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Abstract

Non-binary simultaneous decision network of gene regulation represents a

cell differentiation process that involves more than two possible cell lineages.

The simultaneous decision network is an alternative to the hierarchical mod-

els of gene regulation and it exhibits possible presence of multistable master

switches. To investigate the qualitative behavior of the dynamics of the

simultaneous decision network, we employ geometric techniques in the anal-

ysis of the network’s corresponding system of ordinary differential equations

(ODE). We determine the location and the maximum number of equilibrium

points given a set of parameter values. Our analysis shows that the solution

to the ODE model always converge to a stable equilibrium point. Varying

the values of some parameters, such as the degradation rate and the amount

of exogenous stimulus, can decrease the size of the basin of attraction of an
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undesirable steady state as well as increase the size of the basin of attraction

of a desirable steady state. A sufficient change in some parameter values

can silence or reactivate gene transcription that results to cell fate switch-

ing without the aid of stochastic noise. We further show that increasing

the amount of exogenous stimulus can shutdown multistability of the system

such that only one stable equilibrium point remains.

Keywords: cellular programming, deterministic reprogramming, gene

regulatory network, hill function, ordinary differential equation,

multistability
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1. Introduction1

The field of Biomathematics has proven to be useful and essential for2

understanding the behavior and control of dynamic biological interactions.3

These interactions span a wide spectrum of spatio-temporal scales — from4

interacting molecules in a cell to individual organisms in a community, and5

from fast interactions occurring within seconds to those that slowly progress6

in years. Mathematical and in silico models enable scientists to generate7

quantitative predictions that may serve as initial input for testing biological8

hypotheses to minimize trial and error, as well as to investigate complex9

biological systems that are impractical or infeasible to study through in situ10

and in vitro experiments [1].11

One classic question that scientists want to answer is how simple cells12

generate complex organisms. In this study, we are interested in the analysis13

of gene interaction networks that orchestrate the differentiation of stem cells14
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to various cell lineages that make up an organism [2, 3, 4, 5, 6]. Cellular15

reprogramming can induce cells to switch cell lineages (transdifferentiation)16

[7, 8, 9, 10] or switch back to a pluripotent state (dedifferentiation) [11, 12,17

13, 14, 15]. We are motivated by the prospects of utilizing stem cells in18

regenerative medicine, in revolutionizing drug discovery, and in the control19

of cancer stem cells that had been hypothesized to maintain the growth of20

tumors [16, 17, 18, 19, 20].21

According to Waddington’s model [21], cell differentiation is similar to a22

ball rolling down a landscape of hills and valleys. The ridges of the hills can23

be regarded as the unstable equilibrium points while the parts of the valleys24

where the ball can stay without rolling further (i.e., at relative minima of25

the landscape) can be regarded as stable equilibrium points or attractors.26

An attractor represents a specific cell type. The theory that some cells can27

differentiate into many different cell types gives the idea that the mathemat-28

ical model representing the dynamics of such cells may exhibit multistability29

[22, 23, 24]. Cinquin and Demongeot [25] formulated a gene regulatory net-30

work (GRN) model that can represent cellular differentiation with more than31

two possible outcomes (multistability) obtained through different develop-32

mental pathways. The simultaneous decision network (see Figure (1)) is one33

of the possible representations of Waddington’s illustration where there are34

possibly many cell lineages involved. This representation is an alternative35

model to the binary or boolean hierarchic decision network [26, 25, 27, 28].36

Moreover, the Cinquin-Demongeot ODE model can represent not only molec-37

ular processes but also other similar biological interactions, such as interac-38

tion among species in a community.39
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Figure 1: Hierarchic decision model and simultaneous decision model. Bars represent

repression or inhibition, while arrows represent activation. [25, 26].

Cinquin and Demongeot translated the simultaneous decision network40

with autocatalysis (autoactivation) and mutual inhibition into an ODE model41

[25]. All elements in the original Cinquin-Demongeot ODE model are sym-42

metric, that is, each node has the same relationship with all other nodes, and43

all equations in the system of ODEs have equal parameter values. In this44

paper, we further investigate a generalized Cinquin-Demongeot ODE model45

with more adjustable parameters to represent a wider range of situations.46

The state variables of the ODE model represent the concentration of the47

transcription factors (TFs) involved in gene expression towards a certain cell48

lineage.49

Stability and bifurcation analysis of the generalized Cinquin-Demongeot50

ODE model can help in understanding the dynamics of cellular differentia-51
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tion. We determine the biologically feasible (nonnegative real-valued) coex-52

isting stable equilibrium points of the ODE model for a given set of param-53

eters. We then identify if varying the values of some parameters, such as54

those associated with the exogenous stimuli, can steer the system toward a55

desired state.56

Furthermore, we present a case where the generalized Cinquin-Demongeot57

ODE model can be used. We represent a phenomenological gene regulatory58

network of a mesenchymal cell differentiation system [29] using the simul-59

taneous decision model. This GRN is composed of four nodes consisting of60

pluripotency and differentiation modules. The differentiation module repre-61

sents a circuit of transcription factors that activate osteogenesis, chondroge-62

nesis, and adipogenesis.63

2. ODE model representing GRN dynamics64

Models of GRN often use the function H+ (or H−) which is bounded

monotone increasing (or decreasing) with values between zero and one. Ex-

amples of such function are the sigmoidal H+ and H− called the classical

Hill functions, which are defined as

H+([X]) :=
[X]c

Kc + [X]c
, c > 1 (1)

for activation of gene expression and

H−([X]) = 1−H+([X], K, c) =
Kc

Kc + [X]c
, c > 1 (2)

for repression [30, 28, 31]. The variable [X] is the concentration of the65

molecule involved. The parameter K is the threshold or dissociation con-66

stant and is equal to the value of X at which the Hill function is equal67
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to 1/2. The parameter c is called the Hill constant or Hill coefficient and68

describes the steepness of the Hill curve. The Hill constant often denotes69

multimerization-induced cooperativity and may represent the number of co-70

operative binding sites. However, in some cases, the Hill constant can be a71

positive real number (not necessarily integer-valued) [30]. If c = 1, then there72

is no cooperativity [25] and the Hill function becomes the Michaelis-Menten73

function which is hyperbolic. If data are available, we can estimate the value74

of c by inference.75

2.1. The original Cinquin and Demongeot ODE model76

A state X = ([X1], [X2], ..., [Xn]) represents a temporal stage in the cel-77

lular differentiation or programming process. We define [Xi] as a compo-78

nent (coordinate) of a state which represents the concentration of the cor-79

responding TF protein. A stable state (stable equilibrium point) X∗ =80

([X1]
∗, [X2]

∗, ..., [Xn]∗) represents a certain cell type, e.g., pluripotent, tripo-81

tent, bipotent, unipotent or fully (terminally) differentiated cell.82

Let us suppose we have n antagonistic transcription factors such that

each TF expression is subject to a first-order degradation (exponential de-

cay). The parameters β, c and g represent the relative speed of transcrip-

tion (or strength of the unrepressed TF expression relative to the first-order

degradation), cooperativity and “leak”, respectively [25]. The parameter g is

a basal expression of the corresponding TF and a constant production term

that enhances the value of [Xi], which is possibly affected by an exogenous
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stimulus. The original Cinquin-Demongeot ODE model [25] is

d[Xi]

dt
=

β[Xi]
c

1 +
n∑
j=1

[Xj]
c

− [Xi] + g, i = 1, 2, ..., n. (3)

The function formed by the term

β[Xi]
c

1 +
n∑
j=1

[Xj]
c

(4)

represents a multivariate Hill-like curve.83

In this study, we consider Cinquin-Demongeot model with autocatalysis84

because autocatalysis is a common property of cell fate-determining factors85

known as “master” switches [25]. For simplification, only the transcription86

regulation process is considered in modeling cell differentiation. The model is87

also assumed to be intracellular and cell-autonomous (i.e., we only consider88

processes inside a single cell without the influence of other cells).89

By using an ODE model, we assume that the time-dependent macro-90

scopic dynamics of the GRN are continuous in both time and state space.91

We assume continuous dynamics because the process of lineage determina-92

tion involves a temporal extension, that is, cells pass through intermediate93

stages [32]. ODEs are primarily used to represent the average dynamics of94

phenomenological (coarse-grained) regulatory networks [32].95

2.2. The generalized Cinquin-Demongeot ODE model96

In [25], Cinquin and Demongeot suggested to extend their model to in-

clude combinatorial interactions and non-symmetrical networks (i.e., each

node does not have the same relationship with other nodes and all equations
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in the system of ODEs do not have equal parameter values). We include

more adjustable parameters to their model to represent a wider range of sit-

uations. In this generalized model, some cell differentiation factors can be

stronger than others. We generalize the Cinquin-Demongeot (2005) ODE

model as follows:

d[Xi]

dt
= Fi(X) =

βi[Xi]
ci

Ki
ci

+ [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

+ αisi − ρi[Xi] (5)

where i = 1, 2, ..., n and n is the number of nodes. To have biological signifi-97

cance, we restrict the parameters to be nonnegative real numbers.98

The parameter βi is the relative speed of transcription, ρi is the assumed99

first-order degradation rate associated with Xi, and γij is the differentiation100

stimulus that affects the inhibition of Xi by Xj. If γij = 0 then Xj does not101

inhibit the growth of [Xi]. Let gi = αisi, which represents basal or consti-102

tutive expression of the corresponding TF that is affected by the exogenous103

stimulus with concentration si and rate αi. In other words, gi is a constant104

production term that enhances the concentration of Xi.105

We define the multivariate function Hi by

Hi([Xi], [X2], ..., [Xn]) =
βi[Xi]

ci

Ki
ci

+ [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

(6)

which comes from the classical Hill equation. The terms
∑n

j=1,j 6=i γij[Xj]
cij in106

the denominator reflects the inhibitory influence of other TFs on the change107

of concentration of Xi. For simplicity, let Ki = Ki
ci
> 0, which is related to108

the threshold or dissociation constant.109
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The parameter ci ≥ 1 represents the Hill constant and affects the steep-110

ness of the Hill curve associated with [Xi], and denotes autocatalysis (homo-111

multimerization-induced positive cooperativity). The parameter cij, j 6= i112

denotes mutual inhibition (heteromultimerization-induced negative coopera-113

tivity). Cooperativity describes the interactions among binding sites where114

the affinity or relationship of a binding site positively or negatively changes115

depending on itself or on the other binding sites. If 1 < ci ≤ n then Xi116

has autocatalytic cooperativity, and if 1 < cij ≤ n then the affinity of Xj to117

Xi has negative cooperativity. In addition, cooperativity requires more than118

one binding site. The state variable Xi has no autocatalytic cooperativity if119

ci = 1, while the affinity of Xj to Xi has no negative cooperativity if cij = 1.120

Notice that the lower bound of Hi (6) is zero and its upper bound is βi.121

Thus, the parameter βi can also be interpreted as the maximal expression122

rate of the corresponding TF.123

We only consider the biologically feasible points — those that are real-124

valued and nonnegative. The initial valueX0 = ([X1]0, [X2]0, ..., [Xn]0) should125

always be biologically feasible.126

Proposition 1. The flow of the ODE model (where X0 ∈ R⊕n can be any127

initial condition) is always in R⊕n (that is, always nonnegative).128

Proof. Since we are considering only the biologically feasible points, then129

either d[Xi]/dt|[Xi]=0 = 0 or d[Xi]/dt|[Xi]=0 > 0 but d[Xi]/dt|[Xi]=0 6< 0. That130

is, if a component of a state variable is zero then the component will either131

stay zero or become positive but never negative (Note that the instantaneous132

rate of change d[Xi]/dt|[Xi]=0 > 0 happens only when gi > 0). Hence, we133

are sure that the values of the state variables of the generalized Cinquin-134
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Demongeot ODE model (5) with non-negative initial condition are always135

non-negative.136

2.3. Geometry of the Hill function137

The Hill function defined by Equation (6) is a multivariate sigmoidal

function when ci > 1 and a multivariate hyperbolic-like function when ci = 1.

We can investigate the multivariate Hill function by looking at the univariate

function defined by

Hi([Xi]) =
βi[Xi]

ci

Ki + [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

(7)

where each [Xj], j 6= i is taken as a parameter. This means that we project138

the high-dimensional space onto a two-dimensional plane. If ci = 1, the139

graph of the univariate Hill function in the first quadrant of the Cartesian140

plane is hyperbolic (for any value of [Xj], j 6= i). If ci > 1, the graph of the141

univariate Hill function in the first quadrant is sigmoidal or “S”-shaped (for142

any value of [Xj], j 6= i).143

It is always true that

βi[Xi]
ci

Ki + [Xi]ci
≥ βi[Xi]

ci

Ki + [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

(8)

for any value of [Xj] ∀j. In other words, when the value of

Ki +
n∑

j=1,j 6=i

γij[Xj]
cij (9)

in the denominator of Hi([Xi]) increases, the graph of the Hill curve shrinks.144

Moreover, when the value of ci increases, the graph of Y = Hi([Xi]) gets145
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steeper. If we add a term gi to Hi([Xi]) then the graph of Y = Hi([Xi]) in146

the Cartesian plane is translated upwards by gi units.147

3. Equilibrium points148

Definition 1. Stable component and stable equilibrium point. If [Xi] con-149

verges to [Xi]
∗ for all initial conditions [Xi]0 near [Xi]

∗, then we say that the150

i-th component [Xi]
∗ of an equilibrium point X∗ is stable; otherwise, [Xi]

∗ is151

unstable. The equilibrium point X∗ = ([X1]
∗, [X2]

∗, ..., [Xn]∗) of the system152

(5) is stable if and only if all its components are stable.153

To find the equilibrium points, we need to solve the multivariate equation

Fi(X) = 0 by solving the intersections of the (n + 1)-dimensional curve

induced by Hi([X1], [X2], ..., [Xn])+gi and the (n+1)-dimensional hyperplane

induced by ρi[Xi]. That is, we find the real solutions to

βi[Xi]
ci

Ki + [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

+ αisi = ρi[Xi]. (10)

For easier analysis, we observe the intersections of the univariate functions154

defined by Y = Hi([Xi]) + gi and Y = ρi[Xi] while varying the value of155

Ki +
∑n

j=1,j 6=i γij[Xj]
cij in the denominator of the univariate Hill function156

Hi([Xi]) (see Figure (2) for illustration). In the univariate case, we can look157

at Y = ρi[Xi] as a line in the Cartesian plane passing through the origin with158

slope equal to ρ.159

Theorem 1. Suppose ρi > 0 for all i. Then the generalized Cinquin-160

Demongeot ODE model (5) with X0 ∈ R⊕n always has a stable equilibrium161
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Figure 2: The intersections of Y = ρi[Xi] and Y = Hi([Xi]) + gi with varying values of

Ki +
∑n

j=1,j 6=i γij [Xj ]
cij , an example.

point. Moreover, any trajectory of the model will converge to a stable equi-162

librium point.163

Figure 3: The possible number of intersections of Y = ρi[Xi] and Y = Hi([Xi]) +gi where

ci = 1 and gi = 0. The value of Ki +
∑n

j=1,j 6=i γij [Xj ]
cij is fixed.

Proof. Figures (3) to (6) illustrate all possible cases showing the topologies164

of the intersections of Y = ρi[Xi] and Y = Hi([Xi])+gi. We employ the geo-165

metric analysis shown in Figure (7) (where we rotate the graph of the curves,166

making Y = ρi[Xi] the horizontal axis) to each topology of the intersections167
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Figure 4: The possible number of intersections of Y = ρi[Xi] and Y = Hi([Xi]) +gi where

ci = 1 and gi > 0. The value of Ki +
∑n

j=1,j 6=i γij [Xj ]
cij is fixed.

Figure 5: The possible number of intersections of Y = ρi[Xi] and Y = Hi([Xi]) +gi where

ci > 1 and gi = 0. The value of Ki +
∑n

j=1,j 6=i γij [Xj ]
cij is fixed.

of Y = ρi[Xi] and Y = Hi([Xi]) + gi. Given specific values of [Xj], j 6= i,168

the univariate Hill curve Y = Hi([Xi]) and Y = ρi[Xi] have the following169

possible number of intersections (see Figures (3) to (6)):170

• two intersections (where one is stable);171

• one intersection (which is stable); or172

• three intersections (where two are stable).173

We can see that there always exists a stable intersection located in the174

first quadrant (including the axes) of the Cartesian plane. We can also175
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Figure 6: The possible number of intersections of Y = ρi[Xi] and Y = Hi([Xi]) +gi where

ci > 1 and gi > 0. The value of Ki +
∑n

j=1,j 6=i γij [Xj ]
cij is fixed.

Figure 7: The curves are rotated making the line Y = ρi[Xi] as the horizontal axis.

Positive gradient means instability, negative gradient means stability. If the gradient is

zero, we look at the left and right neighboring gradients.

observe that when there are two or more intersections, the value of one stable176

intersection is always greater than the value of the unstable intersection —177

implying that any solution to the ODE is bounded.178

By inspecting each component of all possible equilibrium points, we can179

conclude that there is always an equilibrium point that attracts the trajectory180

of our ODE model for any initial condition.181

Remark 1. Given nonnegative state variables and parameters in (5), if gi > 0182

then ρi > 0 is a necessary and sufficient condition for the existence of an183

equilibrium point. Moreover, if gi = 0 and ρi = 0 then we have an equilibrium184

point with zero i-th component (i.e.,
i

(..., 0, ...)), but this equilibrium point is185
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obviously unstable.186

3.1. Location of equilibrium points187

Proposition 2. Suppose ρi > 0. If both βi > 0 and gi > 0 then gi/ρi cannot188

be an i-th component of an equilibrium point.189

Remark 2. If gi, ρi > 0 then [Xi] = gi/ρi can only be an i-th component of190

an equilibrium point if βi = 0.191

Theorem 2. Suppose ρi > 0. The value gi+βi
ρi

is the upper bound of, but will

never be equal to, [Xi]
∗ (where [Xi]

∗ is the i-th component of an equilibrium

point). The equilibrium points of our system lie in the hyperspace[
g1
ρ1
,
g1 + β1
ρ1

)
×
[
g2
ρ2
,
g2 + β2
ρ2

)
× ...×

[
gn
ρn
,
gn + βn
ρn

)
. (11)

192

Proof. The minimum value of Hi is zero which happens when βi = 0 or when193

[Xi] = 0. Hence, if Hi([X1], [X2], ..., [Xn]) = 0 then Fi(X) = gi − ρi[Xi] = 0,194

implying [Xi] = gi/ρi.195

Note that [Xi]
∗ <∞ ∀i because [Xi]

∗ =∞ cannot be a component of an196

equilibrium point. The upper bound of Hi is βi which will only happen when197

[Xi] = ∞. If Hi([X1], [X2], ..., [Xn]) = βi then Fi(X) = βi − ρi[Xi] + gi = 0,198

implying [Xi] = gi+βi
ρi

.199

Remark 3. The Hill curve and ρ[Xi] intersect at infinity when gi → ∞,200

βi → ∞ or ρi → 0. Moreover, if we have multiple stable equilibrium points201

lying on the hyperspace (11) then one strategy for increasing the basin of202

attraction of a stable equilibrium point is by increasing the value of gi, βi or203
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ρi (however, the number of stable equilibrium points may change by doing204

this strategy).205

Proposition 3. The generalized Cinquin-Demongeot ODE model (5) has an206

equilibrium point with i-th component equal to zero (i.e., [Xi]
∗ = 0) if and207

only if gi = 0.208

The following corollary is very important because the case where the209

trajectory converges to the origin (0, 0, ..., 0) is trivial. The zero state neither210

represents a pluripotent cell nor a cell differentiating into the cell lineages211

considered in the scope of the given GRN. Zero state may also represent a212

cell in quiescent stage.213

Corollary 1. The zero state (0, 0, ..., 0) can only be an equilibrium point if214

and only if gi = 0 for all i.215

3.2. Cardinality of equilibrium points216

In this section, we use the Bézout Theorem [33] to determine the possible217

maximum number of equilibrium points. It is also important to note that218

when at least two polynomials in our polynomial system have a non-constant219

common factor then the polynomial system has infinitely many complex so-220

lutions.221

Suppose ci and cij are integers for all i and j. The corresponding poly-

nomial equation to

Fi(X) =
βi[Xi]

ci

Ki + [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

− ρi[Xi] + gi = 0 (12)
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is

Pi(X) =βi[Xi]
ci + (gi − ρi[Xi])

(
Ki + [Xi]

ci +
n∑

j=1,j 6=i

γij[Xj]
cij

)
= 0

=− ρi[Xi]
ci+1 + (βi + gi) [Xi]

ci −

(
Ki +

n∑
j=1,j 6=i

γij[Xj]
cij

)
(ρi[Xi])

+ gi

n∑
j=1,j 6=i

γij[Xj]
cij + giKi = 0. (13)

Proposition 4. Assume that there is only a finite number of equilibrium

points. Then, by Bezout Theorem, the number of equilibrium points of the

generalized Cinquin-Demongeot ODE model (5) (where ci and cij are inte-

gers) is at most

max{c1+1, c1j+1 ∀j}×max{c2+1, c2j+1 ∀j}×...×max{cn+1, cnj+1 ∀j}.

222

Bézout Theorem does not give the exact number of equilibrium points223

but only the upper bound. In addition, Proposition (4) is dependent on the224

value of ci and cij as well as on n. According to Cinquin and Demongeot,225

manipulating the strength of cooperativity (ci and cij) is of minimal bio-226

logical relevance [25]. Nevertheless, the possible dependence of the number227

of equilibrium points on n (dimension of our state space) has a biological228

implication. The dependence on n may be due to the potency of the cell.229

It is necessary to check if all equations in the polynomial system have no230

common factor of degree greater than zero, because if they do then there will231

be infinitely many complex solutions. We determine the set of parameter232

values (where the strengths of cooperativity are integer-valued) that would233
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give rise to a system of equations having a non-constant common factor. We234

have found one case (which is a Michaelis-Menten-like symmetric system)235

where such common factor exists.236

Lemma 1. Suppose ci = cij = 1, gi = 0, γij = 1, βi = βj = β > 0,237

ρi = ρj = ρ > 0 and Ki = Kj = K > 0, for all i and j. Then the ODE238

model (5) has infinitely many non-isolated equilibrium points if β > ρK.239

Moreover, if β ≤ ρK then there is exactly one equilibrium point which is the240

origin.241

Corollary 2. Suppose ci = cij = 1, gi = 0, γij = 1, βi = βj = β > 0,

ρi = ρj = ρ > 0 and Ki = Kj = K > 0, for all i and j. If β > ρK then the

equilibrium points of the ODE system (5) are the origin and the non-isolated

points lying on the hyperplane with equation

n∑
j=1

[Xj] =
β

ρ
−K, [Xj] ≥ 0 ∀j. (14)

242

When all parameters are equal to 1 except for ci = cij = 2 and gi = 0 for243

all i, j, then the only equilibrium point is the origin. Actually, this kind of244

system is the original Cinquin-Demongeot ODE model [25] without “leak”245

where β = 1 and c = 2 (refer to system (3)). In the following discussion,246

we present theorems stating sufficient (but not necessary) conditions for the247

origin to become the sole equilibrium point. Recall that zero state represents248

a trivial case.249

Theorem 3. If ci > 1, gi = 0 and

ρi(Ki
1/ci) ≥ βi (15)
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for all i, then our system has only one equilibrium point which is the origin.250

251

For ci = 1 and gi = 0, we state the following theorem:252

Theorem 4. Suppose ci = 1, gi = 0 and βi/Ki ≤ ρi for all i. Then our253

system has only one equilibrium point which is the origin.254

Suppose ci ≥ 1 and gi = 0 for all i. In general, the origin is the only255

equilibrium point of our ODE model (5) if and only if the univariate curve256

Y = Hi([Xi]) lies below the decay line Y = ρi[Xi] (i.e., Hi([Xi]) < ρi[Xi],257

∀[Xi] > 0) for all i. This phenomenon indicates that exponential decay is258

faster than the activation of the TFs. We expect that the associated gene259

expression will be silenced.260

Remark 4. When [Xi] = 0 and gi = 0, the n-dimensional system reduces261

to an (n − 1)-dimensional system. For example, the equilibrium points262

([X1]
∗[X2]

∗, [X3]
∗, 0) of a system with n = 4 and g4 = 0 are exactly the263

equilibrium points of the corresponding system with n = 3.264

In the next subsection, we determine the stability of the equilibrium265

points of the generalized Cinquin-Demongeot (2005) ODE model (5) for a266

given set of parameters.267

3.3. Stability of equilibrium points268

Recall Theorem (1). This theorem assures us that if the ODE system (5)269

has exactly one equilibrium point then this point is stable. Moreover, suppose270

ρi > 0 for all i, then any trajectory of our system (5) never converges to a271

neutrally stable center, to a limit cycle, or to a strange attractor because the272
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trajectory of the ODE model converges to a stable equilibrium point for any273

nonnegative initial condition.274

The following Theorems (5) and (6) present cases where the solution of275

our ODE system may converge to the zero state (depending on the initial276

condition), which is biologically trivial.277

Theorem 5. In our system (5), suppose gi = 0 and ci = 1 ∀i. Then the278

origin is a stable equilibrium point when ρi > βi/Ki ∀i, or an unstable equi-279

librium point when ρi < βi/Ki for at least one i. When ρi = βi/Ki for at least280

one i, then we have a nonhyperbolic equilibrium point, which is an attractor281

only when [Xi] is restricted to be nonnegative and ρj ≥ βj/Kj ∀j 6= i.282

Theorem 6. Suppose ρi > 0, gi = 0 and ci > 1 ∀i, then the origin is a stable283

equilibrium point of the system (5).284

Theorem 7. Suppose ci > 1. If [Xi]
∗ = 0 (i.e., the i-th component of an285

equilibrium point is zero), then it is always a stable component.286

Theorem (7) is very important because this proves that when the i-th TF287

(where gi = 0) is switched-off then it can never be switched-on again, unless288

we introduce an exogenous stimulus or we introduce some stochastic noise.289

Dedifferentiation, such as activating silenced TFs that induce pluripotency,290

has been shown to be possible through deterministic [34, 35] and stochastic291

[36, 37, 38, 39, 40] cellular reprogramming.292

Theorem 8. Suppose ci = cij = 1, gi = 0, γij = 1, βi = βj = β > 0,

ρi = ρj = ρ > 0, Ki = Kj = K > 0 and β > ρK, for all i and j. Then

the origin is an unstable equilibrium point of the system (5) while the points
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lying on the hyperplane
n∑
j=1

[Xj] =
β

ρ
−K. (16)

are stable equilibrium points.293

Proof. From Corollary (2), the origin and the points lying on the hyperplane294

are equilibrium points of the system (5). Moreover, recall that the graph of295

the Hill function with ci = 1 is hyperbolic.296

Suppose
∑n

j=1,j 6=i [Xj] = 0 in the denominator of Hi (6). At [Xi] = 0, the

slope of the Hill curve Y = Hi([Xi]) is

∂Hi

∂[Xi]
=

β

K
. (17)

Since β > ρK then β/K > ρ. This implies that the slope of Y = Hi([Xi])297

at [Xi] = 0 is greater than the slope of the decay line Y = ρ[Xi]. Therefore,298

when
∑n

j=1,j 6=i [Xj] = 0 in the denominator of Hi (6), there are two possible299

intersections of Y = Hi([Xi]) and Y = ρ[Xi]. The intersection is at the origin300

(which is unstable) and at [Xi] = β/ρ−K (which is stable).301

Now, suppose
∑n

j=1,j 6=i [Xj] in the denominator of Hi varies. Then the302

intersection of Y = Hi([Xi]) and Y = ρ[Xi] is at the origin (which is unsta-303

ble) and at [Xi] = β/ρ − K −
∑n

j=1,j 6=i [Xj] (which is stable). Hence, the304

hyperplane [Xi] = β/ρ − K −
∑n

j=1,j 6=i [Xj] is a set of stable equilibrium305

points. See Figure (8) for illustration.306

307

In GRNs, the existence of infinitely many non-isolated equilibrium points308

can be biologically volatile. A small perturbation in the initial value of the309

system may lead the trajectory of the system to converge to a different at-310

tractor. The basin of attraction of each stable non-isolated equilibrium point311
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Figure 8: The origin is unstable while the points where [Xi]
∗ = β/ρ−K −

∑n
j=1,j 6=i [Xj ]

∗

are stable.

may not be as large compared to the basin of attraction of a stable isolated312

equilibrium point. This special phenomenon represents competition where313

the co-expression, extinction and domination of the TFs depend on the value314

of each TF, and the dependence among TFs is a continuum. The existence315

of an attracting hyperplane is also discovered by Cinquin and Demongeot in316

[25].317

The size of the basin of attraction of an equilibrium point depends on the318

number of existing equilibrium points and on the size of the hyperspace (11).319

Note that the hyperspace (11) is fixed for a given set of parameter values,320

and the basin of attraction of each existing equilibrium point is distributed321

in this hyperspace. If there are multiple stable equilibrium points then there322

are multiple basins of attraction that share the region of the hyperspace.323
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4. Bifurcation of parameters324

Varying the values of some parameters can decrease the size of the basin325

of attraction of an undesirable equilibrium point as well as increase the size326

of the basin of attraction of a desirable equilibrium point. We can mathemat-327

ically manipulate the parameter values to ensure that the initial condition is328

in the basin of attraction of our desired attractor.329

Intuitively, we can make the i-th component of an equilibrium point dom-330

inate other components by increasing βi or gi or, in some instances, by de-331

creasing ρi. Decreasing the value of Ki or sometimes increasing the value332

of ci minimizes the size of the basin of attraction of the lower-valued sta-333

ble intersection of Y = Hi([Xi]) + gi and Y = ρi[Xi], thus, the chance of334

converging to an equilibrium point with [Xi]
∗ > [Xj]

∗ j 6= i may increase.335

However, the effect of Ki and ci in increasing the value of [Xi]
∗ is not as336

drastic compared to βi, gi and ρi, since Ki and ci do not affect the upper337

bound of the hyperspace (11). In addition, increasing the value of ci or of338

cij may result in an increased number of equilibrium points, and probably in339

multistability (by Proposition (4)).340

In this section, we determine how to obtain an equilibrium point that has341

an i-th component sufficiently dominating other components, especially by342

introducing an exogenous stimulus. We focus on the parameter gi because343

the introduction of an exogenous stimulus is experimentally feasible, and344

manipulating the values of the other parameters may not have biological345

relevance.346
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Figure 9: Increasing the value of gi can result in an increased value of [Xi] where Y =

Hi([Xi]) + gi and Y = ρi([Xi]) intersects.

4.1. Increasing the effect of exogenous stimuli347

If we increase the value of gi up to a sufficient level, then we can increase348

the value of [Xi] where Y = Hi([Xi]) + gi and Y = ρi([Xi]) intersect. We can349

also make such increased value of [Xi] the only intersection. See Figure (9)350

for illustration.351

Moreover, as we increase the value of gi up to a sufficient level, we increase352

the possible value of [Xi]
∗. Since [Xi] inhibits [Xj], then as we increase the353

value of [Xi]
∗, we can decrease the value of [Xj], j 6= i where Y = Hj([Xj])+gj354

and Y = ρj([Xj]) intersect. We can also make such decreased value of [Xj]355

the only intersection. If gj = 0, we can make [Xj] = 0 the only intersection356

of Y = Hj([Xj]) and Y = ρj([Xj]).357

Therefore, by sufficiently changing the value of gi we can have a sole stable358

equilibrium point where the i-th component dominates the others. For any359
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initial condition, the trajectory of the ODE model (5) will converge to this360

sole equilibrium point. By varying the value of gi, we can manipulate the361

potency and fate of a stem cell.362

Example 1. Consider that all parameters in the generalized Cinquin- De-

mongeot ODE model (5) are equal to 1 except for ci = cij = 2, γij = 1/8,

ρi = 1/21 and gi = 0, where i, j = 1, 2. The nonlinear system is of the form:

[X1]
2

1 + [X1]2 + 1
8
[X2]2

− 1

21
[X1] = 0 (18)

[X2]
2

1 + [X2]2 + 1
8
[X1]2

− 1

21
[X2] = 0.

This system has 9 equilibrium points which is equal to the Bezout upper363

bound of the number of possible equilibrium points. There are only 4 stable364

equilibrium points out of the 9. The four attractors represent a bipotent cell,365

two fully differentiated cells and a trivial case.366

Now, suppose we introduce g1 = 0.5, then there will be exactly one367

attractor which represents a fully differentiated cell. The fully differentiated368

cell expresses the gene associated with [X1].369

5. The MacArthur et al. GRN370

The current -omics (genomics, transcriptomics, proteomics, etc.) and sys-371

tems biology revolution [41, 42, 43, 44, 45] are continually providing details372

about gene networks. In this section, we present a GRN (originally illus-373

trated by MacArthur et al. as Figures 1 and 2 in [29]) where the generalized374

Cinquin-Demongeot ODE model can be employed. This gene network shows375

the coupled interaction among stem-cell-specific transcription factors and376
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lineage-specifying transcription factors induced by exogenous stimuli. The377

interaction depicted in the GRN involves the differentiation of multipotent378

stem cells to three mesenchymal stromal stem cells, namely, cells that form379

bones (osteoblasts), cartilages (chondrocytes), and fats (adipocytes).380

The MacArthur et al. GRN [29] is composed of a pluripotency module381

(a circuit consisting of OCT4, SOX2, NANOG and their heterodimer and382

heterotrimer) and a differentiation module (a circuit consisting of RUNX2,383

SOX9 and PPAR-γ) [29, 46]. The transcription factors RUNX2, SOX9 and384

PPAR-γ activate the formation of bone cells, cartilage cells and fat cells,385

respectively. In mouse ES cells, RUNX2 is stimulated by retinoic acid (RA)386

and BMP4; SOX9 by RA and TGF-β; and PPAR-γ by RA and Insulin.387

The TF proteins OCT4, SOX2, NANOG, OCT4-SOX2, OCT4-SOX2-388

NANOG, SOX9, RUNX2 and PPAR-γ are the nodes in the original MacArthur389

et al. GRN [29]. The path NANOG → OCT4-SOX2-NANOG → OCT4 →390

OCT4-SOX2 → SOX2 → OCT4-SOX2-NANOG → NANOG is one of the391

positive feedback loops of the gene network. A positive feedback loop that392

contains OCT4, SOX2, NANOG and their multimers can be regarded as an393

autoactivation loop of the pluripotency module.394

Furthermore, both the OCT4-SOX2-NANOG and OCT4-SOX2 multi-395

mers inhibit SOX9, RUNX2 and PPAR-γ. However, SOX9, RUNX2 and396

PPAR-γ inhibit OCT4, SOX2 and NANOG. This implies that the pluripo-397

tency module and the differentiation module mutually inhibit each other.398

Since the pluripotent module exhibits autoactivation and mutual inhi-399

bition with all the TFs in the differentiation circuit, then we can simplify400

the pluripotency module as one node while preserving the essential qualita-401
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Figure 10: The simplified MacArthur et al. GRN representing the mesenchymal cell

differentiation system. Bars represent repression or inhibition, while arrows represent

activation

tive dynamics. We denote the pluripotency module as the sTF (stemness402

transcription factor). From eight nodes, we only have four nodes as repre-403

sented by the coarse-grained biological network in Figure (10). Since each404

node undergoes autocatalysis (autoactivation) and inhibition by the other405

nodes (as shown by the arrows and bars) then the simplified GRN is in406

the simultaneous-decision-model form that can be translated into a Cinquin-407

Demongeot ODE model.408

One limitation of a phenomenological model is that it excludes time-409
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delays that may arise from the deleted molecular details. However, a phe-410

nomenological model is sufficient to address the general principles of cellular411

differentiation and cellular programming, such as the temporal behavior of412

the dynamics of the GRN [32].413

In our simplified network, we have four nodes and thus, n = 4. Let414

[X1] = [RUNX2], [X2] = [SOX9], [X3] = [PPAR−γ] and [X4] = [sTF ].415

The parameter si represents the effect of the growth factors stimulating the416

differentiation towards the i-th cell lineage, specifically, s1 = [RA+BMP4],417

s2 = [RA+ TGF−β], s3 = [RA+ Insulin] and s4 = 0.418

MacArthur et al. [29] conducted numerical simulations to investigate419

the behavior of the system and tried to analytically analyze the system but420

only for a specific case — when the pluripotency module is switched-off. The421

ODE model that they analyzed when the pluripotency module is switched-off422

follows the original Cinquin-Demongeot [25] formalism with c = 2.423

MacArthur et al. [29] analytically proved that the three cell types (tripo-424

tent, bipotent and terminal states) are simultaneously stable for some pa-425

rameter values. Based on their deterministic computational analysis, the426

pluripotency module cannot be reactivated once silenced, that is, it becomes427

resistant to reprogramming. They argued that the pluripotency module can428

only be reactivated by introducing stochastic noise to the system [29]. How-429

ever, using the generalized Cinquin-Demongeot ODE model, we can show430

that dedifferentiation is possible even without the aid of stochasticity. We431

can introduce sufficient amount of exogenous stimulus to the TF that can432

silence the expression of genes and can induce pluripotency.433
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5.1. Biological interpretation of equilibrium points434

A TF is switched-off or inactive if its concentration is approximately435

zero, and switched-on otherwise. Moreover, we say that [Xi] 6= 0 sufficiently436

dominates [Xj] if [Xj]/[Xi] < ε ≤ 1, where ε is an acceptable tolerance437

constant.438

If no component representing a node from the differentiation module suf-439

ficiently dominates [sTF ] (e.g., [sTF ] ≥ [OCT4], [sTF ] ≥ [SOX2] and440

[sTF ] ≥ [PPAR − γ]) and sTF is switched-on, then the state represents441

a pluripotent cell. If all the components of a state are approximately equal442

and all TFs are switched-on (i.e., genes are equally expressed), then the state443

represents a primed stem cell.444

If at least one component from the differentiation module sufficiently445

dominates [sTF ], then the state represents either a partially differentiated446

or a fully differentiated cell. If exactly three components from the differen-447

tiation module are approximately equal, then the state represents a tripo-448

tent cell. If exactly two components from the differentiation module are449

approximately equal and sufficiently dominate all other components (possi-450

bly including [sTF ]), then the state represents a bipotent cell. If exactly one451

component from the differentiation module sufficiently dominates all other452

components (possibly including [sTF ]) but sTF is still switched-on, then the453

state represents a unipotent cell.454

If sTF is switched-off, then the cell had lost its ability to self-renew. If455

exactly one TF from the differentiation module remains switched-on and all456

other TFs including sTF are switched-off, then the state represents a fully457

differentiated cell.458
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A trajectory converging to the zero state is a trivial case because the459

zero state does not represent a cell differentiating into bone, cartilage or fat.460

The trivial case may either represent a cell differentiating towards other cell461

lineages (e.g., towards becoming a neural cell) which are not in the domain462

of our GRN or a cell that is in quiescent stage.463

6. Conclusions464

We are able to show the qualitative dynamics of the non-binary simulta-465

neous decision network by investigating the mathematical properties of the466

generalized Cinquin-Demongeot ODE model. The simultaneous decision net-467

work can represent multistability that may give rise to co-expression or to468

domination by some transcription factors. Manipulating the values of some469

parameters can influence the expression of genes and the potency of stem470

cells. The introduction of an exogenous stimulus is a possible deterministic471

strategy for controlling cell fate towards a chosen lineage or for reprogram-472

ming cells back to pluripotency. Deterministic cellular reprogramming can473

result to a system with a sole attractor, which can probably regulate the474

effect of moderate stochastic noise in gene expression.475

Suppose the solution to our system tends to an equilibrium point with476

silenced transcription factor. If we want to reactivate this transcription factor477

then one strategy is to add an exogenous stimulus. The idea of introducing a478

sufficient amount of stimulus is to make the solution of our system escape a479

certain equilibrium point. However, it is sometimes impractical or infeasible480

to continuously add such a constant amount of inducement to control cell481

fates. Consequently, we may rather consider an exogenous stimulus that482
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degrades through time. Introducing a depleting amount of stimulus can483

affect cell fate when there are multiple stable equilibrium points and when484

the convergence of trajectories is dependent on the initial condition.485

Random noise can be introduced to the ODE model. Stochasticity can in-486

duce cells to switch lineages or to switch back to a pluripotent state; however,487

this technique is not always efficient, especially in the absence of multistabil-488

ity. When deterministic cellular reprogramming is not possible, combining489

deterministic and stochastic techniques could be done, such as by supple-490

menting a flexible amount of stimulus to complement the effect of stochastic491

noise.492

Acknowledgment493

We would like to thank the Philippine Council for Industry, Energy and494

Emerging Technology Research and Development (PCIEERD) of the Depart-495

ment of Science and Technology (DOST) for funding this project.496

References497

[1] J. E. Cohen, Mathematics is biology’s next microscope, only better;498

biology is mathematics’ next physics, only better, PLoS Biology 2 (12)499

(2004) e439. doi:10.1371/journal.pbio.0020439.500

[2] T. Magnus, et al., Stem cell myths, Philosophical Transactions of the501

Royal Society B 363 (2008) 9–22. doi:http://dx.doi.org/10.1098/502

rstb.2006.2009.503

[3] G. Orphanides, D. Reinberg, A unified theory of gene expres-504

31

http://dx.doi.org/10.1371/journal.pbio.0020439
http://dx.doi.org/http://dx.doi.org/10.1098/rstb.2006.2009
http://dx.doi.org/http://dx.doi.org/10.1098/rstb.2006.2009
http://dx.doi.org/http://dx.doi.org/10.1098/rstb.2006.2009


sion, Cell 108 (2002) 439–451. doi:http://dx.doi.org/10.1016/505

S0092-8674(02)00655-4.506

[4] S. Huang, Non-genetic heterogeneity of cells in development: more than507

just noise, Development 136 (2009) 3853–3862. doi:http://dx.doi.508

org/10.1242/dev.035139.509

[5] N. D. Theise, R. Harris, Postmodern biology: (adult) (stem) cells are510

plastic, stochastic, complex, and uncertain, Handbook of Experimental511

Pharmacology 174 (2006) 389–408.512

[6] D. L. Myster, R. J. Duronio, Cell cycle: To differentiate or not to513

differentiate?, Current Biology 10 (8) (2000) R302–R304. doi:http:514

//dx.doi.org/10.1016/S0960-9822(00)00435-8.515

[7] U. Lakshmipathy, C. Verfaillie, Stem cell plasticity, Blood Reviews516

19 (2005) 29–38. doi:http://dx.doi.org/10.1016/j.blre.2004.03.517

001.518

[8] A. J. Wagers, I. L. Weissman, Plasticity of adult stem cells, Cell 116519

(2004) 639–648. doi:http://dx.doi.org/10.1016/S0092-8674(04)520

00208-9.521

[9] A. J. Wagers, J. L. Christensen, I. L. Weissman, Cell fate determination522

from stem cells, Gene Therapy 9 (2002) 606–612. doi:http://dx.doi.523

org/10.1038/sj/gt/3301717.524

[10] G. J. Sullivan, et al., Induced pluripotent stem cells: epigenetic memo-525

ries and practical implications, Molecular Human Reproduction 16 (12)526

(2010) 880–885. doi:http://dx.doi.org/10.1093/molehr/gaq091.527

32

http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(02)00655-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(02)00655-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(02)00655-4
http://dx.doi.org/http://dx.doi.org/10.1242/dev.035139
http://dx.doi.org/http://dx.doi.org/10.1242/dev.035139
http://dx.doi.org/http://dx.doi.org/10.1242/dev.035139
http://dx.doi.org/http://dx.doi.org/10.1016/S0960-9822(00)00435-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0960-9822(00)00435-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0960-9822(00)00435-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.blre.2004.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.blre.2004.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.blre.2004.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(04)00208-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(04)00208-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0092-8674(04)00208-9
http://dx.doi.org/http://dx.doi.org/10.1038/sj/gt/3301717
http://dx.doi.org/http://dx.doi.org/10.1038/sj/gt/3301717
http://dx.doi.org/http://dx.doi.org/10.1038/sj/gt/3301717
http://dx.doi.org/http://dx.doi.org/10.1093/molehr/gaq091


[11] J. H. Hanna, K. Saha, R. Jaenisch, Pluripotency and cellular reprogram-528

ming: Facts, hypotheses, unresolved issues, Cell 143 (2010) 508–525.529

doi:http://dx.doi.org/10.1016/j.cell.2010.10.008.530

[12] K. Hochedlinger, K. Plath, Epigenetic reprogramming and induced531

pluripotency, Development 136 (2009) 509–523. doi:http://dx.doi.532

org/10.1242/dev.020867.533

[13] S. Yamanaka, H. M. Blau, Nuclear reprogramming to a pluripotent state534

by three approaches, Nature 465 (2010) 704–712. doi:http://dx.doi.535

org/10.1038/nature09229.536

[14] V. Selvaraj, et al., Switching cell fate: the remarkable rise of induced537

pluripotent stem cells and lineage reprogramming technologies, Trends538

in Biotechnology 28 (4) (2010) 214–223. doi:http://dx.doi.org/10.539

1016/j.tibtech.2010.01.002.540

[15] K. R. Boheler, Stem cell pluripotency: A cellular trait that depends541

on transcription factors, chromatin state and a checkpoint deficient cell542

cycle, Journal of Cellular Physiology 221 (2009) 10–17. doi:http://543

dx.doi.org/10.1002/jcp.21866.544

[16] F. M. Watt, R. R. Driskell, The therapeutic potential of stem cells,545

Philosophical Transactions of the Royal Society B 365 (2010) 155–163.546

doi:http://dx.doi.org/10.1098/rstb.2009.0149.547

[17] C. Zhao, R. F. Xu, R. Jiang, Tissue engineering and stem cell therapy,548

Trends in Bio/Pharmaceutical Industry 6 (1) (2010) 21–25.549

33

http://dx.doi.org/http://dx.doi.org/10.1016/j.cell.2010.10.008
http://dx.doi.org/http://dx.doi.org/10.1242/dev.020867
http://dx.doi.org/http://dx.doi.org/10.1242/dev.020867
http://dx.doi.org/http://dx.doi.org/10.1242/dev.020867
http://dx.doi.org/http://dx.doi.org/10.1038/nature09229
http://dx.doi.org/http://dx.doi.org/10.1038/nature09229
http://dx.doi.org/http://dx.doi.org/10.1038/nature09229
http://dx.doi.org/http://dx.doi.org/10.1016/j.tibtech.2010.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.tibtech.2010.01.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.tibtech.2010.01.002
http://dx.doi.org/http://dx.doi.org/10.1002/jcp.21866
http://dx.doi.org/http://dx.doi.org/10.1002/jcp.21866
http://dx.doi.org/http://dx.doi.org/10.1002/jcp.21866
http://dx.doi.org/http://dx.doi.org/10.1098/rstb.2009.0149


[18] L. L. Rubin, K. M. Haston, Stem cell biology and drug discov-550

ery, BMC Biology 9 (2011) 42. doi:http://dx.doi.org/10.1186/551

1741-7007-9-42.552

[19] W. L. Farrar (Ed.), Cancer Stem Cells, Cambridge University Press,553

Cambridge, 2010.554

[20] N. A. Lobo, Y. Shimono, D. Qian, M. F. Clarke, The biology of555

cancer stem cells, Annual Review of Cell and Developmental Biol-556

ogy 23 (2007) 675–699. doi:http://dx.doi.org/10.1146/annurev.557

cellbio.22.010305.104154.558

[21] C. H. Waddington (Ed.), The Strategy of the Genes, Geo Allen and559

Unwin, London, 1957.560

[22] S. Huang, Cell lineage determination in state space: A systems view561

brings flexibility to dogmatic canonical rules, PLoS Biology 8 (5) (2010)562

e1000380. doi:http://dx.doi.org/10.1371/journal.pbio.1000380.563

[23] D. Siegal-Gaskins, E. Grotewold, G. D. Smith, The capacity for mul-564

tistability in small gene regulatory networks, BMC Systems Biology 3565

(2009) 96. doi:http://dx.doi.org/10.1186/1752-0509-3-96.566

[24] R. Guantes, J. F. Poyatos, Multistable decision switches for flexible con-567

trol of epigenetic differentiation, PLoS Computational Biology 4 (11)568

(2008) e1000235. doi:http://dx.doi.org/10.1371/journal.pcbi.569

1000235.570

[25] O. Cinquin, J. Demongeot, High-dimensional switches and the modelling571

34

http://dx.doi.org/http://dx.doi.org/10.1186/1741-7007-9-42
http://dx.doi.org/http://dx.doi.org/10.1186/1741-7007-9-42
http://dx.doi.org/http://dx.doi.org/10.1186/1741-7007-9-42
http://dx.doi.org/http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154
http://dx.doi.org/http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154
http://dx.doi.org/http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154
http://dx.doi.org/http://dx.doi.org/10.1371/journal.pbio.1000380
http://dx.doi.org/http://dx.doi.org/10.1186/1752-0509-3-96
http://dx.doi.org/http://dx.doi.org/10.1371/journal.pcbi.1000235
http://dx.doi.org/http://dx.doi.org/10.1371/journal.pcbi.1000235
http://dx.doi.org/http://dx.doi.org/10.1371/journal.pcbi.1000235


of cellular differentiation, Journal of Theoretical Biology 233 (2005) 391–572

411. doi:10.1016/j.jtbi.2004.10.027.573

[26] B. D. Aguda, A. Friedman, Models of Cellular Regulation, Oxford Uni-574

versity Press, NY, 2008.575
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Proof. Suppose βi > 0, gi > 0, and gi/ρi is an i-th component of an equilib-

rium point. Then

Fi

(
[X1], ...,

gi
ρi
, ..., [Xn]

)
=

βi

(
gi
ρi

)ci
Ki +

(
gi
ρi

)ci
+

n∑
j=1,j 6=i

γij[Xj]
cij

− ρi
gi
ρi

+ gi = 0

=
βi

(
gi
ρi

)ci
Ki +

(
gi
ρi

)ci
+

n∑
j=1,j 6=i

γij[Xj]
cij

= 0

implying that βi (gi/ρi)
ci = 0. Thus βi = 0 or gi = 0, a contradiction.640

Proof of Proposition (3)641

Proof. If gi = 0 then

Fi(X) =
βi[Xi]

ci

Ki + [Xi]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

− ρi[Xi] + 0 = 0,

implying [Xi] = 0 is a root of Fi(X) = 0. Furthermore, if [Xi] = 0 is a root

of Fi(X) = 0 then by substitution,

βi[0]ci

Ki + [0]ci +
n∑

j=1,j 6=i

γij[Xj]
cij

− ρi[0] + gi = 0,

gi must be zero.642

Proof of Lemma (1)643
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Proof. Recall Equation (13), we have the corresponding polynomial system

Pi(X) = 0 (i = 1, 2, ..., n):

βi[Xi]
ci − ρiKi[Xi]− ρi[Xi]

ci+1 − ρi[Xi]
n∑

j=1,j 6=i

γij[Xj]
cij

+giKi + gi[Xi]
ci + gi

n∑
j=1,j 6=i

γij[Xj]
cij = 0.

Suppose ci = cij = 1, gi = 0, γij = 1, βi = βj = β > 0, ρi = ρj = ρ > 0

and Ki = Kj = K > 0. Then the polynomial system can be written as

(i = 1, 2, ..., n)

β[Xi]− ρK[Xi]− ρ[Xi]
2 − ρ[Xi]

n∑
j=1,j 6=i

[Xj] = 0

⇒ [Xi]

(
β − ρK − ρ[Xi]− ρ

n∑
j=1,j 6=i

[Xj]

)
= 0

⇒ [Xi] = 0 or

(
β − ρK − ρ[Xi]− ρ

n∑
j=1,j 6=i

[Xj]

)
= 0. (19)

Notice that the factor

β − ρK − ρ[Xi]− ρ
n∑

j=1,j 6=i

[Xj]

= β − ρK − ρ
n∑
j=1

[Xj]

is common to all equations in the polynomial system. Thus, there are in-644

finitely many complex-valued solutions. However, note that we have re-645

stricted the state variables to be nonnegative, so we do further investigation646

to determine the conditions for the existence of an infinite number of so-647

lutions given strictly nonnegative variables. We focus our investigation on648

real-valued solutions.649
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Suppose B = β − ρK.650

Case 1 : If β = ρK then B = 0. Thus, B − ρ
∑n

j=1 [Xj] will never be zero651

except when [Xj] = 0 ∀j = 1, 2, ..., n (since [Xj] can take only nonnegative652

values). Hence, the only equilibrium point to the system is the origin.653

Case 2 : If β < ρK then B < 0. Thus, B−ρ
∑n

j=1 [Xj] will always be negative654

and will not have any zero for any nonnegative value of [Xj]. Hence, the only655

equilibrium point is the origin (that is, [Xi] = 0 ∀i = 1, 2, ..., n, see Equation656

(19)).657

Case 3 : If β > ρK then B > 0. Thus, there exist solutions to the equation658

B−ρ
∑n

j=1 [Xj] = 0. Notice that the set of nonnegative real-valued solutions659

to B − ρ
∑n

j=1 [Xj] = 0 is a hyperplane (e.g., it is a line for n = 2 and it is a660

plane for n = 3). Hence, there are infinitely many non-isolated equilibrium661

points when β > ρK.662

Proof of Theorem (3)663

Proof. Let us first consider the case where [Xj] = 0, for all j 6= i. Recall that664

the upper bound of Hi([Xi]) is βi. Moreover, recall that when [Xi] = K
1/ci
i665

then Hi([Xi]) = βi/2. Note that (K
1/ci
i , βi/2) is the inflection point of our666

univariate Hill curve. We substitute [Xi] = K
1/ci
i in the decay function667

Y = ρi[Xi], and if the value of ρi(Ki
1/ci) is larger or equal to the value of668

the upper bound βi then Y = Hi([Xi]) and Y = ρi[Xi] only intersect at the669

origin.670

Now, as the values of γij[Xj] for all j 6= i increase then the univariate671

Hill curve Y = Hi([Xi]) will just shrink and will definitely not intersect the672

decay line Y = [Xi] except at the origin.673
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Proof of Theorem (4)674

Proof. Let us first consider the case where [Xj] = 0, for all j 6= i. Recall that

Y = Hi([Xi]) where ci = 1 is a hyperbolic curve. The partial derivative

∂Hi

∂[Xi]
=

∂

∂[Xi]

(
βi[Xi]

Ki + [Xi]

)
=

Kiβi
(Ki + [Xi])2

means that the slope of the hyperbolic curve is monotonically decreasing as

[Xi] increases. The partial derivative at [Xi] = 0 is

∂Hi

∂[Xi]
=

βi
Ki

≤ ρi,

which means that the slope of Y = Hi([Xi]) at [Xi] = 0 is less than the slope675

of the decay line Y = ρi[Xi] at [Xi] = 0. Hence, the Hill curve Y = Hi([Xi])676

lies below the decay line for all [Xi] > 0.677

Proof of Theorem (5)678

Proof. The characteristic polynomial associated with the Jacobian of our

system when X = (0, 0, ..., 0) is

|JF (0)− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

β1
K1
− ρ1 − λ 0 · · · 0

0 β2
K2
− ρ2 − λ · · · 0

...
...

. . .
...

0 0 · · · βn
Kn
− ρn − λ

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
β1
K1

− ρ1 − λ
)(

β2
K2

− ρ2 − λ
)
...

(
βn
Kn

− ρn − λ
)
.

The eigenvalues (λ) are β1/K1−ρ1, β2/K2−ρ2, ..., βn/Kn−ρn. Therefore,679

the zero vector is a stable equilibrium point when ρi > βi/Ki ∀i. The zero680

vector is an unstable equilibrium point when ρi < βi/Ki for at least one i.681

41



If ρi = βi/Ki for at least one i then we have a nonhyperbolic equilibrium682

point. Geometrically, we can see that this is a saddle — stable at the right683

and unstable at the left of [Xi]
∗ = 0. Hence, if we restrict [Xi] ≥ 0 and if ρj ≥684

βj/Kj ∀j 6= i, then this nonhyperbolic equilibrium point is an attractor.685

Proof of Theorem (6)686

Proof. By Corollary (1), if gi = 0 for all i then the origin is an equilibrium

point. The characteristic polynomial associated with the Jacobian of our

system when X = (0, 0, ..., 0) is

|JF (0)− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

−ρ1 − λ 0 · · · 0

0 −ρ2 − λ · · · 0
...

...
. . .

...

0 0 · · · −ρn − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (−ρ1 − λ)(−ρ2 − λ)...(−ρn − λ).

The eigenvalues (λ) are −ρ1,−ρ2, ...,−ρn which are all negative. Therefore,687

the zero state is a stable equilibrium point.688

Proof of Theorem (7)689

Proof. Recall from Theorem (3) that our system has an equilibrium point690

with i-th component equal to zero if and only if gi = 0. The only possible691

topologies of the intersections of Y = Hi([Xi]) and Y = ρi[Xi] are shown in692

Figure (11). Notice that zero i-th component is always stable.693

APPENDIX B: Numerical results for Example (1)694

The approximate values of the equilibrium points of the ODE system (18)695

are:696
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Figure 11: The possible number of intersections of Y = ρi[Xi] and Y = Hi([Xi]) + gi

where c > 1 and g = 0. The value of Ki +
∑n

j=1,j 6=i γij [Xj ]
cij is taken as a parameter.

([X1]
∗ = 18.62, [X2]

∗ = 18.62) — stable (bipotent),697

([X1]
∗ = 20.89, [X2]

∗ = 3.11) — unstable,698

([X1]
∗ = 3.11, [X2]

∗ = 20.89) — unstable,699

([X1]
∗ = 0.05, [X2]

∗ = 0.05) — unstable,700

([X1]
∗ = 0, [X2]

∗ = 0.05) — unstable,701

([X1]
∗ = 0.05, [X2]

∗ = 0) — unstable,702

([X1]
∗ = 0, [X2]

∗ = 20.95) — stable (terminal state),703

([X1]
∗ = 20.95, [X2]

∗ = 0) — stable (terminal state),704

([X1]
∗ = 0, [X2]

∗ = 0) — stable (trivial case).705

When g1 = 0.5 is introduced, the sole equilibrium is ([X1]
∗ = 31.48, [X2]

∗ =706

0).707
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