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Abstract. Greene’s criterion for twist mappings asserts the existence of smooth in-
variant circles with preassigned rotation number if and only if the periodic trajectories
with frequency approaching that of the quasi-periodic orbit are linearly stable.

We formulate an extension of this criterion for conformally symplectic systems in
any dimension and prove one direction of the implication, namely that if there is a
smooth invariant attractor, we can predict the eigenvalues of the periodic orbits whose
frequencies approximate that of the tori. The proof of this result is very different
from the proof in the area preserving case, since in the conformally symplectic case the
existence of periodic orbits requires adjusting parameters. Also, as shown in [13], in
the conformally symplectic case there are no Birkhoff invariants giving obstructions to
linearization near an invariant torus.

As a byproduct of the techniques developed here, we obtain quantitative information
on the existence of periodic orbits in the neighborhood of quasi-periodic tori and we
provide upper and lower bounds on the width of the Arnold tongues in n-degrees of
freedom conformally symplectic systems.
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1. Introduction

The goal of this paper is to present some results (see Theorem 4) on a partial justi-
fication of Greene’s criterion for conformally symplectic mappings (i.e., mappings that
transform a symplectic form into a multiple of itself, see [17] and (2.1)).

Conformally symplectic mappings appear in several applications, including mechanical
systems with friction proportional to the velocity (an emblematic example is the spin-
orbit problem in celestial mechanics, [19]), in the study of critical points of discounted
functionals (very common in finance, [9]) and in non-equilibrium statistical mechanics
(Gaussian thermostats, [29, 67]).

In this section, we will describe briefly the motivation for the results we obtained,
present them informally and outline the organization of the paper.

1.1. The Greene’s criterion. The paper [39] studied the breakdown of smooth quasi-
periodic solutions (KAM circles) in twist mappings. The main result of [39] was the
assertion (verified by careful numerics) that a smooth invariant circle exists if and only
if the periodic orbits approximating it are stable. This assertion is called “The Greene’s
criterion”.

The idea of [39], which generalizes to other contexts, is that the existence or not of
a smooth KAM circle can be investigated by studying the stability properties of orbits
which are close to the KAM circle.

In this paper, we will be concerned with conformally symplectic systems in any num-
ber of degrees of freedom. Hence, one can expect relevant differences in details with
the symplectic case in one degree of freedom, which was investigated in [39]. Notably,
adjusting parameters will play a significant role and, as shown in [17], for conformally
symplectic systems there are no Birkhoff invariants.

The work developed in [39] also contained a number of other results on the behavior of
the distance of the eigenvalues at the critical point, as well as scaling properties, which
we will not consider here (see however [56, 16]). The study of the breakdown for twist
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mappings can be investigated by a variety of other methods; a comparative survey of
these methods can be found in an appendix of [15].

A partial justification of Greene’s criterion in the symplectic case was obtained in
[32, 46], by showing that if there is an invariant circle, then the bounds on the residue
(a measure of stability of the periodic orbits) hold. The work presented in [32] provides
a version for complex values of the parameter, which was implemented in [31].

The idea of the proof of the above partial justification for symplectic systems is con-
ceptually simple. By the theory of Birkhoff normal forms, one can perform a change
of variables that makes the system almost integrable in a neighborhood of the torus.
The error in the approximate integrability can be bounded (in a smooth norm) by an
arbitrarily high power of the distance to the torus.

The residue of a periodic orbit, being a function of the eigenvalues, is invariant under
changes of variables, hence it can be computed in any system of coordinates, in particular
in the Birkhoff normal form coordinates. Therefore using perturbation theories one can
show that the orbits that lie at a small distance from the torus have a small residue.
Using the twist properties, one can also show that the orbits with a rotation number
close to that of the torus, indeed lie in a small neighborhood.

A justification of the other direction of Greene’s criterion (that if all the approximating
orbits are stable, there is a smooth invariant circle) is more difficult, but there has been a
partial progress. The paper [24] shows that, if the dynamics of the renormalization group
satisfies certain geometric hypotheses (for which [24] supplies numerical evidence), then
Greene’s criterion would hold in the domain of universality. That is, under the geometric
hypothesis on the dynamics of the renormalization group, if there is no smooth invariant
circle, the residue will grow for families in the domain of universality. Furthermore,
[24] shows that in such a case the rate of growth of the residue satisfies several scaling
properties, which are verified numerically (see also [2]).

Greene’s criterion has been generalized to several other geometric contexts. The case
of symplectic mappings in higher dimensions has been considered numerically in [64, 21]
and some partial justication was obtained in [63]. Non-twist maps were studied in [26]
and [38]. The case of volume preserving maps has been studied numerically in [48, 49]
and rigorously in [37].

1.2. Greene’s criterion for conformally symplectic systems. The goal of this pa-
per is to present a partial justification of Greene’s criterion in yet another context, namely
conformally symplectic mappings (the case of conformally symplectic flows is also done
in a similar way, see Section 9), that is systems that transform a symplectic structure
into a multiple of itself. More precisely, we consider a mapping f such that f ∗Ω = λΩ,
where Ω is a symplectic form and 0 < λ < 1 is a number. The case λ = 1 corresponds to
symplectic mappings, which we will not consider here and which is indeed very different.
The case λ > 1 can be reduced to the previous one by considering the inverse of the
mapping.

Since conformally symplectic mappings may be dissipative, one needs to adjust pa-
rameters to obtain that there are quasi-periodic orbits with a fixed rotation number. Re-
cently, there have been several geometric studies of quasi-periodic orbits in conformally
symplectic mappings. The paper [19] obtained a KAM theory for the spin-orbit problem,
while a general KAM theory for conformally symplectic systems in any dimension was
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obtained in [17]. The KAM theory developed in [17] involves adjusting parameters, so
that the unknowns are the embedding of the torus with the given rotational frequency
and the parameters.

More relevantly for the present purposes, in [13] one can find a study of Poincaré-
Birkhoff theory of normal forms in a neighborhood of an invariant Lagrangian torus. The
somewhat surprising result of [13] is that the theory of normal forms around invariant
tori for conformally symplectic systems has much stronger results than Poincaré-Birkhoff
theory in Hamiltonian systems. In [13] it is shown that, for dissipative conformally sym-
plectic systems, in a neighborhood of a KAM torus, there is a smooth change of variables
which reduces the motion to a rotation and a linear contraction (by the conformal factor
λ). In particular, for dissipative conformally symplectic systems, there is no analogue of
Birkhoff invariants. Furthermore, the transformations to normal form are convergent.

In view of the results of [13], and also in agreement with the KAM theory developed
in [17], it is clear that Greeene’s criterion and its possible justifications should treat pa-
rameters as unknowns. In contrast to what happens for area preserving or symplectic
mappings, there are no periodic orbits in a neighborhood of the tori for the same parame-
ter values. For these parameter values, the torus attracts all the orbits in a neighborhood
and there are no other recurrent orbits in a neighborhood (a very strong form of this phe-
nomenon is presented in [13]). The best that we can expect for conformally symplectic
systems is that if there is one parameter for which there is an invariant circle, then there
is a sequence of parameters converging to the parameter of the torus and that for each
of them there is a periodic orbit. These sequence of periodic orbits (for the maps with
parameters in the sequences) approximates the invariant torus in the sense of the Haus-
dorff distance of sets. Since adjusting parameters plays a role similar to changing initial
conditions in the symplectic case, it seems clear that we will need some non-degeneracy
on parameters as an analogue of the twist mapping assumption.

In our case, since there are several eigenvalues for derivatives of periodic orbits, we will
define a measure of stability as the distance of the spectrum of a periodic orbit of period
L to the set {1, λL}, which is the spectrum of the integrable case. Similar definitions were
presented in [63, 49], which also considered higher dimensional systems. Of course, the
distance of the spectrum to this set can be related to the coefficients of the characteristic
polynomial in the spirit of [39] (see Remark 5).

Since we want to deal with approximation of tori by periodic orbits, we quickly run
into the problem of approximating irrational numbers by rational ones. In one dimension,
this is clearly solved by the continued fraction expansion. In higher dimensions, it is easy
to see that there is no analogue of continued fractions. A recent discussion on rational
approximations well suited for Greene’s criterion and with references to the original
sources can be found in [49].

Hence, following the strategies of previous papers studying Greene’s criterion in higher
dimensions, we have divided the results into two types:

(1) Showing that if there is a KAM torus for a certain value of the parameter, then
for small nearby values of the parameter, the eigenvalues of a periodic orbit (in a
neighborhood of the torus) with frequency ρ = 1

L
(a1, ..., an) with aj ∈ Z, L ∈ N,

are close to {1, λL} (see Theorem 4).
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(2) Showing that, given appropriate non-degeneracy conditions, for small values of
the parameter we can obtain periodic orbits of frequency approximating that of
the torus (see Section 7).

We conclude this section calling attention to the following observations.
i) The above results (1) and (2) are proved by very different methods and have differ-

ent hypotheses. The estimate of the eigenvalues is done using some versions of averaging
theory. Theorem 4 makes statements about all periodic orbits satisfying some proximity
conditions, but does not consider whether such orbits exist. The existence of periodic
orbits (with good quantitative estimates) is considered in Section 7. Note that Proposi-
tion 24 includes some non-degeneracy hypotheses that are not needed in Theorem 4; it
seems that these non-degeneracy assumptions could be weakened.

Notice that this is very different from the situation for twist mappings considered in
[39, 32], since in that case we have the non-degeneracy assumptions from the start. As
discovered in [13], the Birkhoff normal form theory is much stronger in the dissipative
conformally symplectic case than in the symplectic case.
ii) The results we obtain estimating the spectral numbers are valid not only for periodic

orbits, but also for the spectrum of the linearization of other invariant objects.
iii) From the numerical point of view, it might be advantageous to extend the notion of

the residue in terms of the coefficients of the characteristic polynomial, which depends in
a differentiable way on the values of the matrix entry (see Remark 5). On the other hand –
because the spectrum is very degenerate – the eigenvalues may depend in a Hölder fashion
on the coefficients of the characteristic polynomials, so that they are more sensitive to
changes in parameters.
iv) Notice that we only study one of the directions of the Greene’s criterion. In par-

ticular, we show that if there is a KAM torus, then the linearization around neighboring
periodic orbits is controlled. We do not have any rigorous statement in the opposite
direction, namely showing that if we have control on the Lyapunov exponents of periodic
orbits, there will be an invariant torus.
v) Greene’s method for dissipative systems has already been implemented numerically

in the literature. In [12] both Greene’s method and the method of growth of Sobolev
norms ([14]) are implemented and agree within the precision achieved in the ranges
of parameters where both of them are implementable (Greene’s criterion depends on
computing periodic orbits, which may be hard for some values of the parameter, while
the Sobolev growth has a wider range of practical applicability). Since the method of
[14] was justified rigorously in [15], we think that a full justification of Greene’s method
could be true, at least in some regions where the renormalization group is available (we
note that a renormalization theory for conformally symplectic maps was obtained in
[56, 57, 58]).
vi) Using topological methods (which apply to area-preserving maps as well as to

dissipative maps), Hall ([41]) proved that a twist map of the annulus having a periodic
orbit with frequency p/q must have a Birkhoff periodic orbit with the same rotation
number, where Birkhoff means to have periodic orbits whose radial order is preserved by
the map. In Section 7 we show that quasi-periodic (non contractible) KAM tori can be
approximated by periodic orbits. In view of the result given in [41] we have the existence
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of Birkhoff periodic orbits and therefore we obtain the existence of a quasi-periodic
Birkhoff limit set of periodic orbits, which can be a torus or a Cantor set.

1.3. Organization of the paper. In Section 2 we present the notation on conformally
symplectic systems and analyze the local behavior in a neighborhood of a rotational,
Lagrangian, invariant torus (we just reproduce the results of [13] that we need). In
Section 3 we introduce Diophantine numbers, we recall the pairing rule property of con-
formally symplectic matrices and we state the main result (see Theorem 4); the result
for flows is given in Section 9. A sketch of the proof of the main theorem is given in Sec-
tion 4. Two different proofs are presented in Sections 5 and 6: the first proof is based on
deformation theory (which consists in developing a suitable normal form), while the sec-
ond proof combines the theory of normally hyperbolic invariant manifolds and averaging
theory. As a byproduct we obtain informations about the width of the Arnold tongues
as shown in Section 7, which contains also a proof of the existence of the approximating
periodic orbits.

2. Local behavior near rotational Lagrangian tori in conformally
symplectic systems

2.1. Conformally symplectic systems. We consider a symplectic manifold M of di-
mension 2n, endowed with the standard scalar product and a symplectic form Ω. The
diffeomorphism f :M→M is conformally symplectic, whenever the following condition
is satisfied:

f ∗Ω = λΩ (2.1)

for some λ real (see [6, 7, 42, 47, 65, 67] for other studies of conformally symplectic
geometry).

Remark 1. When n = 1, taking as Ω the area form, any mapping admits a non-constant
function λ. In this work we will only consider the case of a constant λ; as it is well known
([7]), when n ≥ 2 and M is connected, then λ is a constant function.

Given ω ∈ Rn, we denote by Tω : Tn → Tn the shift

Tω(ϕ) = ϕ+ ω .

We say that an embedding K : Tn → M defines a rotational invariant torus for f ,
whenever the following invariance equation is satisfied:

f ◦K = K ◦ Tω . (2.2)

We say that a parameterized torus of dimension n is Lagrangian if

K∗Ω = 0 . (2.3)

In coordinates the relation (2.3) is equivalent to

DKT(ϕ) J ◦K(ϕ) DK(ϕ) = 0 , (2.4)

where the superscript T denotes transposition and where J = J(x) is the matrix repre-
senting Ω at x, namely if u, v ∈ TxM, then one has

Ω(u, v) = (J(x)u, v) ,
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where (·, ·) denotes the Euclidean scalar product. We remark that tori that satisfy (2.3)
are called isotropic in symplectic geometry. When the dimension of the torus is half of
the dimension of the phase space, they are called Lagrangian.

For a family fµ of conformally symplectic mappings depending on a parameter vector
µ ∈ R`, ` ≤ n, we require that the following invariance equation (extending (2.2)) is
satisfied:

fµ ◦K = K ◦ Tω . (2.5)

We note that in (2.5) both the embedding K and the parameter µ are unknowns. The
reason to adjust parameters is that, if we fix the parameter, it could well happen that
there are no embeddings satisfying (2.2). For example it could happen that all orbits
are attracted to a periodic orbit. It is remarkable that, when the rotation vector is
Diophantine and some non-degeneracy conditions are satisfied, we can get the existence
of the tori just by adjusting an n dimensional parameter.

Following [13], in a neighborhood of an invariant torus, we can assume, without loss
of generality, that the manifold M coincides with the manifold M0 defined as

M0 ≡ Tn × B ,
where B denotes a ball of Rn around zero.

We note that in M0 there is the standard symplectic form

Ω0 =
n∑
i=1

dIi ∧ dϕi , (2.6)

where Ii are the coordinates in B ⊂ Rn and ϕi are the coordinates on Tn.
We denote by f0 the conformally symplectic mapping with respect to Ω0 defined as

f0(ϕ, I) = (ϕ+ ω, λI) . (2.7)

Notice that (2.7) provides a rotation by ω in the angles and a constant contraction
(for λ < 1) in the actions.

For r > 0 integer we consider a Cr-family of functions fµ : M → M with finite
regularity, where Cr is the space of differentiable functions whose derivatives, both with
respect to coordinates or to the parameter of the family, of order smaller or equal than r
are continuous. We endow the Cr-space with the usual norm of the supremum of all the
derivatives. For later use, we define ‖µ‖ = (µ2

1 + ...+ µ2
`)

1
2 for any µ ∈ R` .

2.2. Local behavior in a neighborhood of a KAM torus. We now recall the result
presented in [13] concerning the conjugation to a rotation and a contraction near a
rotational, Lagrangian invariant torus.

Theorem 2. ([13]) Let (M,Ω) be a 2n-dimensional symplectic manifold with symplectic
form Ω; for r > 0 integer, let f be a Cr-conformally symplectic contractive diffeomor-
phism (see (2.1)). Let ω ∈ Rn and assume that there exists an embedding K : Tn →M,
such that (2.2) and (2.4) are satisfied. Then, there exists a Cr-diffeomorphism g from
M to a neighborhood of the torus, such that

g−1 ◦ f ◦ g =f0

g∗Ω0 =Ω

g(ϕ, 0) =K(ϕ) ,
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where f0 is given in (2.7) and Ω0 is given in (2.6).

Notice that in Theorem 2 we do not impose any non-resonance condition on ω. It
even applies to ω ∈ Qn. However, when ω is not Diophantine, there are no theorems
that guarantee the existence of rotational invariant tori for perturbations of the systems.
Indeed when ω is resonant, there are arguments that show that the Lagrangian tori do not
remain rotational (of course, they persist as normally hyperbolic invariant manifolds).

3. Definitions and statement of the main result

3.1. Diophantine property. In order to state the main result, we start by considering
a family fµ of conformally symplectic mappings with fµ ∈ Cr, r > 0, depending on a
parameter vector µ ∈ R`, ` ≤ n. We assume that for µ = 0 the mapping f0 admits
a KAM rotational invariant circle with rotation number ω satisfying the Diophantine
condition

|ω · q − p| ≥ ν|q|−δ , p ∈ Z , q ∈ Zn\{0} , (3.1)

for some positive constants ν, δ ∈ R. We remark that due to Theorem 2, close to the
invariant curve we can write f0 as in (2.7).

3.2. The pairing rule. We recall the important particular case of the results presented
in [28, 29, 67], which shows that the eigenvalues of a conformally symplectic matrix can
be paired.

Lemma 3. Assume that M is a λ-conformally symplectic matrix in a 2n-dimensional
space, that is:

MTJM = λJ .

Then, the spectrum of M has the form:

Spec(M) = {(γi, λγ−1
i ) : i = 1, · · · , n} .

Proof. The result follows from the observation that if γi is an eigenvalue of M with right
eigenvector v, then λγ−1

i is an eigenvalue of M with left eigenvector (Jv)T, as it follows
from MTJv = γ−1

i MTJMv = γ−1
i λJv. �

3.3. Main result. The main result of this paper is the following Theorem 4, which
is related to Theorem 2.1 of [32] and shows that, when the invariant curve exists, the
spectral numbers of the return map associated to the nearby periodic orbits are close to
those of the KAM torus. Of course, as explained in Section 1, in conformally symplectic
systems the Birkhoff normal form around the torus is trivial and we have to include extra
parameters.

Theorem 4. For r > 0 integer, let fµ, µ ∈ R` (` ∈ N, ` ≤ n), be a Cr-family of
conformally symplectic diffeomorphisms, such that f0 admits a Lagrangian invariant torus
with Diophantine rotation vector ω. Then, there is a neighborhood U of the torus with
the following property. Let

ρ =
1

L
(a1, ..., an) (3.2)

with (a1, ..., an) ∈ Zn and L ∈ N. Assume that the orbit of a point x has rotation number
ρ and is contained in U . Denote by γi the spectral numbers of the return map of the
periodic orbit which, according to Lemma 3, we define as Spec(DfL(x)) = {γi, λLγ−1

i }.
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Then, there exists N0 ∈ N depending on r, such that for every N ≤ N0 there exists a
constant CN > 0, depending also on r and on the Diophantine exponent of ω, so that

|γi − 1| ≤ LCN‖µ‖N . (3.3)

Note that, of course, for C∞ or analytic mappings N0 = ∞ and then (3.3) holds for
all N .

If one had explicit forms of the CN , for a fixed ‖µ‖ it would be possible to obtain
the N that gives the sharpest bound (this is a standard procedure in Nekhoroshev’s
theory, [54]). In this paper, for the sake of brevity, we will not undertake obtaining the
explicit form of the CN . We note that since we present two methods of proof, it would
be advantageous to obtain explicit estimates for both methods and take the best one.

Remark 5. The results provided in [39] were stated in terms of a quantity, called the
“residue”, which provides information on the stability of the periodic orbits. In the case
of a 1-dimensional, area-preserving map, the residue is defined in terms of the trace of
the matrix Df q computed along a full cycle of the periodic orbit with frequency p/q. Even
though we will not use the definition of residue, due to the fact that our results will be
stated in terms of spectral numbers, we find it useful for computations to generalize as
follows the definition of residue to n-dimensional, conformally symplectic maps. Let

c(x) ≡ x2n + c2n−1x
2n−1 + ...+ c1x+ λnL (3.4)

be the characteristic polynomial of the derivative over a full cycle of the periodic orbit with
frequency ρ as in (3.2) for some real coefficients cj, j = 1, ..., 2n−1. Let the characteristic
polynomial associated to f0 in (2.7) be written as the distance between the coefficients of
the characteristic polynomials (3.4), (3.5):

(x− 1)n(x− λL)n ≡ x2n + c02n−1x
2n−1 + ...+ c01x+ λnL (3.5)

for some real coefficients c0j , j = 1, ..., 2n− 1. We can define the residue R for example
as

R ≡
2n−1∑
j=1

|cj − c0j | .

Notice that, due to the pairing rule, the 2n− 1 coefficients cj are parameterized by the n
spectral numbers γi.

Remark 6. Note that the statement of Theorem 4 is to provide bounds on the spectral
numbers of an orbit of type ρ = a/L in terms of L and of ‖ω−ρ‖ (which, under the non-
degeneracy assumptions, we will make comparable to ‖µ‖, see Section 6). The bounds
on the distance of the spectral numbers from unity, see (3.3), get better when ‖ω − ρ‖
decreases and get worse when L increases.

Of course, to obtain sharp results requires some compromise since to get ‖ω−ρ‖ small,
we need to get L large. The Diophantine property (3.1) precisely quantifies that L has to

be at least ν
1
δ+1‖ω − ρ‖−

1
δ+1 .

If we assume that the exponents in the Diophantine property are optimal, we know
that there is a sequence of L that almost saturates the Diophantine bounds and for which
L ≈ ‖ω − ρ‖−1/(δ+1). Hence we see that for N sufficiently large, the quantity |γi − 1| has
to go to zero.
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We notice that by Liouville theorem we know that there are other sequences for which
L ≈ ‖ω − ρ‖− 1

n . Therefore, especially in the n ≥ 2 case, the behavior of approximations
with respect to L can have a variety of asymptotic rates and this is a motivation for us to
leave the results in the theorem without choosing a particular one. The problem of how to
approximate vectors by rational vectors with denominators as small as possible have been
much studied ( multidimensional Diophantine approximation). A recent practical review
close to the problems we are dealing with and with references to the previous literature is
[49]. A detailed study of the approximation of quasi-periodic tori by periodic orbits in the
dissipative standard mapping can be found in [18, 20].

4. The idea of the proof of Theorem 4

In sections 5 and 6 we present two different proofs of Theorem 4. The first proof is
based on deformation theory (see Section 5) and the second proof is based on the theory
of normally hyperbolic manifolds and on the averaging theory of rotations (see Section 6).
We present both proofs in the hope that they lead to a better insight and that they can
have applications to other problems. In particular, in this paper we will use the theory
of normally hyperbolic invariant manifolds and averaging theory developed in the second
proof to obtain information on the location of the Arnold tongues.

Let us sketch briefly the arguments which will be developed in complete detail in the
rest of the paper.

The proof presented in Section 5 is based on developing a normal form, i.e. a smooth
change of variables that reduces the system to a particularly simple form up to an error.
The spectrum is invariant under smooth changes of variables. For the systems given
by the normal form neglecting the reminder, the spectral numbers are identically one.
Hence, the spectrum can be estimated by bounding the error of the normal form, which
is computed in Theorem 7 by using the theory of deformations (see [8, 23]). Indeed, such
theory gives bounds on the derivatives of the map at every step of the orbit. To put
them together and obtain better bounds, in Section 5.4 we use some techniques which
are standard in the theory of the so-called exponential dichotomies ([61, 22, 51]).

A different method of proof of Theorem 4 is presented in Section 6. We first appeal
to the theory of normally hyperbolic manifolds (see [34, 45, 55]) to show that we obtain
a smooth family Tµ of n-dimensional tori invariant under fµ. We note that any periodic
orbit close enough to the torus has to be in the normally hyperbolic invariant manifold,
which moreover is Lagrangian.

We denote by Rµ(ϕ) the dynamics of fµ restricted to Tµ; in particular, R0 is a Dio-
phantine rotation. Using the averaging theory of torus maps Cr-close to a Diophantine
rotation, for every N ≤ N0(r) as in Theorem 4 we can find a family BN

µ of diffeomor-
phisms of the n-dimensional torus and a family of rotations TωNµ in such a way that

(BN
µ )−1 ◦Rµ ◦BN

µ = TωNµ +O(‖µ‖N+1) .

If we find a periodic orbit (in the normally hyperbolic invariant manifold), we see
that n of its Lyapunov exponents have to be very close to 1. Using the pairing rule of
exponents for conformally symplectic maps (see [28, 29, 67] and Lemma 3) and using
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that the normally hyperbolic manifold is Lagrangian, we obtain that the remaining n-
Lyapunov exponents associated to a periodic orbit with frequency ρ = a/L have to be
close to the conformal factor λL.

5. Proof of Theorem 4 using deformation theory

In this section we prove the following theorem that shows that if f0(ϕ, I) = (ϕ+ω, λI)
has a KAM torus, we can find a change of variables V N

µ for every N ∈ N, N ≤ N0(r),
that reduces the system to a particularly simple form up to an error which is small in µ
(see equation (5.1)).

Note that for the main part of the normal form (5.1), the spectrum is equal to that of
f0. Then, the proof of Theorem 4 is obtained by a perturbation argument, treating the
remainder of the normal form as a perturbation.

Theorem 7. For r > 0 integer, let fµ be a Cr-family of conformally symplectic systems,
where µ ∈ R`, ` ≤ n. Assume that f0(ϕ, I) = (ϕ + ω, λI) for some λ < 1 and let
ω be a Diophantine vector. We can find functions A(N), B(N, r) – depending on the
Diophantine exponent of ω – with the following property.

For any N > 0 integer, N ≤ N0(r), we can find a Cr−A(N) change of variables V N
µ and

a polynomial function Sµ taking values in Rn, such that

(V N
µ )−1 ◦ fµ ◦ V N

µ (ϕ, I) = (ϕ+ Sµ, λI) +RN(ϕ, I) , (5.1)

where the remainder RN can be bounded as

‖RN‖Cr−B(N,r) ≤ C ‖µ‖N+1 ,

for a positive real constant C depending on N , r, on the Diophantine exponent of ω and
on the Cr-norm of fµ.

The proof of Theorem 7 will be accomplished by implementing a suitable normal form
and we will show that Theorem 7 implies Theorem 4.

Remark 8. A byproduct of Theorem 7 is that it provides information on the Lyapunov
exponents (and indeed on any quantity invariant under smooth changes of variables which
admits a good perturbation theory) of any invariant object in a neighborhood of the torus.

If we evaluate these quantities in the system of coordinates produced in Theorem 7, we
see that these Lyapunov exponents will be those of the normal form up to a small error.

5.1. The deformation method. The deformation method (also known as the method
of the paths) is a powerful tool to discuss equivalence of dynamical systems. It was
introduced in singularity theory ([62]), but it was soon realized that it can be used to
study not only a differentiable equivalence, but also an equivalence that preserves other
geometric structures (see [52] for volume preserving systems, [66] for symplectic systems
and [23, 8] for more systematic developments closer to our goals in the theory of normal
forms and perturbation theory).

The main idea is that one considers not only a problem, but interpolates by a smooth
family of problems having a trivial solution, beside the solution of the desired problem.
Then, one studies the derivatives with respect to parameters of the solutions of the
problems in the family. As we will see, the equations for the derivatives are linear
(heuristically, think of derivatives as infinitesimal transformations and observe that the
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only equations one can form among infinitesimal quantities are linear, since any nonlinear
effect is an infinitesimal of higher order). Furthermore, the geometric constraints, which
are nonlinear and non-local for diffeomorphisms, become linear and local constraints on
the derivatives.

In Section 5.1.1 we summarize some geometric considerations for conformally sym-
plectic families. In Section 5.1.2 we present a geometric formulation of the deformation
method for conformally symplectic mappings; in Lemma 13 we show how one can trans-
form our problem into a rigid rotation and a contraction to any order in the perturbation.
It will be important to note that the regularity of the conjugation that achieves this
transformation can be estimated by the regularity of the original family (see the estimate
(5.15)).

The traditional formulation of the deformation method considers one-dimensional fam-
ilies, but for our problem we also need n-dimensional families. In Section 5.3 we present
a remark showing that results for one-parameter families that have some uniformity
(see (5.15)) immediately imply results for n-dimensional parameters. These results are
enough to prove the upper bounds on the spectral numbers appearing in Theorem 4.
Nevertheless, we point out that there is a more geometric treatment of the multivariable
parameter deformations, quite analogous to the theory of symplectic actions and to the
momentum map developed in [5, 40] (see also [38] for a version very close to our needs).
We outline this theory in Section 5.3, providing an alternative derivation, but also lead-
ing to a smooth dependence on parameters, which is useful for the theory of existence of
periodic orbits developed in Section 7. The end of the proof of Theorem 4 is provided in
Section 5.4, using the theory of dichotomies of mappings.

5.1.1. Exact conformally symplectic mappings. We first consider the case of a family of
diffeomorphisms fτ : M → M depending on a parameter τ ∈ R; as already remarked,
the extension to a family depending on a parameter vector µ ∈ R` with ` ≤ n will be
treated in Section 5.3.

Let f be a λ-conformally symplectic diffeomorphism defined as in (2.1) on a symplectic
manifold M and let Ω = dα. Then, we have

f ∗dα− λdα = 0 ,

namely
d(f ∗α− λα) = 0 .

We say that f is exact conformally symplectic if the following holds:

f ∗α− λα = dPf ,

where Pf is called the primitive function of f .
The following Lemma shows that the set of (exact) conformally symplectic mappings

is a graded group under composition, the grading being the conformal factor.

Lemma 9. Let f be a λ-conformally symplectic diffeomorphism and let g be an η-
conformally symplectic diffeomorphism.

Then, f ◦ g is a λη-conformally symplectic diffeomorphism. Furthermore, if f and g
are exact, so is f ◦ g and the primitive function of f ◦ g is given by

Pf◦g = λPg + g∗Pf . (5.2)
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Proof. Notice that
(f ◦ g)∗Ω = g∗f ∗Ω = g∗λΩ = ληΩ .

If f and g are exact, we obtain

(f ◦ g)∗α = g∗f ∗α

= g∗(λ α + dPf )

= λη α + λdPg + d(g∗Pf )

= λη α + d(λPg + g∗Pf ) ,

which proves (5.2). �

5.1.2. Generators and Hamiltonians of a deformation. Given a differentiable family of
diffeomorphisms fτ :M→M depending on the parameter τ ∈ R, we say that fτ is an
isotopy if

d

dτ
fτ = Fτ ◦ fτ , (5.3)

where Fτ is called the family of generator vector fields. Our goal now is to translate
the geometric properties of fτ (fτ being conformally symplectic or exact conformally
symplectic) to the isotopy properties of the generator. We start by considering a family
of λ-conformally symplectic maps, such that

f ∗τ Ω = λΩ . (5.4)

We observe that (5.4) is equivalent to

d

dτ
(f ∗τ Ω) = 0 and f ∗0 Ω = λΩ .

Indeed, using Cartan’s magic formula for the derivatives, we obtain:

d

dτ
(f ∗τ Ω) = f ∗τ (iFτdΩ + d(iFτΩ)) = f ∗τ (d(iFτΩ)) = 0 .

Therefore, we see that the the family fτ consists of conformally symplectic mappings, if
and only if

d(iFτΩ) = 0 and f ∗0 Ω = λΩ . (5.5)

We say that the family of diffeomorphisms fτ is a λ-exact conformally symplectic
isotopy (for short λ-ECSI), whenever

f ∗τ α = λα + dPτ , (5.6)

where Pτ is the primitive of fτ . Proceeding as before, setting Ω = dα and taking deriva-
tives we obtain:

d

dτ
(f ∗τ α) = f ∗τ (iFτdα + d(iFτα)) = f ∗τ (iFτΩ + d(iFτα)) .

Hence, we see that fτ is a λ-ECSI, if and only if

iFτΩ = dFτ and f ∗0 Ω = λΩ , (5.7)

where the function Fτ is called the Hamiltonian associated to fτ .
If we prescribe Fτ (and hence dFτ ), because the symplectic form is non-degenerate, we

can obtain Fτ and, hence, if we prescribe f0, we can obtain the deformation by solving
the differential equation (5.3) with the initial condition f0, of course provided that the
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vector field Fτ is differentiable enough and that the differential equations have unique
solutions.

In other words, for sufficiently smooth isotopies, it is equivalent to prescribe fτ than
to prescribe (f0, Fτ ). As we will see, the preservation of geometric structures and the
calculations of the functional equations are much simpler in the (f0, Fτ ) representation.

Remark 10. When the deformation fτ is exact conformal, we can compute the change
in the primitive function Pτ in (5.6) as follows:

d

dτ
(dPτ ) =

d

dτ
(f ∗τ α) = d[f ∗τ (Fτ + iFτα)] .

Hence, we can choose the constant so that

d

dτ
Pτ = f ∗τ (Fτ + iFτα) .

Remark 11. The characterization of (5.7) is a complete analogue as Hamilton’s equa-
tions for an exact symplectic deformation. Similarly, we observe that the characterization
in (5.5) is the same as the characterization of symplectic deformations by locally Hamil-
tonian flows.

This is clear if we observe that in a family fτ of λ-conformally symplectic diffeomor-
phisms, the change from one element of the family to another is symplectic, namely

(f−1
τ ′ ◦ fτ )

∗ Ω = Ω ,

for any τ , τ ′ ∈ R (see also Lemma 9).
This shows that a conformally symplectic deformation is the same as a symplectic

deformation, except that the initial point is conformally symplectic.

5.1.3. Calculus of deformations. The key result of the deformation method is the follow-
ing Lemma 12, which transforms the non-linear and non-local composition problems into
linear and local problems among the generators and their Hamiltonians.

Of course, as mentioned before the isotopies are determined by their initial value
and their Hamiltonians. The main point of Lemma 12 is that the functional equations
involving compositions become much easier when studied in terms of Hamiltonians.

Lemma 12. Assume that fτ is a λ-ECSI, gτ is an η-ECSI, then

• hτ = fτ ◦ gτ is a λη-ECSI
• kτ = f−1

τ is a 1/λ-ECSI.
• eτ = (gτ )

−1 ◦ fτ ◦ gτ is a λ-ECSI.

Their generators are given respectively by

Hτ = Fτ + fτ ∗Gτ (5.8)

Kτ = −(fτ
−1)∗Fτ (5.9)

Eτ = −(gτ
−1)∗Gτ + (gτ

−1)∗(Fτ + fτ ∗Gτ ) , (5.10)
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while their Hamiltonians are respectively:

Hτ = Fτ + λ fτ∗ Gτ = Fτ + λ Gτ ◦ f−1
τ (5.11)

Kτ = −1

λ
(f−1
τ )∗ Fτ = −1

λ
Fτ ◦ fτ (5.12)

Eτ = −1

η
(g−1
τ )∗ Gτ +

1

η
(g−1
τ )∗ (Fτ + λ fτ∗ Gτ ) (5.13)

= −1

η
Gτ ◦ gτ +

1

η
(Fτ ◦ gτ + λ Gτ ◦ f−1

τ ◦ gτ ) .

Proof. Formula (5.8) is very easy to obtain, since one just needs to take derivatives; it
does not use any geometric structure, but just the chain rule

d

dτ
hτ = Fτ ◦ fτ ◦ gτ +Dfτ ◦ gτ Gτ ◦ gτ

= Fτ ◦ fτ ◦ gτ +Dfτ ◦ (fτ )
−1 ◦ fτ ◦ gτ Gτ ◦ (fτ )

−1 ◦ fτ ◦ gτ
= Fτ ◦ hτ + (fτ ∗Gτ ) ◦ hτ .

Since Id = kτ ◦ fτ , applying (5.8) we obtain

0 = Kτ + kτ ∗Fτ ,

which is equivalent to (5.9) through algebraic manipulations. To obtain (5.10), we just
apply (5.8) twice.

Taking contractions with Ω in (5.8), we obtain (using [1, Prop. 2.4.14] and that
f ∗τ Ω = λΩ):

i(Hτ )Ω = i(Fτ )Ω + i(fτ ∗Gτ )Ω = i(Fτ )Ω + i((f−1
τ )∗Gτ )λ(f−1

τ )∗Ω

= i(Fτ )Ω + (f−1
τ )∗(λdGτ ) = i(Fτ )Ω + λd[(f−1

τ )∗Gτ ]

= i(Fτ )Ω + λdGτ ◦ f−1
τ ,

which leads to

dHτ = dFτ + λ fτ∗ dGτ .

Finally, we obtain (5.11) which, of course, is unique up to an additive constant.
Again, we obtain (5.12) by observing that Id = kτ ◦fτ and applying (5.11) to the right

hand side, while of course the Hamiltonian of the left hand side is zero. We obtain (5.13)
by applying (5.11) twice. �

5.2. The deformation Lemma. For r > 0 let us consider a Cr-family fτ : M → M
depending on a parameter τ ∈ R. We define the set Bη ≡ {τ ∈ R : |τ | ≤ η}. Let ‖ · ‖Cr,η
denote the supremum over Bη of the Cr-norm.

Lemma 13. Let fτ : M →M be a Cr-differentiable family of λ-ECSI with f0(ϕ, I) =
(ϕ + ω, λI). Assume that ω is Diophantine. We can find an integer N0(r) – depending
on the Diophantine exponent of ω – such that for every N ∈ N, N ≤ N0(r), there exists

a function Ã(n) and a Cr−Ã(N)-family of symplectic mappings vNτ with vN0 = Id and a
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family of vectors SNτ with SN0 = ω, such that gNτ = (vNτ )−1 ◦ fτ ◦ vNτ and its Hamiltonian
GN
τ satisfy the following relations

gNτ (ϕ, I) =(ϕ+ SNτ , λI) + eNτ (ϕ, I)τN+1

GN
τ (ϕ, I) =I SNτ + EN

τ (ϕ, I)τN+1 ,
(5.14)

for some error function eNτ (ϕ, I) and associated Hamiltonian EN
τ (ϕ, I) (see Proposi-

tion 14).
Furthermore, SNτ is a polynomial in τ , which can be considered as the partial sum of a

formal power series of the form

SNτ =
N∑
i=0

S(i)τ i

for some real coefficients S(i), i = 1, ..., N . Finally, we can bound GN
τ in terms of the

norm of fτ for some η̃ < η, r̃ < r and for some constant CN > 0 depending on the
Diophantine exponent of ω, as

‖GN
τ ‖C r̃,η̃ ≤ CN‖fτ‖Cr,η . (5.15)

Proof of Lemma 13. Using (5.13), the desired equation (5.14) is obtained by requiring
that V N

τ and GN
τ satisfy

− V N
τ ◦ vNτ + Fτ ◦ vNτ + λV N

τ ◦ f−1
τ ◦ vNτ = GN

τ . (5.16)

To derive the order by order equations, we use the (very well known) observation provided
by the following result.

Proposition 14. Let us consider a family of Cr functions Aτ with A0 = 0 and let us
expand Aτ as Aτ =

∑N
i=0A

(i)τ i + O(|τ |N+1) for suitable functions A(i). Let hτ be a Cr,
exact, conformally symplectic isotopy. Then, there is a unique expansion

Bτ ≡ Aτ ◦ hτ =
r∑
i=0

B(i)τ i ,

where the functions B(i) are such that B(0) = 0 and, for j > 0,

B(j) = A(j) ◦ h0 +Rj , (5.17)

where Rj is a polynomial expression involving A(1), . . . , A(j−1) and their derivatives up to

the order j, involving also the Hamiltonians H(i) corresponding to the terms h
(i)
τ of the

expansion of hτ and their derivatives up to the order n.

Note that the main content of Proposition 14 is that we have identified in (5.17) the
order j term of the expansion and that A(j) appears in the simple way indicated above,
while H(j) does not appear. This allows to derive order by order equations.

Proof. The desired expansion (5.17) is, of course, just the Taylor expansion of Bτ in τ .
The coefficients can be obtained by computing derivatives of Bτ with respect to τ and
evaluating them at τ = 0. The derivative of the composition can be computed using
Faa-di-Bruno formula ([30, 3]), as well as using derivatives of Aτ and hτ . Of course, the
derivatives of hτ can be referred to derivatives of the Hamiltonian. �
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Even if we will not use it in this paper, we note that there are computationally efficient
ways to determine the S(i) in Lemma 13; in particular, one can compute the coefficients
rather efficiently using the so called “Poisson brackets” (see, for example, [23, Appendix
C] for the Hamiltonian case and [47] for the conformally symplectic case).

Applying Proposition 14, equating the coefficients of order j, we obtain:

−V (j)(ϕ, I) + F (j)(ϕ, I) + λV (j) ◦ f−1
0 (ϕ, I) = I S(j) + Tj(ϕ, I) , (5.18)

where F (j) are the coefficients of the Hamiltonian Fτ ; we stress that in (5.18) Tj is, ac-
cording to the results of Proposition 14, a polynomial whose terms involve S(1), . . . , S(j−1)

and the derivatives of V (1), . . . , V (j−1) up to order j.
We will consider (5.18) as an equation for V (j), S(j), assuming known S(1), . . . , S(j−1),

V (1), . . . , V (j−1). In the next Lemma 16 we will show that these equations can always
be solved. Hence, (5.18) is an inductive procedure that allows us to match recursively
all the coefficients of powers of τ . The initial case, j = 0, is trivial. Furthermore, in
Lemma 16 we will obtain estimates that establish the bounds claimed in Lemma 13.

Note that, composing with f0 on the right and multiplying by λ−1, equation (5.18) is
equivalent to

−λ−1V (j) ◦ f0(ϕ, I) + V (j)(ϕ, I)− λ−1 I S(j) = B(j)(ϕ, I) , (5.19)

where we have denoted by B(j) a function which is already known. We emphasize that
we should consider (5.19) as an equation for V (j), S(j), given B(j).

Remark 15. We remark that the method proposed here relies on solving the order-by-
order equation (5.18) (or, equivalently, (5.19)). In [17] one can find a quadratically
convergent method, which provides the solution of (5.18).

Lemma 16. Given ω satisfying the Diophantine condition (3.1) and given a Cr-differentiable
function B, with r sufficiently large, defined on a manifoldM, we can find a unique Cr−δ

function V and a vector S ∈ Rn such that

−λ−1V ◦ f0(ϕ, I) + V (ϕ, I)− λ−1 I S = B(ϕ, I) . (5.20)

Furthermore, for r̃ < r − δ we have the bounds:

‖V ‖C r̃ ≤ C‖B‖Cr (r ≥ 3) ,

|S| ≤ |λ| ‖B‖C1 (5.21)

for a suitable positive constant C depending on the Diophantine exponent of ω.

Proof. We start by writing B and V as

B(ϕ, I) = B0(ϕ) +B1(ϕ)I +B>(ϕ, I)

and
V (ϕ, I) = V0(ϕ) + V1(ϕ)I + V >(ϕ, I) , (5.22)

with B>(ϕ, 0) = ∂IB
>(ϕ, 0) = V >(ϕ, 0) = ∂IV

>(ϕ, 0) = 0. Note that B0, B1, V0, and V1

are uniquely determined by either B or V .
Then, we can solve equation (5.20) in three steps, precisely we solve the three equations

below:
V0(ϕ)− λ−1V0(ϕ+ ω) = B0(ϕ) (5.23)

V1(ϕ)− V1(ϕ+ ω) = B1(ϕ) + λ−1 S (5.24)
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V >(ϕ, I)− λ−1V >(ϕ+ ω, λI) = B>(ϕ, I) . (5.25)

The solution of equation (5.23) is obtained by observing that (5.23) can be rewritten as
−λV0(ϕ− ω) + V0(ϕ) = −λB0(ϕ− ω). Hence, iterating, we obtain the solution:

V0(ϕ) = −
∞∑
i=1

B0(ϕ− iω)λi . (5.26)

Note that the sum in (5.26) is absolutely convergent, if B0 is a continuous function. The
equation (5.24) is the standard small divisor equation that appears often in KAM theory.
Note that, since the left hand side of (5.24) must have zero average, we obtain that

S = − λ

(2π)n

∫
Tn
B1(ϕ) dϕ . (5.27)

A convenient way to express the Fourier coefficients (V̂1)k of V1 for |k| > 0 is the following:

(V̂1)k =
(B̂1)k

1− e2πik·ω
.

If ω is Diophantine, the equation can be solved for all sufficiently differentiable functions
(see Section 8) and the result can be estimated in spaces of less differentiable functions.
Optimal regularity results were obtained in [59, 60]. The solution of (5.25) is given by
the expression

V >(ϕ, I) =
∞∑
i=0

λ−i B> ◦ f i0(ϕ, I) . (5.28)

The sum in (5.28) converges uniformly because the function B> satisfies ‖B>‖ ≤ C|I|2
for some constant C > 0. Hence, the general term in (5.28) is bounded by Cλi.

In conclusion, the solution V of the problem (5.20) is obtained as in (5.22).
Now, we turn to the problem of obtaining estimates. We start by estimating V0 and

V1 as

‖V0‖Cr ≤ ‖B0‖Cr ≤ ‖B‖Cr
‖V1‖Cr−δ−1 ≤ Cν−1‖B1‖Cr−1 ≤ Cν−1‖B‖Cr

(compare with Lemma 25 of Section 8). Moreover, by (5.28) we can estimate the deriva-
tives of V > in terms of the derivatives of B> ◦ f i0, where

∂kϕ∂
j
I(B

> ◦ f i0)(ϕ, I) = ((∂kϕ∂
j
I)B

>) ◦ f i0(ϕ, I)λji .

Hence, we obtain that the series of derivatives

∂kϕ∂
j
I(B

> ◦ f i0)
converges uniformly for j ≥ 2. For j = 0 we know that

|∂kϕ(B> ◦ f i0)| ≤ C λ2i ,

because |∂kϕB>(ϕ, I)| ≤ C|I|2. For j = 1 we have

∂kϕ∂I(B
> ◦ f i0)(ϕ, I) = λi (∂kϕ∂IB

>) ◦ f i0(ϕ, I) ,

so that
|∂kϕ∂I(B> ◦ f i0)| ≤ Cλi .
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Finally, the last in (5.21) comes from (5.27). �

5.3. Higher dimensional parameters. The results we have obtained so far show that
one can get the case ` = 1 in Theorem 7. The goal of this section is to present a very
simple argument to show that one can deduce the version for arbitrary ` from the case
` = 1.

Let us consider a family fµ with µ ∈ R` of exact conformally symplectic mappings as
in the hypotheses of Theorem 7. For a fixed µ0 we consider the one dimensional family
f̃τ = fτ µ0

|µ0|
, Then, applying the case ` = 1 of Theorem 7, we obtain a transformation ṽNτ

corresponding to fτ , satisfying (5.16).

We note that, if the family is uniformly Cr, the one dimensional families f̃τ obtained
for different µ0 in a small neighborhood are also uniformly Cr. Hence, we conclude that
all the families ṽNµ are uniformly C r̃ for r̃ < r and that we can bound the remainders

also uniformly in ‖µ‖N+1, independently of the direction.

5.3.1. The momentum mappings. A geometrically more natural treatment of the problem
of higher dimensional parameters is to borrow the strategy of [5, 40]. We just outline the
small modifications to the calculus given in Lemma 12.

We consider a family of conformally symplectic diffeomorphisms fµ, µ ∈ R`, such that

f ∗µΩ = λΩ .

We denote by ∂v the directional derivative in the direction v in the µ-space. Then we
have by the chain rule

∂vfµ = (Fµ · v) ◦ fµ ,

where Fµ is a linear function from R` to the space of vector fields X, that is,

Fµ : R` → X .

Again, we introduce the notion of Hamiltonian Fµ. The calculations can be done in every
direction and, as was argued before (see (5.10)), this has the consequence that for each
direction v, we have

iFµ·vΩ = d(Fµ · v) .

Because contraction and exterior derivatives are linear, we can assume (by choosing
appropriately the constants on each Hamiltonian) that Fµ is a linear function from the
space of directions to the space of Cr-functions.

As we will see, all computations that we have carried out remain valid in this context.
Notice that since the main equations we consider, e.g. (5.19), are linear equations among
functions, they remain identical, when the symbols stand for linear functionals producing
functions. In fact, to compute the generator of the composition of two families of ECSI,
we use the ideas above together with the chain rule. Consider fµ a λ-ECSI and gµ an η-
ECSI; we compute the generator of hµ = fµ ◦ gµ by applying the chain rule to directional
derivatives. More precisely, let us use the notation ∂v to indicate as above the directional
derivative in the direction v in the µ parameter, while D stands for the derivative in the
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geometric variables; then, we have:

∂vhµ = ∂vfµ ◦ gµ +Dfµ ◦ gµ∂vgµ
= (Fµ · v) ◦ fµ ◦ gµ +Dfµ ◦ gµ(Gµ · v) ◦ gµ
= (Fµ · v) ◦ fµ ◦ gµ +Dfµ ◦ f−1

µ ◦ fµ ◦ gµ(Gµ · v) ◦ f−1
µ ◦ fµ ◦ gµ

= (Fµ · v) ◦ hµ +
(
fµ∗(Gµ · v)

)
◦ hµ .

Therefore, we obtain

Hµ · v = Fµ · v + fµ∗(Gµ · v)

or, more concisely, we see that we can suppress the argument v from both sides, to obtain
the identity

Hµ = Fµ + fµ∗Gµ , (5.29)

which is typographically identical to (5.8). The only difference is that now the meaning
of Hµ,Fµ,Gµ is that of linear functions producing vector fields, when given R` arguments,
rather than vector fields.

Once we have justified (5.29), we see that all the other identities of Lemma 12 are
obtained by repeated applications of (5.29) or contractions with Ω. Since the contraction
with Ω is a linear operation, we get that all the formulas for the Hamiltonians in Lemma
12 make sense, when we interpret the Hamiltonians as linear functionals from R` to the
space of functions.

5.4. End of the proof of Theorem 4. In the previous subsection, we have obtained
that, if µ is small enough, then we can change variables to a system with easy derivatives
(up to a small error). The goal of this section is to obtain bounds on the spectrum of
the periodic orbit that have a moderate dependence on the length of the orbit.

Such questions have been considered in the theory of dichotomies of mappings (see,
for example, [61, 22, 51]). The results we present, e.g. Lemma 17, are slightly sharper
than the results obtained applying the general theory of dichotomies, because we take
advantage of the fact that the system is conformal.

We start with some preliminaries. If the orbit {xj = f jµ(x0)}L−1
j=0 is contained in the

neighborhood U claimed in Theorem 4, we have that

Dfµ(xi) = Λ + Ei ,

where Λ =

(
λ Id 0

0 Id

)
and ‖Ei‖ ≤ CN‖µ‖N . By the chain rule, we have

DfLµ (x0) = (Λ + EL−1) · · · (Λ + E0) . (5.30)

The claim (3.3) in Theorem 4 is just an estimate on the spectrum of the product in
(5.30), given estimates on the norms of Ej which we have been already obtained.

One can get rather straightforward estimates for CN‖µ‖N small enough depending on
L:

||DfLµ (x0)− ΛL|| ≤ CLCN λL−1‖µ‖N , λ > 1

||DfLµ (x0)− ΛL|| ≤ CLCN‖µ‖N , λ < 1 ,
(5.31)

where CL is a combinatorial constant.
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The estimates (5.31), even if interesting, are not enough to obtain the better estimates
(3.3) we claimed, so in the rest of the section we will use some methods inspired by the
theory of dichotomies ([61]) that allow us to improve the estimates. We note that we take
advantage of the fact that the transformations are conformal to obtain sharper results
than those obtained by the general theory of dichotomies; we present it in full details.

We start by observing that for any sequence U0, . . . , UL−1 of invertible matrices we
have

Spec(DfLµ (x0)) = Spec(U−1
0 DfLµ (x0)U0)

and, using (5.30):

U−1
0 DfLµ (x0)U0 = U−1

0 Dfµ(xL−1)UL−1 U
−1
L−1Dfµ(xL−2)UL−2 · · ·U−1

1 Dfµ(x0)U0 . (5.32)

We will show in Proposition 17 that it is possible to choose appropriate Ui in such a
way that the product in (5.32) becomes simpler and therefore leads to a more accurate
estimate than those in (5.31).

Proposition 17. With the notations above, it is possible to find matrices

Ai =

(
0 A12

i

A21
i 0

)
, Qi =

(
Q11
i 0
0 Q22

i

)
in such a way that, defining Ui = Id2n +Ai, one has

(Λ + Ei)Ui = Ui+1(Λ +Qi) (5.33)

(here we use arithmetic modulus L for the index i so that UL = U0).
Moreover, there exists a constant C independent of L such that

sup
0≤i≤L−1

||Ai||, sup
0≤i≤L−1

||Qi|| ≤ C sup
0≤i≤L−1

||Ei|| .

The geometric meaning of the U ’s is that we are choosing a system of coordinates in
each of the tangent spaces TxiM in which the mapping is block diagonal, equivalently
we are finding some invariant subspaces. Such construction is very typical in the theory
of invariant dichotomies, but in our case it is even simpler than in the general case, since
the systems are conformal.

Proof. We can rewrite (5.33) as

Ei + ΛAi = Ai+1Λ +Qi +R(Ai, Ei, Ai+1, Qi) , (5.34)

where R is a quadratic homogeneous polynomial in its arguments.
We should think of the sequence of equations (5.34) as an equation acting on sequences

of matrices of length L. The key point is that we will obtain estimates independent of
L. We denote by E,A,Q the sequences whose components are Ei, Ai, Qi. We consider
the space of sequences endowed with the supremum norm

||E|| = sup
0≤i≤L−1

||Ei|| .

We can write (5.34) more concisely as

L(A,Q) = −E +R(E,A,Q) (5.35)

where L is the operator acting on sequences of matrices by

L(A,Q)i ≡ ΛAi − Ai+1Λ−Qi
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and

R(E,A,Q)i = R(Ai, Ei, Ai+1, Qi) .

We note that R(0, 0, 0) = 0, DR(0, 0, 0) = 0 and that

sup
||E||,||Q||,||A||≤1

||D2R(E,A,Q)|| ≤ C ,

where C is a constant independent of L. We now show that L is invertible with bounds
independent of L. Then, the desired result, Proposition 17, follows by rewriting (5.35)
as

(A,Q) = L−1(−E +R(E,A,Q)) ≡ TE(A,Q)

and applying the standard contraction mapping principle.
To show that indeed L is invertible, we see that the equation L(A,Q) = η for A,Q

given η can be written more explicitly, taking components and blocks as

λA12
i − A12

i+1 = η12
i

A21
i − λA21

i+1 = η21
i

λA11
i − λA11

i+1 −Q11
i = η11

i

A22
i − A22

i+1 −Q22
i = η22

i .

(5.36)

Clearly, the equations (5.36) can be solved with bounds that are independent of L. �

Once we have Proposition 17, we see that the spectrum of DfLµ (x0) is the union of the
spectra of

(λ Idn +Q11
L−1)(λ Idn +Q11

L−2) · · · (λ Idn +Q11
0 )

and of

(Idn +Q22
L−1)(Idn +Q22

L−2) · · · (Idn +Q22
0 ) .

Because of the pairing rule (see Lemma 3) it is clear that the γi are the spectra of

(λ Idn +Q11
L−1)(λ Idn +Q11

L−2) · · · (λ Idn +Q11
0 ) ,

but it is standard that

||(λ Idn +Q11
L−1)(λ Idn +Q11

L−2) · · · (λ Idn +Q11
0 )− λL Idn || ≤ CL||Q|| ,

provided that L||Q|| is small. In particular, since ||Q|| ≤ C||E|| ≤ CN‖µ‖N , we obtain
the claim (3.3) and thus we finish the proof of Theorem 4.

�

6. Proof of Theorem 4 using normally hyperbolic manifolds and
averaging

In this section, we give a different proof of Theorem 4, using two standard techniques
in dynamical systems: the theory of persistence of normally hyperbolic manifolds and
the theory of averaging. This method also leads to some developments and insights, in
particular in order to obtain information on the Arnold tongues (see Section 7).
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6.1. Overview of the method. In the following we indicate the main steps of the proof
of Theorem 4 developed in this section. Of course, fleshing out the outline in this section
will require making precise and quantitative the steps, in particular providing the norms
used to specify the meaning of small, the orders of perturbation theory, etc. Since some
of the techniques are rather standard, we hope that the experts in each of the techniques
will be able to develop some of the steps without consulting our exposition.

(1) We observe that the invariant torus for f0 is a normally hyperbolic manifold in
the sense of [33, 34, 45, 55].

(2) We apply the theory of normally hyperbolic manifolds to conclude that for µ
sufficiently small there is a smooth family of manifolds Tµ invariant by fµ and
normally hyperbolic.

(3) We can write these manifolds as the image of a torus under a family of maps Kµ

from the torus to the phase space.
(4) We note that the parameterization Kµ satisfies

fµ ◦Kµ = Kµ ◦Rµ ,

where Rµ is a family of maps from the torus to itself with R0(ϕ) = ϕ + ω (see
Theorem 19).

(5) Using that ω is Diophantine, we can develop an averaging theory for the map Rµ,
showing that there are smooth families of smooth changes of variables Bµ that
transform Rµ into a rigid rotation up to an error which is of high order in µ. This
averaging procedure is very standard (see for example [11, 50, 4]).

(6) Since B−1
µ ◦ Rµ ◦ Bµ is close to a rotation (in a smooth topology) for µ small

enough, we conclude that for µ small enough, Rµ has Lyapunov multipliers close
to 1.

(7) Hence, under a suitable non-degeneracy condition all the nearby periodic orbits
have Lyapunov multipliers close to 1 in the restriction to the invariant manifold.

(8) Using the fact that the map is conformally symplectic we show that the Lyapunov
multipliers in the directions complementary to the invariant manifold are close to
λ.

Note that most of the steps in the above strategy (the normally hyperbolic theory
and the averaging theory) are standard. The most subtle step of the above strategy
is the averaging theorem, which requires using the Diophantine properties and delicate
estimates.

We remark that we use the averaging theory only for maps on the torus which are close
to a Diophantine rotation (i.e., the restrictions to the invariant manifold). Nevertheless,
we can use the geometry to obtain bounds on all the Lyapunov multipliers of the original
map. Informally, we use the geometry to transfer the very accurate results obtained in
the slow degrees of freedom case to the whole map. This strategy has also appeared
recently in other contexts ([27, 10]).

6.1.1. A remark on the persistence of KAM tori based on normally hyperbolic manifolds.
The strategy outlined in Section 6.1 gives also a proof of the persistence of KAM tori (i.e.,
invariant tori with a motion which is topologically conjugate to a rotation) in families of
conformally symplectic systems. We will not present a full theorem.
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Theorem 18. Let fµ be a smooth family of smooth conformally symplectic systems.
Assume that g is a conformally symplectic system admitting a smooth KAM torus with
a Diophantine rotation ω. Assume that f0 is sufficiently close to g in a smooth topology.
Assume furthermore that fµ satisfies some appropriate non-degeneracy conditions. Then,
we can find µ∗ close to zero such that fµ∗ admits a KAM torus of frequency ω.

As we will see, the non-degeneracy condition is expressed as the fact that the average
of an explicit matrix involving derivatives of fµ – both with respect to space variables
and parameters – has rank n (see below for details on how to compute the matrix).

Proof. By the theory of normally hyperbolic manifolds, we obtain that there is a smooth
family of manifolds which are normally hyperbolic invariant manifolds for fµ. By the
implicit function theorem, since these manifolds are close to the KAM torus for g, we
can choose a coordinate system in which the motion on the manifolds is given by a family
Rµ in such a way that R0 is close to a rotation of frequency ω (notice that Rµ is obtained
through the implicit function theorem and will depend also on derivatives of fµ with
respect to the space variables). The non-degeneracy condition assumed in the theorem
is just that

∫
Tn ∂µR0(ϕ) dϕ has full rank.

Under these conditions, the result of [53] shows that we can find a value of the param-
eter µ∗ close to zero, such that the dynamics is smoothly conjugated to the rotation by
ω. Clearly, the invariant manifold for µ∗ is a KAM torus for fµ∗ . �

Comparing Theorem 18 with the results in [17], we note that the above approach
has some disadvantages with respect to the proof provided in [17]: it does not establish
the existence of C∞ or analytic invariant tori, since normally hyperbolic manifolds are
not C∞, it does not have an a-posteriori format, it does not allow to discuss the zero
dissipation limit or Lindstedt series and it does not lead to efficient algorithms.

6.2. The theory of normally hyperbolic manifolds. The main result presented in
this section is the following well known result.

Theorem 19. In the assumptions of Theorem 4 for any r ∈ N we can find a > 0 and a
Cr-family Kµ of embeddings of the torus indexed by µ ∈ Ba ≡ {µ ∈ R` : |µ| ≤ a} ⊂ R`,
` ≤ n, say Kµ : Tn × Ba →M, and a Cr-family of maps Rµ of the torus to itself, such
that

fµ ◦Kµ = Kµ ◦Rµ . (6.1)

Furthermore, the family Rµ is Cr-arbitrarily close to the family R0(ϕ) = ϕ+ ω.

The Theorem 19 is an easy consequence of the standard theory of normally hyperbolic
manifolds (see [33, 45, 55]). Below we will indicate how to deduce Theorem 19 from more
customary statements in the literature. The study of the functional equation (6.1) can
also be used as the basis of the theory of normally hyperbolic manifolds and leads to very
efficient algorithms ([44, 43]).

Note that the range of parameters for which we can claim Cr regularity depends on r
and may have an empty intersection, when we consider all values of r sufficiently large.
It is known that there are examples of analytic normally hyperbolic manifolds in analytic
families of maps, which are not C∞ for any neighborhood of parameters (see [34, 35]);
this is even true when the dynamics of the unperturbed map is a rigid rotation.
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The way that the theory of normally hyperbolic manifolds is presented is based on the
persistence of overflowing manifolds ([33]). To obtain smooth dependence on parameters,
we just observe that if Λ0 is an invariant manifold for f0, then Λ̃ ≡ Λ0×Ba is an invariant
manifold (with boundary) for the extended map f̃(x, µ) = (f0(x), µ). If Λ0 is normally

hyperbolic for f0, Λ̃ is normally hyperbolic for f̃ . Notice also that the rates of growth of
the derivatives in the tangent direction of Λ̃ are the same as those for Λ0 and that the
stable and unstable directions for Λ̃ are the same as those for Λ0.

We also observe that for a small enough, the map f̂(x, µ) = (fµ(x), µ) is Cr-close to f̃ .
Applying the standard theory of persistence of normally hyperbolic invariant manifolds
(with boundary), we conclude that there exists a manifold Λ̂ locally invariant for f̂ . By

the structure of f̂ , this locally invariant manifold has to be of the form ∪µΛµ × {µ},
where Λµ is a manifold invariant under fµ.

Note that the above argument concludes as much regularity for the families of manifolds
Λµ as the regularity of the invariant manifolds for the extended mapping. As it is well
known ([34, 35, 45]), this regularity is determined by the regularity of the map and by
some ratios between logarithms of rates of contraction in the stable/unstable directions
and the rates of contraction on the mappings restricted to the manifold. In our case, the
mappings are smooth, the dynamics of the unperturbed map restricted to the manifold
is smoothly conjugate to a rigid rotation (because we are assuming it is a KAM torus)
and the normal directions are a contraction. In this circumstances, given any r, we can
obtain that the manifold Λ̂ is Cr, restricting the domain of the µ considered.

Since the manifold invariant for f0 is a KAM torus, we know that there is a parame-
terization K0 in such a way that f0 ◦K0(ϕ) = K0(ϕ+ω). Applying the implicit function
theorem, we can obtain smooth parameterizations for Λµ depending on µ. The Rµ is just
the dynamics restricted to any of the manifolds Λµ.

6.3. Averaging theory. With reference to the conclusions of the previous subsection,
we denote by Rµ = Rµ(ϕ) the family describing the dynamics restricted to Λµ as

Rµ(ϕ) ≡ ϕ+R≤Nµ (ϕ) +RN+1(ϕ) , (6.2)

for some N > 0, where we can expand R≤Nµ as

R≤Nµ (ϕ) = ω +R1(ϕ)µ+ ...+RN(ϕ)µ⊗N . (6.3)

The functions R1, ..., RN can be computed explicitly, while the remainder RN+1 can be
bounded as

‖RN+1‖Cr−N (Tn) ≤ C‖µ‖N+1 ,

for some real constant C > 0 and for r ≥ N .

Proposition 20. Let fµ be a Cr-family of conformally symplectic diffeomorphisms for
µ ∈ R`, ` ≤ n. Assume that f0(ϕ, I) = (ϕ+ ω, λI) for some λ < 1 with ω a Diophantine
vector. For any N > 0 integer, N ≤ N0(r), there exists a transformation of coordinates
BN
µ and a frequency ωNµ , such that

(BN
µ )−1 ◦Rµ ◦BN

µ (ϕ, I) = ϕ+ ωNµ + SN(ϕ, µ) , (6.4)

where SN can be bounded for some r̃ < r as

‖SN‖Cr−r̃ ≤ C‖µ‖N+1 , (6.5)
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for some positive constant C depending on N , on the Diophantine exponent of ω and on
the Cr-norm of fµ.

Furthermore, let ρ = (a1, ..., an)/L for (a1, ..., an) ∈ Zn and L > 0 integer. Assume
that the non-degeneracy condition R̄1 6= 0 is satisfied with R̄1 denoting the average of R1

introduced in (6.3); then, there exists a value µ̃ = µ̃(ρ) such that (6.4) becomes

(BN
µ̃ )−1 ◦Rµ̃ ◦BN

µ̃ (ϕ, I) = ϕ+ ρ+ SN(ϕ, µ)

with SN bounded as before.

Before giving the proof of Proposition 20, we state the following Lemma, which provides
a normal form near the rotation curve, such that it transforms the conjugation to a rigid
rotation with frequency ωNµ .

Lemma 21. Given Rµ as in (6.2) for some N > 0 integer, there exists a change of
coordinates BN

µ and a frequency ωNµ ∈ Rn, such that

Rµ ◦BN
µ = BN

µ ◦ TωNµ . (6.6)

Proof. We expand the frequency as

ωNµ = ω + ω1µ+ ω2µ
⊗2 + ...+ ωNµ

⊗N (6.7)

and we also expand BN
µ as

BN
µ (ϕ) ≡ ϕ+B1(ϕ)µ+B2(ϕ)µ⊗2 + ...+BN(ϕ)µ⊗N .

Equation (6.6) implies that we need to solve equations of the form

Ri(ϕ) +Bi(ϕ)− ωi = Bi(ϕ+ ω) +W i(ϕ) , 1 ≤ i ≤ N , (6.8)

where W 1(ϕ) = 0 and, supposing to have solved the equation up to the order i − 1 for
i > 1, then W i becomes an expression involving the known terms ω1, ..., ωi−1, as well as
the known functions R1, ..., Ri−1, B1, ..., Bi−1 and their derivatives up to the order i− 1.

Indeed, equation (6.8) can be written in the form

Bi(ϕ+ ω)−Bi(ϕ) = −ωi +Ri(ϕ)−W i(ϕ) . (6.9)

As in Section 5.1 we first compute the average of (6.8), which provides ωi leaving the
average of Bi undetermined:

ωi = R̄i − W̄ i for 1 ≤ i ≤ N ,

where the bar denotes again the average. In particular, we have that ω1 = R̄1. Then, we
compute the remaining part of Bi as the solution of

Bi(ϕ+ ω)−Bi(ϕ) = R̃i(ϕ)− W̃ i(ϕ) ,

where R̃i(ϕ) = Ri(ϕ)− R̄i, W̃ i(ϕ) = W i(ϕ)− W̄ i. Thus we obtain the solution of (6.9),
which yields at each order the terms Bi and ωi satisfying (6.6). �

Proof. (Proposition 20) To obtain the bounds in (6.5), we notice that we can bound the
solution of (6.9) for r̃ < r as (compare with Lemma 25 of Section 8)

‖Bi‖C r̃ ≤ Cν−1 ‖R̃i − W̃ i‖Cr .
Assuming that equation (6.9) is solved up to the order N with ωNµ as in (6.7) determined
up to the same order, then the remainder SN is bounded as in (6.5).
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Assume now to have a periodic orbit as in Theorem 4 with frequency ρ = (a1, ..., an)/L
with (a1, ..., an) ∈ Zn and L ∈ N; assume that its trajectory lies in a neighborhood U of
the torus. Since ω satisfies the Diophantine condition (3.1), we obtain that

‖ω − ρ‖ = L−1‖ωL− a‖ ≥ νL−δ−1 ,

namely L ≥ ν
1
δ+1‖ω − ρ‖−

1
δ+1 .

In the new coordinate system determined in Lemma 21, the frequency of motion is
given by ωNµ as in (6.7). Therefore, we proceed to find µ = µ̃, such that

ωNµ̃ = ρ ;

if the non-degeneracy condition ω1 6= 0 is satisfied, then we can determine µ̃ as

µ̃(ρ) = ω−1
1 (ρ− ω) +O(ρ− ω)2 . (6.10)

This ends the proof of the Proposition. �

The conclusion of the proof of Theorem 4 relies on the fact that if there exists a
periodic orbit close to the invariant curve, then µ must be small according to (6.10),
provided that the non-degeneracy condition is satisfied (the existence of such periodic
orbits is deferred to Section 7). Due to Lemma 21, the dynamics is a small perturbation
of order of ‖µ‖N+1 of a rotation in the angles with frequency ωµ and a contraction in the
actions. Let us denote by γtgi , γnori , i = 1, ..., n, the eigenvalues in the tangent and normal
directions, respectively. The eigenvalues along the manifold are approximately one; using
the pairing rule for exponents of conformally symplectic systems (see Lemma 3), we have
that γtgi γ

nor
i = λ, which shows that the eigenvalues in the normal direction are close to λ.

Due to the fact that in the angles the dynamics is close to a rigid rotation with frequency
ρ up to orders of ‖µ‖N+1 as in (6.4), we have that the corresponding eigenvalues, say γi
for i = 1, ..., n, satisfy the inequality

|γi − 1| ≤ CN,L ‖µ‖N+1

for some constant CN,L. This ends the proof of Theorem 4 using the averaging theory.

7. Arnold tongues

In this section we study the range of parameters for which we can find periodic orbits
of rotation number ρ = a/L, a ∈ Zn, L ∈ N. We will assume that ρ is close to ω and,
hence that µ will be small. The goal is to quantify how small µ should be and, hence,
to obtain bounds for the residue that depend only on ‖ω − ρ‖ and L. We will also show
that these periodic orbits exist.

Since the periodic orbits have to be contained in the normally hyperbolic manifold
discussed in Section 6.2 and that the existence of periodic orbits is invariant under changes
of variables, it suffices to study the existence of periodic orbits for maps of the torus Tn

of the form in (6.4). Indeed, all the results that we present in this section are valid for
families of torus maps close to a Diophantine rotation, independently of the theory of
conformally symplectic mappings.

When n = 1, the theory of existence or not of periodic maps of the circle is well
developed thanks to the theory of rotation number ([25]). In this one-dimensional case,
the sets of parameter values for which the periodic orbits exist are called the phase
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locking intervals and, when we consider two or more parameter families, the sets of two
dimensional parameters for which the periodic orbits exist are called Arnold tongues.

We use similar notations for arbitrary n and we call the phase locking set of type
ρ, the set of parameter values for which there is a periodic orbit of type ρ or, if the
number of parameters is larger than n, we again refer to them as Arnold tongues. One
important difference between the case n ≥ 2 and the case n = 1 is that, when n ≥ 2
the rotation number may depend on the orbits: a map may have several rotations (one
speaks about the rotation set of the map), and the phase locking sets for different ρ may
have intersections.

The main observation is that the L-th iteration of the map in (6.4) is

fLµ (ϕ) = ϕ+ LωNµ + EL,N(µ, ϕ) (7.1)

where ‖EL,N‖ ≤ LCN‖µ‖N and, as we will see later, derivatives of EL,N(µ, ϕ) with respect
to µ and to ϕ are also small. Equation (7.1) and the estimates on EL,N will allow us to
treat the domains of existence of periodic solutions as a perturbation of the study of the
existence of periodic rotations of the map

gN,Lµ (ϕ) = ϕ+ LωNµ .

7.1. Upper bounds on the phase locking set. Obtaining upper bounds on the phase
locking sets is rather trivial.

Starting from equation (7.1) and applying the implicit function theorem to the function
ωNµ , we have the following result.

Proposition 22. With the notations above, if ‖LωNµ − a‖ > LCN‖µ‖N , the equation
(7.1) for ϕ does not have any solution. Hence, a necessary condition for the existence of
periodic orbits of rotation ρ is that

‖ωNµ − ρ‖ ≤ CN‖µ‖N .

An upper bound on the phase locking set is provided by the following result, which is
an easy consequence of Proposition 22.

Corollary 23. If ω1 is an invertible matrix, for any ρ given by the Implicit Function The-
orem we can obtain a unique µ∗ so that ωNµ∗ = ρ and the phase locking set corresponding
to ρ is contained in the set

{‖µ− µ∗‖ ≤ CN‖µ‖N} .

7.2. Existence of periodic orbits. In this section, we just study the existence of
solutions of the periodic point equation. The tool we will use is the implicit function
theorem. The only difficulty is that we have to make sure that indeed the derivative
with respect to µ of the function EL,N(µ, ϕ) is small, so that we obtain the following
proposition.

Proposition 24. Under the assumptions of Proposition 20, assume that there exists a
µ = µ∗, so that fµ∗(ϕ) has an orbit of rotation ρ and that the matrix ∂µω

N
µ∗ has full rank.

Then, there exists an open set of parameters Λ containing µ∗, such that for any µ ∈ Λ
the map of the torus fµ(ϕ) has an orbit of rotation ρ.
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Proof. We start by considering the L-th iterate of fµ(ϕ) given by formula (7.1). We want
to obtain an open set of β = µ− µ∗ for which the iterate, fLµ (ϕ), has a rotation number
equal to a = Lρ, i.e. we look for parameter values µ such that the following relation is
satisfied:

fLµ (ϕ) = ϕ+ a . (7.2)

We notice that since a = LωNµ∗ , we can rewrite (7.2) as a fixed point problem:

0 = L(ωNµ − ωNµ∗) + EL,N(µ, ϕ) . (7.3)

By assumption the partial derivative of ωNµ with respect to µ at µ∗ is a non-singular

matrix. Then, if we denote by ωN1∗ ≡ ∂µω
N
µ∗ , we have that

ωNµ − ωNµ∗ = ωN1∗(µ− µ∗) +R(µ− µ∗) ,

where R = R(β) is a function satisfying

R(0) = 0 , DβR(0) = 0 .

We now rewrite the problem (7.3) as the following fixed point problem:

β = T (β) ≡ −(ωN1∗)
−1

[
EL,N(β + µ∗, ϕ)

L
+R(β)

]
. (7.4)

The proposition follows by applying a standard contraction mapping principle. In order
to verify that T (β) is a contraction, we prove that the derivative of T (β) with respect
to β is less than 1/2. The bound on the partial derivative comes from estimates on the
partial derivatives of EL,N with respect to the parameter µ. We obtain the estimates for
∂µEL,N(µ, ϕ) inductively through (6.4) and by noticing that

f jµ(ϕ) = fµ ◦ f j−1
µ (ϕ) = f j−1

µ (ϕ) + ωNµ + SN(f j−1
µ (ϕ), µ) ,

which provides a recursive formula for Ej,N(µ, ϕ), namely

Ej,N(µ, ϕ) = Ej−1,N(µ, ϕ) + SN(f j−1
µ (ϕ), µ) .

If we denote by Ej,N = supϕ∈Tn |∂µEj,N(µ, ϕ)|, the estimate (6.5) implies that for every

j, Ej,N ≤ Ej−1,N + CN‖µ‖N+1. Therefore, Ej,N is bounded by ‖µ‖N+1 times a constant
depending on N and j, say

Ej,N ≤ jCN‖µ‖N+1 . (7.5)

We now show that T (β) is a contraction for β small enough, since (7.4) and (7.5) imply
that

‖DβT (β)‖ ≤ ‖(ωN1∗)−1‖
[
‖DβR(β)‖+

EL,N
L

]
≤ ‖(ωN1∗)−1‖

[
‖DβR(β)‖+ CN‖µ‖N+1

]
.

(7.6)
Taking into account that ‖µ‖ is small, we now choose δ∗ > 0 small enough, so that the
right hand side of (7.6) is strictly less than 1/2 when ‖β‖ < δ∗. The argument proves
the existence of an open set of parameters µ for which there are periodic orbits with
frequency ρ and Proposition 24 follows. �
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8. Appendix: solutions of the cohomological equation

We quote two Lemmas which solve a cohomological equation of the form

w(ϕ+ ω)− λw(ϕ) = η(ϕ) (8.1)

for some functions w and η; the proof of the Lemmas con be found for example in [17].

Lemma 25. For λ ∈ [A0, A
−1
0 ], 0 < A0 < 1 and for ω Diophantine as in (3.1), consider

the equation (8.1). Assume that η is a Cr-differentiable function, r > 0, with zero average.
Then, there is one and only one solution of (8.1) with zero average. Furthermore, if w
is Cr−δ-differentiable for δ > 0, we have

‖w‖r−δ ≤ Cν−1 ‖η‖r ,
where C is a constant that depends on A0 and n, but it is uniform in λ and it is inde-
pendent of the Diophantine constant ν.

Lemma 26. Let |λ| 6= 1 and ω ∈ Rn. Given any Lebesgue measurable function η, there
is one Lebesgue measurable function w satisfying

w(ϕ+ ω)− λw(ϕ) = η(ϕ) .

Furthermore, for r > 0 the following estimates hold:

‖w‖r ≤
∣∣ |λ| − 1

∣∣−1‖η‖r .
Finally, one can bound the derivatives of w with respect to λ as

‖Dj
λw‖r ≤

j!∣∣ |λ| − 1
∣∣j+1 ‖η‖r , j ≥ 1 .

9. Appendix: the extension to vector fields

In this section we provide the extension of Theorem 4 to the case of conformally
symplectic flows, which are defined as follows.

LetM be a symplectic manifold of dimension 2n, endowed with a symplectic form Ω.
Let X be a vector field with associated flow ft :M→M at time t.

Definition 27. We say that the flow ft is a conformally symplectic flow, if

f ∗t Ω = eηtΩ (9.1)

for some η real.

Notice that the above definition is equivalent to require that

LXΩ = ηΩ ,

where LX denotes the Lie derivative.
In the case that Ω = dα, denoting by iX the contraction with the vector field X, one

has
d(η α) = η dα = LXΩ = iXdΩ + d(iXΩ) = d(iXΩ) ,

which shows that ηα and iXΩ differ by a closed form. This leads to the definition of
an exact conformally symplectic vector field X, whenever there exists a function H such
that

iXΩ = ηα + dH .
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All exact conformally symplectic fields are conformally symplectic, but the converse is
not necessarily true.

Like for maps we introduce an embedding K defining a rotational invariant torus,
provided that the following invariance equation is satisfied:

ft ◦K = K ◦ Tωt . (9.2)

Note that if K is an embedding, then K(Tn) is a diffeomorphic copy of the torus.
We say that an n-dimensional torus is Lagrangian if

K∗Ω = 0 ,

which can be expressed in coordinates as

DKT(ϕ) J ◦K(ϕ) DK(ϕ) = 0 . (9.3)

In the neighborhood of an invariant torus, we can identify M with the manifold M0

defined as

M0 ≡ Tn ×B ,

where B ⊂ Rn is a ball around zero; the manifold M0 is endowed with the standard
symplectic form

Ω0 ≡
n∑
j=1

dIj ∧ dϕj .

An example of a conformally symplectic flow with respect to Ω0 is given by

f 0
t (ϕ, I) = (ϕ+ ωt, eηtI) , (9.4)

which provides a rotation by ω in the angles and a constant contraction in the actions
for η < 0.

We now state the equivalent of Theorem 2 for flows.

Theorem 28. ([13]) Let (M,Ω) be a 2n-dimensional analytic symplectic manifold and
for r > 0 integer let ft be a Cr-conformally symplectic flow as in (9.1). Let ω ∈ Rn

and assume that there exists an embedding K : Tn →M, such that (9.2) and (9.3) are
satisfied. Then, there exists g ∈ Cr from M to a neighborhood of the torus, such that

g−1 ◦ ft ◦ g =f 0
t

g∗Ω0 =Ω

g(ϕ, 0) =K(ϕ) ,

where f 0
t , η are given in (9.4).

In analogy to (3.1) we consider a frequency ω ∈ Rn satisfying the Diophantine condition

|ω · k| ≥ ν|k|−δ , k ∈ Zn\{0} ,

for suitable positive real constants ν, δ.
We introduce a frequency vector

ρ =
1

T
(a1, ..., an)
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with (a1, ..., an) ∈ Zn and T > 0. Let us denote by Φ = Φ(t) the principal fundamental
matrix around the periodic orbit with frequency ρ. Let γ1, ..., γ2n be the Floquet multipli-
ers associated to Φ(T ) which, by Floquet theory ([36]), can be written as Φ(T ) = ePT for
some constant matrix P . We denote by η1, ..., η2n the characteristic exponents associated
to γj by

γj = eηjT . (9.5)

In analogy to Lemma 3 we state the following result.

Lemma 29. Let ft be a Cr-conformally symplectic flow and let γ1, ..., γ2n be the eigen-
values of the principal fundamental matrix Φ(T ); then, one has that the spectrum of Φ(T )
has the form

Spec(Φ(T )) = {(γi, eηTγ−1
i ) : i = 1, ..., n} .

This result has been proven in [28] (see Section V), as a consequence of the conformally
symplectic condition (9.1), which can be written as

Dft(x)T J ◦ ft(x) Dft(x) = eηt J(x) .

Remark 30. Due to (9.5), the pairing rule of Lemma 29 implies that the characteristic
exponents sum in pairs and that the sum is equal to the conformal factor.

The extension of Theorem 4 for flows is stated below. We shall consider a Cr-family fµt
of conformally symplectic flows, depending on a parameter µ ∈ R`, ` ≤ n; let Φµ = Φµ(t)
be the associated principal fundamental matrix.

Theorem 31. For r > 0 integer, let f tµ, µ ∈ R` (` ∈ N, ` ≤ n), be a Cr-family

of conformally symplectic flows, such that f 0
t admits a Lagrangian invariant torus with

Diophantine rotation vector ω. Then, there is a neighborhood U of the torus with the
following property. Let

ρ =
1

T
(a1, ..., an)

with (a1, ..., an) ∈ Zn and T > 0. Assume that the orbit of a point x has rotation
number ρ and is contained in U . Denote by γi the Floquet multipliers which, according
to Lemma 29, we define as Spec(Φµ(T )) = {(γi, eηTγ−1

i ) : i = 1, ..., n}, where Φµ(T ) is
the principal fundamental matrix at period T . Then, there exists N0 ∈ N depending on
r, such that for every N ≤ N0 there exists a constant CN > 0, depending also on r and
on the Diophantine exponent of ω, so that

|γi − 1| ≤ TCN‖µ‖N .

The proof can be done as for maps using deformation theory (see Section 5.1) or
using the theory of normally hyperbolic invariant manifolds and the averaging theory of
rotations (see Section 6), provided that suitable modifications are implemented to take
into account that f0 (see equation (2.7)) is replaced by f 0

t as in (9.4) or that the invariance
equation (2.2) is replaced by (9.2).
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