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1 Introduction

In the last years many progresses have been obtained concerning KAM theory for nonlinear PDEs,
since the pioneering works of Kuksin [23] and Wayne [37] for 1-d semilinear wave (NLW) and Schrédinger
(NLS) equations. A challenging frontier concerns PDEs with nonlinearities containing derivatives. In
this direction the first existence result of quasi-periodic solutions has been proved by Kuksin [24]-[25],
see also Kappeler-Poschel [21], for perturbed KdV equations.

In this paper we develop KAM theory for derivative wave equations (DNLW) proving existence
and stability of small amplitude analytic quasi-periodic solutions. The DNLW is not an Hamiltonian
PDE, but may have a reversible structure, that we shall exploit.

Most of the existence results of quasi-periodic solutions proved so far concern Hamiltonian PDEs,
see e.g. [25], [20], [28], [29], [14], [8], [9], [11], [12], [17], [16], [37), [5], [6], [36], [31], [30]. It was
however remarked by Bourgain that the construction of periodic and quasi-periodic solutions using
the Lyapunov-Schmidt decomposition and the Newton iteration method of Craig-Wayne [14] and [8]-
[11] is a-priori not restricted to Hamiltonian systems. This approach appears as a general implicit
function type result, in large part independent of the Hamiltonian character of the equations. For
example in [I0] Bourgain proved the existence (not the stability) of periodic solutions for the non-
Hamiltonian derivative wave equation

ytt—yxx—i-my—i—yf:O, m>0, xeT. (1.1)

Actually also KAM theory is not only Hamiltonian in nature, but may be formulated for general vector
fields, as realized in the seminal work of Moser [27]. This paper, in particular, started the analysis of
reversible KAM theory for finite dimensional systems, later extended by Arnold [I] and Sevryuk [35].
The reversibility property implies that the averages over the fast angles of some components of the
vector field are zero, thus removing the “secular drifts” of the actions which are incompatible with
quasi-periodic solutions.

Recently, Zhang-Gao-Yuan [38] have proved existence and stability of C°°-quasi periodic solutions
for the derivative NLS equation iu; + uyxx + |ux|2u = 0 with Dirichlet boundary conditions. Such
equation is reversible, but not Hamiltonian. The result [38] is proved adapting the KAM scheme
developed for the Hamiltonian DNLS in Liu-Yuan [20]. In turn [20] extends the approach of Kuksin
[24]-[25], Kappeler-Poschel [21], which is valid for more dispersive PDEs, like KdV. The derivative
nonlinear wave equation (DNLW), which is not dispersive (the eigenvalues of the principal part of the
differential operator grow linearly at infinity) is excluded by both these approaches.

In the recent paper [4] we have extended KAM theory to deal with Hamiltonian derivative wave
equations like

Vit —Vx+my+ f(Dy) =0, m>0, D:=+/—0%x+m, xeT.

This kind of Hamiltonian pseudo-differential equations has been introduced by Bourgain [§] and Craig
[13] as models to study the effect of derivatives versus dispersive phenomena. The key of [4] is the
proof of the first order asymptotic expansion of the perturbed normal frequencies, obtained using the



notion of quasi-Toplitz function. This concept was introduced by Procesi-Xu [31] and it is connected
to the Toplitz-Lipschitz property in Eliasson-Kuksin [16], see also [19]. Of course we could not deal
in [4] with the derivative wave equation, which is not Hamiltonian.

The goal of this paper is to develop KAM theory for a class of reversible derivative wave equations

Yt —Yxx+mY:9(X»y7Yx»Yt)» XGT? (12)

implying the ezistence and the stability of analytic quasi-periodic solutions, see Theorem [I.I} Note
that the nonlinearity in (1.2)) has an explicit x-dependence (unlike [4]).

We can not expect the existence result for any nonlinearity. For example, (|1.2)) with the nonlinear
friction term g = y? has no non trivial smooth periodic/quasi-periodic solutions, see Proposition
This case is ruled out by assuming the reversibility condition

g(X7Y7YX7_v) :9(X7YaYX7V) (13)

satisfied for example by (1.1). Under condition (|1.3|) the equation (|1.2]) is reversible, namely the
associated first order system

yt=v, V¢ ZYXx_my+g(qu7yxuV)> (14)
is reversible with respect to the involution
S(Y? V) = (yv —V) ) 52 =1I. (15)

Reversibility is an important property in order to allow the existence of periodic/quasi-periodic solu-
tions, albeit not sufficient. For example, the reversible equation yy — yxx = yi, x € T (proposed in
[13], page 89), has no smooth periodic/quasi-periodic solutions except the constants, see Proposition
[[I] In order to find quasi-periodic solutions we also require the parity assumption

g(_x7Y7 _yX7V) :g(X7YayX7v)a (16)

which rules out nonlinearities like yi. Actually, for the wave equation the role of the time and
space variables (¢,x) is highly symmetric. Then, considering x “as time” (spatial dynamics idea) the
term y? is a friction and condition is the corresponding reversibility condition.

After Theorem [[.I] we shall further comment on the assumptions.

Before stating our main results, we mention the classical bifurcation theorems of Rabinowitz [32]
about periodic solutions (with rational periods) of dissipative forced derivative wave equations

Ytt_Yxx+aYt+5F(thaY7YX7Yt) =0, =x¢€ [Ovﬂ-]

with Dirichlet boundary conditions, and in [33] for fully-non-linear forced wave equations

Vit — Yxx T Q¥ + 5F(Xa t?Y? vathYtt,thanx) =0 , XE [Ov ﬂ-] .

This latter result is quite subtle because, from the point of view of the initial value problem, it is
uncertain whether a solution can exist for more than a finite time due to the formation of shocks.
Here the presence of the dissipation a # 0 allows the existence of a periodic solution. We mention also
[34] for a third order singular perturbation problem of a second order ordinary differential equation.

Finally, concerning quasi-linear wave equations we mention the recent Birkhoff normal form results
of Delort [15], which imply long time existence for solutions with small initial data. To our knowledge,
these are the only results of this type on compact manifolds. For quasi-linear wave equations in R?
there is a wide literature since the nonlinear effects of derivatives may be controlled by dispersion.



1.1 Existence and stability of quasi-periodic solutions of DNLW

We consider derivative wave equations ([1.2) where m > 0, the nonlinearity
g:TxU—R, UCR? openneighborhood of 0,

is real analytic and satisfies the “reversibility” and “parity” assumptions (1.3), (1.6). Moreover g
vanishes at least quadratically at (y,yx,v) = (0,0,0), namely

g(x, 0,0, 0) = (8yg)(x, 0,0, O) = (6yxg) (Xv 0,0, 0) = (avg)(xv 0,0, O) =0.

In addition we need a “non-degeneracy” assumption on the leading order term of the nonlinearity
(in order to verify the usual “twist” condition required in KAM theory). For definiteness, we have
developed all the calculations for

9=yy:+ O5(x,7,¥x,Vt) (1.7)

where Oy contains terms of order at least five in (y, yx, y:) (terms of order four could also be considered,

see Remark .

Because of , it is natural to look for “reversible” quasi-periodic solutions, namely such that
y(t, %) is even and v(t, x) is odd in time. Moreover, because of it is natural to restrict to solutions
which are even is x (standing waves), namely with

(¥ v)(=x%) = (y,v)(x), VxeT. (1.8)

Note, in particular, that y satisfies the Neumann boundary conditions y(t,0) = yx(¢,7) = 0.
Summarizing we look for reversible quasi-periodic standing wave solutions of (1.2]), satisfying

y(t,x) =y, —x), Vt, y(-t,x)=y(t,x), vxeT. (1.9)
For every finite choice of the tangential sites Z+ C N\ {0}, the linear Klein-Gordon equation
Vit —Yxx +my =0, xe€T, (1.10)

possesses the family of quasi-periodic standing wave solutions

jez+ Y

y= Z \/)\87£jcos()\jt)cos(jx), Aji=+/j%+m, (1.11)

parametrized by the amplitudes §; € R..

Theorem 1.1. For every finite choice of the tangential sites I+ C N\ {0} and for all m > 0, except
finitely many (depending on I" ), the DNLW equation (1.2) with a real analytic nonlinearity satisfying
(11.3), (1.6, (1.7) admits small-amplitude, analytic (both in t and x), quasi-periodic solutions

3 \/Aﬁ cos(w(€) £) cos(jx) + o(vE), w=(&) ‘R V2 +m (1.12)

satisfying , for a Cantor-like set of parameters with asymptotical density 1 at &€ = 0. These
quasi-periodic solutions have zero Lyapunov exponents and the linearized equations can be reduced to
constant coefficients (in a phase space of functions even in x). The term o(y/€) in is small in
some analytic norm.

This theorem answers the question, posed by Craig in [I3], of developing a general theory for
quasi-periodic solutions for reversible derivative wave equations. With respect to Bourgain [I0], we
prove existence of quasi-periodic solutions (not only periodic) as well as their stability.

Let us comment on the hypothesis of Theorem [I.1



. Reversibility and Parity. As already said, the “reversibility” and “parity” assumptions (|1.3]),
(T.6), rule out nonlinearities like y? and y? for which periodic/quasi-periodic solutions of (I.2)
do not exist. We generalize these non-existence results in Propositions [[.1] [T.2}

. Mass m > 0. The assumption on the mass m # 0 is, in general, necessary. When m = 0, a well
known example of Fritz John (that we reproduce in Proposition proves that has no
smooth solutions for all times except the constants. In Proposition we prove non-existence
of periodic/quasi-periodic solutions for DNLW equations satisfying both , , but with
mass m = 0. For the KAM construction, the mass m > 0 is used in the Birkhoff normal form
step (see section [7| and, in particular, Lemma . If the mass m < 0 then the Sturm-Liouville
operator —0yx + m may possess finitely many negative eigenvalues and one should expect the
existence of partially hyperbolic tori.

. x~-dependence. The nonlinearity g in may explicitly depend on the space variable x, i.e.
this equations is NOT invariant under x translations. This is an important novelty with respect
to the KAM theorem in [4] which used the conservation of momentum, as [I7], [I8]. The key
idea is the introduction of the a-weighted majorant norm for vector fields (Definition which
penalizes the high-momentum monomials (see )7 see comments at the end of the section.

. Twist. We have developed all the calculations for the cubic leading term g = yyz + h.o.t..
In this case the third order Birkhoff normal form of the PDE turns out to be (partially)
integrable and the frequency-to-action map is invertible. This is the so called “twist-condition”
in KAM theory. It could be interesting to classify the allowed nonlinearities. For example,

among the cubic nonlinearities, we already know that for y2, y%y, (and v*) there are no non-

trivial periodic/quasi-periodic solutions, see Propositions I On the other hand, for y* the
Birkhoff normal form is (partially) integrable by [29] (for Dirichlet boundary conditions).

. Boundary conditions. The solutions of Theorem satisfy the Neumann boundary condi-
tions yx(t,0) = yx(¢t,m) = 0. For proving the existence of solutions under Dirichlet boundary
conditions it would seem natural to substitute ([1.6) with the oddness assumption

g(—X, _Y7vav) = _g(X7Y7 yxvv) ) (113)

so that the subspace of functions (y, v)(x) odd in x is invariant under the flow evolution of (1.4).
However, in order to find quasi-periodic solutions of (1.2]), we need the real-coefficients property

1.31)) which follows from (1.3)) and (1.6)), but not from (1.3)) and (1.13]). It is easy to check that
1.3)), (1.13) and (1.31)) imply the parity assumption ([1.6)). Of course, if a nonlinearity satisfies
1.3), (1.6) and also (1.13)) we could look for also quasi-periodic solutions satisfying Dirichlet

boundary conditions.

. Derivative vs quasi-linear NLW. It has been proved by Klainermann-Majda [22] that all
classical solutions of Hamiltonian quasi-linear wave equations like

yir = (1 + 0(yx))¥xx (1.14)

with a(j)(()) =0,j=1,....,p—1, a(”)(O) # 0, do not admit smooth, small amplitude, periodic
(a fortiori quasi-periodic) solutions except the constants. Actually, any non constant solution
of , with sufficiently small initial data, develops a singularity in finite time in the second
derivative yx. In this respect [22] may suggest that Theorem is optimal regarding the order
of (integer) derivatives in the nonlinearity. Interestingly, the solutions of the derivative wave
equation (which is a semilinear PDE) found in Theorem are analytic in both time ¢ and space
x. Clearly the KAM approach developed in this paper fails for quasi-linear equations like
because the auxiliary vector field (whose flow defines the KAM transformations) is unbounded
(of order 1). One could still ask for a KAM result for quasi-linear Klein Gordon equations (for
which Delort [15] proved some steps of Birkhoff normal form). Note that adding a mass term



my in the left hand side of (1.14), non zero periodic solutions of the form y(t,x) = c¢(¢t) or
y(t,x) = ¢(x) may occur.

1.2 Ideas of proof: the abstract KAM theorem

The proof of Theorem[I.1]is based on the abstract KAM Theorem [4.1] for reversible infinite dimensional
systems which proves the existence of elliptic invariant tori and provides a reducible normal form
around them. We now explain the main ideas and techniques of proof.

Complex formulation. We extend (1.4) as a first order system with complex valued variables
(y,v) € C" x C". In the unknowns

1 1
ut:= —(Dy —iv), u :=—=(Dy+iv), D:=+/—0x+m, i:=+—1,
ﬂ( y—1v) \/5( y+iv) Vv %

systems (|1.4) becomes the first order system

uz: :iDu-+ +_ig(1f+,u+*) ) (1.15)
u;, = —iDu” —ig(u™,u")
where N N N
1 ut +u ug +ug\ U —u
utu) = ———g(x, D (——2 ) p-1(= ")) 1.16
&l ) \/59( ( V2 )07 V2 ) V2 ) (1.16)

In (1.15)), the dynamical variables (u™,u~) are independent. However, since g is real analytic (real on
real), the real subspace o
Ri={ut =u"} (1.17)

is invariant under the flow evolution of ([1.15)), since
glut,u)=gut,u"), V(" u")eRr, (1.18)

and the second equation in (1.15]) reduces to the complex conjugated of the first one. Clearly, this
corresponds to real valued solutions (y, v) of the real system (1.4). We say that system (1.15] is “real-

on-real” (see the more general Definition [2.9). For systems satisfying this property it is customary to
use also the shorter notation

(w'u”) = (u,7).
Moreover the subspace of even functions

E.— {u+(x) = ut(—x), u(x) = u*(_x)} (1.19)
(see ([1.8])) is invariant under the flow evolution of ([1.15)), by (1.6). System (1.15)) is reversible with

respect to the involution

S(ut,um) = (™, ut), (1.20)
(which is nothing but (1.5) in the variables (u*,u ™)), noting that (1.3), (1.16) imply
glut,u™) =glu",ut). (1.21)

Dynamical systems formulation. We introduce infinitely many coordinates by Fourier transform
ut = Zuje”x , u = Zuj_eﬂ]x . (1.22)
JEL JEL

Then (1.15) becomes the infinite dimensional dynamical system

.+7. + .+ + —
{uj =iNjuj +ig) (. uf,uy )

uy = —idjuy —igy (..,uf,uy )

J

VjeZ, (1.23)
i



where

Aji=+/j2+m (1.24)
are the eigenvalues of D and
1 ihx — —ihx —ijx —
gj:% g(ZuZeh,Zuhe h)e Txdx g; ::gfj. (1.25)
T “hez hez

By (1.22), the “real” subset R in (1.17)) reads ﬁ = u; (this is the motivation for the choice of the
signs in ([1.22))) and, by (1.18), the second equation in (|1.23) is the complex conjugated of the first

one, namely

g;' =g, When uj' =uj;, Vj. (1.26)

The subspace E of even functions in (1.19) reads, under Fourier transform,
J A =J’

E = {uJ‘r =ul  u; =u_,, Vj€ Z} (1.27)

and note that F is invariant under (|1.23)) because

(&)e=(g)e- (1.28)
By (1.22)) the involution (|1.20) reads
S (uj,u;) — (u:j,ufj), VjeZ, (1.29)
and (|1.23) is reversible with respect to S because
g;'( coulnut, ) = g:j(. coudug, ). (1.30)

Finally, since g is real analytic, the assumptions (1.3) and (1.6) imply the key property
g;t( coufug ) has real Taylor coefficients (1.31)
in the variables (u;,u; ).

Remark 1.1. The previous property is compatible with oscillatory phenomena for (1.23)), excluding
friction phenomena. This is another strong motivation for assuming (1.3) and (1.6).

Abstract KAM theorem. For every choice of symmetric tangential sites
I=7tU(-I%) with ZT Cc N\ {0}, tZ =n, (1.32)
system where g = 0 (i.e. linear) has the invariant tori
{ujﬁj =§; >0, forjeT, u;=u; :0f0rj¢I}

parametrized by the actions § = (§;);jez+. They correspond to the quasi-periodic solutions in .
We first analyze the nonlinear dynamics of the PDE close to the origin, via a Birkhoff normal
form reduction (see section . This step depends on the nonlinearity g and on the fact that the mass
m > 0. Here we use to ensure that the third order Birkhoff normalized system is (partially)
integrable and that the “twist condition” holds.
Then we introduce action-angle coordinates on the tangential variables:

ul =8+ ye uy = ey tyeT ™, GET, (ulug) = (5, 2) = (5,5), i ¢ T, (1.33)



where |y;| < §jj. Then, system (1.23)) is conjugated to a parameter dependent family of analytic
systems of the form

# = w(§) + PY(2,y,2,%¢)
P (z,y,2 %)
4 =i9,(&)z + P (2,y, 2, % €)
z; = —i9;(8)z; + PG (z,y,2,%€), jeZ\T,

(1.34)

where (z,y) € TZ x C", z,z are infinitely many variables, w(§) € R", Q(§) € R*. The frequencies
w;(€), 2;(&) are close to the unperturbed frequencies A; in (1.24) and satisfy w_; = wj, Q_; = Q;.

System (1.34) is:

1. REVERSIBLE (see Definition with respect to the involution
St (25,95,25, %) = (—0—j,y—j 2=y %), Vi €L, S*=1, (1.35)

which is nothing but (1.29)) in the variables (1.33]).
2. REAL-COEFFICIENTS, see Definition Indeed, by (1.31)), (1.33) and (7.30), all the functions

p@ ipWw)  ipki) ip)
have real Taylor-Fourier coefficients in the variables (x,y, z, Z).
3. REAL-ON-REAL, see Definition [2.9

4. EVEN. The vector field P : E — E and so the subspace
E = {l'j =T—j, Yj =Y—j, jGI, Zj=2Z_j, Ejzg_]‘, ]EZ\I} (136)

is invariant under the flow evolution of ((1.34)).

In system (1.34) we think x;,y;, zj-[, as independent variables and then we look for solutions in
the invariant subspace E, which means solutions of (|1.15)) even in x.

Remark 1.2. It would seem also natural to work directly in the cosine basis {cos(jx)}j>0 instead
of the Fourier representation , namely to identify x_; = x;, zfj = Zj:t But, the notion of
momentum is not well defined in the space of even functions. For example the vector fields z_;0,, and
2j0,,, thalt have DIFFERENT momentum, would be identified.

Since the linear frequencies w_; = w; , Q—; = Q;, are resonant, along the KAM iteration, the
monomial vector fields of the perturbation

eikmarj , eik~xyiayj ; ke ngd’ ‘Z| =0,1, j€ _'Z'7

eik'“zijﬁzj , eik'IZijagj, Vk € Zlia, 1 €EZ\T,

where Z3,q == {k € Z" : k_; = —k;,Vj € I}, can not be averaged out. On the other hand, on
the invariant subspace E, where we look for the quasi-periodic solutions, the above terms can be

replaced by the constant coefficients monomial vector fields, obtained setting z_; = x;, zij = z]i

More precisely we proceed as follows: in section [5.1| we replace the nonlinear vector field P ‘with its
symmetrized SP (Definition [5.2)) which determines the same dynamics on the invariant subspace E
(Corollary [5.1)) because

Pg=(SP)Eg-

The vector field SP is reversible and its weighted and quasi-T6plitz norms are (almost) the same as

for P (Proposition [5.2). The homological equations (5.26|) for a symmetric and reversible vector field
perturbation (see (5.27))) can be solved, see Proposition [5.1} and the remaining resonant term ([5.28])



is a diagonal, constant coefficients correction of the normal form (also using the real coefficients
property). This procedure allows the KAM iteration to be carried out (remark shows that the
symmetrization procedure is required at each KAM step). Note that, after this composite KAM step,
the correction to the normal frequencies described in (|1.39)) comes out from the symmetrized vector
field SP and not from P itself.

As in the Hamiltonian case [4], a major difficulty of the KAM iteration is to fulfill, at each iterative
step, the second order Melnikov non-resonance conditions. Actually, following the formulation of the
KAM theorem given in [3]-[4] it is sufficient to verify

v

(E) -k + (O ~ 2O 2 T3

>0, (1.37)
only for the “final” frequencies w™ (§) and 2°°(£) and not along the inductive iteration.

As in [4] the key idea for verifying the second order Melnikov non-resonance conditions (1.37) for
DNLW is to prove the higher order asymptotic decay estimate

2/3 )
Q°(¢) = j + alé) + % + 0<77> for j > O(y/3) (1.38)

where a(§) is a constant independent of j.

This property follows by introducing the notion of quasi-Toplitz vector field, see Definition
The new normal frequencies for a symmetric perturbation P = SP are Qj = ; +iP*>%* where the
corrections P*°*7 are the diagonal entries of the matrix defined by

P*%20, =Y P*%z0., P*% .= / (0., P*))(2,0,0,0;¢) dx . (1.39)
irj "
Thanks to the real-coefficients property, the corrections iP*9>%/ are real. We say that a matrix P = P**
is quasi-Toplitz if it has the form
P=T+R

where T is a T6plitz matrix (i.e. constant on the diagonals) and R is a “small” remainder, satisfying
in particular R;; = O(1/j). Then follows with the constant a := T}; which is independent of j.

The definition of quasi-To6plitz vector field is actually simpler than that of quasi-T6plitz function,
used in the Hamiltonian context [4], [3I]. In turn, the notion of quasi-T6plitz function is weaker than
the Toplitz-Lipschitz property, introduced by Eliasson-Kuksin [16]. The quasi-T6plitz nature of the
perturbation is preserved along the KAM iteration (with slightly modified parameters) because the
class of quasi-Toplitz vector fields is closed with respect to

1. Lie bracket (Proposition [3.1)),
2. Lie series (Proposition ,
3. Solution of the homological equation (Proposition [5.3)),

which are the operations along the KAM iterative scheme.

An important difference with respect to [4] is that we do not require the conservation of momentum,
and so Theorem applies to the DNLW equation where the nonlinearity g may depend on the
space variable x. The properties of quasi-T6pliz functions as introduced in [31], [4], strongly rely on
the conservation of momentum. However, we remark that the concept of momentum of a vector field
is always well defined (see Definition . Then we overcome the impasse of the non-conservation of
momentum introducing the a-weighted majorant norm for vector fields (Deﬁnition which penalizes
the high-momentum monomials (see ) Hence only the low-momentum monomials vector fields
are relevant. This fact is crucial, in particular, in order to prove that the class of quasi-T6plitz vector
fields is closed with respect to Lie brackets (Proposition [3.1)).



Finally, concerning the KAM iteration, we note that we do not follow the same quadratic scheme
of [4] for the Hamiltonian case, but a scheme similar to Moser [27] where we eliminate all the linear
terms in (y, z, Z), see Deﬁnition Actually, for a non Hamiltonian system it is more natural to treat
the variables (y, z, Z) at the same level: this is realized assigning the same “degree” to these variables,
see section 2.4

1.3 Non existence of quasi-periodic solutions for DNLW

We now consider different nonlinearities for which we can exclude the existence of non-trivial quasi-
periodic solutions.

Proposition 1.1. Let p € N be odd. The DNLW equations
ytt—yxx:yg"_f(Y)a XET, (140)

Vet — Yxx :8x(yp)+f(Y)7 xeT, (1'41)

have no smooth quasi-periodic solutions except for trivial periodic solutions of the form y(t,x) = ¢(t).

In particular f =0 implies c(t) = const.

PROOF. We claim that the function M(y,v) := / yx v dx is a Lyapunov function for both (1.40]) and
T

(1.41) where y; = v. Indeed, along a smooth solution of (1.40) we have

L M(yv) =(A@%W+%ﬂmx=A@wﬁ+wwn+ﬁ+fwnﬁ

dt
V2 +y2 +1 +1
= 8x< +F(y))dx+ yPThdx = | yPTdx.
T 2 T T

As a consequence M (y,v) is strictly decreasing along the solutions of (1.40) unless y.(t,x) = 0, V¢,
namely y(t,x) = c¢. Indeed, if there is a periodic solution (y(t,x),v(t,x)) of (1.40), with period T,
then

T
O:/ (/yﬁJrl(t,x)dx)dt = /y§+1(t,x) dx=0, Vt€[0,T],
0 T T

because p+ 1 is even. Hence Vt € [0, 7], yx(¢,x) =0, Vx € T, and we conclude y(¢,x) = ¢(¢). Similarly
we exclude the existence of quasi-periodic solutions, since we would have T,, — +oco such that

Tn
lim (/yf{""l(hx) dx) dt=0.
n—-+oo 0 T

Similarly, along a solution of (1.41]) we derive, setting g(y) = y?,

d
M@ = [ yg()an
T

and we conclude as above because ¢'(y) = py?~ > >0, Vy # 0. ®

For wave equations, the role of the space variable x and time variable ¢ is symmetric. A term like
y? for an odd p is a friction term which destroys the existence of quasi-periodic solutions.

Proposition 1.2. Let p € N be odd. The DNLW equation

Vi~V =y, + f(y), x€T, (1.42)

has no smooth quasi-periodic solutions except except for trivial periodic solutions of the form y(t,x) =
c(x). In particular f = 0 implies ¢(x) = const.

10



2 2
PrOOF. The function H(y,v) := v? + YEX — F(y)dx (i.e. the Hamiltonian for the semilinear wave

T
equation) is a Lyapunov function for ((1.42)). Indeed, along a smooth solution of ([1.42)) we get

d

%H(y,v) = /[rvarl dx .

We conclude as above that y.(t,x) =0, V¢,x, and so y = ¢(x). &
The mass term my could be necessary to have existence of quasi-periodic solutions.

Proposition 1.3. The derivative NLW equation

Vit — Ve =vi, x€T, (1.43)
has no smooth solutions defined for all times except the constants.

ProoOF. We decompose the solution
y(t,x) =yo(t) + §(t,x) where yq:= /y(t, x)dx and y:=y—yo
T

has zero average in x. Then, projecting (1.43)) on the constants, we get
jo= [vids= [Go+gde =g+ 20 [guix+ [ Gax=gi+ [raxzi. 0y
T T T T T

Hence v( := y¢ satisfies vo > v% which blows up unless vy = 0. But, in this case, (1.44)) implies that
yi(t,x) =0, Vx. Hence y(t,x) = y(x) and (L.43) (and x € T) imply that y(¢,x) = const. B

For more general even power nonlinearities (both in y, and y;) the mass term my (as well as any
term depending on y) could be necessary to allow the existence of quasi-periodic solutions:

Proposition 1.4. Let p,qg € N be even. Then the derivative NLW equations
Vit —Vx =Y, x€T, (1.45)
Vie =V =Yi,  Yu—Ym=yrt+yi, x€T,
have no smooth periodic/quasi-periodic solutions except the constants.

PROOF. Let us consider for example (1.45). If there exists a periodic solution (y(t,x),v(t,x)) of
(1.45)), with period T, then

T T
/ /(Ytt — Yux)dtdx =0 = / / y2(t, x)dxdt .
o Jr o Jr

Hence, Vt € [0,T], y2(t,x) = 0, Vx € T (because p is even). Hence y,(t,x) = 0, Vx € T, that is
y(t,x) = c(t). Inserting in the equation (1.45) we get ¢y (¢) = 0. Therefore ¢(t) = a + bt and the only
one which is periodic has b = 0. For quasi-periodic solutions the argument is the same. B

We finally remark that all the solutions of the DNLW equation

Ytt_yxx:y%_}i? X€T7 (146)

(whose nonlinearity satisfies the “null-condition”) are 27-periodic in time. Indeed we check that

y=-—In(a(t+x)+8(t—-x)), alt+x)+08(t-x)>0 (1.47)
are all the solutions of (|1.46). The periodicity condition in space x € T implies that a(-),3(-) are
2m-periodic. Hence all the solutions ([1.47)) are 27 periodic.
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2 Vector fields formalism

In this section we introduce the main properties of the vector fields that we shall use along the paper
(commutators, momentum, norms, reversibility, degree, ...). We shall refer often to section 2 of [4].
The first difference between the present paper and [4] (which applies to Hamiltonian systems) is that
we have to work always at the level of vector fields (reversible, see section and not of functions
(Hamiltonians). An important novelty of this section is the introduction of the a-weighted majorant
norm (Definition which enables to deal with vector fields without requiring the conservation of
momentum as in [4]. Finally, we note that the vector fields that we aim to eliminate along the KAM
iteration (see Definition are different than in the Hamiltonian case [4].

2.1 Functional setting
For 7 C Z (possibly empty) and a > 0,p > 1/2, we define the Hilbert space
67 = o= {mhens, 5 €C 2, = 3 2Pl < oo} (2.1)
JEINT
that, when Z = ), we denote more simply by £“?. Let n be the cardinality of Z. We consider
Vi=C" x C" x (77 x (7" (2.2)

(denoted by FE in [d]) with (s,r)-weighted norm

_ x Y1 Z||a, z
v= @y eV, ol = ol = follva, = 220y W1y Pl 2

ld 2.3
i)

n
where 0 < s,7 < 1, and |z|w := max |z|, |y]1 = Z lyn|. For all 8" <s, 7’ <,
h=1,...,n et

[ollsr.ar < max{s/s’, (r/r")?}|v

|5, - (2.4)
Notice that z and Z are independent complex variables. We shall also use the notation

+ . T — 3.
zj =z, zj =Z%j,

and we denote the set of variables
V:= {xl,...,xn,yl,...,yn,...,zj,...,éj,...}, JEZ\T. (2.5)
As phase space, we define the toroidal domain
D(s,r):=T} x D(r) =T} X B2 Xx B, X B, CV (2.6)
where D(r) := B2 x B, X B,

T = {x eC™: , max Im x| < s}, B2 := {y eC™: |yh < 7'2} (2.7)
and B, C %" is the open ball of radius r centered at zero. We think T" as the n-dimensional torus
T" := 27R"/Z", namely f : D(s,r) — C means that f is 2r-periodic in each zj,-variable, h = 1,... n.
If n =0 then D(s,r) = B, X B, C{*P x {*P,

Remark 2.1. Let us explain the choice of the “scaling” in ,. We want to prove persistence
of elliptic tori for perturbation of the integrable system & = w, y = 0, 2; = —iQ;z;, z; = 1Q;z; (recall
). Then it is natural that the variables z and Z have the same scaling factor r while the variables
y have a smaller scaling factor '. We choose v’ = 2 since in the application to the DNLW y is an
action variable, namely it has the same “dimension” of zZ, recall .
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We introduce the “real” phase space
R(s,r) := {v = (x,y,27,27)€D(s,r) : €T, ycR", 2+ = zf} (2.8)
where 2+ is the complex conjugate of 2.

2.2 Formal vector fields

Along this paper we consider vector fields of the form
X(v) = (XD (v), XV (v), X (v), X (v)) € V (2.9)

where v € D(s,r) and X (@ (v), X (v) € C*, X*)(v), X (v) € £3P. We shall also use the differential
geometry notation

X(v)=X"a, + X¥, + XPo, + XFg, = ZX(")&, (2.10)

vev

(recall (2.5])) where

X@o, =3 xwo,,
h=1

and similarly for X<y)ay, X9, X3 4§, Equivalently we write

X(v) = (X<V> (”))vev' (2.11)

Each component is a formal scalar power series with infinitely many variables

X () = Z X,(cvl)a N elkeyt ozl (2.12)
(k,i,a,B)€l
with coefficients X ,E z) ap € C and multi-indices in
[:=Z" x N® x NZ\D) 5 N(Z\T) (2.13)
where
NED .= {a = (@j)jenz €N with |a|:= Y a; < +oo}. (2.14)
JEINT

In (2.12) we use the standard multi-indices notation 2*z” := Wjez\z 2; ]zﬁ]

We recall that a formal series Z Ch,i,a,B) Ch,i,a,3 € C, is absolutely convergent if the function
(k,i,0,B8)€l
> (k,i,0,8) ¥ criap € Cisin L*(T, ) where p is the counting measure of I. Then we set

Z ChyioB *= /Ck,m,ﬁ dp. (2.15)
(ki a,B)€l I

We consider monomial vector fields having all components zero, except one, which is a scalar monomial

M ia,p(0) = e oyz027 (2.16)
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Definition 2.1. (monomial vector field) A monomial vector field is my ; o g.v (v) where
Mo g (V) = My ia.5(0)0 1= e*Tyi22250,, . (2.17)
Fach component is

w o [y i =
k.o, Biv 10 otherwise .

Then a vector field X in (2.10]) is decomposed as a formal series of vector field monomials with
coefficients in C:

=3 > X e @) =Y Y X[ eeyiazPo, (2.18)

vev (k,i,a,0) €l veV (k,i,a,B)€l
For a subset of indices I C I x V we define the projection
(I1; X)(v) := Z X,gvl)a y ek i 7P, . (2.19)
(k,i,o,8,v)€T
For any subset of indices I,I’ C I x V we have
U0y =iy =107 . (2.20)

Note that a projection on an index set corresponds to the projection on the space generated by
the corresponding monomial vector fields.

Definition 2.2. The formal vector field X is absolutely convergent in V (wzth norm ) atveV
if every component X(")( ), v €V, is absolutely convergent in v (see (2 ) and

H(X(")(v))vev , < 400.

The commutator (or Lie bracket) of two vector fields is

X, Y](0) = dX (0)[Y (v)] — dY (0)[X () (2.21)
namely, its v-component is
X, 7] =3 00 XMWY ) — 9,y X (2.22)
v/ ev
Fixed a set of indices
Z:={j1,.-,jn} CZ, (2.23)
we set j := (j1,-..,jn) € Z" and we define the momentum vector field
Xy = (j,o,...,1jzj,...,—ij2j,...), jeZ\T.

Definition 2.3. The MOMENTUM of the vector field monomial my, ; o g,y s

ks, a, Biv) = { w(k,a, B) if ve{zi,...,zn, Y1, -, Yn} (2.24)

m(k,a,3) — o if v=27

where

m(k, o, B) : ij+z (2.25)

JEZINT

is the momentum of the scalar monomial my ; o 3(v).
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The monomial vector fields my, ; o 3.v are eigenvectors, with eigenvalues in(k, a, 8; v), of the adjoint
action adx,, of the momentum vector field X ;. This shows the convenience of the exponential basis.

Lemma 2.1. The commutator
[mk’i,a’ﬁ;w XM] = iﬂ(k’ a, 3 V)mk,i,a,ﬁ;v :

PrROOF. By (2.:22) with Y = X we have 0, V") =igj if v = v/ = 27 and 0 otherwise. W

We say that a monomial vector field my ; o g,v satisfies momentum conservation if and only if
m(k,«, 8;v) = 0. Similarly, a vector field X satisfies momentum conservation if and only if it is a
linear combination of monomial vector fields with zero momentum, i.e. it commutes with X ;.

2.3 Weighted majorant norm

In the following we consider a new parameter a > 0. Given a formal vector field X as in (2.18)) we
define its “a-weighted majorant” vector field

M X)) =D Y erlrhadml x(v) - Jeikayizezf, (2.26)
VEV (k,i,o,B)€l

where m(k, a, 3;v) is the momentum of the monomial my,;q g defined in (2.24). When a = 0 we
simply write M X instead of MyX, which coincides with the majorant vector field introduced in [4]-
section 2.1.2, see also [2]. The role of the weight e2™FF s to “penalize” the high momentum
monomials. This is evident from which will be exploited in Lemma to neglect the high
momentum monomial vector fields, slightly decreasing the parameter a.

Definition 2.4. (a-weighted majorant-norm) The a-weighted majorant norm of a formal vector

field X as in (2.18)) is

1Xsra = sup ‘( Z ea‘ﬂ(k’a’ﬁ;v)"ng‘;‘),aﬁ|€|kls|yi|‘ZO‘H«?BD (2.27)
(y,2,2)€D(r) k,i,a,8 vevlls,r

When a = 0 the norm || - |50 coincides with the “majorant norm” introduced in [4]-Definition
2.6 (where it was simply denoted by || - ||s.). By (2.27) and (2.26]) we get

||X||S,T,a = ||MaX||s,r,O . (228)

Remark 2.2. Relation (2.28) makes evident that the norm || - ||sra satisfies the same properties of

the magorant norm || - ||sr0. Then the following lemmata on the a-weighted majorant-norm || - |5 ra

follow by the analogous lemmata of [4] for the majorant norm || - ||s,r0-

For an absolutely convergent vector field X : D(s,r) — V we define the sup-norm

(X5, := sup [ X(0)|lvsr- (2.29)
veD(s,1)

Lemma 2.2. Assume that for some s,r > 0, a > 0, the weighted majorant-norm
[ Xls,ra < +00. (2.30)

Then the series in (2.18)), resp. (2.26), absolutely converge to the analytic vector field X (v), resp.
M,X (v), for every v € D(s,r). Moreover

[ Xls.rs [MaX]sr < ([ X]|sra- (2.31)
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Then we consider the following Banach subspaces of analytic vector fields
Vs ra = {X :D(s,7) =V with norm | X||s,ra < —l—oo}
and, for h € Z,

Vs ra(h) = {X = Z X,Sji)’a_ﬂ eFryiz2zP9, € VS,r,a} .
7(k,a,B;v)=h

For a vector field X € Vs, o(h) we define its momentum 7(X) = h.
Lemma 2.3. Let X, Y have momentum 7(X), w(Y), respectively. Then n([X,Y]) = n(X) + = (Y).
Finally we consider a family of vector fields
X:D(s,r)xO—=V (2.32)

depending on parameters £ € O C R™. For A > 0, we define the A-weighted Lipschitz norm

li
XI5 a0 = I1X150a = 1Xllsrao +AIX]H 00 (2.33)
X - X s,r,a
= sup [ X(§)l[s;a+ A sup 1% () () ls,r,
£eo £m€eO, £4n |€ — 7]
and we set

Vo= Virao = { X(36) € Vora, ¥E€ 0 1 X2, 0 <00 }.
Note that, if X is independent of £, then ||X||i‘ra - ||X||s,r,a, V.
The || - ||£‘7T7a norm behaves well under projections, see (2.19)).

Lemma 2.4. (Projection) VI C I x V we have |17 X ||sra < | X||s.ra and [T X5 < |1 X |12

s,ra s,r,a’

Important particular cases are the “ultraviolet” projection

(Hlk\zKX)(U) = Z Xlg‘,’i),oz,ﬁ ei’“"”yizaiﬁa‘, , H|k|<K =1d — HWZK (2.34)
|k|>K,i,a,8

and the “high momentum” projection

WronX)@) = > X7 5™ y202%0, . o =1d = i - (2.35)
|7 (k,a,B5v)| > K

We also define a further projection Ilgiag by linearity, setting

Miapgy 1Hk=0,i=0 a=¢;, =0,v=2z;,j€Z\T
Hdiagmk,i,a,ﬁ;v = Mg i o,8;v itk = Oa 1= 07 @ = 07 ﬂ =e€5, V= Zja ] € Z\I (236)
0 otherwise.

By (2.27) following smoothing estimates hold:
Lemma 2.5. (Smoothing) VK > 1 and A >0

Mk X1 a < i,e‘K(S‘S’)IIXII?W Vo<s <s (2.37)
> . ”
Mo w X200 < e X0 X|2, vo<a <a. (2.38)

The space of analytic vector fields with finite a-weighted majorant norm is a Lie algebra:
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Proposition 2.1. (Commutator) Let X,Y € VS)‘, Then, for A >0, r/2 <7r' <7, s/2<s <s,

ra*

[X Y} € VS‘ ,r’a and
X YT 0 < 22536 XISl Y112 (2.39)
where
/ /
5::min{175—,171}. (2.40)
s T
ProOF. The proof of
||[X, YHlS’,r’,a < 22n+35_1||X|| )T Y Is,na (2-41)

follows as in [4], Lemma 2.15, by exploiting Lemma [2.3] Then

IX YO - XY Wera = |IX(© = X0, Y(©)+ [X(0), V() = Y ()]

s’\r’,a

< |x@-xmye)|,  +|xoye-vml|
< 22—l (XU Y o + 1Y 122,01 X e

and (2.39) follows taking the supremum in the parameters. B
Given a vector field X, its transformed field under the time 1 flow generated by Y is

1
X =" —ady X,  adyX:=[X)Y], (2.42)
k!
k>0
where adlff = adlf/_lady and ad) := Id.
Proposition 2.2. (Flows) Let A >0, r/2 <71 <r,s/2<s <s, and Y € V)

Y1120 <= /(22") (2.43)

and § defined in . Then the time 1 flow genemted by Y maps D(s',r") — D(s,r) and, for all
Xew) the tmnsformed vector field *Y X € V) satisfies

s,r,a’ sra

with

adYX || ||sra 244
H ||s ,r! a— 1— 1||Y||sra. ( . )

We conclude this section with two simple lemmata.

Lemma 2.6. Let P = Z Piiopne ™y 2°2P0, and |Agiapn] > v(E) T, VI < K, i, a,3,v
|k|<Ki,a,B
Then P
F = Z ZhAo B ikayizez80,  satisfies IE|sra <7 KT P|lsra -
4 Akzaﬂ 5Ty 5Ty
|k|<K,i,a,B;v o
Lemma 2.7. Let P = Y P;z0., with |[P|, < co. Then |P;| < ||P||, and |P;["™ < ||P|*. An
JETNT
analogous statement holds for P = Z P;z;05,.
JEZ\T

ProOF. By Definition we have

IPIE=2 s 3 (A gy s e
“Z ap<T pez\T
by evaluating at z,(l = 0jpe —alil(jyPr /v/2. Applying the above estimates to P’, where P’ := P(£) —
P(p) = Y (P;(&) = Pi(n))20,, we get |P;(€) = Pi(n)|/[¢ —n| < | P(€) — P(w)|l,/I¢ — nl; then the

JETNT
Lipschitz estimate follows. B
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2.4 Degree decomposition

We now define the terms of the vector field that we aim to eliminate along the KAM iteration.

Definition 2.5. The degree of the monomial vector field my, ; o g 15

i) = i ol + 19— d) where ()= { § X v & L)

This notion naturally extends to any vector field by monomial decomposition. We say that a vector
field has degree h if it is an absolutely convergent combination of monomial vector fields of degree h.
We explicit the degrees of the basic vector field monomials d(d,) = 0, d(dy) = d(0.,) = d(0z,) = —1.
The degree d gives to the analytic vector fields the structure of a graded Lie algebra, because, given
two vector fields X, Y of degree respectively d(X) and d(Y"), then

d([X,Y]) = d(X) +d(Y). (2.45)

For X € V; , . we define the homogeneous component of degree [ € N,

X0 .= x = > X{ gty azPa, (2.46)
Jil+l ol +15]—d(v) =1
We also set
X<0.= x(=D 4 xO (2.47)

The above projector ™ has the form I1;, see (2.19), for a suitable subset I C I x V.

Definition 2.6. We denote by R=" the vector fields with degree < 0. Using the compact notation
wi= (,2,2) = (y,25,27),
a vector field in R=C writes
R=R0O=RED L RO RED = RY1)d,, R = R™(2)d, + R**(x)ud,, (2.48)

where
R*(z) € C", R e C" x /(3P x (3", R (x) € L(C" x (7P x (7). (2.49)
In more extended notation
R*(x)0, = RY(z)0, + R*(x)0, + R*(z)0:
R (x)ud, = (Ry’y(x)y + RY*(x)z + Ry’g(x)i) Oy + (Rz’y(x)y + R**(z)z + RZ’Z(J;)E) 0,
+(R*Y(z)y + R¥*(z)z + R**(x)Z)0; . (2.50)

The terms of the vector field that we want to eliminate (or normalize) along the KAM iteration
are those in R=?. The graded Lie algebra property (2.45) implies that R=" is closed by Lie bracket:

Lemma 2.8. If X,Y € R=" then [X,Y] € R=C.
The above observation is useful for analyzing the new normal form along the KAM step.

Remark 2.3. In the Hamiltonian KAM theorem [ we do not eliminate the terms R*Y(z)y0,,
R*Y(z)yd; and instead we remove RY"**(x)220,,. Actually also without eliminating the terms R*Y (x)yd,,
R*Y(x)y0s, the KAM scheme would be quadratic. In any case it is free to remove such terms. We
follow [Z7].
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2.5 Reversible, real-coefficients, real-on-real, even, vector fields
We now define the class of reversible/anti-reversible vector fields, see [7].

Definition 2.7. (Reversibility) A vector field X = (X X X&) X&) (see (2.9)) is RE-
VERSIBLE with respect to an involution S (namely S* = 1) if

XoS=-SoX. (2.51)
A wector field Y is ANTI-REVERSIBLE if
YoS=5SoY. (2.52)

When the set Z is symmetric as in (1.32)) and S is the involution in (1.35)), a vector field X is
reversible if its coefficients (see (2.12))) satisfy

if V=2, jEI,

—k,i,8,6
Xli‘,li),aﬂ = _X(—vfz,i,é,a if v=y;, jeI, (2.53)
(=29) .
Ciapa HEov=zp, JEZNT
where
k= (koj)jer, 0= (i-j)jez, B:= (B-j)jenrz, &= (a—j)jenz, ¥:= (v—j)jez. (2.54)
Clearly Y is anti-reversible if
) e
_Yffc,i,ﬁ,& if v=2;, j€I,
Yy s = Yf‘g,i,ﬁ,a if v=y;, jeI, (2.55)
(=75) VR
7]%’;’[;’& if v=27, jEZ\T

Definition 2.8. (real-coefficients) A vector field
X=X®o, + XWa, + XCo,. + X o,

is called “REAL-COEFFICIENTS” if the Taylor-Fourier coefficients of X(m),iX(y),iX(z+),iX(z_) are
real. The vector field X is called “ANTI-REAL-COEFFICIENTS” if iX is real-coefficients.

Definition 2.9. (real-on-real) A vector field X : D(s,r) — V is REAL-ON-REAL if
X@ ()= X@ (@), XW(v)=X® (), XC)(v)=XCE)(v), Yver(s,r), (2.56)

where R(s, ) is defined in (2.8)).
On the coefficients in (2.12)) the REAL-ON-REAL condition amounts to

x© if ve{zy,....,Tn,Y1,..-,Yn
0 _ ) Ykipa {n Yoo Ynk (2.57)
ki3 X(Zj ) f __ o
—ki.Ba ov=z.
Definition 2.10. (Even) A vector field X is “6VEN” if X : E — E (see (1.36))).
On the coefficients in (2.12)) the above PARITY condition amounts to
X o= Xlgf;d’ 5 (see @59)). (2.58)
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Lemma 2.9. Let X, Y be vector fields.

1. If X is reversible and Y is anti-reversible then the commutator vector field [X,Y] is reversible
as well as the transformed vector field e X (recall ([2.42)).

2. If X, resp. Y, is real-coefficients, resp. anti-real-coefficients, then [X,Y], Y X are real-
coefficients,

3. If X,Y are real-on-real, then [X,Y], e X are real-on-real,
4. If X,Y are even then [X,Y], €*Y X are even.
PROOF. Let us prove the first case. We have by , that
[X,Y](Sv) = DX (Sv)[Y(Sv)] — DY (Sv)[X (Sv)] = DX (Sv)[SY (v)] + DY (Sv)[SX (v)].  (2.59)

Now, differentiating ([2.51), (2-52), we get DX (Sv)[Sh] = —SDX (v)[h], DY (Sv)[Sh] = SDY (v)[h],
Vv, h Hence, inserting in (2.59) we get

[X,Y](Sv) = =SDX (v)[Y (v)] + SDY (v)[X (v)] = =S[X,Y](v)

namely [X,Y] is reversible. Iterating in (2.42), we get that e*d¥ X is reversible.
The other cases follow similarly from the Definitions [ ]

Definition 2.11. We denote by

® R,c, the vector fields which are reversible (Deﬁnitz’on real-coefficients (Definition @), real-
on-real (Definition[2.9) and even (Definition [2.10).

® Ry-rev the vector fields which are anti-reversible, anti-real-coefficients, real-on-real and even.

o RS0 =R, NRZC and R0

Tev a—rev

‘= Ra—rev NR=Y.
Lemma [2.9] immediately implies
Lemma 2.10. If X € Ryep and Y € Ro_rer then [X,Y], €Y X € Rcy.
By (2-46), (2.47) and (2.58) we immediately get (the space E was defined in (1.36]))

Xp=0 = (X=%)p=0. (2.60)

Lemma 2.11. If X|p =0 and Y is even (definition , then ([X, Y])IE =0, (eadYX)‘E =0.

Proor. Ifv e E we get

d

Xy B axere)= g

X(v+sY(v) =0,

since v + sY (v) € E. The statement on the Lie series follows by induction from (2.42)). m

3 Quasi-Toplitz vector fields

Let Ny € N, 6, u € R be parameters such that

1<O,u<6, 12NF'42N)t <1, k= max 3ul, (3.1)

(the j; are defined in (2.23))) where
0<b<L<1l. (3.2)
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In the following we will always take
N> Ny. (3.3)

For a scalar function f : D(s,r) — C let

[fllsra=sup Y ™ @BBN g, sleyt|[2)2%) . (3.4)
(y,2,2)€D(r) 5o 3

Definition 3.1. A scalar monomial €*%y'2°%" is (N, u)-low momentum if
| <N, a+pB=v with Y |lln<uNE. (3.5)
leZ\T

An (N, p)-low momentum scalar monomial is (N, u, h)-low if
|7(k, o, 3) — h| < N°. (3.6)

We denote by Asra( , ), respectively .AS ra(Ns 1, h), the closure of the space of (N, u)-low, resp.
(N, i, h)-low, scalar monomials in the norm || ||s.ra in

The projection on .AS (N, h) will be denoted by 11 Z Note that it is a projection (see (2.19)) on
the subset of indexes IcI satisfying (3.5) and ( .

Clearly, the momentum (2.25)) of a scalar monomial m(k, i, «, 3), which is (N, u)-low momentum,

satisfies ED.ED
(3-1),(3-5)
m(k, e, 8)] < KN'4puNE.

Hence a scalar monomial m(k, 4, «, ) may be (N, u, h)-low only if

E1).EG3)
1] < |r(k, 0, B)] + N® < uN* + (ke + DN® =225 (3.7)
In particular
AL a(Nowh) =0, VB =N. (3:8)
Definition 3.2. A vector field monomial m(k,i,«, 5;v) is
o (N, u)-low if
m(k, . Biv)|, k| < N*, a+ B =5 with Y |l < pNE. (3.9)
1€Z\T

e (N,0,p)-linear if

v =20, |n(k,a,B;v)|, |k| < N°, a+ 3 =e, +v with |m|, |n| > 6N, Z [y < uNE . (3.10)
1eZ\T

We denote by VE

s,T,a

(N, ), respectively Ls . o(N,0, 1), the closure in Vs .5 of the vector space generated
by the (N, ) -low, respectively (N, 0, u)-linear, monomial vector fields. The elements of Vg Ta(N, ),
resp. Lsra(N,0, 1), are called (N, p)-low, resp. (N, 0, p)-linear, vector fields.

The projections on Vs ra(N ), resp. Ly, a(N7 0, 1), are denoted by Hhu, resp. Iln. g .. Frplicitely
HNH and Iy g,,, are the projections (see (2 ) on the subsets of indexes I C I x V satisfying
and - 3.10) respectively.
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By Deﬁnitiona (2:24) and (B.6), a vector field X € VSLTa( 1) has components X (@») X n) ¢

Air’a(N7u, 0) and XG) ¢ Aé,a(N,,u,am) Moreover, by (3.10) and (3.5), a (IV, 6, p)-linear vector
field X € Ls,a(N,0, 1) has the form

X(v) = Z ngfg(v)zg’azgl where XUmEAL

S,T,a

(N,u,om —o'n). (3.11)

m,n,o,o’

|ml,|n|>0N

Remark 3.1. By Deﬁnition and (3.1)), the coefficients X”m n - ) do not depend on z;, Z;
with |j| > 6NT.

Here and in the following s(m) := sign(m).
Lemma 3.1. Let X € L, .(N,0,u). Then the coefficients in (3.11) satisfy

X7 =0 if os(m)= —ad's(n). (3.12)
: -
ProoF. By (3.8) and |om —o'n| |m|+ |n| . N we get AL (N, p,om—o'n) = 0.

Lemma 3.2. Let my; o 3 be a scalar monomial (see (2.16)) such that

a+p=1vy  with Z |y < 12N%. (3.13)
I€Z\T

Then

(TR " (Maias)) 26 Do, 3E |l 0] > ON

0 otherwise.

ProoF. It directly follows by (3.1)-(3.3)), (3.6) and (3.10). m

3.1 Toplitz vector fields
We define the subclass of (IV, 0, u)-linear vector fields which are Téplitz.

HNO;J,(mk:zaﬁZ 8,2(’):{

Definition 3.3. (T6plitz vector field) A (N, 0, u)-linear vector field X € L (N, 0, 1) is (N, 0, p1)-
Toplitz if the coefficients in (3.11) have the form

X" = XZ (s(m),om —o'n)  for some XZ,(s,h) € AL

s,7,a

(N, u, h) (3.14)
and ¢ € {+,—}, h € Z. We denote by

Tera = Tora(N,0,p) C Lsra(N,0, 1)
the space of the (N, 0, u)-Toplitz vector fields.

Lemma 3.3. Consider X,Y € T;,.(N,0,u) and W € yL

sra(N, 1) with 1< p,py < 6. For all
0<s <s,0<r <rand@ >0, <u one has

T g0 [X, W] € Ty o (N, 0/, 1) (3.15)
If moreover
uNE + (k+1)N° < (¢' — )N (3.16)
then
HN,O’,,U/[Xa Y] € Z’,r’,a(Na 9/7/1'/) . (317)
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PROOF OF (3.15). By definition (recall (3.10)) we have that X@ X and X =) vanish if [m| < ON.
Arguing as in (3.7) we have that WZJ =0if |j| > mNE+ (5 + l)Nb Note that only the components
(X, W)™ with v = 2, and |m| > @N contribute to Iy ¢ /[ X, W]. Noting that §N > jiy NE4-(k+1)N®

(by (3.1)) and (3.3])) we have

(X, W) = 9, XCRIW® 4 g, xCLIW®) 4 3 0. XCEW (3.18)
o1, ljl<pi NL+xN®

By (3.11) and ( we get X ) = Z X7, (s(m),om —o'n)z7 . Let us consider the first term
ol,In|>0N
of the right hand side of (3.18). Since X7 (s(m),om — o'n), W) e AL (N, u) (recall (3.14)), all
the monomials in 9, X% (s(m),om — o'n)W® satisfy (3.13). By Lemma [3.2 we have
) >ooUIn 0., i |m|> 0N
HN,@’,;J/ (an(Zm)W(I)asz) = o’,|n|>0'N
0 otherwise,

where  UJ" = H@’L’,n_aln (&Xg,(s(m), om — U’n)W(’”)) :

It is immediate to see that U]/’ satisfy (3.14). The other terms in (3.18) are analogous. (3.15) follows.
PROOF OF (3.17)). We have by (12.22))

X.Y]=2Z-2', where Z:= Y ( 3 azal)((%)y(z;'l))az% (3.19)
o,|m|>0N  o1,|j|>0N ’

and Z’ is analogous exchanging the role of X and Y. We have to prove that Iy ¢ v Z € Ty v o(N, 0, p1).

By (3.11)) and ( we get
AS S Z Z X7 (s(m),om —015)Y 7' (s(j), 015 — o'n)z7 .

o1,|j|>0N o’ ,|n|>0N

Since both XZ (s(m),om — o15) and Y.7! (s(j),01j — 0'n) belong to AL ra(N, 1) (recall (3.14), all
the monomials in their product satisfy - By Lemma E 3.2 we get

N Z = Sooooozgneg o,
o,0’, Im|,|n|>0'N
where
) L,om—o’ NSO . .
Zgm =g (N Xg (sm),om — 1))V (s(3), 015 — o'n)) (3.:20)
o1,|j|>0N

Note that X7 (s(m),om — a1j) € AY(N,u,om — 017), formula (3.7) and condition (3.16) imply
that if |m| > 'N then automatically |j| > |m| — |om — o1j] > /N — uN* — (k + 1)N° > N or

X7 (s(m),om — o1j) = 0. Then the summation in (3.20) runs over j € Z. By (3.12) we have
s(j) = oo1s(m). Therefore

z5m =1 Lam U"(ZX (ools(m),amfalnfh))

o1,h

satisfying (3.14]). m
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3.2 Quasi-Toplitz vector fields
Given a vector field X € V; .., and a Téplitz vector X e Tsra(N, 8, 1) we define

X = N[y, X — X). (3.21)

Definition 3.4. (Quasi-Toplitz) A vector field X € Vs, is called (Ny, 0, p)-quasi- Téplitz if the
quasi-Toplitz norm

X110, = 11X 1S

S,T,a

sraNo,Ou = sup [ ~ inf (maX{HXHs,r}a, ||X||s,r,aa ||X||S>T,a})} <3'22)
NzN0 XeT, ra(N,0,u)

is finite. We define
QZ,T,a = Q£r7a(N070’M) = {X € VSyT,a : ||X||s ,ra,No,0,u < OO}

In other words, a vector field X is (No, 6, p)-quasi-T6plitz with norm || X||T ra if, for all N > No,
Ve > 0, there is X € Tsra(N, 0, 1) such that

OnveuX =X +N7'X and [ Xlsras [ X]sras [Xlsra < IXN5,0+e. (3.23)

We call X € TsralN, 0, 1) a Toplztz appm:mmatzon of X and X the “Téplitz-defect”. Note that, by

Definition 3.3 and (3:21) HNMX X, ygX =X,
By the definition in we get

||X||S ra < ||X||s ,ra,No,0,pu ° (324)
If ' <s,7' <r,a <a Nj>Noy,0 >0,/ < pthen O, (No,0,1) € QL v (NG, 0, ') and
|| : ||£,T’,a/,N6,0/,H’ < max{s/slv (T‘/’I" ) }” Hs r,a,No,0,u (325)

Lemma 3.4. (Projections 1) Consider a subset of indices I C I x V (see (2.13), (2.5))) such that
the projection (see (2.19)) maps

Iy Tsra(N, 0, p0) = T5 ra(N,6,1), VYN >Np. (3.26)
Then I; : era(No,H ) — QS ra(No, 0, 1) and
HHIX”sra = HX”sraa VX e Qz,r,a(NOveaM)' (327)

Moreover, if X € QS Ta(No,Q,M) satisfies I} X = X, then, VN > Ny, Ve > 0, there exists a decompo-
sition HNg X = X + N7'X with a Téplitz approzimation X € Tsra(N, 0, 1) satisfying ;X = X,
HIX X and ||X||s7“aa ||X||s7“a<HX”sra"'6

ProOF. By (3.23) and (2.20)) (recall that IIx g , is a projection on an index subset, see Definition
3-2) . 5

Oy, JI X =11y, X =11; X + NI X . (3.28)
Assumption ({3.26)) implies that ;X € Tsra(N, 6, 1) and so II; X is a Toplitz approximation for II; X
Hence (3.27)) follows by

L3 673
HHIX”a T,a ||HIX||S r,as

X115,

S,T,a

Now, if II;X = X, then (3.28) shows that II;X (which satisfies II;(II;X) = II;X), is a Téplitz
approximation for X. B
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Lemma 3.5. (Projections 2) For alll € N, K € N, N > Ny, the projections (see (2.46)), (2.34]),
(2.35), (2.36)) map

O T < e My < 56 Hdiag = Zora(NV, 0, 1) — T ra(N, 0, 1) (3.29)
If X e QsTma(No,G,u) then, writing for brevity || - 1T = - ||5T7T7a,N079,M,
TOXNT e XI5 1< XN [ Maiag X7 < (1X]7 (3.30)
XSO, X — X0 T < X7 (3.31)
Moreover, V0 < s’ < s and V0 < a’ < a:
Iz XIE ravoon < € T ZIXNT, 0 (3:32)
ok XN g < € KO UNXNT, 0 npn - (3.33)

Proor. We prove (3.29) for Il <k, the others are analogous. Since X € Tsra(N,6, 1) then

X()= > XI"w)z] 0.

[ml|,[n|>60N

for some X7 satisfying (3.14). Then

. , .
(< X) (v) = § YO ()28 0. where YO = Winporn—om| <k Xoin
’

m,n,o,o

|ml,|n|>6N

recall Definition |3.1). Therefore Y2 satisfy (3.14) and II;, <KX € Tsra(N,0, ). The estimates
o | )T

'n

(3-30)-(3.31)) follow from (3.29) and Lémma (in particular (3.27))). The bounds (3.32)-(3.33) follow
by (2.37), (2.38

) and similar arguments. B

Lemma 3.6. Assume that, VN > N, > Ng, we have the decomposition

Y=Yi+Yy with [[Y3lanen <K, NTneuYNllsra < Ko (3.34)
Then Y[ yan. 0, < max{||Y |ls,ra, K1 + K2}

PrOOF. By assumption, VN > N,, we have |‘Y1</||£r,a,N,9,p < Kj. Then, Ve > 0, there exist
Y} € Tora(N, 0, 1) and Yy, such that

MneuYh =Yy + NV and [V llsra Vo llsra < K1 +e. (3.35)
Therefore, VN > N,,

Myo,Y =Yn+N 'Yy, Yy:=Y, Yn:=Yi+ Ny, Yy
where Yy € Tsra(N,0, 1) and

. :
Ynlsra=1Yxlsra < Kite, (3.36)
% > )
YN ls,ra < ||Y1</ s,ra T N”HN,@,;LY]GHS,T’@ < Ki+e+ Ks. (3.37)
Then Y € Q7 ,(N.,0, 1) and
||Y||Z:r,a,N*,0,;L S sup maX{HY”s,T,a, ||YN||s,r,aa ||YN||s,r,a}

E59).E3D
< max{||Y|sra K1+ Ko+ ¢c}.

Since € > 0 is arbitrary the lemma follows. B
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Proposition 3.1. (Lie bracket) Assume that XV, X2 ¢ 9l a(No,0,p) and Ny > Ny, pn < p,
01>0,s/2<s1<s,r/2<r <r,a <a satisfy

(k+O)NPE < pp— iy, a NETP 4+ (k)N <6, — 0, (3.38)
2Ny Mimin{a—ans=s1}/2 o 1 pmin{a—ay, s — s NP > 2. (3.39)

Then (XD, X®) e QT | (N1,01, 1) and

|| [X(l)v X(Q)] ||Zl,r1,a1,N1,01 N3 < C(n)(sil ||X(1) ||Z:r,a,N0,9,p, ||X(2) ||Z:r,a,N0,9,u (340)
where C(n) > 1 and
5= min{l—s—l,l—r—l}. (3.41)
s T

The proof is based on the following purely algebraic lemma.
Lemma 3.7. (Splitting lemma) Let XV, X® ¢ Vsra and (3.39) hold. Then, for all N > Ny,

TN,y [X ), XP)] = (3.42)
N6y, ([HN19>#X(1)7HN,9,;LX(2):| + [HN,Q,#X(D,H&#X@)} + [H&#X(l),HNﬁ’NX@)}
(Mo oo e XD, X O] 4 [ g X O, Mg o o g i X))
Proor. We have
XD, X = [ miens XD, Mgy s X (3.43)
+ [H\kIZNb 0r|w\2NbX(1)7X(2)] + [H|k|7‘7r|<NbX(1)’ H\k\ZNb or|7r|2NbX(2)] .

The last two terms correspond to the last line in (3.42). We now study the first term in the right
hand side of (3.43)). It is sufficient to study the case where X (h), h = 1,2, are monomial vector fields

Mp = M) (k) (k) B(A) sy (h) (see (2.17))  with |k‘(h)|, |7r(mp)] < ]\ﬂ’7 h=1,2, (3.44)

and analyze under which conditions the projection Ily g, ,, [m1, ms2] is not zero.
By the formula of the commutator (2.22]) and the definition of the projection Iy g, ., (see Defini-

tion in particular (3.10)) we have to compute (Dym? )[m}] only for v/ = 27, with |m| > 6; N and
v €V, see (2.5).

®) CASE 1: v =z, or v = y;. By (3.10)), in order to have a non trivial projection Iy g, .., (Dvmf;)[mg]
it must be

a4+ 80 +a® 4+ 8@ =+, |n[>0N, Y iy <mN. (3.45)
1€Z\T
We claim that
a® + 80 =, +40 0@ 4 5@ =@ N iy <y NE h=1,2, (3.46)
1€Z\T

which implies that my is (IV, 01, p1)-linear (see (3.10])), hence (N, 6, u)-linear, and my is (N, u1)-low
(see (3.9)), hence (N, p)-low. Thus Iy ,mq = my and Hﬁyumz = my and we obtain the second (and
third by commuting indices) term in the right hand side of (3.42)). By (3.45)), the other possibility

instead of (3.46)) is

o 440 =70 o® 4@ =, 5@ N 5" < NE, h=1,2. (3.47)
1eZ\T
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In such a case, since |r(mg)| < N° we get (recall my = m} with v = x,v),

o EDEDED
>

&29),E10
> nl- > N — iy NY — kN®

N> |n(k®,a®, g2)| 152 — k|

1€Z\T
which contradicts (3.1).
®) CASE 2: v = 27", j € Z\Z. Only for this case we use (3.39). In order to have a non trivial projection

HN,91,H1(DVmign)[m;] it must be

a4+ 80 1 a@ 453 _ei=e, +q, |n|>0N, Z ]y < mNE. (3.48)
1€Z\T

We have the two following possible cases:

W+ 80 =¢; + e+, @ 45O =4@ N iy <y NEL h=1,2 (3.49)
1€Z\T

a4+ 50 =¢; +30 0@ 4 4@ =, +52 3" 5" < NE, h=1,2 (3.50)
1€Z\T

where 'y(l) + 7(2) = ’7(1) + ’7(2) = v. Note that, since we differentiate m; with respect to v = z}’l the

monomial m; must depend on zé” and so the following case does not arise:

o 4+ g0 =30 @ 4 5D = te, +5@, 3 FM <mNE, h=1,2.
1€Z\T

In the case (3.49)), the monomial my is (N, u)-low and we claim that my is (N, 6, u)-linear. Indeed,
since

r(mz)| B2 |2 (6@, 0@, 52)) — 5| < NP (3.51)
we get |j] < |7(®,a?,5®)| + Nb. Hence

3+ > < m(®,a®, 3®)| + N+ 374D < k@] + 3"yl + N
! l l
(49),[(48) (3-39)
< (k +1)N® + iy Nt "< uN*

namely m; is (N, 0, u)-linear (see with v = e; + (1)), Hence yp,,m; =my and Hk,umg =my
and we obtain the second term (and third by commuting indices) in the right hand side of (3.42).

In the case (3.50) we claim that both my, mg are (N, 6, u)-linear so we obtain the first term in the
right hand side . Since, by (3.48), |n| > 61N > 6N we already know that my is (N, 6, u)-linear.
Finally, m; is (N, 0, u)-linear because

(13.51)

2.24),(3.50)
il > |7(k@,a?, 3| - N? -Z-

nl = > 1157 — wlk®] -~ N?
1€Z\T

(3:48),(3:50), (-44) (3.39)
9 0N — iy Nt — (k + 1)N? 9 ON

concluding the proof. ®

PROOF OF PROPOSITION . Since X" ¢ QT

sra(No,0, ), h=1,2, for all N > Ny > Ny there exist
XM ¢ Tsra(N, 0, 1) and X ") such that

My, XM =X" 4 NIXPW  p=12, (3.52)
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and

XN X sras 1X® g0 < 201X (3.53)

s,m,a,No,0,p

In order to show that [X(l),X(2)] € Q£7r1,a1 (N1,01, p1) and prove (3.40) we have to provide a de-
composition 3 X
T 0y (XD, X = X2 4 NTIXO2 0 wN > Ny

with X1 € 7 . o (N, 6y, 1) and

XD, X s X P sy XD s 00 < C)SHXDNT, 2 v 0, I X P

s,7,a,No, s,r,a,NO,%,%4
with & defined in (3.41)). The bound for the first term follows by (as a; < a) .
IO, XO, < 227836 XD X
Considering and the splitting , we define the candidate To6plitz approximation
RO =Ty, ([F0, X 4 [X0, 1, x )] + [, x4, X)) (3.55)
and the To6plitz-defect
X0 = Ny g, 0 [XD, X O] = £02). (3.56)

Lemma and ((3.38)) imply that X12) ¢ Tsy (N, 01, 01) C Ty ryay (N, 01, p1). The estimate (3.54))
for X2 follows by (3.55), Lemma (2.41)), (3.53) and (3.24). Next by (3.42)), (3.52)), (3.55) the

Toplitz defect (3.56]) is

X2 = TIIx, m([j((l)’j((?)} 4 {Xu),j((m} +N*1[X<1>,X<2>}

n [X(l),Hﬁ’NX(Q)] + {H@,NX(U’X@)}
+N{H|k|2N5 or\7‘r|>N"X(1)7X(2)] + N{H|k\,|ﬂ'\<NbX(1)vH|k|2Nbor|1'r\>NbX(2):|)

and the bound (3.54) follows again by Lemma 1|2.41|i, 1|3.24|b, (|3.53|), and, for the last two terms,
also by (2.37) (2.38)) and (3.39). Indeed, let us give the detailed estimate for the term

G = N[H‘kIZNb Or‘ﬂ'lZNbX(l)?X(Q)} .

We use Propositionwith e, T, a~s ag, s v s, and s~ s; + 0/2, where o := s — $1.

Since (recall (2.40))
-1 —1
(1-—25) <2(1-2) <2
s1+0/2 s
with the § in (3.41), we get, using Lemma [2.5 with A = 0,
&) -
||GH51J‘1,31 = C(n)d 1N||H|k|ZNb or\ﬂ\ZNbX(1)||51+U/2,r,a1 ||X(2)||s,7‘,a1
o Y ) |
< C(n)d~IN TN minfa—ans—sal/2) y O X)),
S1
B39)

C(n)5_1HX(l)Hs,r,a”X@)Hs,r,av VN > Ny,

having used that the function Ne~ N minfa—ai,s—s1}/2 4 decreasing for N > N; by the second assump-

tion in (3.39). The proof of (3.54]) -and so of Proposition is complete. W

The quasi-ToOplitz character of a vector field is preserved under the flow generated by a quasi-
Toplitz vector field. The proof is based on an iteration of Proposition 3.1
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Pr0p051t10n 3.2. (Lie transform) Let X,Y € Q
a’ < a. There is c¢(n) > 0 such that, if

sra(

sraNo,H,u SC( )5

with & defined in (2.40), then the flow of X at time t = 1 maps D(s',r") — D(s,r) and, for

N§ > max{Ny, N}, N::exp(max{i Ll 5 %,8})7

w < p, 0" >0, satisfying
K+ ~7ln < =, + K T In < -V,
1)(NG) P F1In N (7 N)F ' In Ny <6 —6
2(Ny)"bIn® N) < bmin{s — s’,a —a'},
we have e**Y € QY , ,(N{,0', 1) with

s’,r!,al
||6adxY”Z:,r’,a’,N(’),e’,y/ < 2||Y||Z:r,a,N0,0,/L .

Moreover, for h=0,1,2, and coefficients 0 < b; < 1/j!, j € N,

HZb ad’, (

j>h

Note that (3.61)) is (3.62) with h =0, b; := 1/!

PROOF. Let us prove (3.62)). We define

s',r’a’ ,Nj 0" u!

YO .=y, v .=ad (V) :=adx (YU V)= [yU-D X], j>1,

and we split, for h =0, 1, 2,

J—1
P=> bV =N by 4 by = VI 1Yy
j=h j=h jzJ

By Proposition (iterated j times) we get

1Y Dllgr v ar S WY P[0 < 22256 | XN allY siras Vi 20,

where § is defined in (2.40). Indeed for j > 0 and 0 < ¢ < j set

r=r s—s
rii=r—1——o! S; =8 —1 —
J J

(note that sg = s,s; = §',79 = r,7; = r’) and we inductively have

, ,
1 2n+35—1
”Y(H_ ) Si41,Ti+1,2 S 2 e 51 HX S§i,T5,a |Y(Z) Sq,Ti,2
where 5
) . r
5i::m1n{1— z+1,1—1+1}2.
S; Ti J

and ¢ is defined in (2.40). Let
-
= (e(m)d) X7 < 1/

29

S 2(0( ) 1||X||sraN0, ,;L) ||Y||sraN0, AT

No,0,u) and let s/2 < s' < s, r/2 <71 <,

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)



where, for brevity, H : HT = ||Zﬂ,r,a,No’9,H' We have

»
HYzJHs',r',a Z by (2220 IXNT, Y 1Y Nsira < D0 1Y llsira (3.69)
i>J i>J
for j7b; < j7/4! < €/ and e*2?""3¢(n) < 1. By (3.69) and n < 1/2 (see (3.68)) we deduce

IYzslls e < 2071V [ls,r,a - (3.70)
In particular, for J = h =0,1,2 (see (3.63)), we get
||YZhHS',TCa’ < 277h||Y||s,r,a~ (3.711)

For any N > N we choose

1»
J:=J(N):=InN = Np/72 < &5/N? (3.72)
and we rename Y=" in (3.63) as

>h
YR =YN+YY, Yii=YE, Yyi=Ysy.

Then (3.62)) follows by Lemma (with Ny ~» Nj, s~ s a~sa,r s 1/, 0~ 0 s ) Y ~s Y2
(3-71)

and (3 (recall also (3.68])), once we show that

3 1
hedle < S IYIT, NIYA e < 577h||Y||T’ h=0,1,2. (3.73)

’7 ! — —
s’ ,r’a’ ,N,0" 1’ 2

The second inequality in (3.73) follows by

i "
N|Ysillsa < N2/ |[Ysra < n"(N2p" )[IY[I" < 7||Y||T (3.74)
for all N > Nj > €® (recall - Let us prove the first inequality in (3.73]).
CLAIM: Vj =0,...,J — 1, we have YY) € QF , (N,0, /) and
||Yv(‘7 Hs ,r’a’ N0’ u’ S (C(n)](;_l”XHT)J”Y”T . (375)

Then the first inequality in (3.73)) follows by
J—1

H S b, v
j=h

for j7b; < j7/j! < €/ and the constant c(n) in ([3.57) small enough.
Let us prove the claim. Fix 0 < j < J — 1. We define, Vi =0,..., 7,

w

T
N Zb ma XY T ZnuYHT Sy )"

_af 9/ _ 0 _ li
ai::a—ia _a, 0; =0 +i——, ui::,u—i'u _M (3.76)
J J
(note that ag = a,aj =a’, 6y =0,0; = 0" and po = p, pn; = p') and we prove inductively
Y ONL o No < (CYGETHXIT) YT, Vi=0,....5. (3.77)

Then (3.77)) with ¢ = j gives (3.75) (recall also (3.65)).
Let us prove (3.77). For i = 0, formula (3.77)) follows because Y & QST,T’a(NO,H,u) and (3.25)). Now
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we assume that (3.77) holds for i < j and we prove it for i + 1. We want to apply Proposition to
the functions f and with XM X, X Y(l)7 Ni ~» N, 5~ 8,81 ~ Siq1, 0~ 05,01 ~ 0; 41, etc.
We have to verify conditions (3.38])-(3.39) that read

(k+ DN L <y —pivr, i NP P4+ (k+ DNE < 0,00 — 65,

9NN min{si—sitiai—aiti}/2 o q , bmin{s; — s;41,2; — al-H}NI7 > 2. (3.78)
Since, by (3.65) and (3.76),
w—p 0 0 0—¢ s—s a—a’
Hi — fip1 = — i+1 — Ui = —, S — Si+1 = >, 4 —ai41 = -
" j " j " j " j

and j < J =InN (see (3.72)), 0 < b < L < 1 (recall (3.2))), 1’ < pu < 6 (recall (3.1])), the conditions
(13.78) are implied by

(k+ DN PN <p—p', (T+rR)NIInN <60 -0,
2NN min{s—s"a=a'}/2IN) bmin{s — s’,a—a’}N* > 2In N . (3.79)

The last two conditions in (3.79) are implied by bmin{s —s’,a—a’} N’ > 2In* N and since N > N} >
et/1=Y (recall (3.58). Recollecting we have to verify, for all N > N,

(k+ DN PN <p—p/, (T+rR)NETInN <0 -0, 2N7%In® N < bmin{s —s’,a—a’}. (3.80)

Since the function N — N~7In N is decreasing for N > Ngj > /7, we have that (3.80) follows by
(13-58)-(3.59). Therefore Proposition implies that Y0+ ¢ Q£+1mi+1,ai+1(N’ Oiv1, phiv1) and

. 1' B .
HY(Z—H) Z—;+17’l"i+lyai+17N,9i+l1ﬂi+1 — C(n)(sz 1||XHT||Y(Z+1) Z;,Tinai,Nﬁz‘,Mi
(B57) o ,
< C(n)jo 1H‘X”T”Y(l) £7T1‘,ai,N,9i7Mi
3.77)

< (C)go XYt

proving (3.77)) by induction. m
For a vector field X € Vs , o depending on parameters £ € O, see (2.32)), we define the norm

X1 3= max { sup [ X (510 X 2 reo (3.81)
where, for brevity,
p:=(s,r,a,No, 0, u, X\ O). (3.82)
We define
QF = {X eVliao + X(56) € QL (No,0,), VE€ O and |IX|F < o0} (383)

Lemma |3.5| holds true also for the norm || - sz Moreover we have

Corollary 3.1. (Lie bracket) Assume that XV, X ¢ sz; (see (3.82)) and (3.83)) and assume
that Py := (s1,71,21, N1, 01, 1, A\, O) satisfies the hypotheses of Proposz'tion (namely (3.38)) and
B3:39)). Then XV, X®] e QL and

XD, XN, < Cm)s~ IXDIZIXPF (3.84)

where C(n) > 1 and § is defined in (3.41]) .
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Corollary 3.2. (Lie transform) Let X,Y € Q; (see (3.82) and (3.83)) with
XI5 < e(n)d, (3.85)

with § defined in (2.40) and c(n) in (3.57). Assume that p’ := (s',7',a’, N§, 0, /', X, O) satisfies the
hypotheses of Proposz'tion (in particular (3.58)), (3.59) and (3.60)). Then Xy ¢ Qz;, and

le*xY L <2y % (3.86)

Moreover, for h=0,1,2, and coefficients 0 < b; < 1/4!, j € N,

| S tsaden||, < 25 X IS 357

Jjzh

4 An abstract KAM theorem

We consider a family of linear integrable vector fields with constant coefficients
N(E) := w(£)dy +i0(€)20, — iQ(£)Z0; (4.1)

defined on the phase space T} x C" x (77 x (77, where the tangential sites Z C Z are symmetric as in
(1.32), the space (77 is defined in (2.1]), the tangential frequencies w € R™ and the normal frequencies
Q € R”\T depend on real parameters

EeOCRY?,
(where n/2 = cardinality of Z7, see (1.32))), and satisfy
wi(§) =w-; (&), Vj eI, (8 =2, YjeZ\T. (4.2)

For each £ there is an invariant n-torus 7o = T" x {0} x {0} x {0} with frequency w(§). In its
normal space, the origin (z,z) = 0 is an elliptic fixed point with proper frequencies Q(¢). The aim is
to prove the persistence of a large portion of this family of linearly stable tori under small analytic
perturbations

Pla,y, 2 %€) = PPo, + PWo, + PHo, + PHo; . (4.3)
(A1) PARAMETER DEPENDENCE. The map w: O — R", £ — w(£), is Lipschitz continuous.

With in mind the application to DNLW we assume

(A2) FREQUENCY ASYMPTOTICS.

w@w=j+ma+ﬁﬁ+ogb as || — +oo. (4.4)

Moreover the map (25 — |j])jez\z : O — loo is Lipschitz continuous.
By (A1) and (A2), the Lipschitz semi-norms of the frequency maps satisfy, for some 1 < My < oo,

. . . Q —-Q
lw[P + |o[liP < My where QP = sup —| (©) IES

4.5
¢tneo I —¢| (4.5)

and |z|oo 1= sup |z;| < +oo. Note that by the Kirszbraun theorem (see e.g. [26]) applied componen-
JETNT

twise we can extend w, Q on the whole R/? preserving the bound (4.5).

32



(A3) REGULARITY. The perturbation vector field P in (4.3) maps
P:D(s,r) x O — C" x C" x 477 x (7P
and, for some s,r > 0. Moreover P is
- REVERSIBLE, see Definition [2.7]
- REAL-COEFFICIENTS, see Definition [2.8]

- REAL-ON-REAL, see Definition [2.9]
- EVEN, see Definition

Finally, in order to obtain the asymptotic expansion for the perturbed frequencies we also assume

UASI-TOPLITZ. e perturbation vector fie 1s quasi-Toplitz, see Definition 3.
A4) Q TG Th bati field P i i-T6pli Definition (3.4
Recalling (4.3]) and the notations in (2.50)), (2.46|), we define
PY(2)d, :=TVPWg,  P,:=P —PY(2)d, (4.6)
and we denote Pifl), Pio) are the terms of degree —1 and 0 respectively of P., see (2.46). Let
B(€) = (wj(©)jez+ €RY?, then w=(3,d) by @2).

Theorem 4.1. (KAM theorem) Fir s,m,a > 0, 1 < 6,u < 6, Ny > N (defined in (3.58)).
Let v € (0,74), where v, = v«(n,s,2) < 1 is a (small) constant. Let A := ~v/My (see (4.5)) and
p = (s,7,a, No, 0, u, A\, O). Suppose that the vector field X = N + P satisfies (A1)-(A4). If

YUPAE <1 and e = max {772 PY@)0, 12,0007 P VIEATIPONEY @)
is small enough, then

o (Frequencies) There exist Lipschitz functions w™ : R™? S R™, Q®° :RY?2 - 0, a™® :RY? SR
such that

W™ — w| + Aw™® —w|iP 0% —al + AQ®° — '’ < Cre, [a™| < Cre, (4.8)
wit(§) =w5(8), Vi eI, QF()=09%(), Vi€ Z\T, (4.9)

—00 00 00

hence w™ = (W y W )? w = (wc?o)jGIJr € Rn/27 and

J

C
sup [Q°(8) — 9;(6) — a™(§)] < 7*/% o V|j| > Cyl3. (4.10)

£ERn/2 7]
e (KAM normal form) for every & belonging to
Oy = {geo . VYheZ? i,jeZ\T,pe L,
|G%(E) - h+ QF| > 29(h)™7, [D¥(E) - h + 7 (€) + Q7 ()] = 2v() ™7,
|G%(E) - h = Q=€) + Q) = 2v(h)™" if h#Oori#+j,
(@%(€) b+ pl 2 29*3(n)77, if (h.p) # (0,0)
B(€) - bl = 2923 (W) ™/, Y0 < || < 77/} (4.11)
there exists an even, analytic, close to the identity diffeomorphism

(I)('Qg) : D<S/47 T/4) > (xooayooazooazoo) = (m,y,z,i) € D(S,T), (4'12)
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(Lipschitz in £) such that the transformed vector field
Koo = Noo + Poo i= Bu(6)X = (DO( ;€))7 ' X 0 ®(5€)  has (7’500)@ =0, (4.13)

see (2.47), (1.36). Moreover N is a constant coefficients linear normal form vector field as (4.1))

with frequencies w™(£), Q(£), and P is reversible, real-coefficients, real-on-real, even. Finally
(Xoo)lE = (S)Coo)\E~

For all the parameters £ € Oy, we deduce by (4.13) (and (4.9)) that the torus
{Zoo ET" Yoo = 0,200 = Zoc =0} N E (4.14)

is an n/2-dimensional invariant torus of X, : E — E which supports the quasi-periodic solutions
t = (W2 ()t + 2,,0,0,0) with frequency w™(£) = (&°°(£),3(€)) and initial datum (z,,0,0,0) € E,
namely z, = (Z,,7,), &, € T"?. Then, by ([.12), we have that

Corollary 4.1. For all € € Oy, the map T"? 5 Zoo — @((fm,fm),0,0,0;S) € E defines an n/2-

dimensional analytic invariant torus of the vector field X = N + P. Such torus is linearly stable on
E and, in particular, it has zero Lyapunov exponents on E.

PROOF. It remains to prove the stability conclusion. Linearizing the system @ = (Xo)|g(v), v € E,
at the solution ¢ — (W™ (£)t,0,0,0) € E we get, since (X )|p = (SXs0),

i = SPI(w™(E)t)y + SPL (W™ ()2 + SPL(w™(§)t)Z
yo= 0
:o— 1062 (4.15)
z = —i0>®(¢)z.
System (4.15)) is conjugated to the constant coefficient system
&= (SPY)y
y = 0
:o— i0%(6): (4.16)
z = —iQ>®()z

via a change of variables close to the identity of the form

0 Wy(w™(§)t) Wa(w™(§)t) Ws(w™(§)t)
I+V with U= 8 8 8 8
0 0 0 0
where the terms of ¥ satisfy the homological equations
w>(€) - 0, W1 (x) = SPI(x) - (SPY)
w> (&) - 0xWa(x) —1Q*(EVa(z) = SPL(x)
w> (&) - 0 W3(x) +1Q°(§)Vs(z) = SPL(x).

The last equations admit solutions (arguing as in the proof of Lemma/5.1)) for all £ € O, since we are
considering a symmetric, reversible, real-coefficients, real-on-real, even vector field (recall hypothesis

(5.27)). As a consequence of (4.16) the torus (4.14) is linearly stable on E and, in particular, it has

zero Lyapunov exponents on E. &

In the next Theorem [.2| we verify the Melnikov non-resonance conditions thanks to the asymptotic
decay of the perturbed frequencies. As in [3]-[4], the Cantor set of “good” parameters O in
are expressed in terms of the final frequencies w*, 2°° (and of the initial tangential frequencies
w), and not inductively. This simplifies the measure estimates.
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Theorem 4.2. (Measure estimate) Let
0= 0, = {€:= (&)jers €R"? : 0< L <lg| <) (4.17)
and assume that
BE) =w+ AL, @=(N)jerr €RM?, Q) =XN+X"a-E,Vi¢T, (4.18)
for some A € Mat(n/2 x n/2) and @ € R"2. Assume also that
A s invertible, and (A7t £AT)(AT)a, ANAT) MA@ ¢ 202\ {0}, Vi, j € Z\T. (4.19)
Then the Cantor like set Oy defined in , with exponent

T > max{n +3,1/b} (4.20)
(b is fived in [3.2))), satisfies, for p € (0, po(m)) small,
0\ O] < Clr)pE 1428 (121)

We assume that Q;(£) have the particular structure in (4.18]) in view of the application to the
DNLW:; this implies the more general form (4.4). Moreover, since

1oy — _ 1o 1 g
(AT TGO £ AL IAD @ S O ) =0 forlil Ll = oo, (4.22)

1
141
the hypothesis (4.19) amounts to finitely many conditions only. Theorem is proved in section

5 Homological equations

The integers k € Z™ have indexes in Z (see (1.32))), namely k = (kp)nez-
Definition 5.1. (Normal form vector fields) The normal form vector fields are
N =0, + Nudy = 0, +1Q20. —1Q20; =w(€) -0 +1 D> Q(§)z0., —1 > Q(§)z0:,  (5.1)
JETNT JETNT

where the frequencies w;(€),Q;(§) e R, VE € O C R™?2, are real and symmetric Lipschitz functions

w,quJj,VjEI, Q,j:Qj,VjEZ\I, (52)
the matriz N s diagonal
0, O 0
N= 0 i 0 , Q= diagien (), (5.3)
0 0 —iQ

and there exists j. > 0 such that (recall (4.4)))

sup [9() — 2,(6) — a()| < T, VIl = . (5.4)

£€cO |J|

(see (4.4)) for some Lipschitz function a : O — R, independent of j.
Note that A" € R=Z? | see Definition

rev?

The symmetry condition (5.2) implies the resonance relations Q_; — Q; = 0 and w - k = 0 for all
keZny, = {kzeZ” ke =k, VjeI}. (5.5)

As a consequence, along the KAM iteration there are “resonant” monomial vector fields of the pertur-
bation which can not be averaged out and which are not in the new normal form vector field. However
these further resonant monomials are naturally identified with monomials of the normal form, on the
symmetric subspace E defined in , by identifying v_; = x;, 2—; = 2;, Z—; = Z;. The next
section makes rigorous this procedure, by defining the “symmetrized” vector field S(X).
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5.1 Symmetrization

For a vector field X, we define its “symmetrized” S(X) := SX by linearity on the monomial vector
fields:

Definition 5.2. The symmetrized monomial vector fields are defined by

S(e™0,,) == 0,,, S(€¥*y',,) =y'0,,, Vk € Ll ,|i| =0,1,j €T, (5.6)
S(e*2.,0.,) = 2j0.,, S(e*T21;0:,) = 20:,, Yk € Llyy, j € Z\T, (5.7)

and S is the identity on the other monomial vector fields.

By (5.6)-(5.7)) we write

SX=X+X+X" (5.8)
where
X= Y X0l €M) + X, (1 R )50, (5.9)
kK€L, GEINT
and
X" o= > Xibo -t ), + b X1 (1= e*o)yio,,
keZyyq,k#0,5€T kEZn,, k#£0,€T,|i|=0,1
+ Y XL o et o + XL (5 - )0s . (5.0)

keZr, i €TNT

The “symmetric” subspace E defined in (1.36) is invariant under the flow evolution generated by the
vector field X, because X : E — E. Moreover the vector fields X and S(X) coincide on E:

Proposition 5.1. X5 = (SX)g.

Proor. By (5.9) and (5.10) since, if (z,y,2,2) € E and k € Z}4 (see (5.5)), then k-2 = 0 and

Z_j =25, 2-5=2z;. 1
Corollary 5.1. v(t) € E is a solution of b = X (v) if and only if it is a solution of b = (SX)(v).

Hence, we may replace the vector field X with its symmetrized S(X) without changing the dynam-
ics on the invariant subspace FE. The following lemma shows that both the a-weighted and T6plitz
norms of the symmetrized vector field S(X) are controlled by those of X.

Proposition 5.2. The norms

[SX][s,ra < 1 X552 (5.11)
ISXII55.2 < IX1L7. (5.12)
HSXHE:T,H.,NI,@,/J < 9|‘X||£r,a,N1,9,p (513)
for Ny > Ny (defined in (3.1)) satisfying
Nye Nimin{sal <1 pNbmin{s a} > 1. (5.14)

Moreover, if X is reversible, or real-coefficients, or real-on-real, or even, the same holds for SX.
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PROOF. In order to prove ([5.11]) we first note that the symmetrized monomial vector fields 9, , 4'0,, ,
2j0,;, Zj0z; in . (5.7) have zero momentum and are independent of z. Hence their contribution
to the weighted norm (2.27) is bmaller or equal than the contribution of the (not yet symmetrized)

monomials e’ ‘”816 , ek YOy, € zijaz , el ?Z1j0z, of X. This proves (5.11]).
PROOF OF (5.13). The estimate (5.13) follows by (5.8) and
||X/||S7'a — s,T,a 515)
1X7 1% e < 20 X115 e - (5.16)
PRrROOF OF (5.15)). We claim that, for N > Ny, the projection HN797HX’ = X'+ N'X’ with
XIEIZ;,T@H HX ||ST3S6||X||STa7 STa§5||X”sra7 (517)

implying (5.15)) (also because || X'||s ra < 2||X||s,ra)- In order to prove (5.17) we write the (N, 6, u)-
projection as

OnouX' =U+U" +U, +U] (5.18)
where
U= 37 X3k, 0l = )20, = 3 Xih, (- )50,
keK N, keK N,
|j|>6N |jl>6N
(25) - (%)) -
Z ( Z Xkéeg, )Zjazj’ Ul T Z ( Z Xk:(])Oej)Z az?’
|7|>60N  kezZr  \Kn l71>0N  keZlyq\Kn
and

K 1= {k € Ziq, In(R)], k] < N}, m(k) = Y jky
JET
Then (5.15) follows by Step 1) and 2) below.
STEP 1) The projection Ty ¢, (U +U") = (U +U") + N"HU + U~) with
U,0" € Tora, [Ulsra 10 llsra S 6IXIT 0 100sma 10 [lsira < BIXIIT,0 (5.19)

Since X is quasi-Toplitz, Lemma [3.5] implies that the projection

MangIOX = >° X3 ™20+ > X3k, e" 50, = W+ W (5.20)
k€L, JEINT k€Z™, JEINT
is quasi-T6plitz as well and (]| - Hs ra 18 short for || - ||ST7T,37N1797H)
EX)

||W||s r,a’ HW/”S r,a — HHdlag O)X”

s,ra s,r,a

By (3.29) we have HdiagH(O)’];ma C Ts,r,a, hence Lemma applied to W implies that for every
N > Nj there exist (N-dependent)

I 17 ik-x T T ik-x
W = g Wie™*2;0,, , W = E Wi €™ 20, (5.21)
I (k)] | k| < NP, I (k)] | k| <N,
li[>0N [i[>6N

(note that W is (N, 6, u)-linear and Téplitz) with

HN,O#/J‘W = Z Xk 0)6 Oe e 'Zjazj = W + N_IW (522>

[ (k)|,|k|<Nb,
|j|>6N
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and

s,ra

By (5.18)),(5.20),(5.21) and (5.22)) we have

s,T,a

U = Z Wk(l - eik'“)zjﬁzj +N71

kEK N,
|71>6N

Note that U is Toplitz. Moreover

<)X

s,r,a — s,r,a’

Z Wk,j(l — eik'z)zjﬁzj =: U + Nt

kEK N,
|71>6N

U.

. e&z9)
10ra = sup [(( 3 2 M5l) ol T 2 e <3IXIE, .
Izllap<r ' pE l71>6N
An analogous estimate holds true for U. A similar decomposition holds for U~ in (5.18).
STEP 2) N|ULllsras NIUL[lsra < [ X5
We have
(2:27) .
s,r,a — sup (‘ Z Xl(e,zé,)ej,o‘lzﬂ) 1j|>0N
12]la,p<r keZr \Kn J s,T
< sup (e—Nb min{s,a} Z alm(k) |+5|k||X( (o oH j|)
— €5 .
lzlla,p<r (k)| o [k|>N 7 l5]>6N lls,r
. (.14)
< e N X T N X e
and similarly for U .
PROOF OF (5.16). The estimate (5.16|) follows by
M 60,6 X" [ls,ra < 2N srar VN2 Np. (5.23)

In order to prove (5.23) we note that the momentum of e*%z_

Ny > Ny, satisfies

0., with |[k| < N°, [j| > 6N, N >

(3-1)
> 2|j| — k|k| > 20N — kN® 9 N > N?

m(kye—j,0;25)| = ‘ > hky, — 2j) (5.24)
heT
(where Kk := max ||, recall (3.1))). Then by (5.10) and (3.10) the projection Iy, X" =V + V' with
Z Z Xl(czée 5,0 ZJazJ> Z Z Xlgzéoe Zjafj'
[iI>6N keEKN li|>6N keEKy
We have
E27) (25)
Wlera 522 swp |[(1 32 X030 ollasl),
lzlla.p<r g,;v 0es: l>on lls,r
(ZJ
= sup ( . ) (5.25
I#llap<r |kezIC:N riiemsoll- lil>oN s, )
G-29)
< sup ( Z e—aN¢ a|mw(k,e_j, OZJ)||X( o |Z_j|)
lzllap<r " ™ ey €= l|>0N lls,r
S e_aNHX”SJ‘,a S N_1||X||s,7‘,a
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where in we have used that the domain {||z|la,, < r} is invariant under the map z; — z_;.
Since a similar estimate holds for V’, follows.

We finally prove the last statement of the proposition. The vector field SX is even because
SX|g = X|g (Proposition |5.1)) and X is even. Since X is real-coefficients, Deﬁnition immediately
implies that SX is real-coefficients. Finally, since X are reversible and real-on-real, 53 and -
enable to check that X', X" in (5.9)-(5.10) are reversible and real-on-real, and so SX (see (5.8)). m

Remark 5.1. The assumptions X € Ryey, Y € Ra—rev, X = SX, Y = SY are not sufficient to imply
[X,Y] = S[X,Y], as the example X = i(2-10,, + 210,_, — 2105_, — 2-103,), Y = 200,, + 2_20,_, +
Z_205_, + 220z, shows.

5.2 Homological equations and quasi-Toplitz property

We consider the homological equation

adyF = R — [R] (5.26)
where
R € RZY (seeDefinition[2.11), R = SR (see Deﬁmtlon. (5.27)
and o
[R] == (R")0, + Y (R¥%)2;0., + (R¥%)2;0;, , (5.28)
JEINT

where (-) denotes the average with respect to the angles z. By Lemmata and and since
N € RED (see Definition [5.1)), the action

rev
<0 <0
ad/\/ Ra -rev Rrev :

The commutator

o A (0.F* —nF)o, it = FCY 529)
adp F' = |F)| = 5.
0, F70, + (awF“v“ + [ N])uau if F=F0©
(recall the notations in ([2.48] ) where [F™" N] F%"N—NF"" is the usual commutator between
matrices (and N is deﬁned in l We solve 1 26)) when
_ (h) ._ (h) _ _
R=Ry’ = H|k\<KH|7r\<KR , h=0,-1, KeN (5.30)

(recall the projections (2.34]), (2.35)) and (2.46))).

Definition 5.3. (Melnikov conditions) Let v > 0. We say that the frequenczes w(§) = (&(8), (¢
& e RY?, Q(&) satisfy the Melnikov conditions (up to K > 0) at £ € R" 12 if: YheZ™?, |h < K,
LjeZ\L

~—
~—

G(&) Rl > )™ if h#0, (5.31)
G() -h+Q;] > )T, (5.32)
|5(&) - b+ Qi(€) + () = (W), (5.33)
5(&) - h = Qi) + (O = (W)™ if h#0 or iy, (5.34)
where (h) := max{|h|, 1} and
7> 1/b. (5.35)
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For k € Z™ we set ki := (kj)jez+ € Z"2 namely k = (ky,k_). Then

wok=@-h, with hi=ky +k_€Z"? and k¢ Zy &2 h 0. (5.36)
Note that |h] < [ky| + [k_| = [K].

Lemma 5.1. (Solution of homological equations) Let s,r,a > 0, K > 0. Let O C R™? and

assume that the Melnikov conditions (5.31))-(5.34) are satisfied V& € O. Then, V& € O, the homological
equation (5.26) with R = R(-;€) as in (5.27)),(5.30) has a unique solution F' = F(+;€)

FeRSO

a-rev?

F=S8F, F =g <xlljzj<x F

with (FY) =0, (F¥Y) =0, (inzi> = 0. It satisfies

1F 5,20 <7 KRl 0,0 (5.37)
1P 0 <7 KRN 0 0 + 7 K5 (g + 191G) [ Blls ra0 (5.38)
PRrROOF. By the homological equation splits into
0,F*—NF"=R", 0,F®=R®—(R"), O0,F""+[F“" N =R"—[R]"". (5.39)
Since R = SR (recall (5.27)), by we get
R*(x) = (R®) + Z Rie*®  similarly for RY(z), RYY(x). (5.40)
k¢Zgaq

Hence, by (5.31) and (5.36)), the second equation in (5.39) has a solutiorﬂ

. R®
FT — x ik-x - k ) )
0= Y K, F= (5.41)
k¢ngd
By (5.3) the first equation in ([5.39) amounts to
0,FY=RY, 0,F* —iQF*=R*, 0,F*+iQF*=R*. (5.42)
Since R is reversible and even
(rry = Ry €2 _Rp B2 gy — () (5.43)
and so the average
(R¥) =0. (5.44)
By (5.31), (5.36)), (5.40) and (5.44), the equation J,F¥ = RY admits a unique solution with (F¥) = 0:
v ik y _
FY = Fleite = : :
> Bt FY — (5.45)
kézgdd
By the non-resonance assumption (5.32)) and ([5.36)), the other two equations in (5.42) admit (unique)
solutions. By (|5.3)), the third equation in ([5.39) splits into
0,FYY = RYY | (5.46)
O F¥* +iFY*Q = RV* (5.47)

2Note that F®(z) is unique because its average (F%) = F& = 0 by (5.53) and (5.54) below.
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and the analogous equations for F¥*, F*Y F%Y,
0, F*% —iF**Q — iQF** = R*7 (5.48)
and the analogous equation for F**, and the most difficult equation
O F** 4 1F**Q — iQF** = R** — [R]** (5.49)

plus the analogous for F*~.
Smce Ryy ya is reversible and even we deduce as in ) that (RYY) = 0. Then, by

15.36)) and , the equation admits a unique solutlon Wlth (F¥%Y) = 0. Also the
equatlons (5.47)-(5.48] have a umque solutlon thanks to (5.32)-(5.33) (and (5.36))), respectively.

We now con81der equatlon ) that amounts to

0, F*% +1i(Q; — Q;)F*% = R*% — [R|** | Yi,je€Z\T. (5.50)
Developing in Fourier series F*'% Z F, “i% ke equation (5.50) becomes
kezn
(w-k+Q —U)F7 =R'” —[R;'7 . (5.51)

If ¢ # +j then (5.51)) is easily solved thanks to the non-resonance assumption (5.34)) and (5.36] - Since
R =38R, by (5.7)

ifi=j = Ry =0,VkeZlg\{0}; ifi=—j,(#0) = R =0,VkeLly. (552)

Then (5.51)) is solved by (5.34) and (5.36).

The properties of anti-reversibility, anti-real-coefficients, real-on-real, and parity for the vector field
solution F' are easily verified. For example, let us consider F*(x)d, in (5.41)). It is anti-reversible
because R”(z)0, is reversible and so

R R” . T T
pr b= ok M Bk pe (5.53)
- iw - (—k) iw - (—k) iw-k

which is the anti-reversibility property (2.55)). Moreover F'*(z)0, is anti-real-coefficients since Ry € R
(by assumption R is real-coefficients). Next, (2.57) enables to check that F*(x)d, is real-on-real.
Finally, F*0, is even because R*0, is even and

.6m B @ Rp Ry .
Fi (EXES) e €33 k= Tk (5.54)
iw-k w-k  lw-k
which is the parity property (2.58).
The estimate (5.37) directly follows by bounds on the small divisors in the Melnikov conditions

(5.31)-(5.34) (and (5.36)) and the expression of F.
Let us prove the Lipschitz estimate (5.38) for F¥0, where FY is defined in (5.45) (the other cases

are analogous). For £, € O, £ # n, set A¢ ,f == |£ — 0| (f(€) = f(n)) then
Acn Ry Ry (n)Agqw - k

() k@) Bl k) (5:55)

Ag,an =

By (5:55), (5:31) and (5:36), we deduce

IEY0, 1.5 00 < 7T ETIRYO I o 0 + 20 KT 0l | Ry |5, a0 -

s,r,a,0

We use following lemma about the asymptotic expansion of the small divisors.
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Lemma 5.2. Assume (5.4). Then, for all |i|, |j] > j«,

Ak ji = A ji

|l4] — 1511 11 1 1
<f+7(f+f)+.ﬁ+.ﬁa (5.56)
i A A (1 e Vi

where Ay ;i =w-k+Q; —Q; and Ak,jﬂv =w-k+ |7 — i

PrOOF. By (5.4) and (4.4), see also Lemma 5.1 of [4]. m
The following key proposition proves that the solution of the homological equation is quasi-T6plitz.

Proposition 5.3. (Quasi-T6plitz) Let the normal form N be as in Definition and assume that
Re er,a(No, 0,1). Let F be the (unique) solution of the homological equation (5.26)) found in Lemma

for all £ € O satisfying the Melnikov conditions —. If, in addition,
B() - h+pl =R, VIN <K, peZ, (hp)#(0,0), (5.57)
then F' = F(¢) € QZ:T,a(NS‘,G,u) with
N; := max {NO s 67_1/31(7“} (5.58)
for a (suitably large) constant é:= é(m, k) > 1. Moreover

||F(7§) |Z:r,a,N5‘,9,u < 46771K2T||R(';€)||£r,a,N0,9,u . (559)

PROOF. We focus on the solution F' = F I((O ) of the homological equation with R = Rgg) (recall (5.30))),
and in particular on the most difficult estimate for the solution of (5.49)). For brevity we set

R = RZ,Z _ [R]Z,Z — E Rk,j,ielk.mzjazi , Rk,j,i = R;izj ,
(k.j,i)€DL

where (recall (5.52)) and (5.30))

11::{|k\,\7r(k)+j—i\<K, j;éiiifk:engd}. (5.60)
Then the solution of (5.49) is (recall (5.51))
R 1,1 ik-x
Fempore Y M gkesn A= wl©) k000 - 0. (5.61)
(hjiyen R

In order to prove the estimate (5.59) on the Toplitz norm we compute Iy ,F. Then we have to
consider only [, |j| > ON > ONj > j. (since 6 > 1 by (3.1)) and, since |7 (k) +j—i| < K (see (5.60)),
the bound (5.58)) (and (5.35))) implies that s(i) = s(j). Then

"
Onve R= Y Rigie™*z0.,
(k.j,i)EI2

where
L= { Ikl n(k) + il <K, j#ii k€ Zlag, s(i)=s(), lilljl >6N }.

By assumption R € QST,,.@(NO7 0, 1t). Condition (3.26]) holds for the set I and Lemma (applied to
Iy, R) that, for all N > Ny > Ny, there exists a Téplitz approximation

Ri=> Ri(s(j),j — 1)€¥ 720, € Tora(N,0, 1), Ri(s(j),j—i)€C (5.62)
I
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and

MyesR=R+N'R  with  |Rlsra [Rlsrar [Rllsra < 2RI, (5.63)
Note that |k|, |7(k) +j —i| < K < (N})® < N® by (5.58) and (]m. By (5.61) we have
Myg, F = IZ RZ’“ L (5.64)
)75
We now prove that
Z fuleli)d =0 e 20. A= w(©) -k + i - il (5.65)

I Ak},j i

is a Toplitz approximation of F. Indeed, since s(j) = s(i):
Ajji = w(&) -k + i = [i| = w(€) -k + () —1),

and F in (5.65) is (N, 0, p)-Toplitz (see (B.14). Moreover, since s(j)(j — i) € Z and (0,7, ) ¢ I, by
(5-36))

(5.57) (and , we get ~
Ak il =2 k)7T, Yk, j,0) € I, (5.66)

and Lemma 2.6 and (5.65) imply
| F sra < ’7_2/3KT”7~2||5,7‘,a~ (5.67)

The Toplitz defect is
N-'F = Myg,F —F (5.68)
), - Riji  Ri(s(h),d—i)\ ;
E59).E59) 3 (Akdﬁl‘ 3 k(sg%] w)@"”zjazi
k.j,i k,j,i

g [(iﬁj - ii;) o (B ]Zkk(]f 7). —z))}eik.xzjaﬁ

5. A ii— A i i .
B2Y Z [Rk,j,i(ikﬂ’ R, ) + Nt Rk] } k0, .
A ik i Ay

By (5.56)), 7], |?]| > 0N > N, and |j —i| < (k + 1)K we get, taking ¢ large enough,

X 1 G K -53) ~1/3 2/3
|Akji — Ak jil < Gle+ DE +C— +£ ¢ <+ ) < min{c’y ,'y }.(5.69)

N? NS\t 2N’ 2K7
Hence, for (k) < K we have

BT, BT 123 423 42/

Apiil = 1Ak jil = |1 Ari — Dpji > - > 5.70
| k,j, | = ‘ k.J, | ‘ k.J, k.j, | = <k>T IKT — 2<k>T ( )
Therefore (5.69), (5.66[), (5.70) imply
Ak i = Akl M 2(k)T (k)T < & ger
|Ak il | Ak, il 2N %/3 42/3 = Ny
and (5.68), (5.66), and Lemma [2.6 imply
||'7:||sra < é'7_1[(%”73'”8“1""7 2/BKVT”RHSHI S 467_1K2T||R||sra (5.71)
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In conclusion (5.37), (5.67), (5.71)), (5.63) prove (5.59) for F (see (5.61))).
The case of the solution F*? of the homological equation (5.48)) is simpler. Indeed in this case the
small divisors are w - k —€; — ;. The Iy g ,-projection selects only the indices with i, |j| > 6N and

S0
62,659
lw-k—Q — Q| > Q4+ Q; — |w||k| > constN . (5.72)

In this case we may take the null vector field as Toplitz approximation of F %% Then the Téplitz
defect is exactly F'** and ||[F*7||s,a < const|R**||sra/N by (5.72).
The solutions of the other homological equations (5.42f), (5.46|), (5.47) are similarly estimated. B

6 Proof of Theorems [4.1] and 4.2

6.1 First step

We perform a preliminary change of variables in order to improve the smallness conditions of the
perturbation. In particular we want to average out the term PY(z)0, defined in (4.6). We introduce
the simmetrized vector fields (see Definition [5.2))

RY(z)d, := SPY(x)d,, R:=8P, X:=SX=N+R (6.1)

(since SN = N). By assumption (A3) and the last statement of Proposition R € Ryey (see
Definition [2.11). Moreover Proposition implies that X|p = &|p.

We now study the homological equation

— adn F + oo s RY0, = (R0, B2 0 6.2)
because R is reversible and even.
Lemma 6.1. For all £ in
0. :={6€0 : |3(&)-hl 2 v*/* (W)™, 0 < |h] <77/, (6.3)
the homological equation admits the unique solution
RYeika
F=FY(x)d,, F:= > may, with (F) =0. (6.4)
EEZ™, ., [k|<y—1/(Tm)
It satisfies
||F||§s/4,r,a,No,0,u,)\,(9* = ||F||§\s/4,r,a,o* < C(s)e. (6.5)

Moreover F € R=°

a—rev

and SF = F.

PrOOF. Note that (6.2) is the first equation of (5.42) with R ~ I, -1/ RY(2). By Lemma
it has the unique solution (6.4)), see (5.45). The equality in (6.5) follows by (3.81]) noting that

the quasi-T6plitz norm of F' coincides with its majorant norm since F' = F(x)0,. We now prove the
inequality in (6.5). We have

€563 , " ,
1F']135/4,r,a < C(s)y 2/3||H|k\<~/—1/<7")Ryastma > C(s)y 2/3H,Py(x)8yusma < C(s)e.

Moreover, setting A¢ , f := |£ — 77|_1(f(§) — f(n)), we get

A¢ R R Agpw - k

Benlle =50k T ) Bwm #
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which, in turn, implies

i 3,63 ) i ]
||F||g§/4,r’a < C(S)'V 2/3||Ry3y||15,3,a+0(8)7 4/3MO||Ryay||s,r,a
oEvEm 1 )
EDED 2 v, 1 1 o) Mo PY0, o
A=y /M .7)
2 et 2 ot

The two above estimates imply (6.5)). B
We now apply Corollary with p'~~ (3s/4, 7,2, No, 0, 1, A, O,) and p” ~ py with

Po = (s/2,7/2,2/2,N\",46/3,3p/4, ), O,) (6.6)
where Néo) > max{No, N} (recall (3.58)) is chosen large enough so that (recall (3.59)-(3.60))
(k+ DN N < p/a, (74RO TN <0/3,
2(N) 12 N < bmin{s/4 a/2}. (6.7)
Then (3.58)-(3.59)-(3.60) are satisfied and 6.5)) imply condition ) for ¢ sufficiently small. Let ®
be the time 1-flow of F' (so that e2dr = ) Slnce the quasi- Tophtz norm is non-increasing with the

parameter Ny (see (3.25)) we may also take Ny > N large enough so that (5.14)) (with Ny ~ Ny)
holds. Hence

(3.86)

||€adF(R_Ryay)H;§g < 2||R RY0 ||s7‘aN0, 0,116,100
D613 @9, @&
< 18HP - Py(x) Ylls,r,a,No,0,u,\,0, < 18’7 . (68)
Similarly (3.87) (with h ~ 1, b; ~» 1/4!) implies
adp y Yy T r
|(err—rro) —r-ra)) | < P aneonr0 11 a0,
636D
< C(s)ye, h=-1,0. (6.9)

Since the commutator [F, RY(x)d,] = [F¥(2)d,, RY(2)d,] = 0 we deduce ¥ (RYd,) = RY,, and,
using also (6.2), we get e** N = N 4 adpN. Hence

r X = PN 4P RYY, + P (R — RYO,) = N+ adpN + RYO, + ¢*F (R — RY0,)
N+ H|k|2771/<7n>Ry8y + e (R— Ryay> =Ny + P, (6.10)
where Ny := N. Then we consider the symmetrized vector field
Xo =8 X)=No+ Ry, Ro:=SPF,. (6.11)
Since RY(z)0, depends on the variable 2 only we have
||SH|k|>»y 1/(7n)Ry )o, H = ||SH‘k|2771/(7n>Ry(x)8y||§/2,T7a)0 < e, (6.12)
arguing as for (6.5! , usmg , (2.37), and for v < 7, small (depending on s and n). Recollecting
I, 610, €3, 613 and 3 we e
Lemma 6.2. The constants
_ 0 h - h _
go=ey Vel e =y RMIL, h=-1,0,  ©:=~"Y|Ro|% . (6.13)
satisfy
e < C(s,n)e, h=-1,0, ©p<2°, (6.14)

where ¢ is defined in @
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The vector fields Py, Ry € Ryey because F' € R,y (Lemma , R € R, ey, and using Lemma
and Proposition Similarly, since X € R, (by the hypothesis of Theorem the vector field

Xy =X =0,X €Rpey . (6.15)

Proposition [5.1] implies that X|p = (SX) 5 = X|p (see (6.1)) and Xo|p = (> X)|p (see (611)).
Moreover, since F' is even, Lemma (applied with Y ~» F') and (6.15)) imply

6.2 The KAM step

We now describe the iterative scheme which produces a sequence of quasi-T6plitz vector fields X,
with parameters p, = (s,,7,,a,, Nél’), O, 1, A\, OL), A = v/Mp, and such that XVSO‘E tends to zero
as ¥ — +o00. For compactness of notation we drop the index v and write ”+” for v + 1.

Iterative hypotheses. Suppose 1 < 6, < 6, Ny > N (defined in (3.58)), O C R™2. Let X = N+R,
where A is a normal form vector field (see Definition with Lipschitz frequencies w(&),Q(§),

¢ € R"? and (5.4) holds with some a(¢), V|j| > 6Ny (namely j, = 6Ny). Moreover |w|£ﬂ/2, |Q|£ﬂ/2 <

M < 2Mj. The perturbation R satisfies ||R||;‘§ <00, R € Ryey, SR = R. We finally fix some K and
we assume that 6Ny > ¢y~ /3 K™+ (where ¢ is the constant introduced in (5.58)).

We now describe a KA M step namely a change of variables generated by the time-1 flow of a vector
field F' and such that X, := Se®¥" X = N, + R, still satisfies the iterative hypotheses, with slightly
different parameters, and a much smaller new perturbation Ry, see (6.43).

The new normal form N,. Set (recall (2.48))
R = My g < B2 = W< g My e g ROV + My e o RO = RV + R (6.17)
Since R € Ryey then RIS{O € RS and SRIS{O = RIS(O. The new normal form is defined for £ € O as
NT=N+N,
N =

R = (R")0p+ Y (R¥%)20. +(R%%)2;0;, = -0 +i Y Qz(0, — %0z,) (6.18)
JEZN\T JEZNT

because, since RIS(O is real-coefficients (Definition i and real-on-real (Definition ,

(R7#) =10, O eR, (R%%) BED 40 vjez\T, &= (R%)eR,VjeI.  (6.19)
Moreover, since R is even, w, Q satisfy , namely
oo, o, (6.20)
Note that A only depends on RO,

Lemma 6.3.

sup @], Qoo < 2B 5,70 @167, Q1P » < 2RO, (6.21)
€eo
and there exist a : O — R satisfying
sup [a(€)| < 2| ROIZ,.o vo 0. (6.22)
£co
such that
A . 40 Loy )
sup 1€;(§) —a(§)] < mllR s,raN0 00 ¥1il 2 6(No +1). (6.23)
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Lemma is based on the following elementary lemma (see Lemma 5.3 of [4]).
Lemma 6.4. Suppose that, VN > Ny > 9, j > 6N,

Qj =an + bN,jN_l with aN,bN’j ER, |aN| <ec, |bN7j| <c, (624)

for some ¢ > 0 (independent of j). Then there exists a € R, satisfying |a| < ¢, such that
0 —al <=, Vj>6(No+1). (6.25)
J

PROOF OF LEMMA [6.3] We first prove (6.21). The estimate on @ is trivial. Regarding Q) we note
(recall (6.18) and (2:36))
iy 0(20:, = 20z,) = Maiag R = Maiag R . (6.26)
J

Then (6.21)) follows by Lemma Now we want to apply Lemma Note that by (6.20)), we can
restrict to the case j positive. Since i [TV R € QsTma(No, 0, 1) (by (3.29) and (3.26))) we can apply

Lemma [3.4] Then for all N > Ny we can decompose

My, 0laiag R = RN + N7IRY  with RN = MgiagRY € Tora(N,0, 1), RN =TlgiagRY  (6.27)

and
1B, [1RY [l < 20Tz RONT < 2 ROYT, (6.28)
where || - |7 is short for || - |1, . ny.0.,.- By (6:27) (recall ([2.36))
RN =i > RY200., RV=i Y = R},270.. (6.29)
JEINT o=+ JEINT 0=+

By (6.27) R" ¢ Tsra(N, 6, 1) and, therefore, R;V+ do not depend on j (see (3.14])), namely

]?;YJF =apn and we also set by ; 1= R§V+ (6.30)

By (6.26) we get
HN,O,pHdiagR(O) =i Z Qj(Zjazj - Ejaij) .
41>6N
Then, for j > 6N > 6N, by (6.27), (6:29), (6-30), we get Q; = ay + N~'by ;. Applying Lemma 2.7
to RY and RY in (16.29), we obtain

_ .
lan| < IRV, < 2[RONT, Jow | < IBN], < 2RO

Hence the assumptions of Lemma are satisfied with ¢ = 2| R || and (6.22)-(6.23) follows. m
The new vector field X,. We decompose

X=N+R=N+R3+(R—-RY)

where RIS(O is defined in (6.17). We apply Lemma and Proposition with O ~» O, where

0, = {g c 0| B31) — (539 and (557) hold}. (6.31)
Let FF = F ;0 =F I(gl) + F I((O ) e ’R;Emy be the unique solution of the homological equation
ady F = R’ — [RY]. (6.32)
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The bounds (5.38)), |w|"'?, QP < M < 2Mj, and (5.59) (with R ~ R%), h = —1,0) imply
IFME <y K FRW|E, h==1,0, where 7, i=(s,r,2,6No,0,1,),04).  (6.33)

Note that in - 5.59) N = 6Ny because, by the iterative hypothesis, j, = 6Ny > &y BT
We 1ntroduce the new parameters
Pro= (s, a0, Noy 0y, i, A, Oy ), (6.34)
where s/2 < sy <s,7/2<r. <r,0<a; <a, N > 7Ny, 04 >0, uy < p, such that
(k+ DNDP I NG < p—pie, (T4 RS NG < 05 -0, (6.35)

2(Ng) P In® Ny < bmin{s —s,,a—a,}, (6.36)
and note that N > N defined in (3.58) (by the iterative hypothesis Ny > N). If, moreover, the

smallness condition

. s T
||F||£ <e(n)dy, 04 := mln{l — f, 1- %} (6.37)

holds (see (3.85)), then Corollary [3.2] (with 7~ Py, p’ ~ Py, § ~» d,) implies that the time 1-flow
generated by F' maps D(s4,ry) into D(s,r). The transformed and symmetrized vector field is

Xt = serdrx B g 8(X +adp(X) + DI —adj (X)) =N+ RY (6.38)

]>2

with the new normal form N defined in (6.18) and, by (6.32)), the new perturbation

R* ::S<R7R7<(0+adp(R 0yt adp(RZ1) +Z—adf X)) (6.39)
>
where RZ! := ZR(J) see l 46), so that R = R<% + R,
j>1
We set
eM =y Y RMW|L, h=-1,0, c=eV+e® ©:=~7YR|3 (6.40)

and the corresponding quantities si ), £,,0, for R" with parameters 7, defined in ((6.34).
Proposition 6.1. (KAM step) Assume that p,py satisfy (6.35)), (6.36]), and that

5;11(27“5’ is small enough, © <2%, (6.41)

(64 is defined in (6.37)). Then, by (6.33), the solution F € RZY of (6.32) satisfies (6.37) and e**
and X in (6.38) are well defined. The perturbation RT € Ryey in (6.39) satisfies R = SR and

(=1)

€4 < 5;2K47'+2§2 + 6(71) efK min{s—s4,a—a;}
sf) < 072K (5(71) +8%) + (0) p—K min{s—s;,a—a;} (6.42)
0, < O(l+Ci 2K %), (6.43)

PROOF. The proof is split in several lemmata where we analyze each term of R in (6.39).
We first claim that

HadF(RSO)

T 1 T
|| Gadh (0| < orPyKEETIE, (6.44)
jan i>2 VE P+
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We have

1 .
> —adp(X) = Z—adJ (N +R) = Z—adj YadpN) +Z—ad7 (R)
j>2 J>2‘] g>2‘7
7adj YR - REY) +Ziadj

]>2

As we have already noticed, by (6.35)), (6.36]), (6.37) we can apply Corollary (With 7~ Dy, p’ ~ Dy,
§ ~ 04, h ~» 2) obtaining

I\/M \\/

(13.87) 2 - -
HZ* ad) ( H < (0 1FIE) IR, TR0, (6.45)

]>2

In the same way we get (with h ~~ 1)

HZ—adj YR - RO

*HZ e (R - R |

+

|T K27+17€72.

O I NRE — RRIIF, < 07 IFIE IRE|

Finally, by Corollary applied with ¢~ Py, p1 ~ P4, 6 ~ 64 (note that conditions (3.38)-(3.39)

follow by (6.35)-(6.36)), we get
- -
e (R=0) H 2 sumiz s Ol ST (6.47)

(6.46)

The bounds (6.45)), (6.46)), (6.47), and © < 2° (see (6.41)), prove (6.44).

We now prove (6.43). Again by Corollary we get
(6-33).(.31).(6.40)
|T - 9 - 6,1K27—+1

HadF(Rzl)HZ < 67| | B2 0 (6.48)

and (6.43) follows by (6.39), (5.13), (3.31)), (6.40) (6.48), (6.44) and & < 30 (which follows by ([6.40)
and (3.30])).

We now consider Rf), h =0, —1. Recalling the degree decomposition F' = FED 4 F(O), formula
([2.45) implies that the term adpR="' in (6.39) does not contribute to R([l). On the other hand, its
contribution to Rf) is [R(l),F(_l)]. Again by (3.84), (6.33)), (6.40) and (3.30), we get

[[RD, FEVNE <67t yK 1 e"No. (6.49)

The contribution of R — RK in (6.39) to Rf), h=0,-1,1is
o< s Mjr > RO + Mgz e RO
By (3:32)-(3-33) (recall ss}' < 2), (3:30), and (6.40), we get

T .
HH|,€|<KH|W‘ZKR(’Z) + Tl s R H < geKmin{smsiiaary () (6.50)
P+

In conclusion, (6.42) follows by (6.39), (5.13)), (6.44), (6.49), (6.50) and © < 2°. m
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6.3 KAM iteration
D O >0,9=0,...,v, satisfy

Lemma 6.5. Suppose that 65_ VE;
e < CKE 4OV e K
eV < k(T 4 2) 4 Ce e =0, -1, (6.51)
where &; := 51(-_1) —|—sz(-0) and K,C, > 1, K, > 0. Then there exist &, < 1, C, > &, x € (1,2),
depending only on K, Cy, K, (and not on v) such that, if
F0<E = &<C.ge KX vi=0,... v. (6.52)
(6.53)

PROOF. Iterating two times (6.51]) we get, VO < j < v — 2
_ _ j+1 a o ;i
TP ER) e Y ) < 1 CPKY (55 +&j +gje K*ZJ)

Ejt2 < 20, (Kj—H(E;

for a suitable constant ¢; > 1.
We first claim that (6.52) holds with x := 5/4 for all i = 2j < v. Setting a; := &35, we prove that
there exist C, large and &, small (as in the statement) such that if ag < &, then
S);,  a;<cTage™ ™% vo<j<v/2
for a suitable ¢y = ¢5(K, C,, K,) > 1 large enough and 1 < ¥ < V2, e.g. X := 4/3. We proceed by
induction. The statement (S), is true for cz > ¢®*. Now suppose (S), holds true. Note that a; <1

. _ . K*>22J' i+1 }
taking &, < mine /ey . Then (S)., follows by
_ (.53 2eiif .2, 4 _ ko) Yt 214 (.2 _K,2%
;41 = €2j42 S 010:1K e (aj + a; +aje * ) < 261051}{ ¢ (CL]- +aje )
8 erg2e1d (0L —K.%27\2 i+l KL%\ —K,.2% +2 K22
2c1COK*Y (4 age™ X7 )2 4+ (T age X e B < age

<
. Li gl K92 K. 9% 12 .22 . .
since 4ch§1K2°”cé+ age KX e K2V < c%Jr age KX taking ¢y large enough (use x < 2) and

401051K2clj(cg+1aoe*K*’~<2j)2 < cé”aoe*K Xt
since ¥ < V2 and taking ag < &, small enough. We have proved inductively (S);. Then (6.52) for
1 = 2j follows since 5/4 =: y < X := 4/3 and taking C, large enough. The case i = 2j + 1 follows

analogously noting that &, < C&; (by (6.51))) taking &, small. B
(6.54)

We now consider as initial parameters of the iteration
(s/2,1/2,2/2, N\”,40/3,311/4, ), O,)

Po = (8077‘0,ao,NéO),9o7M07)\7O*)
(6.55)

where s, 7, a,0, 1, A are defined in Theorem the set O, in (6.3)), and
Néo) =&y 7/3 /6 satisfies Néo) >N and (6.7),

taking v < 7«(n, s,a) small enough (the constants ¢, N are defined in (5.58) and (3.58)) respectively).
We start a KAM iterative scheme on the vector field Xg = Ng+ Ry : Do X O, — V defined in (6.11)

where the normal form Ny = A is defined in ([£.1)), the frequencies satisfy |w @ ['P 4 QO 1P < Ay on
the whole R"/2, see (£.5), and the domain Dg := D(sg, 7).
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We define, for v > 0, the parameters
— —v—2 S0 — —v—2 To —
o S,i1:=8, — $02 AV 50 Tvrl =T 702 \ 5 D, :=D(sy,,1,)
M
o ai=a, a2 TN D, Moy = M+ M2 2350

. .8 o
o Ourii=0, 4002772 S8 e = g, — o2 2\%,

o NV =N k=4, pi= max{ (r 41— ! S i L} (6.56)
Note that, by and , for all v > 0,
6N > ey VPRI and N > N (defined in (358)) . (6.57)
Lemma 6.6. (Iterative lemma) Let Xy := Ny + Ry be as above and set
Op = {g €O 1 |B(E) hl =293, Y0 < |h| < 7—1/"”)}. (6.58)
If €y, Oq, defined in , satisfy
£o is small enough and ©g < 2%, (6.59)

then:
(S1), Y0 < i < v, there exist w® = (C)(i),cﬁ(i)), Q9 a9 defined for all € € R™?, satisfying

@ — W]+ A — WO, [0 — O], £ \AD — QO < C(1 - 275 (6.60)

] < 01 =27 e, W@, QWP < (2 - 27 Mo, (6.61)
0 — 0 —a® < ov/lil, VI = 6N + 1), (6.62)

uniformly on R™?2. For 1 < i < v, N := wW(€) - 8, + 109 (€)(20, — 28:) is a normal form as in
Deﬁnition satisfying (5.4) for all |j] > 6(N(gl_1) +1). Set

Oz:{fe(’)i,lz for heZ"?, |h|<Ki_1, peZ, (6.63)
BEVE) A > (1—=27H29(R)" if h#0,
SO - h+ V@) > (=272,
BEDE) h+ QO+ Q0@ > 1-27)29(m) T,
BN R =TV O+QFTVOl 2 -2y T i h#0 or £,
GOE htpl > (-2 i h£0 or p£0 )

(S2), V1 < i < v there exists a close-to-the-identity, analytic, even (Definition change of
variables ®'(;€) : D; — D;_1, defined (and Lipschitz) for & € O, such thaﬁ

Xi = S(I)infl =: M + Rl : Dl X Ol — Di,1 s RZ c Rreu s RZ = SR1 . (664)
Set p; = (Sz‘ﬂ%ai7Néi),‘9¢7M,)\i7(9i) and define

h — h —
gr=el Vel M=y YRML, h=-1,0, ©;:=7"!|RiIZ. (6.65)

3¢ is the lift to the tangent space (recall ([#.13))).
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V1 <i<v we get, uniformly for € € R™?2,

[w®(€) =], 129(6) = 2V (©)loo s [a(€) = a"T(E)] < 29811,

957(6) (€)= VO +a VO S a2 60T+ 1) (6.66)

and
w® — =D Q@ — QU-DIP < S KT Mg (6.67)

where K_1 := 1.
(S3), YO < i <wv-—1, the 5571),550) satisfy with K = 473 K, = min{sg,a0}/4 and some
C. = Ci(n).

(S4), V0 <i < v, we have §; < C'*E’oe*K*Xi and ©; < 20.
PRrROOF. The statement (S1), follows by the hypothesis setta(o) =0 and Néfl) :=10. (S2), and

(S3), are empty. (S4), follows because C, > e’ in Lemma Note also that, by (6.3) and (4.5)),
the set Oy defined in (6.58]) satisfies

Oy C{E€0, : BA(&)C O}, Ai=~/My. (6.68)

We then proceed by induction.
(S1),4+1. We start defining the normal form at the step v+ 1. For all § € O, if v > 1 and £ € O, (see

(6.3)) if v = 0, we set (recall (6.19))

o) = (R (5€)), jeT, iOV(€) = (R%(;€)), jeZ\T. (6.69)

The frequencies &), Q%) satisfy (6.20) (since R, is even by (52),) and by Lemma (and (6.65))
there exists @) (€) € R such that

5%
141
uniformly in £ € O, (resp. O, if v = 0). Moreover (6.21)), (2.33), (3.81)), (6.65) imply

G, 1A (©)lee s 8M(€)] < 298, 11 (€) —at(€)] <40y %, Vi > 6(NS” +1), (6.70)

M, QWP , < 2Myé, (6.71)
(resp. O, if v =0). Let
no=A=~/My, m, =~/ MKI*), v>1. (6.72)

Let us define O, 41 as in (6.63)) (with ¢ = v + 1) and set

Ovni= |J {€er?:é=c+é 1é<n}. (6.73)
€0, 11
We claim that R R
0O C O, and O,41 € O,, for v>1. (6.74)

The inclusion @; C O, follows by the definition (6.73]) for Oy, the inclusion Oy C Oy (see (6.63))),

(6.72)) and (6.68). Recalling (6.63)), the inclusion O,41 C O, for v > 1, follows if, for every & = £+,
§ € Ou-i-lv |€| < Ny, We prove that

BODE) Bl > (229, VO < Ih < Koo, (6.75)
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and the analogous estimates for [G*~Y(€) - h + Q(V V@), 1@ E) - h+ Q(V D)+ Q(V G

|_’(" 1)(5) -h+p|. By the expression (6.77) (at the previous step) for w®, QW) and since x,—1 € [0,1],
we have by definition of O, 1

@@ R = BY© B - (@) - 3M(Q) - bl - @YV -3 () - |
é — 27" )2y (R) T — 2Mon, Ky—y — 296, 1K, _1
> (1=27")2v(h)"

since

E72),(54.) v
QMon, + 278, 1 < 27V KT 4 2yClgge KX b2 o ’yKV_Tl !

taking £y small enough. This proves (the other estimates are analogous) and so .

We define a smooth cut-off function y,, : R™? [0,1] which takes value 1 on (’),,.H and value 0
outside @, 1, in particular y, vanishes outside @, (resp. O, if v = 0) by (6.74). Recalling we
can construct x,, ¥ > 0, in such a way that

Xolah» <y Mo2 KT (6.76)

(recall K_; :=1). We extend o™, QM 4™ to zero outside O, for v > 1 and, for v = 0 outside O,.
Then we define on the whole R™/?

w D = ) XV(D(V) , QD .— W) 4 XIJQ(V) , ath .= o) 4 X,,d(”) ) (6.77)
The estimates with ¢ = v + 1 directly follow by (6.70). By (6.77), (6.74), (6.76)), (6.71)), (6.70),

we get

WD — W < Ixwlgh e |00 g + \xuan/aloD(”)lg’u <2"K]* 1 Mog,

proving the first estimate in (6.67) with ¢ = v + 1. The other estimate is analogous.

Estimates (6.60)),(6.61)),(6.62) with i = v + 1 follow by (S1), and by 1' with i = v + 1.
This completes the proof of (S1),1.

(S2),,,- We apply the KAM step Propositionwith P~ Py, Po o~ p,,H, X ~~ Xl,7 X~ X,

The parameters defined in (6.56) (and 7 > 1/b satlsfy the conditions -(6.36)), for all v € N,
taking 7 small enough (recall (6.55))). Again by (6

©37) . Sua1
mln{l— vt

5u+1 = s
174

1 T”—“} sothat 27772 < 8,4, <2701, (6.78)
Ty

and the condition ?) is satisfied by (54),, taking &; small enough and since Oy < 1, see .

Hence Proposition (6.1 apphes Let ®“*! be the time-1-flow generated by the solution F,4; € ’Ra rev

of the homological equation . Then &Y = e® i1 The flow 1! is even because F,iis
even. We have that (6.64) holds with 1 = v+ 1. The estimates — for i = v+ 1 have already

been proved. We define &, 1, 51(;11), ,(/le as in (6.65)).

(S3),,, follows by (6.42)), (6.56) and (6.78).

S4 . By (53), we can apply Lemma [6.5( and (6.52]) implies &, < C*éoe_K*XVH. Moreover
v+1 Yy pply P +

(6-43) 9 drio (6.78),(S4).
01 = Ol (1+COAK ™) < 260
for &y small enough. m

Proof of the KAM Theorem [4.1] completed. Assumption (6.59) holds by (6.14) taking ¢ in (4.7)
small enough. Then the iterative Lemma [6.6] applies. We define

w® = lim v, Q% := lim O, ¢ := lim o).

V—00 V—00 V—00
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It could happen that O,, = 0 for some 1. In such a case O, = @) and the iterative process stops after
finitely many steps. However, we can always set w, = w,,, 2, = Q,,, aij) = a(””), Yv > vp, and

w™, 0% a™ are always well defined and the bounds (4.8)-(4.10]) hold. Indeed (4.8) follows by
recalling that Ny = A. Then ([4.9)) follows by (5.2) because the normal forms N, satisfy Definition

We now prove (4.10)). For all Vv >0, j > 6(N(§V) +1), we have (recall that a*) = 0)

0 -l o < 3 Y — ot 00 4 a0] 4 370l — Q] 4 oD — @)

0<i<v i>v
(666) S4)V B
< A0y > —+47251 < °7+ DI
O<z<u i>v 1>V

Therefore, Vv > 0, 6(N0(V) +1)<j< 6(Né”+1) +1),

(v+1) _
No Zéi % oY + 1,},—1/32,;(,/4_1) Z _

0 — 0 — 0 <20 1 _ &
'7 i>v J J i>v
and (4.10) follows by (S4), and since Q;O) = Q.
The transformation ® in (4.12)) is defined by
= lim ®od’odlo...0P" (6.79)

V— 00

where ® is “defined in section as the time 1-flow of F in (6.4). The map ® is even because @,
1 >0, and ® are even. We now verify that ® is defined for parameters £ € O defined in (4.11]).

Lemma 6.7. O C N;>00; (defined in and (6.58)).
PrOOF. We have Oy, C Op by (4.11) and (6.58). For i > 0, if £ € O then, for all |h| < K,

GO -hl = [3%( — A Y15 (E) — 8 (9

n>i

lHM»
> T K2y > (1-270)2y(h) 7

n>i
by the definition of K; in (6.56), (5S4), and &y (that is €) small enough. The other inequalities in

are verified analogously. ®
It remains to prove (4.13). By the definition of ® in , the final vector field

Xy = lim &X; where X := @iXi_l, i>1, Xy defined in (6.15)). (6.80)

71— 00

The vector field Xoo € Rye because Xy € Ryer, (see (6.15))) and each X; € R, because Pl = e
with F; € Ry_rey (then use Lemma [2.10)). Let

Xoo := lim X; = N + Roo where N, := lim N;, R, := lim R;. (6.81)
By (6 , (S4), and ( - we get
Rew=SR,, R"=0. (6.82)

Lemma 6.8. (Xoo)|E = (Xoo)\E
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PrOOF. The lemma follows by proving (&;)|g = (X;)|g, Vi > 0. The inductive basis for i = 0 is
(6.16). Let us assume that (X;_1);p = (X;—1)|5. Then
©64),E30) , . ; i i —
(X — (X)) 5 EESD gy ) (SIX ) = (cp*(;ci_l - Xi_1)>|E =0

by Proposition [5.1] and Lemma (used with X ~» X;_; — X;_1, Y ~ F; defined in Lemma [6.6] so
that e?lri = @), m

We have already chosen N, in (6.81)), then Py, in ([.13) is Poo = Xo — Noo. It is now simple to
show that (7)0%0) B = 0. Indeed

(P, = (X~ N)=) BB (= X+ R0, B (20— X002,

by Lemma Finally Po, € Ry ey because Ny € Rpey (obvious) and Xy € Ryey- This concludes
the proof of Theorem

D,

6.4 Measure estimates: proof of Theorem

Recalling the definitions of O and O, given in (4.17) and (4.11)) respectively, we have to estimate
the measure of

O\ Oy =Cluc*tuc*> uCu (0\ 0y (6.83)
where
Opi= {6 €0 : 3(€) - hl = 2923 h) ™2, V0 < b <47/}
cli= U RGO, RGO ={€€0 1@ © h+QF| < 2v(h) 7
hezZn/?,jeZ\T
= RO, R = {6 €0 3% h+ 0 (©) + QRO < 2v(h) T}
hezZn"/2 4,5€Z\T
= U R0, R = {60 13 h+ 0 ©) - 9RO < 29T}
hezn/2 i jEINT,
ifi=43j, h#0
C= U Ri6Y, Rp,6*={cc0: 3% h+pl<23m)}.
i Zwi;?(pe)z

We first consider the most difficult estimate
1027 < ~?/3p5 1L, (6.84)

Lemma 6.9. If R 7 (y) # 0 then
i = 14l < C (R) . (6.85)

PROOF. By the definition of Ri;;('yL (4.8) and (4.18). m
As a consequence, we have to estimate
_ 2—,
c* = U ha;(W’)
(h,i,j)€L

where

1= {(h,i,j) e ZM? x (Z\T)? : holds and, if i = = , then h # 0}.
By , 7 , for € small enough, &> : O — &*°(0) is invertible,
= (@) Q= ANC-8) +rel0), |@) P <2a (6.56)
where || = O(e7), |re|"P = O(e).
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Lemma 6.10. For (h,i,j) € I, 0 < n < no(m) small enough, we have

Ry T ()| <np? (k)7 (6.87)
Proor. By (4.8), (4.18), we have
) - h+ Q) — () =¥ - h+ X — N +a- O = A7) +7i5(6) (6.88)

where

i3 ()] = O(e7), i "™ = O(e).
CASE 1: h=0, i # £j. By (6.88), (6.89), we have, V& € O (see (4.17)), Vi # +j,
|G%(€) - b+ Q7(8) = QF (&) = [Ai = Aj| = Cl¢] = Cey = &> 2n(h) ™7,

(6.89)

hence Ri;;(n) = (.
CASE 2: h # 0. Introducing the final frequencies ¢ := @ (¢) € R™? as parameters in (6.88) we get
frig(Q) = (&) h+QF(6) - Q7()
(e AT = A1)) €= ANy GO = A7) A =y 7 ()
where 7; ; satisfies (6.89)) as well. By (4.19)) and (4.22) the vector
a=h+(AT)Ta(A\7t = A7Y)  satisfies [a] > ¢ =c(A,d) >0, Vh#£0, Vi,j € Z\I.  (6.90)
In the direction ¢ = sa|a| ™! +w, w-a = 0, the function fy; ;(s) == fr.i;(sala|~* 4+ w) satisfies

- - ©39)
frij(s2) = frij(s1) = (s2 = s1)(la] = Ce) = (s2 = s1)lal/2.

By Fubini theorem we get [{¢ € G*(O) : |fn.i;(O)| < 2n(h) ™"} < np2 ' (k)" which implies (6.87)
thanks to (6.86]). ®
We split

I=1I.UI. where I := {(h,i,j) € 1 : min{|i|,|j|} > Cw’l/3<h>m} (6.91)

where Cy > C, in (4.10) for 79 :=2+ (n/2). We set I :=T1\Is.

Lemma 6.11. For all (h,i,7) € I we have

Riap (%) € R (29%79) (6.92)
where ig, jo € Z\ I satisfy
lio| = ljol = lil = 7| and  min{ljol, [iol} > Cyy /> (m)™. (6.93)

PROOF. Since [j| > 3¢, by (4.10) and (4.18]) we have the frequency asymptotic

2/3

+a- A +a> () +0 (Ull“) +0 (E’Y|‘7|> . (6.94)

m

() =1il + 57
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By (6.93) and (6:85) we have ||i| — [j|| = |lio| — ljoll < C(h). If & € O\ Ry (29*/?), since
lil, |1, liol, |go] > po := Cyy~Y3(h)™ (recall (6.91)) and (6.93)), we have

w3 (€) - h+ Q5 (&) — Q)] > w3 (€) -k + Q2 (&) — Q52 (€)]
—Q5°(8) — Q(8) — Q3°(6) + Q5 (9]
EZD a4y
= e il =il = il + Lol
= - —1 - —1 —1
—l@- &A= AT+ g = AL
_CEWB B Q ~ [l =5l mlio] — ljoll
po  pg 2 |il|g] 2 liol|Jol
EDED 42 () €D 2
> —Ce— - C—= >
(h)™ 1o 13 (h)mo

taking Cy in (6.93) large enough, and having used |A;' — A7Y| < [li] — [j]l[i]~*|j|~". Therefore
£€O\RY, (v 2/3> proving (6.92). m
As a corollary we deduce:

Lemma 6.12. ‘ U T\’,iz;(v)’ <?B3p3 T,

(hyi,j)€T>
PROOF. Since 0 <y <1 and 7 > 79 (see (4.20)), we have Rh”( ) C Rh Al 2/3). Then Lemma
and (6.87) imply that, for each p € Z,

Ry 7 ()] <4208 ).
(hi,5)ELs, [i|—[il=p

Therefore

U Ri;,’;(’y)) < > 7 ) O e L () R

(hyi,j)ETs h|p|<C(h hezn/>

(since 19 > 1+ (n/2)) proving the lemma. m
Lemma 6.13. ‘ U Ri:;('y)‘ <?Bp3—t

(h,i,j)EI<
ProOOF. For all (h,i,5) € I« we have (see (6.85))

min{|dl, [j]} < Cy 73R, (i = Il < C(h) = max{lil, |j]} < C'y ()™

Therefore, using also Lemma and ((6.85)
21 2/3 21
0’ v*3p%
U Rh w ’ Z Z Z (h)T < Z (hyT—m0—1
(h,i,5)€1< h Ji|<C/y=1/3(h)7o ||i| = |5]|SC(h) h

which, by (4.20) and 9 := 2+ (n/2), gives the lemma. ®

Lemmata|6.12] imply (6.84). Let us consider the other cases. By (4.19), arguing as in Lemma
we get that for 0 < v < 4o(m) small, the measure

RGO RSN <ap® TR, RE (/) <4 2p2 1),

and, by standard arguments,
’cl U c2+] <pETl, (Gl <42 pEY, |0\ O] < 423051 (6.95)

Finally (6.83), (6.84), (6.95)) imply (4.21).
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7 Proof of Theorem [1.1]

By hypothesis the nonlinearity g(x,y,yx,v) = yy>+ h.o.t. has the convergent Taylor expansion
9(%,¥,¥2,V) = yyi + > g®m (x)yFy it
k,h,lEN: k-+h+1>3

where
g * R0 40.p < CEFRFL for some ag >0, p>1/2. (7.1)

Note that we are identifying the functions g(k’h’l)(x) with their Fourier series {gﬁf’h’l)}joez € (P

(recall (2.1)). Let

a:=ao/2,  {uj}jez €LV7. (7.2)
The function g in (1.16]) is
2
1
glut,u™) = —4<D_1(u++u_)> (D_l(u;f—I—ux_)) + Os
. } Z JoJs 03 i(01j1+02j2+0353)% +0 (7 3)
= 1 020’37)\ VDY u? ’U,J2 ’U,JSS 5 . .

o1,09,03=%,
J1.72,J3€Z

and g;r in (1.25) is
g =g = - S (V) e gud (7.4)

d>3 o1 o-d:j:l‘

Jos 71 ~Jq€Z,
]0+ZL 10:3i=J

1 J2J3 o1 o o L =
- 1 Z Ao M O203 Uj Ut *Z Z (\[2) ¢ lgﬁ,ﬁjouj

A
o1j1+02j2+03j3=] 172 d>3 ©o1,-,0q=%1,

d
where J= (ji,...,ja), & = (01,...,04) and u ug = Hu 7. The coefficients gz 7, are explicitly
i=1
i Tkl Jhth (k,hl
95,300 = > (=1)i" g1 "0k+h+lﬁg§'o g
J1 7 Nktn

k,h,lEN: ht+k+i=d

We consider ([1.23)) as the equations of motion of the vector field Ny + G where

./\/0 = Z ai/\juz»’@u; (76)
o==,j€ZL
is the linear normal form vector field, and (recall (1.25)))
G = > G0y, GUD) i=iog,; G =G 4G5, (7.7)
o=%,j€EZ
- . (=3 . (>5
G = Z 1Ugf,j )8ujq, G5 = Z 10g((,; )au;
o=+,j€7 o==+,j€Z

is a nonlinear perturbation. Note that

+

at) — _qtey) (7.8)

and that G=* has zero momentum by (7.4) and (7.7). Moreover, by (1.26), (T.28), (T.30), (T.31)) we
have
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Lemma 7.1. G is reversible (w.r.t. the involution S in (1.29)), real-coefficients, real-on-real, even,
namely G € Ryey (recall Definition in absence of x,y-variables).

Lemma 7.2. For ag —a > a:=ag/2 (recall (7.2))) and R > 0 small enough
ICray 1G= ra <R, IG=)|pa < R (7.9)
Moreover for Ny satisfying (3.1) we have that G, G=3) G belong to Qﬂja(No,S/Q,él) with

HGHE,a,NO,B/QA ’ ||G(:3)H£73,N0,3/2,4 < R2 ||G(25)||£73,N0,3/2,4 < R4 : (7'10)

PrOOF. We first note that for d, h, k,l € N

(kb1 kh, _
H( S el ugl) N < lg® M sl + @) (7.00)
o1,.0q=%1, ez a,p
90,.7'1,---jd€Z
Jo+21 10idi=J
Indeed .
Z a|30\|gkhl ;|§(gwh»l)*a*a*-.-*a)j, Vi€Z,
01, og=%1,
do-a1, ~Jd €L
JO+Z7 1043i=J
where gFmb .= (g2liol (khl)) ivezy U = (Un)nezs Un = |Un| + |G|, * denotes the convolution of
sequences and
1g* "D s @x e xllay < 50 lapllal, < g (lullap + lllap)®

by the Hilbert algebra property of £** and since a < ag — a.

Now we can rewrite the sum in (7.4) as g; = Z (8;)a,pu@” where (g;)a,s can be explicitly
|| +8]=3
computed from (7.4]) but has a complicated combinatorics. In order to compute the norm |G| g,. we
note that

1 Ul
— <1, <1 7.12
BV (7.12)
and the momentum of
u‘; — w7’ = a, B;uf) Z ciji — 0. (7.13)
1<i<d

For all a > 0 and R > 0 we have (recall (7.7))

2.27 -
Glrs & sy (S s, sl

lulla,p,lltlla, <R lol+18]>3 o==%,j€EL R

©:3) 1 u® _
= s =3[ et (g a gl la)).
lullap lllep <k B LN G Jerfan
1) 1 . .
2w (e S S el
Rufpliale,<e' N5 © 0 L f Tami1. AT j€zllap
- _70 ]1 J4€Z, h+k+l=d
Jo+SGy 0idi=i
m 1 e B
< R sup > Y (V2 g B g p([ullap + llEllap)? < R
HuHa,pvl‘ﬂ”a,p<Rd>3 k,h,l
=" htk+tl=d
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proving ([7.9) for R > 0 small enough.
Let us now prove the estimate ((7.10) for the quasi-T6plitz norm of G (the estimate for G&3) and
G are analogous). For N > Ny, by (7.4)) and (7.7) we deduce that the linear projection

om ’ ~ 1A
HN,3/2,4G = E Go”,n Uz 8u; = G + N G
m,n,o,c’
[ml,|n|>(3/2)N

where (recall (3.10), (3.11)), (3.12))
GO = —iaZ Z (ﬂ)fd*zg;fjoug

d>2 T1yeens og=%1,
¢ lGil<anNL jjgl<Nb

j0+zf=1 oiji=om—oc'n

1 J.o Jrah _
l (k,h,l)( A Ik Jk4h—10k Ok4h41—1 o (7.14)

o' n o b4 :
85.7d0 Z 1" (=1)'gj, A\ s A\
k,h,l€N: h+k+I=d+1 n g1t Nk+h—1

N Jk41--+ Jhth—10k41 -+ Ohphtl—1
—|—ha’—‘] + JE+ + thil-l (7.15)
/\n >\j1 s Ajkdrh—l
k1 -+ JhthOk41 - - - Okthtl—1
+ 10" L thTkY tht , (7.16)
Ajy e Njn
the Toplitz approximation is
= L Noomo o ~Noomo . —d—2~0'n &
G = E Gy Uy Oug G, = —lo E E (V2) 8 70Uy
m,n,o,o’ d>2 O1snes oq=%1,
|m|,|n|>(3/2)N T2 lGil<aNL i< ND
j0+2§l:1 oiji=om—o'n
o' Bl 1 (khD) p k41 -+ - Jhth—10k+1 - - - Okt hti—1
8370 (D" (=1)'g;," (ho's(n) VDY
k,hlEN: ht-k+l=d+1 J1 ottt kth-1
k1 -« Jh4+hOk41 -+ - Ohthtl—1
4 lo! 2kt Jk+hOk+ +h+ )
Ajp e N

(the term in (7.14) is replaced by 0, in (7.15) the factor n/\,, replaced by the sign s(n), and (7.16) is

left unchanged) and the corresponding T6plitz defect is

N N A o A . —d—240’ a
Ny ameg. ane=eY Y (0
n

m,n,o,o’ d>2 o1,y og==%1,
¢ lgl<aNL Jjgl< N
!

[m],|n|>(3/2)N
Jo+X¢q oiij=om—o

n

1 (khol) (kjk e Jkth—10k - - - Okt hi—1 n

87 = >, MYl

)
k,h,leN: h+k+l=d+1

)\jl s )\jk+h,—1

+  ho's(n)(|n| — )\n)]k+1 - ~.7k)\+h—10'k+1 : ~-0k+h+l—1> '

1 Ny

Using that 0 < X, — |n] < ¢(m) = /m for all n € Z and that A, > [n| > (3/2)N we have that the
Taylor coefficients of G, G are uniformly bounded. Then, arguing as in the proof of (7.9)), for R > 0

small enough, we deduce that ) A
IGllra, IGlra<R?.

Note that g;';{;o depends on n only through s(n). Since by (3.12) s(n) = oo’s(m) we have that
G € Tra(N,3/2,4) (recall Definition [3.3). By Definition [3.4] we get (7.10). m
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Proposition 7.1. (Birkhoff normal form) For any T as in (1.32)), and m > 0, there exists Ry > 0
and a real analytic change of variables

I': Bgja X Brjp C4"P x t*P — Bpx Br CL"? x{*? 0<R< Ry,
that takes the vector field Ny + G into

(DF*I[NoJrG}) ol'=No+G1+ G2+ Gs (7.17)

where G1, G2, Gs satisfy (7.8)),

) 2
J +,,—.,,0 ? +,,—,0 :
(U) —F jUjU]—FQZATAJUZU,LU] lf jEI,
4G = ’ 2 i€z "t (7.18)
2 sy ui v uf if ¢,
iez Tt
0 if jeZ,
. ~(uF) 2] e
odiGy" ) = Z 208 o WPl i j¢T, (7.19)
o1j1+o2j2+03ji3=0] AJlAJZ)\'B
J1,92,33¢T
andVa>0
IGillra = IG1llR0 s [G2llra = [Gallro < R?. (7.20)
Moreover for N| large enough we have
1G4 ||£,a,N0,3/2,4 <R?, ||G2||£,a,ND,3/2,4 <R?, ||G3||TR/2,a/2,NO',7/4,3 <R*. (7.21)

Finally No + G1 + G2 + G35 € Ry (recall Definition in absence of x,y-variables).

Remark 7.1. The estimate for Gs in follows by assumption . If g = yy2 + Oy then
||G3H£/2,a/2,N(’),7/4,3 < R® which is not enough for a direct application of Theorem (see subsection
. The term of order four should be removed by a further step of Birkhoff normal form. For
simplicity, we did not pursue this point.

PrOOF. The estimates (7.20)) and ([7.21) for G1, G5 follows by (3.27) and the analogous estimates
(7.9) and (7.10) for G, since G, G2 are projections (recall (2.19))) of G, satisfying (3.26)).

In order to obtain the estimates for G5 we need the following result proved in [4] (Lemma 7.2 and
formula (7.21), see also [29]).

Lemma 7.3. There exists an absolute constant ¢, > 0, such that, for every m € (0,00) and j; € Z,
o, ==,1=1,2,3,4 satisfying o1j1 + 02j2 + 033 + 04J4 = 0 but not satisfying

J1=7J2, js =ja, 01 = —02, 03 = —oy4 (or permutations of the indexes), (7.22)

we have
I

|01>\j1 + o2, + 03, + (T4>\j4| > W

>0 where ng:=min{{j1), (J2), (Js), (ja)}. (7.23)

Let us define
F = Z F%)au? with
j€L,o=%

’ 1 o J2Js
PO = - T (7.24
2 Lo1hy, + 02N, 03N — 0N A Ajg g o s s (724

o1j1+02j2+03i3=0]
o1Xj, o2, FogAj, —oX;#0
(3192333 € ()4
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By Lemma [7.3] and arguing as in Lemma[7.2] we get that
Ya>0, R>0, IFlra=|F|lro < R*. (7.25)

Moreover we claim that
||FH£,a,N0,3/2,4 <R?. (7.26)

For N > Ny, by (7.24) we have that Iy 39 4F = F+ N~ 'F, where (recall (3.10]), (3.11)) and :3.12)),

denoting for brevity dy := o1 )\j, + 02X, + o'\, — Ay, and do 1= o1 \j, + 02)j, + 0’ |n| — olm
I . [hO,m o’ n . [10,m o’
P S Mo, Fe=N S B0,
m,n,o,0’ m,n,o,0’
Imlilnl>(3/2)N Iml,nl>(3/2)N
~ 1 o2j0
Fo™ = —b,48(m) E — ultul?

2 ). J1 g2
o1j1+ogjo=cm—o’n, dy#0, d2 >\Jl>\]2

li1l+1i2|<aNL | jiorjoeT

o . o . dl 1 02j2 o1, 0
Fg/ n = *m Z <01]1 + 2Js(m) (|n| - 6070'd2/\n)> dil )‘j1)‘j2 uj11uj22

o1j1togje=om—o/n, di#£0,
li11+ligl<aNL | jiorjoeT

(here 6, =1 if 0 = o’ and 0 otherwise).
Let us consider first the case ¢ = ¢’. We have

1 1 1
|d1—d2:{)\n—)\m—|n|+|m|]<<+><|n,

| |m|

noting that 1/2 < |n|/|m| < 2 by 01j1 + 02j2 = om — o'n and |j1| + |j2| < 4NT, for N > N large
enough. Then, since by (7.23), 1<|dy|, for [n| > (3/2)N and Ny large enough, 1<|d1|—|d2—d1| < |da].
In particular |da| > const. > 0 and F, F' are well defined. Moreover

i(dl —da)

a1y
dy

do

dy ‘

1 1
< — and |An = In|| < =
I I

and, therefore, ||n| — dldgl/\n| < 1.
In the case 0 = —0o”, since |j1| + |j2| < ANL and A\, > |m| > N, we get |di| > |n|. o
Recollecting we have that, both in the case ¢ = ¢’ and ¢ = —¢’, the Taylor coefficients of F, F
are uniformly bounded and, arguing as in the proof of Lemma we get
1Ellras 1E]Ra<R2.
We note that F € Tz .(N,3/2,4); indeed o = ¢’ and by (3.12) s(m) = s(n), so that dy := 1), +

o2, + s(m)(c’'n — om). Then by Definition [3.4] we get (7.26).
With Ny defined in (7.6]) we have

[No,ugfu;-’jugj %‘} = i(o1j, + 02N, + 0355 — oA ufluFiugs Ous -
Then F in (7.24) solves the homological equation
No, F] + G = adp(Ny) + GE3) = Gy + Gy (7.27)

since F(u;) = i(0'1>\j1 + 0'2)\]‘2 + 0'3/\]'3 — O'/\j)il(G(:S))(u;).
Then we define I' as the time-1 flow generated by the vector field F'. Then

(Dr—l[/\/o + G]) ol = e*F (N + G).
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By (7.27) we have that
1 1 )
- Zadl.=3) J _ ~(=3) adF ~(>5)
Gg—jél j!adFG + <j+1)!adF(G1+G2 G )+ e G

and the estimate for Gs in (7.21)) follows by Corollary taking R < Ry small enough and N large
enough.
We claim that F' € R4—rey. Indeed F' is real-on-real (recall Definition ) since F‘;"? ) = FI;“J ) by

(7.24) (R defined in (1.17)). F is anti-real-coefficients (recall Definition [2.8)) since the Taylor coefficients
in (7.24) are real. F is anti-reversible (recall Definition [2.7)) with respect to the involution S in (1.29)

since by (7.24) we have F(“7) 0 § = F(“~7)_ Finally F is even (recall Definition ) since, again by

[T20) Fy’ = Fly ) (with E defined in (T:27)).
Then N() +G1+ Gy + G5 = eadF(No + G) € Ryev by Lemma |

7.1 Action-angle variables

Let us denote by
(uh,u”) = ®(x,y,2, 7€) = ®(z,y,27,27;€) (7.28)

the change of variable introduced in (1.33). For p > 0, let (recall ([1.32))
Op::{feRn/2 : gggjgp,jeﬁ}. (7.29)
A vector field X = (X (“+), X (“_)) is transformed by the change of variable ® in

Y = 3,X = (qul[X]) o®,  with

v _j(iX@) _ %X(u;)) 0od, YW = (quuJ) +u_+X<u;)) o®, jeTI,
2 u;r u; / !
YED = XD 0d, o=+, jeZ\T. (7.30)

Lemma 7.4. (Lemma 7.6 of [4]) Let us fix
a=ao/2, p>1/2, and take 0<16r> <p, p=C.R* with C!:=48nk?Pe25+en)  (7.31)
Then, for all £ € O, U Os,, the map
®(-;€): D(s,2r) — Brjy x By C (P x (@7 (7.32)

is well defined and analytic (D(s,2r) is defined in (2.6) and k in (3.1))).

Given a vector field X : Bg/s X Brjp — £*? x £*P, the previous Lemma and ([7.30) show that the
transformed vector field Y := &, X : D(s,2r) — £¥P x £*P. Tt results that, if X is quasi-Toplitz in
the variables (u, @) then Y is quasi-Toplitz in the variables (z,y, 2, Z) (see Definition . We define

Ve = {XevR,a B U X(Sjg)uaﬂﬂ}. (7.33)
a® 15>

Proposition 7.2. (Quasi—To6plitz) Let No, 0, u, 1’ satisfy (3.1)) and

/ L b NS g
(W — p)Ny > N, No2~z= Tt < 1. (7.34)
If X € Qh g o(No, 0, 1') N Vit g, with d =0,1, then Y := ®,X € QT (No,0, ) and
HYHZ,T,a,NO,G”u,OP < (ST/R)diz||XH£/2,a,NO,0,;L’ : (735)
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The proof of Proposition follows closely the analogous Proposition 7.2 in [4] (replacing the
Hamiltonians with the vector fields) and we omit it.
We also give the following similar lemma (see also Lemma 7.11 in [4]).

Lemma 7.5. Let X € Vg2, Y = &, X and Yy(v,y) := Y(x,9,0,0) — Y(y)(x,0,0,0)ay. Then,
assuming ([7.31)),
[1Yo0l[s,2r8,0,00,, < (B/7)[ X|[r/2,a - (7.36)

7.2 Conclusion of Proof of Theorem [1.1]
Recalling ([7.30)) the vector field Ny + G1 + G2 + G5 in (7.17) is transformed by the change of variable

[33) into

@*(NQ+G1+G2+G3)=N+P=N+P1+P2+P3, (7.37)
where the normal form A is as in (4.1)) with frequencies
152
w;(€) := )\jJrZ/\—?fm Z e gm forjeZ, ;&)=\ Ze; e 5” for j ¢ T (7.38)

= v/j% 4+ m defined in ([1.24))) and the three terms of the perturbation are:

'Plxj) = 7 )\3 y] Z )\2/\ Yi 'P(yj =0, forjeTl
(27) oi i o :
P = fgzﬁyjzj, c==4,j¢7;
iez "7
Py = B,.G (@) _ py) _ ) _ A .
= D,Gs (note that Py’ =Py =0, Py’ =Gy’ ", j¢1);
Pg = (I)*Gg. (739)

As in (4.6) we decompose the perturbation
P=PVx;€)0y +Pe,  PUa;6)d, = NVPWY, = IEVPWY, = P (2,0,0,0:€)0,. (7.40)

Lemma 7.6. Let s,r >0 as in (7.31) and N large enough (w.r.t. m,Z,L,b). Then

[PYOYI12 1 ajo0 < (L+A/p)ROP2, 1Pl < (1+ X p)(r* + R°r), (7.41)
where 5 3
O:O(p)::{feR” JVEL ST zz1,...,n}cop (7.42)

(where O, was defined in (7.29)) Jand p':= (s,r,a/2,N,2,2,X,0).
PROOF. By the definition (7.40) we have

_ Lemma 241
1P20, vz, = VPP a0, P58yl r.0/2.0,
@39).@39) /r RS
< (ﬁ) ||G?’||£/2,a/271\f,7/4,3 2z (7.43)

(applying (7.35) with d ~> 0, Nog ~ N, 0 ~ 7/4, u ~ 2, i’ ~~ 3) and taking N large enough so that
(7.34) holds and N > N/, defined in Proposition
By (7.37), (7.39) and (7.40) we write

P.=P1+Pa+Ps+Ps5 where (7.44)
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P4 = P?)(xayazaz;g) _P3($a97070§§), 735 _7)3(‘]j y70 0; g) y)(x O O 0; g)

We claim that

||P1||TTa/2 N,2,2,0, ||P2‘|Tra/2N22O < . (7.45)

Indeed the estimate on P; follows since 731 is Toplitz and || P1|s,ra/2,0, < r? by (7:39). On the other
hand the estlmate on 732 follows by (7.39) and (7.21} - Wlth N > Ny 1arge enough to fulfill (3.1] .
By (7.39) and (7.3F)) (with d ~ 1, NO ~ N, g~ 2, u' ~ 3), for N large enough, we get

r\—1 @21 ,r\-! RP
1Pallsraron 220, < <E) ||G3||£/2,a/271\76,7/4,3 < <§) R'= et (7.46)
Since P5 does not depend on the variables 2z we get
@30 o\ 1 @21 ,r\-1L R®
||P5||£T,a/2,N,2,2,OP = ||7)5||s,r,a/2,<9p < (E) ||G3||R/27a/2 < (E) R'= o (7.47)

In conclusion, by (7.44)), (7.45), (7.46), (7.47) we get
||7)*||sra/2N220 <r’ + R’r

In order to prove the estimates we have to prove Lipschitz estimates (see , (3.81)). We
first note that the vector fields Pyay and P, are analytic in the parameters £ € O,. Then we apply
Cauchy estimates in the subdomain O = O(p) C O, (see (7.42))), noting that p < dist(O, 00,,). Then

li li
1Pellefaz0 <P 1Pellsrapo, — and  (IPYOIY 00 <o 1P yllsrarz0,
and (7.41)) are proved. ®

We now verify that the assumptlons of Theorems are fulfilled by N+ P in (7.37) with
parameters £ € O(p) defined in (7.42). Note that the sets (’) [0/2,p]" defined in Theorem [4.2| and
O(p) defined in are diffeomorphic through & — (7p+2¢;)/12. Next & and Q;, defined in 1)
satisfy with

A=(A A L 8ij — 2 - a: -
=Unlusere, An=gs =25 = (“g3) 0

Then hypotheses (A1)-(A2) follow. Moreover (A3)-(A4) and the quantitative bound (4.7) follow by
(7.41), choosing

s=1, r:RH%, p=C,R*asin (7.31), N asin Lemma 0=2, u=2, fy:R;H'é (7.48)

5—1

and taking R small enough. Hence Theorem applies.
Let us verify that also the assumptions of Theorem are fulfilled.
Denoting by 1,5 the (n/2) x (n/2) matrix with all entries equal to 1, we have

1
A= ZDl(Idn j2—21,2)Dy  where Dy:=diagjcr+A; ', Dy = diag;cr+i’A;

Since 12/2 = (n/2)1,/2 the matrix A is invertible with

2
A™t =4D;! (Idn/g 1n/2> Dt and (A7) la= p—C

where @; := \j := \/j2+m, j € IT. Therefore, for every choices of Z* the conditions in (4.19) are
fulfilled, excluding at most finitely many values of m (recall (4.22)).
We deduce that the Cantor set of parameters O, C O in (4.11)) has asymptotically full density
because
0\Oul @D,
Vol R oy <

0]
The proof of Theorem [T.1]is now completed.

RT2R3G+3) = Rfs — 0.
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