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Abstract

We consider dissipative one-dimensional systems subject to a periodic force and study numer-
ically how a time-varying friction affects the dynamics. As a model system, particularly suited
for numerical analysis, we investigate the driven cubic oscillator in the presence of friction. We
find that, if the damping coefficient increases in time up to a final constant value, then the basins
of attraction of the leading resonances are larger than they would have been if the coefficient had
been fixed at that value since the beginning. From a quantitative point of view, the scenario
depends both on the final value and the growth rate of the damping coefficient. The relevance of
the results for the spin-orbit model are discussed in some detail.

1 Introduction

Take a one-dimensional system driven by an external force,

ẍ+ F (x, t) = 0 (1.1)

with F a smooth function 2π-periodic in time t; here and henceforth the dot denotes derivative with
respect to time. Then add a friction term. Usually friction is modelled as a term proportional to the
velocity, so that the equations of motion become

ẍ+ F (x, t) + γ ẋ = 0, γ > 0, (1.2)

with the proportionality constant γ referred to as the damping coefficient.

As a consequence of friction attractors appear [33]. If the system is a perturbation of an integrable
one, there is strong evidence that all attractors are either equilibrium points (if any) or periodic orbits
with periods T which are rational multiples of the forcing period 2π [5]. If 2π/T = p/q, with p, q ∈ N
and relatively prime, one says that the periodic orbit is a p : q resonance. For each attractor one
can study the corresponding basin of attraction, that is the set of initial data which approach the
attractor as time goes to infinity. If all motions are bounded, one expects the union of all basins of
attraction to fill the entire phase space, up to a set of zero measure. This appears to be confirmed
by numerical simulations [19, 48, 7, 5].

Recently such a scenario has been numerically investigated in several models of physical interest,
such as the dissipative standard map [19, 48, 20], the pendulum with oscillating suspension point [7],
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the driven cubic oscillator [5] and the spin-orbit model [2, 13]. What emerges from the numerical
simulations is that, for fixed damping, only a finite number of either point or periodic attractors
is present and every initial datum in phase space is attracted by one of them, according to Palis’
conjecture [39, 40]. However, which attractors are really present and the sizes of their basins depend
on the value of the damping coefficient. If the latter is very small then many periodic attractors can
coexist. This phenomenon is usually called multistability ; see [19, 20]. By taking larger values for
the damping coefficient, many of the attracting periodic orbits disappear and, eventually, when the
coefficient becomes very large, only a few, if any, still persist: for every other resonance there is a
threshold value for the damping coefficient above which the corresponding attractor disappears.

In this paper we aim to study what happens when the friction is not fixed but grows in time, more
precisely when the damping coefficient is not a constant but a slowly increasing function of time.
This is a very natural scenario: it is reasonable to suppose that in many physical contexts dissipation
tends to increase to some asymptotic value. We aim to show (numerically) in such a setting, with
the damping coefficient slowly increasing to a final value, that the relative areas of some basins of
attraction become larger than they would be if the damping were fixed for all time at the final value.
In other words, we claim that, in order to understand the dynamics of a forced system in the presence
of damping, not only is the final value of the friction important, but also the time evolution of the
damping itself plays a role. So, by looking in the present at a damped system which evolved from an
original nearly conservative one, with the friction slowly increasing from virtually zero to the present
value, it can happen that an attractor, which should have a small basin of attraction on the basis
of the final value of the friction, is instead much larger than expected. Of course, as we shall see,
several elements come into the picture, in particular the growth rate of the damping coefficient and
the closeness between its threshold and final values.

We shall investigate in detail a model system, the driven cubic oscillator in the presence of
friction, which is particularly suited for numerical investigations because of its simplicity. We shall
first study in Section 2 some properties in the case of constant friction, with some details worked
out in Appendix A. Then in Section 3 we shall see how the behaviour of the system is affected by
the presence of a non-constant, in fact slowly increasing friction. In Section 4 we shall introduce
another system of physical interest, the spin-orbit system, with some details deferred to Appendices
B to E, and we shall discuss how the results described in the previous sections may be relevant to
the study of its behaviour. Further comments are deferred to Section 5. Finally in Section 6 we
draw our conclusions and briefly discuss open problems. Some discussion of the codes we used for
the numerical analysis is given in Appendix F.

2 The driven cubic oscillator with constant friction

Let us consider the cubic oscillator, subject to periodic forcing and in the presence of friction,

ẍ+ x3 + ε f(t)x3 + γ ẋ = 0, f(t) = cos t, (2.1)

where x ∈ R and ε is a real parameter, called the perturbation parameter, that we shall suppose
positive (for definiteness). Of course one could consider more general expressions for f and the
choice made here is for simplicity. The system (2.1) has been investigated in [5], with γ a fixed
positive constant. The constants ε and γ are two control parameters, measuring respectively the
forcing and the dissipation of the system.
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We shall look at (2.1) as a non-autonomous first order differential equation, so that the phase
space is R2. Note that (x, ẋ) = (0, 0) is an equilibrium point for all values of ε and γ. Moreover,
for ε = γ = 0 the system is integrable and all motions are periodic. One can write the solutions
explicitly in terms of elliptic integrals [25, 5]. For ε 6= 0 (hence ε > 0) and γ > 0 fixed, a finite number
of periodic orbits of the unperturbed system persist and, together with the equilibrium point, they
attract every trajectory in phase space [5]. Such periodic orbits are called subharmonic solutions
in the literature [26]. Each periodic orbit can be identified through the corresponding frequency or,
better, the ratio ω := p/q between its frequency and the frequency of the forcing term. For each
periodic orbit one can compute the corresponding threshold value γ(ω, ε): if γ > γ(ω, ε) the orbit
ceases to exist, while for γ < γ(ω, ε) the orbit is present, with a basin of attraction whose area
depends on the actual value of γ. At fixed ε, one has

lim
max{p,q}→∞

γ(p/q, ε) = 0. (2.2)

Therefore, if we assume that all attractors different from the equilibrium point are periodic and no
periodic attractors other than subharmonic solutions exist, then we find that at fixed ε and γ only
a finite number of attractors exists. We note that the assumption above, even though we have no
proof, is consistent with numerical findings [5].

The threshold value γ(ω, ε) depends smoothly on ε [14, 26, 22]: for all ω ∈ Q there exists
n(ω) ∈ N such that the corresponding threshold value is of the form γ(ω, ε) = C0(ω, ε) ε

n(ω), with
the constant C0(ω, ε) nearly independent of ε for ε small; more precisely C0(ω, ε) tends to a constant
C0(ω) as ε goes to zero, so that we can consider it a constant for ε small enough. Resonances are
classified as follows: we refer to resonances with frequency ω such that n(ω) = 1 as primary, to
resonances with frequency ω such that n(ω) = 2 as secondary, and so on [43, 5]. Of course such a
classification makes sense only for ε small enough. The primary resonances are the most important,
in the sense that, at fixed small ε, for γ large enough, only primary resonances are present; moreover,
by decreasing the value of γ, although non-primary resonances appear, they have a small basin of
attraction with respect to those of the primary ones. The threshold values of the leading attractors
(that is the attractors with largest threshold values), in terms of the constants C0(ω), were computed
analytically in [5] and are reproduced in Tables 2.1 and 2.2. In particular the periodic attractors with
frequency 1/q, with q odd, appear in pairs [5]. The higher order corrections to C0(ω, ε) are explicitly
computable; however we shall not need to do this here. Note that the classification of resonances
and the corresponding threshold values strongly depend on the forcing: all values in this and next
Section refer to f(t) = cos t, as in (2.1).

Table 2.1: Values of the constants C0(p/q) for p = 1 and q = 2, 4, 6, 8, 10 (leading primary resonances) for the
cubic oscillator (2.1); the threshold values are of the form γ(ω, ε) = C0(ω)ε+O(ε2).

q 2 4 6 8 10

C0(1/q) 0.178442 0.061574 0.008980 0.000920 0.000078

Consider the system (2.1) at fixed ε. For γ large enough, the only attractor left is the equilibrium
point; in that case all trajectories eventually go toward this point, which becomes a global attractor
(see Appendix A). If γ is not too large — that is, according to Table 2.1, if γ < C0(1/2)ε, up to
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Table 2.2: Values of the constants C0(p/q) for p = 1 and q = 1, 3, 5, 7, 9 (leading secondary resonances) for the
cubic oscillator (2.1); the threshold values are of the form γ(ω, ε) = C0(ω)ε2 +O(ε3).

q 1 3 5 7 9

C0(1/q) 0.146322 0.065001 0.006488 0.000177 0.000002

higher order corrections — then, besides the equilibrium point, there is a finite number of other
attractors, which are periodic orbits.

For ε = 0.1, from Tables 2.1 and 2.2 one obtains the threshold values γ(1/2, 0.1) ≈ 0.018,
γ(1/4, 0.1) ≈ 0.0062, γ(1, 0.1) ≈ 0.0015, γ(1/6, 0.1) ≈ 0.00090, γ(1/3, 0.1) ≈ 0.00065, γ(1/8, 0.1) ≈
0.000092, γ(1/5, 0.1) ≈ 0.000065, and so on. Take the initial data in a finite domain of phase space,
say the square Q = [−1, 1] × [−1, 1]: the relative areas of the parts of the basins of attraction
contained in Q for some values of γ are given in Table 2.3. In principle the relative areas depend on
the domain, but one expects that they do not change too much by changing the domain, provided
the latter is not too small. Note that for ε = 0.1 and γ ≤ 0.00005, other attractors than those listed
in Table 2.3 appear (namely periodic orbits with frequencies 1/8, 1/5 and 3/4 for γ = 0.00005; with
frequencies 1/8, 1/5, 3/10, 2/5, 5/12 and 3/4 for γ = 0.00001; and with frequencies 1/10, 1/8, 1/7,
1/5, 3/14, 2/7, 3/10, 2/5, 5/12, 3/7, 2/3 and 3/4 for γ = 0.000005), so explaining why the relative
areas of the basins of attractions considered there do not sum up to 100%. Small discrepancies for
the other values are simply due to round-off error (the error on the data is in the first decimal digit;
see Appendix F).

Table 2.3: Relative areas A(ω, γ), %, of the parts of the basins of attraction contained inside the square Q for
ε = 0.1 and some values of γ. The attractors are identified by the corresponding frequency (0 is the origin).
The number of random initial conditions taken in Q is 1 000 000 up to γ = 0.0001, 500 000 for γ = 0.00005,
150 000 for γ = 0.00001 and 50 000 for γ = 0.000005.

ω 0 1/2 1/4 1a 1b 1/6 1/3a 1/3b 3/8

γ = 0.020000 100.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0

γ = 0.015000 91.1 08.9 00.0 00.0 00.0 00.0 00.0 00.0 00.0

γ = 0.010000 79.1 20.9 00.0 00.0 00.0 00.0 00.0 00.0 00.0

γ = 0.005000 64.9 31.8 03.4 00.0 00.0 00.0 00.0 00.0 00.0

γ = 0.001000 44.5 40.9 13.2 00.7 00.7 00.0 00.0 00.0 00.0

γ = 0.000500 38.7 41.8 14.7 01.3 01.3 01.7 00.3 00.3 00.0

γ = 0.000100 32.2 41.9 14.0 02.6 02.6 03.6 01.5 01.5 00.1

γ = 0.000050 30.2 41.6 13.8 02.8 02.8 03.8 01.7 01.7 00.6

γ = 0.000010 26.9 41.1 13.2 02.9 02.9 03.9 01.8 01.8 01.1

γ = 0.000005 26.2 40.9 13.0 02.9 02.9 03.8 01.8 01.8 01.3

If one plots the relative areas A(ω, γ) of the basins of attraction versus γ one finds the situation
depicted in Figure 2.1. Of course in general A(ω, γ) depends also on ε, i.e. A(ω, γ) = A(ω, γ, ε),
although we are not making explicit such a dependence since ε has been fixed at ε = 0.1; same
comment applies to the quantities Amax(ω) = Amax(ω, ε) and A(ω) = A(ω, ε) to be introduced.

4



Figure 2.1: Relative areas A(ω, γ) of the basins of attraction versus log γ for the values of γ listed in Table 2.3
(right-hand figure) and a magnification for the periodic orbits with ω = 1/4, 1, 1/6, 1/3, 3/8 (left-hand figure).

It can be seen that for any ω ∈ Q one has A(ω, γ) = 0 if γ > γ(ω, ε). By decreasing γ below
γ(ω, ε), A(ω, γ) increases up to a maximum value Amax(ω) which tends to stabilise. For very small
values of γ one observes a slight bending downward. It would be interesting to investigate very — in
principle arbitrarily — small values of γ, but of course we have to cope with the technical limitations
of computation: studying arbitrarily small friction would require running programs for arbitrarily
large times and with arbitrarily high precision — see also comments in Appendix F. However, by
looking at Figure 2.1 and noting that numerical evidence suggests that all attractors different from
the origin are periodic orbits, we make the following conjecture: as γ goes to 0+, for all ω ∈ Q the
relative area A(ω, γ) tends to a finite limit A(ω) such that∑

ω∈Q
A(ω) = 100%, (2.3)

where ω = 0 designates the origin. Of course when γ = 0 the area of each basin drops to zero, so
that, accepting the conjecture above, all functions A(ω, γ) are discontinuous at γ = 0. This is not
surprising: a similar situation arises in the absence of forcing, where the only attractor is the origin,
with a basin of attraction which passes abruptly from zero (γ = 0) to 100% (γ > 0). Moreover,
analogously to [48], we would expect that the total number of periodic attractors Np grows as a
power of γ when γ tends to 0. This means that if the limits A(ω) vanished at least one function
A(ω, γ) should be exponential in log γ, a behaviour which seems unlikely in the light of Figure 2.1.

3 The driven cubic oscillator with increasing friction

Here we shall consider γ = γ(t) explicitly depending on time, that is

ẍ+ x3 + ε f(t)x3 + γ(t) ẋ = 0, f(t) = cos t, (3.1)

5



For both concreteness and simplicity reasons, we shall consider a dissipation γ(t) linearly increasing
in time up to some final value, i.e

γ(t) =

γ0
t

T0
, 0 ≤ t < T0,

γ0, t ≥ T0,
(3.2)

where the parameters γ0 and T0 are positive constants. However, the results we are going to describe
should not depend too much on the exact form of the function γ(t), as long as it is a slowly increasing
function; see Section 5. In (3.2) we shall take T0 = ∆/γ0, whose form is suggested by the fact that
trajectories converge toward an attractor at a rate proportional to 1/γ0 (see Appendix A).

Hence, consider the system with ε = 0.1 again but now with γ(t) given by (3.2), with T0 = ∆/γ0
and γ0 = 0.015. Computing the corresponding relative areas A(ω, γ0; ∆) = A(ω, γ0, 0.1; ∆) — that
is A(ω, γ0, ε; ∆) for ε = 0.1 — for different values of ∆, we obtain the results in Table 3.1 and Figure
3.1. If ∆ is very small, the damping coefficient reaches the asymptotic value γ0 almost immediately,
and we would expect to obtain the same scenario as in the previous case (γ constant): two attractors,
corresponding to the origin and the 1:2 resonance, with basins whose relative areas are close to the
values for ∆ = 0, i.e. 91.1% and 8.9%, respectively. On the other hand, if ∆ becomes larger, we find
that the relative area of the basin of attraction of the origin decreases, whereas that of the basin of
attraction of the 1:2 resonance increases. For ∆ very large, these areas apparently tend to constant
values of around 61% and 39%, respectively; see Table 3.1.

Table 3.1: Relative areas A(ω, 0.015; ∆) of the parts of the basins of attraction contained inside the square Q
for ε = 0.1 and γ(t) given by (3.2) with γ0 = 0.015 and T0 = ∆/γ0, for various values of ∆ and ω = 0, 1/2
(ω = 0 is the origin). In each case, 1 000 000 random initial conditions have been taken in Q.

∆ 0 25 50 75 100 125 150 175 200

ω = 0 91.1 70.6 66.2 64.6 63.4 62.6 62.1 61.6 61.3

ω = 1/2 08.9 29.4 33.8 35.4 36.6 37.4 37.9 38.4 38.7

Analogous results are found, for instance, for γ0 = 0.005; see Table 3.2 and Figure 3.2. One
sees that for ∆ = 20 the relative areas of the basins of attraction of the origin and of the 1:2 and
1:4 resonances have already appreciably changed: they have become, respectively, 53.4%, 38.5% and
8.1%. By further increasing ∆, once again a saturation phenomenon is observed and the relative
areas settle about asymptotic values around 45%, 42% and 13% (for instance for ∆ = 120 the areas
are, respectively, 46.0%, 41.3% and 12.7%). Note that the value γ0 = 0.005 is such that the threshold
values γ(1/2, 0.1) ≈ 0.018 and γ(1/4, 0.1) ≈ 0.0062 of the persisting resonances are slightly above it
(that is their ratios with γ0 are of order 1).

If one fixes the value γ0 = 0.0005, then the 1:6, 1:1 and 1:3 resonances are also present. On
the other hand the threshold values of the 1:2 and 1:4 resonances are appreciably larger then γ0
(that is γ(ω) � γ0 for ω = 1/2 and ω = 1/4), whereas the threshold values γ(1/6, 0.1) ≈ 0.00090,
γ(1, 0.1) ≈ 0.0015 and γ(1/3, 0.1) ≈ 0.00065 of the 1:6, 1:1 and 1:3 resonances, respectively, are not
too different from γ0. If we again take γ(t) as in (3.2), with T0 = ∆/γ0 and γ0 = 0.0005, we have the
results in Table 3.3 and Figure 3.3.

Therefore we have, from a qualitative point of view, the same scenario as in the case γ0 = 0.005,
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Figure 3.1: Relative measures of the basins of attraction versus ∆ for γ0 = 0.015.

Table 3.2: Relative areas A(ω, 0.005; ∆) of the parts of the basins of attraction contained inside the square Q
for ε = 0.1 and γ(t) given by (3.2) with γ0 = 0.005 and T0 = ∆/γ0, for various values of ∆ and ω = 0, 1/2, 1/4
(ω = 0 is the origin). 500 000 random initial conditions have been taken in Q.

∆ 0 20 40 60 80 100 120

ω = 0 64.8 53.4 49.4 47.9 46.8 46.1 46.0

ω = 1/2 31.8 38.5 40.0 40.7 41.2 41.5 41.3

ω = 1/4 03.4 08.1 10.6 11.4 12.0 12.4 12.7

but with some relevant quantitative differences: the relative areas of the basins of the 1:2 and 1:4
resonances are not too different in the two situations γ constant and γ increasing.

We now give an argument to explain why the basins of attraction are different if γ is not fixed ab
initio to some value γ0 but slowly tends to that value. According to Table 2.3, for smaller values of γ
the basins of the periodic attractors are larger. For instance for γ = 0.005 the 1:2 and 1:4 resonances
have basins with relative areas 31.8% and 3.4%, respectively, while the basins of attraction of the
same resonances for γ = 0.0005 have relative areas 41.8% and 14.7%, respectively. Then, if we
suppose that the friction is slowly increasing in time, when it passes, say, from γ = 0.0005 to 0.005,
on the one hand the size of the basin would decrease because of the larger value of γ, but on the other
hand many trajectories have already nearly reached the basin and hence continue to be attracted
toward that resonance. If friction increases slowly enough we can assume that it is quasi-static.
Therefore, at every instant τ , the basin of attraction of any resonance has the size corresponding to
the value γ(τ) at that instant, as can be deduced by interpolation from Table 2.3 (or Figure ??),
while the rate of approach to the resonance can be roughly estimated as proportional to 1/γ(τ); see
Appendix A. Therefore if ∆ is large enough (that is if the growth of γ(t) is slow enough) one expects
the trajectory to be captured by the resonance faster than how the basin of attraction is decreasing.

By increasing the friction further, the basin of a resonance ω can become negligible, until the
resonance itself disappears. If this does not happen, that is if γ(ω, 0.1) > γ0, then there is a value
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Figure 3.2: Relative areas of the basins of attraction versus ∆ for γ0 = 0.005.

Table 3.3: Relative areas A(ω, 0.0005; ∆) of the parts of the basins of attraction contained inside Q for ε = 0.1
and γ(t) given by (3.2) with γ0 = 0.0005 and T0 = ∆/γ0, for various values of ∆ and ω = 0, 1/2, 1/4, 1, 1/6, 1/3
(ω = 0 is the origin). 250 000 random initial conditions have been taken in Q.

∆ 0 10 20 30 40 50 60 70 80

ω = 0 38.7 36.4 34.8 34.1 33.5 33.3 33.1 32.9 32.7

ω = 1/2 41.8 40.9 41.4 41.6 41.5 41.5 41.6 41.3 41.6

ω = 1/4 14.7 13.9 13.8 13.6 13.9 13.9 13.8 14.0 13.9

ω = 1 01.3 02.9 02.9 02.9 02.9 03.0 03.0 03.0 03.0

ω = 1/6 01.6 01.8 02.4 02.9 02.9 03.0 03.2 03.1 03.2

ω = 1/3 00.3 00.6 00.9 01.0 01.2 01.2 01.3 01.4 01.3

of ∆ above which the relative measure A(ω, γ0; ∆) of the basin saturates to a value close to the
maximum value Amax(ω) (possibly a bit smaller because of the slight bending downward observed in
Figure 2.1). In particular, this explains the difference between Figures 3.2 and 3.3. For concreteness
let us focus on the 1:2 resonance. With respect to the case γ0 = 0.0005, according to Figure 3.1, the
relative area A(1/2, γ) of the basin of attraction does not increase appreciably when taking smaller
values γ < γ0: indeed A(1/2, 0.0005) is already close to Amax(1/2).

We conclude that the main effect of friction slowly growing to a final value γ0, is that eventually
every basin of attraction has essentially the same size that would appear for lower values of friction.
So, if the basin of attraction of any p : q resonance is larger for values of friction lower than the final
value, then, when the final value γ0 is reached, one observes a basin of attraction with relative area
larger than A(p/q, γ0). If on the contrary it is more or less the same, then one observes essentially
the same basin one would have by taking the friction fixed at that value since the beginning. In other
words, if the friction increases in time, one can really have a larger basin of attraction only if the
final value γ0 is close enough to the threshold value γ(ω, 0.1). However, if γ0 is too close to γ(ω, 0.1),
for the phenomenon to really occur, the rate of growth has to be slow enough: the closer γ0 is to
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Figure 3.3: Relative areas of the basins of attraction versus ∆ for γ0 = 0.0005.

γ(ω, 0.1), the larger ∆ to be chosen. For instance, for ε = 0.1 and γ0 = 0.0005, a glance at Table 3.3
gives the following picture. The areas of the basins of attraction for the 1:2 and 1:4 resonances have
small variations for different values of ∆, whereas the areas of the basins of attraction for 1:1, 1:3
and 1:6 change in a more appreciable way when ∆ becomes larger. Moreover, the threshold value
γ(1/3, 0.1) ≈ 0.00065 is just above γ0, so for the area of the corresponding basin of attraction to come
close to the maximum possible value one needs large values of ∆; on the contrary γ(1, 0.1) ≈ 0.00146
is not too close to γ0 and hence the area of the corresponding basin of attraction comes closer to the
maximum possible value for smaller ∆ ≈ 10.

We finish this section with a pair of figures showing the difference between the basins of attraction
of the 1:2 resonance for γ = 0.005, in the cases of constant and time-varying γ. According to Table
3.2, changing ∆ from zero — i.e. constant γ — to 40 increases the area by about 8%, and Figure
3.4 shows how this extra area is distributed (most of the points of the basin of attraction of the
resonance for constant γ still belong to the basin of attraction for varying γ).

4 The spin-orbit model

The spin-orbit model describes the motion of an asymmetric ellipsoidal celestial body (satellite)
which moves in a Keplerian elliptic orbit around a central body (primary) and rotates around an axis
orthogonal to the orbit plane [23, 36]. If θ denotes the angle between the longest axis of the satellite
and the perihelion line, in the presence of tidal friction the model is described by the equation

θ̈ + εG(θ, t) + γ (θ̇ − 1) = 0, (4.1)

where ε, γ > 0 and θ ∈ T = R/2πZ, so that the phase space is T × R (note that (4.1) is of the
form (1.2), with x = θ − t). Here ε is a small parameter, related to the asymmetry of the equatorial
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Figure 3.4: Basins of attraction for the 1:2 resonance for constant γ (red) and time-varying γ (black plus most
of the red region). Initial conditions in the white region either go to the origin or to the 1:4 resonance. The
right-hand figure shows a portion of the left-hand figure, magnified.

moments of inertia of the satellite, and G(θ, t) = ∂θg(θ, t), where

g(θ, t) =
(1

4
e− 1

32
e3 +

5

768
e5
)

cos(2θ − t) +
(1

2
− 5

4
e2 +

13

32
e4
)

cos(2θ − 2t)

+
(
− 7

4
e+

123

32
e3 − 489

256
e5
)

cos(2θ − 3t) +
(17

4
e2 − 115

12
e4
)

cos(2θ − 4t)

+
(
− 845

96
e3 +

32525

1536
e5
)

cos(2θ − 5t) +
(533

32
e4
)

cos(2θ − 6t) (4.2)

+
(
− 228347

7680
e5
)

cos(2θ − 7t) +
(
− 1

96
e3 − 11

1536
e5
)

cos(2θ + t)

+
( 1

48
e4
)

cos(2θ + 2t) +
(
− 81

2560
e5
)

cos(2θ + 3t),

with e being the eccentricity of the orbit; terms of order O(e6) have been neglected. In the celes-
tial mechanics cases the model (4.1) may appear oversimplified and more realistic pictures could be
devised [32, 15, 16]. Nevertheless, because of its simplicity, it is suitable also for analytical investiga-
tions (as opposed to just numerical ones) on the relevance of friction in the early stages of evolution
of celestial bodies and for the selection of structurally stable periodic motions.

Values of e, ε and γ for some primary-satellite systems of the solar system are given in Table
4.1. The values of e can be found in the literature [36], while the derivation of ε and γ is discussed
in Appendix B; see also below. All satellites of the solar system are trapped in the 1:1 resonance
(rotation period equal to the revolution period), with the remarkable exception of Mercury (which
can be considered as a satellite of the Sun), which turns out to be in a 3:2 resonance. The spin-orbit
model has been used since the seminal paper by Goldreich and Peale [23] in an effort to explain the
anomalous behaviour of Mercury. The ultimate reason is speculated to be related to the large value
of the eccentricity. However, even though higher than for the other primary-satellite systems, the
probability of capture into the 3:2 resonance is still found to be rather low [23, 13]. In the following
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part of this section we aim to investigate what happens if we take into account the fact that friction
increased during the evolution history of the satellites.

Table 4.1: Values of the constants e, ε and γ for some cases of physical interest for the spin-orbit model (4.1).

Primary Satellite e ε γ

E-M Earth Moon 0.0549 6.75×10−7 3.75×10−8

S-M Sun Mercury 0.2056 8.11×10−7 3.24×10−8

J-G Jupiter Ganymede 0.0013 4.30×10−4 1.91×10−5

J-I Jupiter Io 0.0041 3.85×10−3 1.71×10−4

S-E Saturn Enceladus 0.0047 1.41×10−2 6.26×10−4

S-D Saturn Dione 0.0022 3.85×10−3 1.71×10−4

Again one can compute the threshold values of the primary resonances, by writing γ(ω) = C0(ω)ε,
up to higher order corrections. If one writes (4.2) as

g(θ, t) =
∑
k∈Z

ak cos(2θ − kt), (4.3)

one finds (see Appendix D)

C0(p/q) =
2q|a2p/q|
|p− q|

,
p

q
∈
{
−1,±1

2
,±3

2
, 2,

5

2
, 4,

7

2

}
, (4.4)

while C0(1) = ∞ (that is no threshold value exists for the 1:1 resonance) and C0(ω) = 0 for any
other ω; other resonances may appear only at higher order in ε. This leads to the values listed in
Table 4.2, for the primary resonances of the systems considered in Table 4.1. Note that for γ large
enough, all attractors disappear except the 1:1 resonance, which becomes a global attractor.

Table 4.2: Values of the constants C0(p/q) for some primary resonances of the the spin-orbit model (4.1); the
threshold values are of the form γ(ω, ε) = C0(ω)ε. Only positive ω have been explicitly considered.

ω 1/2 3/2 2 5/2 3 7/2

E-M C0(ω) 5.488×10−2 3.818×10−1 2.545×10−2 1.928×10−3 1.513×10−4 1.186×10−5

S-M C0(ω) 2.045×10−1 1.308 3.251×10−1 9.163×10−2 2.976×10−2 8.739×10−3

J-G C0(ω) 1.300×10−3 9.100×10−3 1.436×10−5 2.578×10−8 4.757×10−11 8.832×10−14

J-I C0(ω) 4.100×10−3 2.870×10−2 1.429×10−4 8.088×10−7 4.707×10−9 2.756×10−11

S-E C0(ω) 4.700×10−3 3.290×10−2 1.878×10−4 1.218×10−6 8.128×10−9 5.455×10−11

S-D C0(ω) 2.200×10−3 1.540×10−2 4.114×10−5 1.259×10−7 3.902×10−10 1.226×10−12

It seems reasonable on physical grounds (see Appendix E) to assume that friction was increasing
in the past up to the present-day value γ0 = γ, with γ as in Table 4.1. Application to the spin-orbit
model for S-M would require numerics with very small values of ε and γ0: the discussion in Appendix
B provides the values in Table 4.1, so that γ0 ∼ 0.05 ε. However, the value usually taken for ε in the
literature is ε ∼ 10−4 (see Appendix B). In both cases, γ0 is far below the threshold value γ(ω, ε),
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especially for the most interesting resonance ω = 3/2 [23, 36], as γ(3/2, ε) ∼ 1.3 ε (see Table 4.2); we
refer to Section 6 for further comments.

As already noted in [13], the small value of γ0 represents a serious difficulty from a numerical
point of view, because it requires very long integration (for a very large number of initial conditions
— see comments in Appendix F). Nevertheless, the discussion in Section 3 about the driven cubic
oscillator allows us to draw the following conclusions about the spin-orbit model.

The results in Table 2.3 suggest that the relative areas A(ω, γ, ε) of the basins of attraction are
almost constant for values of γ much smaller than the threshold values; more precisely they assume
values close to Amax(ω, ε). In the case of increasing friction, if the final value γ0 is much smaller than
the threshold value, the basin turns out to have more or less the same size close to Amax(ω, ε) as it
would have if γ were set equal to γ0 since the beginning. The same scenario is expected in the case
of the spin-orbit problem. In particular a crucial aspect is understanding when the final value can be
considered ‘much smaller’ than the threshold value or comparable to it. Again the analysis in Section
3 is useful: pragmatically, we shall define γ much smaller than γ(ω, ε) when A(ω, γ, ε) is close to the
maximum possible value Amax(ω, ε). Therefore it becomes fundamental to check whether, for the
current values of γ and ε as given in the literature, A(ω, γ, ε) is either close to Amax(ω, ε) or much
smaller.

1. If we assumed A(ω, γ, ε) to be close to Amax(ω, ε) the time-dependence of friction would not
change the general picture as observed today. From this point of view, our results would be
a bit disappointing: indeed the relative area of the basin of attraction of the 3:2 resonance,
with the values of ε and γ usually taken in the literature, is found to be rather small for
S-M [13] and including the time-dependence of friction in the analysis would not give larger
estimates. On the other hand, also in this second case, our analysis would provide some more
information: it would yield that the results available in the literature [15, 16, 13] would remain
correct even if time-dependent friction were included. In particular, to explain why Mercury
has been captured into the 3:2 resonance, other mechanisms should be be invoked, such as the
chaotic evolution of its orbit [15]. Of course the values of ε and γ used in the literature are only
speculative: again our analysis suggests that the results would not change in a sensible way
even by taking different values for one or both parameters — see also comments in Section 6.

2. On the contrary if A(ω, γ, ε) were much smaller than Amax(ω, ε), taking into account the time-
dependence of friction would imply a larger basin of attraction with respect to the case of
constant friction. In this case the the exact values of the parameters ε and γ would play a
fundamental role — again see also Section 6.

5 Remarks and comments

5.1 Different values of the perturbation parameter

In Sections 2 and 3 we have fixed ε = 0.1. However, by taking different values of ε, the phenomenology
does not change. For instance, for ε = 0.5 and ε = 0.01 we have the relative areas listed in Tables
5.1 and 5.2 (for ε = 0.5 only a few attractors are taken into account in Table 5.1).

The general scenario is the same as in the case ε = 0.1, with obvious quantitative differences due
to the fact that for smaller values of ε (say ε = 0.01) only primary resonances are relevant unless γ is
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Table 5.1: Relative areas of the parts of the basins of attraction contained inside the square Q for ε = 0.5.
(ω = 0 denotes the origin). 1 000 000 random initial conditions have been taken in Q.

ω 0 1/2 1/4 1a 1b 1/6

γ = 0.1000 100.0 00.0 00.0 00.0 00.0 00.0

γ = 0.0750 70.5 29.5 00.0 00.0 00.0 00.0

γ = 0.0500 49.8 50.2 00.0 00.0 00.0 00.0

γ = 0.0250 32.0 56.0 05.8 03.1 03.1 00.0

γ = 0.0050 10.4 48.8 07.7 10.5 10.5 00.0

γ = 0.0025 08.1 36.3 06.8 11.5 11.5 00.8

γ = 0.0010 06.9 37.5 04.4 11.4 11.4 01.6

Table 5.2: Relative areas of the parts of the basins of attraction contained inside the square Q for ε = 0.01.
(ω = 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

ω 0 1/2 1/4 1a 1b 1/6

γ = 0.0020 100.0 00.0 00.0 00.0 00.0 00.0

γ = 0.0015 98.1 01.9 00.0 00.0 00.0 00.0

γ = 0.0010 94.0 06.0 00.0 00.0 00.0 00.0

γ = 0.0005 88.3 10.6 01.1 0.00 0.00 00.0

γ = 0.0001 78.2 15.3 06.5 00.0 00.0 00.0

very small, while for larger ε (say ε = 0.5) more and more resonances appear by taking smaller values
of γ (because powers of ε are not much smaller than ε itself). Indeed, if ε = 0.5, even for γ = 0.005
we detect numerically more than 50 attractors and the classification of resonance ω according to the
the value of n(ω) becomes meaningless. For instance, for ε = 0.5, one has A(3/4, 0.0025, 0.5) ≈ 11.4%
and A(3/4, 0.001, 0.5) ≈ 6.8%, to be compared with the values for ω = 1/4 in Table 5.1. Moreover for
large values of ε, say for ε = 0.5, the bending of the curves A(γ, ω, ε) in Figure ?? is more pronounced
and the monotonic decrease observed for ε = 0.1 when γ tends to 0 seems to be violated (compare
the values A(1/2, γ, 0.5) for γ = 0.0025 and γ = 0.001 in Table 5.1); see also the comments in Section
6.

5.2 Different functions γ(t)

As stated at the beginning of Section 3, the exact form of the function γ(t) should not be relevant.
As a check we studied (3.1) with γ(t) given by both (3.2) and

γ(t) = γ0
(
1− e−t/T0

)
, (5.1)

where γ0 and T0 are positive constants, by setting T0 = ∆/γ0 and changing ∆ for fixed values of γ0.
The results show that the same behaviour is obtained in both cases. For instance, for γ0 = 0.006,
one has the results in Tables 5.3 and 5.4; see also Figure 5.1.

In particular, in both cases the relative areas A(ω, γ0, 0.1; ∆) start at the values corresponding to
constant dissipation γ = γ0 for ∆ = 0 and then either decrease (for the origin) or increase (for the
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Table 5.3: Relative areas A(ω, 0.006, 0.1; ∆) of the parts of the basins of attraction contained inside the
square Q for ε = 0.1 and γ(t) given by (3.2) with γ0 = 0.006 and T0 = ∆/γ0, for various values of ∆ and
ω = 0, 1/2, 1/4. (ω = 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

∆ 0 10 20 30 40 50

ω = 0 69.6 64.3 56.3 53.1 51.4 50.1

ω = 1/2 29.9 34.8 37.2 38.6 39.2 39.8

ω = 1/4 00.5 00.9 06.5 08.3 09.4 10.1

Table 5.4: Relative areas A(ω, 0.006, 0.1; ∆) of the parts of the basins of attraction contained inside the square
Q for ε = 0.1 and γ(t) given by (5.1) with γ0 = 0.006 and T0 = ∆/γ0, for various values of ∆ and ω = 0, 1/2, 1/4
(ω = 0 denotes the origin). 500 000 random initial conditions have been taken in Q.

∆ 0 1 2 8 13 20 30 40

ω = 0 69.6 69.3 67.0 58.3 55.8 53.3 51.3 50.0

ω = 1/2 29.9 30.1 31.8 36.1 37.1 38.2 39.1 39.7

ω = 1/4 00.5 00.6 01.2 05.6 07.2 08.5 09.6 10.3

periodic orbits), apparently to some asymptotic value close to Amax(ω, 0.1). For instance the relative
areas corresponding to (3.2) with ∆ = 30 are very close to those corresponding to (5.1) with ∆ = 20
(compare Table 5.3 with Table 5.4). The asymptotic values seem to be the same in both cases.

6 Conclusions and open problems

In this paper we have studied how the slow growth of friction may affect the asymptotic behaviour
of dissipative dynamical systems. We have focused on a simple paradigmatic model, the periodically
driven cubic oscillator, particularly suited for numerical investigations. Nevertheless we think that the
results hold in the more general setting considered in Section 1. The main result, discussed in Section
3, can be summarised as follows: on the one hand it is the final value of the damping coefficient that
determines which attractors are present, but on the other hand the sizes of the corresponding basins
of attraction strongly depend on the full evolution of the damping coefficient itself, in particular on
its growth rate. Let γ(p/q, ε) and γ0 denote the threshold value of the p : q resonance and the final
value of the damping coefficient, respectively. If γ0 > γ(p/q, ε) the attractor disappears. Otherwise
the following possibilities arise: if γ0 � γ(p/q, ε) the area of the corresponding basin of attraction
is more or less the same as in the case with constant damping coefficient equal to γ0, whereas it is
larger if γ0 . γ(p/q, ε). In the latter case, the closer γ0 is to γ(p/q, ε), the slower the growth rate
of γ(t) required for the maximum possible area of the basin of attraction to be attained. Moreover
when γ0 � γ(p/q, ε) the area can be even a little smaller than what it would be if the damping were
fixed at γ0 since t = 0, because other attractors may have acquired a larger basin of attraction while
the damping coefficient increased. It is not possible for the relative area to be larger than the value
Amax(p/q, ε), which therefore represents an upper bound.

Finally, let us mention a few open problems which would deserve further investigation, also in
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Figure 5.1: Relative areas of the basins of attraction versus ∆ for γ(t) given by (3.2), with γ0 = 0.006 (left-hand
figure) and for γ(t) given by (5.1), with γ0 = 0.006 (right-hand figure).

relation with the spin-orbit problem.

1. As far as a dynamical system can be considered as a perturbation of an integrable one, all
attractors seem to be either equilibrium points or periodic orbits: at least, this is what emerges
from numerical simulations. It would be interesting to have a proof of this behaviour, even for
some simple model such as (2.1), in particular of the fact that neither strange attractors nor
periodic solutions other than subharmonic ones appear.

2. The analysis presented in Section 3 covers small values of γ, but still not as small as desirable.
It would be worthwhile to study the behaviour of the curves A(ω, γ, ε) in the limit of even
smaller γ, for instance by implementing some numerical integrator which allows us to decrease
the running time of the programs without losing accuracy in the results.

3. In studying the spin-orbit model in Section 4 if one really wanted to consider the past history of
the system, then not only γ but also ε should be taken to depend on time: this would introduce
further difficulties and a more detailed model for the evolution of the satellite would be needed
(see also comments at the end of Appendix B). Of course, this would be by no means an easy
task. The use of a model for the time-dependence of friction already raises several problems,
as we highlight in Appendix E.

4. We have seen that, for the spin-orbit model, in the case of constant friction the exact value of the
parameters ε and γ is fundamental. For instance if γ = γ1 such that A(ω, γ1, ε) ≈ Amax(ω, ε),
then we have a basin of attraction much larger than for γ = γ2, where γ2 � γ1 is close to
the threshold value γ(ω, ε). On the contrary, our analysis shows that, when one takes into
account that friction slowly increased during the solidification process of the satellite, then
for both values γ1 and γ2 we expect more or less the same relative area close to Amax(ω, ε).
This is useful information because it shows that exact values of the parameters ε and γ are
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not essential in the case of time-dependent friction, as long as γ is not much smaller than the
threshold value (we mean ‘much smaller’ in the sense of Section 4): of course the values of γ
and ε are essential if γ is much smaller than γ(ω, ε) — see next item.

5. As remarked in Section 4, to study the probability of capture of Mercury into the 3:2 resonance,
it becomes crucial to determine the value Amax(3/2, ε) and the current values of γ and ε to see
if γ turns out to be much smaller than γ(3/2, ε), that is if one has A(3/2, γ)� Amax(3/2, ε). If
this were the case, by using time-dependent friction, the relative area of the basin of attraction
of the 3:2 resonance would be much larger than what was found for constant damping coefficient
γ (estimated around 13% in [13]). By assuming the values of γ given in the literature, for which
γ ∼ 10−8 and ε ∼ 10−4, and using that γ(3/2, ε) ∼ 1.3 ε, the relation A(3/2, γ)� Amax(3/2, ε)
could be verified only by assuming for A(3/2, γ, ε) a very slow variation in γ for ε ∼ 10−4.
This does not seem impossible: already for the driven cubic oscillator the profiles of the curves
A(ω, γ, ε) seem to have a much smoother variation for smaller values of ε (compare Table 2.3 for
ε = 0.1 with Table 5.1 for ε = 0.5), so it could happen then by decreasing ε further the curves
A(ω, γ, ε) could be nearly flat on much longer intervals: in other words, by fixing ε ∼ 10−4 and
decreasing γ, the curve A(ω, γ, ε) could have not yet reached its maximum value Amax(ω, ε)
at γ ∼ 10−8. As a consequence, the exact values of the parameters ε and γ and the profile of
the curve A(3/2, ε, γ) could be fundamental. In any case, it would be very interesting to study
numerically the spin-orbit model for very small values of ε and γ, in order to obtain the profiles
of the curves A(3/2, γ, ε) versus γ.

Acknowledgments. We are grateful to Giovanni Gallavotti for very useful discussions and critical
remarks, especially on the spin-orbit model and the formation and evolution of celestial bodies.

A Some analytical results on system (2.1)

A.1 Global attraction to the origin for large γ

For ε small enough introduce the positive function F (t) such that F 2(t) = 1 + εf(t) and rescale time
through the Liouville transformation [35, 6]

τ :=

∫ t

0
ds F (s). (A.1)

Then we can rewrite (2.1) as x
′ = y,

y′ = −x3 − y

F (t)

(
γ +

F ′(t)

F (t)

)
,

(A.2)

where the prime denotes derivative with respect to τ . Define

I(x, ẋ, t) :=
y2

2
+
x4

4
, (A.3)
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which is an invariant for (2.1) with ε = γ = 0. More generally one has

I ′ = − 1

F (t)

(
γ +

εḟ(t)

2(1 + εf(t))

)
y2,

so that, if

γ > −min
εḟ(t)

2(1 + εf(t))
, (A.4)

by using Barbashin-Krasovsky-La Salle’s theorem [31], we find that the origin is an asymptotically
stable equilibrium point and every initial datum is attracted to it as t→∞.

A.2 Rate of convergence to attractors

The periodic orbits for the system (2.1) appear in pairs of stable and unstable orbits: this is a
consequence of Poincaré-Birkhoff’s theorem [9]. Let us consider the primary resonances, so that we
can set γ = εC, with C a constant independent of ε.

We rewrite the equations of motion in action-angle variables (I, ϕ) [5]{
ϕ̇ = (3I)1/3 + ε(3I)1/3f(t) cn 4ϕ− εCcnϕ snϕdnϕ,

İ = ε(3I)4/3f(t) cn 3ϕ snϕdnϕ− εC(3I) sn 2ϕdn 2ϕ,
(A.5)

where cnϕ, snϕ,dnϕ are the cosine-amplitude, sine-amplitude, delta-amplitude functions, respec-
tively, with elliptic modulus k = 1/

√
2 [25].

Let K(k) be the complete elliptic integral of the first type. For ε = 0 the periodic solution to (2.1)
with frequency ω = p/q is of the form x(t) = α cn (α(t+ t0)), with 2πα = 4ωK(1/2) and t0 suitably
fixed [5]. In terms of action-angle variable this gives I = I0 := α3/3 and ϕ = ϕ0(t) := α(t+ t0).

Linearisation of (A.5) around the periodic solution leads to the system(
˙δϕ

δ̇I

)
= L(t)

(
δϕ
δI

)
, L(t) = L0 + εL1(t) +O(ε2), (A.6)

where

L0(t) =

(
0 α−2

0 0

)
, L1(t) =

(
L11(t) L12(t)
L21(t) L22(t)

)
, (A.7)

with

L11(t) = f(t) ȧ(t)− C α−1ḃ(t), L12(t) = −2α−5I1(t) + α−2f(t) a(t),

L21(t) = α3f(t) ċ(t)− C α2ḋ(t), L22(t) = 4α f(t) c(t)− 3C d(t), (A.8)

where we have defined

a(t) := cn 4ϕ0(t), b(t) := cnϕ0(t) snϕ0(t) dnϕ0(t),

c(t) := cn 3ϕ0(t) snϕ0(t) dnϕ0(t), d(t) := sn 2ϕ0(t) cn 2ϕ0(t) (A.9)

and denoted by (ϕ1(t), I1(t)) the first order of the periodic solution.
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Let us denote by W (t) = W0(t)+εW1(t)+O(ε2) the Wronskian matrix, that is the matrix whose
columns are two independent solutions of the linearised system (A.2), so that Ẇ (t) = L(t)W (t), with
W (0) = 1. Then one has

W0(t) = exp tL0 =

(
1 α−2t
0 1

)
(A.10)

while W1(t) is obtained by solving the system Ẇ1 = L0W1 + L1W0(t), i.e.

W1(t) = W0(t)

[
W1(0) +

∫ t

0
dτ (W0(τ))−1 L1(τ)W0(τ)

]
, (A.11)

where one has to take W1(0) = 0 in order to have W (0) = 1.

A trivial computation shows that in (A.10) one has

W0(t)
−1L1(t)W0(t) =

(
L11(t)− α−2t L21(t) L12(t) + α−2t

(
L11(t)− L22(t)− α−2L21(t)

)
L21(t) L22(t) + α−2t L21(t)

)
.

Let T = 2πq be the period of the periodic solution. The Floquet multipliers around the periodic
solution are the eigenvalues of the Wronskian matrix, computed at time T . Denote by xk(t) the kth
primitive of any function x(t) with xk(0) = 0 (so that ẋk(t) = xk−1(t), with x0(t) = x(t)). Then, by
using that ∫ T

0
dt x(t) = x1(T ),

∫ T

0
dt t x(t) = Tx1(T )− x2(T ),∫ T

0
dt t2x(t) = T 2x1(T )− 2Tx2(T ) + 2x3(T ), (A.12)

we obtain that

W1(T ) =

(
L1
11(T ) + α−2L2

21(T ) L1
12(T ) + α−2

(
TL1

11(T )− L2
11 + L2

22 + α−2(TL2
21 − 2L3

21(T ))
)

L1
21(T ) L1

22(T ) + α−2 (TL1
21(T )− L2

21(T ))

)
.

For ε = 0, the corresponding Floquet multipliers are equal to 1. To first order they are the roots λ±
of the equation λ2 − 2b0λ+ c0 = 0, with

b0 := 1 +
ε

2

(
L1
11(T ) + L1

22(T ) + α−2TL1
21(T )

)
, c0 := 1 + ε

(
L1
11(T ) + L1

22(T )
)
, (A.13)

so that

λ± = 1±
√
ε α−2TL1

21(T ) +
ε

2

[
L1
11(T ) + L1

22(T ) + α−2TL1
21(T )

]
+ o(ε). (A.14)

One has

L1
11(T ) + L1

22(T ) =

∫ T

0
dt f(t)

(
ȧ(t) + 4α c(t)

)
− C

∫ T

0
dt
(
α−1ḃ(t) + 3d(t)

)
(A.15)

One immediately realises that the first integral vanishes and hence

L1
11(T ) + L1

22(T ) = −3CTµ, µ :=
1

T

∫ T

0
dt d(t) > 0, (A.16)
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while, for the stable periodic solution, t0 is such that L1
21(T ) < 0. Therefore the Floquet multipliers

are of the form
λ± = 1± iλ0

√
Tε−

(
λ20 + 3Cµ

)
Tε+ o(ε),

with λ0 > 0. The corresponding Lyapunov exponents, defined as T−1Re log λ±, are given by
−3µCε = −3µγ. This shows that for primary resonances of the system (2.1), at least for initial
conditions close enough to the attractors, convergence to the attractors has rate 1/γ. In principle
the analysis can be extended to any resonance, by writing γ = Cεm and going up to order m, for
suitable m depending on the resonance (m = n(ω) for the resonance with frequency ω; see Section
2): the contributions to the Lyapunov exponents due to the Hamiltonian components of the vector
fields cancel out and the leading part of the remaining part turns out proportional to −γ.

In the case of the linearly increasing friction (3.2) one expects that the Lyapunov exponent be still
proportional to −γ. If the friction increases very slowly, one may reason as it were nearly constant
over long time intervals, that is time intervals covering several periods, by approximating γ(t) with
a piecewise constant function. For each of such interval γ can be considered as constant and one can
reason as above. When passing from an interval to another, the value of the initial phase t0 of the
attractor slightly changes. The Lyapunov exponent is then expected to behave proportionally to

− lim
τ→∞

1

τ

∫ τ

0
dt γ(t),

∫ τ

0
dt γ(t) =

∫ T0

0
dt γ(t) + γ0 (τ − T0) =

∆

2
+ (γ0τ −∆) ,

where we have used that T0 = ∆/γ0. Therefore again the rate of exponential convergence to the
attractor is proportional to 1/γ0 and after the time T0 the distance to the attractor has already
decreased by a factor exp(−c0∆) = exp(−c0γ0T0), for some positive constant c0, and hence like in
the case of constant friction, possibly with a different constant c0.

B Parameters ε and γ for the spin-orbit model

The spin-orbit model has been extensively used in the literature to study the behaviour of regular
satellites [23, 36] — it does not apply to irregular satellites, which are very distant from the planet
and follow an inclined, highly eccentric and often retrograde orbit. The equations of motion are given
by

θ̈ + εG(θ, t) = 0, (B.1)

with G as in (4.2). Here time has been rescaled t → ωT t, where ωT is the mean angular velocity of
the satellite along its elliptic orbit (cf. Table B.1), so that the orbital period (‘year’) of the satellite
becomes 1. Then the 1:1 resonance is θ̇ ≈ 1.

In a system satellite-primary there can be several types of friction: for instance the friction
between the satellite layers of different composition, say one liquid and one solid (core-mantle friction),
or the friction due to the tides (tidal friction). One can expect that such phenomena produce a friction
to be minimised in a 1:1 resonance. There could be also other sources of friction which we do not
consider, especially those which could modify the revolution motion of the satellite, because we are
implicitly using that it occurs on a fixed orbit. The dissipation term due to tidal torques is of the
form [34, 23, 41, 15]

−γ
(
Ω(e)θ̇ −N(e)

)
, (B.2)
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Table B.1: Values of ωT (angular velocity), M (satellite mass), M0 (primary mass), R (satellite radius) and ρ
(mean distance between satellite and primary) for the systems considered in Section 4. CGS units are used.

Primary Satellite ωT M M0 R ρ

E-M Earth Moon 2.66×10−6 7.35×1025 5.97×1027 1.74×108 3.84×1010

S-M Sun Mercury 8.27×10−7 3.30×1026 1.99×1033 2.44×108 5.79×1012

J-G Jupiter Ganymede 1.02×10−5 1.48×1026 1.90×1030 2.63×108 1.07×1011

J-I Jupiter Io 4.11×10−5 8.93×1025 1.90×1030 1.82×108 4.22×1010

S-E Saturn Enceladus 5.31×10−5 1.08×1023 5.68×1029 2.52×107 2.38×1010

S-D Saturn Dione 2.66×10−5 1.09×1024 5.68×1029 5.62×107 3.77×1010

where Ω(e) and N(e) are two constants depending on e. Since both Ω(e) = 1 + O(e2) and N(e) =
1 +O(e2), for small values of e we can approximate (B.1) as in (4.1).

A comparison with the literature [23, 15] gives

ε =
3

2

Iy − Ix
Iz

≈ 3h

2R
, γ =

3k2
ξQ

(R
ρ

)3(M0

M

)
, (B.3)

where Ix, Iy, Iz are the moments of inertia of the satellite, h is the maximal equatorial deformation
(tide excursion), R and M are the mean radius and the mass of the satellite, M0 is the mass of
the primary, ρ is the mean distance between satellite and primary and k2, ξ,Q are constants, known
respectively as the potential Love number, the structure constant and the quality factor. For instance,
in the case of the Moon one has k2 ≈ 0.02, ξ ≈ 0.4 and Q ≈ 30 [28, 61], which gives 3k2/ξQ ≈ 0.005
and hence γ ≈ 3.75×10−8 (approximately 3.15×10−6 years−1). In the case of S-M, the constants are
usually (somehow arbitrarily) set equal to the values k2 ≈ 0.4, ξ ≈ 0.3333 and Q ≈ 50 [23, 24, 54, 27],
which gives 3k2/ξQ ≈ 0.072. The corresponding value of the damping coefficient is γ ≈ 3.24× 10−8,
a value very close to Mercury’s. Expressed in years−1 this becomes approximately 8.46× 10−7 (the
revolution period of Mercury is 2π/ωT ≈ 7.60× 106 s ≈ 0.24 year). For lack of astronomical data we
set 3k2/ξQ = 10−1 for all other primary-satellite systems considered in Section 4: the corresponding
values of γ as obtained from (B.3) are given in Table B.2. Of course such values only provide a rough
guide.

Table B.2: Values of T (orbital period) and γ for the systems considered in Section 4, with 3k2/ξQ = 0.1 for
the systems with Jupiter and Saturn as primary. In the third column γ is computed by using T as time unit,
whereas the fourth column gives the value of the damping coefficient expressed in years−1.

Primary Satellite T T (years) γ γ (years−1)

E-M Earth Moon 2.36×106 7.48×10−2 3.75×10−8 3.15×10−6

S-M Sun Mercury 7.60×106 2.41×10−1 3.24×10−8 8.46×10−7

J-G Jupiter Ganymede 6.18×105 1.96×10−2 1.91×10−5 2.48×10−2

J-I Jupiter Io 1.53×105 4.84×10−3 1.71×10−4 5.51×10−2

S-E Saturn Enceladus 1.18×105 3.75×10−3 6.26×10−4 1.05

S-D Saturn Dione 2.36×105 7.49×10−3 1.71×10−4 1.44×10−1
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To obtain the value of ε one can use the formula

h =
3

2
h2R

(R
ρ

)3(M0

M

)
, (B.4)

for the equatorial deformation; see Appendix C. Here h2 is the tidal Love number (h2 ≈ 2k2 [61]),
while the other constants are as defined after (B.3). If we are interested only in orders of magnitude,
we can express the equatorial deformation according to (B.4) with h2 = 1 for the systems with
Jupiter or Saturn as primary. Then, by inserting the values of R, ρ,M0,M listed in Table B.1 into
(B.4) and using (B.3) to compute ε, we obtain the values in Table 4.1. A comparison between (B.3)
and (B.4) gives γ = C ε, with C ≈ 0.05 (taking the values of the constants k2, ξ, Q and h2 in the
literature gives C ≈ 0.04 for E-M and C ≈ 0.055 for S-M).

Note that the values so obtained for ε are lower than those usually assumed in the literature:
compare for instance the values ε = 2.3×10−4 for E-M [58] and ε = 1.5×10−4 for S-M [3, 15, 16, 13, 27]
with the corresponding values ε = 6.75×10−7 and ε = 8.11×10−7 in Table 4.1. However, as discussed
in Section 5, if one does not insist at looking only at the present structure of the satellite, then all its
evolution plays a relevant role. So, one has to take into account that in the past, when the satellite
was more fluid, because of the lower value of viscosity, not only the friction was smaller, but also the
deformation was bigger and hence the coupling ε was larger; see also the comments in Section 6.

C The equatorial deformation

Consider a homogeneous celestial body S of mean radius R coated by an ocean of depth h > 0, not
too small. Let P be the centre of attraction. Denote by M and M0 the respective masses and assume
that the motion of the two celestial bodies about their centre of mass be circular uniform. Let ρ be
the distance between the two celestial bodies S and P , with ρ� R� h. Assume, for simplicity, that
S rotates about an axis orthogonal to the plane of the orbit and that the ocean density is negligible
with respect to the core assumed to be rigid. The discussion below is essentially taken from [36].

The distance ρC of the centre of mass C from the centre of S is such that ρC(M0 +M) = M0ρ.
Moreover, if ωT denotes the angular velocity of revolution of the two celestial bodies and κ is the
universal gravitational constant, one has ω2

Tρ
3 = κ(M + M0) by Kepler’s third law. Let n be a

unit vector out of the surface of S and note that, imagining the observer standing on the frame of
reference rotating around C with angular velocity ω, so that the axis from P to S has a fixed unit
vector i, the potential (gravitational plus centrifugal) energy in the point along the direction n at
distance r from the centre of S has density V = VS + VP + Vcf , where

VS = −κM
r
, VP = −κ M0

(ρ2 + r2 − 2ρr cosψ)1/2
, Vcf =

1

2
ω2 (ρ2C + r2 − 2ρCr cosψ), (C.1)

if cosψ := i · n. Expanding V in powers of r/ρ one finds

VP + Vcf = −κM
ρ

(
r

ρ

)2(3

2

M0

M
cos2 ψ +

1

2

)
+ const., (C.2)

because the linear terms cancel out in virtue of Kepler’s third law. Therefore the equation of the
equipotential surface is

ρ

r
+

(
r

ρ

)2(3

2

M0

M
c2 +

1

2

)
= const. (C.3)
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If one writes r = R(1 + δ(ψ)), with δ(ψ) = δ0 + δP2(cosψ), where P2(z) = (3z2 − 1)/2 is the second
Legendre polynomial [25] and δ0 is such that the volume of the body P is the same as the volume of
a sphere of radius R, then (B.3) gives

δ(ψ) = δP2(cosψ), δ0 = 0, δ =

(
R

ρ

)3 M0

M
. (C.4)

If the core of the satellite is rigid but the ocean density σo is not negligible, e.g. it is equal to
the core density σc, then one has to take into account that the tide will modify the potential VS at
the site of coordinates r, ψ. We make the Ansatz that the equipotential surface is still described as
r = R(1 + δP2(cosψ)), possibly for a different constant δ. Then the density VS will be

− 3κM

4πR3

∫ π

0
sinα dα

∫ 2π

0
dϕ

∫ R(1+δP2(cosα))

0

ρ2dρ

(r2 + ρ2 − 2rρ(cosψ cosα+ sinψ sinα cosϕ))1/2
. (C.5)

By expanding the integrand into Legendre polynomials and using the orthogonality properties of the
polynomials one finds (see [36], §4.3 for details)

VS =


−κM

(
3R2 − r2

2R3
+

3

5

r2

R3
δP2(cosψ)

)
, r < R,

−κM
(

1

r
+

3

5

R2

r3
δP2(cosψ)

)
, r > R.

(C.6)

By expanding (C.6) in powers of r/ρ and summing the leading orders to (C.2), one finds that the
equation of the equipotential surface becomes

κM

ρ

(
ρ

R

(
1− 2

5
δP2(cosψ)

)
+

(
r

ρ

)2 M0

M
P2(cosψ)

)
= const., (C.7)

up to higher order corrections in R/ρ. Hence if we look for the constant potential surface we find

δ(ψ) = δP2(cosψ), δ =
5

2

(
R

ρ

)3 M0

M
, (C.8)

which replaces the previous (C.4). The tidal deformation at the surface of the ocean, using the
notations common in celestial mechanics, can be written as h2ζP2(cosψ), so that the maximal tidal
excursion is

h =
3

2
h2ζ, ζ = R

(
R

ρ

)3 M0

M
, h2 =

5

2
. (C.9)

The number h2 is called the tidal Love number. More generally h2 depends on the detailed structure
of the satellite, so far supposed to have uniform density σo = σc. If on the contrary σo 6= σc, then,
denoting by rc the shape of the core boundary (while r is the shape of the external ocean surface),
one can make once more the Ansatz that the deformations be such that r = R(1 + δP2(cosψ)) and
rc = Rc(1 + δ′P2(cosψ)), where Rc is the mean radius of the core and δ, δ′ are two constants to
be determined by imposing that the ocean surface is equipotential and balancing the forces acting
on the core boundary. The latter can be performed by considering the pressures acting on the core
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boundary due to the elastic forces within the core and the loaded terms caused by the ocean and
core tide. This leads to two relations involving δ, δ′ (see [36], §4.4)

ζc
Rc

=

[
2

5

σo
σc

+

(
Rc

R

)3(
1− σo

σc

)]
δ′ − 3

5

(
Rc

R

)5(
1− σo

σc

)
δ, (C.10a)

δ =
1

µ̃

(
1− σo

σc

)[
5

2

ζc
Rc
− δ +

3

2

σo
σc

(
δ′ − δ

)]
, (C.10b)

where ζc = (M/Mc)ζ (with Mc being the mass of the core) and the effective rigidity µ̃ is a dimension-
less quantity proportional to the rigidity of the core. For instance, if σo � σc, we can approximate

Rcδ
′ ≈ 5

2

ζc
1 + µ̃

, Rδ ≈ ζc

[(
R

Rc

)4

+
3

2

(
Rc

R

)
1

1 + µ̃

]
.

In particular in the limit of high rigidity (µ � 1) then Rcδ
′ ≈ 0 and Rδ ≈ (R/Rc)

4ζc = ζ (in
agreement with (B.4)), so that the core deformation becomes very small, that is the core is essentially
undeformed.

D Threshold values for the spin-orbit model

We reason as done for the driven cubic oscillator in [5]. We consider (4.1) with γ = εC and write it
as the first order differential equation{

θ̇ = y,

ẏ = −εG(θ, t)− εC (y − 1) .
(D.1)

Then we look for a solution z(t) = (θ(t), y(t)) in the form of a power series in ε, that is z(t) = z(0)(t)+
ε z(1)(t) + ε2z(2)(t) + . . ., where z(0)(t) = (θ0 + ωt, ω), with ω = p/q, and z(k)(t) = (θ(k)(t), y(k)(t)) to
be determined by imposing that z(t) be periodic in t with period 2πq.

A first order analysis gives{
θ̇(1) = y(1),

ẏ(1) = −G(θ0 + ωt, t)− C (ω − 1) .
(D.2)

By introducing the Wronskian matrix

W (t) =

(
1 ωt
0 ω

)
, (D.3)

we can write z(1)(t) as(
θ(1)(t)

y(1)(t)

)
= W (t)

(
θ̄(1)

ȳ(1)

)
+W (t)

∫ t

0
dτ W−1(τ)

(
0

−G(θ0 + ωτ, τ)− C (ω − 1)

)
, (D.4)

with (θ̄(1), ȳ(1)) to be fixed. Then we obtain

θ(1)(t) = θ̄(1) + ȳ(1)ωt−
∫ t

0
dτ

∫ τ

0
dτ ′
[
G(θ0 + ωτ ′, τ ′) + C (ω − 1)

]
, (D.5)
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whereas y(1)(t) = θ̇(1)(t). For (D.4) to be periodic we have to require first of all that

M(θ0) :=
1

2πq

∫ 2πq

0
dt [G(θ0 + ωt, t) + C (ω − 1)] = 0, (D.6)

then fix ȳ(1) in such a way that

ȳ(1)ω =
1

2πq

∫ 2πq

0
dt

∫ t

0
dτ [G(θ0 + ωτ, τ) + C (ω − 1)] , (D.7)

while θ̄(1) will be fixed to second order by requiring that also θ(2)(t) be periodic.

Using that G(θ, t) = ∂θg(θ, t), with g(θ, t) given by (4.3), and inserting (D.6) into (D.5) leads to

1

2πq

∑
k∈Z

2ak

∫ 2πq

0
dt sin(2θ0 + 2ωt− kt) = C (ω − 1) (D.8)

and hence

2ak(p) sin 2θ0 = C
(p
q
− 1
)
, k(p) =

2p

q
. (D.9)

Since ak 6= 0 only for k = −3, . . . , 7, k 6= 0, as (4.2) implies, ω = p/q is either integer (and
ω ∈ {−1, 1, 2, 3}) or half-integer (and ω ∈ {−3/2,−1/2, 1/2, 3/2, 5/2, 7/2}). If we confine ourselves
to positive ω, we see that (D.9) fixes θ0 provided

|C| < C0(p/q) :=
2ak(p)q

|p− q|
. (D.10)

In particular (D.10) is always satisfied for ω = 1, so that the 1:1 resonance always exists, while for
the other values of ω we obtain (4.4).

E Time evolution of friction for the spin-orbit model

The mechanism of capture into resonance has been studied by several authors starting with the
theory of capture into the 3:2 resonance of Mercury [23, 12, 37]. Usually the friction is considered
either periodic or just not depending on time. Here we regard the friction as not periodic in time
and given by (2.2), that is starting from a initial very small value, then slowly increasing in order
of magnitude, until the satellite has completely solidified: such a situation seems possible in the
formation of a satellite or planet. At the beginning, the satellite can be considered in a fluid state;
however the dissipation due to tidal effects becomes more and more sensible due to the cooling and
the resulting increase of viscosity and, eventually, it settles at the final present value: the time over
which the entire process takes place is called the solidification time and will be denoted by TS .

We stress that, in the model we are considering, we assume that the satellite has first stabilised
in its orbit around the primary and then modifies its spinning velocity. Of course the exact evolution
of the satellite dynamics is still debated and no theory is universally agreed upon. In what follows,
we shall ignore the model-dependent details of such an evolution. So, for instance, if we accept that
in some stage of the history of Mercury large quantities of its mantle material have been removed
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[60, 8], for the purposes of our argument it is not important whether this occurred before Mercury
attained its final orbital motion or after that event.

Suppose that friction is essentially due to tidal effects on an originally entirely fluid fast rotating
satellite (that is with rotation frequency θ̇ at least a few times larger than the present-day orbital
frequency ωT ) evolving toward a solid body. Assuming that the dynamics is described by (4.1) since
the beginning could appear contradictory with the fact that originally the satellite was essentially
fluid, since (4.1) deals with a rigid body with given moments of inertia. On the other hand, as we
shall argue, friction becomes really effective only when the viscosity has attained high values and,
when this occurs, the shape of the satellite can be considered close to its final state. One could
also imagine to study the deformations of the satellite during its evolution, but of course this would
make the analysis much more complicated; see for instance [4], where asymptotic stability of the 1:1
resonance is obtained for a deformable body with high rigidity (see also [50]). In other words, using
the spin-orbit model is justified except possibly for the very early stage of the satellite evolution
(which are not interested in).

In the early history of the solar system one can assume that the viscosity is rather low, not too
different from that of the water, which equals 10−2 poises (CGS units). The solidification process
is very complicated, and although it has been extensively studied in the literature, especially in the
case of the Earth and the Moon (for the obvious reason that it is much easier to compare the results
obtained by theoretical methods and numerical simulations with the experimental data), still there
are many unsolved issues. See for instance [51] for a review of recent results on the Moon. Usually
one assumes that originally all satellites and planets were completely or almost completely molten,
according to the so-called magma ocean hypothesis; in the case of the Moon see [57] and especially
[51] and the references quoted therein (see also [55] in the case of Earth). Most of the celestial body
crystallised, from the bottom to the top, following a sequence determined by chemical composition
and pressure [52, 29, 18] leaving only a layer of very fluid magma close to the surface of the satellite.
The outer liquid part eventually disappeared, through a further solidification process from the core-
mantle boundary to the surface, and it is irrelevant in any case to the damping, because of its very
low viscosity.

Timing of formation of satellites and for the cooling of the magma is mostly deduced from the
study of rock samples: in the case of the Moon of course this is much easier [51, 10, 17, 38], while the
results are far from being conclusive in the case of Mercury (however see, for instance, [53, 11]). In
any case, it is not unlikely that the solidification time of Mercury is of the same order of magnitude
of that of the Moon; we can also mention that the theory has been proposed that the two celestial
bodies may have had similar origin [59, 60]. There is strong evidence that the solidification time TS
for the Moon is of order of 108 years [10, 38]. Thus, for the reasons given above, we take this as the
order of magnitude of the solidification time of all the satellites considered in Section 4.

For most of the solidification process the ocean magma is maintained above its solidus [1, 18]. So
it is reasonable that the viscosity has increased as an effect of the cooling of the satellite: eventually
most of the satellite is almost solidified and its viscosity is very large, say of the order of that of the
mantle, which is almost solid (hence about 1024 poises, much higher than the viscosity of the terrestrial
magma which ranges from 104 and 1012 poises [42, 30]). Of course the viscosity strongly depends
on temperature, which in turn decreases in time during the process of cooling of the satellite. One
could look at the literature for profiles of temperatures versus time [55, 21] or for the dependence
of viscosity on temperature in fluids [49]. A detailed discussion on viscosity evolution during the
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solidification of the satellite stands as a very hard problem, and in fact such an issue is not widely
studied [45, 18, 51]; see however [46], where the despinning of Saturn’s satellite Iapetus is studied
and an Arrhenius law is assumed to describe the temperature dependence of the viscosity, and [47],
where the despinning of Mercury is related to the thermal evolution of the planet.

As far as the satellite can be considered essentially fluid, the damping coefficient γ has to be
formed with the following physical quantities: the viscosity η of the magmatic fluid constituting the
satellite, the mass M of the satellite, the equatorial deformation 2h due to the tides and the angular
velocity ωT . Starting from the rescaled equation (4.1), one expects γ ∝ ηR2h/Iz, with Iz ∝ MR2;
then, by rescaling time t → t/ωT , an appropriate choice for γ turns out to be γ ∼ ηh/MωT .
The evolution of magma from the initial melt passes through the formation of cumulate rocks and
fractional crystallisation, leading to the reduction of the outer liquid layer with low viscosity and the
accretion of the internal, highly viscous core; for a more detailed discussion see for instance [51] in the
case of the Moon. Therefore, when the solidification process attained a high stage of advancement, a
different model for the friction has to be taken. If the satellite is essentially solid, with a thin external
fluid layer (ocean), one can neglect the fluid part, because of its very low viscosity, and concentrate
on the solid core. One can use the analysis in Appendix B, in the limit case σo � σc and very high
rigidity µ, so that the core deformation in (C.10b) is very small. Also in this case, one can express
γ in terms of the involved physical quantities and, again on the basis of dimensional arguments, set
γ ∼ µh/Mω2

T . Therefore, to sum up, friction increases with viscosity up to a certain value. Once
such a value is reached, at which the satellite can be considered essentially a solid with very high
rigidity.

The despinning time TD represents the time which the satellite needs to be really attracted into
a resonance. Hence (see Appendix A) TD = O(γ−1), where γ is the quantity appearing in (4.1). Of
course, we would want that the solidification time be larger or at least comparable with despinning
time. This is the case if one can assume TS ≈ 108 years and TD ≈ 1/γ, with γ as in Table B.2 (which
yields TD ≈ 106 years).

F Numerical details

The numerical results have been found by running a variety of computer programs which implement
different algorithms. The main algorithms used were (i) a standard Runge-Kutta integrator with
automatic step-size control [44]; (ii) the Bulirsch-Stoer algorithm [44], which extrapolates the step-
size to zero and is suitable for high-accuracy computation; and (iii) a numerical implementation of
the Frobenius method. Of these, (ii) is the slowest, but serves to confirm the results obtained from
the other methods. Most of the data in this paper came from (i) and (iii), of which (iii) is the fastest.
This is because the use of series often enables large time steps to be taken. On the assumption that
the solution to the differential equation around a point t = t0 can be expressed as a power series
in t, we obtain a (nonlinear) recursion formula for the coefficients in this series. In principle, as
many terms as desired can be computed, and in practice about 25 worked well. For a given initial
condition, this series enables us to compute x and ẋ for |t− t0| < R, for some R that depends on the
desired accuracy, the initial conditions, and t0. The size of the step, t− t0, is chosen as the one that
makes the absolute value of the right-hand side of the differential equation, which should of course
be zero, smaller than some tolerance: 10−12 was used here. Typical step sizes ranged between about
0.29 and 10.0, with 0.7 being chosen about 50% of the time. Even the smallest step size is many
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times larger than that which would be used in a Runge-Kutta implementation.

The initial conditions are chosen randomly and are uniformly distributed inside the square Q.
Since we seek detailed estimates of the relative areas of the basins of attraction, at least up to the
first decimal digit whenever possible, we have to take many initial conditions: certainly 1000 initial
conditions, as in [15, 13] is not enough. For the data to be reliable to the first decimal place, with a
95% confidence level, we found that 1 000 000 initial conditions need to be taken inside the square Q
defined in Section 2. A statistically rigorous justification for this confidence level, given the number of
initial conditions, can be found in [56, chapter 9]. Thus, for the relative areas in Table 2.3, we used up
to 1 000 000 initial conditions except for smallest values of γ (500 000 initial condition for γ = 0.00005,
150 000 initial condition for γ = 0.00001 and 50 000 initial conditions for γ = 0.000005). Analogously
we considered 1 000 000 initial conditions for ε = 0.5 (Table 5.1) and 500 000 initial conditions for
ε = 0.01 (Table 5.2). Also in Section 3 we considered as many initial data as possible: 1 000 000
initial conditions for larger γ (γ = 0.015), 500 000 for γ = 0.005 and 250 000 for the smallest value
γ = 0.0005. As a general rule, the smaller γ is, the longer the integration time and hence, by taking γ
smaller, we also need to diminish the number of initial conditions, in order that the computation time
does not become prohibitively long. However, the error on the relative areas becomes larger. That
said, the general scenario described in Section 3 seems clear and well supported by the numerics.

As already noted in [48], for γ very small, the basins of attraction are spread out over the entire
phase space and become very sparse. Thus, if one wants to detect which basin a given initial condition
belongs to, very high numerical precision is needed.

Finally, the integration time Tint must be chosen in such a way that all trajectories reach the
attractor (within a reasonably fixed accuracy). For instance, one can take Tint = N/γ0, with N = 20.
Therefore, in order to investigate the dynamics for very small values of the damping coefficient, Tint
has to be very large.

The conclusion is that we have to follow the trajectories of a large number of initial conditions,
for very long times and with very high accuracy. Of course, this is at odds with obtaining results
within a a reasonable time, so that we need to reach a compromise. This has led us to the choice
described above.
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