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ABSTRACT. In the framework of non-relativistic QED, we establish the relationship between the
renormalized mass of the electron due to its interaction with the quantized electromagnetic field,
and the kinematic mass appearing in its response to a slowly varying external force. Specifically,
we study the dynamics of an electron in a slowly varying external potential and with slowly varying
initial conditions and prove that, for a long time, it is accurately described by the effective dynamics
of a Schrodinger electron in the same external potential and for the same initial data, with a kinetic
energy operator determined by the renormalized dispersion law of the translation-invariant QED
model.

1. INTRODUCTION

In this paper we establish the relationship between the renormalized mass of the electron due to
its interaction with the quantized electromagnetic field, and the kinematic mass appearing in its
response to a slowly varying external force. We work in the standard framework of non-relativistic
quantum electrodynamics (QED). The renormalized electron mass is defined as the inverse cur-
vature of the dispersion relation £ = F(p), the energy of a dressed electron as a function of its
momentum p (no external potentials present), while the kinematic mass is defined in terms of the
effective dynamics of the electron under the influence of an external force.

Our starting point is the dynamics generated by the Hamiltonian H" describing a non-relativistic
electron interacting with the quantized electromagnetic field and under the influence of a slowly
varying potential V.. We consider the time evolution of states parametrized by wave functions
u§ € HY(R3), with [[u§llz2 = 1 and ||[Vu§|lz2 < €, and prove that this evolution is accurately
approximated, on a long time interval, by an effective Schrédinger dynamics generated by the
one-particle Schrédinger operator

Heg = B(~iV,) + Vi(@), (1.1)

with the kinetic energy given by the dispersion relation E(p). This result is in line with the idea
that every physical dynamics is an effective one, derived from a more precise theory. While results
of a similar nature were proven for massive bosons, [26], ours is the first result involving massless
photons and the resulting renormalized mass of the electrons. (Similarly, one may analyze the
effects of interactions with phonons and other massless bosons.)

In the framework of non-relativistic QED, the Hilbert space of states of the system is given by
H = L*(R%) ® §, (1.2)

where L?(IR?) denotes the Hilbert space associated with the electron degrees of freedom, neglecting

spin (for notational convenience). The space § is the Fock space of photons in the Coulomb gauge,
1
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F=@,~08n Here, F, := Sym(L*(R? x {+,—1}))®" denotes the physical Hilbert space of states
of n photons. The Hamiltonian is given on this space by the expression

H =H+V.®1y, (1.3)

where H is the generator of the dynamics of a single, freely moving non-relativistic electron mini-
mally coupled to the quantized electromagnetic field, i.e.,

1
H = J(=iV, ©1; + Vad(®))* + 1a® Hy, (1.4)

and where V¢ (x) := V(ex) is a slowly varying potential, with € > 0 small; its precise properties are
formulated in Theorem 1.1 below. Furthermore,

dk —ikx
Az) = %:/Ml e (ke @ aE) + he ) (1.5)

denotes the quantized electromagnetic vector potential with an ultraviolet cutoff imposed, |k| <1,
and

Hy = 3 [ kK3 (k) ar(8) (1.6
A

denotes the photon Hamiltonian. In (1.5) and (1.6), a}(k), ax(k) are the usual photon creation-
and annihilation operators; A = =+ indicates photon helicity, and €)(k) is a polarization vector
perpendicular to k£ corresponding to helicity A.

To give a precise formulation of our result, we observe that the Hamiltonian H is translation
invariant. We thus represent the Hilbert space of the system as a direct integral,

2
H = / dpH, , (1.7)
over the spectrum of the total momentum operator
Pyt = _’va®1f + 1el®Pf’ (18)

where Py = >, [dkkaj(k)ax(k) is the momentum operator associated to the quantized radiation
field, and each fiber Hilbert space H, is isomorphic to §. We let H(p) = H|3, denote the fiber
Hamiltonian corresponding to total momentum p. We define E(p) = infspecH (p), with p € S,
where
1

S = {pER?’Hp]Sg (1.9)
and continued suitably to p € R*\S. For p > 0, we introduce the family of maps J§ : L*(R?) — H,
from the quantum mechanical one-electron state space L?(R3) to a subset of dressed one-electron
states, as

T (u) = /Sdpﬁ(p) e PPy (p) P (p), (1.10)

where z is the electron position, xs, is a smooth approximate characteristic function of the set
S,i=(1-p)SCcSCR3 (0<pu<1),and ®?(p) is an approximate ground state of H(p) (dressed
by a cloud of soft photons with frequencies < p).
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In this paper we study the time evolution of one-electron states, JJ'(u§), with electron wave
functions uf), dressed by an infrared cloud of photons with frequencies < p. More precisely, we
study solutions of the Schrédinger equation

iW(t) = H W(t), with ¥(0) = J(uf). (1.11)

The key idea is to relate the solution W(t) = e ™" JP(ug) of this Schrodinger equation to the
solution of the Schrédinger equation

i0wu(t) = Hegu(t), with  wu(t=0)=ug, (1.12)

corresponding to the one-particle Schrodinger operator (1.1), where E(p) has been defined above.
We consider the comparison state

T (u(t)) € H, (1.13)

where u(t) := e"®HeiyS is the solution of (1.12), and show that W(¢) remains close to J§ (u(t)),
for a long time. The choice of initial data satisfying ||Vuf|| 2 < € guarantees that %(t) remains
concentrated in § during the time scales relevant in this problem.

Theorem 1.1. Let 0 < u < 1 and 0 < € < /3, and define J§ by (1.10). Assume that u§ € L*(R3)
is a normalized vector obeying ||Vug||p2(rsy < €. Furthermore, assume that V € L>®(R3;R) is such

that V € LY (R3) and that Vs supported in the unit ball,
supp(V) € {keR3|[k|<1}. (1.14)

Let 0 < 6 < 2/3 and choose p = €50 = pe. There exists ag > 0 such that, for all 0 < a < ag, the
bound

|| efitHV ._705(“6) o j(,)oe(efitHeﬁ UB) HH < 05 (62/37675 + 64/375/2752) 7 (115)
holds for all times t.

1.1. Outline of proof strategy. To prove Theorem 1.1, we introduce an infrared reqularized
version of the model defined by (1.3), (1.4), obtained by restricting the integration domain in the
quantized electromagnetic vector potential (1.5) to the region {o < |k| < 1}, for an arbitrary
infrared cutoff ¢ > 0. Thereby, we obtain infrared regularized Hamiltonians HY and H,, as well
as an infrared regularized family of maps J7 corresponding to J.

We note that, unlike H(p), the infrared cut-off fiber Hamiltonian H,(p) has a ground state
U, (p) € Hp = §, for every p € S and for ¢ > 0, but ¥,(p) does not possess a limit in H, = §, as
o N\ 0. In particular, we expect that the number of photons in the state ¥, (p) diverges, as o ~\, 0,
(thus the lack of convergence of ¥, (p) in §). This is a well-known aspect of the infrared problem in
QED, [8, 9, 10, 11, 22]. It is remedied by applying a dressing transformation, W@ o (p)’ defined in
(2.9), below, to ¥, (p), where E,(p) = inf specH,(p). The resulting vector, ®5(p) := WéEg(p)\IIU (p),
describes an infraparticle (or dressed electron) state containing infrared photons with frequencies
in [0, p]. As 0 0, the limit

®?(p) = lim OZ(p) (1.16)

o—0

exists in §, see Proposition 2.2. This allows us to construct the map 7§ as the limit of the maps

JE, as o\, 0.
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We note that ®5(p) is the ground state eigenvector of the fiber Hamiltonian
K8(p) = W&y ) Holp) Wep, )" (1.17)

which is obtained by applying to H,(p) the Bogoliubov transformation corresponding to the dressing
transformation W¢ )"

In Theorem 2.3, below, we prove that an estimate similar to (1.15) holds for the infrared regu-
larized model,

e Fpe(ug) — T (e et uy) o < Cs (3700 4+ 37022, (1.18)

uniformly in o > 0, for p. = €579, This result crucially uses the regularity properties of the dressed
electron states ®5(p), which allow us to take advantage of the fact that V. is slowly varying. An

additional key ingredient is the bound ||(H,(p) — K5(p))®5(p)|z < Ca? p%]p|, for p € S, proven
in Appendix C.

In section 3, we control the limit ¢ \, 0, thus concluding the proof of Theorem 1.1. This requires
control of the radiation emitted by the electron due to its acceleration in the external potential V,
in the limit o N\ 0.

Remark 1.2. Theorem 1.1 implies that, for all §' such that 6 < ¢ < 2/3,
| emith" TE(u§) — TP (e e 6 Y|l < O €' (1.19)

holds for all times t with 0 < t < 6—§+6’_ We note that the time scale of order (’)(6_%+5,) 18
not sharp; we leave further investigation of an optimal time scale to future work. Indeed, for
a regularized model based on massive photons (see [26]), or monzero infrared cutoff o > 0, the
dynamics can be controlled up to a time scale O(e~1). The main obstacle against passing beyond a

time scale of order (9(6_§+‘5/) within our current approach comes from the 0-Hélder continuity of
O (p) in p, only established for § < 2/3.

2. INFRARED CUT-OFF AND CONSTRUCTION OF ®”(p)

As noted in the introduction, we analyze the original dynamics by first imposing an infrared
cut-off, and controlling the dynamics generated by the resulting Hamiltonian. Thus, we define the
IR regularized Hamiltonian

HY = H, + V(o) @1 (2.1)
where
1
H,; = 5(—va ® 1f + \/aAa(w) )2 + 1a ®Hf (2'2)

is the generator of the dynamics of a single, freely moving non-relativistic electron minimally coupled
to the electromagnetic radiation field. In (2.2),

dk —ikx
Ay (z) = ZA:/agqu W{e,\(k)e M @ an(k) 4+ h.c.} (2.3)
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denotes the quantized electromagnetic vector potential with an infrared and ultraviolet cutoff cor-
responding to o < |k| < 1. Since V € L*®(R3) is a bounded operator, D(HY) = D(H,) =
D(—Ax ® lf +1,4® Hf).

The Hamiltonian H, is translation invariant. Representing the Hilbert space of the system
as a direct integral, H = [ © dpH, , over the spectrum of the total momentum operator, Piy
(see (1.7) and (1.8)), we let Hy(p) = Hy|3, denote the fiber Hamiltonian corresponding to total
momentum p. While H(p) has a ground state only for p = 0, it is proven in [2, 6] that, for
peS:={peR?p <1/3} and ¢ > 0,

Eq(p) = infspecHo,(p) (2.4)

is a non-degenerate eigenvalue (the fiber ground state energy) of H,(p). This motivates the intro-
duction of the cut-off. We let U, (p) € §, with ||¥,(p)|z = 1, denote the corresponding normalized
fiber ground state,

Ha(p)\pg(p) = Ea(p) \I/o(p)a (25)
for p € S. Properties of the fiber ground state energy E,(p), and of dressed electron states ®,(p),
for p € S, are given in the following proposition proven in [2, 6, 9, 10]:

Proposition 2.1. The infimum of the spectrum of the fiber Hamiltonian, E,(p) = inf spec(H,(p)),

satisfies:

(1) For any o >0, E, € C*(S), and for allp € S = {p e R*||p| < § }, Ey(p) is a simple
etgenvalue.

(2) For a > 0 sufficiently small, there exists a constant ¢, with 0 < ¢ < 0o, such that, for any
peS,

IVoEo(p) —p| < calp|, and 1-ca < 8 E(p) <1, (2:6)
hold uniformly in a (0 < a < 1) and o > 0.

(3) The following limit exists in C?(S)

Jim Eo(-) = B(-). (2.7)

Let b3 (k), ba(k) denote creation- and annihilation operators on the fiber space, see Appendix A.
For 0 <o <p<1andpeS, weintroduce the Weyl operators
1 / i VE;(p) - ex(k)ba(k) — h.c.
o<|k|<p

P R
Ve, = P [‘“ ZA: \k|V2(|k| — VE,(p) - k) 1’

(2.8)

with VE,(p) = V,E,(p), which are unitary on §, for o > 0. Moreover, we define dressed electron
states

(I)g(p) = WéE(,(p) \IIU(p)' (29)
The properties of these states are described in the following proposition

Proposition 2.2. For anyp € S, 0 < p <1, and for sufficiently small values of the finestructure
constant 0 < o < 1, the ground state eigenvector ®5(p) of Kb(p) := WéEg(p) H,(p) (WéEg(p))*
satisfies:



6 V. BACH, T. CHEN, J. FAUPIN, J. FROHLICH, AND L.M. SIGAL
(1) The strong limit
®°(p) = lim P2 (p) (2.10)

exists in §.

(2) For § < 2, the vectors ®5(p) are 6-Hélder continuous in p,
oL (p) — 5
sup 1 22(P) ;(q)
P,qES lp — 4
uniformly in o and p, with 0 < o < p < 1.

H < C), (2.11)

The proof of #-Holder continuity for 6 < % is given in Appendix B; (see also [9, 10, 22| for earlier
results covering the range 6 < %, in the case where p = 1).

For arbitrary u € L?(R3) (with Fourier transform denoted by ), we define the linear map

2w o [ dpip) T s, () 05(0). (212)
where x is the electron position, xs, is z smooth approximate characteristic function of the set
S, =(1-p)ScScR’ (2.13)
and 0 < p < 1. Note that J¢ : L?(R3) - M C H, where
M= { [ dpat) e 0 v, () 4 0) [ w € R (214

the space of vectors in H supported on the one-particle shell of the operator |, ;B dp K8 (p).

We also note that in (2.14) we do not require that supp(u) C S,; instead, we cutoff @ outside
the region §;, by multiplying it by xs,

Furthermore, we consider an initial wave function uf(x) satisfying ||u§||;2 = 1 and ||Vuf||2 <e.
Our main goal in this paper is to study the solution of the Schrodinger equation

i0W(t) = HY W(t), with ¥(0) = J°(uf), (2.15)
which is given by
U(t) = e S JP(uf) € H, (2.16)
and, in particular, to determine its properties for large ¢.

The key idea is to relate ¥(¢) to the solution of the Schrédinger equation

iOu(t,z) = (Hegou)(t,z) , u(0,2)=ug(x) (2.17)
corresponding to the one-particle Schrédinger operator
Heg o = Eef o(—iVe) + Ve(x), (2.18)
where (t,z) € R x R3. The kinetic energy operator Eug(p) € C%(R?) is defined by
Eetto(p) = Es(p), ifpeS, (2.19)

and suitably continued to R3\ S&. We consider the comparison state

J7(u(t) € H, (2.20)
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where u(t) := e~ ®Hefoys is the solution of (2.17), and show that ¥(¢) remains close to J¥ (u(t)),
for a long time. The choice of initial data satisfying ||Vuf|| 2 < € guarantees that %(t) remains
concentrated in § during the time scales relevant in this problem.

As a first step in proving Theorem 1.1, we will prove the following result.

Theorem 2.3. Under the conditions of Theorem 1.1, there exists ag > 0 such that, for all 0 <
a < ag, the bound

| e Tg(uly) — Tg(e ™ot uf) Iy < Cs(L+In(p™") €80t 4+ Ca2 p2et(L41), (221)
holds uniformly in the infrared cutoff o.
Proof. Our proof makes crucial use of the properties of the fiber ground state energy E,(p) and of

the corresponding dressed electron states ®5(p), for p € S, given in Propositions 2.1 and 2.2 above.
We define the Bogoliubov-transformed fiber Hamiltonians

K5(p) = Wop, ) He(0) Wop, )" (2.22)
for p € S, and the operator K2 acting on H,
2

K= [ KWL db (2.23)

and the perturbed operator KY := Kf+ V.. Note that the dressed electron states ®5(p), for p € S,
are the ground states of K% (p), i.e.,

K5(p) 25(p) = Es(p) 25(p), (2.24)
and the operator K/ has the property that
ngcf = jngeff,U(_iv)' (225)

Next, we proceed to the proof of (2.21). We write the difference on the LHS of (2.21) as the
integral of a derivative, and separate it into

t
e Y go(ug) — JP(e tHeno ys) = —je it / ds 15 (HY T2(u(s)) — T£(Hegu(s))
0

= ol(t) + ¢*(1), (2.26)
by substituting HY — HY — KY + KY inside the integral and grouping terms suitably. The first
term on the r.h.s. accounts for the radiation of infrared photons due to the motion of the dressed
electron in the external potential, while the second term accounts for the influence of the external

potential V on the full QED dynamics (2.16), as compared to the effective Schrédinger evolution
(2.20).

The first term on the r.h.s. of (2.26) has the form
t
OL(t) == —ie HS / dse"s (H, — K2) JP(uj), (2.27)
0

where we have used the cancelation of V in HY — KY = H, — K5. Using the fiber integral
decomposition, we obtain

'@ < sup {1 ICH, = KOG S0 | [ 1V s 229
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In Appendix C we prove the following key result:

1 11
sup { — [|(H, — K£)(p) 4 (p)lls | < Ca ph, (2.29)
peS ’p|

uniformly in o > 0. Furthermore, we have the estimate
t
/ | Vu(s) |l ogusy ds < Cet (1+1), (2.30)
0

as shown below by using the condition ||Vug|[z2gs) < € on ufj, and the fact that the potential V/
satisfies (1.14). We obtain

[6' @l < Ct(1+1)a2 pie, (2:31)
which yields the second contribution to the r.h.s. of (2.21).

For the second term on the r.h.s. of (2.26), we have that

GHt) = —ie MY / ds 15 (KY 72(u(s)) — TE(Hegu(s)))
0
= —jeitHS / ds €15 (V. J¢(u(s)) — T2 (Veu(s)) ) , (2.32)
0
using the fiber decomposition and the equation K§(p) ®5(p) = FEo(p) ®5(p). Let |@[co(s) =
SUpP) 4es %ﬂm. Below, we prove an estimate of the form

19*)ln < tCHIVIVellpr@s) (1 + [P5]cocs)) (2.33)
for < 2. The key point here is that the 6-Holder continuity of the fiber ground state ®5(p) enables
3

us to gain a ¢ derivative of the potential, yielding |[[V|9V¢| 11 gs) < Cé. To summarize, we have
made use of the §-Holder continuity of ®4( -), which holds uniformly in o, with 0 < o < p, and we
have used that

VIOVl msy < v, where 7 := [[V(k)| < oo, (2.34)
(see (1.14)).

Moreover, in Proposition B.4, we prove that [|®G]lces) < Cs (1 + In(p~')). Collecting the
estimates above, we arrive at

l6°(@)lle < Cste” (1+1In(p™")), (2.35)
which yields the first term on the RHS of (2.21). O

Proof of (2.30). To verify (2.30), a simple calculation shows that

Vu(s) = e ®Hefto gys — / dv e Hetto GV, (1) e 570 Hettio 6 (2.36)
0

Using that ||Vu§|/;2 <€, and that
IVVel|zoe < [9Vellpr < e, (2.37)
where ~ is defined in (2.34), we conclude that
IVu(s)llre < Ce(1 + s), (2.38)
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and thus,
t
/ ds || Vu(s) g2 < Cet(1+1). (2.39)
0
This proves (2.30). O
Proof of (2.33). We define
¥s = VeI (uls)) — T7(Veu(s)). (2.40)
Moreover, we define the generalized Fourier transform in the electron position, x, by
—~ 1 ,
0) = — [ doe 0 Iy), (2.41)
(2m)3

By definitions (2.26) and (2.40) and the unitarity of the generalized Fourier transform proven in
Appendix A, we have that

t t A
630 < [ dsWulzzes = [ ds@lzzos. (2.42)
Using the definition of J¢ and computing the Fourier transform, we find that
) = [ o= ) (x5 @0 — x5, 0)B50)). (2.43

It is important to note that, for any function f € L?(R3) with supp(f) C S,,
supp(Ve = f) C S, (2.44)

~ ~

for € < /3, since we are assuming supp(V') C {k||k| < 1}, so that supp(Ve) C {k||k| < €}. Since
the term in the integrand given by ((s)xs,®5)(¢) is supported in ¢ € S, so that, by (2.44), its

convolution with 176 has support in S, we find

bup) = 1s(p) /

[ da Ve(p — @) (s, ) (xs, () ®4(q) — x5, (P)PL(D)) , (2.45)

for € < j1/3, where 1g is the characteristic function of the set S. Inserting |p —q|’|p —¢|=% = 1 into
(2.45), using the definition of [V|? by its Fourier transform and using that, since xs, is a smooth
function,

sup [p - a1 (xs, (@®5(q) — xs,(2)25(p) ) Iz < C(1 + 22| cocs)) » (2.46)
P,
we obtain the bound HQ&SHL%@)S < O+ (125l cos))l y1$a(s)y*yﬁ|9\vey |22(s)- Next, using Young’s
inequality, || f * gllzr < || fllz1llgllzr, we find that
15l 205 < C(L+ 1@ llcacs) 1IVIOVell 1 as) Sl[lopt] [Lst(s)|| L2 (rs)- (2.47)
se|0,

Finally, observing that

1Ls@($) sy < 1B r2qes) = lu(s)l2ges) = bl ieqes) = 1, (2.48)

—itH,

by unitarity of e .o and using (2.42), we arrive at (2.33). O
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3. THE LIMIT o \,0

In this section we remove the infrared cut-off from the evolution.

Proposition 3.1. Under the conditions of Theorem 2.3, the strong limits

s = lim e g0 ) = e g () (3.1)
and
s = lim J2(e™ Moo ) = (e ) (3.2)

exist, for arbitrary |t| < oco.

Proof. We write

e 0 (ug) — 7MY FP(ug) = (7 — T O (ug) + TS (T8 — TE) (). (3.3)
Clearly,
e (T2 = 0| = 12 = TN < bl sup 195) ~ 20|
pEcop
Thus,

tim e~ (7 — ) ()

=0

follows from Proposition B.1.

Next, we discuss the first term on the right side of (3.3). In order to prove that it converges to
0, as o \, 0, it suffices to show that HY converges to H" in the norm resolvent sense; (see [24,
Theorem VIIL.21]), i.e.,

lim ||(HY +4)~' = (HY +i)7!| = 0.

o \0

From the second resolvent equation and the fact that ||(H)Y 4 4)~!| < 1, it follows that

[(HY +i)7 = (HY + )7 = |[(HY +i)7 Qo (HY +i)7Y] (3.4)
where

Qo i=HY —HY = 0} Aco(2) vy + 5 (Aco(2))?,
and
Vg = —iVy, —}-oz%Ag(a:)

is the velocity operator. Here A, (x) is defined in (2.3), and

Aco(z) = Z; /lm |]jf/2{e>\(k) ik @ ay (k) + hec.}. (3.5)

In order to estimate the norm of Q,(H" +i)~!, we use the following well-known lemma.
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Lemma 3.2. Let f,g € L2(R? x {4, —}; B(He1)) be operator-valued functions such that ||(1 +
E[DY2 £ (1 + k75 Y2g]| < 0o. Then

la? (F)(Hy + D72 < [[(1+ k72 £, (3.6)
la (£)a () (Hy + D7 < 0+ R AN+ k72l (3.7)
where a¥ stands for a or a*.
In particular, using the Kato-Rellich theorem, one easily shows that, for a small enough, D(H"Y) =
D(-A, ®1+1® Hy) C D(Hy). Thus, we have that
|(Hy+1)(HY +9)7Y| < C,
which when combined with Lemma 3.2 yields
H%(A<U(x))2(HV+i)_1H < Cao. (3.8)

Likewise one verifies that
1 1

Ha%AQj(az) 'UU(HV—f—i)*lH < Cazo02, (3.9)
since 0 < v2 < HY + ||V|| 1 is bounded relative to HY. Estimates (3.8) and (3.9 yield
ag
HQU(HV + i)_IH < Cazos.

By (3.4), we have shown that HY converges to H" | as ¢ \, 0, in the norm resolvent sense. O

4. PROOF OF THEOREM 1.1

In this section, we prove the bound in Theorem 1.1, which compares the full dynamics to the
effective dynamics for the system without infrared cutoff. We have that

e T () — T (e ety g
< e Teuy) — TECe e )

e T2 (ug) — e TP (uh)

+ || TE (e o uf) — TP (e et uf) [l (4.1)
for any t and 0 < 0 < p < 1. It follows from Theorem 2.3 that the first term on the r.s. of the
inequality sign is bounded by Cjs (1 + In(p™1)) 30t +Caz p% et (1+t), uniformly in o > 0.

From Proposition 3.1, it follows that the second and third term on the r.s. converge to zero, as
o \0.
We thus conclude that
le™ ™" J0(uh) — T (e ™ et ug )|l < Cs(1+In(p™) 50t +Cazpret(1+t), (42)

by taking o to zero. This concludes the proof of Theorem 1.1. O
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APPENDIX A. GENERALIZED FOURIER TRANSFORM

For ¢ € H, we define the Fourier transform in the electron position, x, by

o _ 1 —i(p—Pyg)x A
Y(p) (%)g/dw‘e () . (A1)
Our claim is that
Vig) — 1 [ g eit-Ppa A2
¢ (x) (27r)3/ pe o(p) (A.2)

corresponds to the inverse Fourier transform, in the following sense.

Lemma A.1. The above linear operations define unitary maps H — H, and are mutual inverses.

Proof. By density, we may assume that v is smooth in « and of rapid decay, i.e., belongs to the
space

= {z/JEH‘ sup Hxaﬁfszg < oo Va,BENg}. (A.3)
Then,
)Y — 1 dp e~ (P—Pr)z 1 do! ¢!(P—Pp)z’ /
(0)" (@) e [ vty [t

_ (27T /d[E /dpe ip(z—a') sz(x x)w(x/)
= da’ §(x — o) @2 ()

— (). (A.4)

Likewise, for ¢ € S,

e _ 1 i (P—Pp)z e 1 o—ila—Pyp)e
00 o 3 Jarem e Jaae e

= /dq/dxepq‘”gt)

= /dq 5(p—q) ¢(q)

= ¢(p). (A.5)

From the density of Sz in H, we infer that (A.1) and (A.2) define linear maps H — H, and are
mutual inverses. Moreover, the identity

/de{/}\(p)Hé = /dp< (271r)g /dx@i(pr):v ¥(x), (271)3 /dm’ei(pr)x’¢(x/) >§

= (2m)” /dw /d:v /dpe’p(w z’) <€ipfm¢1(:r), eipfxllﬁ(x') >8’

=(2m)36(z—1’)

/ de || o) (A.6)
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proves unitarity. ]

As an application, we observe that

Bb(p) = (271)3 [z e-iv, 4 Pyuta)
= op [ (T T
= pY(p). (A7)

To each fiber space H, there corresponds an isomorphism I, : H, — &® where §° is the Fock
space corresponding to creation- and annihilation operators b} (k) (given by e~*%a%(k)), and by (k)
(given by e*ay(k)) commuting with Py. The vacuum Q; € F° is given by I,(e*). To define I,
explicitly, we consider an improper state in H, with a definite total momentum p describing the

electron at position = together with n photons. Its wave function has the form

PR kT U (e Mgk An) (A8)
Then the equation
Ip(e“p*’“*“*’f"’x O (ki M- s s An) ) (A.9)
= > /dkl-~dkn¢(”)(k:1,)\1;...;kn,)\n)bil(kl) e b (k)

Alv---v)\n
defines I,,.

Next, we discuss the Hamiltonian (2.2). It is easy to see that H, is translation-invariant, so that
[Hy, Pyot] = 0. Accordingly,

(Ho) (p) = Ho(p)d(p), (A.10)

where H,(p) is the fiber Hamiltonian corresponding to total momentum p. Applying the isomor-
phism I, : H, — §°, H,(p) is represented on §° by

HY(p) = LH, ()" = 3(p — P} + VaAL)? + HY (A1)
where
- L ¢
Ab = z;/gwgldk Ikll/Q{ A(K) bA(k) + h.c.} (A.12)
and
P = Z/ kb (k) by (k) dk (A.13)
A
HY = Z/ k| b (k) b (k) dk: . (A.14)
A

We note that

S
He = [ 1 ) (A.15)
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is the direct integral decomposition of H, over the spectrum of Pj.

Remark A.2. Throughout this paper, we have usually dropped the superscripts in Hg(p) and F°,
etc., while keeping the notation b (k), ba(k) for the creation- and annihilation operators on F°.

APPENDIX B. HOLDER CONTINUITY OF THE GROUND STATE

We recall that ®5(p) denotes a normalized ground state of the Bogoliubov transformed fiber

Hamiltonian K&(p) = Wy, oy Ho(p) (WEp )", with infrared cutoff 0 > 0 (see (2.22)). Our aim

in this appendix is to prove that, for a suitable choice of the vectors ®5(p), the map p — ®5(p) is
g-Holder continuous, for 6 < 2/3.

For p =1, we set

Dy(p) = PL(p),  Kolp) = Kx(p). (B.1)
We remark that
K2(p) = (Wep o) Ko@) WhE 0o 0(0) = (Whp, )" o). (B.2)
where
1 VEU(p) . 6)\(/€) b)\(k) — h.c.
wel = exp a / d .
VEs(p) [ Z}\: p<|k|<1 |k[V2(|k| = VE4(p) - ) }
Letting
5o = @ Sym(L*({k € R? k| > o} x {+,-}))®" (B.3)
n>0

denote the Fock space of photons of energies > o, and identifying §, with a subspace of §, we
observe that K,(p) leaves §, invariant. Let f(a(p) denote the restriction of K,(p) to §,. An
important property, proven in [3, 10, 13], is that there is an energy gap of size no, n > 0, in the
spectrum of K,(p) above the ground state energy E,(p). Moreover, one can choose

Oy(p) = Polp) @ Qs (B.4)
in the representation § >~ §, ® §<,, where
S = ) Sym(ZA({k € B K < 0} x {+,-}))°". (5.5)

n>0

Now, by [10, 13], ®,(p) can be chosen in the following way:

- (p)y
) =, el

where 2 denotes the vacuum in Fock space and I, (p) is the rank-one projection onto the eigenspace

associated with F,(p) = inf spec(K,(p)). We recall from [10, 13] that

()%l > 5, (B.7)

(B.6)
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for arbitrary o > 0 and |p| < 1/3 provided that « is chosen sufficiently small.

Let N denote the number operator,

N = Z/dkb;(k) ba(k) . (B.8)
A

The following proposition has been proven in [8, 10, 13].

Proposition B.1. For a < 1 and |p| < 1/3, there exists a vector ®(p) in the Fock space such that
O, (p) — P(p), strongly, as o — 0. The following bound holds,

IN2®,(p)|| < C < oo, (B.9)

uniformly in o > 0. Moreover, For all § > 0, there exists ag > 0 and Cs < oo such that, for all
0<a<a;,0<0' <o<1and|pl <1/3,

16 (p) — s (p)]| < Csat o', (B.10)
VEs(p) = VE,(p)| < Csatol™. (B.11)

As a consequence, we show the following corollary.

Corollary B.2. Let 0 < p < 1. For all § > 0, there exists ag > 0 such that, for all 0 < a < a5
and |p| < 1/3, there exists a vector ®°(p) in the Fock space such that ®5(p) — ®(p), strongly, as
o — 0. Moreover, there exists a constant Cs < oo such that, for all0 < a < a5, 0< o' <o <1
and |p| < 1/3,

192(p) — ®2,(p)|| < Csat o™ (1+1In(p™")). (B.12)

Proof. Using (B.2), we split
o5(p) = @0 0) = ((Wh, )" = (W& 1) ) @olo) + (WE ()" (20 (p) = Bor(p). (B13)

By Proposition B.1 and unitarity of Wé’é (p)? the second term is estimated as

*

| W25, ) (@o(0) = 20 () | < Cad o'0. (B.14)

The first term in the right side of ( .13) is estimated as
H( Wé’E (p) - (Wéégr(p))*)q)"(p)H - H( WQE (p) (W'O’ (p))*>‘1)o(p)H
< |[B(p)®s(p)]|, (B.15)

by unitarity of W@’}ljd ) and the spectral theorem, where

2 VE,(p) - ex(k) ba(k) — hoc.  VEqy(p) - ex(k) ba(k) — hec.
a /p<k<1dk( |k|Y2(Jk| — VE,(p) - k) G2k = N Eqr(p) - k) ) (B.16)

B(p) :=
A

To estimate || B(p)®,(p)||, we use the well known fact that, for any f € L2(R3 x {+, —}),

la® ()N +1)72| < V2|2 (B.17)



16 V. BACH, T. CHEN, J. FAUPIN, J. FROHLICH, AND .M. SIGAL

Clearly,
VE;(p)-ex(k)  VEyx(p)-exk)
|k[V2(|k| = VEs(p) - k) |k|[Y2([k| — VEq (p) - k)
_ (VEo(p) ~VE;(p))-ex(k) . VEy(p)-ex(k)  (VEs(p) = VEy(p) -k (B.18)

FI2(k] = VEo(p) ) [KY2(K] = VE,(p) k) (K = VEq (p) - K)

Hence, by (B.11) and the facts that |VE;(p)|, |[VE (p)| < 1/2 for o small enough (see Proposition
2.1 (2)), we obtain

o YEW ok VBl ok | Cyai o'~ (B.19)
|k[V2(|k| = VEs(p) - k) |k|V2(|k| = VEq (p) - k) k|2
Thus, (B.16) and (B.17) yield that
3 1 sl Lp<ir<1 (k) 1
|BI®. )| < Csaf o= =]V + Die, )
k|2 L3
< Csato ™ In(p™). (B.20)

where we used (B.9) in the last inequality. Together with (B.13) — (B.15), this concludes the proof
of the corollary. O

The following result follows from [10, 13] (it is also a consequence of (2.6) in Proposition 2.1
(2))-

Proposition B.3. There exist a. > 0 and C' > 0 such that, for all 0 < a < o, and p,p’ satisfying
| < 1/3, '] < 1/3,

IVE,(p) - VE,(¢)| < Clp—p, (B.21)

uniformly in o > 0.

We now prove the following proposition.

Proposition B.4. Let 0 < p < 1. For all § > 0, there exist ag > 0 and Cs < oo such that, for all
0<a<as, o>0andp k € R satisfying |p| < 1/3, |p+ k| < 1/3,

|95(p+ k) = BE(p)I| < Co (1+Im(p™")) k|5, (B.22)

We recall the following easy lemma (see e.g. [3]).

Lemma B.5. Let H be a Hilbert space and let 11y and Ils be two rank-one projections in H. Let
®; € Ranlly, ||®|| =1 and &3 € Ranlly, ||®2|| = 1. We have that

N

Iy — I = (@1, (I — I2)@1) |2 = (@2, (TTy — 1) ®y)| 2. (B.23)

Proof of Proposition B.4
Step 1. We first prove that, forall 0 < o < p <1,

194 (p+ k) — ®L(p)|| < C|k|o 7. (B.24)
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We decompose
Bo(p+k) = @ (p) = (W iny) Palp+ k) — (WEg () Polp)
- ((Wm k) (Wé}{:g(p))*) ®5(p)
+ (W, o) (@o(p+ ) = Do (p)) . (B.25)

To estimate the first term in the right side of (B.25), we proceed as in the proof of Corollary B.2.
Namely, we have that

(07 100)" = 078,10) )2 ] = [ (1= Wy (W) ) 20

< ||[C(p)®s(p)]| , (B.26)

P—i—k

by the spectral theorem, where

b - (VEs(p+k) - ex(k) ba(k) — h.c.  VE(p) - ex(k) ba(k) — h.c.
Clo) = /p<|k|<1dk< R[12(k — VE,(p+k)-k)  |R[V2(|kl — VE(p) - ) )

A

Using Proposition B.3, one verifies that

_VEprboa®) Vi ol ) i B
EP (k= VE,(p+ k) - F) (K = VE(p)- ]|~ i
Hence (B.17) implies that
p<‘k‘<1(]%) 1
[c@. ) < Clk H*] Ll + i)
< Clk| In(p™Y), (B.28)
where we used (B.9) in the last inequality. Equations (B.26) and (B.28) yield
H( Crarin) — Wog,( *> H = H( ~ Wt ety Wk, (s ))*)<I>U(p)H
<Clklo~ 202 In(p~1)
<Clklo2, (B.29)
since 0 <o <p<1.
It remains to estimate the second term in the right side of (B.25). By unitarity of Wéé}(p—l—k)’ it

suffices to estimate ||®,(p + k) — ®»(p)||, and, by (B.4),

125 (p+ k) = Do ()| = @6 (p + k) — @ (p)]| - (B.30)
It follows from (B.7) and Lemma B.5 that

= = 1 1
I8otp+8) = o0 < (i + ity myayy) 1T~ oo+ 0]
< 6||TI,(p) — T (p + k)|

= 6|(@, (p). o (p + K)o (1), (B.31)
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where II,(p+ k) := I — I, (p + k). Using that there is an energy gap of size o above E, (p+k)in
the spectrum of the operator K,(p + k), we can estimate

(B0 (), T (p + k)0 (1))

-

< (&, (p+h) - Eq(p+ k)" Mo (p+ B)|| 2| (Ko (p + k) — Eo(p+ k)2 00(p)]|
<0 2o |[(Kolp+h) - (p+k))%<i> (»)]- (B.32)
Let
VpKo(p) == Wyg, ) VeHe W g, ) » (B.33)
where
V,Hy(p) = p — Pf + azd,. (B.34)

Using the Feynman-Hellman formula,
((i)g(p),Vng(p)(i)g(p» = VE;(p), (B.35)
together with the mean-value theorem and Proposition B.3, we have that (see also [7, Lemma 3.6])
[ <p+k> ~ By (p+ k)2 %, (p)]
= (o (p), p+k) Es(p + k) ®o(p))
= (@0 (p), (Ko(p) + k- (VKo (p)) + k)2 — Eo(p + k) @0 (p))
Eq(p ) - o(p + k) + k- (VpEq(p) + /2
C k2. (B.36)

IN

Hence,
1~
(Koo + k) = Eo(p+ k) * @ (p)]| < CHI (B.37)
Combining (B.31), (B.32) and (B.37), we obtain that
~ ~ _1
1o (p + k) — 2o(p)|| < Clklo™2, (B.38)
and hence (B.24) follows.

Step 2. We now prove that | ®5(p + k) — ®5(p)|| < Cs|k|*/379 (with C5 < oo for § > 0).
Suppose first that o > |k|*/%. Then by Step 1, we have that
[25(p+ k) — 25 ()| < Clk|[k]™5 = Ck]5. (B.39)
Newt, we assume that o < \k:|2/3. We write
125(p + k) = 5P| < 195(p + k) = S (p + F)[| + [|27(p+ k) = D[ o5 (p + K|
+1125(p) — ()l + 127(p) — D[y 25 (P
90, (9 F) = By, ()] (B.40)
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By Corollary B.2, the first two lines are bounded by
|85+ k) — (0 -+ K)| + [27(p + k) — @, (0 + B)]
+[125(p) — ()| + 127 (p) — D[y 25 (P
< Cyat (1+1In(p™") [k[5079), (B.41)

whereas by Step 1, the last term is bounded by C ]k\Q/ 3. Setting ¢’ = 26/3 and changing notations
concludes the proof of the proposition. O

ApPPENDIX C. PROOF OF ESTIMATE (2.29)

In this Appendix, we prove (2.29). It asserts that

11
[(KZ(p) — Ho(p)) 25 ()l < Cazp2|pl, (C.1)
for all p € S, for a constant independent of o and o, p such that 0 < o < p < 1.

To begin with, we note that

I(Kg(p) = Ho(p) o)l = [(Kg(p) — Holp))Vo(p)lls (C.2)
which follows from
(Ho = KD)(P)Po(p) = (Ho(p) — Wiy () Ho() (W (,)*) P5(p)
= Wey ) (KED) — Halp))We(p). (€3)
and unitarity of W B, (p- Here we recall that We(p) = (We o (p) ) 2(p).
Next, we let
VEq(p) - (k)
i .
’U)\(k) = a2 ].o-<|k|<p(| |) |k”1/2(|k” VEU( )]{2) ) (04)
(scalar-valued) and
& (k)
wi(h) = a Logu<a (k) s (C:5)
(vector-valued). We note that
1 Loc<p(lk)
) < Cadlp| =00 (C6)
and
1, k
wa(k)| < Cab Lostist(F) (1)
k|2
where we have used that [VE,(p)| < C|p|, uniformly in the infrared cutoff 0 < o < 1.
Using that
W i AR W )7 = di(k) + v} (k) (C.8)
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a straightforward calculation yields

K5(p) — Ho(p)
WéEa(p) Ha(p) (WéEU(p))* - Ho‘(p)

= (VpHo(p) - V(p) + V(p) - (VpHo(p) + V() + Y(p), (C.9)
where V,H,(p) is defined in (B.34), and
V) = 3 [aalkon) + ek + 2Re(wr, o) + (k)] (C.10)
A

(vector-valued operator) and

v(p) = 3 [ax(klon) + ai(klon) + (ox, o) ] (C.11)
A

(scalar-valued operator). We observe that both V(p) and Y (p) are proportional to |VE,(p)| since
all terms are of first or higher order in vy (which is proportional to |VE;(p)| < C|p|).

Let us first consider

Y0 T @)lly < || Do anklon) o )| + || 2 ad(klen) Lo o)
A A
+ 3 s ko)1 24 (0) g
A
< 2kl oall e, pI(Hy + D2 Ta(p)lls + Y (0r klon),  (C.12)
A

where we used Lemma 3.2 in the second inequality. Since Hy < H,(p), we have that

1

I(Hf +D)200); < I(Ho(p) +1)20(p)5

— (B, (p)+1)} = (p; +O() + 1)é <, (C.13)
where we used the Rayleigh-Ritz principle in the last equality. Since
K2 0r] 2@ gy < Ca?p2 (C.14)
(see (C.6)) we conclude that
Y @) Tl < Cazp?lp|. (C.15)

To bound |[V2(p) ¥, (p)|| and |V (p) - (Vo Hy(p))¥s(p)||5, we use the following lemma.
Lemma C.1. Forallpe S, 0 <0 <1 and o small enough,
IH(p)¥s(p)l < C, (C.16)

uniformly with respect to p, o and «.

The proof of Lemma C.1 is given below.

Let us then consider

IV2®) Co)ll < V@) (Hy + D7HIH + 1D(HPp) + D7HIEHE () + 1D (p)]-
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The first term is bounded as above, using (3.7) in Lemma 3.2, which yields
IV2(p)(Hy + 1) 7| < Capp®.
The second term is bounded by using the fact that
D(H(p)) = D(P} + Hy) C D(Hy),

21

(C.17)

(C.18)

and the last term is uniformly bounded by Lemma C.1. Combining these estimates we obtain

IV2(p) Oo(p)ll < Capp®. (C.19)
Finally, to bound ||V (p) - (V,Hs(p))Vs(p)|lz, we recall that
V,Hy(p) = p — Pf + azA,, (C.20)
where
A, = Z (ax(wy) + a}(wy)) - (C.21)
A
We decompose
1
IV(p) - (VpHs (p)) Vs (p)lls < V() - p¥s()lz + a2 IV(p) - A0 (p)ll5
IV (p) - Pr¥s(p)ls- (C.22)
The first two terms are estimated in the same way as in (C.15) and (C.19), which gives
11
V(p) p¥e(p)ls < Cazp2p?
1 1
az|[V(p)- As¥s(p)llz < Cap2pl. (C.23)
It remains to estimate ||V (p) - P (p)Hg Let
Gj1 = ZZ ax(ik;kvy) + a) (ik; klw\)] (C.24)
A
Using that [Py, V(p);] = ¢;i, we find that
IVp)- Pruop)lF = > (¥e(p), Pr;V(p);V(p)iPri¥s(p))
35l
= > (Wo(p), 655V ()i Pri¥o(p)) + Z P)iPr iV (p)iPri¥s(p))
35l
= Z( o(P): 0j;V ()i Pra¥e(p +Z p);¢iiPri¥es(p))
+Z Vip )le,ngz‘I’ (p)) - (C.25)

Proceeding in the same way as in (C.19), we obtain that

IV (p)i6j;%s(p)| < Cap®p?,
191V (P)1¥s (D)
V)V (p);¥Ye(p)l

Cap’p,
Capp®.



22 V. BACH, T. CHEN, J. FAUPIN, J. FROHLICH, AND L.M. SIGAL

Furthermore,
1Pri%sp)l < [[H;s(p)ll
< Hp(Hp) + D)HIHP) + 1) (p)| < C, (C.26)
by Lemma C.1 and the fact that D(H (p)) C

D(Hy), and, likewise,
1P Pri%s) < [PF¥s(p)|
< |[PF(H(p) + D) II(H(p) + 1) ¥ (p)]| < C, (C.27)

since D(H (p)) C D(PJ%). Combining (C.25) with the Cauchy-Schwarz inequality and the previous
estimates, we obtain

IV (p) - (VpHo (0) o (p)ll5 < C az p3 [p]. (C.28)

The term |[(V,Hs(p)) - V(p)¥s(p)|lg can be estimated exactly in the same way, which, together
with (C.15) and (C.19), concludes the proof of Lemma 4.2.

We conclude with proving Lemma C.1.
Proof of Lemma C.1. Since Hy(p)¥s(p) = Ex(p)Vs(p) and ||V, (p)|| = 1, we can write
IH ()P, ()] < ( ) + 1@ (P) Yo (p)]
< *+(9 (@) + Qs () Yo (D), (C.29)
where
Qolp) = H(p) = Hy(p) = a2 Acy - (p— Py + a? 4,) + SA2.
Here A, is defined in (A.12), and

dk
_ Z/ d—2 L ex(k)ba(k) + he.} . (C.30)
~ Jik<o K[V
From Lemma 3.2, it follows, using that D(H (p)) C D(Hy), that

la2(Aco - D) Uo(p)| < CaZa pl|(H(p) +1)¥e(p)|,
la(Aco - 40)Ts(p)| < Cao |[(H(p)+1)¥,(p),
la(A40)*Te(p)l| < Call(H(p) + 1) ¥ (p)l|. (C.31)

Moreover, since A<, and P; commute, we can estimate

la (A - PO M)* < a|AZ, 00 (p)][| PFE,(p)]
< Cao|(Hp)+ 1T, (C.32)

where in the last inequality we used again Lemma 3.2 together with D(H (p)) C D(Hyf) N D(PJ?).
From (C.29)-(C.32), we obtain that

IHP) T (p)| < C + Ca?|[H(p)T,(p)], (C.33)

for any p € S. Assuming that « is sufficiently small, the result follows. O
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