 (Partial equilibria criterion for GMAL). A convex function F (N) on U satisfies the
partial equilibria criterion with a given thermodynamic Lyapunov function H and reversible reaction
mechanism given by stoichiometric equations (32) if

argmin
N∈IX,ρ

H(N) ⊆ argmin
N∈IX,ρ

F (N) (49)

for all X ∈ U , ρ = 1, . . . ,m.

Theorem 3. A convex function F (N) on U is a Lyapunov function for all kinetic equations (34) with
the given thermodynamic Lyapunov function H and reaction rates presented by Equation (36) (detailed
balance) if and only if it satisfies the partial equilibria criterion (Definition 2).

Proof. The partial equilibria criterion is necessary because F (N) should be a Lyapunov function for
a reaction mechanism that consists of any single reversible reaction from the reaction mechanism
(32). It is also sufficient because for the whole reaction mechanism the kinetic equations (34) are the
conic combinations of the kinetic equations for single reversible reactions from the reaction mechanism
(32).

For the general reaction systems with complex balance we can use the theorem about local
equivalence (Theorem 2). Consider a GMAL reaction system with the mechanism (18) and the complex
balance condition.

Theorem 4. A convex function F (N) on U is a Lyapunov function for all kinetic equations (22) with
the given thermodynamic Lyapunov function H and the complex balance condition (42) if it satisfies the
partial equilibria criterion (Definition 2).

Proof. The theorem follows immediately from Theorem 3 about Lyapunov functions for systems with
detailed balance and the theorem about local equivalence between systems with local and complex
balance (Theorem 2).

The general H-theorems for GMAL is similar to Theorem 1 for Markov chains. Nevertheless,
many non-classical universal Lyapunov functions are known for master equations, for example, the
f -divergences given by Equation (1), while for a nonlinear reaction mechanism it is difficult to present a
single example different from the thermodynamic Lyapunov function or its monotonic transformations.
The following family of example generalizes Equation (17).

F (N) = H(N) + εf(N)
∏
ρ

(exp(αρ, µ̌)− exp(βρ, µ̌))2 (50)

where f(N) is a non-negative differentiable function and ε > 0 is a sufficiently small number. This
function satisfies the conditional equilibria criterion. For continuous H(N) on compact U with the
spectrum of the Hessian uniformly separated from zero, this F (N) is convex for sufficiently small ε > 0.
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Figure 3. Monotonicity on both sides of the minimizer λ∗ for convex (a) and non-convex
but quasiconvex (b) functions

 

λ λ* 
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6. Generalization: Weakened Convexity Condition, Directional Convexity and Quasiconvexity

In all versions of the general H-theorems we use convexity of the Lyapunov functions. Strong
convexity of the thermodynamic Lyapunov functions H (or even positive definiteness of its Hessian)
is needed, indeed, to provide reversibility of the Legendre transform N ↔ ∇H .

For the kinetic Lyapunov functions that satisfy the partial equilibria criterion, we use, actually, a rather
weak consequence of convexity in restrictions on the straight lines X +λγ (where λ ∈ R is a coordinate
on the real line, γ is a stoichiometric vector of an elementary reaction): if λ∗ = argmin

λ∈R
F (X + λγ) then

on the half-lines (rays) λ ≥ λ∗ and λ ≤ λ∗ function F (X + λγ) is monotonic. It does not decrease
for λ ≥ λ∗ and does not increase for λ ≤ λ∗. Of course, convexity is sufficient (Figure 3a) but a much
weaker property is needed (Figure 3b).

A function F on a convex set U is quasiconvex [47] if all its sublevel sets are convex. It means that
for every X, Y ∈ U

F (λX + (1− λ)Y ) ≤ max{F (X), F (Y )} for all λ ∈ [0, 1] (51)

In particular, a function F on a segment is quasiconvex if all its sublevel sets are segments.
Among many other types of convexity and quasiconvexity (see, for example [48]) two are important

for the general H-theorem. We do not need convexity of functions along all straight lines in U . It is
sufficient that the function is convex on the straight lines X + Rγρ, where γρ are the stoichiometric
(direction) vectors of the elementary reactions.

Let D be a set of vectors. A function F is D-convex if its restriction to each line parallel to a
nonzero v ∈ D is convex [49]. In our case, D is the set of stoichiometric vectors of the transitions,
D = {γρ | ρ = 1, . . . ,m}. We can use this directional convexity instead of convexity in Propositions 1, 2
and Theorems 1, 3, 4.

Finally, we can relax the convexity conditions even more and postulate directional quasiconvexity [50]
for the set of directionsD = {γρ | ρ = 1, . . . ,m}. Propositions 1, 2 and Theorems 1, 3, 4 will be still true
if the functions are continuous, quasiconvex in restrictions on all lines X + Rγρ and satisfy the partial
equilibria criterion.
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Figure 4. Relations between different types of convexity

 

Convexity 
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Relations between these types of convexity are schematically illustrated in Figure 4.

7. Discussion

Many non-classical entropies are invented and applied to various problems in physics and data
analysis. In this paper, the general necessary and sufficient criterion for the existence of H-theorem
is proved. It has a simple and physically transparent form: the convex divergence (relative entropy)
should properly describe the partial equilibria for transitions Ai 
 Aj . It is straightforward to check this
partial equilibria criterion. The applicability of this criterion does not depend on the detailed balance
condition and it is valid both for the class of the systems with detailed balance and for the general first
order kinetics without this assumption.

If an entropy has no H-theorem (that is, it violates the second law and the data processing lemma)
then there should be unprecedentedly strong reasons for its use. Without such strong reasons we cannot
employ it. Now, I cannot find an example of sufficiently strong reasons but people use these entropies
in data analysis and we have to presume that they may have some hidden reasons and that these reasons
may be sufficiently strong. We demonstrate that this problem arises even for such popular divergences
like Euclidean distance or Itakura-Saito distance.

The general H-theorem is simply a reduction of a dynamical question (Lyapunov functionals) to a
static one (partial equilibria). It is not surprising that it can be also proved for nonlinear Generalized
Mass Action Law kinetics. Here kinetic systems with complex balance play the role of the general
Markov chains, whereas the systems with detailed balance correspond to the reversible Markov chains.
The requirement of convexity of Lyapunov functions can be relaxed to the directional convexity (in the
directions of reactions) or even directional quasiconvexity.

For the reversible Markov chains presented by Equations (15) with the classical entropy production
formula (16), every universal Lyapunov function H should satisfy inequalities(

pj
p∗j
− pi
p∗i

)(
∂H(P )

∂pj
− ∂H(P )

∂pi

)
≤ 0 for all i, j, i 6= j (52)

These inequalities are closely related to another generalization of convexity, the Schur convexity [51].
They turn into the definition of the Schur convexity when equilibrium is the equidistribution with p∗i =



Entropy 2014, 16 2429

1/n for all i. Universal Lyapunov functions for nonlinear kinetics give one more generalization of the
Schur convexity.

Introduction of many non-classical entropies leads to the “uncertainty of uncertainty” phenomenon:
we measure uncertainty by entropy but we have uncertainty in the entropy choice [27]. The selection
of the appropriate entropy and introduction of new entropies are essentially connected with the class of
kinetics. H-theorems in physics are formalizations of the second law of thermodynamics: entropy of
isolated systems should increase in relaxation to equilibrium. If we know the class of kinetic equations
(for example, the Markov kinetics given by master equations) then the H theorem states that it is
possible to use this entropy with the given kinetics. If we know the entropy and are looking for kinetic
equations then such a statement turns into the thermodynamic restriction on the thermodynamically
admissible kinetic equations. For information processing, the class of kinetic equations describes
possible manipulations with data. In this case, the H-theorems mean that under given class of
manipulation the information does not increase. It is not possible to compare different entropies without
any relation to kinetics. It is useful to specify the class of kinetic equations, for which they are the
Lyapunov functionals. For the GMAL equations, we can introduce the dynamic equivalence between
divergences (free entropies or conditional entropies). Two functionals H(N) and F (N) in a convex set
U are dynamically consistent with respect to the set of stoichiometric vectors {γρ} (ρ = 1, . . . ,m) if

(1) F and H are directionally quasiconvex functions in directions {γρ} (ρ = 1, . . . ,m)

(2) For all ρ = 1, . . . ,m and N ∈ U

(∇NF (N), γρ)(∇NH(N), γρ) ≥ 0

For the Markov kinetics, the partial equilibria criterion is sufficient for a convex function H(P ) to be
dynamically consistent with the relative entropy

∑
i pi(ln(pi/p

∗
i )−1) in the unit simplex ∆n. For GMAL,

any convex function H(N) defines a class of kinetic equations. Every reaction mechanism defines a
family of kinetic equations from this class and a class of Lyapunov functions F , which are dynamically
consistent with H . The main message of this paper is that it is necessary to discuss the choice of the
non-classical entropies in the context of kinetic equations.
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Appendix: Quasiequilibrium entropies and forward–invariant peeling

A1. Maximum of quasiequilibrium entropies – a new family
of universal Lyapunov functions for generalized mass action law

The general H theorems for the Generalized Mass Action Law (GMAL) and for its linear version,
master equation, look very similar. For the linear systems many Lyapunov functionals are known in
the explicit form: for every convex function h on the positive ray R+ we have such a functional (1).
On the contrary, for the nonlinear systems we, typically, know the only Lyapunov function H , it is the
thermodynamic potential which is used for the system construction. The situation looks rather intriguing
and challenging: for every finite reaction mechanism there should be many Lyapunov functionals, but
we cannot construct them. (There is no chance to find many Lyapunov functions for all nonlinear
mechanisms together under given thermodynamics because in this case the cone of the possible velocities
Ṅ is a half-space and locally there is the only divergence with a given tangent hyperplane. Globally, such
a divergence can be given by an arbitrary monotonic function on the thermodynamic tree [53,55]).

In this Appendix, we present a general procedure for the construction of a family of new Lyapunov
functionals from H for nonlinear GMAL kinetics and a given reaction mechanism. We will use
two auxiliary construction, the quasiequilibrium entropies (or divergences) and the forward–invariant
peeling.

Let us consider isochoric systems (constant volume V ). For them, concentrations ci (intensive
variables) and amounts Ni (extensive variables are proportional with a constant extensive factor V and
we take Ni = ci in a standard unit volume without loss of generality.

We assume that H is strongly convex in the second approximation in Rn
+. This means that it is

twice differentiable and the Hessian ∂2H/∂Ni∂Nj is positively definite in Rn
+. In addition, we assume

logarithmic singularities of the partial derivatives of H near zeros of concentrations:

H(N) =
∑
i

Ni(ln ci − 1 + µ0i(c)) , (53)

where the functions µ0i(c) are bounded continuously differentiable functions in a vicinity of the
non-negative orthant. This assumption corresponds to the physical hypothesis about the logarithmic
singularity of the chemical potentials, µi = RT ln ci + . . . where . . . stands for a continuous function of
c, T , and to the supposition about the classical mass action law for small concentrations. Assume also
that all the described properties of H hold for its restrictions on the faces of Rn

+: these restrictions are
strictly convex, differentiable in the relative interior, etc.

For every linear subspace E ⊂ Rn and a given composition vector N0 ∈ Rn
+ the quasiequilibrium

composition is the partial equilibrium

N∗E(N0) = argmin
N∈(N0+E)∩Rn+

H(N)

The quasiequilibrium divergence is the value of H at the partial equilibrium:

H∗E(N0) = min
N∈(N0+E)∩Rn+

H(N)
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Due to the assumption about strong convexity of H and logarithmic singularity (53), for a positive
vector N0 ∈ Rn

+ and a subspace E ⊂ Rn the quasiequilibrium composition N∗E(N0) is also positive.
Such quasiequilibrium “entropies” are discussed by Jaynes [56]. He considered the quasiequilibrium

H-function as the Boltzmann H-function HB in contrast to the original Gibbs H-function, HG. The
Gibbs H-function is defined for the distributions on the phase space of the mechanical systems. The
Boltzmann function is a conditional minimum of the Gibbs function, therefore the inequality holdsHB ≤
HG [56]. Analogously,

H∗E(N0) ≤ H(N0)

and this inequality turns into the equality if and only if N0 is the quasiequilibrium state for the subspace
E: N0 = N∗E(N0). After Jaynes, these functions are intensively used in the discussion of time arrow
[57–59]. In the theory of information, quasiequilibrium was studied in detail under the name information
projection (or I-projection) [60].

Analysis of partial equilibria is useful in chemical engineering in the presence of uncertainty: when
the reaction rate constants are unknown then the chains of partial equilibria together with information
about the thermodynamically preferable directions of reactions may give some important information
about the process [61].

Let us prove several elementary properties of H∗E(N). Let E and L be subspaces of Rn.

Proposition 5. 1. The function H∗E(N) is convex.

2. If E is a proper subspace of Rn then the function H∗E(N) is not strictly convex: for each N ∈ Rn
+

the level set {N ′ |H∗E(N ′) = H∗E(N)} includes faces (N + E) ∩ Rn
+.

3. The function H∗E([N ]) is strictly convex on the quotient space Rn
+/E (here, [N ] ∈ Rn

+/E is the
equivalence class, [N ] = (N + E) ∩ Rn

+).

4. If E ⊆ L then H∗E(N) ≥ H∗L(N) and this inequality turns into the equality if and only if the
corresponding quasiequlibria coincide: N∗E(N) = N∗L(N) (this is a generalization of the Jaynes
inequality HB ≤ HG).

5. If N = N∗E(N) then H∗E(N) ≥ H∗L(N) for all L and this inequality turns into the equality if and
only if N = N∗(E+L)(N).

Proof. 1. Convexity of H∗E(N) means that for every positive N1 and N2 and a number λ ∈ [0, 1] the
inequality holds:

H∗E(λN1 + (1− λ)N2) ≤ λH∗E(N1) + (1− λ)H∗E(N2)

Let us prove this inequality. First,

H(λN∗E(N1) + (1− λ)N∗E(N2) ≤ λH(N∗E(N1)) + (1− λ)H(N∗E(N2))

because convexity H . Secondly, H(N∗E(N1,2)) = H∗E(N1,2) by definition and the last inequality
reads

H(λN∗E(N1) + (1− λ)N∗E(N2) ≤ λH∗E(N1) + (1− λ)H∗E(N2)
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Finally, N∗E(N1,2) ∈ N1,2 + E, hence,

λN∗E(N1) + (1− λ)N∗E(N2) ∈ λN1 + (1− λ)N2 + E

and H(λN∗E(N1) + (1 − λ)N∗E(N2)) ≥ H∗E(λN1 + (1 − λ)N2) because the last value is the
minimum of H on the linear manifold λN1 + (1− λ)N2 + E. Inequality is proven.

2. Indeed, the function H∗E is constant on the set (N + E) ∩ Rn
+, by construction.

3. In the proof of item 1 the inequality H(λN∗E(N1) + (1−λ)N∗E(N2)) > H∗E(λN1 + (1−λ)N2) is
strong for λ 6= 0, 1 and N1 −N2 /∈ E. Therefore, under these conditions the convexity inequality
is strong.

4. If E ⊆ L then N + E ⊂ N + L and H∗E(N) ≥ H∗L(N) by definition of H∗ as a conditional
minimum. This inequality turns into the equality if and only if the corresponding quasiequlibria
coincide because of strong convexity of H .

5. This follows directly from the definitions of H∗E(N) as a conditional minimum and N∗E(N) as the
corresponding minimizer of H on N + E ∩ Rn

+

Consider the reversible reaction mechanism (32) with the set of the stoichiometric vectors Υ. For
each Γ ⊂ Υ we can take E = Span(Γ) and define the quasiequilibrium. The subspace Span(Γ)

may coincide for different Γ and the quasiequilibrium depends on the subspace E only, therefore, it
is useful to introduce the set of these subspaces for a given reaction mechanism (32). Let EΥ be the set
of all subspaces of the form E = Span(Γ) (Γ ⊂ Υ). For each dimension k we denote EkΥ the set of
k-dimensional subspaces from EΥ.

For each dimension k = 0, . . . , rank(Υ) we define the function Hk,max
Υ : H0,max

Υ = H , and for 0 <

k ≤ rank(Υ)

Hk,max
Υ (N) = max

E∈EkΥ
H∗E(N) (54)

Immediate consequence of the definition of the quasiequilibrium divergence and Theorem 3 is:

Proposition 6. H1,max
Υ (N) is a Lyapunov function in Rn

+ for all kinetic equations (34) with the given
thermodynamic Lyapunov function H , reaction rates presented by Equation (36) (detailed balance) and
the reversible reaction mechanism with the set of stoichiometric vectors Γ ⊆ Υ.

Proof. H1,max
Υ (N) is a convex function as the maximum of several convex functions. Let us consider a

restriction of this function onto an interval of the straight line I = (N0 + Rγ) ∩Rn
+ for a stoichiometric

vector γ ∈ Υ. The partial equilibrium N∗∗ = N∗{Rγ}(N
0) is the minimizer of H(N) on I . Assume that

this partial equilibrium is not a partial equilibrium for other 1D subspaces E ∈ E1
Υ. Then for all E ∈ E1

Υ

(E 6= Rγ) H∗E(N∗∗) < H∗{Rγ}(N
0) and

H1,max
Υ (N) = H∗{Rγ}(N)

in some vicinity of N∗∗. This function is constant on I .
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If a convex function h on an interval I is constant on an subinterval J = (a, b) ⊂ I (a 6= b) then
the value h(J) is the minimum of h on I . Therefore, N∗{Rγ}(N

0) is a minimizer of the convex function
H1,max

Υ (N) on I in the case, when N∗∗ is not a partial equilibrium for other 1D subspaces E ∈ E1
Υ

(E 6= Rγ).
Let us assume now that the partial equilibrium N∗∗ = N∗{Rγ}(N

0) is, at the same time, the partial
equilibrium for several other E ∈ E1

Υ. Let B be the set of subspaces E ∈ E1
Υ for which N∗∗ is a partial

equilibrium, i.e. H(N∗∗) = H∗E(N∗∗). In this case, for all E /∈ B (E ∈ E1
Υ) H∗E(N∗∗) < H(N∗∗).

Therefore, in a sufficiently small vicinity of N∗∗ the function H1,max
Υ (N) can be defined as

H1,max
Υ (N) = max

E∈B
H∗E(N)

Point N∗∗ is a minimizer of H on a linear manifold N∗∗ + (
⊕

E∈B E). It is also a minimizer of convex
function H1,max

Υ (N) on this linear manifold, particularly, it is a minimizer of this convex function on
the interval I . (Convexity plays a crucial role in this reasoning because for convex functions the local
minima are the global ones.)

We proved that the function H1,max
Υ (N) satisfies the partial equilibria criterion and, hence, it is a

Lyapunov function in Rn
+ for all kinetic equations (34) with the given thermodynamic Lyapunov function

H , reaction rates presented by Equation (36) (detailed balance) and the reversible reaction mechanism
with the set of stoichiometric vectors Γ ⊆ Υ.

Let a positive vectorN∗∗ be a minimizer ofH on (N∗∗+E)∩Rn, whereE is a linear subspace of Rn.
It may be useful to represent the structure of the Lyapunov functionH1,max

Υ (N) nearN∗∗ in the quadratic
approximation. Assume that H(N) is m times continuously differentiable in Rn for sufficiently large m.
In the vicinity of N∗∗

H(N)−H(N∗∗) = (DH)∗∗(∆) +
1

2
〈∆,∆〉∗∗ + o(‖∆‖2)

where ∆ = N−N∗∗, (DH)∗∗ = (DH) |N∗∗ is the differential ofH atN∗∗, and 〈•, •〉∗∗ = (•, (D2H)∗∗•)
is the entropic inner product, with the positive symmetric operator (D2H)∗∗ = (D2H) |N∗∗ (the second
differential of H at N∗∗). The entropic inner product is widely used in kinetics and nonequilibrium
thermodynamics, see, for example [53,57,62–65].

Let us split Rn into the orthogonal sum: Rn = E ⊕E⊥, E⊥ is the orthogonal supplement to E in the
entropic inner product 〈•, •〉∗∗. Each vector ∆ ∈ Rn is represented in the form ∆ = ∆‖ ⊕ ∆⊥, where
∆‖ ∈ E and ∆⊥ ∈ E⊥. By the definition of the partial equilibrium as a conditional minimizer of H ,
(DH)∗∗(∆

‖) = 0, and we have the following representation of H

H(N)−H(N∗∗) = (DH)∗∗(∆
⊥) +

1

2
〈∆‖,∆‖〉∗∗ +

1

2
〈∆⊥,∆⊥〉∗∗ + o(‖∆‖2)

In particular, when ∆ ∈ E (∆⊥ = 0), this formula gives

H(N)−H(N∗∗) =
1

2
〈∆,∆〉∗∗ + o(‖∆‖2)

From these formulas, we easily get the approximations of N∗E(N) and H∗E(N) in a vicinity of N∗∗.
Let N −N∗∗ = ∆ = ∆‖ ⊕∆⊥. Then

N∗E(N)−N∗∗ = ∆⊥ + o(‖∆‖) (55)
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in particular, (N∗E(N)−N∗∗)⊥ = ∆⊥ (exactly) and (N∗E(N)−N∗∗)‖ = o(‖∆‖). Therefore,

H∗E(N)−H(N∗∗) = H(N∗E(N))−H(N∗∗) = (DH)∗∗(∆
⊥) +

1

2
〈∆⊥,∆⊥〉∗∗ + o(‖∆‖2) (56)

If E is a 1D subspace with the directional vector γ (E = Rγ) then

∆‖ =
γ〈γ,∆〉∗∗
〈γ, γ〉∗∗

, ∆⊥ = ∆− γ〈γ,∆〉∗∗
〈γ, γ〉∗∗

here, γ〈γ|
〈γ,γ〉 is the orthogonal projector onto E and 1 − γ〈γ|

〈γ,γ〉 is the orthogonal projector onto E⊥, the
orthogonal complement to E.

Let us use the normalized vectors γ. In this case,

N∗E(N)−N∗∗ = ∆− γ〈γ,∆〉∗∗ + o(‖∆‖)

H∗E(N)−H(N∗∗) = (DH)∗∗(∆− γ〈γ,∆〉∗∗) +
1

2
〈∆− γ〈γ,∆〉∗∗,∆− γ〈γ,∆〉∗∗〉∗∗ + o(‖∆‖2) (57)

Let us assume now thatN∗∗ is the partial equilibrium for several (two or more) different 1D subspaces
E and B is a finite set of these subspaces. The set B includes two or more different subspaces E. Select
a normalized directional vector γE for each E ∈ B. Let EB = Span{γE |E ∈ B}. N∗∗ is a critical point
of H on (N∗∗ + EB) ∩ Rn because γE ∈ ker(DH)∗∗ for all E ∈ B and, therefore, EB ⊂ ker(DH)∗∗.

Consider a function H1,max(N) = maxE∈BH
∗
E(N). This function is strictly convex on (N∗∗+EB)∩

Rn and N∗∗ is its minimizer on this set. Indeed, in a vicinity of N∗∗ in (N∗∗+EB)∩Rn for every E ∈ B
Equation (57) holds. Consider a direct sum of k = |B| copies of EB, E1 ⊕ E2 ⊕ . . . ⊕ Ek, where all
Ei are the copies of EB equipped by the entropic inner product 〈•, •〉∗∗ and the corresponding Euclidean
norm, and the norm of the sum is the maximum of the norm in the summands: ‖x1 ⊕ . . . ⊕ xk‖ =

max{‖x1‖, . . . , ‖xk‖}. The following linear map ψ is a surjection ψ : EB → E1 ⊕ E2 ⊕ . . . ⊕ Ek

because EB = Span{γE |E ∈ B} and if all the summands are zero for ∆ ∈ EB then ∆ = 0:

ψ : ∆ 7→
⊕
E∈B

(∆− γE〈γE,∆〉∗∗)

Let us mention that on EB

H1,max(N)−H(N∗∗) =
1

2
‖ψ(∆)‖2 + o(‖∆‖2)

and, therefore, N∗∗ is a unique minimizer of H1,max(N) on (N∗∗ + EB) ∩ Rn

Because of the local equivalence of the systems with detailed and complex balance and Theorem 4
we also get the following proposition.

Proposition 7. H1,max
Υ (N) is a Lyapunov function in Rn

+ for all kinetic equations (34) with the given
thermodynamic Lyapunov function H , the complex balance condition (42) and the reaction mechanism
(18) with the set of stoichiometric vectors Γ ⊆ Υ ∪ −Υ.

Here, we use the set Υ∪−Υ instead of just Υ in Proposition 6 because the direct and reverse reactions
are included in the stoichiometric equations (18) separately.
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Figure 5. Peeling of convex sets (2D): (a) The reaction mechanism A1 
 A2, A2 
 A3,
2A1 
 A2 +A3. The concentration triangle c1 + c2 + c3 = b is split by the partial equilibria
lines into six compartments. In each compartment, the cone of possible directions (the angle)
QDB is presented. The positively invariant set which includes the A1 vertex is outlined by
bold. (b) The set U is outlined by the dashed line, the level set H = h − ε is shown by
the dotted line. The levels of H∗γ are the straight lines ‖γ. The boundary of the peeled set
U ε
{γ1,γ2,γ3} is shown by red. (c) The sets U , U ε

{γ1,γ2,γ3} and the level set H = h − ε without
auxiliary lines are presented.
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A2. Forward–invariant peeling
We use the quasiequilibrium functions and their various combinations for construction of new

Lyapunov functions from the known thermodynamic Lyapunov functions, H , and an arbitrary convex
function F . In this procedure, we delete some parts from the sublevel sets of F to make the rest
positively–invariant with respect to GMAL kinetics with the given reaction mechanism and detailed
or complex balance. We call these procedures the forward–invariant peeling.

Let U ⊂ R∗+ be a convex compact set of non-negative n-dimensional vectors N and for some η >
minH the η-sublevel set of H belongs to U : {N |H(N) ≤ η} ⊂ U . Let h > minH be the maximal
value of such η. Select a thickness of peel ε > 0.

We define the peeled set U as

U ε
Υ = U ∩ {N ∈ Rn

+ |H
1,max
Υ (N) ≤ h− ε}

For sufficiently small ε > 0 (ε < h−minH) this set is non-empty and forward–invariant.

Proposition 8. For sufficiently small ε > 0 (ε < h − minH) the peeled set U ε
Υ is non-empty. If it is

non-empty then it is forward–invariant with respect to kinetic equations (34) with the thermodynamic
Lyapunov function H , reaction rates presented by Equation (36) (detailed balance) and the reversible
reaction mechanism (32) with the set of stoichiometric vectors Γ ⊆ Υ.

Proposition 9. For sufficiently small ε > 0 (ε < h − minH) the peeled set U ε
Υ is non-empty. If

it is non-empty then it is forward–invariant with respect to all kinetic equations (34) with the given
thermodynamic Lyapunov function H , the complex balance condition (42) and the reaction mechanism
(18) with any set of stoichiometric vectors Γ ⊆ Υ ∪ −Υ.

The forward–invariant peeling for a 2D nonlinear kinetic scheme is demonstrated in Figure 5. A 3D
example is presented in Figure 6. It is worth to mention that the peeled froward–invariant sets have 1D
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Figure 6. Peeling of convex sets (3D): The unpeeled potato corresponds to the convex set
U . The partial equilibria (∇H, γi) = 0 (i = 1, 2) are presented with the corresponding
stoichiometric vectors γi. (a) Near the intersection of the partial equilibrium surfaces
the peeling ‖γ1 is separated from the peeling ‖γ2 by the cross of the dashed lines.
(b) After deformation of the partial equilibria (red dashed lines) the peeled set remains
forward–invariants if the deformed partial equilibria for individual reactions do not leave
the corresponding peeled 1D faces and, in particular, the intersection of the partial
equilibria does not change. (c) The additional peeling ‖Span{γ1, γ2} makes the peeled set
forward–invariant with respect to the set of systems with interval reaction rate constants. The
partial equilibria for any combination of reactions can move in the limits of the corresponding
faces (red dashed lines and their intersection in the Figure, panel c).
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faces near the partial equilibria. These faces are parallel to the stiochiometric vectors of the equilibrating
reactions.

Let F (N) be a continuous strictly convex function with bounded level sets on the non-negative
orthant. For each level of H , h ∈ imH , we define the level

f(h) = max
H(N)=h

F (N)

. Let f ∗(h) ≥ f(h) be any strictly increasing function. In particular, we can take f ∗(h) = f(h) + ε

(ε > 0). Introduce the peeled function

F
f∗(h)
Υ (N) = max{F (N), f ∗(H1,max

Υ (N))}

Applying Proposition 8 to sublevel sets of F f∗(h)
Υ we obtain the following propositions.

Proposition 10. F f∗(h)
Υ (N) is a Lyapunov function in Rn

+ for all kinetic equations (34) with the
thermodynamic Lyapunov function H , reaction rates presented by Equation (36) (detailed balance) and
the reversible reaction mechanism (32) with any set of stoichiometric vectors Γ ⊆ Υ.

Proposition 11. F f∗(h)
Υ (N) is a Lyapunov function in Rn

+ for all kinetic equations (34) with the given
thermodynamic Lyapunov function H , the complex balance condition (42) and the reaction mechanism
(18) with the set of stoichiometric vectors Γ ⊆ Υ ∪ −Υ.

The level sets of F f∗(h)
Υ (N) have 1D faces parallel to the stoichiometric vectors γ ∈ Υ near

the corresponding partial equilibria outside a vicinity of the intersections of these partial equilibria
hypersurfaces. At the intersections of two partial equilibria there is a singularity and the size of both
faces tends to zero (Figure 6 a).

Let us consider kinetic systems with perturbed thermodynamic potentials H ′ = H + ∆H , where
∆H is uniformly small with it second derivatives. For such the perturbed systems in a bounded set
all the partial equilibria are close to the partial equilibria of the original system. (An important case
is the perturbation of H by a linear functional ∆H .) We will modify the peeling procedure to create
forward–invariant sets for sufficiently small perturbations.

Let us look on the forward–invariant peeled set on Figure 6 a. If we slightly deform the partial
equilibria surfaces for each reaction (Figure 6 b, red dashed lines) but keep their intersection unchanged
then the peeled set may remain forward–invariant. It is sufficient that the intersections of the partial
equilibria with the border of U in Rn do not leave the corresponding 1D faces (Figure 6 b). If we
perform additional peeling near the intersections of the partial equilibria (Figure 6 c), then the peeled set
may be positively invariant with respect to the kinetic equations with perturbed thermodynamic potentials
(or, even a bit stronger, with respect to kinetic equations with interval coefficients for sufficiently small
intervals).

We consider the reversible reaction mechanism (32) with the set of the stoichiometric vectors Υ.
U ⊂ Rn

+ is a convex compact set, and for some η > minH the η-sublevel set of H belongs to U :
{N ∈ Rn

+ |H(N) ≤ η} ⊂ U . Let h > minH be the maximal value of such η.
Select a sequence of thicknesses of peels ε1, ε2, . . . , εk > 0, where k = rankΥ. Let us use for the

peeling the functions H i,max
Υ (N) (54) (i = 1, . . . rankΥ).
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For each i we consider the sublevel set

Ui = {N ∈ Rn
+ |H

i,max
Υ (N) ≤ h−

i∑
j=1

εj}

for sufficiently small numbers εj > 0 all these sets are non-empty. The peeled U for this sequence of
thicknesses is defined as

U ε1,...,εk
Υ =

k⋂
i=0

Ui (58)

where we take U0 = U .
Definition of Uk (k = rankΥ) requires some comments. If rankΥ = n then Span(Υ) = Rn and the

corresponding quasiequilibrium N∗Rn is the global equilibrium, i.e.

H∗Rn = min
N∈Rn+

H(N) (= minH), N∗Rn = argmin
N∈Rn+

H(N)

In this case, Hk,max
Υ (N) ≡ minH and either Uk is the nonnegative orthant (if h−

∑i
j=1 εj ≥ minH)

or it is empty (if h −
∑i

j=1 εj < minH). Therefore, in this case the term Uk is not needed in Equation
(58).

If k = rankΥ < n then the term Uk is necessary. In this case, Hk,max
Υ (N) = H∗Span(Υ) and Uk defines

non-trivial peeling.

Proposition 12. 1. For sufficiently small thicknesses ε1, . . . , εk > 0 the peeled set U ε1,...,εk
Υ is

non-empty and forward–invariant with respect to kinetic equations (34) with the thermodynamic
Lyapunov function H , reaction rates presented by Equation (36) (detailed balance) and the
reversible reaction mechanism with the set of stoichiometric vectors Γ ⊆ Υ.

2. For these thicknesses ε1, . . . , εk > 0 the peeled set U ε1,...,εk
Υ is forward–invariant with respect to

kinetic equations (34) with the perturbed thermodynamic Lyapunov function H + ∆H , reaction
rates presented by Equation (36) (detailed balance) and the reversible reaction mechanism with
the set of stoichiometric vectors Γ ⊆ Υ if the perturbation ∆H is sufficiently uniformly small with
its second derivatives.

The similar proposition is valid for the systems with complex balance (because of the local
equivalence theorem). Peeling of the sublevel sets of a convex function will produce a Lyapunov function
similarly to Proposition 10.

Essential difference of Proposition 12 from Proposition 8 is in the ultimate positive–invariance of U ε
Υ

if it is non-empty. To provide the forward–invariance of U ε1,...,εk
Υ we need an additional property.

LetE ∈ EΥ be a subspace of the formE = Span(Γ), Γ ⊂ Υ. The quasiequilibrium surface ΦE ⊂ Rn
+

is a set of all quasiequilibria N∗E(N) (N ∈ Rn
+). The Legendre transform of ΦE (its image in the space

of potentials µ̌) is the orthogonal supplement to E, for every µ̌ from this image (µ̌, γ) = 0, and this is an
equivalent definition of ΦE .

For every E ∈ EΥ we define the E-faces of U ε1,...,εk
Υ as follows. Let dimE = i. Consider the

generalized cylindrical surface with the given value H∗E(N) = q
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SqE = {N ∈ Rn
+ |H∗E(N) = q}

The E-faces of U ε1,...,εk
Υ belong to the intersection

Ψε1,...,εk
Υ, E = S

h−(ε1+...+εi)
E ∩ U ε1,...,εk

Υ

Proposition 13. Let h−
∑k

j=1 εj > minH and for every E,L ∈ EΥ the following property holds:

Ψε1,...,εk
Υ, E ∩ ΦL = ∅

if L * E. Then the peeled set U ε1,...,εk
Υ is non-empty and forward–invariant with respect to kinetic

equations (34) with the perturbed thermodynamic Lyapunov function H + ∆H , reaction rates presented
by Equation (36) (detailed balance) and the reversible reaction mechanism with the set of stoichiometric
vectors Γ ⊆ Υ if the perturbation ∆H is sufficiently uniformly small with its second derivatives.

The proof is an application of the general H-theorem based on the partial equilibrium criterion (for
illustration see Figure 6 c). The condition of Proposition 13 means that the result of peeling in higher
dimensions does not destroy the main property of the 1D peeling (Proposition 8): if a positive boundary
point N of the bodily peeled set is a partial equilibrium in direction γ ∈ Υ then the stoichiometric vector
γ belongs to a supporting hyperplane of this peeled set at N .

A3. Greedy peeling
The goal of the forward–invariant peeling is to create a forward–invariant convex set from an initial

convex set U by deletion (peeling) of its non-necessary parts. The resulting (peeled) set should
be forward–invariant with respect to any GMAL kinetics with a given reaction mechanism and the
thermodynamic Lyapunov function H (“free energy”). In more general but practically useful settings,
we consider not a single system but a family of systems with the given reaction mechanism but for a set
of Lyapunov functions H(N) = H0(N) + (l, N) where l ∈ Q and Q ⊂ Rn is a convex compact set. We
would like to produce a set that is forward–invariant with respect to all these systems (and, therefore,
with respect to the differential inclusion (compare to (22))

dN

dt
∈ V

∑
ρ

γρϕρ [exp(αρ, µ̌)− exp(βρ, µ̌)] (59)

where
µ̌−∇H0(N) = l ∈ Q

and ϕρ ∈ R+.
Further on, we consider systems with fixed volume, therefore we omit the factor V and make no

difference between the amounts Ni and the concentrations ci.
The peeling procedure proposed in the previous subsection works but it is often too extensive and

produces not the maximal possible forward–invariant set. We would like to produce the maximal
forward–invariant subset of U and, therefore, have to minimize peeling. Here we meet a slightly
unexpected obstacle. The union (and the closure) of forward–invariant sets is also forward–invariant,
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whereas the union of convex sets may be non-convex. Therefore, there exists the unique maximal
forward–invariant subset of U but it may be non-convex and the maximal convex forward–invariant
subset may be non-unique. If we would like to find the maximal forward–invariant subset then we have
to relax the requirement of convexity.

A set U is directionally convex with respect to a set of vectors Γ if for every x ∈ U and γ ∈ Γ the
intersection (x+ Rγ) ∩ U is a segment of a straight line:

(x+ Rγ) ∩ U = (x+ [a, b]γ), or (x+]a, b]γ), or (x+ [a, b[γ), or (x+]a, b[γ)

The minimal forward–invariant non-convex (but directionally convex) sets were introduced in [54]
and studied for chemical kinetics in [53] and for Markov chains (master equation) in [67].

Let U ⊂ Rn
+ be a compact subset. The greedy peeling of U is constructed for an inclusion (59) as a

sequence of peeling operations Πγ , where γ is a stoichiometric vector of an elementary reaction. A point
x ∈ U belongs to Πγ(U) if and only if there exists such a segment [a, b] ⊂ R that

• 0 ∈ [a, b];

• x+ [a, b]γ ⊂ U ;

• if y ∈ (x+ Rγ) ∩ Rn
+ and (∇NH0(N) |N=y + l, γ) = 0 for some l ∈ Q then y ∈ x+ [a, b]γ.

We call the set
Sγ = {N ∈ Rn

+ | (∇H0 |N + l, γ) = 0 for some l ∈ Q}

the equilibrium strip for the elementary reaction with the stoichiometric vector γ.
Another equivalent description of the operation Πγ may be useful. Find the orthogonal projection

of U ∩ Sγ onto the orthogonal complement to γ, the hyperplane γ⊥ ⊂ Rn. Let π⊥γ be the orthogonal
projector onto this hyperplane. Find all such z ∈ π⊥γ (U ∩ Sγ) that

((π⊥γ )−1z) ∩ Sγ = U ∩ Sγ

This set is the base of Πγ(U), i.e. it is

Bγ(U) = π⊥γ (Πγ(U))

For each z ∈ Bγ(U) consider the straight line (π⊥γ )−1z. This line is parallel to γ and its orthogonal
projection onto γ⊥ is one point z. The intersection Sγ ∩ ((π⊥γ )−1z) is a segment. Find the maximal
connected part of U ∩ ((π⊥γ )−1z) that includes this segment. This is also a segment (a fiber). Let us call
it Fz,γ(U). We define

Πγ(U) =
⋃

z∈Bγ(U)

Fz,γ(U)

The set Πγ(U) is forward–invariant with respect to the differential inclusion (59) if the reaction
mechanism consists of one reaction with the stoichiometric vector γ. It is directionally convex in
the direction γ. Of course, if we apply the operation Πγ′ with a different stoichiometric vector γ′ to
Πγ(U) then the forward-invariance with respect to the differential inclusion (59) for one reaction with
the previous stoichiometric vector γ may be destroyed. Nevertheless, if we apply an infinite sequence
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of operations Πγρ (ρ = 1, . . . ,m) where all the stoichiometric vectors γρ from the reaction mechanism
appear infinitely many times then the sequence converges to the maximal forward–invariant subset of U
because of monotonicity (in particular, this limit may be empty if there is no positively invariant subset
in U ). The limit set is directionally convex in directions γρ (ρ = 1, . . . ,m) and is the same for all such
sequences.

A4. A toy example
Let us consider a reaction mechanism

A1
k1→A2

k2→A3
k3→A1, 2A1

k4



k−4

3A2 (60)

with the classical mass action law and interval constants 0 < ki min ≤ ki ≤ ki max < ∞. Consider the
kinetic equations with such interval constants and classical mass action law.

The stoichiometric vectors of the reactions are

γ1 =

 −1

1

0

 ; γ2 =

 0

−1

1

 ; γ3 =

 1

0

−1

 ; γ4 =

 −2

3

0

 ; (61)

We will demonstrate how to use peeling for solving of the following problem for the system (60):
is it possible that the solution of the differential inclusion with these interval constants starting from a
positive vector will go to zero when t → ∞? (This question for this system was considered recently as
an unsolved problem [68].)

Let us use the local equivalence of systems with complex and detailed balance and represent this
system as a particular case of differential inclusion (59) (with possible extension of the interval of
constants).

The equilibrium concentrations c∗i in the irreversible cycle satisfy the following identities:

k1c
∗
1 = k2c

∗
2 = k3c

∗
3,

c∗i
c∗j

=
kj
ki

Instead of the irreversible cycle of linear reactions we will take the reversible cycle

A1

κ1



κ−1

A2

κ2



κ−2

A3

κ3



κ−3

A1 (62)

with the interval restrictions on the equilibrium constants (the ratios of the reaction rate constants
κj/κ−j)

min k2

max k1

≤ κ1

κ−1

≤ max k2

min k1

,
min k3

max k2

≤ κ2

κ−2

≤ max k3

min k2

,
min k1

max k3

≤ κ3

κ−3

≤ max k1

min k3

(63)

The detailed balance condition should also hold for the constants κ±j:

κ1κ2κ3 = κ−1κ−2κ−3 (64)

The equilibria for this cycle satisfy the conditions

κ1c
∗
1 = κ−1c

∗
2, κ2c

∗
2 = κ−2c

∗
3, κ3c

∗
3 = κ−3c

∗
1
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Figure 7. Partial equilibria of the reversible cycle (62) with the interval restrictions on
the equilibrium constants. The triangle is split by the lines of partial equilibria Ai 
 Aj

into several compartments. The borders of these compartments are combined from the
segments of the dashed lines. These dashed lines correspond to the minima and maxima
of the equilibrium constants κj/κ−j . In each compartment, the cone (the angle) of possible
directions of ċ is given. This is a proper cone (an angle that is less than π) outside the
equilibrium strips, a halfplane in an equilibrium strip of a single reaction, and a whole plane
in the intersection of two such strips. The area of the possible equilibria (where the angle of
possible directions of ċ is the whole plane) is outlined by bold line and colored in green.

.
These conditions provide the same range of equilibrium concentrations for the reversible and

irreversible cycles. Therefore, the possible value of ċ for the irreversible cycle in the given interval
of reaction rate constants always belongs to the cone of possible values of ċ of the reversible cycle under
the given restrictions (63) and the detailed balance condition (64).

For the reversible cycle the reaction rates are

r1 = κ1c1 − κ−1c2, r2 = κ2c2 − κ−2c3, r3 = κ3c3 − κ−3c1

The reaction rate of the reaction 2A1 
 3A2 is r4 = k4c
2
1 − k−4c

3
3.

The time derivatives of the concentrations are

ċ1 = −r1 + r3 − 2r4, ċ2 = r1 − r2 + 3r4, ċ3 = r2 − r3 (65)

The differential inclusion for the reversible linear cycle (62) is represented in Fig. 7. There are three
types of areas: (i) area where the equilibria may be located and the direction of ċ may coincide with any
vector of the linear subspace

∑
i ċi = 0, (ii) areas where direction of one reaction is indefinite but the

signs of two other reactions rates are fixed, and (iii) areas where the signs of all reaction rates are fixed.
The cones (angles) of possible vectors ċ are drawn in Fig. 7
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For the linear system the scheme presented in Figure 7 does not depend on the positive value of the
balance

∑
i ci = ε. We can just rescale ci ← ci/ε and return to the unit triangle with the unit sum of ci.

The situation is different for the nonlinear reaction 2A1 
 3A2. Consider the “equilibrium strip” where
the reaction rate r4 = k4c

2
1 − k−4c

3
2 may be zero for the admissible reaction rate constants:

min k−4

max k4

≤ c2
1

c3
2

≤ max k−4

min k4

Let us take this strip on the plane
∑

i ci = ε and return it to the unit triangle by rescaling (ci ← ci/ε).
For small ε this strip approaches the [A2, A3] edge of the triangle. It is situated between the line

c1 =
√
ε

√
max k−4

min k4

(1− c3)3/2

and the segment [A2, A3]. Further we use the notation ϑ for the coefficient in this formula:

ϑ =
√
ε

√
max k−4

min k4

The line
c1 = ϑ(1− c3)3/2 (66)

separates the equilibrium strip of the reaction 2A1 
 3A2 (where r4 = 0 for some admissible
combinations of the reaction rate constants) from the area where r4 > 0 (i.e. k4(εc1)2 − k−4(εc2)3 > 0

for all admissible k4, k−4. (We use the rescaling from the triangle with
∑
ci = ε to the unit triangle

without further comments.)
We will study intersection of the equilibrium strip for the reaction 2A1 
 3A2 with different planes

and then scale the result to the balance plane
∑

i ci = 1. The projection of the strip from all planes∑
i ci = aε onto the unit triangle for a ∈ [min a,max a] > 0 belong to the projection of the strip from

the plane
∑

i ci = ε with the extended range of the equilibrium constants:

min a
min k−4

max k4

≤ k−4

k4

≤ max a
max k−4

min k4

(67)

This rescaling does not cause any difficulty but requires additional check at the end of construction: does
the set of the constructed faces (“peels”) has the bounded ratio

max
∑

i ci
min

∑
i ci

with the upper estimate does not dependent on the values of k−4

k4
.

The line (66) is tangent to the segment at the vertex A3 (Fig. 8). On the other side of the line the time
derivative of

∑
i ci is positive:

∑
i

ċi = r4 > 0

Let us describe first the structure of the peeled set. Select for peeling the set U = {c |
∑

i ci ≥ ε, ci ≥
0}. The structure of peeling scaled to c1 +c2 +c3 = 1 is presented in Fig. 9. It appears that the piecewise
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Figure 8. The equilibrium strip of the reaction 2A1 
 3A2 (yellow) and the area where∑
i ċi > 0 (blue) rescaled from the triangle with

∑
ci = ε to the unit triangle

Figure 9. Faces of the peeled invariant set for isolation from zero in the central projection
onto unit triangle. The borders between faces are highlighted by bold.
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linear peeling is sufficient. There are five faces different from the coordinate planes. The face F0 is a
polygon on the plane

∑
ci = 1. The face F1 is situated at the A2 corner. It is produced by the peeling

parallel to Span{γ3, γ4}. The plane of F1 is given by the equation 3c1 + 2c2 + 3c3 = const. The face
F2 is presented by a parallelogram at the middle of the edge [A2, A3] (Fig. 9). It covers the intersection
of the equilibrium strips of the reactions 2A1 
 3A2 and the reaction A2 
 A3. F2 is produced by
the peeling parallel to Span{γ2, γ4}. The plane is given by the equation 3c1 + 2c2 + 2c3 = const. Its
intersection with the plane c1 + c2 + c3 = 1 is a straight line c1 = c◦1, c2 + c3 = 1− c◦1 for a sufficiently
small c◦1 > 0.

The final fragment of peeling is situated near the vertex A3 (Fig. 9). It consists of two triangles. The
first (F3) is a fragment of a plane c1 + c2 + vc3 = const (0 < v < 1). Parameter v is defined from the
condition of positive invariance below.

The second triangle (F4) situated near the vertex A3 is parallel to γ4 and has the common edge with
F3. The general plane parallel to γ4 is given by the equation 3c1 + 2c2 + lc3 = D. We will define the
parameters l and D using the vertices of the face F3, V34 and V0234 (see Fig. 9).

Let us define the parameters of this peeling. At the A2 corner the peeling is parallel to Span{γ3, γ4}.
The plane can be given by the equation 3c1 +2c2 +3c3 = const. The edge between this face and the face∑
ci = 1 belongs to the straight line c2 = c◦2, c1 + c3 = 1− c◦2. The level c◦2 should be selected above all

the equilibria of the linear reactions (Fig. 7) but below the intersection of the curve (66) with the right
border of the equilibrium strip of the reaction A1 
 A3 given by the equation c3 = c1 max

{
κ−3

κ3

}
. For

the intersection we have

c3 = ϑmax

{
κ−3

κ3

}
(1− c3)3/2

Therefore, at this point

c3 < ϑmax

{
κ−3

κ3

}
and c1 < ϑ on the line (66). Therefore, we can select

c◦2 = 1− ϑ
(

max

{
κ−3

κ3

}
+ 1

)
This c◦2 is smaller than the value of c2 at the intersection, and for sufficiently small ϑ the line c2 = c◦2 is
close to the vertex A2 and does not intersect the area of possible equilibria of linear reactions (the area
colored in green in Fig. 7).

Consider intersection of the straight line c2 = c◦2, c1 + c3 = 1− c◦2 with the curve (66) and evaluate the
value of c1 at this intersection from above: c1 = ϑ(c◦2 + c1)3/2, c1 < ϑ, hence, c1 < c◦1 = ϑ(c◦2 + ϑ)3/2.

Thus, the vertex V012 at the intersection of three faces, F0, F1, and F2 is selected as (c◦1, c
◦
2, c
◦
3), where

c◦1 = ϑ

(
1− ϑmax

{
κ−3

κ3

})3/2

c◦2 = 1− ϑ
(

max

{
κ−3

κ3

}
+ 1

)

c◦3 = 1− c◦1 − c◦2 = ϑ

(
1 + max

{
κ−3

κ3

}
−
(

1− ϑmax

{
κ−3

κ3

})3/2
)



Entropy 2014, 16 2446

To check that this point is outside the equilibrium strip of the reaction A1 
 A3, we calculate

c◦3
c◦1

=
1 + max

{
κ−3

κ3

}
(

1− ϑmax
{
κ−3

κ3

})3/2
− 1 > max

{
κ−3

κ3

}

The next group of parameters we have to identify are the coordinates of the vertex V0234 (c′1, c
′
2, c
′
3)

at the intersection of four faces F0, F2, F3, and F4. We will define it as the intersection of F0, F2,
and F3 and then use its coordinates for defining the parameters of F4. One coordinate, c′1 is, obviously,
c′1 = c◦1 because the intersection of F2 and F0 is parallel to γ2, i.e. it is parallel to the edge [A2, A3] of
the unit triangle and c1 is constant on this edge. Another coordinate, c′3 can be easily determined from
the condition that the line c3 = c′3 in the unit triangle should not intersect the strips of equilibria for the
reactions A2 
 A3 and A1 
 A3. Immediately, these condition give the inequalities that should hold
for all admissible reaction rate constants:

c′3 >
κ−3

κ3 + κ−3

, c′3 >
κ2

κ2 + κ−2

Finally,

c′3 > max

 1

min
{

κ3

κ−3

}
+ 1

,
1

1 + min
{
κ−2

κ2

}


We can take c′3 between this maximum and 1: for example, we propose

c′3 =
1

2
+

1

2
max

 1

min
{

κ3

κ−3

}
+ 1

,
1

1 + min
{
κ−2

κ2

}


For sufficiently small ϑ, the inequality c′3 + c◦1 < 1 holds, and we can take c′2 = 1− c′3 − c◦1 > 0.
If we know c′3 and v then we know the equation of the plane F4:

c1 + c2 + vc3 = 1− (1− v)c′3

We also find immediately the coordinates of the vertex V34, the intersection of F3 (and F4) with the
coordinate axis A3. This vertex is (0, 0, 1

v
(1− c′3) + c′3).

Let us define the parameters l and D for the face F4. This face should include the vertices V0234
(c◦1, c

′
2, c
′
3) and V34 (0, 0, 1

v
(1− c′3) + c′3). Therefore,

l = v

(
2 +

c◦1
c◦1 + c′2

)
, D = 3c◦1 + 2c′2 + lc′3

To demonstrate the positive invariance of the peeled set we have to evaluate the sign of the inner
product of ċ onto the inner normals to the faces on the faces.

The signs of some reaction rates are unambiguously defined on the faces:

• On F0 r4 > 0;

• On F1 r1 < 0, and r2 > 0;
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• On F2 r1 < 0, and r3 > 0;

• On F3 r2 < 0, r3 > 0, and r4 > 0;

• On F4 r1 < 0, r2 < 0, and r3 > 0.

The inner products of ċ (65) onto the inner normals to the faces are:

• On F0 d
dt

(c1 + c2 + c3) = r4 > 0;

• On F1 d
dt

(3c1 + 2c2 + 3c3) = −r1 + r2 > 0;

• On F2 d
dt

(3c1 + 2c2 + 2c3) = −r1 + r3 > 0;

• On F3 d
dt

(c1 + c2 + vc3) = (1− v)(−r2 + r3) + r4 > 0 (0 < v < 1);

• On F4 d
dt

(3c1 + 2c2 + lc3) = −r1 − (2− l)r2 + (3− l)r3 < 0 if 0 < l < 2.

Thus, the peeled set is positively invariant if 0 < l < 2. This means

0 < v <
1

1 +
c◦1

2(c◦1+c′2)

It is sufficient to take 0 < v ≤ 2
3

(for example, v = 2
3
) because of the obvious inequality, c◦1

2(c◦1+c′2)
< 1

2
.

We see that the peeled faces are located between the planes
∑

i ci = ε and
∑

i ci = 3
2
ε (for v = 2/3).

Therefore, it is sufficient to take in the rescaling (67) the constants max a = 3
2
, min a = 1 which do not

depend on the equilibrium constant.
We have demonstrated that for any given range of positive kinetic constants any positive solution of

the kinetic inclusion for the system (60) cannot approach the origin when t→∞.
We have started from a system (60) with interval rate constants and have embedded the corresponding

differential inclusion into a differential inclusion for a reversible system with detailed balance (64) and
interval restrictions onto equilibrium constants (63).

We have constructed a piecewise-linear surface that isolated the ε-vicinity of the origin from the
outside for sufficiently small ε > 0. This surface cannot be intersected by the solutions of the kinetic
inclusion in the motion from the outside to the origin.

To isolate the system “from infinity” we have to start peeling from a set U = {c ∈ R3
+ |
∑

i ci ≤ E}
for sufficiently large E . The equilibrium strip of the reaction 2A1 
 3A2 is situated near the edge A1, A3

(Fig. 10). The faces produced in peeling of this set are presented in Figure 10: F0‖Span{γ1, γ2, γ3},
F1‖Span{γ2, γ4}, F2‖Span{γ3, γ4}, F3‖Span{γ1, γ4}. The subspace Span{γ1, γ4} is a coordinate plane
c3 = const.

The detailed analysis of this isolation from infinity is similar to the analysis of the isolation of the
vicinity of zero (it is even simply). Every positive trajectory is isolated in a compact and can reach
neither zero, nor infinity. It cannot also reach the coordinate planes. To prove this statement for a positive
initial condition we should (i) isolate it from zero and from infinity, (ii) find the central projections of all
the equilibrium strips in this compact onto the unit triangle, (iv) change the intervals of the equilibrium
constants to cover these projections by the intersection of the equilibrium strips with the triangle and (v)
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Figure 10. Faces of the peeled invariant set for isolation from infinity in the central
projection onto unit triangle. The borders between faces are highlighted by bold.
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create 2D positively invariant sets by peeling like in Fig. 5. (Detailed discussion of the permanence in
2D see in the paper [69].)

The peeling procedure used in this toy-example for isolation from zero differs from the universal
greedy peeling. (It is a simplified version of the greedy peeling.) We have guessed the structure of the
corner near A3 and build two plain faces, F3 and F4, instead of a sequence of the curvilinear “cylindric”
faces. This piecewise peeling is not minimal but is simpler for drawing.

Acknowledgement I am very grateful to Dr Anne Shiu from the Department of Mathematics at the
University of Chicago. She ensured me that my results annotated in 1979 [66] may be still of interest for
the chemical dynamics community. In this Appendix, I explain one of the methods (forward–invariant
peeling) used in this work, the further details will follow.
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49. Matoušek, J. On directional convexity. Discret. Comput. Geom. 2001, 25, 389–403.
50. Hwang, F.K.; Rothblum, U.G. Directional-quasi-convexity, asymmetric Schur-convexity and

optimality of consecutive partitions. Math. Oper. Res. 1996, 21, 540–554.
51. Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and its Applications;

Springer: New York, NY, USA, 2011.
52. Gorban, A.N.; Yablonskii, G.S. Extended detailed balance for systems with irreversible reactions.

Chem. Eng. Sci. 2011, 66, 5388–5399. arXiv:1101.5280 [cond-mat.stat-mech].
53. Gorban, A.N. Equilibrium Encircling. Equations of Chemical kinetics and their Thermodynamic

Analysis; Nauka: Novosibirsk, Russia, 1984. (in Russian)
54. Gorban, A.N. Invariant sets for kinetic equations. React. Kinet. Catal. Lett. 1979, 10, 187–190.
55. Gorban, A.N. Thermodynamic Tree: The Space of Admissible Paths. SIAM J. Applied Dynamical

Systems 2013, 12 (1), 246–278. arXiv:1201.6315 [cond-mat.stat-mech].
56. Jaynes, E.T. Gibbs vs Boltzmann entropies. American Journal of Physics 1965, 33 (5), 391–398.

Reprint online: http://lptms.u-psud.fr/membres/trizac/Ens/M2MQPL/Jaynes entropy.pdf Accessed
June 03 2014.

57. Gorban, A.N.; Bykov, V.I.; Yablonskii, G.S., Essays on chemical relaxation, Novosibirsk: Nauka,
1986. (in Russian)

58. Lebowitz, J.L. Boltzmann’s entropy and time’s arrow. Physics Today 1993, 46, 32–32. Reprint
online: http://users.df.uba.ar/ariel/materias/FT3 2008 1C/papers pdf/lebowitz 370.pdf Accessed
June 03 2014

59. Goldstein, S.; Lebowitz, J. L. On the (Boltzmann) entropy of non-equilibrium systems. Physica D:
Nonlinear Phenomena 2004, 193 (1), 53–66. arXiv:cond-mat/0304251 [cond-mat.stat-mech]

http://arxiv.org/pdf/1207.2507.pdf
http://arxiv.org/pdf/1010.4477.pdf
http://arxiv.org/pdf/1101.5280.pdf
http://arxiv.org/pdf/1201.6315v3.pdf
http://lptms.u-psud.fr/membres/trizac/Ens/M2MQPL/Jaynes_entropy.pdf
http://users.df.uba.ar/ariel/materias/FT3_2008_1C/papers_pdf/lebowitz_370.pdf
http://arxiv.org/pdf/cond-mat/0304251.pdf


Entropy 2014, 16 2452
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