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We analyze the Meißner effect from first principles of quantum mechanics. We show in particular
the existence of superconducting states minimizing the magnetic free–energy of a BCS–like model
and carrying surface currents which annihilate the total magnetic induction inside the bulk in the
thermodynamic limit. This study is a step towards a complete explanation of the Meißner effect
from a microscopic model. It remains indeed to prove that those states are dynamically stable, i.e.,
quasi–stationary at low temperatures. Note that our analysis shows that the Meißner effect is not
necessarily related to an effective magnetic susceptibility equal to −1.

I. INTRODUCTION

The so–called Meißner (or Meißner–Ochsenfeld) effect
was discovered in 1933 by the physicists W. Meißner
and R. Ochsenfeld, twenty two years after the discov-
ery of mercury superconductivity in 1911. This rep-
resented an important experimental breakthrough and
demonstrated, among other things, that superconductors
cannot be seen as perfect classical conductors. This ef-
fect is well–described by phenomenological theories like
the celebrated London equations. We observe however
that its microscopic origin is far from being fully under-
stood almost eighty years later. In other words, there is
no rigorous microscopic foundation of the Meißner effect
starting from first principles of quantum mechanics only.
In our papers [1, 2] we have recently showed, from a

microscopic theory, a weak version of the Meißner ef-
fect defined by the absence of magnetization in presence
of superconductivity, provided the (space–homogeneous)
external magnetic induction does not reach a critical
value. [3, Section 6.2] extends these results to space–
inhomogeneous magnetic inductions. Nevertheless, the
(full) Meißner effect also includes the existence of cur-
rents, concentrated near the surface of the bulk, which
annihilate the total magnetic induction inside the super-
conductor. This phenomenon has not been analyzed in
[1–3]. Such a study is the main subject of the present
paper.
We base our microscopic theory on the strong–coupling

BCS–Hubbard model with a self–generated magnetic in-
duction, which is driven by a space–inhomogeneous ex-
ternal magnetic induction. Indeed, the strong–coupling
BCS–Hubbard model at fixed magnetic induction shows
qualitatively the same density dependency of the crit-
ical temperature observed in high–Tc superconductors
[1, 2]. Depending on the choice of parameters, prop-
erties of conventional superconductors are also qualita-
tively well–described by such a model. These assertions
[1, 2] directly result from the method described in [4],
which gives access to domains of the phase diagram usu-
ally difficult to reach via other standard mathematical
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tools.
The analysis of the (full) Meißner effect from first prin-

ciples of quantum mechanics is highly non–trivial and in
the present paper we provide results concerning the free–
energy, taking into account contributions of the mag-
netic energy due to currents. Note indeed that Gibbs
states of the model under consideration do not mani-
fest currents, at least for space–homogeneous external
magnetic inductions. By adding a magnetic term to the
usual free–energy density (similar to [5, Eq. (2.11)]), our
results show that the minimizers of this new magnetic
free–energy can create surface currents which annihilate
the total magnetic induction inside the bulk, in the ther-
modynamic limit. The corresponding Euler–Lagrange
equations for these minimizers seem to indicate that an
effective magnetic susceptibility equal to −1 is not the
mechanism behind the Meißner effect.

Note that such magnetic free–energy minimizing states
should be, in some sense, stable with respect to dynam-
ics to be named equilibrium states. Their existence is
only a necessary condition to have the Meißner effect.
Indeed, also for high temperatures, we can have mini-
mizers of the magnetic free–energy density suppressing
the magnetic induction within the bulk. This comes
from the fact that the finite volume system can pro-
duce any current density by creating local superconduct-
ing patches within a negligible volume. Therefore, we
conjecture that the quantum dynamics rapidly destroys
all currents in the non–superconducting phase. In par-
ticular, the second step will be to show the dynamical
instability/stability of such a phenomenon in the non–
superconducting/superconducting phase. Such an analy-
sis is not performed here because it requires an extension
of [4] to include dynamics. We postpone it to a further
paper.

Finally, note that thermodynamic studies of the
Meißner effect have been performed in [5, 6] from an
axiomatic point of view. They are based on assump-
tions, not proven for some concrete microscopic model,
like the existence of equilibrium states with off–diagonal
long range order. In the same spirit, we also discuss
some model independent conditions for the existence of
the Meißner effect in Section VI.

The present paper is organized as follows. In Section
II we set up the quantum many–body problem at fixed
magnetic induction and give one important result con-
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cerning the possibility of having currents with no energy
cost in the thermodynamic limit. Section III explains the
Biot–Savart operator used to define magnetic inductions
from currents. The self–generated magnetic induction is
then discussed in Section IV to obtain a proper definition
of the magnetic free–energy density. The Meißner effect
is finally discussed in Sections V and VI. Section VII
explains in detail all technical proofs required to show
the assertions of previous sections. Our main result is
Theorem 12.

Notation 1 (Norms)

For any x = (x1, x2, x3) ∈ R3, |x| :=
√
x2
1 + x2

2 + x2
3.

For any subset Λ ⊂ Z, |Λ| is by definition the cardinality
of Λ. For any p ∈ N, ∥ − ∥p stands for the Lp–norm,
whereas ∥−∥ is the operator norm. Additionally, ∥−∥Tr
denotes the trace norm.

II. THERMODYNAMIC STABILITY OF
CURRENTS

The host material for superconducting electrons is as-
sumed to be a (perfect) cubic crystal. Other lattices
could also be studied, but for simplicity we refrain from
considering them. The unit of length is chosen so that
the lattice spacing in this crystal is exactly 1. We thus
use Z3 to represent the crystal. Our microscopic the-
ory is based on the strong coupling BCS–Hubbard model
studied in [1, 2].
In absence of magnetic induction, it is defined in the

box Λl := {Z ∩ [−l, l− 1]}3 of side length 2l for l ∈ N by
the Hamiltonian

Tl :=−µ
∑
x∈Λl

(nx,↑ + nx,↓) + 2λ
∑
x∈Λl

nx,↑nx,↓

− γ

|Λl|
∑

x,y∈Λl

a∗x,↑a
∗
x,↓ay,↓ay,↑ (1)

with real parameters µ, λ ∈ R and γ ∈ R+ (i.e., γ > 0).
The operator a∗x,s resp. ax,s creates resp. annihilates a

fermion with spin s ∈ {↑, ↓} at lattice position x ∈ Z3

whereas nx,s := a∗x,sax,s is the particle number operator
at position x and spin s.
The first term of the right hand side of (1) represents

the strong coupling limit of the kinetic energy, with µ
being the chemical potential of the system. Note that
this “strong coupling limit” is also called “atomic limit”
in the context of the Hubbard model. See, e.g., [7, 8]. For
further discussions, we also strongly recommend Section
VI (cf. 2.).
The second term in the right hand side of (1) represents

the (screened) Coulomb repulsion as in the celebrated
Hubbard model. So, the parameter λ should be taken as
a positive number but our results are also valid for any
real Hubbard coupling λ ∈ R.
The last term is the BCS interaction written in the

x–space since

γ

|Λl|
∑

x,y∈Λl

a∗x,↑a
∗
x,↓ay,↓ay,↑ =

γ

|Λl|
∑

k,q∈Λ∗
l

ã∗k,↑ã
∗
−k,↓ãq,↓ã−q,↑

with Λ∗
l being the reciprocal lattice of quasi–momenta

and where ãq,s is the corresponding annihilation opera-
tor for s ∈ {↑, ↓} and q ∈ Λ∗

l . Observe that the ther-
modynamics of the model for γ = 0 can easily be com-
puted. Therefore, we restrict the analysis to the case
γ ∈ R+. Note also that the BCS interaction can imply a
superconducting phase. The mediator implying this ef-
fective interaction does not matter here, i.e., it could be
a phonon, as in conventional type I superconductors, or
anything else.

We now fix a magnetic induction B ∈ L2(C;R3), where
C := [−1/2, 1/2]3. The strong coupling BCS–Hubbard
model with space–inhomogeneous magnetic induction is
then defined by Hl := Tl +Ml with

Ml : = −ϑ
∑
x∈Λl

(
a∗x,↑ax,↓ + a∗x,↓ax,↑

) ∫
C

b1

(
x+ y

2l

)
d3y

+iϑ
∑
x∈Λl

(
a∗x,↑ax,↓ − a∗x,↓ax,↑

) ∫
C

b2

(
x+ y

2l

)
d3y

−ϑ
∑
x∈Λl

(nx,↑ − nx,↓)

∫
C

b3

(
x+ y

2l

)
d3y (2)

for any fixed parameter ϑ ∈ R+ (ϑ > 0) and

B (t) ≡ (b1 (t) ,b2 (t) ,b3 (t)) ∈ R3

for t ∈ C almost everywhere (a.e.). Indeed, the terms of
Ml correspond to the interaction between spins and the
total magnetic induction B((x + y)/(2l)) within a unit
cell C around x ∈ Λl.

Note that, for continuous fields B ∈ C0(C;R3) and in
the thermodynamic limit l → ∞,∫

C

B

(
x+ y

2l

)
d3y = |Λl|

∫
(2l)−1C

B
( x

2l
+ t
)
d3t

= B
( x

2l

)
+ o(1) . (3)

If B is continuous, then we can equivalently take either
(a) the integral of B((x+ y)/(2l)) (with respect to y) in
the unit cell C or (b) the value B(x/(2l)) in the definition
of Ml. In fact, the thermodynamic limit of both systems
(a)–(b) are identical for continuous magnetic inductions
B ∈ C0(C;R3) (cf. Section VII), but an extension of
our results to all B ∈ L2(C;R3) leads us to consider the
definition (a) in (2) and not (b). Additionally, (a) is
also more natural if one considers B as an effective field
coming from a quantum magnetic induction. See, e.g.,
[4].

The scaling factor (2l)−1 used in (2) means that the
space fluctuations of the inhomogeneous magnetic induc-
tion involve a macroscopic number of lattice sites. This
obviously does not prevent the space scale of these fluc-
tuations from being extremely small as compared to the
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side–length 2l of the box Λl. Similarly, we could also
model mesoscopic fluctuations meaning that – in the
thermodynamic limit – the space scale of inhomogeneities
is infinitesimal with respect to the box side–length 2l
whereas the lattice spacing is infinitesimal with respect
to the space scale of inhomogeneities. See, e.g., [3, Sect.
5]. Microscopic fluctuations can also be handled pro-
vided they are periodic, see [3, Sect. 3]. Both situations
(or any combination of them with the macroscopic one)
are however omitted to simplify discussions and proofs.
We observe that Tl, Ml and Hl = Tl + Ml belong

to the CAR C∗–algebra UΛl
with identity 1 and gen-

erators {ax,s}x∈Λl,s∈{↑,↓} satisfying the canonical anti–
commutation relations (CAR):{

ax,sax′,s′ + ax′,s′ax,s = 0 ,

ax,sa
∗
x′,s′ + a∗x′,s′ax,s = δx,x′δs,s′1 .

(4)

UΛl
is isomorphic to the C∗–algebra L(

∧
HΛl

) of all lin-
ear operators on the fermion Fock space

∧
HΛl

, where

HΛl
:=
⊕
x∈Λl

Hx . (5)

Here, for every x ∈ Z3, Hx is a copy of some fixed
two dimensional Hilbert space H with orthonormal basis
{| ↑⟩, | ↓⟩}. States on the C∗–algebra UΛl

are linear func-
tionals ρ ∈ U∗

Λl
which are positive, i.e., for all A ∈ UΛl

,
ρ(A∗A) ≥ 0, and normalized, i.e., ρ(1) = 1. We denote
by EΛl

⊂ U∗
Λl

the set of all states on UΛl
for any l ∈ N.

It is well–known that the physics of the system at
thermodynamical equilibrium is given by the Gibbs state
gl ∈ EΛl

defined by

gl (A) := Trace∧HΛl
(dgl

A) , A ∈ UΛl
, (6)

with density matrix

dgl
:=

e−βHl

Trace∧HΛl
(e−βHl)

(7)

for any inverse temperature β ∈ R+ and l ∈ N. Indeed,
given any state ρ ∈ EΛl

on UΛl
, the energy observable

Hl = H∗
l ∈ UΛl

fixes the finite volume free–energy den-
sity

fl (B, ρ) := |Λl|−1 {
ρ(Hl)− β−1Sl(ρ)

}
(8)

at fixed magnetic induction B ∈ L2(C;R3) and inverse
temperature β ∈ R+ for any l ∈ N. If B ∈ L2 ≡
L2(R3;R3), then we set fl(B, ρ) ≡ fl(B|C, ρ). The first
term in fl is the mean energy per unit of volume of the
physical system found in the state ρ ∈ EΛl

, whereas Sl

is the von Neumann entropy defined, for all ρ ∈ EΛl
, by

Sl(ρ) := Trace∧HΛl
(η(dρ)) ≥ 0 . (9)

Here, η(t) := −t log(t) for t ∈ R+, η(0) := 0, and dρ
is the density matrix of ρ ∈ EΛl

. The state of a sys-
tem in thermal equilibrium and at fixed mean energy per

unit of volume maximizes the entropy, by the second law
of thermodynamics. Therefore, it minimizes the free–
energy density functional ρ 7→ fl(B, ρ). Such well–known
arguments lead to the study of the variational problem
inf fl (B, EΛl

). The value of this variational problem is
directly related to the so–called pressure pl (B) as

pl (B) := (β |Λl|)−1 lnTrace∧HΛl

(
e−βHl

)
= − inf

ρ∈EΛl

fl (B, ρ) (10)

for any magnetic induction B ∈ L2(C;R3). (If B ∈ L2,
then pl(B) ≡ pl(B|C).) For any β ∈ R+ and l ∈ N, the
unique solution of this variational problem is precisely
the Gibbs state gl ∈ EΛl

(6)–(7). This fact is named
in the literature the passivity of Gibbs states and is a
consequence of Jensen’s inequality.

Our microscopic approach to the Meißner effect re-
quires a definition of (charged) currents. Indeed, we
would like to study the existence of currents near the
surface of the bulk of the model. To this end, we note
that, for all x ∈ Λl,

d

dt

{
eitHl (nx,↑ + nx,↓) e

−itHl
}

= eitHli [Hl, nx,↑ + nx,↓] e
−itHl

and

i [Hl, nx,↑ + nx,↓] =
∑
y∈Λl

4γ

|Λl|
Im
(
a∗y,↑a

∗
y,↓ax,↓ax,↑

)
.

The quantum observable describing the (charged) current
from x to y is thus defined by

Ix,yl :=
4γ

|Λl|
Im
(
a∗x,↑a

∗
x,↓ay,↓ay,↑

)
(11)

for any x, y ∈ Λl. These current observables naturally
give rise to a magnetic induction functional which we
define below by using the Biot–Savart law.

Indeed, given any state ρ ∈ EΛl
, we interpret the real

number ρ (Ix,yl ) as the current passing from x to y. We
use this observation to define a current density induced
by the system in the state ρ. One expects that the full
current ρ (Ix,yl ) between x and y is smoothly distributed
in some region of size |x− y| around (x+ y)/2. The cur-
rent profile is fixed by an arbitrary smooth, compactly
supported, spherical symmetric and non–negative func-
tion ξ ∈ C∞

0 ≡ C∞
0 (R3;R3) such that ξ (0) > 0,∫

R3

ξ (t) d3t = 1 and

∫
R2

ξ (0, t2, t3) dt2dt3 = 1 . (12)

For any l ∈ N, the current density induced by the system
in the state ρ ∈ EΛl

at x ∈ R3 is defined by

ρ 7→ jρ (x) :=
∑

y,z∈Λl, y ̸=z

z − y

|z − y|3
ξ

(
x− y+z

2

|z − y|

)
ρ (Iy,zl ) .

(13)
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It defines a map j from EΛl
to the real vector space

C∞
0 of compactly supported smooth fields. This map is

named here the current density functional of the box Λl.
Observe that the second condition of (12) ensures that
the flow of the field

z − y

|z − y|3
ξ

(
x− y+z

2

|z − y|

)
ρ (Iy,zl )

through the hyperplane perpendicular to z−y at (y+z)/2
equals the full current ρ (Iy,zl ) passing from y to z.
As we are interested in magnetic effects induced by the

quantum system, for any state ρ ∈ EΛl
, we shall consider

the smooth magnetic induction Bρ ∈ C∞ ≡ C∞(R3;R3)
created by the current density jρ together with some fixed
external magnetic induction Bext. Its definition uses the
Biot–Savart operator S (Section III) and requires further
explanations given in Section IV. We only note at this
point that the smooth magnetic induction Bρ has to be
rescaled in order to be compared to B, see (2). We thus

define the rescaled magnetic induction B
(l)
ρ ∈ C∞ by

B(l)
ρ (t) := Bρ (2lt) , t ∈ R3 , (14)

for all l ∈ N. Keeping in mind the Biot–Savart law (cf.
(47)), we similarly need to define a rescaled current den-

sity j
(l)
ρ ∈ C∞

0 from the current density jρ as follows:

j(l)ρ (t) := 2l jρ(2lt) , t ∈ R3 , (15)

for all l ∈ N and ρ ∈ EΛl
. Here, the support

supp(j(l)ρ ) := {t ∈ R3 : j(l)ρ (t) ̸= 0} (16)

of j
(l)
ρ is contained in a sufficiently large box [−L,L]3 ⊃ C

which depends on the size of the support of the function
ξ used in the definition of jρ but not on the length l ∈ N.
However, because of the prefactor |Λl|−1 in the definition

(11) of current observables, j
(l)
ρ is strongly concentrated

inside C, as l → ∞.
The system also shows magnetization due to spinning

charged particles, electrons in our case. The magnetiza-
tion observables are seen as coordinates of an observable
vector Mx := (mx

1 ,m
x
2 ,m

x
3) where, for all x ∈ Z3,

mx
1 : = ϑ

(
a∗x,↑ax,↓ + a∗x,↓ax,↑

)
,

mx
2 : = iϑ(a∗x,↓ax,↑ − a∗x,↑ax,↓) , (17)

mx
3 : = ϑ (nx,↑ − nx,↓) .

For any strictly positive fixed parameter ϵ ∈ R+, let

ξϵ(t) := ϵ−3 ξ
(
ϵ−1t

)
, t ∈ R3 . (18)

Then, for any l ∈ N and ρ ∈ EΛl
, we define the coarse–

grained magnetization density at x ∈ R3 by

ρ 7→ mρ (x) :=
1

|Λl|
∑
y∈Λl

(2l)−1y+supp(Ξϵ)⊂C

Ξϵ

(
x− y

2l

)
ρ (My) ,

(19)

where

Ξϵ (t) :=

∫
C

ξϵ

(
t− z

2l

)
dz , t ∈ R3 ,

for any ϵ ∈ R+, whereas

ρ (Mx) :=
(
ρ(mx

1) , ρ(mx
2), ρ(mx

3)
)
∈ R3 . (20)

It is again a map from EΛl
to C∞

0 . Similar to the rescaled

magnetic induction B
(l)
ρ ∈ C∞, the rescaled magnetiza-

tion density is defined by

m(l)
ρ (t) := mρ (2lt) , t ∈ R3 , (21)

for any state ρ ∈ EΛl
.

The use of Ξϵ in the definition of the magnetization
density is technically convenient but not essential for our
analysis. It is only a specific choice of a function with in-
tegral equal to 1 that implements the coarse–graining of
the magnetization. The first condition of (12) ensures in-
deed that the full magnetization produced by one lattice
site x ∈ Λl equals ρ (M

x).
The restriction

(2l)
−1

y + supp (Ξϵ) ⊂ C

in the definition of mρ guarantees that supp(m
(l)
ρ ) ⊂ C.

This is also technically convenient. We add that the scal-

ing factor (2l)−1 in (19) means that m
(l)
ρ ∈ C∞

0 is a
macroscopic magnetization, used in Section IV to define
the (also macroscopic) self–generated magnetic induction

B
(l)
ρ via the Maxwell equations in matter.

Remark 2 (Coarse–graining of the magnetization)

The coarse–grained magnetization density m
(l)
ρ is defined

for all ϵ ∈ R+. However, we are only interested in the

case where the space–scale of the coarse–graining of m
(l)
ρ

is very small as compared to the side length of the unit
box C. This corresponds to take ϵ << ϵξ := 1/(2Rξ) with

Rξ := sup {|x| : ξ (x) ̸= 0} ∈ R+ (22)

being the radius of the support of the function ξ ∈ C∞
0 .

Remark 3 (Smooth from discrete)
The quantum many–body problem considered here uses
discrete space coordinates. On the other hand, the
Maxwell equations require differentiable fields. We have
thus defined smooth magnetization and current densities
mρ, jρ on R3. The latter is done without introducing any
arbitrariness in our thermodynamic results since we take
ϵ → 0+ after the thermodynamic limit l → ∞. The ther-
modynamics then becomes independent of the choice of
ξ ∈ C∞

0 .

We give now one of our main (technical) result about
the creation of any smooth current density without en-
ergy costs:
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Theorem 4 (Thermodynamic stability of currents)
For every B ∈ L2(C;R3) and any smooth current density
j ∈ C∞(C;R3), there are states ρl ∈ EΛl

for l ∈ N
satisfying

lim
l→∞

∣∣fl (B, ρl)− inf
ρ∈EΛl

fl (B, ρ)
∣∣ = 0

(cf. (8)–(9)) as well as

lim
l→∞

sup
t∈R3

∣∣j(l)ρl
(t)− j(t)

∣∣ = 0 .

Proof. The proof is a direct consequence of Lemmata 19
and 20 with, for instance, η⊥ = 0.8 and η = 0.95. In-
deed, for any j1 ∈ C∞

0 (R3;R), we construct in Lemma 20
a sequence {ρl}l∈N of approximating minimizers which
creates in the thermodynamic limit a current density
(j1(t), 0, 0) at rescaled (macroscopic) position t ∈ C. In
the same way, one constructs a sequence of approximat-
ing minimizers which creates in the thermodynamic limit
a current density (0, j2(t), 0) or (0, 0, j3(t)) at t ∈ C. Using
the convexity of the free–energy density and the affinity
of the current density functional ρ 7→ jρ together with
a convex combination of such three approximating mini-
mizers, one proves the assertion. 2

Remark 5 (Dynamical stability of currents)
The proof of Theorem 4 is based on the existence of meso-
scopic superconducting domains in the (macroscopic)
bulk, see (111)–(113). Therefore, we expect that the
quantum dynamics rapidly destroys all currents jρl

in the
non–superconducting phase, even if this dynamics does
not change the free–energy density.

Theorem 4 shows that the macroscopic system can cre-
ate any smooth current density j by paying an infinites-
imal energy price in the thermodynamic limit. Indeed,
{ρl}l∈N is a sequence of approximating minimizers of the
free–energy density functional ρ 7→ fl(B, ρ) in the ther-
modynamic limit l → ∞. Therefore, one could use this
phenomenon to create currents near the surface of the
bulk which annihilate the magnetic induction inside the
box Λl. This fact suggests the existence of a Meißner
effect for the model under consideration.

Note however that the true minimizer of the free en-
ergy density, i.e., the Gibbs state (6)–(7), does not man-
ifest any current, at least for space–homogeneous mag-
netic inductions B on C. This can be seen by using the
symmetry properties of the model Hl. Therefore, one
should also take into account the energy carried by the
total magnetic induction, by adding a magnetic term to
the free–energy density. Minimizers of this new magnetic
free–energy density functional do carry currents, in gen-
eral.

Such a magnetic term is introduced in Section IV, after
the definition of the Biot–Savart operator S given in the
next section.

III. THE BIOT–SAVART OPERATOR

The energy contained in the static configuration B of
the total magnetic induction is given as usual by

Emag(B) :=
1

2
∥B∥22 :=

1

2

∫
R3

|B(t)|2 d3t . (23)

See, e.g., [9, Chap. 5, 6] for an interesting derivation of
the magnetic energy. As a consequence, we only consider
magnetic inductions B which belong to the (real) Hilbert
space L2 ≡ L2(R3;R3) with L2–norm ∥ − ∥2 and scalar
product defined by

⟨B1,B2⟩2 :=

∫
R3

B1 (t) ·B2 (t) d
3t , B1,B2 ∈ L2 . (24)

A dense set of L2 is of course given by the real vector
space C∞

0 ≡ C∞
0 (R3;R3) of compactly supported smooth

fields.
Units have here been chosen so that the magnetic per-

meability of free space equals 1, keeping in mind that the
unit of length is already fixed to have a lattice spacing
also equal to 1. Hence, a static magnetic induction B
and a current density j satisfy in our units the Maxwell
equation ∇× B = j.

Now therefore, the natural Hilbert space H of current
densities is defined as follows:

⟨j1, j2⟩H :=
1

4π

∫
R3

∫
R3

j1 (t) · j2 (s)
|t− s|

d3t d3s, j1, j2 ∈ C∞
0 ,

defines a (energy) scalar product in the real vector space
C∞

0 of compactly supported smooth current densities.
This is easily seen by using the Fourier transform F . In
particular, the (magnetic energy) norm

∥j∥H := ⟨j, j⟩1/2H , j ∈ C∞
0 , (25)

clearly satisfies the parallelogram identity and we define
the Hilbert space H ≡ (H, ⟨−,−⟩H) to be the comple-
tion of (C∞

0 , ⟨−,−⟩H). The divergence–free subspaces of

respectively H and L2 are isomorphic as Hilbert spaces.
One natural isomorphism is given by the Biot–Savart op-
erator S defined below.

Observe that the Fourier transform F defines a unitary
map from H to L2(R3, |k|−2

d3k;R3). Since

L2(R3, |k|−2d3k;R3) ↪→ L2(R3, (|k|2 + 1)−1d3k;R3) ,

H can be seen as a subspace of distributions in
W−1,2(R3;R3), where W−1,2(R3;R3) is the dual of the
Sobolev space W 1,2(R3;R3). The energy interpretation
of the expression defining the norm ∥−∥H above is well–
known (see (38) below). Nevertheless, remark that, at
least to our knowledge, the space H does not seem to
have been previously used in a similar context.

Note further that, for any arbitrary smooth compactly
supported field Ψ ∈ C∞

0 , there is a unique (Helmholtz)
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decomposition Ψ = Ψ∥+Ψ⊥ with Ψ∥,Ψ⊥ ∈ C∞ (not nec-
essarily compactly supported), ∇×Ψ∥ = 0, ∇ ·Ψ⊥ = 0,
and Ψ∥(t),Ψ⊥(t) → 0, as |t| → ∞. Moreover, Ψ⊥ is
the curl of some smooth field whereas Ψ∥ is the gradi-
ent of a smooth function. This well–known result is the
Helmholtz (decomposition) theorem. See, e.g., [10, Sec-
tion 9.2, Theorem 3]. The fields Ψ∥ and Ψ⊥ are some-
times called the longitudinal and transverse components
of Ψ, respectively.
Indeed, for any j ∈ C∞

0 , j∥ = P ∥j and j⊥ = P⊥j,
where P ∥, P⊥ are the orthogonal projections respectively
defined in Fourier space by

F [P ∥j](k) : =
k

|k|2
k · F [j] (k) , (26)

F [P⊥j](k) : = F [j] (k)− k

|k|2
k · F [j] (k) , (27)

for k ∈ R3 and all current densities j in the dense subset
C∞

0 ⊂ H. Recall that F stands for the Fourier transform.
Straightforward computations show that P ∥j, P⊥j ∈ C∞

are smooth functions satisfying

∇× [P ∥j] = 0 , ∇ · [P⊥j] = 0 ,

and [P ∥j](t), [P⊥j](t) → 0, as |t| → ∞.
We denote again by P ∥ and P⊥ the unique orthogonal

projections with ranges being respectively the closures of
P ∥C∞

0 and P⊥C∞
0 in H. The sets P ∥H and P⊥H are

clearly orthogonal. In fact, these projections can still be
explicitly defined a.e. by (26)–(27) for any j ∈ H. The
same construction can be carried out in L2 and so, P ∥

and P⊥ are also seen as mutually orthogonal projections
acting on L2. In fact,

H = P ∥H⊕ P⊥H , L2 = P ∥L2 ⊕ P⊥L2 . (28)

In other words, P⊥ = 1−P ∥ and P⊥P ∥ = P ∥P⊥ = 0 as
operators acting either on H or L2.
We define now the restricted Biot–Savart operator S0

on the dense set C∞
0 ⊂ H of smooth, compactly sup-

ported current densities j ∈ C∞
0 by

S0(j) (t) :=
1

4π

∫
R3

(∇× j) (s)

|t− s|
d3s , t ∈ R3 . (29)

In Fourier space, for any j ∈ C∞
0 ,

F [S0 (j)](k) =
ik

|k|2
× F [j](k) , k ∈ R3 . (30)

Using the elementary equality

Θ× (Ψ× Φ) = (Θ · Φ)Ψ− (Θ ·Ψ)Φ

together with (27), we remark that

ik × F [S0 (j)](k) = F [P⊥j](k) , k ∈ R3 . (31)

In other words, S0(j) and j satisfy the (generalized)
Maxwell equation

∇× S0(j) = j⊥ , j ∈ C∞
0 . (32)

Additionally, we infer from (30) that

∇ · S0(j) = 0 , j ∈ C∞
0 . (33)

The restricted Biot–Savart operator S0 also maps the
dense set C∞

0 ⊂ H of current densities to the space L2 of
magnetic inductions. Indeed, for any j1, j2 ∈ C∞

0 ,

⟨S0(j1),S0(j2)⟩2 =

∫
R3

S0(j1)(t) · [∇×A (j2) (t)]d
3t

with the vector potential

A (j2) (t) :=
1

4π

∫
R3

j2 (s)

|t− s|
d3s , t ∈ R3 . (34)

By using the well–known identity

∇ · (Ψ× Φ) = Φ · ∇ ×Ψ−Ψ · ∇ × Φ (35)

for smooth fields Ψ,Φ ∈ C∞, the Maxwell equation (32),
the Gauss Theorem, and decay of S0(j1)(t)×A (j2) (t) as
|t| → ∞, one gets

⟨S0(j1),S0(j2)⟩2 =

∫
R3

[∇× S0(j1)(t)] · A (j2) (t)d
3t

=

∫
R3

j⊥1 (t) · A (j2) (t)d
3t

=
⟨
j⊥1 , j2

⟩
H

.

The above computation is standard. Since P ∥, P⊥ are
mutually orthogonal projections acting on H, we infer
from the last equality that

⟨S0(j1),S0(j2)⟩2 =
⟨
j⊥1 , j⊥2

⟩
H
, j1, j2 ∈ C∞

0 . (36)

Therefore, we can extend S0 to a bounded operator S
acting on H, named the Biot–Savart operator. By (36),
the operator S restricted to P⊥H is an isometry:

⟨S(j1),S(j2)⟩2 =
⟨
j⊥1 , j⊥2

⟩
H

, j1, j2 ∈ H . (37)

In particular,

Emag(S(j)) :=
1

2
∥S(j)∥22 =

1

2

∥∥j⊥∥∥2
H

, j ∈ H . (38)

Clearly, kerS = P ∥H, i.e., S(j) = S(j⊥).
Note that Equality (30) can be extended to all j ∈ H

because the Fourier transform F is a unitary map from
H to L2(R3, |k|−2

d3k;R3). In other words, for all j ∈ H,

F [S (j)](k) =
ik

|k|2
× F [j](k) , k ∈ R3 (a.e.) . (39)

Since (27) holds on the whole space H, we can also extend
(32) to get

ik × F [S (j)](k) = F [P⊥j](k) , k ∈ R3 (a.e.) ,

for all j ∈ H, where

F [P⊥j] ∈ L2(R3, |k|−2
d3k;R3) .
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Consequently, the curl ∇×, which is seen here as an op-
erator from the Hilbert space P⊥L2 to P⊥H, defined in
Fourier space by ik× is the left inverse of S on the sub-
space P⊥H of divergence–free currents. In particular,
S(j) and j satisfy the (generalized) Maxwell equation

∇× S(j) = j⊥ , j ∈ H . (40)

Analogously, one shows that ∇× : P⊥L2 → P⊥H is
the right inverse of S|P⊥L2 :

S(∇× B) = B , B ∈ P⊥L2 .

In particular, by (37), S : P⊥H → P⊥L2 is an isomor-
phism of Hilbert spaces.
Similar to (33), one can use (39) to get also that

∇ · S(j) = 0 , j ∈ H ,

i.e., S(H) ⊆ P⊥L2. Here, ∇· is defined in Fourier space
by ik· .
For further details on the Biot–Savart operator we rec-

ommend [11] where the latter is studied on the euclidean
space R3. The results of [11] are also extended to the
three–dimensional sphere in [12]. Note, however, that in
[11, 12] the magnetic induction is restricted to bounded
domains and the energy norm ∥ − ∥H is not used. For
example, in [11], the Biot–Savart operator is seen as a
map from the Hilbert space L2(Λ;R3) to L2(Λ;R3) with
Λ ⊂ R3 and |Λ| < ∞.

Remark 6 (Vector potentials)
To any j ∈ C∞

0 we associate a vector potential A (j) ∈
C∞ as defined by (34). The definition of vector potentials
A (j) for all j ∈ H is given in Section VIIA. In this
case, A (j) is not anymore a function but a distribution,
in general.

IV. MAGNETIC FREE–ENERGY DENSITY

We fix a smooth external magnetic induction Bext ∈
C∞ ≡ C∞(R3;R3) that fulfills the Maxwell equation ∇ ·
Bext = 0 and has a finite magnetic energy:

Emag(Bext) :=
1

2
∥Bext∥22 :=

1

2

∫
R3

|Bext (t)|2 d3t < ∞ .

This field results from some fixed divergence–free current
density jext, outside the electron (quantum) system.
More precisely, Bext = S0(jext) for jext ∈ C∞

0 ∩ P⊥H
with compact support

supp(jext) := {t ∈ R3 : jext(t) ̸= 0} ⊂ R\C . (41)

Recall that S0 is the restricted Biot–Savart operator de-
fined by (29), whereas C := [−1/2, 1/2]3. Note that the
assumption Bext ∈ C∞ is clearly not necessary since the
Biot–Savart operator S is defined for all j ∈ H. This
stronger assumption is only used to simplify arguments
using the usual Maxwell equations.

The external magnetic induction Bext can produce a

magnetization density m
(l)
ρ in the system. The latter can

happen, for instance, if one assumes that B = Bext ̸=
0 in (2) and ρ = gl is the corresponding Gibbs state.
However, there is no reason for the magnetic induction

(Bext + m
(l)
ρ ) to satisfy Gauss’s law for magnetism ∇ ·

(Bext + m
(l)
ρ ) = 0 when m

(l)
ρ ̸= 0. On the other hand,

in magnetostatics the total magnetic induction B
(l)
ρ of

the system must always satisfy ∇ · B(l)
ρ = 0. Observe

moreover that spins of electrons interact with the total
magnetic induction within the material and not only with
the external magnetic induction Bext. In other words, one

must take B = B
(l)
ρ in (2) and not B = Bext. Therefore,

it is crucial to properly define a total magnetic induction

B
(l)
ρ of the system satisfying ∇ · B(l)

ρ = 0 for any state
ρ ∈ EΛl

.

It is well–known that the magnetization density m
(l)
ρ ∈

C∞
0 creates an effective current density, named bound

current density, defined by

j(l)mρ
:= ∇×m(l)

ρ . (42)

(Recall that units have here been chosen so that the mag-
netic permeability of free space equals 1.)

Remark 7 (Transverse projection of m
(l)
ρ )

As j
(l)
mρ ∈ C∞

0 , by (32) and [10, Section 9.2, Theorem 2],

S0(j
(l)
mρ) is the unique smooth divergence–free field satis-

fying ∇×S0(j
(l)
mρ) = j

(l)
mρ . By definition of the bound cur-

rent density j
(l)
mρ , S0(j

(l)
mρ) = (m

(l)
ρ )⊥ must be the trans-

verse component (m
(l)
ρ )⊥ of m

(l)
ρ ∈ C∞

0 . In particular,

the longitudinal component (m
(l)
ρ )∥ has no effect on the

total magnetic induction.

Using Maxwell–Ampere’s law, one then gets that the

total magnetic induction B
(l)
ρ must satisfy the equation

∇×B(l)
ρ = J (l)

ρ +
∂Dρ

∂t
(43)

on R3, where

J (l)
ρ := j(l)ρ + j(l)mρ

+ jext ∈ C∞
0 (44)

is the total current density and j
(l)
ρ is the rescaled internal

(free) current density (15), whereas Dρ is the electric
induction produced by the system in the state ρ ∈ EΛl

.

If, at fixed time, (J
(l)
ρ + ∂Dρ/∂t) ∈ C∞

0 then there

is a unique B
(l)
ρ ∈ C∞ satisfying the Maxwell equations

∇ ·B(l)
ρ = 0 and (43) with B

(l)
ρ (t) → 0, as |t| → ∞. This

unique magnetic induction is given, for any ρ ∈ EΛl
and

l ∈ N, by

B(l)
ρ := S0(J

(l)
ρ + ∂Dρ/∂t) . (45)

For more details, we again recommend [10, Section 9.2,
Theorem 2].



8

Note that ∇ · j(l)mρ = 0 because j
(l)
mρ is the curl of m

(l)
ρ ,

whereas ∇ · jext = 0, by assumption. In other words,

(j
(l)
mρ) = (j

(l)
mρ)

⊥ and jext = j⊥ext. See the discussion in
Section III about the Helmholtz theorem. The current
density j

(l)
ρ ∈ C∞

0 (15) has generally a non–trivial de-

composition: the rescaled longitudinal component (j
(l)
ρ )∥

could be non–zero, i.e., ∇ · j(l)ρ ̸= 0. Because of (43), one
must have

0 =

(
∂Dρ

∂t
+ Jρ

)∥

=

(
∂Dρ

∂t

)∥

+
(
j(l)ρ

)∥
. (46)

In particular, only the divergence–free part j⊥ρ of the cur-
rent density functional jρ ∈ C∞

0 (13) is relevant with

respect to the total magnetic induction B
(l)
ρ .

As we are interested in the system at equilibrium, it is
natural to consider the stationary case. In particular, the
electric induction Dρ should be constant in time, i.e., we

shall assume that ∂Dρ/∂t = 0. As a consequence, (j
(l)
ρ )∥

should vanish, to be consistent with (46). Because of
the discrete nature of the system under consideration,

(j
(l)
ρ )∥ is generally not exactly zero at fixed l ∈ N, but

the energy norm ∥(j(l)ρ )∥∥H is taken below as arbitrarily
small at large l ∈ N, see (52).
In any case, the total magnetic induction functional is

thus defined, for any ρ ∈ EΛl
and l ∈ N, by

B(l)
ρ := S0(j

(l)
ρ + j(l)mρ

+ jext) ∈ C∞ , (47)

see (45) with ∂Dρ/∂t = 0. By definition of the operator
S0, (47) corresponds to the Biot–Savart law which gives

the total magnetic induction B
(l)
ρ of the system from the

total current density J
(l)
ρ . By construction, it is an affine

map from EΛl
to C∞

0 satisfying ∇ · B(l)
ρ = 0, cf. (33).

Using the linearity of the (restricted) Biot–Savart oper-
ator S0, Remark 7, S0 = S0P

⊥ and Bext = S0(jext), we
observe that

B(l)
ρ = S0((j

(l)
ρ )⊥) + (m(l)

ρ )⊥ +Bext (48)

and, by (32), its curl equals

∇×B(l)
ρ = (J (l)

ρ )⊥ = (j(l)ρ )⊥ + j(l)mρ
+ jext

for any ρ ∈ EΛl
and l ∈ N.

Using the magnetic energy Emag defined by (23), we
then finally introduce a magnetic, finite volume free–

energy density functional F (ϵ)
l defined, for any l ∈ N

and strictly positive parameter ϵ ∈ R+, by

ρ 7→ F (ϵ)
l (ρ) := fl(0, ρ)−⟨B(l)

ρ ,m(l)
ρ ⟩2+Emag(B

(l)
ρ ) (49)

on the set EΛl
of states. Here, −⟨B(l)

ρ ,m
(l)
ρ ⟩2 is the

magnetic interaction energy per unit of volume, whereas

Emag(B
(l)
ρ ) is the magnetic energy of Bρ per unit of vol-

ume. Indeed, by (23)–(24),

Emag(Bρ) = |Λl|Emag(B
(l)
ρ ) ,

⟨Bρ,mρ⟩2 = |Λl|⟨B(l)
ρ ,m

(l)
ρ ⟩2

(50)

are respectively the magnetic energy of Bρ (14) and, up
to a minus sign, the magnetic interaction energy with

the system in the state ρ. Note that F (ϵ)
l is defined for

all ϵ ∈ R+, but we are interested in the situation where
ϵ << ϵξ is an arbitrarily small parameter, see Remark 2.

Our choice of the magnetic interaction energy is con-
sistent with (42) and (48). This interaction energy can
equivalently be seen as a quantum magnetic interac-
tion energy with the divergence–free magnetic induction

B
(l)
ρ ∗ ξϵ as

fl(0, ρ)− ⟨B(l)
ρ ,m(l)

ρ ⟩2 = fl(B
(l)
ρ ∗ ξϵ, ρ) (51)

for any ϵ ∈ R+, l ∈ N and all states ρ ∈ EΛl
. Recall that

ξϵ ∈ C∞
0 is defined by (18).

Note that a similar conceptual approach based on self–
generated magnetic fields has been recently used in [13]
to study electrons in atoms. See also [14, 15].

Remark 8 (The E
(l)
ρ ≡ 0 assumption)

Let E
(l)
ρ be the rescaled static electric field induced by the

system in the state ρ. Considering a purely magnetic

energy implicitly corresponds to the situation where E
(l)
ρ

vanishes. One cannot expect this if the electron density is
non–constant in space. One consequence of our analysis
is that the electron density corresponding to minimizers

of F (ϵ)
l is space–homogeneous within the superconducting

regime, at large l ∈ N and small ϵ << ϵξ (cf. Remark
2). See discussions below Theorem 12 as well as Equa-
tion (89) with ht = 0. Thus, the a priori assumption

E
(l)
ρ ≡ 0 is justified within such a phase because of the

electric neutrality of matter. In fact, minimizers of F (ϵ)
l

with space–homogeneous electron density (as ϵ → 0+)
must also minimize the electromagnetic free–energy den-
sity functional

ρ 7→ F (ϵ)
l (ρ) +

ϵ0
2

∫
R3

|E(l)
ρ (t)|2 d3t

in the limit ϵ → 0+. (Here, ϵ0 is the relative permittivity
of free space.) In the non–superconducting phase, this
assumption is generally not consistent with the structure

of minimizers of F (ϵ)
l .

V. THERMODYNAMICS OF THE MEISSNER
EFFECT

We analyze now the thermodynamics corresponding to

the magnetic free–energy density functional F (ϵ)
l defined,

for any l ∈ N and ϵ ∈ R+, by (49) on the set EΛl
of

states. In finite volume, equilibrium states ωϵ,l ∈ EΛl

should minimize this functional.
We expect moreover their associated currents j

(l)
ωϵ,l to

be divergence–free in the limit l → ∞. Indeed, the sys-
tem should not be able, at thermodynamical equilibrium,
to transmit energy in form of electromagnetic waves, i.e.,
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the generated electromagnetic field should be static. The
latter is consistent with (46) and the stationarity assump-
tion ∂Dρ/∂t = 0. As a consequence, we only consider

states creating quasi–divergence–free currents j
(l)
ρ , that

is, states which belong to the set

E⊥
Λl

:=
{
ρ ∈ EΛl

: ∥(j(l)ρ )∥∥H ≤ l−κ
}

(52)

for some small, but strictly positive parameter κ ∈ R+.
(For instance, take κ < 0.05 with η⊥ = 0.8 and η = 0.95,
see proof of Theorem 4.) It means in the thermodynamic

limit l → ∞ that, for all ρ ∈ E⊥
Λl
, the current density j

(l)
ρ

is divergence–free in the sense of the energy norm.
By (37)–(38) together with (42) and (47) note that, for

any ρ ∈ EΛl
and l ∈ N,

F (ϵ)
l (ρ) = fl(0, ρ)− ⟨J (l)

ρ , j(l)mρ
⟩H +

1

2
∥(J (l)

ρ )⊥∥2H ,

where J
(l)
ρ is the total current density defined by (44)

with transverse component (J
(l)
ρ )⊥ = P⊥J

(l)
ρ . If ρ /∈

EΛl
\E⊥

Λl
then one should consider the energy of the in-

duced electric field, but we refrain from considering this
case in order to keep technical aspects as simple as pos-
sible. See also Remark 8.
Therefore, we shall consider the variational problem

P(ϵ)
l := − inf

ρ∈E⊥
Λl

F (ϵ)
l (ρ) , l ∈ N , ϵ ∈ R+. (53)

The value P(ϵ)
l is named finite volume magnetic pres-

sure by analogy with (10). Recall that the functionals

ρ 7→ B
(l)
ρ and ρ 7→ m

(l)
ρ are affine. Hence, they are both

continuous maps from E⊥
Λl

to L2, by finite dimensional-

ity of E⊥
Λl
. The map ρ 7→ fl(0, ρ) from E⊥

Λl
to R is also

continuous. Therefore, the functional F (ϵ)
l is continuous

on E⊥
Λl

for every l ∈ N, ϵ ∈ R+, and by compactness of

E⊥
Λl

and the Weierstraß theorem, the set

Ω
(ϵ)
l :=

{
ωϵ,l ∈ E⊥

Λl
: F (ϵ)

l (ωϵ,l) = inf
ρ∈E⊥

Λl

F (ϵ)
l (ρ)

}
(54)

of finite volume minimizers is non–empty for any l ∈ N
and ϵ ∈ R+. In general, such minimizers are not Gibbs

states gl ∈ EΛl
for B = B

(l)
ρ , see (6)–(7). Moreover,

F (ϵ)
l is a priori not a convex functional on E⊥

Λl
, i.e., its

minimizer may not be unique.

Remark 9 (Quantum magnetic fields)
Considering a quantum (electro–) magnetic field interact-
ing with the quantum system defined by Hl, we should ob-
tain a convex free–energy density functional. In this con-

text, F (ϵ)
l may be seen as an approximating free–energy

density functional and elements of Ω
(ϵ)
l as extreme states

of the fully quantum system, as l → ∞, ϵ → 0+. An

analogue situation is found in [4] where F (ϵ)
l would play

the rôle of [4, Definition 2.6]. In particular, one shall

instead consider the Γ–regularization of F (ϵ)
l on EΛl

and
the new set of minimizers would then be the closed convex

hull of Ω
(ϵ)
l , see [16, Theorem 1.4]. However, in order

to keep mathematical aspects as simple as possible, we
refrain from considering such a framework.

The aim of the present section is to analyze the ther-
modynamics of the quantum system under consideration
with a self–generated magnetic induction in relation with
the existence of the Meißner effect. To this end, we first
observe that the thermodynamic pressure

B 7→ p∞ (B) := lim
l→∞

pl (B) < ∞ (55)

is a well–defined continuous map from L2 to R. Its main
properties are given by Theorem 15. Similarly, the ther-
modynamic limit

P(ϵ)
∞ := lim

l→∞
P(ϵ)
l < ∞

of the magnetic pressure P(ϵ)
l exists for all ϵ ∈ R+, see

Theorem 31. It is given by a variational problem over a
closed subspace B ⊂ P⊥L2 defined as follows: Consider
the set

J := C∞
0 (C;R3) ∩ P⊥H (56)

of divergence–free smooth current densities supported in
C. Recall that S0 is the restricted Biot–Savart operator
defined by (29). Then, we denote by

B := S0(J ) ⊂ P⊥L2 (57)

the closure of the set S0(J ) ⊂ C∞ in the weak topology
of L2.

We focus on the Meißner effect, that is, the existence

of superconducting states ωϵ,l ∈ Ω
(ϵ)
l with self–generated

magnetic inductions B
(l)
ωϵ,l which vanish inside the unit

box C while being created by currents supported on the
boundary ∂C of C, in the limit ϵ → 0+ after l → ∞.

Indeed, we analyze in the limit ϵ → 0+ the sets B(±)
ϵ

defined by

B(±)
ϵ :=

∪
{ωϵ,l}l∈N⊂Ω(ϵ)

B(±)
ϵ ({ωϵ,l}l∈N) (58)

for any ϵ ∈ R+. Here, Ω (ϵ) is the set of all sequences

{ωϵ,l}l∈N with ωϵ,l ∈ Ω
(ϵ)
l , and B(±)

ϵ ({ωϵ,l}l∈N) are the
sets of all weak (−) and norm (+) cluster points of

{B(l)
ωϵ,l}l∈N.

Using Theorem 15 (ii) and P(ϵ)
∞ < ∞, one verifies the

existence of a radius R ∈ R+ such that ∥B(l)
ωϵ,l∥2 ≤ R

for all ϵ ∈ R+, l ∈ N and ωϵ,l ∈ Ω
(ϵ)
l . Because of the

Banach–Alaoglu theorem and the separability of L2, the

set {B(l)
ωϵ,l}l∈N,ωϵ,l∈Ω

(ϵ)
l

is sequentially weak–precompact
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and B(−)
ϵ is not empty. Therefore, one primary aim is

to prove that elements of B(−)
ϵ can vanish inside the unit

box C while being created by currents supported on the
boundary ∂C of C, in the limit ϵ → 0+.
As explained in Remark 3, we take the limit ϵ → 0+

after l → ∞ to avoid any arbitrariness. We thus define
the infinite volume magnetic pressure by

P∞ := lim
ϵ→0+

P(ϵ)
∞ < ∞ . (59)

This pressure exists and equals:

Theorem 10 (Thermodynamics)
Let Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H. Then :
(i) The infinite volume magnetic pressure equals

P∞ = sup
B∈B

{
−1

2
∥B+ Bext∥22 + p∞ (B + Bext)

}
.

(ii) For any ϵ ∈ R+,

Bϵ := B(+)
ϵ = B(−)

ϵ ̸= ∅ .

(iii) For any family {Bϵ}ϵ∈R+ with Bϵ ∈ Bϵ,

lim
ϵ→0+

{
−1

2
∥Bϵ +Bext∥22 + p∞(Bϵ +Bext)

}
= P∞ .

Proof. (i) is Corollary 32. (ii)–(iii) result from Lemma
29 and Corollary 33. 2

Remark 11 (Existence of maximizer(s))
As explained in Section VIIC, the variational problem
P∞ could have no maximizer. Indeed, the map

B 7→ G (B) := −1

2
∥B+ Bext∥22 + p∞ (B + Bext)

from B to R is neither concave nor upper semi–
continuous in the weak topology. However, under certain
conditions, we show in Theorem 12 that G has a unique
maximizer Bint ∈ B.

We prove now the Meißner effect at large enough in-
verse temperatures β >> 1 and large BCS couplings
γ >> 1, i.e., in presence of a superconducting phase
defined as follow: Consider the annihilation and creation
operators

c0 :=
1

|Λl|1/2
∑
x∈Λl

ax,↓ax,↑ and c∗0 :=
1

|Λl|1/2
∑
x∈Λl

a∗x,↑a
∗
x,↓

of Cooper pairs within the condensate, i.e., in the zero–
mode for electron pairs. A superconducting phase is then
characterized by a strictly positive (global) Cooper pair
condensate density for all minimizers in the thermody-
namic limit, that is,

rβ := lim
ϵ→0+

lim inf
l→∞

{
inf

ωϵ,l∈Ω
(ϵ)
l

ωϵ,l

(
c∗0c0
|Λl|

)}
> 0 . (60)

This inequality corresponds to the existence of an off–
diagonal long range order. The domain of parame-
ters (β, µ, λ, γ,Bext) where rβ is strictly positive is non–
empty. At sufficiently large inverse temperatures β >> 1,
the latter holds for instance when µ < −ϑ2 and γ >
|µ− λ|Γ0 with

Γ0 :=
4

1− ϑ2|µ|−1
> 4 .

See Theorem 40. The Meißner effect appears in this
regime:

Theorem 12 (Meißner effect)
Let µ < −ϑ2, γ > |µ − λ|Γ0 and Bext = S0(jext) with
jext ∈ C∞

0 ∩ P⊥H. Then, there is βc ∈ R+ such that, for
all β > βc:

(i) For any sequence of minimizers ωϵ,l ∈ Ω
(ϵ)
l ,

lim
ϵ→0+

lim inf
l→∞

ωϵ,l

(
c∗0c0
|Λl|

)
= lim

ϵ→0+
lim sup
l→∞

ωϵ,l

(
c∗0c0
|Λl|

)
= rβ(0)

with

rβ(0) ≥ Γ−2
0 − γ−2 (µ− λ)

2
> 0

being the unique solution of (75) for B = 0.

(ii) For any sequence of minimizers ωϵ,l ∈ Ω
(ϵ)
l ,

lim
ϵ→0+

lim sup
l→∞

∥B(l)
ωϵ,l

− Bint∥2 = 0

with Bint ∈ B being the unique maximizer of the varia-
tional problem P∞. See Theorem 10 (i).
(iii) The total magnetic induction vanishes inside the unit
box C: Bint +Bext = 0 a.e. in C.
(iv) If (41) also holds then the self–generated magnetic
induction Bint = S(j⊥int) is produced by some current

j⊥int ∈ J that is supported on the boundary ∂C of C.

Proof. (i) is Theorem 40 (iii). By Theorem 40 (ii), note
that Bint ∈ B is the unique maximizer of the variational
problem P∞. By using Theorems 10 (ii)–(iii), 15 (ii), 40
(i) and a simple contradiction argument, we prove the
second assertion (ii). Finally, (iii)–(iv) are consequences
of Theorem 40 (i)–(ii) and Lemmata 34–35. 2

By Theorem 12, the electron density corresponding to

minimizers of F (ϵ)
l is space–homogeneous within the su-

perconducting regime, in the limit ϵ → 0+ after l → ∞.
Indeed, the Meißner effect corresponds here to the ab-
sence of magnetic induction inside the unit box C, ex-
cept within a ϵ–neighborhood of the boundary ∂C of C.
Therefore, in the limit ϵ → 0+, the electron density dβ ,
defined for all t ∈ C (a.e.) by (89) for a magnetic induc-
tion (Bint + Bext)|C = 0, is constant in this case. This
argument justifies a posteriori the use of a purely mag-
netic energy in (49). See Remark 8.

By Lemmata 34 and 36, observe finally that the Euler–
Lagrange equations associated with P∞ yield the equality

B0 +Bext = M⊥
β (B0 +Bext) ≡ M⊥

β a.e. in C (61)
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for any maximizer B0 ∈ B of the variational problem P∞.
Here, we denote as usual by M⊥

β = P⊥Mβ the transverse

component of the (infinite volume) magnetization density
Mβ ≡ Mβ(B) defined a.e. on R3 for every B ∈ L2 by

Mβ,t ≡ Mβ,t(B) :=
1[t ∈ C] ϑ sinh (βht)

cosh (βht) + e−βλ cosh
(
βgrβ

) B (t)

|B (t)|
(62)

with rβ ∈ [0, 1/4) being solution of the variational prob-

lem (75), gr := {(µ − λ)2 + γ2r}1/2 and ht := ϑ |B (t)|
a.e. in the unit box C. By (84)–(85), Mβ(B) is indeed
the magnetization density if one applies a fixed magnetic
induction B on the system. See Section VIIB for more
details.
Recall that units have been chosen so that the mag-

netic permeability of free space equals 1. As a conse-
quence, Equation (61) implies that the so–called mag-
netic field

H := B0 +Bext −M⊥
β ∈ L2

is zero within the quantum system, i.e., H|C = 0 a.e. in
the unit cubic box C. The latter is satisfied for every
maximizer B0 and in the whole phase diagram (not only
in the regime where the Meißner effect appears).
This suggests that M⊥

β = −H trivially holds in the su-

perconducting phase because M⊥
β = 0 = H, see Theorem

12. In other words, the Meißner effect is not necessarily
related to an effective magnetic susceptibility equal to
−1. A similar remark can be done about the magnetic
permeability of the quantum system in the superconduct-
ing phase.

VI. UNIVERSALITY OF THE MEISSNER
EFFECT

1. Conditions of Theorem 12 are only sufficient and
clearly not necessary for the Meißner effect. See, e.g.,
Lemma 39. In particular, the inequalities µ < −ϑ2 and
γ > |µ−λ|Γ0 are far from being essential. The inequality
γ > 2|µ− λ| is however necessary to get a superconduct-
ing phase. Therefore, Theorem 12 should be seen as an
example where the thermodynamics of the Meißner ef-
fect is rigorously proven from first principles of quantum
mechanics.

2. Of course, the model Hl := Tl +Ml under consider-
ation is too simplified with respect to real superconduc-
tors, as explained for instance in [2]. However, from high–
low temperature expansions, the more realistic model

Hl,e := Hl +
∑

x,y∈Λl

e(x− y)
(
a∗x,↓ay,↓ + a∗x,↑ay,↑

)
,

which includes kinetic terms, should have essentially the
same correlation functions as Hl at low temperatures, up
to corrections of order ||e||1. Thus, the Hamiltonian Hl

is a good model for certain kinds of superconductors or

ultra–cold Fermi gases in optical lattices for which the
strong coupling regime is justified.

Additionally, by using [3, Section 6.1], a similar study
could have been done for the usual (reduced) BCS model.
In this model, the (screened) Coulomb repulsion is ne-
glected, i.e., λ = 0, but the kinetic energy is taken into
account.

3. Indeed, the Meißner effect is directly related to the ex-
istence of states minimizing the free–energy and having
small magnetization densities at fixed magnetic induction
B. It is the case in our model within the superconduct-
ing regime where the magnetization density Mβ is gen-
erally exponentially small in the limit β → ∞. See, e.g.,
(86). In fact, it is only necessary to verify the inequality
∥Mβ(B)∥2 ≤ m∥B∥2 with m < 1 and that the system
can produce currents without increasing the free–energy
density in the thermodynamic limit. Then, assuming this
phenomenon to happen in real superconductors, details
of the model are not that important anymore. The self–
generated magnetic induction Bint = S(j⊥int) is in this
case the unique solution of the variational problem

A :=
1

2
inf
B∈B

∥B+ Bext∥22 , (63)

whereas the corresponding divergence–free current den-
sity j⊥int is the unique minimizer of

J :=
1

2
inf

j⊥∈J

∥∥j⊥ + jext
∥∥2
H
= A , (64)

where J is the (norm) closure of the set J defined by
(56). See Equation (38) and Theorem 40. These varia-
tional problems are studied in Lemmata 34 and 35. See
also the corresponding Euler–Lagrange equations (156)
and (159).

Both variational problems can certainly be numerically
studied in detail and the resulting (self–generated) mag-
netic induction Bint will correspond to the usual pictures
found in textbooks on superconductors to illustrate the
Meißner effect. The study of A and J may moreover be
of relevance in completely different contexts, like in fluid
dynamics where currents and magnetic inductions are re-
spectively replaced by vortex lines and velocity fields.

Remark 13 (General superconducting domains)
Results of Lemmata 34 and 35 as well as the Euler–
Lagrange equations (156) and (159) can be straight-
forwardly extended to all external magnetic inductions
Bext = S(jext) with jext ∈ P⊥H, and all bounded domains
C ⊂ R3 with (for example) piecewise smooth boundary
∂C.

4. Observe that a suppression of the magnetic induction
in the box C by minimizers of the magnetic free–energy
density can also appear at small enough inverse tempera-
tures β < ϑ−1, see Lemma 38. Indeed, for high tempera-
tures, the pressure p∞ (B) mainly comes from its entropic
part and so, it does not depend much on the magnetic
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induction B in this regime. In particular, the magneti-
zation density Mβ becomes again small. On the other
hand, as explained above, the minimizer of A vanishes
inside the box C. See again Lemmata 34–35.
From the physical point of view, the appearance of

such a phenomenon at high temperature is however ques-
tionable. Indeed, our analysis is based on the possi-
bility for the system to create any current density, see
Theorem 4. It is proven by using patches of supercon-
ducting phases within negligible volume (with respect to
|Λ|). As explained in Remark 5, such a configuration
should be rapidly destroyed by the quantum dynamics of
the system at (high) temperatures where no global su-
perconducting phase exists. In other words, our results
are physically well–founded for sufficiently low temper-
atures where we can ensure the existence of a (global)
superconducting phase defined by rβ > 0 and for suffi-
ciently weak external magnetic inductions Bext. Indeed,
in order to suppress magnetic inductions Bext, the quan-
tum system has to produce currents via superconduct-
ing patches close to the boundary ∂C. Such patches
are however rapidly destabilized by a too strong mag-
netic induction Bext that succeeds to penetrate the re-
gion close to ∂C. The latter is suggested by Equation
(81). Indeed, this equation shows that, for any B satis-
fying |Bt| ≥ ϑ−1h > ϑ−1hc a.e. on a non–empty open
set D ⊂ C, the local Cooper pair condensate density
rβ,D = O(e−β(h−hc)) in the region D must be exponen-
tially small, as β → ∞. In particular, no superconduct-
ing current can be created within D.

VII. TECHNICAL PROOFS

A. Vector Potentials

We start this section by defining the vector potential
A (j) for all j ∈ H. It will become important while prov-
ing the Meißner effect.
The vector potential A (j) associated with any current

density j ∈ H is the distribution defined by

A (j) (φ) := ⟨j, φ⟩H ∈ R , φ ∈ C∞
0 . (65)

For any j ∈ C∞
0 , A (j) can be seen as a C∞–function, as

usual. See (34). For convenience, we ignore this distinc-
tion and write

A (j) (t) ≡ 1

4π

∫
R3

j (s)

|t− s|
d3s , t ∈ R3 , (66)

for all j ∈ C∞
0 and

A (j) (φ) ≡ ⟨A (j) , φ⟩2 , j, φ ∈ C∞
0 . (67)

Using Fourier transform, one verifies the following for
the weak Laplace operator applied on A (j):

[−∆A (j)](φ) := A (j) (−∆φ) = j (φ) (68)

for j ∈ H and φ ∈ C∞
0 . Indeed, recall that H can

be seen as a subspace of (tempered) distributions in
W−1,2(R3;R3). Similarly, the curl of the vector potential
distribution A (j) equals

∇×A (j) = S(j⊥) , j ∈ H ,

in the weak sense. See, e.g., (39).

B. Thermodynamics at Fixed Magnetic Induction

For all inverse temperatures β ∈ R+, we associate to
the Hamiltonian Hl := Tl +Ml ∈ UΛl

the finite volume
pressure pl (B) defined by (10) at fixed magnetic induc-
tion B ∈ L2(C;R3) with C := [−1/2, 1/2]3. Its thermo-
dynamic limit p∞ (B) is explicitly computed in two main
steps.

The first step consists in assuming that B ∈ C0(C;R3)
is a continuous magnetic induction in order to get the
pressure p∞ (B) by using [3, Theorem 3]. The infinite
volume pressure p∞ (B) is then given by the maximiza-
tion of a functional F defined on R+

0 by

F(r) ≡ F (r,B) := µ+ β−1 ln 2− γr

+β−1

∫
C

lnTrace∧H{0}(e
−βu(r,t))d3t (69)

with the one–site Hamiltonian defined by

u (r, t) : = −µ(n0,↑ + n0,↓) + 2λn0,↑n0,↓ (70)

−γ
√
r(a∗0,↑a

∗
0,↓ + a0,↓a0,↑)− B (t) ·M0

for all r ∈ R+
0 (i.e., r ≥ 0) and t ∈ C (a.e.). Here,

M0 := (m0
1,m

0
2,m

0
3) is defined via (17). Indeed, one has:

Lemma 14 (Pressure for continuous fields)
For any B ∈ C0(C;R3),

p∞ (B) := lim
l→∞

pl (B) = sup
r≥0

F(r,B) < ∞ .

Proof. If B ∈ C0(C;R3) is a continuous magnetic induc-
tion then one can replace in Ml (2) the mean value (3)
of the magnetic induction B with B(x/(2l)), in order to
compute the pressure p∞ (B). The latter results from [4,
Eq. (3.11)] and straightforward estimates using the uni-
form continuity of B on the compact set C. Then, using
the gauge symmetry of the model as well as a change of
variable r = γr̃ in the variational problem given by [3,
Theorem 3], we arrive at the assertion. 2

The second step uses the density of the set C0(C;R3)
in L2(C;R3) to compute p∞ (B) for all B ∈ L2(C;R3).
Combined with Lemma 14 it leads to an explicit expres-
sion of p∞ (B) for all B ∈ L2(C;R3). This is resumed in
the following theorem which serves as a springboard to
the rest of the paper.
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Theorem 15 (Infinite volume pressure – I)
(i) For B ∈ L2(C;R3), the pressure pl (B) converges to

p∞ (B) := lim
l→∞

pl (B) = sup
r≥0

F (r,B) < ∞

with F defined by (69)–(70). See also (74).
(ii) The family {B 7→ pl (B)}l∈N∪{∞} of maps from

L2(C;R3) to R is uniformly Lipschitz equicontinuous:
For all l ∈ N ∪ {∞},

|pl(B)−pl(C)| ≤ 2
√
3ϑ∥B−C∥2 , B,C ∈ L2(C;R3) .

(71)

Proof. The uniform Lipschitz equicontinuity (71) of the
family {B 7→ pl (B)}l∈N follows from (2) and (10) to-
gether with the Cauchy–Schwarz inequality, |C| = 1,
∥ρ∥ = 1 and ∥mx

j ∥ ≤ 2ϑ for any j ∈ {1, 2, 3} and all

x ∈ Z3, see (17). As a consequence, by Lemma 14 and
the density of C0(C;R3) in the separable Hilbert space
L2(C;R3), the pressure pl (B) converges to some value
p∞ (B) ∈ R for all B ∈ L2(C;R3) and (71) is also satis-
fied for l = ∞. In particular, for any B ∈ L2(C;R3), there
exists a sequence {B(n)}n∈N ⊂ C0(C;R3) converging in
norm to B such that

p∞ (B) = lim
n→∞

p∞(B(n)) = lim
n→∞

{
sup
r≥0

F(r,B(n))

}
.

(72)
On the other hand, by [4, Eq. (3.11)], one easily verifies
that, for any B,C ∈ L2(C;R3) and t ∈ C (a.e.),

| lnTrace∧H{0}(e
−βu(r,t,B(t)))

− lnTrace∧H{0}(e
−βu(r,t,C(t)))|

≤ 2
√
3ϑβ |B (t)− C(t)|

with u (r, t) ≡ u (r, t,B (t)) being defined by (70). By
(69) combined with the Cauchy–Schwarz inequality and
|C| = 1, it follows that

|F (r,B)− F (r,C)| ≤ 2
√
3ϑ∥B−C∥2 , B,C ∈ L2(C;R3) .

(73)
Combined with the limits (72), this last inequality in turn
implies Lemma 14 extended to all B ∈ L2(C;R3), that is,
(i) holds. 2

The functional F can explicitly be computed and one
gets

F(r) ≡ F(r,B) = µ+ β−1 ln 2− γr (74)

+β−1

∫
C

ln
{
cosh (βht) + e−λβ cosh (βgr)

}
d3t

with gr := {(µ − λ)2 + γ2r}1/2 for any r ∈ R+
0 and

magnetic strength ht := ϑ |B (t)| a.e. for t ∈ C. Its
properties can thus be studied in detail, exactly as in [1,
Section 7].
In particular, for any β, γ, ϑ ∈ R+, real numbers µ, λ ∈

R and B ∈ L2(C;R3), it is clear that the supremum of

the variational problem in Theorem 15 (i) is reached for
an order parameter r ∈ R+

0 in some bounded set. In
particular, there is always rβ ≡ rβ (B) ∈ R+

0 such that

sup
r≥0

F(r,B) = F(rβ ,B) , B ∈ L2(C;R3) . (75)

Up to (special) points (β, µ, λ, γ, ϑ,B) corresponding to a
phase transition of first order, rβ should always be unique
and continuous with respect to each parameter.

For small inverse temperatures β << 1, rβ = 0. See
arguments of [1, Sections 2 and 7]. On the other hand,
any non–zero solution rβ of the variational problem of
Theorem 15 (i) has to be solution of the gap equation (or
Euler–Lagrange equation):∫

C

sinh
(
βgrβ

)
eβλ cosh (βht) + cosh

(
βgrβ

)d3t = 2grβ
γ

. (76)

Because tanh(t) ≤ 1 for t ∈ R+
0 , we then conclude that

rβ ≤ max {0, rmax} with rmax :=
1

4
− γ−2 (µ− λ)

2
.

(77)
In particular, if γ ≤ 2|µ−λ| then rβ = 0 for any β ∈ R+.
However, at fixed β, λ, µ, ϑ,B, there is γc > 2|λ−µ| such
that rβ > 0 for any γ ≥ γc. The latter can easily be
seen like in [1, Section 7]. In other words, the domain of
parameters (β, µ, λ, γ, ϑ,B) where rβ ∈ R+ is non–empty.

To illustrate this, we give a regime where rβ becomes
strictly positive for sufficiently low temperatures and
large BCS couplings:

Lemma 16 (Superconducting phase – I)
Let R ∈ R+, µ < −Rϑ and γ > |µ− λ|Γ0 with

Γ0 :=
4

1−Rϑ|µ|−1
> 4 .

Then, there is βc ∈ R+ such that, for all β > βc,

inf
B∈bR(0)

rβ(B) ≥ Γ−2
0 − γ−2 (µ− λ)

2
> 0

with

bR (0) :=
{
B ∈ L2(C;R3) : ∥B∥2 ≤ R

}
.

Moreover, we can choose βc ≡ βc(γ) as a decreasing
function of γ.

Proof. For any B ∈ bR(0), note that ∥B∥1 ≤ R, by the
Cauchy–Schwarz inequality. Then, for any µ < 0, the set

Dµ := {t ∈ C : |ht| ≥ |µ|}

satisfies |Dµ| ≤ Rϑ|µ|−1 for all B ∈ bR(0). For every
µ < −Rϑ and ε ∈ R+, let

Γε := (1 + ε)Γ0 > 0 . (78)
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Since γ > |µ− λ|Γ0, we can choose ε ∈ R+ such that
γ > |µ− λ|Γε. It follows that

rε := Γ−2
ε − γ−2 (µ− λ)

2
> 0 . (79)

Then, by (78), there is βc ∈ R+ such that, for all β > βc,

tanh (βgrε)

grε
=

Γε

γ
tanh

(
βγ

Γε

)
>

4 + ε

γ (1−Rϑ|µ|−1)
.

Observe that βc ≡ βc(γ) can be taken as a decreasing
function of γ. The function t−1 tanh (βt) is decreasing
on R+

0 . Therefore, we deduce from the last inequality
that (

1−Rϑ|µ|−1
) tanh (βgr)

gr
>

4 + ε

γ
(80)

for any r ∈ [0, rε], all β > βc and fixed ε ∈ R+ such that
γ > |µ− λ|Γε.
Now, we compute that ∂rF (r,B) > 0 is equivalent to∫

C

sinh (βgr)

gr (eλβ cosh (βht) + cosh (βgr))
d3t >

2

γ
.

Using |Dµ| ≤ Rϑ|µ|−1 and (80),∫
C

sinh (βgr)

gr (eλβ cosh (βht) + cosh (βgr))
d3t >

4 + ε

2γ

for any β > βc, all B ∈ bR(0), and r ∈ [0, rε]. In particu-
lar,

∂rF (r,B) > 0 , r ∈ [0, rε] ,

which yields rβ(B) ≥ rε > 0 for any β > βc and all
magnetic inductions B ∈ bR(0). 2

By using Griffiths arguments (see, e.g., [1, Eq. (A.1)])
away from critical points (defined by the existence of a
first order phase transition), one finds that, for any non–
empty open region D ⊆ C, the Cooper pair condensate
density

rβ,D := lim
l→∞

1

|Dl|2
∑

x,y∈Dl

gl
(
a∗x,↑a

∗
x,↓ay,↓ay,↑

)
with Dl := 2lD ∩ Λl equals

rβ,D =
1

|D|

∫
D

rβ,t d
3t ∈ [0, 1/4] . (81)

(Note that Dl is non–empty for sufficiently large l ∈ N).
Here, for all t ∈ C (a.e.),

rβ,t :=
γrβ sinh

(
βgrβ

)
2grβ

(
eβλ cosh (βht) + cosh

(
βgrβ

)) . (82)

The inequality rβ,D ≤ 1/4 results from (76) and (77). In
particular, for D = C,

rβ,C ≡ rβ ≡ rβ (B) (83)

is the (global) Cooper pair condensate density, see (75)–
(76). When rβ ∈ R+ is the unique solution of the vari-
ational problem of (75), one obtains a s–wave supercon-
ducting phase with off–diagonal long range order. As an
example, see [1, Theorems 3.1–3.3].

In a similar way, we compute the three components

Mβ,D := lim
l→∞

1

|Dl|
∑
x∈Dl

gl (M
x) ∈ R3 (84)

of the magnetization densities in the non–empty open
region D ⊂ C. See (17) and (20). Away from critical
points,

Mβ,D =
1

|D|

∫
D

Mβ,t d
3t ∈ [−ϑ, ϑ]3 (85)

with ϑ ∈ R+ and Mβ,t ≡ Mβ,t (B) defined by (62).
In particular, in the limit (β → ∞) of low tempera-

tures,

|Mβ,D| = O(e−β(hc−h)) and rβ,D = O(rβ) (86)

whenever, for all t ∈ D (a.e.),

ht ≤ h < hc ≡ hc (B) := grβ − λ (87)

with grβ := {(µ − λ)2 + γ2rβ}1/2. However, a strong
and local magnetic induction such that ht ≥ h > hc
(a.e.) on some non–empty open set D ⊆ C implies a
strong magnetization on Dl := 2lD ∩Λl, even if a global
superconducting phase exists, that is, even if rβ ∈ R+. In

this case, |Mβ,D| = O(ϑ), rβ,D = O(e−β(h−hc)) and the
magnetic induction expels the Cooper pair condensate
from the (macroscopic) region D ⊆ C.

Meanwhile, away from critical points, the electron den-
sity

dβ,D := lim
l→∞

1

|Dl|
∑
x∈Dl

gl (nx,↑ + nx,↓)

with Dl := 2lD ∩ Λl equals

dβ,D :=
1

|D|

∫
D

dβ,t d
3t ∈ [0, 2] (88)

for any non–empty open region D ⊆ C, where, for all
t ∈ C (a.e.),

dβ,t := 1 +
(µ− λ) sinh

(
βgrβ

)
grβ
(
eβλ cosh (βht) + cosh

(
βgrβ

)) . (89)

In particular, the electron density is space–homogeneous
whenever the magnetic induction B is a.e. constant in
space within the unit box C.

Apart from its physical interpretation (83) as the
(global) Cooper pair condensate density, the solution rβ
is extremely useful because it allows a construction of ap-
proximating minimizers of the free–energy in finite boxes.
Indeed, let

ūl (r, t) ≡ ūl (r, t,B) :=

∫
C

u
(
r, t+

y

2l

)
d3y
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for all r ∈ R+
0 and t ∈ C. We define such approximating

states by (well–defined, cf. [17, Theorem 11.2.]) product
states of the form

gl,r ≡ gl,r,B :=
⊗
x∈Λl

ω(2l)−1x,r ∈ EΛl
(90)

for all l ∈ N and r ∈ R+
0 , where ω(2l)−1x,r ≡ ω(2l)−1x,r,B is

the (even) Gibbs state on U{x} associated with the one–

site Hamiltonian αx(ūl(r, (2l)
−1x)) and thus defined by

the density matrix

e−βαx(ūl(r,(2l)
−1x))

Trace∧H{x}(e
−βαx(ūl(r,(2l)−1x)))

for all x ∈ Z3. Here, for every x ∈ Z3, αx is the transla-
tion map from UΛl

to the C∗–algebra UΛl+x with identity
1 and generators {ay+x,s}y∈Λl,s∈{↑,↓}. More precisely,

for every x ∈ Z3, αx is the isomorphism of C∗–algebras
uniquely defined by the conditions

αx(ay,s) = ay+x,s , y ∈ Λl, s ∈ {↑, ↓} .

Then, as suggested by [3, Proposition 2], for any
B ∈ L2(C;R3), the product states {gl,rβ}l∈N minimize
the free–energy density functional fl of the system in the
thermodynamic limit l → ∞. The proof is however more
difficult than in [3, Proposition 2].
Similar to Lemma 14, we first consider continuous mag-

netic inductions B ∈ C0(C;R3):

Lemma 17 (Approximating minimizers – I)
For any B ∈ C0(C;R3) and any solution rβ = rβ(B) of
(75),

lim
l→∞

{
fl(B, gl,rβ )− inf

ρ∈EΛl

fl (B, ρ)

}
= 0 .

Proof. For every r ∈ R+
0 , define the continuous map pr

from R to R by

x 7→ pr(x) :=
γ sinh (βgr)

2gr (eβλ cosh (βx) + cosh (βgr))

as well as ht ≡ ht (B) := ϑ|B(t)| and

h̄t,l ≡ h̄t,l (B) := ϑ

∣∣∣∣∫
C

B
(
t+

y

2l

)
d3y

∣∣∣∣ , t ∈ C , l ∈ N .

(91)
By explicit computations, for any l ∈ N, x ∈ Λl, B ∈
C0(C;R3) and r ∈ R+

0 ,

ω(2l)−1x,r (ax,↓ax,↑) =
√
rpr(h̄(2l)−1x,l) ∈ R , (92)

which, combined with the equicontinuity of pr and B on
compact sets, yields

lim
l→∞

{
1

|Λl|
∑
x∈Λl

ω(2l)−1x,r (ax,↓ax,↑)

}
=

√
r

∫
C

pr(ht)d
3t .

(93)

In the same way, we show by explicit computations that

lim
l→∞

{
1

|Λl|
∑
x∈Λl

lnTrace∧H{x}(e
−βαx(ūl(r,(2l)

−1x)))

}
= F (r,B) + γr (94)

for any B ∈ C0(C;R3) and r ∈ R+
0 . Using the additivity

of the von Neumann entropy of product states and the
passivity of Gibbs states,∑

x∈Λl

gl,r

(
αx(ūl(r, (2l)

−1x))
)
− β−1Sl(gl,r) (95)

= −β−1
∑
x∈Λl

lnTrace∧H{x}(e
−βαx(ūl(r,(2l)

−1x))) .

Since

Hl =
∑
x∈Λl

(
αx(ūl(r, (2l)

−1x)) + γ
√
r(a∗x,↑a

∗
x,↓ + ax,↓ax,↑)

)
− γ

|Λl|
∑

x,y∈Λl

a∗x,↑a
∗
x,↓ay,↓ay,↑ ,

we infer from (8) and (93)–(95) that

lim
l→∞

fl(B, gl,r) = −F (r,B)− γr

(
1−

∫
C

pr(ht)d
3t

)2

(96)
for any B ∈ C0(C;R3) and r ∈ R+

0 . In particular, by
using the gap equation (76),

lim
l→∞

fl(B, gl,rβ ) = −F (rβ ,B) . (97)

The latter yields the lemma because of (10), (75) and
Theorem 15 (i). 2

Similar to Theorem 15 (i), we now extend Lemma 17
to all B ∈ L2(C;R3) by using the density of C0(C;R3) in
L2(C;R3):

Theorem 18 (Approximating minimizers – II)
For any B ∈ L2(C;R3) and any solution rβ = rβ(B) of
(75),

lim
l→∞

{
fl(B, gl,rβ )− inf

ρ∈EΛl

fl (B, ρ)

}
= 0 .

Proof. We start by proving the norm equicontinuity of
the collection

{B 7→ fl(0, gl,r,B)}l∈N (98)

of maps from L2(C;R3) to R. To this end, we study, for
all t ∈ C and l ∈ N, the maps

B 7→ dt,l (B) :=
e−βūl(r,t,B)

Trace∧H{0}(e
−βūl(r,t,B))

from L2(C;R3) to the real space of self–adjoint elements
of U{0}. Let ∥ − ∥Tr be the trace norm of U{0}. Observe
that

∥dt,l (B)− dt,l (C)∥Tr ≤
2
∥∥e−βūl(r,t,B) − e−βūl(r,t,C)

∥∥
Tr∥∥e−βūl(r,t,B)

∥∥
Tr
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for any B,C ∈ L2(C;R3). Using Duhamel’s formula

eA1 − eA2 =

∫ 1

0

eτA1 (A1 −A2) e
(1−τ)A2d3τ ,

∥A1∥ ≤ ∥A1∥Tr and ∥A1A2∥Tr ≤ ∥A1∥∥A2∥Tr for any
A1, A2 ∈ U{0}, we then find that

∥dt,l (B)− dt,l (C)∥Tr ≤ 2β

∥∥∥∥∫
C

(B− C)
(
t+

y

2l

)
d3y ·M0

∥∥∥∥
Tr

×
∫ 1

0

n (B,C, τ) d3τ (99)

with

n (B,C, τ) :=

∥∥e−βτūl(r,t,B)
∥∥∥∥e−β(1−τ)ūl(r,t,C)

∥∥∥∥e−βūl(r,t,B)
∥∥ .

Straightforward computations show that∥∥∥e−βτūl(r,t,B)
∥∥∥ = eβτ(µ+max{gr−λ,h̄t,l(B)})

for any B ∈ L2(C;R3) and all τ ∈ [0, 1]. Thus,

n (B,C, τ) = eβ(1−τ)(max{gr−λ,h̄t,l(C)}−max{gr−λ,h̄t,l(B)})

and, by (99) and ∥mx
j ∥ ≤ 2ϑ for any j ∈ {1, 2, 3} and all

x ∈ Z3,

∥dt,l (B)− dt,l (C)∥Tr ≤ 4
√
3βh̄t,l (B− C)

×
∫ 1

0

n (B,C, τ) d3τ

with h̄t,l defined by (91).
If h̄t,l(B − C) ≤ 1, then we deduce from the last two

assertions that

∥dt,l (B)− dt,l (C)∥Tr ≤ 4
√
3
(
eβ − 1

)
h̄t,l (B− C) .

On the other hand, for any B,C ∈ L2(C;R3),

∥dt,l (B)− dt,l (C)∥Tr ≤ ∥dt,l (B)∥Tr + ∥dt,l (C)∥Tr = 2 .

Therefore, for all B,C ∈ L2(C;R3),

∥dt,l (B)− dt,l (C)∥Tr ≤ 4
√
3eβh̄t,l (B− C) .

We now use the product structure (90) of gl,r, the uni-
form norm Lipschitz continuity of the von Neumann en-
tropy and the last bound to deduce the existence of a
finite constant D ∈ R+ such that

|fl(0, gl,r,B)− fl(0, gl,r,C)| ≤
D

|Λl|
∑
x∈Λl

h̄(2l)−1x,l (B− C)

for all B,C ∈ L2(C;R3) and all l ∈ N. By definition
of h̄t,l and the Cauchy–Schwarz inequality, we thus find
that

|fl(0, gl,r,B)− fl(0, gl,r,C)| ≤ D∥B− C∥2 (100)

for all B,C ∈ L2(C;R3) and all l ∈ N. In other words,
the collection (98) is norm equicontinuous.

We want now to prove from the last inequality that
the collection

{B 7→ fl(B, gl,r,B)}l∈N (101)

of maps from L2(C;R3) to R is also norm equicontinuous.
So, we need to show the norm equicontinuity of the family

{B 7→ ⟨B,ml (B)⟩2}l∈N (102)

of maps from L2(C;R3) to R, where

ml (B) (t) :=
∑
x∈Λl

1 [2lt ∈ (C+ x)] gl,r,B(M
x) .

Indeed, for any B,C ∈ L2(C;R3),

|⟨B,ml (B)⟩2 − ⟨C,ml (C)⟩2| (103)

≤ 2
√
3ϑ∥B− C∥2 + ∥C∥2∥ml (B)−ml (C) ∥2 ,

using the Cauchy–Schwarz inequality and ∥mx
j ∥ ≤ 2ϑ.

On the other hand, for any B,C ∈ L2(C;R3),

∥ml (B)−ml (C) ∥22 (104)

=
1

|Λl|
∑
x∈Λl

∣∣∣ω(2l)−1x,r,B(M
x)− ω(2l)−1x,r,C(M

x)
∣∣∣2 .

By explicit computations, for any B ∈ L2(C;R3),

ω(2l)−1x,r,B(M
x) = qr(h̄(2l)−1x,l (B))ϑ

∫
C

B

(
x+ y

2l

)
d3y .

(105)
Here, for any x ∈ R+ and r ∈ R+

0 ,

qr(x) :=
ϑ sinh (βx)

x (cosh (βx) + e−βλ cosh (βgr))
,

whereas at x = 0,

qr(0) :=
ϑβ

1 + e−βλ cosh (βgr)
.

Assume that h̄(2l)−1x,l(C) ≤ 2. Notice that there is

a finite constant D ∈ R+ such that |qr(x)| ≤ D for all
x ∈ R+

0 and

|qr(x)− qr(y)| ≤ D |x− y| , x, y ∈ R+
0 ,

by the mean value theorem. Then, by (105), for any
B ∈ L2(C;R3),∣∣∣ω(2l)−1x,r,B(M

x)− ω(2l)−1x,r,C(M
x)
∣∣∣

≤ 2D
∣∣∣h̄(2l)−1x,l (B)− h̄(2l)−1x,l (C)

∣∣∣
+Dϑ

∣∣∣∣∫
C

(B− C)

(
x+ y

2l

)
d3y

∣∣∣∣ .
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Using Jensen’s inequality, (a+ b)2 ≤ 2a2+2b2 and (|a|−
|b|)2 ≤ |a−b|2, we then deduce from the last upper bound
that ∣∣∣ω(2l)−1x,r,B(M

x)− ω(2l)−1x,r,C(M
x)
∣∣∣2

≤ 10D2ϑ2

∫
C

∣∣∣∣(B− C)

(
x+ y

2l

)∣∣∣∣2 d3y , (106)

provided that h̄(2l)−1x,l(C) ≤ 2.

Assume now that h̄(2l)−1x,l(C) ≥ 2 and h̄t,l(B−C) ≤ 1.

Remark that there is a finite constant D ∈ R+ such that,
for all x ≥ 2 and |x− y| ≤ 1,

|qr(x)− qr(y)| ≤ D |x|−1 |x− y| ,

again by the mean value theorem. Similar to (106), one
then gets that∣∣∣ω(2l)−1x,r,B(M

x)− ω(2l)−1x,r,C(M
x)
∣∣∣2

≤ 4D2ϑ2

∫
C

∣∣∣∣(B− C)

(
x+ y

2l

)∣∣∣∣2 d3y , (107)

provided that h̄(2l)−1x,l(C) ≥ 2 and h̄t,l(B− C) ≤ 1.
In the same way, we observe that∣∣∣ω(2l)−1x,r,B(M

x)− ω(2l)−1x,r,C(M
x)
∣∣∣2

≤ 48ϑ2 ≤ 48ϑ4

∫
C

∣∣∣∣(B− C)

(
x+ y

2l

)∣∣∣∣2 d3y (108)

whenever h̄t,l(B− C) ≥ 1.
We then infer from (106)–(108) the existence of a finite

constant D ∈ R+ so that, for any B,C ∈ L2(C;R3) and
all x ∈ Λl, ∣∣∣ω(2l)−1x,r,B(M

x)− ω(2l)−1x,r,C(M
x)
∣∣∣2

≤ D

∫
C

∣∣∣∣(B− C)

(
x+ y

2l

)∣∣∣∣2 d3y .

Hence, we deduce from (104) that

∥ml (B)−ml (C) ∥22 ≤ D∥B− C∥22 (109)

for any B,C ∈ L2(C;R3).
By (100), (103) and (109), the families (98) and (102)

are norm equicontinuous and so is the collection (101).
Using this, (73) and the uniform Lipschitz continuity of
the function pr together with the density of C0(C;R3) ⊂
L2(C;R3), Equation (96) holds for all B ∈ L2(C;R3) and
r ∈ R+

0 . By the gap equation (76), one gets (97) for
all B ∈ L2(C;R3) which implies the assertion because of
(10), (75) and Theorem 15 (i). 2

Therefore, the sequence {gl,rβ}l∈N of approximating
minimizers is a good starting point to construct the states
ρl ∈ EΛl

of Theorem 4. To this end, we define from
{gl,rβ}l∈N states manifesting some current in subregions

of the box Λl with very small volumes with respect to the
total volume |Λl| = (2l)3. The latter is done as follows:

Take two positive real numbers η⊥, η ∈ R+ such that

0 < η⊥ < η < 1 (110)

and define the small elementary box

Gl := Z3 ∩ {[−ℓη, ℓη]× [−ℓη
⊥
, ℓη

⊥
]2} ⊂ Λl

with ℓ := l − 1 for l > 1. (Note indeed that Λl :=
{Z∩[−l, l−1]}3.) More conditions on the constants η⊥, η
will be fixed later. We denote now by [t] the integer part
of t ∈ R+

0 to define the set

Rl := {(k1, k2, k3) ∈ Z3 : |k1| ≤ [ℓ1−η] , |k2,3| ≤ [ℓ1−η⊥
]} .

For any k ∈ Rl, we define the translated elementary
boxes

Gl,k := Gl + (k1[ℓ
η], k2[ℓ

η⊥
], k3[ℓ

η⊥
]) ⊂ Λl .

To create currents from Ix,yl (11) we perform some gauge
transformation inside these elementary boxes. Indeed,
for any k ∈ Rl and t ∈ {0, 1}, we use the automorphism
Uk,t of the C∗–algebra UΛl+[ℓη ]

uniquely defined by

∀x /∈ Gl,k , s ∈ {↑, ↓} , Uk,t (ax,s) := eitπ/2ax,s ,

∀x ∈ Gl,k , s ∈ {↑, ↓} , Uk,t (ax,s) := eiCkx1/(2l)ax,s .

The real parameter Ck ∈ R will be chosen as a function
of the current density j to be produced by the system.

Take now any solution rβ = rβ(B) of (75) for B ∈
L2(C;R3) and any even state ϖ ∈ E{0} satisfying

ϖ0 (a0,↓a0,↑) = 1 . (111)

Such a state exists because −1 and 1 both belong to the
spectrum of Re (a0,↓a0,↑). We denote by ϖx := ϖ0 ◦α−x

the corresponding translated state on U{x} for any x ∈
Zd. For any k ∈ Rl, define the state

νk : =
1

2

{(
⊗

x∈Λl+[ℓη ]\Gl,k

ω(2l)−1x,rβ

)
(112)

⊗(
⊗

x∈Gl,k

ϖx

)}
◦ (Uk,0 + Uk,1)

satisfying νk (I
x,y
l ) = 0 whenever {x, y} ∩ (Λl\Gl,k) ̸= ∅.

Note indeed that, for any x ∈ Λl+[ℓη ],

ω(2l)−1x,rβ
(ax,↓ax,↑) ∈ R ,

see (92) which clearly holds for all B ∈ L2(C;R3). Finally,
for any l ∈ N, we set

ρl :=
1

|Rl| |Gl|
∑

k∈Rl, x∈Gl

νk ◦ αx|EΛl
∈ EΛl

. (113)
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This state implies currents, in general. Moreover, observe
that the term

⊗
x∈Λl\Gl,k

ω(2l)−1x,rβ
= gl,rβ |UΛl\Gl,k

(114)

in the definition (112) of νk is the restriction of the ap-
proximating minimizer gl,rβ (90) on UΛl\Gl,k

. Therefore,
observing that Hl is gauge invariant, one can infer from
Theorem 18 that {ρl}l∈N is also a sequence of approxi-
mating minimizers:

Lemma 19 (Approximating minimizers – III)
For any B ∈ L2(C;R3) and any set {Ck}k∈Rl

⊂ R,

lim
l→∞

{
fl(B, ρl)− inf

ρ∈EΛl

fl (B, ρ)

}
= 0 .

Proof. Note that (110) implies that, for all k ∈ Rl,

|Gl,k| = |Gl| = o(|Λl|) .

Therefore, we deduce from (8), Theorem 18, (112) and
(114) that

lim
l→∞

{
fl(B, νk ◦ αx|EΛl

)− inf
ρ∈EΛl

fl (B, ρ)

}
= 0 ,

uniformly for all k ∈ Rl and x ∈ Gl. Since the state ρl
is a convex combination of states {νk ◦αx|EΛl

}k∈Rl,x∈Gl
,

the assertion then follows from the convexity of the free–
energy density fl. 2

We use now the sequence {ρl}l∈N of approximating
minimizers to create a one–component current arbitrarily
close to any prescribed smooth function j1 ∈ C∞

0 (C;R)
at large l ∈ N. With respect to Theorem 4, the function
j1 is the first coordinate of some smooth current density
j ∈ C∞(C;R3).
We now fix the real parameters {Ck}k∈Rl

as follows:
Observing that∫ lη

−lη

∫ lη

−lη
(z1 − y1)

2
dz1 dy1 =

8l4η

3
,

we remark that

K := lim
l→∞

{
l−4η−4η⊥ ∑

y,z∈Gl

(z1 − y1)
2
}
=

27

3
. (115)

Then, we define the constant Ck by

Ck :=
8

Kγ
l6−4η−4η⊥

j1

(
k1[ℓ

η]

2l
,
k2[ℓ

η⊥
]

2l
,
k3[ℓ

η⊥
]

2l

)
(116)

for all k ∈ Rl and any j1 ∈ C∞
0 (C;R). With this choice of

parameters, as l → ∞, one produces indeed the current
density (j1(t), 0, 0) for t ∈ R3:

Lemma 20 (One–component currents)
Assume that (110) holds with 3η + 4η⊥ > 6 and j1 ∈
C∞

0 (C;R). Then, for any κ < min{1− η, η − η⊥},

sup
t∈R3

∣∣j(l)ρl
(t)− (j1 (t) , 0, 0)

∣∣ = o(l−κ)

with the rescaled current density j
(l)
ρl

defined by (15).

Proof. By (112), observe that, for any k ∈ Rl and x0 ∈
Gl, the state νk,x0 := νk◦αx0 |EΛl

∈ EΛl
creates a current

density jνk,x0
(x) at x ∈ R3 which is equal to

jνk,x0
(x) =

4γ

|Λl|
∑

y,z∈Gl,k, y ̸=z

y − z

|y − z|3
ξ

(
x+ x0 − y+z

2

|y − z|

)
× sin

[
Ck (y1 − z1) l

−1
]
. (117)

See Equation (13). Because of (116), note that the con-
dition

δ := 3η + 4η⊥ − 6 > 0

implies that, for any k ∈ Rl,

lηCk = O(l−δ) (118)

vanishes in the thermodynamic limit l → ∞. As a con-
sequence, we can deduce from (117) that

2l jνk,x0
(x)

=
4γ

|Λl|
∑

y,z∈Gl,k, y ̸=z

y − z

|y − z|3
ξ

(
x+ x0 − y+z

2

|y − z|

)
×
[
2Ck (y1 − z1) +O(l−2|Ck (y1 − z1) |3)

]
, (119)

because |z1 − y1| ≤ lη for all y, z ∈ Gl,k. Note that
the factor 2l above is related to the definition of the
rescaled current density (15). The current density func-
tional ρ 7→ jρ of the box Λl defined by (13) is affine. It
follows that the current density induced by the approxi-
mating minimizer ρl (113) at x ∈ R3 equals

jρl
(x) =

1

|Rl| |Gl|
∑

k∈Rl , x0∈Gl

jνk,x0
(x) . (120)

Since ξ ∈ C∞
0 (R3;R) is a smooth and compactly sup-

ported function, we infer from (118) that the norm of
the vector

4γ

l2 |Λl| |Rl| |Gl|
∑

k∈Rl , x0∈Gl

∑
y,z∈Gl,k, y ̸=z

y − z

|y − z|3

×ξ

(
x+ x0 − y+z

2

|y − z|

)
|Ck (y1 − z1)|3

converges to zero as l → ∞ faster than l−1, uniformly
for x ∈ R3. Using the explicit parameters (116), the
smoothness of j1 as well as (119), we can rewrite (120) as

j(l)ρl
(t) =

1

|Rl| |Gl|
∑
k∈Rl

∑
2lsk∈Gl,k

χ
l
(t− sk)

×
(
j1 (sk) +O

(
lη−1

))
+ o(lη−1) , (121)
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uniformly for all t ∈ R3. Here, the function χ
l
∈ C∞

0 is

defined, for all t ∈ R3, by

χ
l
(t) : =

8

K
l3−4η−4η⊥ ∑

y,z∈Gl

y − z

|y − z|3
(y1 − z1)

×ξ

(
2lt− y+z

2

|y − z|

)
.

By (12), note that∫
R3

χ
l
(t) d3t =

1

K
l−4η−4η⊥ ∑

y,z∈Gl

(y − z) (y1 − z1) .

Observe also that we have chosen the constant K (115)
in the definition of Ck to have exactly the limit

lim
l→∞

∫
R3

χ
l
(t) d3t = (1, 0, 0) .

More precisely,∫
R3

χ
l
(t) d3t− (1, 0, 0) = O(lη

⊥−η) .

Since ξ ∈ C∞
0 (R3;R) is compactly supported, the sup-

port supp(χ
l
) of χ

l
∈ C∞

0 has radius

sup
{
|x| : χ

l
(x) ̸= 0

}
= O(lη−1)) (122)

and belongs to a sufficiently large box [−L,L]3, L > 0,
for all l ∈ N:

[−L,L]3 ⊃
∪
l∈N

supp(χ
l
) . (123)

In fact, the sequence {χ
l
}l∈N, seen as a family of distri-

butions, converges to the delta function, as l → ∞.
Now therefore, the right hand side of (121) approxi-

mates the convolution χ
l
∗ j1 (t) since the sum is a Rie-

mann sum. By (121), it is then straightforward to verify
the existence of a constant D not depending on (a suffi-
ciently large) l ∈ N and t ∈ C such that∣∣j(l)ρl

(t)− (j1 (t) , 0, 0)
∣∣ (124)

≤ D sup
s∈supp(χ

l
)

∣∣j1 (s+ t)− j1 (t)
∣∣+D(lη−1 + lη

⊥−η) .

The continuity of j1 ∈ C∞
0 (C;R) implies its equicontinu-

ity on any compact set. Hence, by (122)–(123),

sup
t∈C

sup
s∈supp(χ

l
)

∣∣j1 (s+ t)− j1 (t)
∣∣ = O(lη−1) . (125)

The lemma is then a consequence of (124)–(125). 2

Lemma 20 can be extended to all current densities
j ∈ C∞(C;R3). See Theorem 4. Meanwhile, as ex-
plained in Section III, for every approximating minimizer

ρl (112)–(113), the current density j
(l)
ρl

∈ C∞
0 can be de-

composed into longitudinal and transverse components

(j
(l)
ρl
)∥ = P ∥j

(l)
ρl

and (j
(l)
ρl
)⊥ = P⊥j

(l)
ρl
, respectively. So,

we conclude this section by showing that the energy norm

of (j
(l)
ρl
)∥ is negligible as l → ∞ whenever ∇ · j = 0:

Lemma 21 (Energy norm estimates)
Assume that (110) holds with 3η + 4η⊥ > 6 and j1 ∈
C∞

0 (C;R). Then, for any κ < min{1− η, η − η⊥},

∥j⊥ − (j(l)ρl
)⊥∥H ≤ ∥j− j(l)ρl

∥H = o(l−κ) .

In particular, if j is divergence–free (i.e., j = j⊥), then

∥(j(l)ρl
)∥∥H = o(l−κ) .

Proof. First, observe that

∥j∥2H ≤ ∥j∥22 +
∫
{k∈C : |k|2≤1}

|F [j](k)|2

|k|2
d3k (126)

for all j ∈ L2 ∩ H, where F [j] is the Fourier transform
of j. Therefore, the assertion follows from Theorem 4
together with the fact that P ∥, P⊥ are mutually orthog-
onal projections. Recall that, for some sufficiently large

L ∈ R+ and all l ∈ N, the support (16) of j(l)ρl
is contained

in the box [−L,L]3. 2

C. Thermodynamics with Self–Generated
Magnetic Inductions

We analyze now the thermodynamics corresponding to

the magnetic free–energy density functionals F (ϵ)
l defined

by (49) on the sets EΛl
of states for all l ∈ N and ϵ ∈

R+. By contrast with the previous section, the magnetic

induction B = B
(l)
ρ (47) is now self–generated by the

system in the state ρ ∈ EΛl
.

We first need to compute the thermodynamic limit P(ϵ)
∞

of the magnetic pressure (53), that is,

P(ϵ)
l := − inf

ρ∈E⊥
Λl

F (ϵ)
l (ρ) , l ∈ N , ϵ ∈ R+,

where E⊥
Λl

is defined by (52). This requires various argu-
ments and we present them in several lemmata.

Recall Equation (51) which is actually satisfied for all
B ∈ L2:

⟨B,m(l)
ρ ⟩2 = fl (0, ρ)− fl (TϵB, ρ) , B ∈ L2, ρ ∈ EΛl

.
(127)

Here, Tϵ is the Hilbert–Schmidt operator defined, for any
ϵ ∈ R+, by

TϵB := 1 [t ∈ C] (ξϵ ∗ B) , B ∈ L2 . (128)

See also (18). In particular, Tϵ has Hilbert–Schmidt
norm equal to ϵ−3/2∥ξ∥2 but its operator norm satisfies
∥Tϵ∥ ≤ 1, because of ∥ξϵ∥1 = 1 and Young’s inequality.
We also add that

lim
ϵ→0+

∥(Tϵ − 1 [t ∈ C]) B∥2 = 0 , B ∈ L2 . (129)

The latter can easily be proven for all B ∈ C∞
0 by direct

estimates. Then, one uses the density of C∞
0 in L2 as well
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as ∥Tϵ∥ ≤ 1 for any ϵ ∈ R+ to get (129), i.e., the strong
convergence of Tϵ as ϵ → 0+ towards the (non–compact)
operator T0 defined by

T0B := 1 [t ∈ C] B , B ∈ L2 . (130)

Obviously, ∥T0∥ ≤ 1.
The first step is to study the collection

{B 7→ pl (TϵB)}l∈N∪{∞} of maps from L2 to R at

any fixed ϵ ∈ R+. Indeed, since Tϵ is a compact operator
for every ϵ ∈ R+, such maps have much stronger conti-
nuity properties than the maps B 7→ pl (B) analyzed for
all l ∈ N ∪ {∞} in Theorem 15. An important additional
feature at any ϵ ∈ R+ is the weak equicontinuity of the
collection {B 7→ pl (TϵB)}l∈N of maps on any ball

bR (0) :=
{
B ∈ L2 : ∥B∥2 ≤ R

}
(131)

of radius R ∈ R+ centered at 0. The latter is a conse-
quence of the following lemma:

Lemma 22 (Magnetic interaction energy)

The family {B 7→ ⟨B,m(l)
ρ ⟩2}l∈N,ρ∈EΛl

of maps from

bR (0) to R is equicontinuous in the weak topology.

Proof. Since Tϵ is a Hilbert–Schmidt operator satisfying
∥Tϵ∥ ≤ 1 for every ϵ ∈ R+, it is compact and its singular
value decomposition is

Tϵ =

∞∑
n=1

λn|vn⟩⟨wn| ,

where {vn}∞n=1, {wn}∞n=1 are orthonormal bases of L2 and
{λn}∞n=1 ⊂ [0, 1] is a set of real numbers satisfying

∞∑
n=1

λ2
n < ∞ .

Take any ε ∈ R+. Then, there is N ∈ N such that∥∥∥∥∥Tϵ −
N∑

n=1

λn|vn⟩⟨wn|

∥∥∥∥∥ ≤ ε

8R
√
3ϑ

.

Choose now B ∈ L2 and δ := ε/(4N
√
3ϑ). Meanwhile,

remark that ∥ρ∥ = 1 and ∥mx
j ∥ ≤ 2ϑ for any j ∈ {1, 2, 3}

and all x ∈ Z3, see (17). Therefore, by (127) and the
Cauchy–Schwarz inequality,∣∣∣⟨C− B,m(l)

ρ ⟩2
∣∣∣ ≤ ε , B ∈ bR (0) , C ∈ Vδ (B) ,

where Vδ (B) is the weak neighborhood

Vδ (B) :=
{
C ∈ bR (0) : sup

n∈{1,...,N}
|⟨C− B, wn⟩2| ≤ δ

}
.

In other words, the maps B 7→ ⟨B,m(l)
ρ ⟩2 from bR (0) to

R are equicontinuous in the weak topology for all l ∈ N
and ρ ∈ EΛl

. 2

We now use Lemma 22 to prove a stronger version of
Ascoli’s theorem [18, Theorem A.5] for the weak equicon-
tinuous family {pl(TϵB)}l∈N at fixed ϵ ∈ R+: pl (TϵB)
converges to p∞ (TϵB) as l → ∞ (and not only along a
subsequence), uniformly for any B ∈ bR (0).

Lemma 23 (Uniform convergence of pressures)
For any ϵ ∈ R+, the sequence {pl (TϵB)}l∈N is a uni-

formly Cauchy sequence on any ball bR (0) ⊂ L2 of arbi-
trary radius R ∈ R+ centered at 0.

Proof. For any R ∈ R+, the ball bR (0) is weakly compact
in L2 (Banach–Alaoglu theorem) and the weak topology
is metrizable on bR (0), see, e.g., [4, Theorem 10.10]. De-
note by dR any metric on bR (0) generating the weak
topology. Define also by

bδ (B) := {C ∈ bR (0) : dR(B,C) < δ}

the weak ball of radius δ ∈ R+ centered at B ∈ L2. Balls
bδ (B) are clearly weakly open sets in bR (0). Thus, using
the weak compactness of bR (0) as well as the weak den-
sity of C0 in L2, for any δ ∈ R+, there is a finite number
Nδ ∈ N of continuous centers {B(n)}Nδ

n=1 ⊂ bR (0) ∩ C0

such that

bR (0) =

Nδ∪
n=1

bδ(B
(n)) . (132)

Fix ϵ ∈ R+. From Lemma 22, the collection
{B 7→ pl (TϵB)}l∈N of maps from bR (0) to R is equicon-
tinuous in the weak topology. See also (10) and (127). By
the weak compactness and metrizability of the ball bR (0),
the family {B 7→ pl (TϵB)}l∈N is uniformly equicontinu-
ous in the weak topology: For any ε ∈ R+ there is δ ∈ R+

such that, for all l ∈ N ∪ {∞}, B ∈ bR (0) and C ∈ bδ (B),

|pl (TϵB)− pl (TϵC)| ≤
ε

3
. (133)

By Lemma 14, for any ε ∈ R+, there is L ∈ R+ such
that, for any n ∈ {1, . . . , Nδ} and integers l1, l2 > L,∣∣∣pl1(TϵB

(n))− pl2(TϵB
(n))
∣∣∣ ≤ ε

3
. (134)

By (132), (133) and (134), for any ε ∈ R+, there is L ∈
R+ such that, for all B ∈ bR (0) and integers l1, l2 > L,

|pl1 (TϵB)− pl2 (TϵB)| ≤ ε .

2

We now use Lemmata 22 and 23 to deduce a stronger
version of Theorem 15:

Theorem 24 (Infinite volume pressure – II)
Let bR (0) ⊂ L2 be any ball of radius R ∈ R+ centered at
0, see (131). Then, for any ϵ ∈ R+, one has:
(i) The pressure pl (TϵB) converges to p∞ (TϵB) uni-
formly on bR (0), as l → ∞. See Theorem 15 (i).
(ii) The family {B 7→ pl (TϵB)}l∈N∪{∞} of maps from

bR (0) to R is equicontinuous in the weak topology.



21

Proof. Both assertions (i) and (ii) are direct consequences
of Lemmata 22 and 23 combined with (10) and (127). 2
Recall that Tϵ is defined, for any ϵ ∈ R+

0 , by (128)
and (130) and always satisfy ∥Tϵ∥ ≤ 1. We now study
the variational problems defined, for all ϵ ∈ R+

0 and l ∈
N ∪ {∞}, by

B
(ϵ)
l := inf

B∈B

{
1

2
∥B+ Bext∥22 − pl (TϵB+ TϵBext)

}
(135)

with B defined by (57). We break this further preliminary
analysis in three short Lemmata. Note that Lemmata 26
and 27 both exclude the case ϵ = 0.

Lemma 25 (Variational problems B
(ϵ)
l – I)

For any Bext ∈ L2, there is R ∈ R+ such that, for all
ϵ ∈ R+

0 and l ∈ N ∪ {∞},

B
(ϵ)
l = inf

B∈B∩bR(0)

{
1

2
∥B+ Bext∥22 − pl (TϵB+ TϵBext)

}
,

where bR (0) ⊂ L2 is the ball (131) of radius R ∈ R+

centered at 0.

Proof. The assertion is a direct consequence of ∥Tϵ∥ ≤
1 together with the uniform Lipschitz continuity of the
collection {B 7→ pl (B)}l∈N∪{∞} of maps from L2(C;R3)

to R, see Theorem 15 (ii). We omit the details. 2

Lemma 26 (Variational problems B
(ϵ)
l – II)

For any Bext ∈ L2, all ϵ ∈ R+ and l ∈ N ∪ {∞}, there is

a sequence {B(l,n)
ϵ }n∈N ⊂ S0(J ) converging in norm to

B
(l)
ϵ ∈ B as n → ∞ such that

lim
n→∞

{
1

2
∥B(l,n)

ϵ +Bext∥22 − pl(Tϵ(B
(l,n)
ϵ +Bext))

}
=

1

2
∥B(l)

ϵ +Bext∥22 − pl(Tϵ(B
(l)
ϵ +Bext)) = B

(ϵ)
l .

Proof. The map B 7→ ∥B∥2 is lower semi–continuous in
the weak topology, whereas B 7→ pl (TϵB) is weakly con-
tinuous on any ball bR (0) for all ϵ ∈ R+ and l ∈ N∪{∞},
see Theorem 24 (ii). Using these properties together with
Lemma 25, the weak closure B of S0(J ) and the weak
compactness of bR (0), we deduce the existence of (a pos-

sibly non–unique minimizer) B
(l)
ϵ ∈ B such that

B
(ϵ)
l =

1

2
∥B(l)

ϵ +Bext∥22 − pl(TϵB
(l)
ϵ + TϵBext)

for any ϵ ∈ R+ and l ∈ N ∪ {∞}.
Meanwhile, the set S0(J ) with J defined by (56) is

a convex subset of the Hilbert space L2. Therefore, we
infer from [18, Theorem 3.12] that its weak closure B (57)
coincides with the norm closure of S0(J ). In particular,
for any ϵ ∈ R+ and l ∈ N ∪ {∞}, there is a sequence

{B(l,n)
ϵ }n∈N ⊂ S0(J ) converging in norm to B

(l)
ϵ ∈ B, as

n → ∞. Since, by Theorem 15 (ii), the maps B 7→ ∥B∥2

and B 7→ pl (TϵB) are both norm continuous, we deduce
that

lim
n→∞

{
1

2
∥B(l,n)

ϵ +Bext∥22 − pl(TϵB
(l,n)
ϵ + TϵBext)

}
=

1

2
∥B(l)

ϵ +Bext∥22 − pl(TϵB
(l)
ϵ + TϵBext)

for any ϵ ∈ R+ and l ∈ N ∪ {∞}. 2

Lemma 27 (Variational problems B
(ϵ)
l – III)

For any Bext ∈ L2 and ϵ ∈ R+, liml→∞ B
(ϵ)
l = B

(ϵ)
∞ .

Proof. By Lemmata 25–26, there are R ∈ R+ and min-

imizers B
(l)
ϵ ∈ B of B

(ϵ)
l satisfying B

(l)
ϵ ∈ bR (0) for all

ϵ ∈ R+ and l ∈ N ∪ {∞}. Therefore, the lemma fol-
lows from the uniform convergence of pl (TϵB) towards
p∞ (TϵB) on bR (0), see Theorem 24 (i). 2

Even if the map B 7→ ∥B∥2 is lower semi–continuous
in the weak topology and although Lemma 25 also holds
for ϵ = 0 and l = ∞, the existence of minimizer(s) of the

variational problem B
(0)
∞ is far from being clear. Indeed,

one can check that the map B 7→ p∞(B + Bext) is not
upper semi–continuous in the weak topology. Neverthe-

less, B
(0)
∞ can be obtained from B

(ϵ)
∞ by taking the limit

ϵ → 0+:

Lemma 28 (Variational problems B
(ϵ)
∞ – I)

For any Bext ∈ L2, limϵ→0+ B
(ϵ)
∞ = B

(0)
∞ .

Proof. Take any sequence {B0,n}n∈N ⊂ B of approximat-

ing minimizers of B
(0)
∞ , that is,

B(0)
∞ = lim

n→∞

{
1

2
∥B0,n +Bext∥22 − p∞(B0,n +Bext)

}
.

(136)

Then, for any ϵ ∈ R+ and every n ∈ N, B(ϵ)
l is by defini-

tion bounded from above by

B(ϵ)
∞ ≤ 1

2
∥B0,n +Bext∥22 − p∞(Tϵ(B0,n +Bext)) . (137)

The operator Tϵ converges in the strong topology to T0,
as ϵ → 0+. See (129) and (130). Moreover, the map B 7→
p∞ (B) is uniformly Lipschitz continuous, by Theorem 15
(ii). It follows that

lim
ϵ→0+

p∞(Tϵ(B0,n +Bext)) = p∞(B0,n +Bext) .

Combining this with (136) and (137), we then obtain the
upper bound

lim sup
ϵ→0+

B(ϵ)
∞ ≤ B(0)

∞ (138)

for any Bext ∈ L2.
On the other hand, we note that the map

x 7→ hr (x) := β−1 ln
{
cosh (βϑ |x|) + e−λβ cosh (βgr)

}
(139)
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from R3 to R+ is a convex function at any fixed
(β, µ, λ, γ, ϑ, r). Using this together with ∥ξϵ∥1 = 1 and
Jensen’s inequality, we find that, for any B ∈ L2 and
t ∈ C (a.e),

hr ((ξϵ ∗ B) (t)) ≤ ξϵ ∗ (hr ◦ B) (t) ,

which in turn implies

F(r, ξϵ ∗ B) ≤ µ+ β−1 ln 2− γr +

∫
C

ξϵ ∗ (hr ◦ B) (t) d3t

(140)
for any ϵ ∈ R+, r ∈ R+

0 and B ∈ L2, see (74). Using
Fubini’s theorem, for any ϵ ∈ (0, ϵξ), r ∈ R+

0 and B ∈ L2,
we get the equality∫

C

ξϵ ∗ (hr ◦ B) (t) d3t

=

∫
R3

ξϵ (s)

∫
C\Cϵ

hr (B (t− s)) d3t d3s

+

∫
R3

ξϵ (s)

∫
Cϵ

hr (B (t− s)) d3t d3s , (141)

where, for any ϵ < ϵξ,

Cϵ :=
{
t ∈ C : inf {|t− s| : s ∈ ∂C} > ϵRξ

}
. (142)

Here, ∂C is the boundary of C and ϵξ := 1/(2Rξ) with
Rξ being the radius of the support of the function ξ ∈
C∞

0 , see (18) and (22). By ∥ξϵ∥1 = 1 together with the
Cauchy–Schwarz inequality and

|hr(x)| ≤ D (|x|+ 1) , x ∈ R3,

for some finite constantD ∈ R+, the absolute value of the
first integral in the right hand side of (141) is bounded
by

D(|C\Cϵ|1/2∥B∥2 + |C\Cϵ|) (143)

for any ϵ ∈ (0, ϵξ), r ∈ R+
0 and B ∈ L2. Meanwhile, using

similar arguments,∣∣∣∣∫
R3

ξϵ (s)

∫
Cϵ

hr (B (t− s)) d3t d3s−
∫
C

hr (B (t)) d3t

∣∣∣∣
≤ D(|C\Cϵ|1/2∥B∥2 + |C\Cϵ|) . (144)

From (140)–(144) and Theorem 15 (i), we thus deduce
that

p∞(Tϵ(B + Bext)) ≤ p∞(B + Bext) (145)

+2D(|C\Cϵ|1/2∥B∥2 + |C\Cϵ|)

for any ϵ ∈ (0, ϵξ), Bext ∈ L2 and all B ∈ bR (0) with
R ∈ R+ being any fixed radius. As a consequence, for any
Bext ∈ L2, there is R ∈ R+ such that, for all ϵ ∈ (0, ϵξ),

B(ϵ)
∞ ≥ B(0)

∞ − 2D(R|C\Cϵ|1/2 + |C\Cϵ|) , (146)

because of Lemma 25.

Since |C\Cϵ| = O(ϵ), we therefore combine the lower
bound (146) in the limit ϵ → 0+ with the upper bound
(138) to arrive at the assertion. 2

We can now deduce that minimizers of B
(ϵ)
∞ are ap-

proximating minimizers of the variational problem B
(0)
∞ :

Lemma 29 (Variational problems B
(ϵ)
∞ – II)

Let Bext ∈ L2. Then, any family {Bϵ}ϵ∈R+ ⊂ B of mini-

mizers Bϵ of B
(ϵ)
∞ minimizes B

(0)
∞ in the limit ϵ → 0+.

Proof. Take any family {Bϵ}ϵ∈R+ ⊂ B ∩ bR (0) of min-

imizers Bϵ of B
(ϵ)
∞ , see Lemmata 25–26. By Lemma 28

and (145),

lim
ϵ→0+

{
1

2
∥Bϵ +Bext∥22 − p∞(Bϵ +Bext)

}
= B(0)

∞ .

(147)
In other words, {Bϵ}ϵ∈R+ is a family of approximating

minimizers of B
(0)
∞ . 2

Remark 30
By Lemma 25, the Banach–Alaoglu theorem and the sepa-

rability of L2, any family {Bϵ}ϵ∈R+ of minimizers of B
(ϵ)
∞

converges in the weak topology and along a subsequence
to some B0 ∈ B ∩ bR (0), as ϵ → 0+. In general, B0 may

not be a minimizer of B
(0)
∞ . Sufficient conditions to en-

sure that B0 is a minimizer of B
(0)
∞ are given in Theorem

40.

We are now in position to obtain the magnetic pres-

sures P(ϵ)
∞ as the variational problems −B

(ϵ)
∞ for all

ϵ ∈ R+
0 . We start by considering the case ϵ ∈ R+. The

case ϵ = 0 will then be a direct consequence of Lemma
28.

Theorem 31 (Infinite volume magnetic pressure)
Let Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H. Then,

P(ϵ)
∞ := lim

l→∞
P(ϵ)
l = −B(ϵ)

∞ , ϵ ∈ R+.

Proof. By (52), note first that

P(ϵ)
l ≤ − inf

j∈Jl

{
1

2
∥S0(j) + Bext∥22 − pl (Tϵ(S0(j) + Bext))

}
(148)

with Jl being the set defined by

Jl := {j ∈ H : ∥j∥∥H ≤ l−κ} ∩ C∞
0 (C;R3) . (149)

Since kerS = P ∥H, i.e., S(j) = S(j⊥), we thus infer

from (57), (135) and (148) that P(ϵ)
l ≤ −B

(ϵ)
l for any

ϵ ∈ R+ and l ∈ N. In particular, in the limit l → ∞ one

gets P(ϵ)
∞ ≤ −B

(ϵ)
∞ for any ϵ ∈ R+, using Lemma 27. It

remains to show that, for any ϵ ∈ R+, −B
(ϵ)
∞ is a lower

bound of the magnetic pressure P(ϵ)
∞ .
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By Lemma 26, there is a norm convergent sequence

{B(n)
ϵ }n∈N ⊂ S0(J ) such that

B(ϵ)
∞ = lim

n→∞

{
1

2
∥B(n)

ϵ +Bext∥22 − p∞(Tϵ(B
(n)
ϵ +Bext))

}
.

(150)
Moreover, for any n ∈ N, there is by definition a cur-

rent density j
(n)
ϵ ∈ J generating the magnetic induction

B
(n)
ϵ = S0(j

(n)
ϵ ). Therefore, by Lemmata 19, 21 and 22

together with (28) and (38), for any fixed n ∈ N, there is a
sequence {ρl}l∈N of quasi–divergence–free states ρl ∈ E⊥

Λl

satisfying

lim
l→∞

∥B(l)
ρl

− B(n)
ϵ ∥2 = 0 , n ∈ N , (151)

and

lim
l→∞

{
fl(TϵB

(l)
ρl
, ρl)− inf

ρ∈EΛl

fl(Tϵ(B
(n)
ϵ +Bext), ρ)

}
= 0 .

(152)

Hence, the lower bound liml→∞ P(ϵ)
l ≥ −B

(ϵ)
∞ for any

ϵ ∈ R+ is a direct consequence of (51), (53), (150), (151)
and (152) together with Theorem 15 (i). 2

Corollary 32 (Magnetic pressure for ϵ = 0)
Let Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H. Then,

P∞ := lim
ϵ→0+

P(ϵ)
∞ = −B(0)

∞ .

Proof. See Lemma 28 and Theorem 31. 2

It remains to establish the relation between the solu-
tions of the variational problem B

(ϵ)
∞ for ϵ ∈ R+ and the

sets B(±)
ϵ of all weak (−) and norm (+) cluster points of

self–generated magnetic inductions B
(l)
ωϵ,l , see (58). This

result is a relatively direct corollary of Theorems 24 and
31.

Corollary 33 (Magnetic inductions)
Let ϵ ∈ R+ and Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H.

Then, B(+)
ϵ = B(−)

ϵ ⊂ B is a set of minimizers of B
(ϵ)
∞ .

Proof. The inclusion B(+)
ϵ ⊆ B(−)

ϵ is clear and B(−)
ϵ ̸= ∅,

by weak compactness of balls. Take any Bϵ ∈ B(−)
ϵ . By

definition of B(−)
ϵ , there is a subsequence {ln}n∈N such

that B
(ln)
ωϵ,ln

converges in the weak topology to Bϵ ∈ Bϵ,

as n → ∞. Note that {B(ln)
ωϵ,ln

}n∈N ⊂ S0(Jl) with Jl

being the set defined by (149). Since kerS = P ∥H, we

have {B(ln)
ωϵ,ln

}n∈N ⊂ S0(J ). Therefore,

B(−)
ϵ ⊂ B := S0(J ) ,

see (57). Using Theorem 24 (ii), the weak lower semi–
continuity of the map B 7→ ∥B∥2 as well as Theorem 31,

we also deduce that Bϵ ∈ B(−)
ϵ must be a solution of the

variational problem B
(ϵ)
∞ and

lim
n→∞

∥B(ln)
ωϵ,ln

∥2 = ∥Bϵ∥2 . (153)

To prove the latter, use the equality

∥B(ln)
ωϵ,ln

+B∥22 = ∥B(ln)
ωϵ,ln

∥22 + ∥B∥22 +2⟨B(ln)
ωϵ,ln

,B⟩2 (154)

for B = Bext, as well as the weak continuity of the map

B 7→ 2⟨B,Bext⟩2 + p∞(Tϵ(B + Bext)) ,

see Theorem 24 (ii). It follows that B(−)
ϵ is a set of mini-

mizers of B
(ϵ)
∞ . Using (153) and (154) with B = −Bϵ, we

deduce that B
(ln)
ωϵ,ln

converges in norm to Bϵ, as l → ∞.

In other words, B(−)
ϵ ⊆ B(+)

ϵ . 2

By Lemma 29, this corollary also links in the limit ϵ →
0+ the sets {B(±)

ϵ }ϵ∈R+ to the approximating minimizers

of the variational problem B
(0)
∞ .

We analyze now in detail the variational B
(ϵ)
∞ for all

ϵ ∈ R+
0 . In the limit β → ∞ of low temperatures, recall

(86), that is, |Mβ,D| = O(e−β(hc−h)) whenever (87) is
satisfied. It means that, as β → ∞, the pressure p∞ (B)
does not depend much on magnetic inductions B ∈ B that
satisfy (87) on C. Therefore, we first study the variational
problem (63), that is,

A :=
1

2
inf
B∈B

∥B+ Bext∥22 . (155)

Lemma 34 (Variational problem A)
Let Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H. Then, there
is a unique minimizer Bint ∈ B of A. The latter fulfills
Bint = −Bext a.e. in C.

Proof. By [18, Theorem 3.12], recall that the weak clo-
sure B (57) coincides with the norm closure of S0(J ).
By linearity of the Biot–Savart operator S, we then con-
clude that B ⊂ P⊥L2, equipped with the L2–scalar prod-
uct, is a sub–Hilbert space of L2. As a consequence, by
strict convexity and weak lower semi–continuity of the
map B 7→ ∥B∥2, there is a unique minimizer Bint ∈ B
satisfying the Euler–Lagrange equations

⟨Bint +Bext,B⟩2 = 0 , B ∈ B . (156)

Now, since the space C∞
0 (C;R3) is dense in L2(C;R3),

it suffices to prove (156) for all B ∈ C∞
0 (C;R3) (instead

of B ∈ B). Take

j⊥ := ∇×B ∈ C∞
0 (C;R3)

for any B ∈ C∞
0 (C;R3). Then, clearly, ∇ · j⊥ = 0 and

thus j⊥ ∈ J . Moreover, as explained in Remark 7,
S0(j

⊥) = P⊥B and P⊥B ∈ B. Since, by definition of
the Biot–Savart operator, Bint ∈ P⊥L2 and, by assump-
tion, Bext ∈ P⊥L2, we infer from (156) at B = P⊥B
that

⟨Bint +Bext, P
⊥B⟩2 = ⟨Bint +Bext, B⟩2 = 0 (157)

for any B ∈ C∞
0 (C;R3). Indeed, P ∥ and P⊥ are mutually

orthogonal projections. See, e.g., (28). 2
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Since B (57) is a closed space with respect to the L2–
norm (cf. [18, Theorem 3.12]), we use (38) to observe
that B = S(J ), where

J ⊆ P⊥H ∩ C∞
0 (C;R3)

∥−∥H

is the (norm) closure of the set J . As a consequence,
Equations (38) and (155) yield (64), that is,

A = J :=
1

2
inf

j⊥∈J

∥∥j⊥ + jext
∥∥2
H

. (158)

In particular, there is a one–to–one map from minimizers
of (155) and minimizers of (158). By (37) and (156), the
unique minimizer j⊥int ∈ J satisfies the Euler–Lagrange
equations

⟨j⊥int + jext, j
⊥⟩H = 0 , j⊥ ∈ J . (159)

The latter implies that j⊥int is a distribution supported on
the boundary ∂C of C, provided (41) holds:

Lemma 35 (Variational problem J)
Let Bext = S0(jext) with jext ∈ C∞

0 ∩P⊥H. Assume addi-
tionally (41), that is, supp(jext) ⊂ R\C. Then, there is a
unique minimizer j⊥int ∈ J of J which, as a distribution,
is supported on the boundary ∂C of C.

Proof. Uniqueness and existence is a direct consequence
of Lemma 34, as explained after (158). Now, similar to
(157), we deduce from (159) that

⟨j⊥int + jext, j⟩H = 0 , j ∈ C∞
0 (C;R3) . (160)

The current density jext and the minimizer j⊥int both
create vector potentials respectively equal to A (jext)
and A

(
j⊥int
)
, see (65)–(67). By (160), the distributions

A (jext) and −A
(
j⊥int
)
are equal to each other within the

unit box C:

A
(
j⊥int
)
= −A (jext) , on C∞

0 (C;R3) . (161)

Since jext ∈ C∞
0 ∩ P⊥H is by assumption supported on

R\C, −∆A (jext) = 0 (in the strong sense) on the unit
box C, which, together with (161), implies that

−∆A
(
j⊥int
)
= 0 , on C∞

0 (C;R3) . (162)

Combining this equality with (68) and j⊥int ∈ J , we arrive
at the assertion. 2

Therefore, we deduce from Lemmata 34 and 35 that
the solution Bint = S(j⊥int) of the variational problem A

(155) comes from surface currents j⊥int ∈ J which annihi-
late a.e. all the total magnetic induction inside the bulk
C. We take advantage of this property to analyze the full

variational problem B
(ϵ)
∞ (135).

Like in Lemma 34, we start with a first consequence

of the Euler–Lagrange equations associated with B
(ϵ)
∞ for

any ϵ ∈ R+
0 . Recall that B

(ϵ)
∞ has minimizer(s) Bϵ ∈ B

for all ϵ ∈ R+ (cf. Lemma 26), but the existence of

minimizer(s) of the variational problem B
(0)
∞ is unclear.

Lemma 36 (Variational problems B
(ϵ)
∞ – III)

Let ϵ ∈ R+
0 and Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H.

Assume that Bϵ is a minimizer of B
(ϵ)
∞ . Then,

Bϵ − Bint = M⊥
β (TϵBϵ + TϵBext) a.e. in C .

Here, Bint is the unique minimizer of A (Lemma 34),
whereas M⊥

β = P⊥Mβ ∈ C∞ is the transverse component

of the magnetization density Mβ ≡ Mβ(B) defined on R3

by (62) for all B ∈ L2.

Proof. For any r ∈ R+
0 and all B,C ∈ L2, the map

t 7→ F (r,B+ tC) from R to R is differentiable. Explicit
computations show that

∂tF (r,B+ tC) |t=0 (163)

=

∫
R3

1[t ∈ C] ϑ sinh (βht)

cosh (βht) + e−βλ cosh (βgr)

B (t)

|B (t)|
· C(t) d3t .

On the other hand, by (135) combined with Theorem 15
(i),

B(ϵ)
∞ = inf

r≥0
inf
B∈B

{
1

2
∥B+ Bext∥22 − F (r,TϵB+ TϵBext)

}
(164)

for any ϵ ∈ R+
0 . Therefore, by (62), (75), (163) and (164),

the corresponding Euler–Lagrange equations associated

with B
(ϵ)
∞ read: For all B ∈ B, all rβ ∈ R+

0 solution of

(75), and any minimizer Bϵ of B
(ϵ)
∞ (provided it exists

when ϵ = 0),

⟨Bϵ +Bext,B⟩2 = ⟨Mβ(TϵBϵ + TϵBext),B⟩2 . (165)

(Note that Mβ depends on rβ .) Using (156) and (165),
we arrive at the equality

⟨Bϵ − Bint,B⟩2 = ⟨Mβ(TϵBϵ + TϵBext),B⟩2 , B ∈ B ,
(166)

from which one easily shows the assertion. See proof of
Lemma 34 for more details. 2

Lemma 36 or Equation (166) yields a general estimate

on the L2–norm of solutions of B
(ϵ)
∞ and A:

Lemma 37 (Variational problems B
(ϵ)
∞ – IV)

Let ϵ ∈ R+
0 and Bext = S0(jext) with jext ∈ C∞

0 ∩ P⊥H.

Assume that Bϵ is a minimizer of B
(ϵ)
∞ . Then, Bϵ−Bint ∈

bϑ (0). Moreover, if ϵ < ϵξ (cf. (22)) then

∥Bϵ − Bint∥2 ≤ ∥Mβ (Tϵ(Bϵ − Bint)) ∥2 + ϑ|C\Cϵ|1/2

with ϑ|C\Cϵ|1/2 = O(
√
ϵ), see (142).

Proof. Assume that Bϵ is a minimizer of B
(ϵ)
∞ for some

ϵ ∈ R+
0 . We already know that such a minimizer exists

for all ϵ ∈ R+ (cf. Lemma 26). Since Bϵ,Bint ∈ B, it
follows from (166) applied to

B = B̃ϵ := Bϵ − Bint ∈ B
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that

∥B̃ϵ∥22 =

∫
C

Mβ,t(Tϵ(Bϵ +Bext)) · B̃ϵ d3t . (167)

In particular, by (62) and the Cauchy–Schwarz inequal-

ity, we obtain ∥B̃ϵ∥2 ≤ ϑ. In other words, Bϵ − Bint ∈
bϑ (0), see (131).
Take now ϵ < ϵξ. Then, Cϵ ⊆ C is a non–empty set,

see (142). By Lemma 34, TϵBint = −TϵBext a.e. in Cϵ.
We thus rewrite (167) as

∥B̃ϵ∥22 =

∫
C\Cϵ

Mβ,t(Tϵ(Bϵ +Bext)) · B̃ϵ d3t

+

∫
Cϵ

Mβ(TϵB̃ϵ) · B̃ϵ d3t . (168)

By (62) and the Cauchy–Schwarz inequality, we deduce
from (168) that

∥B̃ϵ∥2 ≤ ϑ|C\Cϵ|1/2 + ∥Mβ(TϵB̃ϵ)∥2 .

(This bound is proven in the same way as (143).) 2

Lemma 37 directly yields the suppression of the total
magnetic induction within C (a.e.) for sufficiently high
temperatures because in this case the map B 7→ Mβ(B)
from L2 to L2(C;R3) satisfies ∥Mβ(B)∥2 ≤ m∥B∥2 with
m < 1:

Lemma 38 (Variational problems B
(ϵ)
∞ – V)

Let ϵ ∈ [0, ϵξ) and Bext = S0(jext) with jext ∈ C∞
0 ∩P⊥H.

Assume that Bϵ is a minimizer of B
(ϵ)
∞ . If β < ϑ−1 then

∥Bϵ − Bint∥2 ≤
(
ϑ−1 − β

)−1 |C\Cϵ|1/2

with ϑ|C\Cϵ|1/2 = O(
√
ϵ), see (142).

Proof. For all B ∈ L2(C;R3) and β ∈ R+, note that

∥Mβ(B)∥22 ≤
∫
C

ϑ2β2h2
t

tanh2 (βht)

β2h2
t

d3t ≤ ϑ2β2∥B∥22 ,

using (62) and tanh (t) ≤ t for all t ∈ R+
0 . Since ∥Tϵ∥ ≤

1 for any ϵ ∈ R+
0 , we thus arrive at the assertion by

combining the last upper bound with ϑβ < 1 and Lemma
37. 2

This last situation, i.e., the high temperature regime,
is of course not the main case of interest. Moreover, it is
questionable from the physical point of view, see discus-
sions in Section VI (cf. 4.). We are instead interested in
showing the Meißner effect at large enough inverse tem-
peratures β >> 1 and large BCS couplings γ >> 1 to
ensure the presence of a superconducting phase.
Now therefore, we pursue our analysis of the varia-

tional problem B
(ϵ)
∞ by using the asymptotics |Mβ,D| =

O(e−β(hc−h)) (cf. (86)) whenever (87) is a.e. satisfied
on some open subset D ⊆ C. We give below a sufficient
(but not necessary) condition to prove in Theorem 40 the
Meißner effect at low temperatures.

Lemma 39 (Variational problems B
(ϵ)
∞ – VI)

Let ϵ ∈ [0, ϵξ) and Bext = S0(jext) with jext ∈ C∞
0 ∩P⊥H.

Assume that Bϵ is a minimizer of B
(ϵ)
∞ such that

z :=
β cosh (βh)

e−βλ cosh
(
βgrβ(Tϵ(Bϵ−Bint))

) + ϑh−1 < ϑ−1

for some h ∈ R+. Here, rβ(Tϵ(Bϵ−Bint)) stands for any
arbitrary solution of (75) with B = Tϵ(Bϵ −Bint). Then,

∥Bϵ − Bint∥2 ≤
(
ϑ−1 − z

)−1 |C\Cϵ|1/2

with ϑ|C\Cϵ|1/2 = O(
√
ϵ), see (142).

Proof. Take any constant h ∈ R+. The magnetization
density Mβ ≡ Mβ(B) ∈ C∞

0 , defined by (62) for all B ∈
L2(C;R3), trivially satisfies

∥Mβ∥2 ≤ ∥1[ht ≤ h]Mβ∥2 + ∥1[ht ≥ h]Mβ∥2 (169)

with ht := ϑ |B (t)| a.e. for t ∈ C. Using (62) and the
mean value theorem, one gets that

∥1[ht ≤ h]Mβ∥2 ≤ βϑ cosh (βh)

e−βλ cosh
(
βgrβ

) ∥B∥2 . (170)

On the other hand,

∥1[ht ≥ h]Mβ∥2 ≤ ∥Mβ∥2 ∥1[ht ≥ h]∥2 ≤ ϑ2h−1 ∥B∥2 .

We combine this with (169)–(170) to deduce that

∥Mβ∥2 ≤

(
βϑ cosh (βh)

e−βλ cosh
(
βgrβ

) + ϑ2h−1

)
∥B∥2 .

Applying this inequality to B = Tϵ(Bϵ − Bint) and using
Lemma 37 and ∥Tϵ∥ ≤ 1, we finally find that

∥Bϵ − Bint∥2 ≤ zϑ ∥Bϵ − Bint∥2 + ϑ|C\Cϵ|1/2

from which we deduce the lemma 2

Sufficient conditions to ensure that assumptions of the
last lemma hold at large β > 0 are given by µ < −ϑ2 and
γ > |µ− λ|Γ0 with

Γ0 :=
4

1− ϑ2|µ|−1
> 4 .

See Lemmata 16 and 37. Indeed, the Meißner effect is
directly related with the existence of a superconduct-
ing phase, which is characterized by a strictly posi-
tive Cooper pair condensate density for all minimizers

ωϵ,l ∈ Ω
(ϵ)
l in the limit ϵ → 0+, see (60).

Theorem 40 (Superconducting phase – II)
Let µ < −ϑ2, γ > |µ − λ|Γ0 and Bext = S0(jext) with
jext ∈ C∞

0 ∩ P⊥H. Then, there is βc ∈ R+ such that, for
all β > βc:

(i) Any family {Bϵ}ϵ∈R+ ⊂ B of minimizers of B
(ϵ)
∞ con-

verges in norm to the unique minimizer Bint of A (cf.
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Lemma 34).

(ii) Bint is also the unique minimizer of B
(0)
∞ .

(iii) For any sequence of minimizers ωϵ,l ∈ Ω
(ϵ)
l ,

lim
ϵ→0+

lim inf
l→∞

ωϵ,l

(
c∗0c0
|Λl|

)
= lim

ϵ→0+
lim sup
l→∞

ωϵ,l

(
c∗0c0
|Λl|

)
= rβ(0)

with

rβ(0) ≥ Γ−2
0 − γ−2 (µ− λ)

2
> 0

being the unique solution of (75) for B = 0.

Proof. (i) For any B ∈ bϑ(0), µ < −ϑ2 and γ > |µ−λ|Γ0,
by Lemma 16, there is βc ∈ R+ such that, for all β > βc,

hc (B) := grβ − λ > h := gr0 − λ > ϑ2

with r0 defined by (79) for ε = 0 and R = ϑ. See also
(87). By Lemma 37, it follows that the conditions of
Lemma 39 are satisfied for ϵ ∈ R+. The latter yields

∥Bϵ − Bint∥2 = O(
√
ϵ) .

(ii) We combine (i) and (147) with Theorem 15 (ii)

to check that Bint is a minimizer of B
(0)
∞ . On the other

hand, recall that, for any B ∈ bϑ(0), the conditions of
Lemma 39 are also satisfied for ϵ = 0. Hence, Bint is the

unique minimizer of B
(0)
∞ .

(iii) Since, by definition, ωϵ,l ∈ Ω
(ϵ)
l minimizes the

magnetic free–energy density functional F (ϵ)
l (49), ev-

ery ωϵ,l ∈ Ω
(ϵ)
l can be seen as a tangent functional to

the magnetic pressure P(ϵ)
l (53). See [4, Section 2.6] for

further details. In particular,

lim
δ→0+

∂γP(ϵ)
l (γ − δ) ≤ ωϵ,l

(
c∗0c0
|Λl|

)
≤ lim

δ→0+
∂γP(ϵ)

l (γ + δ)

(171)
for any l ∈ N. Observe now that the finite volume mag-

netic pressure P(ϵ)
l ≡ P(ϵ)

l (γ) is a continuous convex

function of γ ∈ R+. Indeed, P(ϵ)
l (γ) is the supremum

over a family of affine functions of γ ∈ R+. There-
fore, by Griffiths arguments (see, e.g., [1, Eq. (A.1)])

together with (171), the point–wise convergence of func-

tions P(ϵ)
l ≡ P(ϵ)

l (γ) towards the continuous convex func-

tion P(ϵ)
∞ ≡ P(ϵ)

∞ (γ) yields

lim
δ→0+

∂γP(ϵ)
∞ (γ − δ) ≤ r(−)

ϵ ≤ r(+)
ϵ ≤ lim

δ→0+
∂γP(ϵ)

∞ (γ + δ)

(172)
for any ϵ ∈ R+, where

r(−)
ϵ := lim inf

l→∞
ωϵ,l

(
c∗0c0
|Λl|

)
, r(+)

ϵ := lim sup
l→∞

ωϵ,l

(
c∗0c0
|Λl|

)
.

(173)
By applying once again [1, Eq. (A.1)] to the family

{P(ϵ)
∞ (γ)}ϵ∈R+ of continuous convex functions, we deduce

from (59) and (172)–(173) that the limits

r
(−)
0 := lim inf

ϵ→0+
r(−)
ϵ and r

(+)
0 := lim sup

ϵ→0+
r(+)
ϵ (174)

must obey:

lim
δ→0+

∂γP∞ (γ − δ) ≤ r
(−)
0 ≤ r

(+)
0 ≤ lim

δ→0+
∂γP∞ (γ + δ) .

(175)
Note that P∞ (γ) is of course well–defined for all γ ∈ R+.

In fact, we combine (ii) with Theorem 15 (i), Corollary
32 and Lemma 34 to obtain that, for any γ > |µ− λ|Γ0,

P∞ ≡ P∞ (γ) = −1

2
∥B̃int∥22 + F(rβ(0), 0) (176)

with B̃int := Bint+Bext and rβ(0) being a solution of (75)
for B = 0. By Lemmata 16 together with [1, Lemma
7.1], the solution of (75) is unique. Using (176) while

keeping in mind that Bint is the minimizer of B
(0)
∞ for all

γ ≥ γ′ > |µ − λ|Γ0 (cf. (ii)) and β > βc = βc (γ
′) (cf.

Lemma 16), we then conclude that

lim
δ→0+

∂γP∞ (γ − δ) = lim
δ→0+

∂γP∞ (γ + δ) = rβ(0) .

Because of (174)–(175), the latter yields (iii). 2
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