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Abstract

Existence criteria for some generic types of point symmetries of systems of n-second
order ordinary differential equations are studied, specially in connection with the
generation of semisimple subalgebras of symmetries belonging to the simple linear
and orthogonal types, as well as their maximal dimension and rank. The structure of
certain time-dependent symmetries, in particular scaling symmetries, are also stud-
ied, and the structure of the subalgebras they span determined. Generic examples
illustrating the procedure are given.
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1 Introduction

Far beyond its original motivation and conception to reduce and classify ordinary differen-
tial equations (ODEs), as well as to analyze certain properties of their solutions, the Lie
symmetry method has been generalized and enlarged to become a powerful and sometimes
indispensable tool in Geometry and Mechanics [1,2]. Among the various questions analyzed,
the linearization of ordinary differential equations is relevant problem, as it reduces heav-
ily the computational complexity. While the linearization problem for scalar second order
ODEs has been solved satisfactorily [3–5], for the case of systems there still remains some
work to do. In this context, it is known that, under certain symmetry conditions, systems

Email address: rutwig@ucm.es (R. Campoamor-Stursberg).



of nonlinear ordinary differential equations can be locally mapped onto linear systems [6],
enabling the derivation of additional criteria to analyze the properties of their solutions and
their numerical implementation.

Systems of second order ordinary differential equations constitute a particularly important
case in applications, as they naturally arise in Classical Mechanics, the theory of integrable
systems and General Relativity [1,7–9]. Although the symmetry analysis provides some sim-
plifications for the study of generic mechanical systems, the analysis is mostly devoted to
special types of systems, like the harmonic oscillators, the Kepler problem, the Hénon-Heiles
system and other integrable systems admitting point symmetries in connection with Noether
symmetries [10–13]. In this context, a direct procedure for associating conserved quantities
with dynamical symmetries of Lagrangian systems was developed in [10], and further ex-
tended to general systems of second-order ordinary differential equations.

Although for the case of systems of n second-order equations various general results exist, like
reducibility criteria or upper bound formulae for the dimension of the symmetry algebras [3],
little is known about the structure of such Lie algebras in the arbitrary case (see e.g. [4,14,15]
and references therein). The problem of n-systems having maximal symmetry, corresponding
to a simple Lie algebra of point symmetries isomorphic to sl(n + 2,R), is well understood,
and such systems are known to be linearizable to the n-free particle system ẍ = 0 [16].
This result, however, does not exhaust the possibilities of linearizing systems, as show the
criteria developed in recent years to linearize systems to constant coefficient systems and
determine their equivalence classes [14,17]. For linear systems of second order equations
it has been shown that there are essentially four types of symmetries (see e.g. [3]), the
analysis of which allows the deduction of qualitative properties of the system, like their
autonomous/nonautonomous character or the increase/decrease of anisotropy [18]. Special
cases as that of linear systems with constant coefficients have also been studied extensively
[19–23], with detailed analysis of the symmetry generators for low orders of n, as well as
various criteria for the general case [22]. These results have been further enlarged recently
to the case of generic linear systems with n = 2 equations which cannot be significantly
simplified by means of the Jordan canonical form [24].

The main objective of this work is to analyze some general features concerning concrete types
of symmetries of (non-linear) systems of n second-order ODEs ẍ = ωα (t,x). We first analyze
the symmetry condition in order to derive some sufficient conditions to ensure that a system
possesses maximal symmetry, and further to obtain the generic shape for the components
of points symmetries for systems that are non-maximally symmetric. 1 We then focus on
some special types of symmetries, developing some criteria to ensure either their existence
or absence, as well as to compute the maximal possible number of independent symmetries
of these kinds. Further, it is analyzed whether these symmetry types generate a subalgebra
of the Lie algebra L of point symmetries of a system. This specifically allows to determine
the structure of semisimple subalgebras spanned by symmetries of these types, and to obtain
an upper bound for its rank. The case of subalgebras of special linear or orthogonal type

1 I.e., n-systems where the Lie algebra of point symmetries is not isomorphic to sl(n + 2,R).
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is considered in detail. In addition, two kinds of time-dependent symmetries are considered,
giving rise to either Abelian subalgebras of symmetries or subalgebras isomorphic to sl(2,R).

Unless otherwise stated, the Einstein summation convention is used. All Lie algebras and
vector fields used in this work are assumed to be real.

1.1 Point symmetries of systems of ordinary differential equations

Among the various methods to compute symmetries of differential equations, those of most
common use are the direct prolongation method and the formulation in terms of differential
operators [6]. The latter approach will be more convenient for our analysis, for which purpose
we review it briefly. It is well known (see e.g. [25]) that a system of n second-order ordinary
differential equations

ẍ = ωα (t,x) , 1 ≤ α ≤ n, (1)

where ẍ,x ∈Rn, can be formulated in equivalent form in terms of the partial differential
equation

Af =

(
∂

∂t
+ ẋi

∂

∂xi
+ ωi (t,x)

∂

∂ẋi

)
f = 0. (2)

In this context, a vector field X = ξ (t, xi)
∂
∂t

+ηi (t, xi)
∂
∂xi
∈ X (Rn+1) is a Lie point symmetry

generator of the system (1) whenever the extended vector field Ẋ = X + η̇i (t, xi, ẋi)
∂
∂ẋi

satisfies the commutator [
Ẋ,A

]
= −dξ

dt
A, (3)

where η̇i = −dξ
dt
ẋi + dηi

dt
. The advantage of this approach is that the condition on the pro-

longation of the symmetry generator X is automatically given by the commutator. The n
resulting equations of the components of the bracket are identities in t, xi and ẋi. As the
components ξ and ηi of X do not depend on the variables ẋi, these n equations can be further
separated into more equations, the solutions of which provide the analytical expression of
the symmetry generator X.

A notably important case is given for the free particle system
··
x = 0 in n ≥ 2, which

constitutes the prototype of linearizable system [3]. In this case, integration of the symmetry
condition (3) is straightforward, leading to the n2 + 4n+ 3 symmetry generators

∂

∂t
,
∂

∂xi
, t
∂

∂t
, t

∂

∂xi
, xi

∂

∂t
, t

(
t
∂

∂t
+

n∑
k=1

xk
∂

∂xk

)
, xi

(
t
∂

∂t
+

n∑
k=1

xk
∂

∂xk

)
, xi

∂

∂xj
(4)

for 1 ≤ i, j ≤ n. It is well known that the Lie algebra generated by these vector fields is
isomorphic to the simple Lie algebra sl(n+2,R). For linear systems, it was proved in [3] that
a necessary and sufficient condition for a system to be (locally) linearizable (i.e., to have a
symmetry algebra L isomorphic to sl(n+ 2,R)) is that dimL = n2 + 4n+ 3. This result was
sharpened in [16] to hold for arbitrary systems of second order ODEs, where it was shown
that the dimension condition dimL = n2 + 4n + 3 implies that the system is equivalent to
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the free particle system [16]. In the following, according to the terminology introduced in [3],
we call a system ẍ = ωα (t,x) maximally symmetric if dimL = n2 + 4n+ 3.

Let ẍ = ωα(t,x) be a system of n second order ODEs. If X is a symmetry, expanding the
symmetry condition (3) and separating the resulting equations, it can be easily shown that
the components of X can be written in the following generic form (see e.g. [3]):

ξ(t,x) =
n∑
i=1

φi(t)xi + ψ0(t), (5)

ηj(t,x) =
n∑
i=1

(
φ̇i(t)xixj + Fij(t)xi

)
+ ψj(t), 1 ≤ j ≤ n (6)

In order to simplify the expression of the point symmetries, we first analyze those symmetries
which ensure that the system is maximally symmetric, so that they can be discarded in our
general analysis.

Lemma 1 If for some f(t) 6= 0 the system ẍ = ωα(t,x) (1 ≤ α ≤ n) admits the point
symmetry

X = f (t)xi0
∂

∂t
+ ḟ (t)xi0xj

∂

∂xj
(7)

for some index i0 ∈ {1, · · · , n}, then the system is maximally symmetric.

Proof. The symmetry condition (3) is given by[
Ẋ,A

]
= −

(
xi0 ḟ (t) + ẋi0f (t)

)
A, (8)

where the prolonged vector field Ẋ is given by

Ẋ = X +
(
f̈ (t)xi0xj + ḟ (t) (ẋjxi0 + ẋi0xj)− ẋi0

(
ḟ (t)xj + ẋjf (t)

)) ∂

∂ẋj
.

Developing the commutator and separating the resulting expression for the variables ẋjs
leads to the system (1 ≤ j ≤ n)

ḟ (t)xi0
(
ωj + xl

∂ωj

∂xl

)
+ xi0

(
f (t) ∂ωj

∂t
− xj f (3) (t)

)
− ẋj

(
xi0 f̈ (t)− ḟ (t)ωi0

)
+

+2ẋi0
(
f (t)ωj − xj f̈ (t)

)
= 0.

(9)

In particular, as the functions ωα (t,x) do not depend on the ẋis, for any 1 ≤ j ≤ n the
differential equations

f (t)ωj − xj f̈ (t) = 0 (10)

must be satisfied. If f̈ (t) = 0, then obviously ωj (t,x) = 0 holds for all j, and the system
corresponds to that of the free particle, hence possesses maximal symmetry. If f̈ (t) 6= 0,
then it follows at once that the component function ωj is given by

ωj(t,x) =
f̈ (t)

f (t)
xj, 1 ≤ j ≤ n, (11)
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which implies that the system is of the form ẍα = ψ (t) xα. Such linear systems are well
known to have a maximal symmetry algebra, and moreover can be locally transformed to
the form ẍ = 0 (see e.g. [3,16]).

For systems having maximal symmetry, we deduce in particular that for a given index i0 ∈
{1, · · · , n}, at most two independent symmetries of the type X = f (t)xi0

∂
∂t

+ ḟ (t)xi0xj
∂
∂xj

exist. For the free particle case this is obvious, as f(t) = a0 + a1t, while for the general case
f̈(t) 6= 0, a second symmetry of this type would lead, by equation (11), to the second order
equation

f̈ (t)

f (t)
=
g̈ (t)

g (t)
(12)

with general solution

g (t) =

(
C1

∫ dt

f 2 (t)
+ C2

)
f (t) , (13)

and merely g (t) = f (t)
∫ dt
f2(t)

would provide an independent symmetry. 2

This result can be formulated in a slightly generalized form, in order to allow us to simplify
further the expression for the components of points symmetries in the case of non-maximally
symmetric systems ẍ = ωα (t,x), and specifically for non-linear systems.

Proposition 1 Suppose there exists an index α ∈ {1, · · · , n} such that ωα (t,x) 6= g (t)xα+
h (t). Then the components of a point symmetry X = ξ (t,x) ∂

∂t
+ ηj (t,x) ∂

∂xj
of the system

have the generic form

ξ (t,x) = ψ0 (t) ,

ηj (t,x) =
1

2
ψ̇0 (t)xj +

n∑
k=1

mjkxk + ψj (t) , 1 ≤ j ≤ n, mjk ∈ R. (14)

Proof. Without loss of generality, and reordering the indices if necessary, we can suppose
that α = n. By assumption, ωn (t,x) 6= g (t)xn + h (t). Let X = ξ (t,x) ∂

∂t
+ ηj (t,x) ∂

∂xj
be a

point symmetry of the system, the components of which are of the form (6). Expanding the

symmetry condition
[
Ẋ,A

]
+ dξ

dt
A = 0 and focusing only on the component in ∂

∂ẋn
leads to

the expression (
ẋjG

j
n (t,x) + xjH

j
n (t,x)

) ∂

∂ẋn
, (15)

where 3 for j ≤ n− 1

Gj
n (t,x) = ωn (t,x)φj (t)− φ̈j (t)xn − Ḟnj (t) (16)

2 The maximal possible number of symmetries of this type would therefore be 2n, two for any
index j ∈ {1, · · · , n}.
3 The precise form of Hj

n (t,x) is irrelevant for our argument, for which reason we omit it.
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and

Gn
n (t,x) = 3ωn (t,x)φn (t) +

∑
k 6=n

(
xkφ̈k (t)− ωk (t,x)φk (t)

)
+ 3xnφ̈n (t) + 2F̈nn (t)− ψ̈0 (t) .

(17)
Since the functions ωj(t,x) do not depend on the ẋks for 1 ≤ j, k ≤ n, both expressions
(16) and (17) must vanish identically. Now, as ωn (t,x) is non-linear in xn by assumption,
it follows at once that the equations (16) are satisfied only for φ1 (t) = 0, · · · , φn−1 (t) = 0,
which further implies that Ḟnj (t) = 0 for 1 ≤ j ≤ n− 1. With this simplification, equation
(17) reduces to

3ωn (t,x)φn (t) + 3xnφ̈n (t) + 2Ḟnn (t)− ψ̈0 (t) = 0,

and again the equation is only satisfied if φn (t) = 0 and 2Ḟnn (t)− ψ̈0 (t) = 0. Inserting this
result into the coefficients of ∂

∂ẋk
for indices k ≤ n − 1 allows us to rewrite the symmetry

condition as

[
Ẋ,A

]
+
dξ

dt
A =

∑
k 6=j

ẋjḞkj (t) +
(
2Ḟkk (t)− ψ̈0 (t)

)
ẋk + xjH

j
k (t,x)

 ∂

∂ẋk
, (18)

from which we easily deduce that

Ḟkj (t) = 0, 2Ḟkk (t)− ψ̈0 (t) = 0. (19)

Solving these equations proves that the components of the symmetry X have the required
form (14).

As a consequence of this reduction, the symmetry condition (3) simplifies to

n∑
l=1

∂ωk (t,x)

∂xl

 n∑
j=1

mljxj +
xl
2
ψ̇0 (t) + ψl (t)

+
∂ωk (t,x)

∂t
ψ0 (t)− ψ̈k (t) +

+
3

2
ωk (t,x) ψ̇0 (t)−

n∑
l=1

ωl (t,x)mkl −
1

2
xkψ

(3)
0 (t) = 0 (20)

for any 1 ≤ k ≤ n. However, these equations are still too general to be solved for arbitrary
systems, and further assumptions on the type of symmetries or the equations of motion must
be introduced to obtain valid criteria. In any case, lemma 1 and the simplified symmetry
condition leads us to the rough upper bound for the dimension of the symmetry algebra L
of non-maximally symmetric systems

dimL < n2 + 2n+ 3. (21)

2 Point symmetries with ξ (t,x) = 0

In this paragraph we analyze some types of symmetries such that the condition ξ (t,x) = 0
holds. Besides existence criteria, we show how to use such symmetries to construct systems
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with a prescribed semisimple subalgebra of symmetries. The cases of special linear and
orthogonal algebras are studied in detail.

Proposition 2 Let n ≥ 2 and 1 ≤ j0 ≤ n. Suppose that the system ẍ = ωα(t,x) (1 ≤ α ≤ n)
satisfies at least one of the following conditions:

(1) there exists some l 6= j0 such that ∂ωl

∂xj0
6= 0,

(2) ∂2ωj0
∂x2j0

6= 0.

Then the system cannot possess the point symmetries Yj0 = ψj0 (t) ∂
∂xj0

and Xj0k = xk
∂

∂xj0
for 1 ≤ k ≤ n.

Proof. Suppose there exists an index i0 ∈ {1, · · · , n} such that Xj0i0 = xi0
∂

∂xj0
is a point

symmetry of the system. As ξ(t,x) = 0, the symmetry condition (3) reduces to
[
Ẋj0i0 ,A

]
= 0.

The precise bracket is given by

[
Ẋj0i0 ,A

]
= xi0

∂ωl

∂xj0

∂

∂ẋl
− δli0ω

l ∂

∂ẋj0
= 0. (22)

For indices l 6= j0 this leads to the constraint ∂ωl

∂xj0
= 0, while for j0 = l, (22) simplifies to

xi0
∂ωj0

∂xj0
− ωi0 = 0. (23)

Two possibilities are given: If i0 6= j0, solving for ωi0 we obtain

ωi0 = xi0
∂ωj0

∂xj0
.

Now, taking the partial derivative with respect to xj0 leads to

∂ωi0

∂xj0
= 0 = xi0

∂2ωj0

∂xj0
,

contradicting the assumption ∂2ωj0
∂x2j0

6= 0. For the case i0 = j0, we get the partial differential

equation xi0
∂ωj0
∂xj0
− ωj0 = 0 with general solution

ωj0 (t,x) = xj0θ
j0 (t, x1, · · · , x̂j0 , · · · , n) ,

implying that ∂2ωj0
∂x2j0

= 0, again against the hypothesis. This shows that whenever one of the

conditions is satisfied, no vector fields Xj0i0 can be symmetries of the system.
For the vector fields Yj0 = ψj0 (t) ∂

∂xj0
, the argument is completely analogous, the symmetry

condition being here

[
Ẏj0 , A

]
= ψj0 (t)

∂ωl

∂xj0

∂

∂ẋl
− ψ̈j0 (t)

∂

∂ẋj0
= 0. (24)
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For any index l 6= j0, it is immediate that ∂ωl

∂xj0
= 0. If ψ̈j0 (t) 6= 0 and l = j0, the constraint

(24) implies that

ωj0 (t,x) =
ψ̈j0 (t)

ψj0 (t)
xj0 + θj0 (t, x1, · · · , x̂j0 , · · · , xn) . (25)

Since in this case ωj0 (t,x) is linear in xj0 , it follows that ∂2ωj0
∂x2j0

= 0, contradicting the

assumption. The contradiction also follows whenever ψ̈(t) = 0 holds, as then immediately
∂ωj0
∂xj0

= 0.

As follows from (3), the number of symmetries Xj0k = xk
∂

∂xj0
is obviously lower or equal

than n2, equality being given only in the case of maximal symmetry. On the other hand,
for a fixed index 1 ≤ j0 ≤ n, there are at most two independent symmetries of the shape
Yj0 = ψj0 (t) ∂

∂xj0
. For ψ̈j0 = 0, the assertion is trivial, whereas for ψ̈j0 6= 0, the condition

(24) leads to an equation of type (12). Since any point symmetry satisfying the constraint
ξ(t,x) = 0 is a linear combination of symmetries of types Xij and Yl, the total number m0 of
symmetries subjected to the condition ξ(t,x) = 0 must fulfil the bound 0 ≤ m0 ≤ n2 + 2n.

Corollary 1 Let i0, j0 ∈ {1, · · · , n} and i0 6= j0. If Xi0j0 = xj0
∂

∂xi0
and Xj0i0 = xi0

∂
∂xj0

are

symmetries of the system ẍ = ωα (t,x), then xi0
∂

∂xi0
and xj0

∂
∂xj0

are also symmetries.

Proof. Arguing similarly as in the preceding proof, we have that the vector fields Xi0j0 and
Xj0i0 impose the following constraints on the component functions ωi0 and ωj0 respectively:

∂ωi0
∂xj0

= 0, ωi0 = xi0
∂ωj0
∂xj0

,

∂ωj0
∂xi0

= 0, ωj0 = xj0
∂ωi0
∂xi0

.

It follows in particular that ωi0 = xi0
∂ωi0
∂xi0

and ωj0 = xj0
∂ωj0
∂xj0

, hence that

ωi0 = xi0Ω
i0 (t, x1, · · · , x̂i0 , · · · , x̂j0 , · · · , xn) , (26)

ωj0 = xj0Ω
j0 (t, x1, · · · , x̂i0 , · · · , x̂j0 , · · · , xn) .

From the properties of the brackets of Lie algebra [26], it follows at once that the commutator
[Xi0j0 , Xj0i0 ] = Xi0i0 −Xj0j0 is a symmetry of the system. Now, for the vector field Xj0j0 , the
symmetry condition reads

xj0
∂ωl

∂xj0

∂

∂ẋl
− δlj0ω

l ∂

∂ẋj0
= 0,

which is trivially satisfied by (26) and the fact that ∂ωl

∂xj0
= ∂ωl

∂xi0
= 0 holds for any l 6= i0, j0.

Finally, by linearity we easily deduce that Xi0i0 is also a symmetry of the system.

For indices i0 6= j0, it is straightforward to verify that the vector fields Xi0j0 and Xj0i0

generate a Lie algebra isomorphic to sl (2,R). The corollary states that whenever the system
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admits a sl (2,R) algebra of symmetries generated by Xi0j0 and Xj0i0 , it always admits the
reductive extension sl (2,R)⊕ R, 4 the copy of R being generated by Xi0i0+ Xj0j0 .

Lemma 2 Let α1 6= α2 and α3 6= α4 be indices such that the sets {α1, α2} and {α3, α4} do
not coincide. If {Xα1α2 , Xα2α1 , Xα3α4 , Xα4α3} are symmetries of the system ẍ = ωα (t,x),
then one of the two following cases holds:

(1) If {α1, α2}∩{α3, α4} = ∅, the symmetries generate a Lie algebra isomorphic to sl (2,R)⊕
sl (2,R)⊕ R2.

(2) If {α1, α2}∩{α3, α4} 6= ∅, the symmetries generate a Lie algebra isomorphic to sl (3,R)⊕
R.

Proof. The first case follows immediately from the preceding result. Suppose that {α1, α2}∩
{α3, α4} = ∅. Then the vector fields clearly satisfy the commutators

[Xα1α2 , Xα3α4 ] = [Xα2α1 , Xα3α4 ] = [Xα1α2 , Xα4α3 ] = [Xα2α1 , Xα4α3 ] = 0.

This implies that the copies of sl (2,R)⊕R generated by {Xα1α2 , Xα2α1} and {Xα3α4 , Xα4α3}
are independent, thus they generate the Lie algebra sl (2,R)⊕ sl (2,R)⊕ R2. 5

Now let {α1, α2} ∩ {α3, α4} 6= ∅. Without loss of generality, we can suppose that α2 = α3.
Computing the brackets of the vector fields we obtain that

[Xα1α2 , Xα2α4 ] = −xα4

∂

∂xα1

= −Xα1α4 , [Xα1α2 , Xα4α2 ] = 0,

[Xα2α1 , Xα2α4 ] = 0, [Xα2α1 , Xα4α2 ] = xα1

∂

∂xα4

= Xα4α1 . (27)

These commutators show that the system necessarily admits the six independent symmetries
B = {Xα1α2 , Xα2α1 , Xα2α4 , Xα4α2 , Xα1α4 , Xα4α1}. The preceding result further implies that
the vector fields Xα1α1 , Xα2α2 and Xα4α4 must also be symmetries, hence the Lie algebra
generated by the vector fields of B is of dimension nine. Since Xα1α1+Xα2α2+Xα4α4 commutes
with all generators, the algebra is clearly isomorphic to sl (3,R)⊕ R.

As a consequence of this property we can inductively estimate the largest semisimple algebra
of symmetries generated by symmetries of the type Xij that a system can have. It is easily
seen that a subalgebra isomorphic to sl (l,R) requires l different indices. In fact, reordering
the indices {1, · · · , n} if necessary, we can suppose without loss of generality that the gener-
ators of the subalgebra are the symmetries xi

∂
∂xj

for 1 ≤ i, j ≤ l. Now we consider the subset

A of {1, · · · , n}

A = {1, · · · l1} ∪ {l1 + 1, · · · , l2} ∪ {lk−1 + 1, · · · , lk} ⊆ {1, · · · , n} (28)

4 Recall that a reductive Lie algebra is the direct sum of a semisimple and an Abelian Lie algebra
[26].
5 It should be noted that this does not exclude the possibility that Xα1α3 , Xα1α4 , Xα2α3 or Xα2α4

is also a symmetry of the system.
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where l1, · · · , lk are (not necessarily distinct) integers and such that the three following
conditions are satisfied:

(1) for any 1 ≤ a ≤ k and any indices i, j ∈ {la−1 + 1, · · · , la}, the vector field Xij = xi
∂
∂xj

is a symmetry of the system,
(2) for a 6= b and indices i ∈ {la−1 + 1, · · · , la}, j ∈ {lb−1 + 1, · · · , lb}, Xij is not a symmetry

of the system.
(3) for i, j ∈ {1, · · · , n} − A, either Xij or Xji is not a symmetry of the system.

A long but completely routine computation, like done before, shows that these conditions
imply that the system admits the semisimple subalgebra of symmetries

sl (l1,R)⊕ sl (l2,R)⊕ · · · ⊕ sl (lk,R) , (29)

and by equation (28), the inequality l1 + · · · + lk ≤ n is satisfied. Taking into account the
possibility that some la coincide, the general case can be summarized in the following

Proposition 3 Let n ≥ 2. The maximal semisimple Lie algebra s of the system ẍ =
ωα (t,x) , 1 ≤ α ≤ n generated by symmetries of the type xi

∂
∂xj

has the form

s = sl (k,R)ak ⊕ sl (k − 1,R)ak−1 ⊕ · · · ⊕ sl (3,R)a3 ⊕ sl (2,R)a2 , (30)

where (ak0 , · · · , a2) ∈ Nk−1 ∪ {0} and

2a2 + 3a3 + 4a4 + · · ·+ k ak ≤ n. (31)

In particular, the rank of s satisfies

rank (s) ≤ n− 2 (32)

if the system is not maximally symmetric.

Proof. The first part of the proof follows from the preceding remarks. We prove the second
assertion concerning the rank of s. First of all, if k = n, then an = 1, aj = 0 for j ≤ n − 1
and the subalgebra s is isomorphic to sl (n,R). In these conditions, the system is necessarily
of maximal symmetry [13]. Hence suppose that k ≤ n − 1. For any 2 ≤ k ≤ n we have
rank (sl (k,R)) = k− 1, and by equation (30), the rank of s is given by rank (s) = a2 + 2a3 +
· · ·+ (k − 1) ak. Inserting this into equation (31) leads to

rank (s) +
k∑
i=2

ai = 2a2 + 3a3 + 4a4 + · · ·+ k ak ≤ n. (33)

Now, if the subalgebra s does not reduce to zero, then
∑k
i=2 ai ≥ 1. Two cases must be

distinguished: If
∑k
i=2 ai = 1, let aj0 = 1 be the only non-vanishing index. In this case,

rank (s) = j0 − 1, and by the assumption j0 ≤ n− 1 it follows at once that j0 − 1 ≤ n− 2.
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It remains the case where
∑k
i=2 ai ≥ 2, but using equation (33), we immediately obtain that

rank (s) ≤ n−
k∑
i=2

ai ≤ n− 2.

Example 1. Let n ≥ 2 and consider the system

ẍk = xke
xn , 1 ≤ k ≤ n− 1

ẍn = αxkn t
r, α, k, r ∈ R∗.

(34)

By proposition 2, such a system can only have symmetries of the type Xij = xi
∂
∂xj

. Now,

by formula (23), all vector fields Xij for 1 ≤ i, j ≤ n − 1 are symmetries of the system,
while those for which either i = n or j = n holds do not satisfy the symmetry condition.
As a consequence, for arbitrary values of α, k, r, the algebra of symmetries is isomorphic to
sl (n− 1,R)⊕ R.

It should be observed that, up to now, we have only considered the case of semisimple
subalgebras generated by vectors fields of the type Xij, as it is the easiest to describe.
Obviously, not any semisimple subalgebra s of point symmetries subjected to the condition
ξ(t,x) = 0 must be generated by vector fields of this form. In particular, the generators of
s can be given by linear combinations of these. This is shown for example by rotationally
invariant systems like the n-dimensional oscillators or the Kepler problem [12,18], where the
generators of the so(n) subalgebra are the vector fields Xij−Xji for 1 ≤ i < j ≤ n. However,
we can easily modify proposition 3 in order to adapt it to the case of semisimple subalgebras
isomorphic to so (n),

Proposition 4 Let n ≥ 2. The maximal semisimple Lie algebra s of the system ẍ =
ωα (t,x) , 1 ≤ α ≤ n generated by symmetries of the type X[ij] = xi

∂
∂xj
− xj

∂
∂xi

has the

form

s = so (3)b1 ⊕ so (4)b2 ⊕ · · · ⊕ so (m)bm−2 , (35)

where (b1, · · · , bm−2) ∈ Nm−2 ∪ {0} and

3b1 + 4b2 + 5b3 + · · ·+mbm−2 ≤ n. (36)

In particular, the rank of s satisfies

rank (s) ≤
[
n

2

]
.

Proof. Suppose that the system admits a subalgebra s with decomposition (35). It is clear
that for any bk 6= 0, we need (k + 2) bk distinct indices in {1, · · · , n} such that the vector
fields X[ij] generate so (k)bk . Hence, extracting from {1, · · · , n} all the indices for which X[ij]
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is a symmetry of the system, and reasoning as before, we obtain the subset B of {1, · · · , n}

B = {1, · · · l1} ∪ {l1 + 1, · · · , l2} ∪ {lk−1 + 1, · · · , lk} ⊆ {1, · · · , n} (37)

where l1, · · · , lk are (not necessarily distinct) integers and the following conditions hold:

(1) for any 1 ≤ a ≤ k and any indices i, j ∈ {la−1 + 1, · · · , la}, the vector field X[ij] =
xi

∂
∂xj
− xj ∂

∂xi
is a symmetry of the system,

(2) for a 6= b and indices i ∈ {la−1 + 1, · · · , la}, j ∈ {lb−1 + 1, · · · , lb}, X[ij] is not a symme-
try of the system.

(3) for i, j ∈ {1, · · · , n} − A, X[ij] is not a symmetry of the system.

Clearly the symmetries X[ij] associated to the subset B give rise to a semisimple subalgebra
(35). The rank of such a subalgebra s is easily computed to be

rank (s) = b1 + 2 (b2 + b3) + · · ·+
[
m

2

]
bm−2 ≤

[
n

2

]
. (38)

Example 2. For n ≥ 2 consider the system defined by the equations

ẍl = xlθ (t)
(
g11x

2
1 + g22x

2
2 + · · ·+ gnnx

2
n

)k
, 1 ≤ l ≤ n, (39)

where gii = ±1 for 1 ≤ i ≤ n, k ∈ Z and θ (t) 6= 0. This system possesses the semisimple
subalgebra s generated by the symmetries

X[i,j] = giixi
∂

∂xj
− gjjxj

∂

∂xi
, 1 ≤ i, j ≤ n. (40)

It is routine to verify that s ' so (p, q), where p is the number of indices such that gii = 1,
and q that of indices such that gii = −1. Moreover, depending on the choice of the function
θ (t), the system can posses more symmetries. In any case, it can be easily verified that

n (n− 1)

2
≤ dimL ≤ n (n− 1) + 4

2
. (41)

If θ (t) is a constant, the system has the obvious symmetry ∂
∂t

, as well as a scaling symmetry
Z = αt ∂

∂t
+ xi

∂
∂xi

, α ∈ R. In particular, if k = −3
2
, gii = 1 for all i and θ (t) = const., we

recover the well known Kepler problem [12].

It would be conceivable to develop also a similar criterion for maximal semisimple subalgebras
of symplectic type sp(2n), but a detailed description is more complicated, as there is no single
type of vector fields that generates these Lie algebras, in contrast to the special linear and
orthogonal algebras [27,28]. For this reason we omit an explicit description here.
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3 Point symmetries with ξ (t,x) 6= 0

In this section we analyze another special type of symmetries, now having a nonzero coeffi-
cient in ∂

∂t
. From the structural point of view, symmetries of this kind are more restrictive,

and their number will be considerably lower to those satisfying ξ (t,x) = 0, giving rise to
subalgebras of at most dimension three. In addition, some properties of systems admitting
scaling symmetries are obtained.

Proposition 5 Let n ≥ 2 and ẍ = ωα(t,x) (1 ≤ α ≤ n). Suppose that there exists an index

j0 ∈ {1, · · · , n} such that ∂ωj0
∂t
6= 0. Then there exists at most one Lie point symmetry of the

form

X = f (t)
∂

∂t
+

1

2
ḟ (t)xj

∂

∂xj
, (42)

unless ωj = θ (t)xj for 1 ≤ j ≤ n.

Proof. Let us consider first the case where ẍ 6= θ(t)xα. Consider a vector field X of type
(42). Then the prolonged vector field

Ẋ = f (t)
∂

∂t
+

1

2
ḟ (t)xj

∂

∂xj
+

1

2

(
xj f̈ (t)− ẋj ḟ (t)

) ∂

∂ẋj

leads to the symmetry condition

2f (t)
∂ωj

∂t
− xj f (3) (t) +

(
xk
∂ωj

∂xk
+ 3ωj

)
ḟ (t) = 0, 1 ≤ j ≤ n. (43)

By assumption, for the index j0 we have ∂ωj0
∂t
6= 0, hence ḟ (t) cannot vanish identically for

f (t) 6= 0. Let R ⊂ {1, · · · , n} be the set of indices l such that ∂ωl

∂t
6= 0. The symmetry

condition (43) is satisfied only if for any l ∈ R the corresponding component function ωl has
the following form:

ωl (t,x) =
xl

2 f 2 (t)

∫ t

f (s) f (3) (s) ds+
1

f (t)
√
f (t)

Ωl

 x√
f (t)

 . (44)

Failure for an index l ∈ R to fulfil equation (44) implies that (43) is only satisfied for
f (t) = 0. On the other hand, if f (t) 6= 0, equation (43) shows that only the multiples αX
of X will be symmetries of the system, proving that it has at most one point symmetry of
type (42).

Now let S be the set of indices k ∈ {1, · · · , n} such that ∂ωk

∂t
= 0, i.e., S = {1, · · · , n} − R.

In this case, equation (43) reduces to

−xk f (3) (t) +

(
xr
∂ωk

∂xr
+ 3ωk

)
ḟ (t) = 0. (45)
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The equation can be easily separated, and we can rewrite it as(
xr
∂ωk

∂xr
+ 3ωk

)
x−1k =

f (3) (t)

ḟ (t)
) = λ, (46)

where λ ∈ R is some constant. It follows in particular that for any k ∈ S the component
function ωk(x) has the form

ωk (x) =
λ

4
xk + x−31 Ωk

(
x2
x1
, · · · , xn

x1

)
. (47)

Again, if for some k0 ∈ S the function ωk (x) has not the form (47), then (45) is only satisfied
for f (t) = 0. We conclude that the system only admits a symmetry of type (42) if the
component functions satisfy equations (44) and (47) for all indices in R and S respectively.
Finally, for the (maximal symmetry) case ωj = θ (t)xj (1 ≤ j ≤ n), the symmetry condition
(43) merely states that the third order ordinary differential equation

2f (t) θ̇ (t)− f (3) (t) + (n+ 1) θ (t) ḟ (t) = 0 (48)

is satisfied, and the solution to this ODE clearly provides three independent symmetries.

The interesting consequence of this result is that explicit time dependency of the system
ẍ = ωα (t,x) imposes severe restrictions on the existence of symmetries of type (42). Up to
the well-known maximal symmetry case, such systems either have no symmetry of this type,
or exactly one.

Corollary 2 If the system ẍ = ωα (t,x) is not maximally symmetric and admits more than
one point symmetry of type (42), then ∂ωα

∂t
= 0 for all 1 ≤ α ≤ n.

The situation is somewhat different for time-independent (autonomous) systems

ẍ = ωα (x) , 1 ≤ α ≤ n, (49)

which always admit the symmetry X = ∂
∂t

. We analyze now under which conditions ad-
ditional symmetries of this form exist, and determine the maximal number of independent
symmetries. Suppose that additional symmetries of type (42) do exist. Then equation (46)
must be satisfied for any index 1 ≤ α ≤ n, and following the preceding proof we have that
equations of motion have the form

ωα (x) =
λ

4
xα + x−31 Ωα

(
x2
x1
, · · · , xn

x1

)
(50)

for some real constant λ. In particular, since ∂ωα

∂t
= 0 holds for any α, the (non-constant)

function f (t) is further subjected to the constraint (see eq. (46))

f (3) (t) = λ ḟ (t) . (51)

Two possibilities can arise, depending on the derivatives of f (t) and the value of λ:
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(1) If λ 6= 0, then f (3) (t) 6= 0 and integration of (51) gives

f (t) =

 a0 + a1e
√
λt + a2e

−
√
λt, λ > 0

a0 + a1 sin
(√
−λt

)
+ a2 cos

(√
−λt

)
, λ < 0

Let X1, X2 and X3 be the point symmetries corresponding to the parameter values
(a0, a1, a2) = (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. A routine computation shows
that the commutators are given by

[X1, X2] =
√
λX2, [X1, X3] = −

√
λX3, [X2, X3] = −2

√
λX1, for λ > 0,

[X1, X2] =
√
−λX3, [X1, X3] = −

√
−λX2, [X2, X3] = −

√
−λX1, for λ < 0.

Let s be the Lie algebra generated by X1, X2 and X3. Computing the Killing form 6 of
s it is easily shown that, in both cases, s is a simple Lie algebra isomorphic to sl (2,R).

(2) If λ = 0, then f (3) (t) = 0 and f (t) = b0 + b1t + b2t
2. The three point symmetries are

thus

X1 =
∂

∂t
, X2 = t

∂

∂t
+

1

2
xk

∂

∂xk
, X3 = t2

∂

∂t
+ t xk

∂

∂xk
,

with commutators

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3.

Again, it is routine to verify that the Lie algebra they generate is isomorphic to sl (2,R).

With this analysis of the commutators, we have proved the following

Proposition 6 Let n ≥ 2 and ẍ = ωα (x) , (1 ≤ α ≤ n) be a time-independent system.
The Lie algebra s generated by symmetries of type (42) is either Abelian or isomorphic to
sl (2,R). In particular, the number of independent symmetries does not exceed three.

Example 3. Let n ≥ 2 and consider the system

ẍk = (λ/µ)xk + xk+1x
−µ
1 , 1 ≤ k ≤ n− 1

ẍn = (λ/µ)xn + ρx1−µ1 ,
(52)

where λ, µ, ρ ∈ R and µ 6= 0. Using proposition 2, it follows at once that the system does
not admit symmetries of type Xij = xi

∂
∂xj

and Yj = ϕ (t) ∂
∂xj

for 1 ≤ i, j,≤ n, as well as

linear combinations of them. Since the ẍs do not depend on t, the vector field ∂
∂t

is always
a symmetry. Now, for values µ 6= 4, proposition 5 implies that this is the only symmetry,
whereas for µ = 4 the system possesses a symmetry algebra L isomorphic to sl (2,R).

6 Recall that the Killing form is determined by the adjoint representation of the Lie algebra. See
e.g. [26].
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It is clear that symmetries with ξ (t,x) 6= 0 must not be restricted to those of type (42), as
linear combinations with symmetries of the type Xij or Yj analyzed previously are possible
and not uncommon [19,22]. However, with full generality, the simplified symmetry condition
(20) does not provide much information.

Finally, in addition to type (42), we consider the symmetries

X = αt
∂

∂t
+

n∑
j=1

βjxj
∂

∂xj
, α, βj ∈ R (53)

corresponding to scaling symmetries. It can be easily verified that, if βj = α
2

for all j, X
coincides with a symmetry of type (42), while for any other choice of the parameters, we
obtain a symmetry type different from the previous ones. Actually they can be seen as a linear
combination of symmetries of type Xij and (42). Scaling symmetries have shown their interest
in connection with some of the most relevant integrable systems, as well with some properties
of their constants of motion [11,12]. Actually the existence of a point symmetry (53) imposes
restrictions on the equations of motion. For a system ẍ = ωα (t,x), the symmetry condition
(20) implies that the functions ωk (t,x) satisfy the linear PDE

αt
∂ωk (t,x)

∂t
+

n∑
j=1

βjxj
∂ωk (t,x)

∂xj
+ (2α− βk)ωk (t,x) = 0, 1 ≤ k ≤ n. (54)

Essentially, three cases can be distinguished, depending on the values of the parameters
(α, β1, · · · , βn).

(1) If α 6= 0, βj = 0 for 1 ≤ j ≤ n, we can put α = 1. The solution to (54) is given by

ωk (t,x) = t−2Ωk (x1, · · · , xn) , 1 ≤ k ≤ n.

In particular, for autonomous systems the vector field t ∂
∂t

cannot be a symmetry, unless
ωk (t,x) = 0 holds for all k. This again leads to the maximally symmetry case.

(2) Let α 6= 0 and βj0 6= 0 for some j0. Reordering the indices, we can suppose that β1 6= 0
and α = 1. The equations of motion have the form

ωk (t,x) = t(βk−2)Ωk
(
x1
tβ1
, · · · , xn

tβn

)
if
∂ωk (t,x)

∂t
6= 0,

ωk (t,x) = x
(βk−2)/β1
1 Ωk

(
xβ12

xβ21
, · · · , x

β1
n

xβn1

)
if
∂ωk (t,x)

∂t
= 0.

(3) Let α = 0. Again, without loss of generality, we can assume that β1 6= 0. In this case,
equation (54) has the solution

ωk (t,x) = Ωk

(
t,
xβ12

xβ21
, · · · , x

β1
n

xβn1

)
x
βk/β1
1 .

From this case-by-case analysis we immediately deduce the following result:
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Proposition 7 For n ≥ 2, the number of symmetries of type (53) of a system ẍ = ωα (t,x),
1 ≤ α ≤ n, is at most n + 1. In particular, they generate an Abelian subalgebra of the
symmetry algebra L.

As an extreme case, if the system admits the symmetries Xii = xi
∂
∂xi

for 1 ≤ i ≤ n, the
preceding observations show that the system is linear and has the form

ωk (t,x) = fk (t)xk, 1 ≤ k ≤ n.

However, as illustrates the following example, a system can be highly nonlinear and still have
a maximal subalgebra of symmetries of type (53).

Example 4. Let σ1, · · · , σn ∈ R− {0,±1} and consider the autonomous system

ωk (x) = ρk x
(1+σk)
k

∏
j 6=k

x
σj
j , 1 ≤ k ≤ n, ρj ∈ R−{0}

where the conditions
(
4 +

∑n
j=1 σj

)
6= 0 and 4 +

∑n
j=1 σj − σk 6= 0 are satisfied for all k. As

a consequence of proposition 2, the system does not admit symmetries of type Xij = xi
∂
∂xj

and Yj = ψj (t) ∂
∂xj

. A routine verification further shows that linear combinations of these

vector fields do neither satisfy the symmetry condition. Proposition 6 implies that V0 = ∂
∂t

is the only symmetry of type (42). From the homogeneity of the ωk (x) we obtain that

xk
∂ωk (x)

∂xk
= (1 + σk)ω

k (x) , xl
∂ωk (x)

∂xl
= σl ω

k (x) , l 6= k.

Therefore, the equations of motion satisfy a linear equation (54) if

αt
∂ωk (t,x)

∂t
+

n∑
j=1

βjxj
∂ωk (t,x)

∂xj
+ (2α− βk)ωk (t,x) =

 n∑
j=1

σjβj + 2α

ωk (t,x) = 0

holds for any 1 ≤ k ≤ n. Now, chosing α = 2 and βj = 1 for j 6= k, the preceding condition
reduces to ∑

j 6=k
σj + σkβk + 4 = 0,

thus taking βk = −
(∑

j 6=k σj + 4
)
/σk shows that the system admits the scaling symmetry

Vk = 2t
∂

∂t
−
(

4 +
∑
j 6=k σj
σk

)
xk

∂

∂xk
+
∑
j 6=k

xj
∂

∂xj
, 1 ≤ k ≤ n. (55)

It is not difficult to justify that {V0, · · · , Vn} exhaust all possible symmetries of the system.
Computing the brackets gives

[V0, Vk] =
2σk

4 +
∑
j 6=k σj

Vk, [Vk, Vl] = 0, 1 ≤ k, l ≤ n (56)

showing that the Lie algebra L of point symmetries is solvable of dimension n+ 1.
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4 Conclusions

In this work we have analyzed some types of generic symmetries of a system of n second
order ordinary differential equations ẍ = ωα (t,x). Having discarded those symmetries that
ensure that the system is (locally) linearizable to the free particle system, the symmetry
condition (3) has been formulated for non-maximally symmetric systems. Basing on this
simplification, some specific types of symmetries have been considered in detail. The first
case considered corresponds to symmetries satisfying the constraint ξ(t,x) = 0. Analyzing
their commutators, a procedure to generate semisimple (actually reductive) subalgebras of
type sl(k,R) has been obtained. Enlarging the argument to linear combinations of these
symmetries, the case of orthogonal subalgebras so(k) has also been obtained. Certainly, not
all possibilities of symmetries generating semisimple Lie algebras have been covered, but a
detailed description for all semisimple real Lie algebras forms would require an extended
analysis of their representation theory, as well as their realizations in terms of differential
operators [27,28]. Such an analysis will be performed elsewhere.

A second type of symmetries analyzed corresponds to those fulfilling the condition ξ(t,x) 6= 0.
It has been shown that such symmetries are scarcer, and depending on the non-autonomous/
autonomous character of the system, they give rise to either Abelian subalgebras or to sub-
algebras isomorphic to sl(2,R). In particular, a procedure for the determination of systems
with minimal semisimple Lie algebra of symmetries isomorphic to sl(2,R) can be easily
deduced from proposition 6. This shows the existence of large classes of non-maximally sym-
metry systems with (minimal) semisimple symmetry algebras. Another special case within
symmetries satisfying ξ(t,x) 6= 0 is given by scaling symmetries, which have played a certain
role in the study of integrals of motion and Noether symmetries [10,12]. A somewhat unex-
pected result is that a highly nonlinear system can have a number of independent scaling
symmetries as high as n + 1, a property usually related to linearizable and linear systems
[23].

Summarizing, the results are potentially useful for the explicit construction of systems pos-
sessing a prescribed semisimple or reductive subalgebra of symmetries, and could be applied
to classify systems according to a fixed Levi factor.
There still remain several open questions concerning the generic structure of symmetries for
arbitrary systems, like the exact coupling of the analyzed symmetry types. Another impor-
tant problem is whether for systems ẍ = ωα (t, ẋ,x) explicitly depending on the derivatives,
similar statements on the structure of subalgebras of the symmetry algebra L can be made.
The essential difficulty in this case is that the equations resulting from the symmetry con-
dition (3) cannot be further separated. In this context, it is worthy to be inspected whether
the imposition of fixed subalgebras generated by symmetries of certain types allow to derive
general properties of the equations of motion and further symmetries. Work in this direction
is currently in progress.
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