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Abstract. In this paper we consider the following critical nonlocal problem{
−LKu = λu+ |u|2

∗−2u in Ω
u = 0 in Rn \ Ω ,

where s ∈ (0, 1), Ω is an open bounded subset of Rn, n > 2s, with Lipschitz boundary, λ
is a positive real parameter, 2∗ := 2n/(n− 2s) is the fractional critical Sobolev exponent,
while LK is the nonlocal integrodifferential operator

LKu(x) :=

∫
Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy , x ∈ Rn ,

whose model is given by the fractional Laplacian −(−∆)s .
Along the paper, we prove a multiplicity and bifurcation result for this problem, using

a classical theorem in critical points theory. Precisely, we show that in a suitable left
neighborhood of any eigenvalue of −LK (with Dirichlet boundary data) the number of
nontrivial solutions for the problem under consideration is at least twice the multiplicity
of the eigenvalue. Hence, we extend the result got by Cerami, Fortunato and Struwe in
[12] for classical elliptic equations, to the case of nonlocal fractional operators.
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1. Introduction

In recent years, nonlocal problems and operators have been widely studied in the lit-
erature and have attracted the attention of lot of mathematicians coming from different
research areas. The interest towards equations involving nonlocal operators has grown more
and more, thanks to their intriguing analytical structure and in view of several applications
in a wide range of contexts. Indeed, fractional and nonlocal operators appear in concrete ap-
plications in many fields such as, among the others, optimization, finance, phase transitions,
stratified materials, anomalous diffusion, crystal dislocation, soft thin films, semipermeable
membranes, flame propagation, conservation laws, ultra-relativistic limits of quantum me-
chanics, quasi-geostrophic flows, multiple scattering, minimal surfaces, materials science,

Key words and phrases. Fractional Laplacian, critical nonlinearities, best fractional critical Sobolev con-
stant, variational techniques, integrodifferential operators.
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water waves, thin obstacle problem, optimal transport, image reconstruction, through a
new and fascinating scientific approach (see, e.g., the papers [2, 7, 10, 16, 21, 34, 35, 36]
and references therein).

After the seminal paper [9] by Brezis and Nirenberg, the critical problem

(1.1)

{
−∆u = λu+ |u|2∗−2u in Ω
u = 0 on ∂Ω ,

has been widely studied in the literature (see, e.g. [11, 12, 13, 14, 15, 17, 18, 20, 23, 32, 37]
just to name a few), also due to its relevant relations with problems arising in differential
geometry and in physics, where a lack of compactness occurs (see, for instance, the famous
Yamabe problem). Here Ω is an open bounded subset of Rn, n > 2, and 2∗ := 2n/(n − 2)
is the critical Sobolev exponent.

The first multiplicity result for problem (1.1) was proved by Cerami, Fortunato and
Struwe in [12], where it was shown that in a suitable left neighborhood of any eigenvalue of
−∆ (with Dirichlet boundary data) the number of solutions is at least twice the multiplicity
of the eigenvalue. The authors also gave an estimate of the length of this neighborhood,
which depends on the best critical Sobolev constant, on the Lebesgue measure of the set
where the problem is set and on the space dimension.

Later, in [13] the authors proved that in dimension n > 6 and for λ > 0 less than the first
eigenvalue of −∆ (with homogeneous Dirichlet boundary conditions), problem (1.1) has at
least two nontrivial solutions, one of which is a changing sign solution (for other results on
changing sign solutions see, for instance, [15, 23, 32]). More recently, in [18] the authors
improved the result got in [13], while in [17] Devillanova and Solimini proved the existence
of infinitely many solutions for (1.1), provided the dimension n > 7 and the parameter λ
is positive. Finally, in [15] the authors showed that for n > 4 problem (1.1) has at least
(n + 1)/2 pairs of nontrivial solutions, provided λ > 0 is not an eigenvalue of −∆, and
(n + 1 − m)/2 pairs of nontrivial solutions, if λ is an eigenvalue of −∆ with multiplicity
m < n + 2. When m > n + 2, [15] gave no information about the multiplicity of solutions
for (1.1), when λ is an eigenvalue of −∆. A partial answer to this question was given in
[14], where the authors showed that when n > 5 and λ > λ1, then problem (1.1) has at
least (n+ 1)/2 pairs of nontrivial solutions.

A natural question is whether all these results can be extended to the fractional nonlocal
counterpart of (1.1), i.e. to the following problem

(1.2)

{
(−∆)su = λu+ |u|2∗−2u in Ω
u = 0 in Rn \ Ω,

where s ∈ (0, 1) is fixed, Ω is an open bounded subset of Rn, n > 2s, with Lipschitz
boundary, 2∗ is the fractional critical Sobolev exponent given by

2∗ := 2n/(n− 2s)

and −(−∆)s is the fractional Laplace operator which (up to normalization factors) may be
defined as

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

for x ∈ Rn (see [19] and references therein for further details on the fractional Laplacian).
Note that, in the nonlocal setting, the condition u = 0 in Rn \Ω is the natural counterpart
of the homogeneous Dirichlet boundary data u = 0 on ∂Ω, due to the nonlocal character of
the problem.

If we deal with the existence of nontrivial solutions for problem (1.2), a positive answer
has been given in the recent papers [24, 25, 30], also in presence of a perturbation of the
critical term (for this see, for instance, [29, 31]): in all these papers the classical and well
known existence results for (1.1) were extended to the nonlocal fractional setting. Other
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interesting existence results for nonlocal problems driven by fractional operators in a critical
setting can be found in [4, 22, 33] and references therein.

Aim of this paper is to focus the attention on the multiplicity of solutions for (1.2). In
particular, our starting point will be the paper [12] and our goal will be to extend the result
obtained there to the nonlocal fractional setting.

Precisely, along this work we consider a generalization of (1.2), given by the following
nonlocal critical problem

(1.3)

{
−LKu = λu+ |u|2∗−2u in Ω
u = 0 in Rn \ Ω .

Here LK is the nonlocal operator defined as follows:

LKu(x) :=

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy , x ∈ Rn ,

where the kernel K : Rn \ {0} → (0,+∞) is a function such that

(1.4) mK ∈ L1(Rn), where m(x) = min{|x|2, 1} ;

(1.5) there exists θ > 0 such that K(x) > θ|x|−(n+2s) for any x ∈ Rn \ {0} ;

(1.6) K(x) = K(−x) for any x ∈ Rn \ {0} .
The integro-differential operator LK is a generalization of the fractional Laplacian, since,
taking K(x) = |x|−(n+2s), we get LK = −(−∆)s.

Of course, the trivial function u ≡ 0 is a solution of problem (1.3). Here we are interested
in nontrivial solutions. Before stating our main results, we need to introduce the functional
space we will work in, the variational formulation of the problem under consideration, as
well as the spectrum of the operator −LK .

1.1. Notations. Problem (1.3) has a variational character and the natural space where
finding weak solutions for it is the functional space X0, defined as follows (for more details
we refer to [26, 27], where this space was introduced and some properties of this space were
proved).

Along this paper the space X denotes the linear space of Lebesgue measurable functions
from Rn to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and

the map (x, y) 7→ (g(x)− g(y))
√
K(x− y) is in L2

(
(Rn × Rn) \ (CΩ× CΩ), dxdy

)
,

where CΩ := Rn \ Ω , while

X0 := {g ∈ X : g = 0 a.e. in Rn \ Ω} .
We note that X and X0 are non-empty, since C2

0 (Ω) ⊆ X0 by [26, Lemma 5.1]: for this we
need condition (1.4).

The space X is endowed with the norm defined as

(1.7) ‖g‖X := ‖g‖L2(Ω) +
(∫

Q
|g(x)− g(y)|2K(x− y)dx dy

)1/2
,

where Q := (Rn × Rn) \ O and O = (CΩ) × (CΩ) ⊂ Rn × Rn (see, for instance, [27] for a
proof). Moreover, by [27, Lemma 6] as a norm on X0 we can take the function

(1.8) X0 3 g 7→ ‖g‖X0 :=

(∫
Rn×Rn

|g(x)− g(y)|2K(x− y) dx dy

)1/2

.

Also, (X0, ‖ · ‖X0) is a Hilbert space, as proved in [27, Lemma 7], with scalar product
given by

X0 ×X0 3 (u, v) 7→ 〈u, v〉X0 :=

∫
Rn×Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy .
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The usual fractional Sobolev space Hs(Ω) is endowed with the so-called Gagliardo norm
(see, for instance [1, 19]) given by

(1.9) ‖g‖Hs(Ω) := ‖g‖L2(Ω) +
(∫

Ω×Ω

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2
.

Hence, even in the model case in which K(x) = |x|−(n+2s), the norms in (1.7) and (1.9)
are not the same, because Ω × Ω is strictly contained in Q : this makes the space X0 not
equivalent to the usual fractional Sobolev spaces and the classical fractional Sobolev space
approach not sufficient for studying our problem from a variational point of view.

The weak formulation of problem (1.3) is given by (here we use the symmetry of the
kernel K)

(1.10)



∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy − λ
∫

Ω
u(x)ϕ(x) dx

=

∫
Ω
|u(x)|2∗−2u(x)ϕ(x)dx ∀ ϕ ∈ X0

u ∈ X0 ,

which represents the Euler–Lagrange equation of the functional JK,λ : X0 → R defined as

(1.11)

JK,λ(u) :=
1

2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω
|u(x)|2 dx

− 1

2∗

∫
Ω
|u(x)|2∗ dx .

Along the present paper
{
λk
}
k∈N denotes the sequence of the eigenvalues of the following

problem

(1.12)

{
−LKu = λu in Ω
u = 0 in Rn \ Ω ,

with

(1.13) 0 < λ1 < λ2 6 . . . 6 λk 6 λk+1 6 . . .

λk → +∞ as k → +∞ ,

and with ek as eigenfunction corresponding to λk. Also, we choose
{
ek
}
k∈N normalized in

such a way that this sequence provides an orthonormal basis of L2(Ω) and an orthogonal
basis of X0 . For a complete study of the spectrum of the integrodifferential operator −LK
we refer to [24, Proposition 2.3], [28, Proposition 9 and Appendix A] and [30, Proposition 4] .
Finally, we say that the eigenvalue λk, k > 2, has multiplicity m ∈ N if

λk−1 < λk = · · · = λk+m−1 < λk+m .

In this case the set of all the eigenvalues corresponding to λk agrees with

span {ek, . . . , ek+m−1} .
In the sequel we also refer to the best fractional critical Sobolev constant SK defined as

follows

(1.14) SK := inf
v∈X0\{0}

SK(v)

where for any v ∈ X0 \ {0}

(1.15) SK(v) :=

∫
Rn×Rn

|v(x)− v(y)|2K(x− y) dx dy(∫
Ω
|v(x)|2∗dx

)2/2∗
.
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Finally, in what follows, |Ω| denotes the Lebesgue measure of the set Ω. Now, we are
able to state the main result of the present paper.

1.2. Main result of the paper. As we said here above, the main feature of this paper
concerns the existence of multiple solutions for problems (1.2) and (1.3). Precisely, with
the notations introduced in Subsection 1.1, our main result reads as follows:

Theorem 1. Let s ∈ (0, 1), n > 2s, Ω be an open bounded subset of Rn with Lipschitz
boundary, and let K : Rn \ {0} → (0,+∞) be a function satisfying assumptions (1.4)–(1.6).
Let λ ∈ R and let λ? be the eigenvalue of problem (1.10) given by

(1.16) λ? := min {λk : λ < λk} .

and let m ∈ N be its multiplicity. Assume that

(1.17) λ ∈ (λ? − SK |Ω|−
2s
n , λ?) ,

where SK is the best fractional critical Sobolev constant defined in (1.14).
Then, problem (1.3) admits at least m pairs of nontrivial solutions {−ui(λ), ui(λ)} such

that

‖ui(λ)‖X0 → 0 as λ→ λ?

for any i = 1, . . . ,m.

This theorem represents the fractional nonlocal counterpart of the famous multiplicity
result got by Cerami, Fortunato and Struwe in [12], using essentially an abstract critical
point theorem due to Bartolo, Benci and Fortunato in [5], whose main tool is a pseudo-index
theory introduced in [6] for studying indefinite functionals.

Problem (1.3) is variational in nature. The first difficulty in treating this problem consists
in writing its variational formulation, which has to take into account also the ‘boundary’
condition u = 0 in Rn\Ω. For this we set the weak problem in a suitable functional space X0,
whose definition is inspired, but not equivalent, to the one of the fractional Sobolev spaces.

The weak solutions of (1.3) can be found as critical points of the Euler-Lagrange func-
tional JK,λ associated with the equation. As usual when dealing with critical problems, one
of the main difficulty in treating the problem is due to the lack of compactness that occurs.
Indeed, the effect of presence of the critical term |u|2∗−2u is that Palais-Smale condition
for JK,λ does not hold at any level, but just under a suitable threshold, which, in our case,
depends on the best fractional critical Sobolev constant related to the compact embedding
X0 ↪→ L2∗(Ω), on s and n.

In Theorem 1 we prove that, in a suitable left neighborhood of any eigenvalue of the inte-
grodifferential operator −LK (with homogeneous Dirichlet boundary condition) the number
of nontrivial solutions for problem (1.3) is, at least, twice the multiplicity of the eigenvalue.
Hence, we show that there is a bifurcation from any eigenvalue of the operator −LK . In
addition, we give an estimate of the length of this left neighborhood, in which the existence
of multiple solutions occurs. This estimates depends on the best fractional critical Sobolev
constant SK , on the Lebesgue measure of Ω, on n and s, as stated in (1.17). We would
like to point out that this condition is crucial in order to show that the energy functional
associated with (1.3) satisfies all the geometric assumptions required by the abstract critical
point theorem used along the present paper.

2. A multiplicity and bifurcation result

This section is devoted to the proof of Theorem 1, which is mainly based on variational
and topological methods. Precisely, here we will perform the following result due to Bar-
tolo, Benci and Fortunato (see [12, Theorem 2.5] and [5, Theorem 2.4]), which, as usual
for abstract critical points theorems, gives the existence of critical points for a functional
(sufficiently smooth), provided it satisfies suitable geometric and compactness conditions.
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Theorem 2 (Abstract critical point theorem). Let H be a real Hilbert space with norm ‖ ·‖
and suppose that I ∈ C1(H,R) is a functional on H satisfying the following conditions:

(I1) I(u) = I(−u) and I(0) = 0;
(I2) there exists a constant β > 0 such that the Palais-Smale condition for I holds in

(0, β);
(I3) there exist two closed subspaces V, W ⊂ H and positive constants ρ, δ, β′, with

δ < β′ < β, such that
i) I(u) 6 β′ for any u ∈W
ii) I(u) > δ for any u ∈ V with ‖u‖ = ρ
iii) codimV < +∞ and dimW > codimV .

Then, there exist at least dimW − codimV pairs of critical points of I, with critical
values belonging to the interval [δ, β′].

The abstract result got in [5, Theorem 2.4] is a generalization of [3, Theorem 2.13], ob-
tained using a pseudo-index theory, introduced in [6] for exploiting the existence of multiple
critical points of functionals which are neither bounded above nor below on a Hilbert space.

2.1. Proof of Theorem 1. The idea consists in applying Theorem 2 to the functional
JK,λ, defined in (1.11). It is easily seen that JK,λ is well defined thanks to [27, Lemma 6].
Moreover, JK,λ ∈ C1(X0) and

〈J ′K,λ(u), ϕ〉 =

∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y) dx dy − λ
∫

Ω
u(x)ϕ(x) dx

−
∫

Ω
|u(x)|2∗−2u(x)ϕ(x) dx

for any u, ϕ ∈ X0 . Thus, critical points of JK,λ are solutions to problem (1.10), that is
weak solutions for (1.3). Note also that JK,λ is even and JK,λ(0) = 0, so that condition (I1)
of Theorem 2 is verified by JK,λ.

It remains to prove that JK,λ satisfies assumptions (I2) and (I3) of Theorem 2. At this
purpose, let us proceed by steps.

Step 1 (Compactness of the functional JK,λ). In the sequel we prove that, for suitable
values of c, say

(2.1) c <
s

n
S
n/(2s)
K ,

the functional JK,λ satisfies the following Palais-Smale condition at level c ∈ R, i.e.

every sequence {uj}j∈N in X0 such that

(2.2) JK,λ(uj)→ c as j → +∞
and

(2.3) sup
{∣∣〈 J ′K,λ(uj), ϕ 〉

∣∣ : ϕ ∈ X0 , ‖ϕ‖X0 = 1
}
→ 0 as j → +∞

admits a subsequence strongly convergent in X0 .

Proof. Let {uj}j∈N be a sequence in X0 such that (2.2) and (2.3) are satisfied.
First of all we prove that

(2.4) the sequence {uj}j∈N is bounded in X0 .

For any j ∈ N by (2.2) and (2.3) it easily follows that there exists κ > 0 such that

(2.5) |JK,λ(uj)| 6 κ ,
and

(2.6)
∣∣∣〈J ′K,λ(uj),

uj
‖uj‖X0

〉
∣∣∣ 6 κ ,
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and so

(2.7) JK,λ(uj)−
1

2
〈J ′K,λ(uj), uj〉 6 κ (1 + ‖uj‖X0) .

Furthermore,

JK,λ(uj)−
1

2
〈J ′K,λ(uj), uj〉 =

(
1

2
− 1

2∗

)
‖uj‖2

∗

L2∗ (Ω)
=
s

n
‖uj‖2

∗

L2∗ (Ω)
,

so that, thanks to (2.7), we get that for any j ∈ N

(2.8) ‖uj‖2
∗

L2∗ (Ω)
6 κ∗ (1 + ‖uj‖X0)

for a suitable positive constant κ∗ . Consequently, recalling that 2∗ > 2 and using the Hölder
inequality, we get

‖uj‖2L2(Ω) 6 |Ω|
2s/n‖uj‖2L2∗ (Ω)

6 κ2/2∗

∗ |Ω|2s/n (1 + ‖uj‖X0)2/2∗ ,

that is

(2.9) ‖uj‖2L2(Ω) 6 κ̃ (1 + ‖uj‖X0) ,

for a suitable κ̃ > 0 not depending on j. By (2.5), (2.8) and (2.9), we have that

κ > JK,λ(uj) =
1

2
‖uj‖2X0

− λ

2
‖uj‖2L2(Ω) −

1

2∗
‖uj‖2

∗

L2∗ (Ω)

>
1

2
‖uj‖2X0

− κ (1 + ‖uj‖X0) ,

with κ > 0 independent of j, and so (2.4) is proved .

Now, let us show that

(2.10) problem (1.10) admits a solution u∞ ∈ X0 .

Since the sequence {uj}j∈N is bounded in X0 by (2.4) , and X0 is a Hilbert space, then,
up to a subsequence, still denoted by {uj}j∈N, there exists u∞ ∈ X0 such that uj → u∞
weakly in X0, that is

(2.11)

∫
Rn×Rn

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy →∫
Rn×Rn

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y) dx dy

for any ϕ ∈ X0 , as j → +∞ . Moreover, by (2.4), (2.8), the embedding properties of X0

into the classical Lebesgue spaces (see [27, Lemma 8] and [29, Lemma 9]) and the fact that
L2∗(Rn) is a reflexive space we have that, up to a subsequence

uj → u∞ weakly in L2∗(Rn)(2.12)

uj → u∞ in L2(Rn)(2.13)

and

(2.14) uj → u∞ a.e. in Rn

as j → +∞ .
As a consequence of (2.4) and (2.8), we have that ‖uj‖L2∗ (Ω) is bounded uniformly in j,

hence the sequence {|uj |2
∗−2uj}j∈N is bounded in L2∗/(2∗−1)(Ω), uniformly in j . Thus,

(2.12) yields

(2.15) |uj |2
∗−2uj → |u∞|2

∗−2u∞ weakly in L2∗/(2∗−1)(Ω)

as j → +∞ , and so

(2.16)

∫
Ω
|uj(x)|2∗−2uj(x)ϕ(x)dx→

∫
Ω
|u∞(x)|2∗−2u∞(x)ϕ(x)dx ∀ ϕ ∈ L2∗(Ω)
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as j → +∞ . Hence, in particular, we have that

(2.17)

∫
Ω
|uj(x)|2∗−2uj(x)ϕ(x) dx→

∫
Ω
|u∞(x)|2∗−2u∞(x)ϕ(x) dx ∀ ϕ ∈ X0

as j → +∞ , being X0 ⊆ L2∗(Ω).
By (2.3), for any ϕ ∈ X0 as j → +∞

0← 〈J ′K,λ(uj), ϕ〉 =

∫
Rn×Rn

(uj(x)− uj(y))(ϕ(x)− ϕ(y))K(x− y) dx dy − λ
∫

Ω
uj(x)ϕ(x) dx

−
∫

Ω
|uj(x)|2∗−2uj(x)ϕ(x) dx ,

so that, passing to the limit as j → +∞ and taking into account (2.11), (2.13) and (2.17)
we get ∫

Rn×Rn

(u∞(x)− u∞(y))(ϕ(x)− ϕ(y))K(x− y) dx dy − λ
∫

Ω
u∞(x)ϕ(x) dx

−
∫

Ω
|u∞(x)|2∗−2u∞(x)ϕ(x) dx = 0 .

Then, u∞ is a solution of problem (1.10) and this proves (2.10).
As it was proved in [24, Proposition 4.1], the function u∞ in (2.10) satisfies the following

three relations1, which be useful in carried on our proof:

(2.18) JK,λ(u∞) =
s

n

∫
Ω
|u∞(x)|2∗dx > 0 ,

(2.19)

JK,λ(uj) =JK,λ(u∞)− 1

2∗

∫
Ω
|uj(x)− u∞(x)|2∗dx

+
1

2

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy + o(1)

and

(2.20)

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy

=

∫
Ω
|uj(x)− u∞(x)|2∗dx+ o(1)

as j → +∞ .
Now, by (2.20) we get that

1

2

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy − 1

2∗

∫
Ω
|uj(x)− u∞(x)|2∗dx

=

(
1

2
− 1

2∗

)∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy + o(1)

=
s

n

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy + o(1)

as j → +∞ . This relation, combined with (2.19), gives

(2.21)

JK,λ(uj) = JK,λ(u∞)

+
s

n

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy + o(1)

1We will recall the proof of these relations in the Appendix A for reader’s convenience.
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as j → +∞ . Taking into account (2.2) and (2.21) we conclude that

(2.22)

c = JK,λ(u∞)

+
s

n

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy + o(1)

as j → +∞ .
Since the sequence {‖uj‖X0}j∈N is bounded in R by (2.4), then we can assume that, up

to a subsequence, if necessary,

(2.23) ‖uj − u∞‖2X0
=

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy → L

where L ∈ [0,+∞), and so, by (2.20), we have

(2.24)

∫
Ω
|uj(x)− u∞(x)|2∗ dx→ L

as j → +∞ . By (2.23), (2.24) and the definition of SK , we get

L2/2∗SK 6 L .

Then,

either L = 0 or L > Sn/(2s)K .

By (2.18), (2.22) and (2.23), we obtain

(2.25) c = JK,λ(u∞) +
s

n
L >

s

n
L .

If L > Sn/(2s)K , then, by (2.25), we would get

c >
s

n
L >

s

n
S
n/(2s)
K

which contradicts (2.1) . Thus, L = 0. As a consequence of this and of (2.23), we have that

‖uj − u∞‖X0 → 0

as j → +∞ . This shows that the sequence {uj}j∈N has a (strongly) convergent subsequence.
Hence, JK,λ satisfies the Palais-Smale condition at any level c, provided (2.1) is satisfied.
This ends the proof of Step 1 . �

Now, let λ? be as in (1.16). Then,

λ? = λk for some k ∈ N .
Since λ? has multiplicity m ∈ N by assumption, we have that

(2.26)
λ? = λ1 < λ2 if k = 1

λk−1 < λ? = λk = · · · = λk+m−1 < λk+m if k > 2 .

Also, before going on with the proof of Theorem 1, we would note that, under condi-
tion (1.17), the parameter λ is such that

(2.27) λ > 0 .

Indeed, by definition of λ? and taking into account (1.13), it is easily seen that

(2.28) λ? > λ1 .

In addition, the variational characterization of the first eigenvalue λ1 (see [28, Proposition 9
and Appendix A]) gives that

(2.29) λ1 = min
u∈X0\{0}

∫
Rn×Rn

|u(x)− u(y)|2K(x− y)dx dy∫
Ω
|u(x)|2 dx

.
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Since, by Hölder inequality, it holds true that∫
Ω
|u(x)|2 dx 6 |Ω|2s/n

(∫
Ω
|u(x)|2∗ dx

)2/2∗

,

by this and (2.29), we get

λ1 > SK |Ω|−2s/n ,

which combined with (2.28) yields

λ? > SK |Ω|−2s/n .

Hence, as a consequence of this and of (1.17), we get (2.27).

Step 2 (Geometric structure of the functional JK,λ). With the notations of the
abstract result stated in Theorem 2, we set

W = span {e1, . . . , ek+m−1}
and

V =

{
X0 if k = 1{
u ∈ X0 : 〈u, ej〉X0

= 0 ∀j = 1, . . . , k − 1
}

if k > 2 .

Note that both W and V are closed subset of X0 and

(2.30) dim W = k +m− 1 codim V = k − 1 ,

so that (I3)−iii) of Theorem 2 is satisfied. In what follows, we prove that the functional JK,λ
has the geometric features required by Theorem 2.

Proof. Let us show that the functional JK,λ verifies assumption (I3)−i) and ii) of Theorem 2
(here condition (1.17) will be crucial).

For this, let u ∈W . Then,

u(x) =
k+m−1∑
i=1

uiei(x)

with ui ∈ R, i = 1, . . . , k +m− 1.
Since {e1, . . . , ek, . . .} is an orthonormal basis of L2(Ω) and an orthogonal one of X0 (see

[28, Proposition 9]), taking into account (2.26) we get

‖u‖2X0
=

k+m−1∑
i=1

u2
i ‖ei‖2X0

=
k+m−1∑
i=1

λiu
2
i 6 λk

k+m−1∑
i=1

u2
i = λk‖u‖2L2(Ω) = λ?‖u‖2L2(Ω) ,

so that, by this and Hölder inequality, we have

(2.31)

JK,λ(u) =
1

2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω
|u(x)|2dx

− 1

2∗

∫
Ω
|u(x)|2∗dx

6
1

2
(λ? − λ)

∫
Ω
|u(x)|2dx− 1

2∗

∫
Ω
|u(x)|2∗dx

6
1

2
(λ? − λ)|Ω|

2s
n

(∫
Ω
|u(x)|2∗dx

) 2
2∗

− 1

2∗

∫
Ω
|u(x)|2∗dx.

Now, for t > 0 let

g(t) =
1

2
(λ? − λ)|Ω|

2s
n t2 − 1

2∗
t2

∗
.

Note that the function g is differentiable in (0,+∞) and

g′(t) = (λ? − λ)|Ω|
2s
n t− t2∗−1
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so that g′(t) > 0 if and only if

t 6 t̄ =
[
(λ? − λ)|Ω|

2s
n

]1/(2∗−2)
.

As a consequence of this, t̄ is a maximum point for g and so for any t > 0

(2.32) g(t) 6 max
t>0

g(t) = g(t̄) =
s

n
(λ? − λ)

n
2s |Ω| .

By (2.31) and (2.32) we get

(2.33) sup
u∈W
JK,λ(u) 6 max

t>0
g(t) =

s

n
(λ? − λ)

n
2s |Ω| .

We observe that
s

n
(λ? − λ)

n
2s |Ω| > 0

since λ < λ? by (1.17).
Finally, let u ∈ V . Then,

(2.34) ‖u‖2X0
> λ?‖u‖2L2(Ω)

Indeed, if u ≡ 0, then the assertion is trivial, while if u ∈ V \ {0} it follows from the
variational characterization of λ? = λk given by

λk = min
u∈V \{0}

∫
Rn×Rn

|u(x)− u(y)|2K(x− y)dx dy∫
Ω
|u(x)|2 dx

,

as proved in [28, Proposition 9] .
Thus, by (1.14), (2.34) and taking into account that λ > 0 (see (2.27)), it follows that

(2.35)

JK,λ(u) >
1

2

(
1− λ

λ?

)
‖u‖2X0

− 1

2∗S
1/2
K

‖u‖2∗X0

= ‖u‖2X0

(
1

2

(
1− λ

λ?

)
− 1

2∗S
1/2
K

‖u‖2∗−2
X0

)
.

Now, let u ∈ V be such that ‖u‖X0 = ρ > 0. Since 2∗ > 2, we can choose ρ sufficiently
small, say ρ 6 ρ̄ with ρ̄ > 0, so that

(2.36)
1

2

(
1− λ

λ?

)
− 1

2∗S
1/2
K

ρ2∗−2 > 0

and

(2.37) ρ2

(
1

2

(
1− λ

λ?

)
− 1

2∗S
1/2
K

ρ2∗−2

)
<
ρ2

2

(
1− λ

λ?

)
<
s

n
(λ? − λ)

n
2s |Ω| .

�

Now, we can conclude the proof of Theorem 1 . By Step 1 it easily follows that JK,λ
satisfies (I2) with

β =
s

n
S
n/(2s)
K > 0 .

Also, by Step 2 (see (2.33)–(2.37)) we get that JK,λ verifies (I3) with

ρ = ρ̄ ,

β′ =
s

n
(λ? − λ)

n
2s |Ω|

and

δ = ρ̄2

(
1

2

(
1− λ

λ?

)
− 1

2∗S
1/2
K

ρ̄2∗−2

)
.
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Note that

0 < δ < β′ < β

thanks to (2.36), (2.37) and assumption (1.17).
All in all, the functional JK,λ satisfies both the compactness assumption and the geo-

metric features required by the abstract critical points theorem stated in Theorem 2. As
a consequence, JK,λ has m pairs {−ui(λ), ui(λ)} of critical points whose critical value
JK,λ(±ui(λ)) is such that

(2.38) 0 < ρ̄2

(
1

2

(
1− λ

λ?

)
− 1

2∗S
1/2
K

ρ̄2∗−2
X0

)
6 JK,λ(±ui(λ)) 6

s

n
(λ? − λ)

n
2s |Ω|

for any i = 1, . . . ,m .
Since JK,λ(0) = 0 and (2.38) holds true, it is easy to see that these critical points are all

different from the trivial function. Hence, problem (1.3) admits m pairs of nontrivial weak
solutions.

Now, fix i ∈ {1, . . . ,m} . By (2.38) we obtain

(2.39)

(λ? − λ)n/2s|Ω| s
n
> JK,λ(ui(λ))

= JK,λ(ui(λ))− 1

2

〈
J ′λ(ui(λ)), ui(λ)

〉
=

(
1

2
− 1

2∗

)
‖ui(λ)‖2∗

L2∗ (Ω)

=
s

n
‖ui(λ)‖2∗

L2∗ (Ω)
,

so that, passing to the limit as λ→ λ? in (2.39), it follows that

(2.40) ‖ui(λ)‖2∗
L2∗ (Ω)

→ 0 as λ→ λ? .

Then, by (2.40), since L2∗(Ω) ↪→ L2(Ω) continuously (being Ω bounded), we also get

(2.41) ‖ui(λ)‖2L2(Ω) → 0 as λ→ λ? .

So, arguing as above, we have

(λ? − λ)n/2s|Ω| s
n
> JK,λ(ui(λ)) =

1

2
‖ui(λ)‖2X0

− λ

2
‖ui(λ)‖2L2(Ω) −

1

2∗
‖ui(λ)‖2∗

L2∗ (Ω)
,

which combined with (2.40) and (2.41) gives

‖ui(λ)‖X0 → 0 as λ→ λ? .

This concludes the proof of Theorem 1.

Appendix A

Here we give the details of the proof of relations (2.18)–(2.20), which were proved in
[24, Proposition 4.1], in order to make the present paper self-contained and for reader’s
convenience.

Proof of (2.18). By (2.10), taking ϕ = u∞ ∈ X0 as a test function in (1.10) , we get∫
Rn×Rn

|u∞(x)− u∞(y)|2K(x− y)dx dy − λ
∫

Ω
|u∞(x)|2 dx =

∫
Ω
|u∞(x)|2∗dx ,

so that

JK,λ(u∞) =

(
1

2
− 1

2∗

)∫
Ω
|u∞(x)|2∗dx =

s

n

∫
Ω
|u∞(x)|2∗dx > 0 .

This concludes the proof of (2.18). �
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Proof of (2.19). At this purpose, by (2.4) and taking into account the embedding properties
of X0 into the Lebesgue spaces (see [27, Lemma 8] and [29, Lemma 9]), the sequence {uj}j∈N
is bounded in X0 and in L2∗(Ω). Thus, since (2.14) holds true, by the Brezis-Lieb Lemma
(see [8, Theorem 1]), we get

(A.1)

∫
Rn×Rn

|uj(x)− uj(y)|2K(x− y) dx dy

=

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy

+

∫
Rn×Rn

|u∞(x)− u∞(y)|2K(x− y) dx dy + o(1)

and

(A.2)

∫
Ω
|uj(x)|2∗ dx =

∫
Ω
|uj(x)− u∞(x)|2∗ dx+

∫
Ω
|u∞(x)|2∗ dx+ o(1)

as j → +∞ .
Now, by (2.13), (A.1) and (A.2) we deduce that

JK,λ(uj) =
1

2

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy

+
1

2

∫
Rn×Rn

|u∞(x)− u∞(y)|2K(x− y) dx dy − λ

2

∫
Ω
|u∞(x)|2dx

− 1

2∗

∫
Ω
|uj(x)− u∞(x)|2∗ dx− 1

2∗

∫
Ω
|u∞(x)|2∗ dx+ o(1)

= JK,λ(u∞) +
1

2

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y) dx dy

− 1

2∗

∫
Ω
|uj(x)− u∞(x)|2∗ dx+ o(1)

as j → +∞ , which gives (2.19). �

Proof of (2.20). For this, note that, as a consequence of (2.12), (2.15) and (A.2), we get

(A.3)

∫
Ω

(
|uj(x)|2∗−2uj(x) −|u∞(x)|2∗−2u∞(x)

)(
uj(x)− u∞(x)

)
dx

=

∫
Ω
|uj(x)|2∗ dx−

∫
Ω
|u∞(x)|2∗−2u∞(x)uj(x) dx

−
∫

Ω
|uj(x)|2∗−2uj(x)u∞(x) dx+

∫
Ω
|u∞(x)|2∗ dx

=

∫
Ω
|uj(x)|2∗ dx−

∫
Ω
|u∞(x)|2∗ dx+ o(1)

=

∫
Ω
|uj(x)− u∞(x)|2∗ dx+ o(1)

as j → +∞ .
By (2.3), (2.4) and (2.10), we have that

(A.4) o(1) = 〈J ′K,λ(uj), uj − u∞〉 = 〈J ′K,λ(uj)− J ′K,λ(u∞), uj − u∞〉
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as j → +∞ . On the other hand, by (2.13) and (A.3), it holds true that

(A.5)

〈J ′K,λ(uj)−J ′K,λ(u∞), uj − u∞〉

=

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y)dx dy

− λ
∫

Ω
|uj(x)− u∞(x)|2 dx

−
∫

Ω

(
|uj(x)|2∗−2uj(x)− |u∞(x)|2∗−2u∞(x)

)
(uj(x)− u∞(x)) dx

=

∫
Rn×Rn

|uj(x)− u∞(x)− uj(y) + u∞(y)|2K(x− y)dx dy

−
∫

Ω
|uj(x)− u∞(x)|2∗ dx+ o(1)

as j → +∞ . Then, combining (A.4) and (A.5), we get (2.20) . �
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[12] G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic
problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, no. 5,
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