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Abstract

Applying the concept of anti-integrable limit to space-time dis-

cretized KdV-Burgers-KS type equations, we show that there exist

topological horseshoes in the phase space formed by the initial states

of travelling wave solutions of the resulted coupled map lattices. In

particular, the coupled map lattices display spatio-temporal chaos on

the horseshoes.

Key words. horseshoe, spatio-temporal chaos, travelling wave, anti-

integrable limit

2010 Mathematical Subject Classification. 37C05, 37K60, 39A14,

39A33

∗Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (Email: YC-

Chen@math.sinica.edu.tw)
†Department of Mathematics, National Taiwan Normal University, Taipei 11677, Tai-

wan (Email: sschen@ntnu.edu.tw)
‡Department of Financial and Computational Mathematics, Providence University,

Shalu, Taichung 43301, Taiwan (Email: jmyuan@pu.edu.tw)

1



1 Introduction and main result

In this paper, we investigate the travelling wave solutions of discretized KdV-

Burgers-KS type Equations. More precisely, we are concerned with the time-

evolution and space-translation dynamics for the travelling wave solutions

of the space-time discretization of the following partial differential equation

(PDE)

∂tu+ ∂x
(
V (u) + ε1∂xu+ ε2∂

2
xu+ ε3∂

3
xu+ ε4∂

4
xu
)

= 0, (1.1)

where V is a degree-(l + 1) polynomial function of R with l ≥ 1. In the

equation, ε1 and ε3 denote the constant dissipation coefficients, while ε2 and

ε4 stand for constant dispersion coefficients. The discretized PDE can be

treated as a coupled map lattice (CML). We shall show that the CML admits

spatio-temporal chaotic travelling waves if ε = (ε1, ε2, ε3, ε4) is sufficiently

small.

When V (u) = ul+1/(l + 1) and ε1 = ε3 = 0, the equation reduces to a

fifth-order KdV equation, which has been employed to model shallow water

waves with surface tension[13, 16, 28], magneto-acoustic waves in plasmas

[15], and oscillatory tails of non-vanishing amplitude waves in optics [7]. In

shallow water waves, ε2 is related to the Bond number in the presence of

surface tension and ε2 = 0 corresponds to the critical Bond number 1
3

[28].

When ε1 = ε3 = ε4 = 0, (1.1) leads to the generalized KdV equation. It is

called the modified KdV equation when l = 2. In the case l = 1, (1.1) is the

celebrated Korteweg-de Vries (KdV) equation [17] of the form

∂tu+ u∂xu+ ε2∂
3
xu = 0. (1.2)

Note that both KdV and modified KdV are integrable and there is Miura

transformation between them [1, 11], and that the generalized KdV equation

is not integrable for l ≥ 3 as shown by the inverse scattering transformation

[22].

When V (u) = u2/2, ε1 = ε3 = 1 and ε2 = ε4 = 0, it represents the

simplest form of the Kuramoto-Sivashinsky (KS) equation

∂tu+ u∂xu+ ∂2
xu+ ∂4

xu = 0, (1.3)
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which models pattern formations in different physical contexts, e.g. [14, 23].

When V (u) = u2/2 and ε2 = ε3 = ε4 = 0, (1.1) stands for the Burgers

equation of the form

∂tu+ u∂xu+ ε1∂xu = 0. (1.4)

This paper is motivated by the work of [29]. Using the approach of anti-

integrable limit (see e.g. [4, 9, 20] for an account) and the contraction map-

ping theorem, Zheng et al. proved existence of solitary-wave-like solutions

of a space-time discretization system of (1.2), and mentioned the possibility

of various type of travelling wave solutions, as is apparently implied by the

theory of anti-integrable limit. The main purpose of this paper is three-fold:

1) To prove the existence of such various type solutions, in particular

chaotic solutions, not only for discretized system of (1.2) but also for dis-

cretized system of (1.1) .

2) Although it has been known that the method of anti-integrability can

be employed to prove the existence of chaotic solutions for discretized partial

differential equations, or coupled map lattices (CMLs) in general, (see e.g.

[19, 21, 26, 27]), the chaos displayed is spatial, not temporal nor spatio-

temporal. Here, we go beyond this, showing that the discretized system

manifests not only the spatial but also the temporal and spatio-temporal

chaos.

3) In reaction-diffusion, sine-Gordon, as well as KdV equations, strong

nonlinearity and weak dissipation or dispersion play the same role up to

a rescaling of magnitude, space and time. (See for example, (3.4), (3.10),

and (3.14).) There are similar rescalings for their discretized counterparts.

Whether the limits of infinite nonlinearity or zero dissipation or dispersion

correspond to the anti-integrable limit will be fully discussed. We shall see

that the case of discretized KdV equations is different from that of discretized

Fisher-KPP and sine-Gordon equations: the discretized KdV equations pos-

sess a conservation law (namely (1.11)), but the other two do not.

Our approach is again the anti-integrable limit, but in contrast with the

contraction mapping theorem used in [29], we use the implicit function the-

orem.

It is well-known that the KdV equation (1.2) possesses a family of soli-

tary wave solutions parametrized by wave speed. Korteweg and de Vries
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also found that there is a two-parameter family of spatially periodic travel-

ling wave solutions, called cnoidal waves, described by the Jacobian elliptic

functions of modulus m, with 0 < m < 1, and parametrized by m and wave

speed. They showed that the cnoidal waves become the solitary waves as

m → 1, and collapses to sinusoidal waves of zero amplitude as m → 0 [17].

In our discretized KdV system, not only solitary-wave-like but also spatially

periodic travelling wave solutions are found. In fact, the solitary-wave-like

solutions we found are of multi-peak, and the number of peaks can be arbi-

trary. Furthermore, our result implies that for any solitary-wave-like solution

found, there is a family of spatially periodic travelling waves converges to it

with the product topology.

In this paper, we focus on travelling waves propagating to the left. The

case of waves propagating to the right can be treated in the same manner.

Let ∆x > 0 and ∆t > 0 be small real numbers. We discretize the space

and time into lattice points xj and tn, respectively, with j ∈ Z, n ∈ N, and

use

xj+1 := xj + ∆x,

tn+1 := tn + ∆t.

In this paper, we employ the discretization below for the derivative with

respective to time:

∂tu(xj, tn) −→ [u(xj, tn + ∆t)− u(xj, tn)]/∆t,

and the following discretization for the derivatives with respect to space:

∂xu(xj, tn) −→ [u(xj + ∆x, tn)− u(xj, tn)]/∆x,

∂2
xu(xj, tn) −→ [u(xj + ∆x, tn)− 2u(xj, tn) + u(xj −∆x, tn)]/(∆x)2,

∂3
xu(xj, tn) −→ [u(xj + 2∆x, tn)− 3u(xj + ∆t, tn) + 3u(xj, tn)

−u(xj −∆x, tn)]/(∆x)3,

∂4
xu(xj, tn) −→ [u(xj + 2∆x, tn)− 4u(xj + ∆t, tn) + 6u(xj, tn)

−4u(xj −∆x, tn) + u(xj − 2∆x, tn)]/(∆x)4,

∂5
xu(xj, tn) −→ [u(xj + 3∆x, tn)− 5u(xj + 2∆x, tn) + 10u(xj + ∆t, tn)

−10u(xj, tn) + 5u(xj −∆x, tn)− u(xj − 2∆x, tn)]/(∆x)5.
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For every integer k, use the notation

uj+k,n := u(xj + k∆x, tn),

uj,n+k := u(xj, tn + k∆t).

Thereby, we have the following equation in our discretization of (1.1):

uj,n+1 − uj,n
∆t

+
V (uj+1,n)− V (uj,n)

∆x

+ε1
uj+1,n − 2uj,n + uj−1,n

(∆x)2
+ ε2

uj+2,n − 3uj+1,n + 3uj,n − uj−1,n

(∆x)3

+ε3
uj+2,n − 4uj+1,n + 6uj,n − 4uj−1,n + uj−2,n

(∆x)4

+ε4
uj+3,n − 5uj+2,n + 10uj+1,n − 10uj,n + 5uj−1,n − uj−2,n

(∆x)5
= 0. (1.5)

The discretized KdV-Burgers-KS type equation (1.5) is the CML system we

study in this paper.

Let c > 0. In PDEs, a travelling wave solution propagating to the left

having the form u(x, t) = v(x+ ct) gives rise to

∂xu = ∂tu/c. (1.6)

From (1.6) we require that

uj+1,n − uj,n
∆x

=
uj,n+1 − uj,n

c∆t
. (1.7)

Hence, associated with ∆x = c∆t, by a travelling wave solution propa-

gating to the left with speed c for a discretized PDE, we mean a solution

(uj,n)(j,n)∈Z×N satisfying

uj+1,n = uj,n+1 (wave propagating to the left) (1.8)

or equivalently

uj,n = uj−1,n+1 (wave propagating to the left) (1.9)

for all j ∈ Z, n ∈ N.
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Remark 1. In CMLs, a travelling wave solution propagating to the left with

speed c ∈ Q means a solution of the form

uj,n = Γ(qj + pn) with p/q = c,

p, q ∈ N, coprime, and Γ : R→ R a continuous function. (See [2, 3, 24] and

the definition therein for c ∈ R.) This gives rise to

uj,n = uj−p,n+q (1.10)

One possible situation leading to (1.10) is to set the space-step ∆x equal

to the time-step ∆t in the discretization of PDEs so that a wave profile

propagates p steps in space when time elapses q steps. If we define a travelling

wave as in this remark, our approach by the anti-integrable limit still works

for c = 1 case. Because in this case, (1.10) is just (1.9). For general c see

subsection 3.2.

Substituting (1.7) into (1.5), we obtain

cuj+1,n + V (uj+1,n) + ε1
uj+1,n − uj,n

∆x
+ ε2

uj+2,n − 2uj+1,n + uj,n
(∆x)2

+ε3
uj+2,n − 3uj+1,n + 3uj,n − uj−1,n

(∆x)3

+ε4
uj+3,n − 4uj+2,n + 6uj+1,n − 4uj,n + uj−1,n

(∆x)4

= cuj,n + V (uj,n) + ε1
uj,n − uj−1,n

∆x
+ ε2

uj+1,n − 2uj,n + uj−1,n

(∆x)2

+ε3
uj+1,n − 3uj,n + 3uj−1,n − uj−2,n

(∆x)3

+ε4
uj+2,n − 4uj+1,n + 6uj,n − 4uj−1,n + uj−2,n

(∆x)4
.

Therefore, a solution must fulfill the following conservation law

cuj,n + V (uj,n) + ε1
uj,n − uj−1,n

∆x
+ ε2

uj+1,n − 2uj,n + uj−1,n

(∆x)2

+ε3
uj+1,n − 3uj,n + 3uj−1,n − uj−2,n

(∆x)3

+ε4
uj+2,n − 4uj+1,n + 6uj,n − 4uj−1,n + uj−2,n

(∆x)4
= b (1.11)
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for some constant b for all j ∈ Z and n ∈ N. Notice that, with fixed n, the

equation (1.11) of the conservation law is a recurrence relation.

Remark 2. Rather than use V ′(uj,n)(uj+1,n−uj,n)/∆x to discretize ∂xV (u(xj,n)),

we use (V (uj+1,n) − V (uj,n))/∆x. The virtue is that it gives (1.11). That

is, it corresponds to preserving the following conservation law of the KdV-

Burgers-KS type PDE:

±cv + V (v) + ε1v
′ + ε2v

′′ + ε3v
′′′ + ε4v

′′′′ = constant

for travelling waves of the form u(x, t) = v(x± ct).

Our main result is the following.

Theorem 3. There is an open set CB ⊂ R+×R such that for any (c, b) ∈ CB
there exists δ > 0 such that the space-time discretized KdV-Burgers-KS type

equation (1.5) possesses a set U of bounded travelling wave solutions of the

form uj,n+1 = uj+1,n for all j ∈ Z and n ∈ N satisfying ∆x = c∆t and the

conservation law (1.11) provided 0 ≤ max{|ε1|, |ε2|, |ε3|, |ε4|} < δ. Moreover,

let I be the set of all initial states from U , then I is a Cantor set in the

product topology of RZ. The set I is invariant under the time-evolution T

of (1.5), and the system (1.5) is spatio-temporally chaotic on I. In fact, the

restriction T |I of T on I is a topological horseshoe.

The open set CB in Theorem 3 can be very huge. For example, if (1.5)

is the discretized system of the KdV equation (1.2), then CB is the set

{(c, b)| c2 + 2b > 0}. The proof of Theorem 3 will be postponed to Section 5,

and the precise meaning of the theorem will be clear after Theorem 18, also

located in Section 5. In next section, we review the notion of spatio-temporal

chaos for CMLs. In Section 3, using the concept of anti-integrable limit, we

prove the existence of the topological horseshoe T |I in the phase space of

CML (1.5). We discuss and compare how the concept can be applied to

discretized equations of the Fisher-KPP, sine-Gordon and KdV equations for

steady-state and travelling wave solutions. Section 4 is devoted to the space-

translation dynamics on I. We show that for generic ε1, ε2, ε3 and ε4, the

dynamics is topologically conjugate to the restriction of a four-dimensional

Hénon-like map G4 to a Cantor set A ⊂ R4.
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We emphasize that T |I is a topological horseshoe embedded as a sub-

system in the infinite dimensional dynamical system (1.5), whereas G4|A is

a one in a finite dimensional dynamical system. We also remark that our

results and approach can be extended easily to a space-time discretization of

the following partial differential equations

∂tu+ ∂xV (u) +
k∑
i=2

εi−1∂
i
xu = 0,

for any positive integer k.

2 Spatio-temporal chaos for CMLs

Let T : (Rd)Z → (Rd)Z be the time-evolution operator of a CML (T, (Rd)Z)

with phase space (Rd)Z defined by

T (v) = w = (. . . , w−1, w0, w1, . . .)

with

wj = φ(vj−r, vj−r+1, . . . , vj+r) ∀j ∈ Z

for some smooth function φ and positive integer r. Given n ∈ N, suppose

un ∈ (Rd)Z. We write

T (un) = un+1 or uj,n+1 = φ(uj−r,n, uj−r+1,n, . . . , uj+r,n).

Let σ : (Rd)Z → (Rd)Z be the usual shift operator, i.e.

σ(v) = w with wj = vj+1 ∀j ∈ Z.

When the space which σ acts on is a phase space, σ is also called the space-

translation operator.

A definition of spatio-temporal chaos (or space-time chaos ) for

CMLs has been introduced by Bunimovich, Pesin and Sinai [6, 25], and

applied to lattices of weakly interacting chaotic systems. It is based on

invariant measures. The measure should be invariant with respect to both

the time-evolution and space-translation operations, and should be mixing

and be a physical one. In their definition, a CML is said to display
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• temporal chaos if there exists a measure which is mixing and invariant

under the Z1-action generated by the time-evolution operator T ;

• spatial chaos if there exists a measure which is mixing and invariant

under the Z1-action generated by the space-translation operator σ;

• spatio-temporal chaos if there is a measure which is mixing and

invariant under the Z2-action generated by T and S.

In the current framework, a lattice of weakly interacting systems or a

weakly coupled CML (Tε, (Rd)Z) has the form

uj,n+1 = f(uj,n) + εg(uj−r,n, uj−r+1,n, . . . , uj+r,n), (2.1)

in which f , called the local map, and g are smooth maps, and ε is a small

coupling parameter. Providing that ε is small and the map f is hyperbolic,

it has been known, e.g. [24], that the system (2.1) displays the temporal

chaos in the set of spatially-homogeneous solutions, i.e., solutions of the form

uj+1,n = uj,n ∀j ∈ Z, n ∈ N. In [10], Chow and Shen studied the following

discretized Nagumo equation,

uj,n+1 = uj,n + βuj,n(uj,n − a)(1− uj,n) + ε(uj−1,n − 2uj,n + uj+1,n), (2.2)

where uj,n ∈ R for all j ∈ Z, n ∈ N, and showed that there are parameters

β, ε > 0 and 0 < a < 1 such that the system displays the spatial chaos on

the set of steady-state solutions, i.e., solutions of the form uj,n+1 = uj,n.

As a matter of fact, for the CML (2.2) there is a set of steady-state

solutions on which the space-translation operator is topologically conjugate

to the Bernoulli shift with two symbols.

A topological aspect of [6, 25] for spatio-temporal chaos has been given

by Afraimovich and Fernandez [2] (see also [5]). In the current content, it is

described by the following two-dimensional Markov scheme.

Assume f has a hyperbolic local maximal set Λ of chaotic orbits. So,

the uncoupled system T0 possesses an invariant set I0 =
⊗

Z Λ. Because

of the hyperbolicity, there corresponds a topological Markov chain (σ,ΣA)

with A the transition matrix. Let σT :=
⊗

Z σ and Ω :=
⊗

Z ΣA. Then,

(σT ,Ω) is topologically conjugate to the time-evolution T0 on I0. Note
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that σT ((ej,n)(j,n)∈Z×N) = (ēj,n)(j,n)∈Z×N with ēj,n = ej,n+1. Define σS by

σS((ej,n)(j,n)∈Z×N) = (ēj,n)(j,n)∈Z×N with ēj,n = ej+1,n. Then, one also has

that (σS,Ω) is topologically conjugate to the space-translation σ on I0.

There is a structural stability result for weakly interacting CMLs. Under

some hyperbolicity conditions for the local map, it was proved that for small

ε there is a Tε-invariant set Iε on which the above structure survives.

It has been shown that CMLs restricted to the set of travelling wave so-

lutions may display spatio-temporal chaos [3] (see also [24]). In contrast to

[2, 6, 25], where the set displaying spatio-temporal chaos is infinite dimen-

sional, the spatio-temporal chaotic set constructed from travelling waves in

[3, 24] is of finite or zero dimension. From the viewpoint of the symbolic

dynamics, the set of travelling wave solutions corresponds to a subset in the

symbolic space: For example, the product Ω =
⊗

Z{0, 1}Z = {0, 1}Z2
is in-

variant and spatio-temporally chaotic under the Z2-action generated by σT

and σS. Consider the subspace Ω̃ = {(ej,n)(j,n)∈Z×N| ej,n+1 = ej+1,n ∀(j, n) ∈
Z×N}. It is clear that Ω̃ is also invariant under the Z2-action of σT and σS.

Furthermore, the restriction of σT as well as σS to Ω̃ are both topologically

conjugate to the Bernoulli shift (σ, {0, 1}Z). In virtue of this, in this paper

we employ the following definitions:

Definition 4. A CML is said to admit

• temporal chaos if there is a set I ⊂ (Rd)Z invariant under the Z2-

action of T and σ and if there exists a topological Markov chain ΣT of

positive topological entropy such that the following diagram commutes

ΣT
σ−→ ΣT

hT

y yhT
I T l

−→ I
(2.3)

for some positive integer l and a homeomorphism hT with the product

topology;

• spatial chaos if there is a set I ⊂ (Rd)Z invariant under the Z2-action

of T and σ and if there exists a topological Markov chain ΣS of positive
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topological entropy such that the following diagram commutes

ΣS
σ−→ ΣS

hS

y yhS
I σk

−→ I
(2.4)

for some positive integer k and a homeomorphism hS with the product

topology;

• spatio-temporal chaos if there is a set I ⊂ (Rd)Z invariant under

the Z2-action of T and σ and if there exist topological Markov chains

ΣT and ΣS of positive topological entropy such that both diagrams

(2.3) and (2.4) are commutative for some positive integers l, k and

homeomorphisms hT , hS with the product topology.

Let (un)n∈N be a solution of a CML. Define P to be the projection to its

initial state

P : (un)n∈N 7→ u0.

The example below points out that there are subsets consisting of bounded

solutions of a CML on which the CML displays either spatial or temporal

chaos, but not both.

Example 5. An uncoupled identical logistic map lattice uj,n+1 = 5uj,n(1 −
uj,n), j ∈ Z, n ∈ N, has a set US of bounded steady-state solutions:

US =
{

(uj,n)(j,n)∈Z×N| uj,n+1 = uj,n ∈ {0, 4/5}
}
.

The system is spatially chaotic on the set IS = P (US). Although the set

IS is invariant under T , but every element in IS is a fixed point of T . The

system has also a set UT of bounded spatially homogeneous solutions:

UT =
{

(uj,n)(j,n)∈Z×N| uj+1,n = uj,n ∈ Λ5

}
,

where Λ5 is the invariant set consisting of the initial points of bounded orbits

of the logistic map w 7→ 5w(1−w). The system is temporally chaotic on the

set IT = P (UT ). Although the set IT is invariant under σ, every element in

IT is a fixed point of σ.
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Example 6. The uncoupled logistic map lattice in the above example is

spatio-temporally chaotic on the set I = P (U) of initial states of bounded

solutions

U =
{

(uj,n)(j,n)∈Z×N| uj,n ∈ Λ5

}
in the sense of [2, 6, 25]. Let

Ũ =
{

(uj,n)(j,n)∈Z×N| uj,n+1 = uj+1,n ∈ Λ5

}
,

be a set of bounded travelling wave solutions, then the system is spatio-

temporally chaotic on P (Ũ) in the sense of [3, 24] and Definition 4.

3 Topological horseshoes via the anti-integrable

limit

3.1 Existence of travelling wave solutions

A solution of CML (1.5) can be obtained once a solution of the conservation

law (1.11) is found: If the sequence (uj,n0)j∈Z solves (1.11) for some n = n0 ∈
N, then

uj,n0+1 = uj+1,n0 and uj,n0−1 = uj−1,n0 ∀j ∈ Z

by (1.8). Automatically, the sequence (uj,n0+1)j∈Z or (uj,n0−1)j∈Z fulfills (1.11)

for n = n0 +1 or n0−1, respectively. Hence, the question of finding travelling

wave solutions (uj,n)(j,n)∈Z×N of (1.5) amounts to finding solutions (uj,n0)j∈Z

of (1.11) for an arbitrary fixed n0. We set n0 = 0.

Let (Rd)Z be the space of sequences v = (. . . , v−1, v0, v1, . . .) ∈ Rd, and

σ : (Rd)Z → (Rd)Z be the shift, i.e. σ(v) = (σ(v)i)i∈Z with σ(v)i = vi+1 for

all i ∈ Z. Let ‖ · ‖∞ be the supremum norm, ‖v‖∞ = supi∈Z |vi|, and ‖ · ‖ be

the norm defined by ‖v‖ =
∑

i∈Z |vi|/2|i|. Let

l∞(Rd) = {v ∈ (Rd)Z| ‖v‖∞ <∞}

and

M(Rd) := {v ∈ (Rd)Z| ‖v‖ <∞}.

Note that both l∞(Rd) and M(Rd) are Banach spaces, and that the former

has the uniform topology, while the latter has the product topology. Let
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µ > 0. Denote by B(0, µ) and U(0, µ) the closed balls of radius µ centered

at the origin in l∞(Rd) and M(Rd), respectively. As subsets of (Rd)Z, it is

clear that B(0, µ) ⊂ U(0, 3µ).

For given c and b, define a map F (·, ·; c, b) : l∞(R)× R4 → l∞(R) by

F (v, ε; c, b) = (Fj(v, ε; c, b))j∈Z,

with

ε = (ε1, ε2, ε3, ε4)

and

Fj(v, ε; c, b) = cvj + V (vj) + ε1
vj − vj−1

∆x
+ ε2

vj+1 − 2vj + vj−1

(∆x)2

+ ε3
vj+1 − 3vj + 3vj−1 − vj−2

(∆x)3

+ ε4
vj+2 − 4vj+1 + 6vj − 4vj−1 + vj−2

(∆x)4
− b (3.1)

for all j ∈ Z. Let un ∈ l∞(R) with un = (. . . , u−1,n, u0,n, u1,n, . . .). From

(1.11), we have the following result. Its proof is easy, thus we omit it.

Proposition 7. Assume ε 6= 0. The discretized KdV-Burgers-KS type equa-

tion (1.5) admits a bounded travelling wave solution (un)n∈N propagating to

the left with speed c if and only if there is a constant b such that F (u0, ε; c, b) =

0.

Becuase V (v) is a polynomial, there is a nonempty open set CB ⊂ R+×R
such that for all (c, b) ∈ CB the algebraic equation cv + V (v) = b for v

has at least two distinct roots and all of the roots are non-degenerate. For

given (c, b) ∈ CB, let Sc,b be the sets consisting of non-degenerate roots of

cv + V (v) = b. Define a subset Σc,b ⊂ l∞(R) by

Σc,b := {v = (vj)j∈Z| vj ∈ Sc,b ∀j ∈ Z}.

Example 8. For the KdV, KS, and Burgers equations, (1.2)-(1.4), we have

CB = {(c, b)| c2 + 2b > 0},
Σc,b = {(vj)j∈Z| vj = c−

√
c2 + 2b or c+

√
c2 + 2b with c2 + 2b > 0}.
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Proposition 9. u†0 ∈ l∞(R) satisfies F (u†0, 0; c, b) = 0 if u†0 ∈ Σc,b.

Proof. Fj(v, 0; c, b) = cvj+V (vj)−b for any integer j. Thus, F (u†0, 0; c, b) = 0

if u†j,0 ∈ Sc,b for all j ∈ Z.

Lemma 10. Providing (c, b) ∈ CB, the linear operators DvF (u†0, 0; c, b) are

invertible whenever u†0 ∈ Σc,b. Moreover,

inf
{
|c+ V ′(u†j,0)|−1 : u†j,0 ∈ Sc,b

}
≤ ‖DvF (u†0, 0; c, b)−1‖

≤ sup
{
|c+ V ′(u†j,0)|−1 : u†j,0 ∈ Sc,b

}
.

Proof. DvF (v, ε; c, b) is a linear operator of l∞(R),

ξ = (ξk)k∈Z 7→

(∑
k∈Z

DvkFj(v, ε; c, b)ξk

)
j∈Z

.

Simple calculation shows that

DvkFj(v, ε; c, b) =



ε4
(∆x)4

if k = j + 2

ε2
(∆x)2

+ ε3
(∆x)3

− 4 ε4
(∆x)4

if k = j + 1

c+ V ′(vj) + ε1
∆x
− 2 ε2

(∆x)2
− 3 ε3

(∆x)3
+ 6 ε4

(∆x)4
if k = j

− ε1
∆x

+ ε2
(∆x)2

+ 3 ε3
(∆x)3

− 4 ε4
∆x4

if k = j − 1

− ε3
(∆x)3

+ ε4
(∆x)4

if k = j − 2

0 otherwise.

It is then easy to see that the linear operators DvF (u†0, 0; c, b) are invertible

if u†0 ∈ Σc,b, because each operator can be represented as an infinite diagonal

matrix with non-zero entries c+ V ′(u†j,0) for all j ∈ Z.

Example 11. For the KdV equation (1.2),

DvF (v, ε; c, b) =

...
...

...

· · · c+ v−1 − 2 ε2
(∆x)2

ε2
(∆x)2

0 · · ·
· · · ε2

(∆x)2
c+ v0 − 2 ε2

(∆x)2
ε2

(∆x)2
· · ·

· · · 0 ε2
(∆x)2

c+ v1 − 2 ε2
(∆x)2

· · ·
...

...
...


,
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as it is realized in matrix form. And, DvF (u†0, 0; c, b) is invertible if u†0 ∈ Σc,b

with c2 + 2b > 0 because the infinite matrix above is diagonal with entries

−
√
c2 + 2b or

√
c2 + 2b.

By virtue of Lemma 10, using the theory of anti-integrability (see [4, 8, 20]

and Theorem 19 in the Appendix), we conclude that

Proposition 12. Assume (c, b) ∈ CB. There exists δ > 0 and a unique

function Φε : Σc,b → RZ such that Φε(u
†
0) is a bounded sequence satisfying

Φ0(Σc,b) = Σc,b and F (Φε(u
†
0), ε; c, b) = 0 for any u†0 ∈ Σc,b provided 0 ≤

|ε| < δ. Let

I := Φε(Σc,b).

With the metric ‖ · ‖, the map Φε depends C1 on ε and is a homeomorphism

from Σc,b to I. Moreover, the following diagram commutes

Σc,b
σ−→ Σc,b

Φε

y yΦε

I σ−→ I.

Proof. Because Sc,b is a finite set, Lemma 10 implies that ‖DvF (u†0, 0; c, b)−1‖
is bounded above on Σc,b × {0}. From the definition (3.1) of F , it is easy to

verify all other assumptions in (i) and (ii) of Theorem 19. For assumptions

in (iii) of Theorem 19, note that all points in Σc,b are isolated with the metric

‖ · ‖∞, but Σc,b is a Cantor set thus compact with the metric ‖ · ‖. Hence,

to prove the proposition, it remains to check the continuity of F (·, ε; c, b),
or equivalently to check the continuity of Fj(·, ε; c, b) for all j ∈ Z. But

Fj(·, ε; c, b) certainly depends continuously on v for every j ∈ Z because it

depends on only finitely many components of v. Namely, it is a function of

the form Fj(·, ε; c, b) = χ(uj−r, . . . , uj, . . . , uj+r) for some continuous function

χ : R2r+1 → R and fixed r ∈ N.

3.2 Applicability: strong nonlinearity and weak diffu-

sion or dispersion

The method of anti-integrable limit has been successfully applied to prove

the existence of spatially chaotic steady-state or travelling wave solutions in
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a variety of CMLs. In this subsection, we discuss and compare how this

method is applied to discretized Fisher-KPP, sine-Gordon, and KdV equa-

tions. We shall see that, in some situations, strong nonlinearity of local map

is equivalent to weak coupling, whereas in some situations, they are not.

Consider first the following CML

α

β

uj,n+1 − uj,n
∆t

+ uj,n(1− uj,n) +
ε1

β

uj+1,n − 2uj,n + uj−1,n

(∆x)2
= 0, (3.2)

which is a space-time discretization of the Fisher-Kolmogorov-Petrovskii-

Piscounov (Fisher-KPP) equation [12, 18] of the form

α∂tu+ βu(1− u) + ε1∂
2
xu = 0. (α, β, ε1 6= 0) (3.3)

Note that (3.2) has the form of (2.1) and that (3.3) can be transformed to

∂tu+ u(1− u) + ∂2
xu = 0

by rescaling

x→ (ε1/β)1/2x and t→ (α/β)t. (3.4)

With fixed ∆t and ∆x, when restricted to the steady-state solutions (i.e.

uj,n+1 = uj,n ∀j ∈ Z, n ∈ N), (3.2) reduces to the algebraic equation uj,n(1−
uj,n) = 0 as ε1/β → 0. Because all the roots of the algebraic equation

are simple, the theory of anti-integrable limit implies that the CML (3.2)

possesses spatially chaotic steady-state solutions when ε1/β is sufficiently

small. We emphasize that, with finite α in this case, the situation of large β

and moderate ε1 is equivalent to the situation of moderate β and small ε1.

With (1.7) for travelling wave solutions, (3.2) gives rise to

cα

β

uj+1,n − uj,n
∆x

+ uj,n(1− uj,n) +
ε1

β

uj+1,n − 2uj,n + uj−1,n

(∆x)2
= 0. (3.5)

If we employ the definition of travelling wave with speed c = p/q as in Remark

1, from (3.2) we obtain

α

β

wi+p − wi
∆t

+ wi(1− wi) +
ε1

β

wi+q − 2wi + wi−q
(∆x)2

= 0, (3.6)

where

qj + pn = i and uj,n = Γ(qj + pn) = wi. (3.7)

16



It is plain to see that the limit (α/β, ε1/β) → (0, 0) is a non-degenerate

anti-integrable limits for both recurrence relations (3.5) and (3.6). Hence,

providing (α/β, ε1/β) is sufficiently small, via (3.5), CML (3.2) admits spa-

tially chaotic travelling waves of speed c having the form uj,n+1 = uj+1,n,

while via (3.6), it admits spatially chaotic travelling waves of speed p/q hav-

ing the form uj,n = uj−p,n+q.

In our discretization scheme, the sine-Gordon equation of the form

α∂2
t u+ β sinu+ ε1∂

2
xu = 0 (α, β, ε1 6= 0) (3.8)

becomes

α

β

uj,n+1 − 2uj,n + uj,n−1

(∆t)2
+ sinuj,n +

ε1

β

uj+1,n − 2uj,n + uj−1,n

(∆x)2
= 0. (3.9)

Note that (3.8) can be transformed to

∂2
t u+ sinu− ∂2

xu = 0

by rescaling

x→ (−ε1/β)1/2x and t→ (α/β)1/2t, (3.10)

provided ε1 < 0. With (1.7) for travelling waves, (3.9) leads to

sinuj,n +
c2α + ε1

β

uj+1,n − 2uj,n + uj−1,n

(∆x)2
= 0. (3.11)

Note that the case c = 0 is the case of steady-state solutions. With (1.10)

and (3.7) for travelling waves, (3.9) gives

α

β

wi+p − 2wi + wi−p
(∆t)2

+ sinwi +
ε1

β

wi+q − 2wi + wi−q
(∆x)2

= 0. (3.12)

The recurrence relation (3.11), which may also be obtained from the steady-

state solutions of the Frenkel-Kontorova model, corresponds to the standard

map, and is the one studied in [4, 20] (see also [30]). The limit (c2α +

ε1)/β → 0 is an anti-integrable limit and (3.11) admits chaotic solutions

when (c2α + ε1)/β is small enough. In a similar manner, the recurrence

relation (3.12) possesses chaotic solutions if α/β and ε1/β are sufficiently

small.
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Let us return back to KdV equations. Note first that all KdV equations

of the form

α∂tu+ βu∂xu+ ε2∂
3
xu = 0 (α, β, ε2 6= 0) (3.13)

can be transformed to

∂tu+ u∂xu+ ∂3
xu = 0

by rescaling

u→ (ε2/β
3)1/5u, x→ (ε2

2/β)1/5x, and t→ α(ε2/β
3)1/5t. (3.14)

For the KdV equation (3.13), equation (1.5) ought to be

α

β

uj,n+1 − uj,n
∆t

+
u2
j+1,n − u2

j,n

2∆x
+
ε2

β

uj+2,n − 3uj+1,n + 3uj,n − uj−1,n

(∆x)3
= 0,

(3.15)

and the conservation law (1.11) becomes

cα

β
uj,n +

1

2
u2
j,n +

ε2

β

uj+1,n − 2uj,n + uj−1,n

(∆x)2
= b. (3.16)

If we use the notion of travelling wave as described in Remark 1 and use

(3.7), then (1.5) gives

α

β

wi+p − wi
∆t

+
w2
i+q − w2

i

2∆x
+
ε2

β

wi+2q − 3wi+q + 3wi − wi−q
(∆x)3

= 0, (3.17)

which has the following conservation law

α

β

wi
∆t

+
1

2

w2
i

∆x
+
ε2

β

wi+1 − 2wi + wi−1

(∆x)3
= b ∀i ∈ Z (3.18)

if p = q = 1. Like the discretized reaction-diffusion equation case (3.5),

the limit (α/β, ε2/β) → (0, 0) is a non-degenerate anti-integrable limit if

b 6= 0. However, what unlike (3.5) is that the limit ε2/β → 0 can also be

a non-degenerate anti-integrable limit with suitable choices of c, α, β and

b. For recurrence relation (3.5), both α and ε1 must be small so as to use

the method of anti-integrable limit to prove the existence of solutions for

moderate β, whereas for CML (3.15) or recurrence relation (3.17), with the

help of conservation law (3.16) or (3.18) respectively, travelling waves can

exist for arbitrarily large α (as implied by Example 8).
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4 Spatial profile and space-translation dynam-

ics

We have seen that bounded travelling wave solutions of (1.5) at time t = tn

must fulfill the conservation law (1.11). In other words, they must fulfill

F (un, ε; c, b) = 0. In this section, we shall concentrate our study on the

spatial profile un = (uj,n)j∈Z for a fixed n. Without loss of generality, we let

n = 0. For the sake of simplicity of notation, we let uj,0 = vj for all j ∈ Z.

Let

ε̄1 =
ε1

∆x
, ε̄2 =

ε2

(∆x)2
, ε̄3 =

ε3

(∆x)3
, ε̄4 =

ε4

(∆x)4
.

Subsequently, it is clear from the conservation law (1.11) that the bounded

travelling wave solutions are equivalent to the bounded orbits of the follow-

ing four-dimensional Hénon-like map G4 : R4 → R4, (vj−1, vj, vj+1, vj+2) 7→
(vj−2, vj−1, vj, vj+1), with

(ε̄3 − ε̄4)vj−2 = −b+ cvj + V (vj)− (ε̄1 − ε̄2 − 3ε̄3 + 4ε̄4)vj−1

+(ε̄1 − 2ε̄2 − 3ε̄3 + 6ε̄4)vj + (ε̄2 − ε̄3 − 4ε̄4)vj+1 + ε̄4vj+2

if ε̄3− ε̄4 6= 0. If ε̄3 6= 0 and ε̄4 = 0, (1.11) is equivalent to the following three-

dimensional Hénon-like map G3 : R3 → R3, (vj−1, vj, vj+1) 7→ (vj−2, vj−1, vj),

with

ε̄3vj−2 = −b+ cvj + V (vj)− (ε̄1 − ε̄2 − 3ε̄3)vj−1

+(ε̄1 − 2ε̄2 − 3ε̄3)vj + (ε̄2 − ε̄3)vj+1.

If ε̄1 − ε̄2 6= 0 and ε̄3 = ε̄4 = 0, it is equivalent to the following Hénon-like

map G2 : R2 → R2,(vj, vj+1) 7→ (vj−1, vj), with

(ε̄1 − ε̄2)vj−1 = −b+ cvj + V (vj) + (ε̄1 − 2ε̄2)vj + ε̄2vj+1.

If ε̄1 6= 0 and ε̄2 = ε̄3 = ε̄4 = 0, then it is equivalent to the following one

dimensional map G1 : R1 → R1, vj 7→ vj−1, with

ε̄1vj−1 = −b+ (ε̄1 + c)vj − V (vj).
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Example 13. For the KdV equation, with ε̄1 = ε̄3 = ε̄4 = 0 and V (v) =

v2/2, by setting b = 1/2 and c = 2ε̄2, the map G2 is an area-preserving

Hénon map of the form

(vj, vj+1) 7→ (
1

2ε̄2

(1− v2
j )− vj+1, vj).

Example 14. For the Burgers equation, with ε̄2 = ε̄3 = ε̄4 = 0 and V (v) =

v2/2, setting b = −1/2 and c = −ε̄1, we obtain a quadratic map of the form

vj 7→
1

2ε̄1

(1− v2
j )

for the map G1.

We call the map G1, G2, G3 or G4 the travelling wave map associated

with the conservation law (1.11) (see also [3, 24]). The above analysis shows

that the travelling wave map is, though generically, not always defined.

Remark 15. If ε̄3 − ε̄4 6= 0 and ε̄4 6= 0, the map G4 is a diffeomorphism of

R4. If ε̄2 − ε̄3 6= 0 and ε̄3 6= 0, the map G3 is a diffeomorphism of R3. If

ε̄1 − ε̄2 6= 0 and ε̄2 6= 0, the map G2 is a diffeomorphism of R2. The map G1

cannot be a diffeomorphism because we have assumed that the polynomial

V (v) is at least quadratic in v.

When ε̄1 = ε̄2 = ε̄3 = ε̄4 = 0, the recurrence relations Fj(v, ε; c, b) = 0

reduce to algebraic equations cvj + V (vj) − b = 0 for all integer j. When

(c, b) ∈ CB, one can solve the algebraic equations to get vj ∈ Sc,b for all

j ∈ Z. Hence, the limiting situation ε̄1 = ε̄2 = ε̄3 = ε̄4 = 0 (or ε = 0) is the

anti-integrable limit. Given v = (vj)j∈Z or (vj)j∈N, let πd be the projection

πd : v 7→


v0 if d = 1

(v0, v1) if d = 2

(v0, v1, v2) if d = 3

(v0, v1, v2, v3) if d = 4

and define

A = πd ◦ Φε(Σc,b).
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Proposition 16. Suppose the travelling wave map Gd of Rd (1 ≤ d ≤ 4) is

well-defined. For any (c, b) ∈ CB, there is a positive δ such that Gd admits

a horseshoe A of N symbols as a subsystem, with N equal to the cardinality

of Sc,b, provided 0 < |ε| < δ. More precisely, with the metric ‖ · ‖, the

composition πd ◦ Φε is a topological conjugacy between Σc,b and A, and the

following diagram commutes

Σc,b
σ−→ Σc,b

πd◦Φε

y yπd◦Φε

A Gd−→ A.

Proof. Proposition 16 is a consequence of Proposition 12. Let u0 ∈ I =

Φε(Σc,b). Because an orbit of Gd can be generated from u0 and is uniquely

determined by its initial point πd(u0), the projection πd is a continuous bi-

jection thus a homeomorphism from I to A. It is clear that Gd ◦ πd(u0) =

πd ◦ σ(u0).

5 Time-evolution dynamics and spatio-temporal

chaos

The discretized KdV-Burgers-KS type equation (1.5) is a CML: The time-

evolution operator T : RZ → RZ is defined by (uj,n)j∈Z 7→ (uj,n+1)j∈Z. The

following proposition is easy to check, and we omit its proof.

Proposition 17. The time-evolution operator T and the space-translation

operator σ commute.

We arrive at

Theorem 18. For any (c, b) ∈ CB, let δ, Φε and I be as those of Proposition

12. Then, I is invariant under the Z2-action of T and σ, and the following

diagram commutes

Σc,b
σ−→ Σc,b

Φε

y yΦε

I T−→ I

provided 0 ≤ |ε| < δ.

21



Proof. The invariance follows from Propositions 12 and the above, so it is

enough to show that σ(v) = T (v) for every v ∈ I. If v ∈ I, then vj+1,n =

vj,n+1 for all j ∈ Z, n ∈ N. Therefore, σ((vj,n)(j,n)∈Z×N) = (vj+1,n)(j,n)∈Z×N =

(vj,n+1)(j,n)∈Z×N = T ((vj,n)(j,n)∈Z×N).

Proof of Theorem 3.

Take CB, δ, and I as those of Theorem 18. Then U = (T n(u0))n∈N with

u0 ∈ I and T the time-evolution operator of CML (1.5). Proposition 12

and Theorem 18 imply respectively that the restriction of the CML to I is

spatially and temporally chaotic, thereby is spatio-temporally chaotic.
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Appendix

Let V ⊂ l∞(Rd) and E ⊂ Rn be open sets and F : V × E → l∞(Rd) a C1

function. Let Σ ⊂ V and ε† ∈ E be such that F (v†, ε†) = 0 for all v† ∈ Σ and

that every point in Σ is an isolated point of Σ . Assume that the continuous

linear operator DvF (v†, ε†) : l∞(Rd) → l∞(Rd) is invertible and its inverse

is likewise continuous for all v† ∈ Σ. By the implicit function theorem, for

every v† there exists δ̂(v†) and a unique C1 function θ(·; v†) : E → V such

that F (θ(ε; v†), ε) = 0 and θ(ε†; v†) = v† provided 0 ≤ |ε−ε†| < δ̂(v†). In [8],

a version of the following theorem was presented (see also [19] for a similar

result and proof). For the sake of completeness, we include a self-contained

proof for the current version.

Theorem 19.

(i) Assume ‖DvF (v†, ε†)−1‖∞ is bounded above on Σ × {ε†}, and assume
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for any γ > 0 there exist λ0 > 0 and δ0 > 0 such that for all v† ∈ Σ

we have ‖F (v, ε)‖∞ < γ and ‖DvF (v, ε) − DvF (v†, ε†)‖∞ < γ whenever

v ∈ B(v†, λ0) and |ε − ε†| < δ0. Then δ := infv†∈Σ δ̂(v
†) ≥ δ1 > 0 for some

δ1 < δ0 and the map

Φε : Σ → I :=
⋃
v†∈Σ

θ(ε†,v†)

v† 7→ θ(ε†; v†),

is a bijection provided 0 ≤ |ε− ε†| < δ.

(ii) In addition to the assumptions in (i), if Σ is σ-invariant, i.e. σ(Σ) = Σ,

and if F (·, ε) commutes with σ for all ε ∈ E, i.e. σ ◦ F (v, ε) = F (σ(v), ε),

then the following diagram commutes

Σ
σ−→ Σ

Φε

y yΦε

I σ−→ I

provided 0 ≤ |ε− ε†| < δ.

(iii) With the product topology, regard Σ and I as subsets ofM(Rd). In addi-

tion to the assumptions in (i), if Σ ⊂ B(0, µ) for some µ > 0, Σ is compact,

and F (·, ε) is continuous on B(0, µ+λ0/2) for every ε ∈ E, then there exists

0 < δ2 ≤ δ1 such that Φε is a continuous function thus a homeomorphism on

Σ provided 0 ≤ |ε− ε†| < δ2.

Proof. (i) For each v† ∈ Σ and ε ∈ E , define a map G(·; v†, ε) : V → l∞(Rd),

v 7→ v−DvF (v†, ε†)−1F (v, ε). By assumptions in (i), there are 0 < λ1 < λ0

and 0 < δ1 < δ0 such that for u in closed ball B(v†, λ1) and |ε− ε†| ≤ δ1, we

have

‖DvF (v†, ε†)−1‖∞ ‖DvF (v†, ε†)−DvF (u, ε)‖∞ ≤ 1/2

and

‖DvF (v†, ε†)−1‖∞ ‖F (v†, ε)‖∞ < λ1/2. (5.1)
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Thus, for v, w ∈ B(v†, λ1) and |ε− ε†| ≤ δ1, we get

‖(G(v; v†, ε)−G(w; v†, ε)‖∞
= ‖DvF (v†, ε†)−1

(
DvF (v†, ε†)−DvF (u, ε)

)
(v −w)‖∞

(for some u ∈ B(v†, λ1))

≤ ‖v −w‖∞/2

and

‖G(v; v†, ε)− v†‖∞
≤ ‖G(v; v†, ε)−G(v†; v†, ε)‖∞ + ‖G(v†; v†, ε)− v†‖∞
≤ ‖v − v†‖∞/2 + ‖DvF (v†, ε†)−1‖∞ ‖F (v†, ε)‖∞
< λ1.

This implies that G(·; v†, ε) is a contraction map with contraction constant at

least 1/2 on B(v†, λ1) for any v† ∈ Σ and |ε−ε†| ≤ δ1. Hence infv†∈Σ δ̂(v
†) ≥

δ1 > 0.

The radius λ1 is independent of v† and ε, and Φε(v
†) is the unique fixed

point in B(v†, λ1) for G(·; v†, ε). Because v†’s are isolated points in Σ, the

balls B(v†, λ1)’s are disjoint in l∞(Rd). It follows that Φε is bijective on Σ.

(ii) F (·, ε) has a unique zero at Φε(v
†) in B(v†, λ1), so do σ ◦ F (·, ε) and

F (σ(·), ε) because σ ◦ F (·, ε) = F (σ(·), ε). This implies that F (·, ε) has a

unique zero at σ ◦ Φε(v
†) in B(σ(v†), λ1). Because F (·, ε) has been shown

to have a unique zero at Φε(σ(v†)) in B(σ(v†), λ1), it must σ ◦ Φε(v
†) =

Φε(σ(v†)) by the uniqueness.

(iii) In view of (5.1), we see that there exists 0 < δ2 ≤ δ1 such that

‖Φε(v
†)−v†‖∞ < λ1/2 for all v† ∈ Σ and 0 ≤ |ε− ε†| < δ2. Suppose v†(k) →

v† in Σ as k → ∞, and suppose Φε(v
†(k)) converges, via a subsequence if

necessary, to a point v∗ε in B(0, µ+λ1/2). (Because Φε(v
†(k)) ∈ B(0, µ+λ1/2)

and B(0, µ+λ1/2) is compact inM(Rd).) Assume the subsequence. For any

N ∈ N, there is k ∈ N such that

|v†(k)
i − v†i | < λ1/2

and then

|Φε(v
†(k))i − v†i | ≤ |Φε(v

†(k))i − v†(k)
i |+ |v

†(k)
i − v†i |

< λ1
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for all k > K, |i| < N , and 0 ≤ |ε− ε†| < δ2. Passing to N →∞, we have

‖v∗ε − v†‖∞ ≤ λ1.

Besides,

F (v∗ε , ε) = F ( lim
k→∞

Φε(v
†(k)), ε) = lim

k→∞
F (Φε(v

†(k)), ε) = 0

because F (·, ε) is continuous on B(0, µ+λ0/2). This means that v∗ε is a zero

of F (·, ε) in B(v†, λ1). From the proof of (i), we conclude that v∗ε must be

Φε(v
†).
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