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Abstract

A phase-space anisotropic operator in H = L2(Rn) is a self-adjoint operator
whose resolvent family belongs to a natural C∗-completion of the space of Hörmander
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berg group. The essential spectrum of such a phase-space anisotropic operator is the
closure of the union of usual spectra of all its ”phase-space asymptotic localizations”,
obtained as limits over diverging ultrafilters of Rn × Rn-translations of the operator.
The result extends previous analysis of the purely configurational anisotropic opera-
tors, for which only the behavior at infinity in Rn was allowed to bo non-trivial.
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1 Introduction and main results
We are going to study self-adjoint operators acting in the Hilbert space H := L2(X ),
where X is an n-dimensional real vector space. Let us also set Ξ := X ×X ∗, where
X ∗ denotes the dual of X . For reasons coming from physics, we are going to call the
spaces X , X ∗ and Ξ the configuration, the momentum and the phase space, respectively.
On Ξ there is a canonical symplectic form given by [[X,Y ]] = [[(x, ξ), (y, η)]] := y·ξ−x·η,
in terms of the duality X ×X ∗ 3 (z, ζ) 7→ z · ζ := ζ(z) ∈ R.

Our main result will be a formula giving the essential spectrum spess(H) of operators
H affiliated to a remarkable C∗-algebra B0(H) of bounded linear operators in H (this
means that the resolvent family of H belongs to B0(H)). This formula will involve a
certain type of limits of the operator H along suitable filters of the phase space Ξ.

To define B0(H), we introduce first some notions and notations. We set B(H) for the
C∗-algebra of linear bounded operators inH and K(H) for its ideal of compact operators.
The group of unitary operators in H will be denoted by U(H). There is a projective
representation W : Ξ→ U(H) with 2-cocycle κ(X,Y ) := exp(i/2[[X,Y ]]), given by

[W (x, ξ)u](y) := ei(y−x/2)·ξu(y − x), x, y ∈X , ξ ∈X ∗, u ∈ H (1.1)

and verifying W (X)W (Y ) = κ(X,Y )W (X + Y ) for all X,Y ∈ Ξ. Associated to W ,
one has a (true) action of Ξ by automorphisms of the C∗-algebra B(H) given by

W (X)T := W (X)TW (−X), X ∈ Ξ, T ∈ B(H). (1.2)

It is not norm continuous, so it defines a proper C∗-subalgebra B0
W (H) ≡ B0(H) of

continuous vectors

B0(H) := {T ∈ B(H) | Ξ 3 X 7→ W (X)T ∈ B(H) is ‖ · ‖ −continuous}. (1.3)

Our main result expresses the essential spectrum of any observable H affiliated to
B0(H) as the closure of the union of spectra of a family of ”asymptotic obsevables”
obtained as ”limits at infinity” of H .

Theorem 1.1. Let H be a self-adjoint operator inH affiliated to B0(H). One has

spess(H) =
⋃

X∈δ(Ξ)

sp(HX ), (1.4)

where δ(Ξ) denotes the family of all ultrafilters on Ξ that are finer than the Fréchet filter
(composed of complements of the relatively compact subsets of Ξ). For any X ∈ δ(Ξ),
one sets HX := lim

X→X
W (X)H in the strong resolvent sense.

The statement is modelled on previous results (see [5, 9, 10, 11, 12] and references
therein) in which, as a rule, H has to be affiliated to the smaller algebra E(H) defined
in (2.3). Under this assumption, its essential spectrum can be expressed using limits
along diverging ultrafilters χ in the configuration space X applied to W (x, 0)H . Some
very partial information on full phase-space anisotropy is scattered through the existing
publications and (1.4) is meant to answer a conjecture of Vladimir Georgescu. Connected
results can be found in [15], in which however ultrafilters are not used and only bounded
operators are treated.

An important ingredient for proving Theorem 1.1 is
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Theorem 1.2. Let S ∈ B0(H) and X ∈ δ(Ξ). Then the limit TXS := lim
X→X

W (X)S

exists in the K(H)-strict topology and defines a C∗-morphism TX : B0(H) → B0(H).
The product morphism (TX )X∈δ(Ξ) : B0(H) →

∏
X∈δ(Ξ) B

0(H) has kernel K(H), so
the quotient B0(H)/K(H) can be identified with a C∗-subalgebra of

∏
X∈δ(Ξ) B

0(H).

The sign
∏

denotes a restricted product; its elements are families with a uniform
bound on the norms. We recall that the strict topology on B0(H) defined by the essential
ideal K(H) is given by the family of seminorms{

‖ S ‖KB(H):=‖ KS ‖B(H) + ‖ SK ‖B(H) | K ∈ K(H)
}
. (1.5)

This strict topology is weaker than the norm topology, but stronger than the strong opera-
tor topology, so the limits TXS also exist strongly.

For insight we recall some basic facts about the Weyl calculus, which will also be an
ingredient of the proof of Theorem 1.2. A correspondence between functions (and distri-
butions) f the phase space Ξ and operators Op(f) acting on functions on the configuration
space X is given formally by

[Op(f)u](x) :=

∫
X

dy

∫
X ∗
dη eiy·ηf

(
x+ y

2
, η

)
u(y). (1.6)

Various interpretations [7] can be given to this formula, under various assumptions on f
and u. We notice only that Op can be defined as an isomorphism between the space of
tempered distributions S ′(Ξ) and the space L[S(X );S ′(X )] of linear continuous opera-
tors from the Schwartz space S(X ) to its dual S ′(X ). It also restricts to an isomorphism
Op : S(Ξ)→ L[S ′(X );S(X )]. On various subspaces of S ′(Ξ) one introduces a multi-
plication ] (the Weyl composition of symbols) satisfying Op(f)Op(g) = Op(f]g). One
of these spaces is certainly S(Ξ), a (Fréchet) ∗-algebra under ] and complex conjugation.

Obviously B(H) = B
[
L2(X )

]
can be identified to a subspace of L[S(X );S ′(X )].

It follows that Op−1[B(H)] =: B(Ξ) ⊂ S ′(Ξ) is a C∗-algebra with a composition
law extending ] and with the norm ‖ f ‖B(Ξ):=‖ Op(f) ‖B(H). It is a rather ob-
scure algebra, with a non-interesting ideal structure (the only proper ideal of B(H) is
K(H)). The slightly smaller one Op−1[B0(H)] =: B0(Ξ), however, is extremely in-
teresting, its translational invariant ideal are well-understood and this is basic for getting
the result above on the essential spectrum of self-adjoint operators affiliated to B0(H) =
Op
[
B0(Ξ)

]
. We speak of translational invariant ideals because the C∗-algebra B0(Ξ)

itself is subject to the continuous action of Ξ by automorphisms f(·) → [T (X)f ](·) :=
f(· −X), restricted from S ′(Ξ) for instance. This follows from the definition of B0(Ξ)
and from the formula W (X)[Op(f)] = Op[T (X)f ], since clearly W (X)B0(H) =
B0(H) for every X ∈ Ξ. The main feature that makes B0(Ξ) treatable is the fact that it
is obtained by Rieffel deformation from the Abelian C∗-algebra BC0(Ξ) of all bounded
uniformly continuous functions on Ξ; see Proposition 2.2.

Rieffel deformation [17] is an exact functor between categories of C∗-dynamical sys-
tems with group Rd. Reducing the generality to fit to the present framework, assume that
(A,Θ,Ξ) is aC∗-dynamical system, i.e. the vector group Ξ acts strongly continuously by
automorphisms on the C∗-algebra A. On the C∞ vectors A∞ of the action, one uses the
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symplectic form on Ξ to deform the initial product to a new one (use oscillatory integrals)

f#g := 22n

∫
Ξ

∫
Ξ

dY dZe2i[[Y,Z]]ΘY (f)ΘZ(g). (1.7)

Keeping the same involution, one gets a ∗-algebra structure on A∞ which can be com-
pleted under a C∗-norm by techniques involving Hilbert modules. The action Θ of Ξ
transfers to the resulting C∗-algebra A. The correspondence A 7→ A can be raised also
to a correspondence between Θ-equivariant morphisms. Equally important, all the ideals
of A which are invariant under the action Θ are converted by deformation into invariant
ideals of A.

The first interesting example is obtained by choosing A = BC0(Ξ), acted continu-
ously by Ξ by translations (Θ = T ). In this case A∞ = BC∞(Ξ), formed of all the
C∞ functions f : Ξ→ C with all the partial derivatives bounded. On BC∞(Ξ) Rieffel’s
composition law # coincides with the Weyl multiplication ]. An expert in pseudodiffer-
ential operators would denote BC∞(Ξ) by S0

0,0(Ξ), so A forms in this case an operator
algebra extension of the zero order pseudodifferential symbols. One might say that they
have full phase-space anisotropy; elements of the Hörmander spaces S−mρ,δ (Ξ), m > 0
of strictly negative order could be considered trivial at infinity with respect to ξ ∈ X ∗,
having interesting (anisotropic) asymptotic behavior only in the variable x ∈X .

Since the Rieffel deformation of the C∗-algebra BC0(Ξ) coincides with B0(Ξ), it
is isomorphic via the representation Op with the C∗-subalgebra B0(H) of B(H). The
image through Op of the Rieffel deformation K(H) of the ideal C0(Ξ) of continuous
functions decaying at infinity coincides with K(H).

Then, by general principles, the relevant quotient B0(H)/K(H) will be isomorphic
to the Rieffel deformation of the quotient BC0(Ξ)/C0(Ξ). The first quotient is relevant
because the essential spectrum of an element of B0(H) (or of an operator affiliated to
it) coincides with the spectrum of its canonical image in B0(H)/K(H). This quotient is
extremely complicated, but can be seen as a C∗-subalgebra of the product

∏
X B0(H).

This follows after identifying the family of ideals JX = kerTX of B0(H) indexed by
ultrafilters X ∈ δ(Ξ) and satisfying ∩XJX = K(H). This is difficult to obtain for gen-
eral C∗-subalgebras of B(H), but for the particular case B0(H) the ground is prepared
by Rieffel’s deep analysis. It turns out that, by functoriality, it would be enough to find a
corresponding family {JX | X ∈ δ(Ξ)} of Ξ-invariant ideals in BC0(Ξ) with the prop-
erty that ∩XJX = C0(Ξ). This and other topological issues are discussed in [9, 10], and
implemented through the strategy we outlined above lead finally to Theorem 1.1.

We mention that many of the recent articles treating the essential spectrum of anisotropic
operators have as a background an Abelian locally compact group X [9, 10, 14], or even
rather general metric spaces X without a group structure [5, 8]. Rieffel’s calculus is not
yet developed in such a generality, so a lot of operators with a complicated phase-space
behavior still beg for an adequate treatment.

This short paper is not the right opportunity to draw the history of studying the essen-
tial spectrum with (or without) algebraic techniques. Beside the articles already quoted,
we send also to [1, 2, 13, 16, 18, 19] and to references therein for other results in this
direction.
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2 C∗-algebras of symbols and operators
Defining for x ∈ X and ξ ∈ X ∗ the unitary operators U(x) ≡ eix·P := W (−x, 0)
and V (ξ) ≡ eiQ·ξ := W (0, ξ), one gets strongly continuous unitary representations
U : X → U(H), V : X ∗ → U(H), satisfying for all (x, ξ) ∈ Ξ

U(x)V (ξ) = eix·ξV (ξ)U(x),

W (x, ξ) = e
i
2x·ξU(−x)V (ξ) = e−

i
2x·ξV (ξ)U(−x).

Their generators P = (P1 = −i∂1, · · ·Pn = −i∂n) and Q = (Q1, . . . , Qn) are the usual
momentum and position operators inH satisfying the Canonical Commutation Relations

i[Pj , Pk] = 0, i[Qj , Qk] = 0, i[Pj , Qk] = δjk.

We associate to U and V the actions by automorphisms

U : X → Aut[B(H)], U (x)T := U(x)TU(−x),

V : X ∗ → Aut[B(H)], V (ξ)T := V (ξ)TV (−ξ).

The relation
W (x, ξ) = U (x)V (ξ) = V (ξ)U (x), (x, ξ) ∈ Ξ

follows immediately. The corresponding C∗-subalgebras of continuous vectors will be
denoted, respectively, by B0

U (H) and B0
V (H). We recall that B0(H) ≡ B0

W (H) has
been defined at (1.3); obviously B0(H) = B0

U (H) ∩ B0
V (H). There are also smooth

Fréchet ∗-algebras B∞U (H),B∞V (H) and B∞(H) ≡ B∞W (H). The last one, for instance,
is composed of the bounded linear operators T for which Ξ 3 X 7→ W (X)T ∈ B(H) is
C∞ in norm.

Remark 2.1. It is easy to show that for all x ∈X , ξ ∈ Ξ, the transformations V (ξ), U(x)
and W (x, ξ) defines (by restriction) automorphisms of S(X ) and then (by transposition)
automorphisms of S ′(X ). Hence V (ξ),U (x) and W (x, ξ) will be automorphisms of
L[S(X ),S ′(X )] or of L[S ′(X ),S(X )]. The next relation, easy to check on S ′(Ξ), is
basic for our developments:

W (X) ◦Op = Op ◦ T (X), X ∈ Ξ. (2.1)

Consider the C∗-subalgebra of B(Ξ)

B0(Ξ) := Op−1
[
B0(H)

]
= {f ∈ B(Ξ) | lim

X→0
‖ T (X)f − f ‖B(Ξ)= 0}.

The next proposition identifies K(Ξ) := Op−1[K(H)] with C 0(Ξ), the Rieffel deforma-
tion ofC0(Ξ), as well as B0(Ξ) := Op−1[B0(H)] with BC 0(Ξ), the Rieffel deformation
of BC0(Ξ).

Proposition 2.2. The Weyl calculus Op realizes aC∗-isomorphism between BC 0(Ξ) and
B0(H). The image of C0(Ξ) through Op is precisely K(H).
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Proof. As said before, theC∗-algebra BC 0(Ξ) contains the ∗-subalgebraBC∞(Ξ) densely.
By the Calderon-Vaillancourt Theorem [7], Op : BC∞(Ξ) → B(H) (defined as an os-
cillatory integral) is a well-defined representation. In [15, Prop. 2.6] it is shown that it
extends to a faithful representation Op : BC 0(Ξ) → B(H). (The isometry of Op with
respect to the Rieffel norm ‖ · ‖BC 0(Ξ) is also proven in a different way in [3].) The
relation (2.1) shows that the space of smooth vectors of BC 0(Ξ), i.e. BC∞(Ξ), is sent
by Op to B∞(H) which is dense into B0(H). This already settles the first statement.

The second statement of the Proposition follows from the fact that Op[S(Ξ)] is dense
in K(H).

On B0(Ξ) the seminorms{
‖ f ‖kB0(Ξ):= ‖ f]k ‖B(Ξ) + ‖ k]f ‖B(Ξ) | k ∈ K(Ξ)

}
(2.2)

define the strict topology associated to the essential ideal K(Ξ). We are going to denote
by B0(Ξ)str the space B0(Ξ) endowed with this topology. On the other hand, we set
B0(H)str for the space B0(H) with the strict topology associated to the essential ideal
K(H), given by the family (1.5) of seminorms. We will need below a useful result on the
continuity of Op with respect to the strict topologies.

Corollary 2.3. The mapping Op : B0(Ξ)str → B0(H)str is an isomorphism.

Proof. This should be already clear. Working with the seminorms for instance, one
shows easily that ‖ Op(f) ‖Op(k)

B0(H)= ‖ f ‖
k
B0(Ξ) for every f ∈ B0(Ξ) and any k ∈

B0(H). This follows from the definitions, from the relations Op(f)Op(k) = Op(f]k)
and Op(k)Op(f) = Op(h]f) and from Proposition 2.2.

Remark 2.4. The basic C∗-algebras considered until now in connection with the investi-
gation of the essential spectrum of anisotropic operators are C∗-subalgebras of

E(H) := {S ∈ B0(H) | ‖ U(x)S(∗) − S(∗) ‖B(H)−→
x→0

0}. (2.3)

(The notation means that the condition is fulfilled both for T and T ∗.) It is clear that
E(H)B0

U (H) ⊂ E(H) ⊃ B0
U (H)E(H) so, a fortiori, E(H) is an ideal in B0(H). It is

known [9, 10] that E(Ξ) := Op−1[E(H)] coincides with the crossed productBC0(X )oτ
X and it is also easy to see that it is the Rieffel deformation of BC0(X ) ⊗ C0(X ∗).
They played a privileged role in [9, 10, 14] (even for Abelian locally compact groups X )
in the study of the essential spectrum of X -anisotropic operators in H = L2(X ), but
they are not enough to cover phase-space anisotropy.

Remark 2.5. Another natural ideal of B0(H) is

F(H) := {S ∈ B0(H) | ‖ V (ξ)S(∗) − S(∗) ‖B(H)−→
ξ→0

0},

for which obvious assertions can be made by analogy with E(H), both concerning the
structure and the usefulness. The essential spectrum of self-adjoint operators H affiliated
to F(H) would involve strong resolvent limits of V (ξ)H along ultrafilters finer than the
Fréchet filter in the momentum space X ∗.

As a consequence of the Riesz-Kolmogorov criterion, one has E(H)∩F(H) = K(H).
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Remark 2.6. The large C∗-algebras B0
U (H) and B0

V (H) are also useful for studying
anisotropic operators [5, 10], but since rather little is known about their ideal structure
there are only partial results.

3 Proof of Theorems 1.2 and 1.1
We are going to divide the proof in several steps.

A. This first step is ”purely topological”; we rely on results from [9, 10] in which we
replace X = Rn by Ξ = R2n. It is known [10, Sect. 5.1] that for any X ∈ δ(Ξ) and any
f ∈ BC0(Ξ) the limit

[TX (f)] (Y ) := lim
X→X

[T (X)f ] (Y ) = lim
X→X

f(Y +X) (3.1)

exists locally uniformly in Y ∈ Ξ. It defines a Ξ-morphism TX : BC0(Ξ) → BC0(Ξ),
meaning that it is a C∗-algebraic morphism and one has TX [T (X)f ] = T (X)[TX (f)]
for all X ∈ Ξ and all f ∈ BC0(Ξ). Denoting its kernel ker TX by LX , one has⋂

X∈δ(Ξ)

LX = C0(Ξ). (3.2)

This implies immediately the embedding (a C∗-algebraical monomorphism)

BC0(Ξ)

C0(Ξ)
↪→

∏
X∈δ(Ξ)

BC0(Ξ), f̂ 7→ (TX (f))X∈δ(Ξ) . (3.3)

B. We now use information from [17]. By Rieffel deformation one gets the Ξ-
morphism TX : B0(Ξ) → B0(Ξ) with kernel kerTX =: LX . To be precise, since
TX : BC0(Ξ)→ BC0(Ξ) is a Ξ-morphism, it restricts to a morphism TX : BC∞(Ξ)→
BC∞(Ξ) of the Fréchet ∗-algebras of smooth vectors. We recall that the same BC∞(Ξ)
is the space of smooth vectors for the action of Ξ in the deformed C∗-algebra B0(Ξ)
and that even the two natural Fréchet topologies coincide. Then TX extends to a C∗-
morphism TX : B0(Ξ) → B0(Ξ); its kernel LX := kerTX is the closure in B0(Ξ) of
L∞X = LX ∩BC∞(Ξ). As a consequence of (3.2), (3.3), of the fact that K(Ξ) is obtained
from C0(Ξ) by deformation and of the properties of the Rieffel calculus, one gets

⋂
X∈δ(Ξ)

LX = K(Ξ),
B0(Ξ)

K(Ξ)
↪→

∏
X∈δ(Ξ)

B0(Ξ). (3.4)

C. We apply now Proposition 2.2. Taking into account the isomorphism Op : B0(Ξ)→
B0(H), sending K(Ξ) into K(H), one gets the morphism TX := Op ◦ TX ◦ Op−1 :
B0(H)→ B0(H) with kernel kerTX =: LX = Op(LX ). Obviously

⋂
X∈δ(Ξ)

LX = K(H),
B0(H)

K(H)
↪→

∏
X∈δ(Ξ)

B0(H). (3.5)
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D. To finish the proof of Theorem 1.2, we only need to be more precise on the form of
the morphism TX . Relation (3.1) says that the limit TX (f) = C0− lim

X→X
T (X)f exists in

the strict topology on BC0(Ξ) defined by the essential ideal C0(Ξ), given by the family
of seminorms {

‖ f ‖hBC0(Ξ):=‖ fh ‖BC(Ξ) | h ∈ C0(Ξ)
}
. (3.6)

It follows easily that the morphism TX is given by TX (f) = K−limX→X T(X)f , the
limit being computed with respect to the K(Ξ)-strict topology on B0(Ξ). This is based
on the (topological) coincidence [17] of the Fréchet dense subspaces of smooth vectors
associated to the two actions:

[
BC0(Ξ)

]∞
T =

[
B0(Ξ)

]∞
T

and [C0(Ξ)]
∞
T = [K(Ξ)]

∞
T .

Using this, the definition of TX , Corollary 2.3 and formula (2.1), one can write

TX [Op(f)] :=Op [TX (f)] = Op
[
K− lim

X→X
T(X)f

]
=

=K− lim
X→X

Op [T(X)f ] = K− lim
X→X

W (X) [Op(f)] .

We conclude that TX (S) := K−limX→X W (X)S for any S ∈ B0(H), in the K(H)-
strict topology.

E. Theorem 1.1 follows easily from Theorem 1.2. The essential spectrum of H coin-
cides with the spectrum of its image (expressed at the level of resolvents) in the quotient
B0(H)/K(H). This one can be computed in the product

∏
X∈δ(Ξ) B

0(H), so it is the
closed union of spectra of all the components.

4 Affiliation
We give explicit affiliation criteria to the C∗-algebras B0(Ξ) and B0(H). Some of them
are (almost) obvious, others are rather simple adaptations of results from previous articles
(mostly [10]), so we present them as a sequence of examples. It goes without saying that
all the operators proven previously (as in [10, Sect.4]) to be affiliated to E(H) are also
affiliated to B0(H).

A. Clearly, every self-adjoint element of B0(H) is affiliated to B0(H). This includes,
for instance, operators of the form Op(f), with f ∈ BC∞(Ξ)R. Other examples areϕ(Q)
or ψ(P ) with ϕ ∈ BC0(X )R and ψ ∈ BC0(X ∗)R or self-adjoint linear combinations
of products of such operators.

B. If H0 is already shown to be affiliated, obviously H = H0 + H1 will be affiliated
too for any H1 ∈ B0(H). Assume for instance that Op(f0) is affiliated to B0(H). The
same will be true for Op(f0 + f1) for any real f1 ∈ BC∞(Ξ). In particular this happens
for H1 = λ ∈ R, so the affiliation to B0(H) of lower bounded operators H can be
reduced to the case H ≥ 1.

C. For real a, the convolution operator a(P ) is affiliated to B0(H) iff the function
(a + i)−1 is uniformly continuous, since W (x, ξ)

[
(a(P ) + i)−1

]
= (a(P + ξ) + i)−1.

Thus one needs to check that

sup
Y ∈Ξ

|a(Y +X)− a(Y )|
(1 + |a(Y +X)|)(1 + |a(Y )|)

−→
X→0

0.
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This happens, of course, when a ∈ BC0(X ∗), or when a is proper (diverges at infinity),
since in this case (a + i)−1 ∈ C ⊗ C0(X ∗) and a(P ) will even be affiliated to E(H).
There are, of course, many other opportunities for (a + i)−1 to be uniformly continu-
ous. Assume for instance, as in [10, 4.2], that a is C1 and equivalent to a weight. If
one has |a′| ≤ C(1 + |a|) for some constant C, then (a + i)−1 is indeed uniformly con-
tinuous. For criteria involving higher order derivatives, see [10, Ex. 4.17]. Let us use a
decomposition X ∗ = X ∗

1 × · · · ×X ∗
m and pick real numbers s1, . . . , sm. The function

a(ξ) := 〈ξ1〉s1 . . . 〈ξm〉sm leads to an operator a(P ) affiliated to B0(H) independently of
the signs of s1, . . . , sm. Another interesting example is a(ξ) := exp(s1ξ1 + · · ·+ snξn)
in X ∗ = Rn. Many other very anisotropic combinations are possible.

D. Similar statements hold for the multiplication operator b(Q). Of ourse this follows
directly, since W (x, ξ)

[
(b(Q) + i)−1

]
= (b(Q+x)+i)−1, but can also be deduced from

a general symmetry principle: Assume that f is affiliated to B0(Ξ) and identify X ∗ with
X . Then the function f◦(x, ξ) := f(ξ, x) is also affiliated to B0(Ξ).

E. LetH be a self-adjoint operator inH with domain E endowed with the graph norm.
Denoting by E∗ the (anti-)dual of E , one gets canonical embeddings E ↪→ H ↪→ E∗.
Assume that W (X)E ⊂ E , ∀X ∈ Ξ. Then H is affiliated to B0(H) if and only if
‖ [W (X), H] ‖B(E,E∗)−→

X→0
0.

F. If only the form domain G of the self-adjoint operator H is invariant under W , then
the relation ‖ [W (X), H] ‖B(G,G∗)≡‖ W (X)H −H ‖B(G,G∗)−→

X→0
0 would imply that

H is affiliated to the C∗-algebra B0(H).
See [10, Def. 4.7, Cor. 4.8, Prop. 4.9] for the affiliation of abstract operators defined

as form-sums H = H0 +H1.

5 Second order differential operators
We are interested in partial differential operators in H = L2(Rn) which are defined for-
mally as Ha :=

∑n
j,k=1 Pjajk(Q)Pk. Perturbations (especially by multiplication opera-

tors) can be added by the results reviewed in Section 4. It will always be assumed that the
matrix (ajk(x)) is positive definite and given by L1

loc-functions. Defining the quadratic
form q

(0)
a on C∞c (X ) (the smooth compactly supported functions on X = Rn) by

q(0)
a (u) :=

∫
Rn

dx

n∑
j,k=1

ajk(x)(∂ju)(x)(∂ku)(x),

we are also going to suppose that this quadratic form is closable. Generous explicit con-
ditions on a insuring this can be found in [4, 20].

We define a norm on C∞c (X ) by ‖ u ‖a:=
(
q

(0)
a (u)+ ‖ u ‖2

)1/2

and denote by
Ga the Hilbert space obtained by completing C∞c (X ) with respect to ‖ u ‖a. One has
canonically Ga ↪→ H ↪→ G∗a and q

(0)
a extends to a closed form qa : Ga → [0,∞).

A unique self-adjoint positive operator Ha is assigned to qa, with D(H
1/2
a ) = Ga and

‖ H1/2
a u ‖= qa(u)1/2, ∀u ∈ Ga; it extends to a symmetric element of B(Ga;G∗a). Just
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under the conditions above we say thatHa is weakly elliptic. If it is uniformly elliptic (i.e.
0 < c id ≤ a(·) ≤ c′ id <∞), it is known [6, 10] to be affiliated to E(H) ⊂ B0(H). On
the other hand, only the conditions 0 < a(·) ≤ c′ id <∞ are enough to conclude that Ha

is affiliated to B0
U (H). This is not enough for a complete characterization of the essential

spectrum of Ha, so we treat now affiliation to B0(H).

Proposition 5.1. Assume that 0 < a(·) ≤ c′ id < ∞ and that there is a continuous
function C : X → (0,∞) satisfying C(0) = 1 such that

a(z + x) ≤ C(x)a(z), ∀x, z ∈X . (5.1)

Then W (X)Ga ⊂ Ga for all X ∈ Ξ and Ha is affiliated to B0(H).

Proof. The first assertion is very simple to check.
Then notice that, computing on C∞c (X ), one has the identity

W (X)Ha −Ha =

n∑
j,k=1

Pj [ajk(Q+ x)− ajk(Q)]Pk

+

n∑
j,k=1

{ξjajk(Q+ x)Pk + Pjajk(Q+ x)ξk + ajk(Q+ x)ξjξk} .

Using (5.1) it follows easily that

〈u, [W (X)Ha −Ha]u〉 ≤ D(X) ‖ u ‖2Ga , ∀u ∈ C∞c (X )

with D(X) → 0 when X → 0, implying that ‖ W (X)Ha − Ha ‖B(Ga;G∗
a)→ 0 when

X → 0.
Thus Ha is affiliated to B0(H), by the criterion F of the preceding Section.

Remark 5.2. This is far from optimal. If the coefficients a(x) grow faster than |x|2 at
infinity, then Ha has a compact resolvent by [4, Cor. 1.6.7], so it is affiliated to K(H) ⊂
E(X ) ⊂ B0(H).

Remark 5.3. By [6, Th. 9], if there is a diverging sequence of points (xm)m∈N in the
configuration space X and a diverging sequence (rm)m∈N of positive numbers such that

lim
m→∞

{
sup

|x−xm|≤rm
‖ a(x) ‖

}
= 0,

then the operator Ha is not affiliated to the crossed product C∗-algebra E(H). This
happens for instance if ‖ a(x) ‖→ 0 when x → ∞. In a huge number of such situations
(5.1) is fulfilled and one really needs ultrafilters in phase space to describe the essential
spectrum.
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Math., 198, Birkhäuser, Basel (2001), 181-229.
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