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1. Introduction

Let us consider a binary mixture and denotechi{s composition, which is the
fraction of one of its two components. Then the evolutionwfrscompaosition is
described by the Cahn-Hilliard equation (see, e.g. [1],])f11

dc m [ do B

where M and K are some constants andstands for the free energy density. The
Flory-Huggins solution theory yields
d¢

d_ = ]{?1 + k?QC —+ k?gT(lnC — In(l — C)), (12)
C

wherek;,7 = 1,2,3 are certain thermodynamical constants ghdtands for the

temperature (see e.g. [7]). Here the constanté, and K characterize interac-
tion of components in the binary mixture and can be positiveegative. If the

components in the medium are identical, they vanish and@mofl.1) becomes a
bi-Laplacian equation.



Let us denote the right side of (1.2) BY7’, ¢). We assume that the variation of
the composition is small enough and linearize it around soonstant = ¢, such
that

F(T, C) ~ kl + kQC + I{Z3T(Oé + B(C - CQ)),

: 1 . :
with @ = In[ —° ands = ———. Let us substitute the expression above
— Cp Co(l — CQ)
for F/(T, c) into equation (1.1). We arrive at
ou

E = MAm(kfl + k?QCO + Oék’gT + (k?g + kfgﬁT)u — KAU), m = 1, 2, (13)
with u = ¢—c¢y. The Cahn-Hilliard equation of sixth order arises, for amte, in the
context of epitaxially growing thin films, describes therf@tion of quantum dots
and their faceting (see e.g. [15], [16]). Such issues asxistemce, stability and
some qualitative properties of solutions of the Cahn-&iitli equation have been
studied extensively in recent years (see e.g. [3], [8], [11WVhile the case of
m = 1 was covered in [22], we investigate in the present work thstemce of
stationary solutions of problem (1.3), which can be writhsn

A*(Au+ V(2)u+ au) = f(z), (1.4)
where
Vi(z) = —kj?’%o(x), flz) = O%?’AQTO(x) +g(z), a= _W%'

Here we writeT'(z) = T, + To(x), whereT,,, stands for the value of the temper-
ature at infinity, the limiting value of,(x) equals to zero ag:| — oo andg(x)

is a source term. We obtain a similar equation if we lineatieenonlinear Cahn-
Hilliard equation about a solitary wave.

The potential functior//(x) is smooth and vanishes at infinity. The exact con-
ditions on it will be stated below, the functiof{z) belongs to the appropriate
weighted Holder space, which will yield its square intdglity, and a here is a
nonnegative constant. We will study equation (1.4) in thacspof three dimen-
sions.

Let us recall that Fredholm solvability conditions affirmatlan operator prob-
lem Lu = f is solvable if and only if its right side is orthogonal to atllstionsw
of the homogeneous adjoint equatibhw = 0. This fundamental result holds if the
operatorl satisfies the Fredholm property, namely its kernel has &fithrhension,
its image is closed, the codimension of the image is alscefinit

The operator

Lu = A*(Au + V(2)u + au),

considered as acting frof/%(R?) into L*(R?) (or in the corresponding Holder
spaces) does not satisfy the Fredholm property. Indeedy Wie) along with its
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derivatives of up to the fourth order vanishes at infinityg #ssential spectrum of
this operator is the set of all complexfor which the equation

A*(Au + au) = du

has a nontrivial bounded solution. When applying the Fouransform, we arrive
at

A= a—-¢%), ¢eR.

Thus the essential spectrum contains the origin. As a coleseg, the operator
does not satisfy the Fredholm property, and solvabilityditons of equation (1.4)
are not known. We will derive solvability conditions for shequation using the
techniqgue developed in our preceding articles [18], [190]] [21], [22] and
[23]. This method is based on the spectral decompositiorléfsljoint operators.

Evidently, problem (1.4) can be conveniently rewrittentia equivalent form of
the system of the three second order equations

A0 = f(x),
—Av = 6(z), (1.5)
—Au —V(x)u —au = v(x)

in which the first two have explicit solutions up to a harmofunction due to the
fast rate of decay of their right sides by means of AssumBibelow, namely

Oo(z) := ! /) dy, wvo(x):= 1/ foly) dy (1.6)

A Jgs e —y| A Jgs |x — ]

with their properties established in Lemma 5 of the Appendiote that each of
the equations of the system above involves second ordereiiffial operators on
L*(R?) without Fredholm property. Their essential spectrasarg —A) = [0, o)
ando.ss(—A — V(x) — a) = [—a, o) for V(z) — 0 at infinity (see e.g. [9]),
such that neither of these operators has a finite dimendienadl|. Solvability con-
ditions for operators of that kind have been studied extehsiin recent articles
for a single Schrodinger type operator (see [18]), the soihsgcond order differ-
ential operators (see [19]), the Laplacian operator withdhft term (see [20]).
Non Fredholm operators arise as well while studying theterie and stability of
stationary and travelling wave solutions of certain reaeiliffusion equations (see
e.g. [5], [6], [17]). For the third equation in system (1.5¢wtroduce the
corresponding homogeneous problem

—Aw — V(z)w —aw = 0. (1.7)

We make the following auxiliary assumptions on the potefiaction of equation
(1.4). Note that the first one contains conditionslfxr) analogous to those stated
in Assumption 1.1 of [18] (see also [19], [20]).
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Assumption 1. The potential functio (z) : R* — R satisfies the estimate

C

Vi) < ————
| ( )| — 1+‘x|3.5+5

with some) > 0 andx = (1, 72, x3) € R3 a.e. such that

19 ) 1 8
BSUT) IV VI o <1 and VsV g o) < 47

Here and below”' stands for a finite positive constant ang,s given on p.98 of
[12] is the constant in the Hardy-Littlewood-Sobolev inatity
fi € L2(R3).

(v)
———dxdy| < ¢
‘/]R;?: s |.’,U— ‘2 Y HLSHleLT(RS)

Here and further down the norm of a functigne LP(R?), 1 < p < cc is denoted
as|| f1l o).

PV

Assumption 2. A?V € L*(R?) and —
umpt € L(R°) 0x;0x;0x,

€ L™(R?), i,j,k=1,2,3.

2

Remark. Note that oV
Ox;Oxy,

be easily controlled by the normiid/|| ;2zs) and || A*V|| ;2s) which are finite by
means of Assumptions 1 and 2 respectively.

€ L*(R?), j,k = 1,2, 3 since itsL?(R?) norm can

Let us use the notation
(). @)z = [ ila) o)

with a slight abuse of notations when these functions arsquare integrable, like
for instance some of those used in Assumption 3 below. Wednte the auxiliary
guantity
1
p(x> = (1 + |x‘2>§7 T = (x17x27x3> € R?’ (18)
and the spac€(R?), wherea is a real number and < x < 1 which consists of
all functionsu such that
up® € C*(R?).
HereC*(R?) denotes the Holder space and the norniR?) is defined as

|p*(2)u(z) — p*(y)uly)|

|z —y|#

[ullcps) = SURepslp® (x)u(x)| + SUR, s
Thus the space of all functions for which

0%u e C*

a+|a‘( 3)7 |O{| S l’
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wherel is a nonnegative integer is being designated’#s' (R?). Let P(s) stand
for the set of polynomials of three variables of the ordes l@sequal tos for s > 0
and P(s) is empty whens < 0. We make the following technical assumption on
the right side of the linearized Cahn-Hilliard problem.

Assumption 3. Let the functionf(z) : R* — R, such thatf(z) € C¥, . (R?)
for some0 < ¢ < 1, the functiondy(x) is given by (1.6) and the orthogonality
relations

(f(x),p(x))r2@sy =0,  (0o(x),q(x))r2msy =0 (1.9)

hold for any polynomiap(z) € P(5) satisfying the equatiothp(z) = 0 and any
polynomialg(x) € P(3) such thatAg(z) = 0 respectively.

Remark. The examples of such polynomials of the fifth and the thirdroace
p(r) = 2l + Swrad — 100%ad + a5, q(x) = 2t — 20103 — a3,

The set of possiblg(z) andq(x) includes constants, linear functions of three vari-
ables and many other examples as well.

By means of Lemma 2.3 of [18], under our Assumption 1 abovéemobtential
function, the operator-A — V(x) — a is self-adjoint and unitarily equivalent to

—A — a on L*(R?) via the wave operators (see [10], [14])
0 =s— |imt_ﬂFooe“(_A_v)eim

with the limit understood in the stronf sense (see e.g. [13] p.34, [4] p.90). Thus,
—A—V(z)—aonL*(R?) possesses only the essential spectun(—A —V (z) —

a) = [—a, c0). By means of the spectral theorem, its functions of the oootiis
spectrum satisfying

[—A = V(2)]or(z) = K*pr(x), keR3, (1.10)

in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed
plane waves (see e.g. [13] p.98)

W= b [ T e (1.11)
Pk emE A Jps Iz —y] Yr)\y)ay

and the orthogonality relations
(ox(@), () r2es) = 6(k — q), k,q € R® (1.12)

form the complete system ih?(R3). We introduce the following auxiliary func-
tional space (see also [20], [21])

W22 (R?) = {w(z) : R®* = C | w, Vw, Aw € L=(R?)}. (1.13)
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As distinct from the standard Sobolev space we require hetr¢he boundedness
of all second partial derivatives of the function but onlyitsfLaplacian. Our main
result is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hold> 0 andvy(x) is given by (1.6).
Then problem (1.4) admits a unique solutione H°®(R?) if and only if

(vo(), w(z))2msy =0 (1.14)
for anyw(z) € W>*(RR?) satisfying equation (1.7).

Remark. Note thatp,(z) € W>>(R?), k € R?, which was established in
Lemma A3 of [20] under our assumptions on the potential fonct Via (1.10)
these perturbed plane waves satisfy homogeneous probl&@nwhen the wave
vectork belongs to the sphere in three dimensions centered at tiggnaof radius

Ja.

2. Proof of the main result

Using the auxiliary lemmas of the Appendix we proceed to pritre main state-
ment.

Proof of Theorem 4The linearized Cahn-Hillard equation (1.4) is equivalent t
system (1.5) in which the second equation admits a solutjon) given by (1.6).
The functionug(z) € L?(R3)NL>(R3) and|x|vy(z) € L*(R?) by means of Lemma
5 and Assumption 3. Then according to Theorem 3 of [21] thedtbguation
in system (1.5) withyy(z) in its right side admits a unique solution fi?(R?) if
and only if orthogonality relation (1.14) holds. This fuioct u,(z) € H*(R?) C
L>=(IR?) via the Sobolev embedding theorem 0 satisfies the equation

—Au, — V(2)u, — au, = vo(x).

Our goal is to show that the solution of problem (1u4)z) € HS(R?). Let us
apply the Laplacian operator to both sides of the formulavatzmd use the second
equation in (1.5). This yields

Aug + A(Vug) + alAu, = 0y(x). (2.15)
We use the formula
A(Vu,) = VAu, +2VV.Vu, + u,AV, (2.16)

where the “dot” denotes the standard scalar product of twtove in three dimen-
sions. The first term in the right side of (2.16) is squaregrable sincé/(x) €
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L>(R?) via Assumption 1 and\u,(z) € L*(R?®). Similarly u,AV € L?(R?)
sinceu,(z) € L>(R?) andAV € L*(R?) (see the Remark after Assumption 2).
For the second term in the right side of (2.16) we h&e,(r) € L*(R?) and
VV € L>(R?) due to Lemma 6 of the Appendix. Hen&&V.Vu, € L*(R?),
which yieldsA(Vu,) € L?(R3) andf,(z) is square integrable, which was proven
in Lemma 5 of the Appendix. Thus from equation (2.15) we obtsiu, € L*(R?).

All partial third derivatives ofu, are square integrable as well due to the elemen-
tary estimate in terms of the finite*(R?) norms ofu, andA?u,. This implies that

u, € H*(R?). Let us apply the Laplacian operator to both sides of fornfRla5)
and use the first equation in system (1.5), which yields

Adug + A(VAu,) +2A(VV.VU,) + A(ugAV) + al’u, = f(z).  (2.17)

Our goal is to analyze the terms of formula (2.17) in orderrovp that they are
contained inL?(R?). The right side of this equation is square integrable via As-
sumption 3. Indeed, since syRs|p%" f| < C, we obtain the estimate

C
|f(z)] < W, r€R® ae., (2.18)

wherep(x) is defined explicitly in (1.8). For the second term in the kfte of
(2.17) we have the formula

A(VAu,) = AV Aug + 2VV.V(Au,) + VA%u, € L*(R?). (2.19)

Indeed, the first term in the right side of (2.19) is squaredrable since\V €
L?*(R3) (see the Remark after Assumption 2) ahd, € H*(R?) C L>*(R?) via
the Sobolev embedding theorem. The second term in the iggo$(2.19) belongs
to L*(R?) becaus&VV € L>*(R3) via Lemma 6 andV(Au,) € L*(R3) for u, €
H*(R3). The last term in the right side of (2.19) is square integralicel (z) €
L>(R3) via Assumption 1 and\?u, € L?(R?).

Clearly, the third term in the left side of (2.17) can be gasifitten as

8V ou
2 A =
We express each term of the sum above Wwith 1,2, 3 as
ou oV 1% ou 5% ou
2l A— — . = A—= L*(R%). 2.2

Indeed, the first term in (2.20) belongsité(R?) since% is square integrable and

Lk
Ag—v c L>™(R?) by means of Assumption 2. The second term in (2.20) is square
Tk




integrable becauswg—v € L*(R®) (see the Remark after Assumption 2) and

Tk
v% € HX(R®) C L™(R?) viathe Sobolev embedding theorem fire H*(R?).
k

: : : Ou,
The last term in (2.20) is contained Irf(R?) due to the fact thaﬁ% € L*(R%)
k

and by means of Lemma 6 we hagg € L™(R?).
The fourth term in the left side ofk(2.17) can be expressed as

A(ugAV) = Au AV + 2Vu, V(AV) +u, A%V € L*(RY). (2.21)

This can be easily seen by analyzing the terms in the rigletaid2.21). The first
one is present in formula (2.19) above and its square invdgyavas proven. The
second one is contained ir¥ (R?) sinceVu, € L*(R3) andV(AV) € L>(R?) by
means of Assumption 2. The last term in the right side of (Ri&quare integrable
because:, € L>*(R?) via the Sobolev embedding theorem andl’ € L*(R?),
which was stated in Assumption 2.

Hence formula (2.17) implies that3u, € L?(R3). Note that any fifth partial
derivative ofu, is square integrable as well since t$(R*) norm can be easily
estimated above in terms of finite?(R*) norms ofu, and A3u,. Therefore, the
solution of problem (1.4), € H(R?3).

To investigate the issue of uniqueness of such a solutioruppase there exist
uy, uy € HY(R?), which are two solutions of problem (1.4). Then their diéflece
u(x) = ui(z) — us(x) € HS(R3) satisfies equation (1.4) with vanishing right side,
namely

A*(Au+V(z)u + au) = 0. (2.22)

Obviouslyu, Au € L*(R3) andVu € L*(R?) sinceV (z) satisfies Assumption 1.
Hencev(r) = —Au — V(z)u — au € L*(R?) and solves the second equation in
system (1.5), such that

A =0, (2.23)

Clearly we have
—Av = A%u+ uAV +2VV.Vu + VAu + aAu = §(z) € L*(R?).  (2.24)

This can be easily verified siné&u is square integrable far € H°(R?). The sec-
ond term in the middle part of (2.24) is contained/if(R?) because; € L>(R?)
via the Sobolev embedding theorem ahtl’ € L*(R?) (see the Remark after As-
sumption 2). The third term in the middle part of this formalzove is square inte-
grable sinceVV € L°°(R?) due to Lemma 6 an¥u € L?(R3). Finally, VAu €
L*(R?) becausé&’ € L>=(R*) by means of Assumption 1 antlu € L?(R?).

Due to the fact that the Laplace operator does not possessoatyvial square
integrable zero modes, equations (2.23) and (2.24) yietd = 0 a.e. inR?. Then
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by means of (2.24) withi(z) € L*(R?) we obtain similarlyv(z) = 0 a.e. inR3.
Therefore, we arrive at the homogeneous problem — V(z) — a)u = 0 a.e.
with u(z) € L*(R?). This Schrodinger type operator in brackets is self-adjand
unitarily equivalent to-A — a on L?(R3) as discussed above, which implies that
u(r) = 0 a.e. inR3, |

3. Appendix
Lemma5. Let Assumption 3 hold. Then we have

Oo(x) € L*(R?), wo(x) € LA(R*)N LR and xve(x) € L'(R?).

Proof. According to the result of [2], for the solution of the Poissequa-
tion 6y(x) (see (1.6)) under the conditiof(z) € C¥,.(R?) and the first orthogo-
nality relation in (1.9) given in Assumption 3 we hafigz) € C472(R?). Thus
SUP,cps|p%6y| < C and therefore

¢ 3
|0o(z)| < o)) r eR’ ae.

By means of definition (1.8) the functidhy(z) is square integrable. Sindg(z)
satisfies the second orthogonality relation in (1.9), veardgsult of [2] we arrive at
vo(r) € O (R?). Hence Sup.gs|p*=uvy| < C, such that

¢ 3
lvg ()| < o)) r €R’ ae.

The statement of the lemma abaytz) easily follows from definition (1.8). |
Lemma 6. Let Assumptions 1 and 2 hold. Th%& € L™(R%, i=1,23.
T

Proof. By using the standard Fourier transform it can be easily shibnat

2

ov
8l’i

< |IVIIZe@sy + 1AV Zogsy < 00, i=1,2,3
L2(R9)

by means of Assumption 1 and the Remark after Assumptionr2ilély

2

ov
A(‘?

<V 2@s) + 1A%V [ F2@sy < 00, i=1,2,3
L2(R3)

i

via Assumptions 1 and 2. Thereforg,K € H*(R*) c L™(R*), i=1,2,3due
L
to the Sobolev embedding theorem. [ |



References

[1] N.D. Alikakos, G. FuscoSlow dynamics for the Cahn-Hilliard equation in
higher space dimensions. |. Spectral estimat€amm. Partial Differential
Equations;19(1994), No. 9-10, 1397-1447.

[2] N. BenkiranePropriét d’indice en tkorie Holderienne pour des épateurs
elliptiques dang?", CRAS,307, Série | (1988), 577-580.

[3] L.A. Caffarelli, N.E. Muler,An L bound for solutions of the Cahn-Hilliard
equation Arch. Rational Mech. Anal133(1995), No. 2, 129-144

[4] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simdd¢chibdinger Operators with
Application to Quantum Mechanics and Global GeomeS8gringer-Verlag,
Berlin (1987).

[5] A. Ducrot, M. Marion, V. Volpert,Systemes deeaction-diffusion sans pro-
priéete de FredhoImCRAS,340(2005), 659-664.

[6] A. Ducrot, M. Marion, V. \olpert,Reaction-diffusion problems with non
Fredholm operatorsAdvances Diff. Equations],3 (2008), No. 11-12, 1151
1192.

[7] P.J. Flory, Thermodynamics of high polymer solutipidsChem.Phys.10
(1942), 51-61.

[8] P. Howard, Spectral analysis of stationary solutions of the Cahnbiid
equation Adv. Differential Equations]4 (2009), No. 1-2, 87-120.

[9] B.L.G. Jonsson, M. Merkli, I.M. Sigal, F. TingApplied Analysisin prepa-
ration.

[10] T. Kato, Wave operators and similarity for some non-selfadjointrapas,
Math. Ann.,162(1965/1966), 258—279.

[11] M.D. Korzec, P.L. Evans, A. Munch, B. Wagn&tationary solutions of
driven fourth- and sixth-order Cahn-Hilliard-type equaris SIAM J. Appl.
Math. ,69 (2008), No. 2, 348-374

[12] E. Lieb, M. Loss,Analysis. Graduate Studies in Mathematit4, American
Mathematical Society, Providence (1997).

[13] M. Reed, B. SimonMethods of Modern Mathematical Physics, Ill: Scattering
Theory Academic Press (1979).

[14] 1. Rodnianski, W. Schlaglime decay for solutions of S@idinger equations
with rough and time-dependent potentidisvent. Math.,155 (2004), No. 3,
451-513.

10



[15] T.V. Savina, A.A. Golovin, S.H. Davis, A.A.Nepomnydw: P.W.Voorhees,
Faceting of a growing crystal surface by surface diffusi®mys.Rev.E67
(2003) 021606.

[16] V.A. Shchukin and D. BimbergSpontaneous ordering of nanostructures on
crystal surfacesRev. Modern Phys71(1999), No. 4, 1125-1171.

[17] V. Volpert, B. Kazmierczak, M. Massot, Z.Peradzynskolvability conditions
for elliptic problems with non-Fredholm operatoréppl.Math., 29 (2002),
No. 2, 219-238.

[18] V. Vougalter, V. Volpert Solvability conditions for some non Fredholm opera-
tors, Proc. Edinb. Math. Soc. (254 (2011), No. 1, 249-271.

[19] V. Vougalter, V. VolpertOn the solvability conditions for some non Fredholm
operators Int. J. Pure Appl. Math60 (2010), No. 2, 169-191.

[20] V. Vougalter, V. Volpert.On the solvability conditions for the diffusion equa-
tion with convection termg.o appear in: Commun. Pure Appl. Anal.

[21] V. Vougalter, V. Volpert.Solvability relations for some non Fredholm opera-
tors, Int. Electron. J. Pure Appl.Math2,(2010), No. 1, 75-83.

[22] V. Volpert, V. Vougalter.On the solvability conditions for a linearized
Cahn-Hilliard equation.To appear in Rendiconti dell'Instituto di Matematica
dell’'Universita di Trieste.

[23] V. Vougalter, V. Volpert.Solvability conditions for some systems with non
Fredholm operatorsint. Electron. J. Pure Appl.Mathz,(2010), No. 3, 183—
187.

11



