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DOUBLE EXPONENTIAL GROWTH OF THE VORTICITY

GRADIENT FOR THE TWO-DIMENSIONAL EULER EQUATION

SERGEY A. DENISOV

Abstract. For two-dimensional Euler equation on the torus, we prove that
the L

∞–norm of the vorticity gradient can grow as double exponential over
arbitrarily long but finite time. The method is based on the perturbative anal-
ysis around the singular stationary solution studied by Bahouri and Chemin
in [1].

1. Upper bounds

Consider the two-dimensional Euler equation for the vorticity

θ̇ = ∇θ · ∇⊥u, u = ∆−1θ, θ(x, y, 0) = θ0(x, y) (1)

and θ is 2π–periodic in both x and y (e.g., the equation is considered on the torus
T
2). We assume that θ0 has zero average over T

2 and then ∆−1 is well-defined
since the Euler flow is area-preserving and the average of θ(·, t) is zero as well.

The global existence of the smooth solution for smooth initial data is well-known
[9]. The estimate on the possible growth of the Sobolev norms, however, is double
exponential. We sketch the proof of this bound for H2–norm. The estimates for
Hs, s > 2 can be obtained similarly. More general results on regularity can be
found in [4]. Let

jk(t) = ‖θ(t)‖Hk

Lemma 1.1. If θ is the smooth solution of (1), then

j2(t) ≤ exp
(

(1 + log j2(0)) exp(C‖θ(0)‖∞t)− 1
)

(2)

Proof. Acting on (1) with Laplacian we get

∆θ̇ = ∆θxuy + 2∇θx · ∇uy −∆θyux − 2∇θy · ∇ux
Multiply by ∆θ and integrate to get

∂t‖θ‖2H2 ≤ 16‖H(u)‖∞‖θ‖2H2 (3)

whereH(u) denotes the Hessian of u. The next inequality follows from the Littlewood-
Payley decomposition ([4], proposition 1.4)

‖H(u)‖∞ < C(σ)‖θ‖∞(1 + log ‖θ‖Hσ ) (4)

for any σ > 1. Notice that ‖θ‖∞ is invariant under the motion so combine (3) and
(4) to get (2). �
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Remark. In the same way one can prove bounds for higher Sobolev norms, e.g.,

j4(t) ≤ exp
(

(1 + log j4(0)) exp(C‖θ(0)‖∞t)− 1
)

(5)

Similar estimates can be proved for different norms, e.g., the uniform norm of the
vorticity gradient. For example, the Sobolev embedding and the estimates on j4
already yield the double exponential growth. In this paper, we will be working with
that norm as many arguments are easier in that setting.

In the regime of large jk(0), we will be able to show that, given arbitrarily large λ,

the estimate maxt∈[0,T ] ‖∇θ(t, ·)‖∞ > λe
0,001T ‖∇θ0‖∞ can hold for some infinitely

smooth initial data. This is far from showing that (2) or (5) are sharp however this
does prove the possibility of double exponential growth and rules out the estimates
like

jk(t) ≤ jk(0) exp(Ct) (6)

under the normalization ‖θ‖∞ = 1. The question of whether jk(0) can be taken
∼ 1 is left wide open, see the discussion in last section.

Our results rigorously confirm the following: if the 2D incompressible dynamics
gets into a certain “instability mode” then the Sobolev norms can grow very fast in
local time (i.e. counting from the time the “instability regime was reached”). Can
the Sobolev norms grow at all infinitely in time assuming that initially they are
small? The answer to this question is yes, see [6] and [8, 10, 11, 12]. The important
questions of linear and nonlinear instabilities were addressed before (see, e.g. [7]
and references there).

It must be mentioned here that 2D Euler allows rescaling which provides the
tradeoff between how large the T and θ(0) are, i.e. if θ(x, y, t) is a solution then
λθ(x, y, λt) is also a solution for any λ > 0. However, in our construction we will
always have ‖θ‖p ∼ 1, ∀p ∈ [1,∞]. The bounds like (6) can be easily obtained
for Euler-type equations with ∆−1 replaced by ∆−1−. In our opinion, the double
exponential growth is the first indication of the nonlinear nature of the problem.

2. The singular stationary solution and dynamics on the torus

The following singular stationary solutions was studied before (see, e.g., [1, 3] in
the context of R2). We consider the following function

θs0(x, y) = sgn(x) · sgn(y), |x| ≤ π, |y| ≤ π

This is a steady state as can be easily seen by checking directly. Indeed, the function
u0 = ∆−1θs0 is odd with respect to each variable as can be verified on the Fourier
side. That, in particular, implies that u0 is zero on the axis and then its gradient is
orthogonal to them. This steady state, of course, is a weak solution, a vortex-type
steady state. Another consequence of u0 being odd is that the origin is a stationary
point of the dynamics.

By the Poisson summation formula, we have
∑

n∈Z2,n6=(0,0)

|n|−2ein·x = C ln |x|+ φ(x), x ∼ 0

where φ(x) is smooth and even.
Therefore, around the origin we have

∇u0(x, y) ∼
∫ ∫

Bδ(0)

(x− ξ1, y − ξ2)

(x − ξ1)2 + (y − ξ2)2
sgn(ξ1)sgn(ξ2)dξ1dξ2 + . . .
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Due to symmetry, it is sufficient to consider the domain D = {0 < x < y < 0, 001}.
Then, taking the integrals, we see that

µ(x, y) = (µ1, µ2) =
(

∇⊥u0
)

(x, y) = (7)

= C

(

−
∫ x

0

ln(y2 + ξ2)dξ + xr1(x, y),

∫ y

0

ln(x2 + ξ2)dξ + yr2(x, y)

)

= C(−x log y + xO(1), y log y + yO(1)) if (x, y) ∈ D

The correction terms r1(2) are smooth. Without loss of generality we will later
assume that C = 1 in the last formula. Notice also that the flow given by the
vector-field µ is area-preserving.

Thus, the dynamics of the point (x0, δ) ∈ D, x0 ≪ δ is

(C1δ)
et . y(t) . (C2δ)

et , x0(C1δ)
−et+1 . x(t) . x0(C2δ)

−et+1, t ∈ [0, t0], (8)

where t0 is the time the trajectory leaves the domain D. These estimates therefore
give a bound on t0. The attraction to the origin, the stationary point, is double
exponential along the vertical axis and the repulsion along the horizontal axis is
also double exponential.

3. The idea

The idea of constructing the smooth initial data for a double exponential scenario
is quite simple and roughly can be summarized as follows: given any T > 0, we will
smooth out the singular steady state such that the dynamics is double exponential
over [0, T ] in a certain domain away from the coordinate axes. Then we will place
a small but steep bump in the area of double exponential behavior and will let it
evolve hoping that the vector field generated by this bump itself is not going to ruin
the double exponential contraction in OY direction. The rest of the paper verifies
that this indeed is the case.

4. The Model Equation

We start this section with the study of the following system
{

ẋ = µ1(x, y) + ν1(x, y, t), x(0, α, β) = α
ẏ = µ2(x, y) + ν2(x, y, t), y(0, α, β) = β

(9)

Here we assume the following

|ν1(2)| < 0, 0001υr, r =
√

x2 + y2 (10)

and

|∇ν1(2)| < 0, 0001υ (11)

with small υ (to be specified later) and these estimates are valid in the area of
interest

ℵ = {y >
√
x} ∩ {y < ǫ2} ∩ {x > ǫ1}

where

υ ≪ ǫ1 ≪ ǫ2

The functions ν1(2) are infinitely smooth in all variables in ℵ but we have no control
over higher derivatives. We also assume that this flow is area preserving. Our goal is
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to study the behavior of trajectories within the time interval [0, T ]. In this section,
the parameters will eventually be chosen in the following order

T −→ ǫ2 −→ ǫ1 −→ υ

Here are some obvious observations:
1. If ǫ1(2) are small and

α & υ

∣

∣

∣

∣

β

log β

∣

∣

∣

∣

(12)

then x(t) always increases and y(t) decreases. This monotonicity persists as long
as the trajectory stays within ℵ. Assuming that ǫ1(2) are fixed, (12) can always be
satisfied by taking υ small enough, i.e.,

υ .
ǫ1| log ǫ2|

ǫ2
(13)

2. We have estimates

x(− log y+C)+υy > ẋ > x(− log y−C)−υy, −y(| log y|+C) < ẏ < −y(| log y|−C)
(14)

The second estimate yields

ee
t(log β+C) & y(t) & ee

T (log β−C) = κ(T, β) (15)

and so for x(t) we have

x(t) ≤ α exp

(

Ct−
∫ t

0

log y(τ)dτ

)

+ υ

∫ t

0

y(τ) exp

(

C(t− τ)−
∫ t

τ

log y(s)ds

)

dτ

x(T ) < (α+ υβT ) exp
(

T (C + | log κ(T, β)|)
)

Thus, the trajectory will stay inside ℵ for any t ∈ [0, T ] as long as

α < κ exp(−(T + 2)| log κ|)− υǫ2T

and if we make

υ < ǫe
2T

2 (16)

then condition

α < βe2T (17)

is sufficient for the trajectory to stay inside ℵ for t ∈ [0, T ]. Thus, we are taking

ǫ1 < ǫe
2T

2

and focus on the domain

Ω0 = {(α, β) : ǫ1 < α < β2eT , β < ǫ2}
Then, any point from this set stays inside ℵ over [0, T ], x(t) grows monotonically
and y(t) monotonically decays with the double-exponential rate given in (15).

Now, we will prove that the derivative in α of x(t, α, β) grows with the double-
exponential rate and this will be the key calculation. For any t ∈ [0, T ], (7) yields














ẋα = −xα log(x2 + y2) + xαr1+
+xxαr1x + xyαr1y + ν1xxα + ν1yyα − 2yα arctan(xy−1)

ẏα = yα log(x2 + y2) + yαr2 + yxαr2x+
+yyαr2y + ν2xxα + ν2yyα + 2xα arctan(yx−1)

(18)
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and xα(0, α, β) = 1, yα(0, α, β) = 0. Let

f11(t) = ν1x − log(x2 + y2) + r1 + xr1x + ν1x

f12(t) = xr1y + ν1y − 2 arctan(xy−1)

f21(t) = yr2x + ν2x + 2 arctan(yx−1)

f22(t) = log(x2 + y2) + r2 + yr2y + ν2y

xα = exp

(
∫ t

0

f11(τ)dτ

)

ψ, yα = exp

(
∫ t

0

f22(τ)dτ

)

φ

If

g = f11 − f22

then

ψ(t) = 1 +

∫ t

0

ψ(s)f21(s)

∫ t

s

f12(τ) exp

(

−
∫ τ

s

g(ξ)dξ

)

dτds

Since the trajectory is inside ℵ, we have y >
√
x and so

|f12| . y + υ, |f21| . 1, g(t) > 1

From (15), we get

|ψ(t)− 1| . υ

∫ t

0

|ψ(τ)|dτ +

∫ t

0

|ψ(s)|
∫ t

s

ee
τ (log β+C)e−(τ−s)dτds

The following estimate is obvious
∫ t

s

ee
τ (log β+C)e−(τ−s)dτ . e−s

as β is small. Assuming that

υ ≪ T−1 (19)

and ǫ2 is small, we have

ψ(t) ∼ 1

and

xα(T, α, β) >

(

1

β

)eT/2

(20)

The estimate (20) is the key estimate that will guarantee the necessary growth.
Now, let us place a circle Sγ(x̃, ỹ) with radius γ and center at (x̃, ỹ) into the zone

Ω0. Consider also the line segment l = [A1, A2], A1 = (x̃−γ/2, ỹ), A2 = (x̃+γ/2, ỹ)
in the center, parallel to OX . We will track the evolution of this disc and this line
segment under the flow. We have

x(T,A2)− x(T,A1) > β−eT/2 |A2 −A1|
From the positivity of xα(T, α, β) it follows that the image of l under the flow is
a curve given by the graph of a smooth function Γ(x). Thus, the image of l (call

it l′) has length at least β−eT/2 |A2 −A1|. Denote the distance from l′ to S′
γ(x̃, ỹ),

the image of the circle, by d. Then, the domain {Γ(x) − d < y(x) < Γ(x) + d, x ∈
(x(T,A1), x(T,A2))} is inside B′

γ(x̃, ỹ). The area of this domain is at least

d · β−eT/2 |A2 −A1|
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Thus, assuming that the flow preserves the area, we have

d . βeT/2

γ

Consequently, if we place a bump in Ω0 such that the l and Sγ(x̃, ỹ) correspond to
level sets, say, h2 and h1 (and, what is crucial, h1(2) are essentially arbitrary

0 < h1 < h2 < 0, 0001), then the original slope of at least ∼ |h2−h1|/γ will become
not less than

β−eT/2 · (|h2 − h1|/γ)
thus leading to double-exponential growth of arbitrarily large gradients.

Let us reiterate the order in which the parameters are chosen: we first fix any

T , then small ǫ2, then ǫ1 < ǫe
2T

2 . This defines the set Ω0. For the whole argument
to work we need to collect all conditions on υ: (13), (16), (19) which leads to

υ <
ǫ1| log ǫ2|

ǫ2
(21)

5. Small perturbations of a singular cross can also generate double

exponential contraction in ℵ
Assume that the function θ1 at any given time t ∈ [0, T ] is such that

θ1(t, x, y) = θs0(x, y)

outside the “cross”-domain A = {|x − πk| < τ} ∪ {|y − πl| < τ} where τ is small
and k and l are arbitrary integers. Inside the domain A we only assume that θ1
is bounded by one in absolute value, is even, and has zero average. Notice here
that the Euler flow preserves the property of function to be even. Given fixed ǫ1(2)
and the domain ℵ defined by these constants, we are going to show that the flow
generated by θ1 can be represented in the form (9) with υ(τ) → 0 as τ → 0. We
assume of course that τ ≪ ǫ1.

For that, we only need to study

F1 = ∇∆−1p, p = θ1 − θs0

Here are some obvious properties of F1

1. F1(0) = 0 as θ1 and θs0 are both even.
2. We have

F1(z) ∼
∫

A

(

ξ − z

|ξ − z|2 − ξ

|ξ|2
)

p(ξ)dξ

=

∫

A

ξp(ξ)
2ξ · z − |z|2
|ξ − z|2|ξ|2 dξ − z

∫

A

p(ξ)

|z − ξ|2 dξ

and this expression is bounded by |z|τǫ−2
1 + |z|2ǫ−2

1 τ | log τ |. Thus, by taking τ
small, we can satisfy (10). How about (11)? For the Hessian, we have

|H∆−1p| . ǫ−2
1 τ

and so

υ ∼ ǫ−2
1 τ | log τ | ≪ 1 (22)

defines the thickness. Thus, merely the condition on the size of the cross guarantees
that the arguments in the previous section work.
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6. The evolution of a small steep bump in ℵ
In this section, we assume that at a given moment t ∈ [0, T ], we have a smooth

even function θ2(t, x, y) with support in ℵ ∪ −ℵ, with zero average, and

‖θ2‖2 < ω, ‖∇θ2‖∞ < M

(here one should think about small ω and large M). We will study the flow gener-
ated by this function. Let

F2 = ∇∆−1θ2

Here are some properties of F2

1. F2(0) = 0.
2. To estimate the Hessian of ∆−1θ2, consider the second order derivatives. For

example,

(∆−1θ2)αβ(α, β) ∼
∫

(α−ξ)2+(β−η)2<1

(α − ξ)(β − η)

((α− ξ)2 + (β − η)2)2
θ2(ξ, η)dξdη =

=

∫

1>(α−ξ)2+(β−η)2>ρ2

(α− ξ)(β − η)

((α− ξ)2 + (β − η)2)2
θ2(ξ, η)dξdη +

∫

(α−ξ)2+(β−η)2<ρ2

(α− ξ)(β − η)

((α− ξ)2 + (β − η)2)2
[θ2(α, β) +∇θ2(ξ′, η′) · (ξ − α, η − β)] dξdη

The first term is controlled by ωρ−1. By our assumption, the second term is dom-
inated by Mρ. Optimizing in ρ we have

‖H∆−1θ2‖∞ .
√
Mω ∼ υ

To guarantee the conditions that lead to double exponential growth with arbi-
trary a priory given M , we want to make ω so small that conditions (10) and (11)
are satisfied with υ as small as we wish. The condition (11) is immediate and (10)
follows from F2(0) = 0, Lagrange formula and the estimate on the Hessian.

7. Stability results

It is well known that given θ0 ∈ L∞, the weak solution exists and the flow
can be defined by the homeomorphic maps Φθ0(t, x, y) for all t so that θ(t, x, y) =
θ0(Φ

−1
θ0

(t, x, y)) where Φθ0 itself depends on θ0. The continuity of this map though is

rather poor ([3], theorem 2.3, p.99). In this section, we will first partially address the
following question: which norm ‖·‖n should we take to guarantee that ‖θ0−θs0‖n →
0 implies maxt∈[0,T ]maxz∈T2 |Φθ0(t, z)− Φθs

0
(t, z)| → 0?

We will only consider the special case when θ0 = θs0 outside the domain D of
small area. Inside this domain we assume θ0 to be bounded by some universal
constant. The proof of Yudovich theorem (see, e.g., the argument on pp. 313–318,
proof of Proposition 8.2, [2]) implies

max
t∈[0,T ]

max
z∈T2

|Φθs
0
(t, z)− Φθ0(t, z)| → 0

as |D| → 0.
This is the only stability result with respect to initial data that we are going to

need in the argument below.
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Theorem 7.1. For any large T and λ, we can find smooth initial data θ0 so that
‖θ0‖∞ < 10 and

max
t∈[0,T ]

‖∇θ(t, ·)‖∞ > λe
0,001T ‖∇θ0‖∞

Proof. Fix any large T > 0 and find ǫ1(2). For larger λ, we have to take smaller
ǫ2. Identify the domain Ω0 and place a bump (call it b(z)) in Ω0 ∪−Ω0 so that the
resulting function is even. Make sure that this bump has zero average, height h2
and diameter of support h1 so that the gradient initially is of the size h2/h1. Here
h1 ≪ h2 ≪ 1 will be adjusted later.

Take a smooth even function ω(x, y) supported on B1(0) such that
∫

T2

ω(x, y)dxdy = 1

Take positive σ small and consider

θ̃σ(x, y) = θs0 ∗ ωσ ∈ C∞, ωσ = σ−2ω(x/σ, y/σ)

We take σ ≪ ǫ1 so θ̃ǫ(x, y) and θ
s
0(x, y) coincide in ℵ.

As the initial data for Euler dynamics we take a sum

θ̃σ(z) + b(z)

Then, since θs0 is stationary under the flow, the stability result guarantees that
given any τ and keeping the same value of h2/h1, we can find σ and h2 so small
that over the time interval [0, T ] we satisfy

1. The “evolved bump” stays in the domain ℵ (e.g., Φθ0(t)
(

supp b(z)
)

⊂ ℵ).
2. Outside the cross of size τ and the support of the evolved bump b, the solution

is identical to θs0.
Fix the smoothing strength σ and h1 < h′1 so small to guarantee the small size

of A, i.e. the smallness of τ . The value of τ must be small enough to ensure the
double exponential scenario, the conditions (10) and (11). For that, we need (22).

Next, we proceed by contradiction. Assume that for all t ∈ [0, T ] we have

‖∇θ‖∞ < M = h2/h1λ
0,001eT . Then, as ω . h1h2, we only need to take h1 so small

that
√
Mω is small enough to guarantee the double exponential scenario. This gives

us a contradiction as the double exponential scenario makes the gradient’s norm
more than M . For the initial value,

‖∇θ0‖∞ ∼ σ−1 + h2/h1 ∼ h2/h1

by arranging h1(2).
Here is a table of parameters for this construction:

{T, λ} −→ ǫ2 −→ ǫ1 −→ {σ, h1(2)}
�

8. Discussion

In this paper we only proved that the double exponential growth is possible
as long as the Sobolev norms are initially very large (in T ). The interesting and
important question is whether they can grow in the same double exponential rate
starting with initial value ∼ 1? We do not know the answer to this question yet
but there are some potential scenarios in the contour dynamics [5] when the sharp



DOUBLE EXPONENTIAL GROWTH OF THE VORTICITY GRADIENT. . . 9

corners are forming very fast. If one can prove that indeed the curvature of these
contours grows very fast and the distance between them decays fast as well, then the
methods of this paper might be applied to prove the double exponential growth of
Sobolev norms etc. In case of the whole space R2, even infinite double exponential
growth can probably be shown by considering domains very far apart in each of
which the double exponential growth is observed with increasing Tk → ∞.
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