Multi-Gaussian Modes of Diffusion in a Quenched Random Medium
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We have studied a model of a random walk in a quenched random environment. In addition to
featuring anomalous diffusion and localization, for special regimes of disorder parameters the particle
density decomposes into multi-Gaussian structure while its cumulative distribution is normal. We
explain the observed fine structure of the density and point out its significance to experiments.
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I. INTRODUCTION

Diffusion is ubiquitous in nature. The first theoret-
ical description of diffusion processess such as Brown-
ian motion of particles in colloidal suspensions was de-
veloped by Einstein and Smoluchovski [1, 2]. Normal
particle diffusion is characterized by the fact that the
mean square displacement of the corpuscle grows linearly
with time and the cumulative probability distribution is
asymptotically that of a Gaussian density as dictated
by the Central Limit Theorem (CLT). However, under
special circumstances the situation may change dramati-
cally, e.g., in Sinai’s model the growth of the variance be-
comes logarithmically slow [3], and the particles may be-
have super- or subdiffusively or even become localized—
a phenomenon first predicted by Anderson for electron
waves in disordered crystals [4] and most recently ob-
served with Bose—Einstein condensed matter waves in a
controlled disorder [5, 6].

Over the past few decades, the study of wave and par-
ticle propagation in random media has found a broad
range of applications in diverse fields including medicine,
optics, materials research, quantitative finance, and the
biology of epidemics and genetic selection [7, 8]. The ap-
proach to understanding random media has often been
through random walks in random environments (RWRE)
[3, 9-11]. In these models the environment describes the
local propagation laws, which model the local properties
of the inhomogeneous medium in question [12-14]. In a
quenched (frozen) environment, the degree of stochastic
freedom in the study of an RWRE is limited rendering
the mathematical analysis of the problem challenging.
In this setting, major advances have been obtained only
very recently [15-17].

In this paper, we consider combined ballistic and dif-
fusive particle dynamics [18] in a spatially random but
temporally fixed environment. Our model originates in
the study of certain extended dynamical (i.e., deter-
ministic) systems obtained by coupling together an in-
finite sequence of simple chaotic dynamical systems [19].
With random initial conditions these can be reduced to
RWRESs in quenched environments by introducing a so-
called Markov partition of the phase space. The model
in question is also related to quenched compositions of

FIG. 1: (Color online) Schematic of our model of one-
dimensional random walk in a quenched random environment.
The labeled rectangles denote the sites of the discrete array
and the arrows illustrate the site to site jump probabilities.
Sites with the same color have the same fixed transition prob-
abilities. The notation is explained in the text.

chaotic maps [20].

A natural question regarding such a stochastic process
is whether the resulting particle distribution is asymptot-
ically Gaussian. By virtue of Sinai’s example [3, 21, 22]
one may not always expect an answer in the affirma-
tive, even when the environment is not quenched. In our
model the parameter space splits into subregions corre-
sponding to different qualitative behavior; in some re-
gions with ballistic behavior or parametric symmetries
the cumulative distribution is normal, while in others it
is not. Even in the former case the particle density is
not normal, and under certain circumstances features a
multi-Gaussian structure—a striking phenomenon first
observed in [19]. Here we also explain the source of this
observation.

II. MODEL
A. Setup

We consider one-dimensional RWRE as illustrated in
Figure 1. Within a single time step, from a given site
there are prescribed probabilities of jumping into either
of the two nearest neighbor sites. It is also permissi-
ble to remain in the same site with nonzero probability.
Put more precisely, let X,, € Z ={...,—-1,0,1,...} be



the position of the particle at time n € N = {0,1,...}
and assume Xg = 0. The particle jumps about the
lattice Z according to Markov transition probabilities
pi,; = P(Xnq1 = j|Xn = ¢). To describe these tran-
sition probabilities completely, we assign to each site ¢ a
triplet w; = (¢;, 7, pi), where g;, r; and p; are the proba-
bilities of jumping to the left, staying put, and jumping
to the right, respectively, if the current site is i. That
8, ¢ = Pii-1, Ti = Piji, Pi = Pii+1- In our model
q; +r; +p; = 1, because the length of a jump cannot
exceed one. We will also assume that ¢; > 0 and p; > 0.
The collection w = (...,w_1,wp,ws,...) is called an en-
vironment.

Let {(¢°,7*,p") : £ € A} be the collection of all pos-
sible triplets that each w; may be equal to. Then, the
triplets w; are drawn as i.i.d. trials from this collection
with equal probability. Hence, for each site ¢, we have
w; = (g%, 7%, p*) for some label £ € A, and this choice is
independent of all the other sites. Once every w; has been
randomly picked, it is frozen for good. An environment
w=(...,w_1,wp,wi,...) generated in this way is called
a quenched random environment.

For example, we can take A = {4, B} if there are only
two different kinds of triplets in the environment. Having
chosen w; = (¢°,r*, p®) for a site i, where /£ is either A or
B, we call interchangeably w; and /¢ the label of the site.
We also say that the site i is of type £.

The sequence (X, ), >0 of random variables is a Markov
Chain and describes a random walk in a quenched ran-
dom environment. We are interested in the probabil-
ity distribution of Z,, = (X, — EX,,)/+/Var X,, for typ-
ical environments w. In particular, CLT is said to hold,
if im, o P(Z, < t) = ®(t) for all t € R. Here
o(t) = \/%fioo e=*’/2ds is the cumulative distribu-
tion function of the standard normal distribution N (0, 1).
However, our focus is on the form of the density function
P(X,, = k) itself, which admits surprising features.

B. Implementation

To compute the probability distribution of X,, we have
employed two complementary numerical methods. In the
first method we calculate the exact probability distribu-
tion of X, by computing the nth power of the transi-
tion probability matrix of the Markov Chain. Since the
lengths of the jumps are at most one and the walks start
from Xy = 0, we have |X,,| < n. Therefore, it suffices
to compute powers of a finite matrix to find out the dis-
tribution of X, for any fixed n. Depending on the cho-
sen parameters the distribution may in fact spread quite
slowly with n and a relatively small matrix can be used
if n is not too large. To study larger values of n, we use
a Monte Carlo algorithm. Starting at 0 and proceeding
recursively, following a position 7 = X, the next position
Xpa1 € {i —1,4,1 + 1} is picked randomly according to
the probabilities (g;,7;,p;). The procedure is repeated
and averaged over many independent particle trajecto-

ries to obtain an approximation for the distribution of
X,,. In the figures presented the former exact method
has been applied.

III. PRELIMINARIES
A. Recurrence, transience, and ballisticity

The walk is called recurrent if, with probability 1 (w.p.
1), it returns to 0. In other words, at some later (ran-
dom) time n > 0, X,, = 0. This clearly implies that,
in fact, the walk returns to O infinitely often. For our
model it follows from [10] that recurrence is equivalent
to limsup,,_, . X, = o0 and liminf, . X, = —oc0 (w.p.
1). The walk is called transient if it is not recurrent. In
this case one of only two things may happen [10]. Either
lim,, 00 X, = —00 (w.p. 1) or lim,, o, X;, = 00 (w.p. 1).
In the former case the walk is transient to the left, in the
latter it is transient to the right. While a transient walk
does escape to infinity, it may do so extremely slowly, so
that % — 0. A transient walk is called ballistic if the

limit lim,, o % exists and is nonzero.

The quantity p’ = Z—i is called the bias of the label
¢ € A. The recurrence and transience properties of the
walk can be conveniently described with the aid of the
biases of the labels present in the environment; see below.

B. Reversible state w

There is a natural potential function V associated
with the environment w. Indeed, §V; = log % can be
thought of as a potential difference between the sites ¢
and i + 1: if §V; > 0, the likelihood of jumping from
i to ¢ + 1 is less than vice versa, and the potential at
1+ 1 should be higher than at i. To fix an arbitrary con-
stant, we set 1 = 0. We then define V;1 1 = V; + 0V
for all 4, such that V; = >7,_,_;6V; for i > 0 and
Vi= =2 icjcodVj for i <0. “A similar potential was
considered in [3].

The Gibbs-like state 7 defined by m; = e~"i satisfies
the detailed balance condition m;p; ; = m;p;; (|i — j| =
1) and is therefore a reversible stationary state for the
Markov Chain. This follows immediately from
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Notice that m cannot be normalized to a probability dis-
tribution, because in general ), m; = oo. In fact, the
potential V; may assume arbitrarily large negative val-
ues sufficiently far away from ¢ = 0, which makes m;
unbounded. As we shall see, we can nevertheless learn
about the distribution of the walk from the state 7. It
is particularly useful in situations in which the walk is
recurrent.



C. Stationary state p

Now suppose the walk is transient to the right. Be-
cause of this property, it will visit every site ¢ finitely
many times. Let N; be the total amount of time spent at
site ¢ > 0. Notice that, for every realization of the walk,
there is precisely one more jump from site ¢ to ¢+ 1 than
vice versa. This follows from transience to the right and
the fact that the maximum jump length is one: every
jump from i + 1 to ¢ must sooner or later be followed by
a jump from ¢ to ¢ + 1. On the other hand, the expected
number of jumps from i to i + 1 is E(NV;)p; and the ex-
pected number of jumps from ¢ + 1 to @ is E(N;41)@it1-
Thus, we have the relation E(N;)p; = 1 + E(N;41)git1-

The above reasoning motivates the following con-
struction. Demand that p; = i(l + pit1¢i+1) for
every i € Z. Writing p; = It for brevity, the expression
Wi = p%, (14 pit1+ pit1piv2 + pit1pit2piss+. .. ) follows.
Transience and ergodicity of the i.i.d. environment guar-
antee that the latter series converges. It is easily checked
that the state p so defined is a stationary state: the
global balance condition p;_1m;—1 + 7 + ¢i+1Tit1 = T4
holds for every 3.

IV. RESULTS
A. Anomalous probability density

In the case where the bias p’ has the same value for

all labels ¢ € A, we find the probability distribution
to decompose into |A| distinct Gaussian functions,
where |A| is the number of elements in the set A.
Figure 2 shows the scaled and centered probability
densities of X,, for the equal bias cases in which the sets
of possible labels w; are (a) {(& & %) (& & &)
(b) {F5 35450 G 56 390 (55 550 390} and (c)
{5636 50 (36 55+ 350 (36 38 560 (b 35 560 (38 36 3 -
In each frame, a different marker is assigned according
to the environment label wx, at the endpoint X,,.
Joining the points of same marker type would result in
perfect Gaussian curves which collapse on top of each
other when multiplied by a constant. The ordinates
of the horizontal lines, drawn to guide the eye, follow
the same ratio as the right transition probabilities p
(equivalently the left transition probabilities ¢°) of the
labels on the corresponding curves. The latter curves
themselves are similar; in each frame, multiplying any
such curve with a certain constant results in perfect
overlap with the solid Gaussian shown. Notice that
in the equal bias case p; = const - i Thus, at the
local level, the particle distribution closely reflects the
structure of the stationary state .

This picture is stable under variation of n: there are
rapid oscillations from site to site, so the centered, scaled,
and interpolated probability density does not converge
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FIG. 2: (Color online) Probability densities of Z,, where
n = 10°, for a symmetric (a) two (b) three and (c) five

label system, color marked according to the endpoint label
wx,, . The transition probabilites are listed in the text. The
ordinates of the horizontal lines obey the same ratios as the
right transition probabilities py of the corresponding site types
£ € A. The solid (magenta) curve in each frame is a Gaussian
function with zero mean and a variance measured from the
data. Fach dotted curve coincides with the exact Gaussian
when multiplied by a proper constant; see text.

to any function. Instead it has several smooth Gaussian
“components”. Altering the relative concentration of the
site types only changes the concentration of points on
each Gaussian. We emphasize that the multi-Gaussian
structure only appears in the presence of the fixed envi-
ronment. If one averages the distributions over many en-
vironments (in addition to all possible trajectories which
are already included), the data collapses to a single Gaus-
sian function. The multiple Gaussian curves persist as
long as the biases p’ are equal. From here on we focus on
the two label case A = {A, B}. Increasing the number of
site types does not affect our main conclusions.

B. Analysis of observed densities

The behavior of the probability density may be under-
stood intuitively by considering the potential function
V;. Locally, particles tend to accumulate in the valleys
of the potential function and correspondingly potential
peaks repel particles. The bias p; yields the relative ten-
dency of the site i to transport particles to the left or
to the right once they leave the site. Domain bound-
aries where neighboring sites tend to transport particles
in the opposite directions correspond to the local extrema
of the potential function. Knowledge of the structure of
the potential, which is straightforward to obtain once
the environment is specified, turns out to be enough to
infer qualitative features of the density such as multi-
Gaussianity without having to calculate or measure the
density itself.

Figure 3(a) shows a probability density together with
the potential function for an equal bias case, p4 = p? #
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FIG. 3: (Color online) Probability densities for (a) p* = p? #
1, (b) 1> p* > p® and (c) p*p? =1 # p?. In (a) potential
function (bottom curve) and the stationary state u (top curve)
are plotted in addition to the density (middle curve). In (b)
the density (bottom curve) and a Gaussian modulated by the
stationary state u (top curve) are plotted. Frame (c) shows
the potential, density, and the reversible state 7.

1. In addition, the stationary state p is plotted (top
of the frame). The potential forms two linear potential
levels resulting in the observed double Gaussian density.
For general values of the biases, certain configurations of
the environment labels yield clearly distinguishable lin-
ear potential levels. Correspondingly, the particle den-
sity has equally many Gaussian envelopes. For example,
if the environment is made periodic, the potential (and
hence also the density) always has multi-level structure
also when p? # pB. This suggests to us that, whenever
the CLT holds, the density in fact is a modulated Gaus-
sian. The modulating factor at each site is a function
of the environment but not of time. Although the prob-
ability of sampling a perfectly periodic environment is
0, such environments may be physically important since
many structures in nature exhibit approximate period-
icity, including crystal structures in various solid state
systems. Periodic environments can also be engineered
on purpose.

The evidence points to the stationary state p being
the modulator in the ballistic CLT regime. Indeed, the
density in Figure 3(a) is perfectly reproduced (less nor-
malization) by multiplying ¢ with a Gaussian having the
measured mean and variance. Further, Figure 3(b) shows
such modulated Gaussian which closely follows the actual
density for a more generic transient case.

In Figure 3(c), pAp? = 1 # p# and the particles be-
come localized in the potential wells and make occasional
quick journeys from one well to the next, which is anal-
ogous to tunneling through potential barriers. In this
recurrent case, an excellent prediction for the density is
given by the reversible state 7 as illustrated in Fig 3(c).
Notice, in particular, how the valleys and peaks in the
potential are correlated with the maxima and minima,

FIG. 4: (Color online) Schematic diagram displaying param-
eter regions exhibiting qualitatively different system behav-
ior (assuming r* = 0). On the hyperbola p?p® = 1 the
walk is recurrent and shows Sinai diffusion, except precisely
at p?* = p? =1 where CLT holds. In regions (I) and (II) the
walk is transient to the left and right, respectively. Inside the
circle (pa)? + (p5)? = 2 the CLT holds. In the region (IIT)
between the hyperbola and the circle, the CLT does not hold.
When ¢ # 0, double-Gaussian densities emerge on the line

pt =p".
respectively, of the probability density.

C. Phase diagram

Let us collate a few known results relevant to our two
label model, A = {A, B}. With the exception of re-
currence, transience, and ballisticity, these results have
been proved for the case in which staying still is forbid-
den (r* = 0). Recall that p* = g—i is the bias of the site
type £ = A, B.

According to [10, 14], if p4p® = 1, the walk is recur-
rent. If pApP < 1, the walk is transient to the right. If in
addition p? +pP < 2, the walk is ballistic. By symmetry,
left transience corresponds to pAp? > 1. Below we will
discuss recurrent and right transient cases.

In the recurrent case, it has been shown [23] that the
CLT holds under the symmetry p’ =1 (¢ = A, B). The
reason is that the stochastic process (X,,) is a martingale
due to the symmetry. In the absence of this symmetry the
variance grows according to the Sinai law (logn)*. Sinai
[3] studied walks for which the probabilities p; = 1 — ¢;
(r; = 0) are i.i.d. random variables whose values are not
quenched, meaning that the walks are averaged over all
environments. His result is that, in the recurrent case the
variance of X,, grows as (logn)*, which is astoundingly
slow compared with the usual n. The limit distribution is
not Gaussian: it has been computed explicitly by Kesten
and Golosov [21, 22]. However, if one allows r; > 0 and
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FIG. 5: (Color online) Cumulative distribution function for
(a) 1 > p? > pP and (b) p?p® = 1 # p*. Insets show
the corresponding probability densities where the solid curves
are Gaussian functions with zero mean and whose variances
correspond to the data. For both frames n = 10°.

imposes the additional inter-site symmetry p; = g;41 for
all 4, which yields a flat potential (6V; = 0), the usual
CLT does hold [24].

Under the assumption 7¢ = 0 and p“p? < 1 (tran-
sience to the right), Goldsheid [17] has shown that
(p1)? + (pP)? < 2 suffices for the CLT. Now, if p4 > 1,
then pP < 1 by transience, such that the equation
(p1)* + (pP)®* = 2 has precisely one positive solution
s> 0. If 0 < s < 2, the statistical behavior of X, is com-
plicated and there is no limit distribution [25]. Indepen-
dently of Goldsheid, Peterson [25] has also obtained the

CLT, under stronger assumptions which include s > 2.

Figure 4 summarizes the above knowledge of the case
=0 (¢ = A, B) in the form of a schematic phase di-
agram of the system in terms of the biases p? and pZ.
Superimposed is the double-Gaussian region we have ob-
served when rf > 0.

For p4 = pP, double-Gaussian density functions
emerge. If p* ~ pB, both the probability density and
the underlying potential exhibit a double structure. How-
ever, only for p4 = pP are the two densities strictly Gaus-
sian. The larger the difference in the biases the larger
the local fluctuations in the components of the probabil-
ity density such that eventually the fluctuations grow to
become of the order of the amplitude of the curves them-
selves and consequently the double Gaussian structure is
washed away as illustrated in Figure 5(a), where w; €
{(%,1—10, %) (130, 10 10 } When p? < 1 and p? > 1, or
vice versa, irregularity of the distribution even at the cu-
mulative level is observed in simulations as shown in Fig-
ure 5(b), where w; € {(15 15> 15): (35+ 15> 1) }- Whether
this irregularity eventually disappears or persists for-
ever depends on whether the parameters are in the CLT
regime — which at least for 7* = 0 is (p4)% + (pP)? < 2
— or not.

FIG. 6: (Color online) Variances as functions of time for (i)
p* =pP =1, (i) p* = p” # 1, and (iii) p*p” =1 # p*. The
functional forms of the solid curves are marked in the figure.
With nearly equal bias the variance grows linearly with time
exhibiting normal diffusion. When at least one of the biases
is different from unity the variance begins to fluctuate. In
the strongly trapping case (opposite bias) particles become
strongly subdiffusive and localize.

D. Scaling of variance

Figure 6 shows the variance of X, as a func-

tion of n computed for three different parameter

sets: (1) w; € {( 100’18000’%) (91000’2387%)} (ii)

w; € {( 1007180907%) (9(1)0’838’W} and (ili) w; €

10 89 1 i 889 10 .
{(1003 100" T00)" (9007 900> 300) ). For (i) the potential
function has horizontal two-level structure and the vari-
ance grows linearly with n exhibiting normal diffusion.

In case (ii) the two-level potential is tilted induc-
ing global drift to the system and the resulting vari-
ance shows prominent persistent oscillations. The sys-
tem mimics normal diffusion on average but alternates
between sub and superdiffusive behavior. This poten-
tially transient behavior is understood to be caused by
the probability mass propagating through focusing and
defocusing regions of the fixed potential landscape. For
practical purposes the fluctuations are quite prominent
and should be significant for experiments.

The third case (iii) demonstrates the effect of strongly
trapping quenched environment whence the particles
need to tunnel through arbitrarily high potential barriers
and the system exhibits localization, as expected on the
basis of the literature on the case 7 = 0. By the same
token, we typically observe localization of the density of
the kind displayed in Figure 5 when pp? ~ 1 (excluding
the martingale case p? = pP = 1), although by abstract
results on the ¢ = 0 model this is likely to be a transient
phenomenon if (p?)2? + (pP)? < 2 (region II in the phase
diagram).



V. DISCUSSION

We have investigated a model of a random walk in a
quenched random environment. In the existing litera-
ture, particle distributions have been studied at a coarse
diffusive scale. Indeed, the CLT gives asymptotic approx-
imations of the probabilities P(av/n < X, —EX,, < b\/n)
for fixed pairs a < b in the large n limit. In our work we
have investigated substantially finer details of the distri-
bution by studying P(X,, = k), for fixed values of k.

It turns out that the latter local distribution has an un-
expectedly rich, highly oscillatory, nature. This is true
even in the CLT regime, in spite of the fact that the
cumulative distribution obtained by integrating the par-
ticle density over large length scales reduces to a perfectly
Gaussian cumulative function. Such prominent and per-
sistent oscillations are significant to experiments in which
information regarding the scaling limit of the system is
not sufficient. In this paper we have obtained theoretical
understanding of them.

For equal-bias situations, as well as for periodic en-
vironments with generic biases, the particle density is
observed to break up into multiple Gaussian envelopes
whose relative amplitudes are given by the ratio p /pel
for labels ¢,¢" € A. This ratio is found to be correctly
predicted by the stationary state p. Generically, for tran-
sient cases the density can be predicted by multiplying u

with the Gaussian whose mean and variance match those
of the observed distribution. In recurrent cases we find,
as one would expect based on related literature, that the
reversible state m provides the most accurate prediction
for the particle density.

For the sake of concreteness, we have used traditional
terminology in that the walk represents a particle in a
medium. This should not be construed as a restriction
of applicability to other types of processes. Nor should
it be mistaken to mean that the basic constituents, the
sites (or ‘cells’), must be small let alone microscopic. We
believe that the observations made here can be extended
to a range of processes occurring in random or otherwise
disordered environments. In this paper, we have stud-
ied an ensemble of noninteracting particles. In future,
it will be interesting to investigate the universality, per-
sistence and stability under weak particle interactions of
the observed multi-Gaussian densities in both classical
and quantum systems in the presence of quenched envi-
ronments.
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