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Abstract. We give a proof of Lp-bounds for the quasi-geostrophic equation and other
non-local equations.

The proof uses mainly tools from functional analysis, notably the product formulas (also
known as “operator splitting methods”) and the Bochner-Pollard subordination identities,
hence it could be applicable to other equations.
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1. Introduction

We consider the following PDE:

(1)

{
(∂t + v · ∇)u = −κ(−∆)su

∇ · v = 0,

where we assume v is known and x ∈ Rn or x ∈ Tn (we can also consider the case x ∈ Ω ⊂ Rn
where Ω is a smooth domain provided that v satisfies some extra conditions: in such case, the
equation (1) is supplemented with boundary conditions on ∂Ω). As usual, the time variable
is denoted by t ∈ R+.

We consider the initial value problem, with the initial condition

(2) u(x, 0) = u0(x).

The PDE in (1) is a transport-diffusion equation, and several equations in fluid dynamics
reduce to it. In many applications, the vector v depends on the vector u. For the quasi-
geostrophic equation in dimension 2 (see [CC04] and references therein) u = u(x, t) has the
physical meaning of a potential temperature, v = v(x, t) is the velocity vector, and κ > 0 is
the viscosity.

In the physical framework, u and v are related by the equation v = −∇⊥(−∆)−1/2u. On the
other hand, in this paper, we will prove the results for a more general v, fixed independently
of u. The reason for this generalization is that the relation between u and v complicates the
existence and regularity results, but once existence and regularity results are accomplished,
then the a-priori bounds can be proved for the v thus obtained in a larger generality.

We suppose that

(3) s ∈
(

1

2
, 1

)
,

1
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hence (−∆)s is a nonlocal operator (see, e.g., [Lan72, Ste70, Val09] and references therein
for further motivations on the fractional Laplacian). As customary, ∆, div and ∇ refer to
derivatives in x only, while the derivatives with respect to t will be always written explicitly.
The proof presented also works in the case s = 1 (see Remark 3.1, but then, in this case, the
result is classical).

We assume that

(4) for any T > 0, sup
|t|6T

∥∥v(·, t)
∥∥
C1 < ∞

and

(5) div v = 0.

That the Lp-norm (computed over the space variables) of the solution u is non-increasing
is one of the main results of [CC04]:

Theorem 1 ([CC04], page 516). Let v be a fixed vector field. satisfying (5). Let u be a
smooth solution of (1) with either x ∈ Rn or x ∈ Tn.

Then, for 1 6 p 6∞,

(6) ‖u(·, t)‖Lp 6 ‖u0‖Lp .

The goal of this note is to give a new, proof of the above result, using only functional
analysis tools (such as the Trotter-Lie-Kato product formula and the Bochner-Pollard sub-
ordination identity). In contrast with the proof in [CC04] which relies on explicit integral
representations of the fractional Laplacian for all the arguments, the present proof includes
hypothesis that are functional analysis (∆ generates a contraction semigroup in Lp) and geo-
metric (et∆ satisfies a comparsison principle). Hence they apply just as well to the cases in
which ∆ is a second order uniformly elliptic operator in divergence form. which generates a
contration semigroup in Lp. This is, of course, implied by the fact that it is uniformly elliptic
and has bounded coefficients.

When ∆ a self-adjoint, negative definite operator operator on L2, we present also a very
short proof, which, however, applies only for p ∈ [2,∞]).

Theorem 2. The conclusions or Theorem 1 also hold when ∆ is replaced by a second order,
uniformly elliptic operator in divergence form with uniformly bounded smooth coefficients in
Tn or Rn.

They also hold when x ∈ Ω ⊂ Rn is a domain with smooth boundary, v preserves ∂Ω and
u is required to satisfy Dirichlet boundary conditions.

We also note that, if we consider a fixed v, the proof presented here also provides a
comparison principle (see § 3.2 for details): that is, if u0 > ũ0, we get u(t) > ũ(t). Of course,
when the v depends on u, the comparison does not hold.

The idea of the proof is as follows. We introduce the notation, for fixed t ∈ R, we consider
the unbounded linear operators A and B on Lp given by

(Atf)(x) := −v(x, t) · ∇f(x)

and (Bf)(x) = −κ(−∆)sf(x)
(7)

we can construct two objects, namely:

• Ats, which is the evolution semiflow of the transport term, and solves (in the usual
sense of semiflow theory) the equation ∂tAtx = (v · ∇)Atx, Ass = Id,
• and the evolution semigroup of the diffusion part etB.
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We will show that

(8) each of the two evolutions does not increase the Lp norm.

Then, we will construct Gts, the evolution semiflow generated of At + B, and show that it
satisfies

(9) Gts = lim
N→∞

Ats+(t−s)((N−1)/N)e
(t−s)/N B · · · As+(t−a)(1/N)

s e(t−s)/N B.

Formulas of the form (9) have been called “operator splitting methods” in the numerical
analysis literature [CMHM78] and some versions of them apply to some non-linear operators
too. In our case, they are a time-dependent version of Trotter-Kato product formulas. Then,
Theorem 1 will follow by combining (8) and (9).

We will present two proofs of Theorem 1. The first proof is contained in § 2 and it extends
the methods of semigroup theory to the case of time dependent vector fields. In a second proof
we show that one can reduce to the time independent case by considering functions with one
variable more. The second proof, which is presented in § 3.4, is perhaps shorter theoretically,
but, for time stepping algorithms, it has the disadvantage that it requires functions of one
variable more.

The paper is organised as follows: in § 2, we give a first proof of Theorem 1. Then, we
collect in § 3 some further observations, such as the particular case s = 1, that is the standard
Laplace case, a comment on how to obtain a maximum principle from the results presented in
this paper, how to improve the decay bounds in the case of bounded domains, and a second
proof of Theorem 1.

2. Proof of Theorem 1

As indicated on the introduction, we will proceed to construct the evolution of the transport
part, the diffusion part the full evolution. As well as proving some preliminary properties,
including that each of transport evolution and the diffusion evolution satisfy (6). We will
also establish some other properties such as strong continuity, and exponential bounds

Then, using these preliminary estimates, we will show that (9) holds from which it is clear
that the a-priori bounds (6) hold also for the full evolution.

2.0.1. Results for the transport evolution. We will now show that one can construct the
evolution of the transport part. That is, we find a strongly continuous familyAts withAss = Id,
such that, for any fixed f ∈W 1,p, d

dtA
t
sf = f (here the derivative is understood in Lp sense).

The technique used for this construction is the rather standard method of characteristics, so
we go quickly over it.

Then, we will show that Ats satisfies

(10) ‖Atsf‖Lp = ‖f‖Lp .

For these goals, we proceed as follows. For any x ∈ Rn (or x ∈ Tn, or x ∈ Ω ⊂ Rn, if we are
in the setting of Theorem 2), let Φt

s(x) be the solution of the ODE

d

dt

(
Φt
s(x)

)
= −v

(
Φt
s(x), t

)
Φs
s(x) = x.

Such solution is well-defined for |t| 6 t0, for a suitable t0 > 0 depending on the Lipschitz
norm of v (recall (4)).

Of course, it is enough to show that (6) holds for t ∈ [0, T ] and then repeat the argument,
so we will take t ∈ [t, T ] and T > 0 suitably small from now on.
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We note that, by the standard existence and uniqueness of ODE’s, we have

(11) Φt′′
t′ ◦ Φt′

t = Φt′′
t .

In particular, Φs
t = (Φt

s)
−1, so that d

dtΦ
s
t (x)|t=s = v(x, s).

We also observe that,

(12) |Φt
s(x)− x| 6 ‖v‖L∞ t.

Given a smooth function f : Rn → R, we define

Ψf (x; s, t) := f
(
Φs
t (x)

)
.

Differentiating with respect to t the identity Ψf (Φt
sx; s, t) = Ψf (Φt

s◦Φs
tx) = f(x), and setting

t = s, we obtain:

(13) ∇Ψf (x, s, s) · v(x, s) +
∂Ψf

∂t
(x; s, t)|t=s = 0.

Notice also that

(14) Ψf (x; s, s) = f
(
Φt
s(x)

)
= f(x).

Thus, we have that

Atsf(x) = f
(
Φt
s(x)

)
,

providing a solution of the evolution equation. It is also standard to prove that the solution
is unique.

Also, if f ∈ Lp and p 6=∞,∫
|Atsf(x)|p dx =

∫ ∣∣f(Φt
s(x)

)∣∣p dx =

∫ ∣∣f(x)
∣∣p dx

because by (5) and Liouville Theorem Φt is volume preserving. This establishes (10) for
p ∈ [1,∞). The case of p = ∞ of (10) is clear because supx |f(Φt(x))| = supx |f(x)|. This
finishes the proof of (10) for smooth functions. Extending the results to all functions in Lp

is a standard approximation argument.
Now, prove that Ats is strongly continuous. For this, we consider the space Y given by the

functions f ∈ C1 ∩ Lp with |∇f | ∈ Lp. Notice that Y is dense in Lp.
Thus, given f ∈ Lp, we take j ∈ N, j > 1, and fj ∈ Y such that ‖f − fj‖Lp 6 1/j and we

use (12) and (10) to deduce that

lim
t→s
‖Atsf − f‖Lp = lim

j→∞
lim
t→0
‖Atsf − f‖Lp

6 lim
j→∞

lim
t→0
‖fj ◦ Φt − fj‖Lp + ‖Atsf −Atsfj‖Lp + ‖f − fj‖Lp

6 lim
j→∞

lim
t→0
‖∇fj‖Lp‖Φt

s(x)− x‖L∞ + 2‖f − fj‖Lp

6 lim
j→∞

lim
t→0
‖∇fj‖Lp‖v‖L∞ t+

2

j
= 0.

This establishes the strong continuity of Ats.

2.1. Results for etB. Now, we study the operator B and the associated semigroup etB. We
will show that

(15) ‖etBf‖Lp 6 ‖f‖Lp ,

that

(16) etB is strongly continuous in Lp
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and that

(17) ‖etBf‖W 1,p 6
C

t1/(2s)
‖f‖Lp .

The proofs will make use of the Bochner-Pollard subordination identity (see, e.g., Propo-
sition 4.7 and Lemma 4.10 in [dlLV09] and also [Pol46]) according to which

(18) etB =

∫ ∞
0

eσt
1/sκ1/s∆φs(σ) dσ,

for a suitable nonnegative function φs given rather explicitly in [Pol46].
We remark that, by taking t = 0 in (18), we obtain

(19)

∫ ∞
0

φs(σ) dσ = 1.

The main idea of the subordination identity is that we can transfer properties from the
heat equation to the fractional Laplacian. For example, the maximum principle of for the
heat equation, using the positivity of φs implies a comparison principle for the et(−∆)s .

One can use several methods to establish the desired properties of the heat equation,
either using explicit representations or using more functional analysis [Wid75, Fat83] We will
present two methods, using the explicit formulas for the Laplace equation (see § 2.1.1) and
using functional analysis tools (see § 2.1.2).

2.1.1. Properties of the heat kernel in Rn. In this section, we present the proofs of (15), (16)
and (17) using the explicit representation of the heat kernel in Rn.

We define the translation of a function f by a vector y as

τyf(x) := f(x− y).

It is classical (see, e.g., [Eva98, p. 47]) that

(20) et∆f(x) =
1

(4πt)n/2

∫
Rn

e−|y|
2/(4t)τyf(x) dy

and therefore, by a standard triangle inequality for integrals,

(21) ‖et∆f‖Lp 6
1

(4πt)n/2

∫
Rn

e−|y|
2/(4t)‖τyf‖Lp dy = ‖f‖Lp .

Making use of (18), (19) and (21), we obtain

‖etBf‖Lp 6
∫ ∞

0
‖eσt1/sκ1/s∆f‖Lp φs(σ) dσ 6 ‖f‖Lp ,

that is (15).
Now, we prove (16). For this, exploiting (20) and the triangle inequality, we see that

‖et∆f − f‖Lp =

∥∥∥∥ 1

(4πt)n/2

∫
Rn

e−|y|
2/(4t)

(
τyf(x)− f(x)

)
dy

∥∥∥∥
Lp

=

∥∥∥∥ 1

πn/2

∫
Rn

e−|ζ|
2
(
τ√4tζf(x)− f(x)

)
dζ

∥∥∥∥
Lp

6
1

πn/2

∫
Rn

e−|ζ|
2
∥∥∥τ√4tζf − f

∥∥∥
Lp
dζ.
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Therefore, recalling (18),

‖etBf − f‖Lp =

∥∥∥∥∫ ∞
0

(
eσt

1/sκ1/s∆f − f
)
φs(σ) dσ

∥∥∥∥
Lp

6
∫ ∞

0

∥∥∥eσt1/sκ1/s∆f − f
∥∥∥
Lp
φs(σ) dσ

6
1

πn/2

∫ ∞
0

[∫
Rn

e−|ζ|
2
∥∥∥τ√4σt1/sκ1/sζ

f − f
∥∥∥
Lp
φs(σ) dζ

]
dσ.

Accordingly, using the Dominated Convergence Theorem and the continuity of the transla-
tions in Lp, we conclude that

lim
t→0+

‖etBf − f‖Lp = 0,

that is (16).
Now we prove (17), with an argument close to the one used in (15) (here C is a constant

that may be different from line to line). For this, using (20), and changing variables of
integration, we see that

∂xje
t∆f(x) = ∂xj

1

(4πt)n/2

∫
Rn

e−|x−y|
2/(4t)f(y) dy

= Ct−(n+1)/2

∫
Rn

e−|x−y|
2/(4t) xj − yj√

t
f(y) dy

= Ct−(n+1)/2

∫
Rn

e−|y|
2/(4t) yj√

t
f(x− y) dy

= Ct−(n+1)/2

∫
Rn

e−|y|
2/(4t) yj√

t
τyf(x) dy.

Consequently,

‖∂xjet∆f‖Lp 6 Ct−(n+1)/2

∫
Rn

e−|y|
2/(4t) |y|√

t
‖τyf‖Lp dy = Ct−1/2‖f‖Lp .

Hence, recalling (18) and (19),

‖∂xjetBf‖Lp 6
∫ ∞

0
‖eσt1/sκ1/s∆f‖Lpφs(σ) dσ

6 C

∫ ∞
0

t−1/(2s)‖f‖Lpφs(σ) dσ

= Ct−1/(2s)‖f‖Lp .

This, together with (15), proves (17).

2.1.2. Results for e−t(−∆)s using functional analysis. Considerable insight can be obtained
also using functional analysis tools, besides the more explicit representations.

Though we focus on the case in which ∆ is the standard Laplacian, our argument also
works if we take ∆ to be a general second order, uniformly elliptic operator (to wit, in the
setting of Theorem 2). We note that the domain of ∆ is the space W 1,p, which is defined using
the standard Laplacian (supplemented with the appropriate Dirichlet boundary conditions
in the case of a domain Ω).

We define et∆ via the Hille-Phillips-Yoshida theorem. This gives that et∆ is a contraction
semigroup on Lp.

We recall that, following standard practice, contraction semigroup means ‖et∆‖ 6 1 and
we say that an operator A is a contraction when ‖A‖ < 1 We will also use the name evolution
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semiflow for a family Ats, 0 6 s 6 t of linear operators satisfying At′′t = At′′t′ At
′
t , Ass = Id, and

we call it a contraction evolution semiflow when ‖Ats‖ 6 1.
The abstract theory of semigroups (see, for example [Sho97, Tay97]) gives that ‖et∆∆‖L(Lp,Lp) 6

Ct−1 or equivalently ‖et∆‖L(W 1,p,Lp) 6 Ct−1.

Using the subordination identity, we find that we can define the semigroup e−t(−∆)s and
that we have:

‖e−t(−∆)s∆‖L(Lp,Lp) 6 Ct−1

‖e−t(−∆s‖L(W 1,p,Lp) 6 ‖e−t(−∆s‖L(W 2s,p,Lp) 6 Ct−1
(22)

The evolution generated by second order elliptic operators satisfy the maximum principle.
That is, ‖et∆f‖L∞ 6 ‖f‖L∞ .

Using the subordination identity (see (18) and (19)) and the fact that φs > 0, we obtain
that

‖e−t(−∆)sf‖L∞ 6 ‖f‖L∞ .
It is worth noticing that one important particular case of the set-up is when p = 2 and −∆ is
selfadjoint. In this case, one can use the functional calculus of selfadjoint operators to define
the exponential.

Finally, we note that

(23)
d

dt
‖e−t(−∆)sf‖2L2 = 2〈−(−∆)se−t(−∆)sf, e−t(−∆)sf〉 6 0

Then the result for all Lp, 2 6 p 6∞ follows from Marzinkiewicz interpolation theorem (see,
e.g., [Ste70]).

The smoothing bound in (16) follows because et∆∆ is, in the spectral representation, just

the multiplication by xetx for L2([−∞, 0], µ), and e−t(−∆)s∆ is the multiplication by e−t|x|
s
x.

Accordingly, the desired bounds follow by taking the supremum of the multipliers.

2.2. Results for the evolution semiflow generated by At+B. Our goal is now to show
that At + B generates an evolution Gts which satisfies the flow equation and it is strongly
continuous. As a byproduct – which we will not explicitly use – one has that this evolution is
smoothing and therefore, compact. We will also establish several regularity properties that
will be needed in the proof of the product formula (9) in § 2.3.

We will formulate a fixed point equation for Gts. Then, we will show that the fixed point
satisfies the flow equation and the desired properties. Similar strategies appear in [Hen81].
The perturbation results use the fact that At is lower order than B (and that is why we
require (3)).

Given a measurable norm-bounded family of bounded operators Gts from Lp taking values
in W 1,p, we define

(24) T [Gts] = e(t−s)B +

∫ t

s
e(t−σ)BAσGσs dσ

We will find a fixed point for T . The existence of such fixed point follows from the following
claim: for small T ,

(25) T is a contraction over L∞
(
[s, s+ T ],L(Lp,W 1,p)

)
.

To establish (25), we observe that T is an affine operator and so it is natural to estimate
the norm of its linear part. Indeed,

(26) ‖Atf‖Lp 6 C‖f‖W 1,p ,
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thanks to (4). Thus, given any Γ ∈ L∞
(
[s, s+ T ],L(Lp,W 1,p)

)
, we have

sup
t∈[s,s+T ]

∥∥∥∥∫ t

s
e(t−σ)BAσΓσs dσ

∥∥∥∥
L(Lp,W 1,p)

6 sup
t∈[s,s+t]

∫ t

0
‖e(t−σ)B‖L(Lp,W 1,p)‖Aσ‖L(W 1,p,Lp)‖Gσs ‖L(Lp,W 1,p) dσ

6 C sup
t∈[s,s+T ]

∫ t

s
(t− σ)−1/(2s) dσ · sup

ϑ∈[s,s+T ]
‖Γϑ2‖L(Lp,W 1,p)

6 CT (2s−1)/(2s) sup
t∈[s,s+T ]

‖Γts‖L(Lp,W 1,p)

6
1

2
sup

t∈[s,s+T ]
‖Γts‖L(Lp,W 1,p).

(27)

thanks to (3), (17) and (26), if T is small enough.
Now, we use (27) with Γ := G −H, for any given G, H ∈ L∞

(
[s, s+ T ],L(Lp,W 1,p)

)
: we

have that

‖T (G)− T (H)‖
L∞
(

[s,s+T ],L(Lp,W 1,p)
) = sup

t∈[0,T ]

∥∥∥∥∫ t

s
e(t−σ)BAσ(G −H)σs dσ

∥∥∥∥
L(Lp,W 1,p)

6
1

2
‖G −H‖

L∞
(

[s,s+T ],L(Lp,W 1,p)
).(28)

This proves (25) and it allows us to take the fixed point of T that agrees with Id at t = s.
We also have that if f ∈ Dom(B), then d

dtG
t
sf |t=s = (B + As)f . Indeed, because of the

fixed point property, we have

d

dt
Gtsf |t=s =

d

dt
e(t−s)Bf +

d

dt

∫ t

s
e(t−σ)BAσGσs dσ.

Since the integrand is continuous, the existence of the derivative follows from the Fundamental
Theorem of Calculus, so that Dom(B) = Dom(B + As). Of course, in our case, the result is
even more concrete because Dom(B) = W 2s,p ⊂W 1,p and Dom(At) = W 1,p.

Now we establish that the fixed point of T satisfies the flow property

(29) Gt′′t = Gt′′t′ Gt
′
t

for 0 6 t 6 t′ 6 t′′.
To prove (29), we compute it by dividing the integrand into pieces, using the semigroup

property of the exponential and the fixed point equation:

Gt′′t = e(t′′−t)B +

∫ t′′

t
e(t′′−σ)BAσGσt dσ

= e(t′′−t′)Be(t′−t)B + e(t′′−t′)B
∫ t′

t
e(t′−σ)BAσGσt dσ +

∫ t′′

t′
e(t′′−σ)BAσGσt dσ

= e(t′′−t′)BGt′′t′ +

∫ t′′

t′
e(t′′−σ)BAσGσt dσ

(30)

On the other hand, multiplying by Gt′t on the left the equation satisfied by Gt′′t′ we obtain

(31) Gt′′t′ Gt
′
t = e(t′′−t′)BGt′t +

∫ t′′

t′
et
′′−σAσGσt′Gt

′
t dσ
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Hence, subtracting (30) and (31), we obtain that the function H(t′′) ≡ Gt′′t −Gt
′′
t′ Gt

′
t satisfies

H(t′′) =

∫ t′′

t′
e(t′′−σ)BAσH(σ) dσ.

We have already argued that the right hand side of the above equation is a strict contraction
for t′′ − t′ small. Hence, we conclude that H ≡ 0, and this proves (29).

Notice that since, by construction, Gts ∈ L∞
(
[0, T ],L(Lp,W 1,p)

)
, we have that

(32) C0 > sup
t∈[0,T ]

‖Gts‖L(Lp,W 1,p),

for some C0 > 0.
Now, for t > σ > 0, we recall that ‖e(t−σ)B‖L(Lp,Lp) and ‖A‖L(W 1,p,Lp) are bounded, due

to (15) and (26). Therefore, using (32), we conclude that∥∥∥∥∫ t

s
e(t−σ)BAσGσs dσ

∥∥∥∥
L(Lp,Lp)

6
∫ t

s

∥∥∥e(t−σ)BAσGσs
∥∥∥
L(Lp,Lp)

dσ

6
∫ t

s
‖e(t−σ)B‖L(Lp,Lp)‖Aσ‖L(W 1,p,Lp)‖Gσs ‖L(Lp,W 1,p) dσ

6 λ(t− s)

(33)

for some

(34) λ > 0

and so, using (15) once again,

‖Gts‖L(Lp,Lp) 6 ‖etB‖L(Lp,Lp) +

∥∥∥∥∫ t

0
e(t−σ)BAσG

σ
s dσ

∥∥∥∥
L(Lp,Lp)

6 1 + λ(t− s)

6 eλ(t−s).

(35)

2.3. Proof of the product formula (9). The proof follows very closely the argument of
[Nel64, Theorem 9], but we present here the short proof since our result differs from the result
in [Nel64] in that

• we consider non-autonomous problems,
• we allow that the group G grows exponentially,
• and we do not assume1 that it is a contraction semiflow.

The proof that we present below also takes advantage of the fact that Dom(At+B) = Dom(B)
and that, therefore, Dom(B) is a Banach space with the norm ‖f‖B ≡ ‖Bf‖ + ‖f‖. In our
case, ‖f‖B = ‖f‖W 2s,p .

We notice that the proof of [Nel64] is simpler than other proofs available in the literature,
because it assumes that At + B generate an evolution semiflow and that At + B is closed,
rather than showing it. This is what we have accomplished in the previous sections and now
we will take advantage of it.

To simplify the typography, for fixed 0 < s < t ∈ R, N ∈ N we introduce the notation
h = (t− s)/N , ti = s+ ih.

1Of course one of the conclusions of (9) is that indeed G is a contraction evolution semiflow when At
s, etB

are, but we have not proved it yet.
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We observe that

AttN−1
◦ ehBAtN−1

tN−2
· · · At1t0e

hB − GttN−1
GtN−1

tN−2
· · · Gt1t0 =

=
(
AttN−1

◦ ehB − GttN−1

)
GtN−1

t0
+

+AttN−1
◦ ehB

(
AtN−1

tN−2
ehB − GtN−1

tN−2

)
GtN−2

t0

+ · · ·+

+AttN−1
◦ ehBAtN−1

tN−2
· · · At2t1e

hB
(
At1t0e

hB − Gt1t0
)
.

(36)

Note that all the terms in (36) contain a factor in parenthesis (where the interesting cancel-
lation will take place) and the other factors are all either A, ehB – whose norm is bounded

by 1 – or Gtis – whose norm is bounded by eλ(t−s). Accordingly, the product of the norms of
all the factors in a term, except for the term in parenthesis, can be bounded by eλ(t−s).

Now we proceed to estimate the factors in parenthesis in (36), by computing their action
on a vector f .

The main observation of [Nel64] is that if f ∈ Dom(B), then

‖(At+ht ethB − Gt+ht )f‖Lp 6 Ch‖f‖W 2s,p

and, moreover,

(37) (At+ht ethB − Gt+ht )f

tends to zero. This observation can be verified here because

At+ht f = (Id + hAt)f + o(h),

ehBf = (Id + hB)f + o(h)

and Gt+ht f = (Id + h(At +B))f + o(h).

Moreover, as h → 0, we have that (37) tends uniformly to zero for f on any compact set
of W 2s,p.

We recall that At, considered as an operator from W 1,p to Lp, depends continuously on t.
A fortiori, it is continuous on t when considered from W 2s,p to W 1,p. Hence, we can obtain
that the convergence of (37) as h tends to zero is uniform for a compact set of t.

Now, we note that for any u > 0, Gs+us is a compact operator in W 2s,p as it follows from
the fact that it maps a ball into the domain of ((−∆)s)r for any r.

Therefore, we obtain that ‖(At+ht ehB −Gt+ht )Gtsf‖W 2s,p/h tends to zero uniformly in com-
pact sets of t which exclude t = s and for f in a bounded set of W 2s,p.

Now, we can estimate (36). Indeed, given ε > 0 we can select a t? > s such that∑
ti<t∗

‖(Ati+hti
ehB − Gti+hti

)Gtis f‖Lp 6 Ch‖f‖W 2s,p 6 ε/3.

Then, we have, for ti > t?,

‖(Ati+hti
ethB − Gti+hti

)Gtis ‖Lp 6 Ch‖f‖W 2s,p 6 o(1/N)

uniformly in i. The desired result follows by observing that in the sum there are at most N
terms, so that the sum is less than No(1/N), so that it can be made smaller than ε/3 by
taking N large enough.

This completes the proof2 of (9). Consequently, the claim in Theorem 1 follows by com-
bining (9), (10) and (15).

2We remark that the above proof of (9) is not so useful for numerical analysis since it uses compactness
arguments. Nevertheless, using explicit regularity modulus – which depend on the details of the operators
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3. Some final observations

3.1. The case s= 1. The case s = 1 (i.e. when the fractional Laplacian reduces to the
classical Laplacian) can also be established by these methods. In that case, we do not need
to use subordination. The Lp bounds of etB needed are just the Lp bounds of the heat
equation.

3.2. A maximum principle. Notice that the present proof also has a comparison principle
as a corollary.

Indeed, since et∆f > 0 for f > 0 (which is a maximum principle for parabolic equations)
the subordination formula gives etBf > 0. The maximum principle for etA is clear from the
method of characteristics.

With this, we also obtain the maximum principle for
(
e

t
n
Ae

t
n
B
)n

and, by the product

formula (9), we obtain the maximum principle for et(A+B).

3.3. Improved estimates in bounded domains. If, in Theorem 2, we consider the prob-
lem defined on a domain with Dirichlet boundary conditions, some refinements on the decay
are possible (in this case, as required by Theorem 2, we need that v has no normal component
at the boundary of Ω).

Indeed, to estimate (23), we can use the Poincaré inequality and we obtain

d

dt
‖e−t(−∆)sf‖2L2 6 −µ‖e−t(−∆)sf‖2L2

and, therefore

‖e−t(−∆)sf‖L2 6 C exp(−tµ/2).

Using Marcinkiewicz interpolation, with the L∞ bounds coming from the maximum principle,
we obtain

‖e−t(−∆)sf‖Lp 6 C exp(−tµ/p).
Then, using that Ats preserves the Lp norm and the product formula (9), we obtain that

‖Gsxf‖Lp 6 C exp(−tµ/p).

3.4. Reduction of the time dependent case to the time independent one, and a
second proof of Theorem 1. It is a general fact that one can reduce the time-dependent
results to the time independent ones using one variable more. This simplifies several aspects
of the theoretical proofs but the operators do not become smoothing in the extra variable.
Moreover, such procedure is very unsuitable for numerical applications (though quite useful
in a purely mathematical approach).

If we consider the function u(x, s) and define v̂(x, t) = (v(x, t), 1). So, the partial differen-
tial equation (1) is written as

(38) ∂sû = v̂ · û− κ(−∆x)sû.

Clearly, (38) is equivalent to (1), but it is autonomous. In contrast to the operator B, the

corresponding operator B̂ is not smoothing in the extra variables.
Nevertheless, the argument presented for the existence of the evolution semiflows can be

formulated as well for the existence of the exponential of Â+ B̂.
We have, denoting the extended evolution operators by the hat-superscript,

et(Â+B̂)û(x, s) = ([Gs+ts u(., s− t)](x), s− t)

considered, one can get the more explicit bounds on the convergence. There are many variations for different
concrete operators in the literature on splitting methods.
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and analogously for the other operators.

It is clear that operators eÂ, etB̂ are contraction semigroups on L∞(Lp(Rn)).
The formula (9) is equivalent to the Trotter-Kato product formula

et(Â+B̂)f̂ = lim
n→∞

(
e

t
n
Âe

t
n
B̂
)n
f.

A small detail that we take into account is that, even if etÂ and etB̂ are contraction semigroups,

we only have ‖et(Â+B̂)‖ 6 eλt. Therefore, we have that et(Â+B̂−λ) is a contraction semigroup.
and (9) is equivalent to

et(Â+B̂−lλ)f̂ = lim
n→∞

(
e

t
n
Âe

t
n

(B̂−λ)
)n
f.

But the latter is the standard Trotter-Kato product formula, so we obtain that we can define
the exponentials of Â, B̂, (Â+ B̂). Hence, we can use the proof in [Nel64] as is (i.e., we can
skip § 2.3), and thus complete this alternative proof of Theorem 1.
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