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1. Introduction

Let us consider a binary mixture and denote byc its composition, which is the
fraction of one of its two components. Then the evolution of such composition is
described by the Cahn-Hilliard equation (see, e.g. [1], [11]):

∂c

∂t
= M∆m

(

dφ

dc
−K∆c

)

, m = 1, 2, (1.1)

whereM andK are some constants andφ stands for the free energy density. The
Flory-Huggins solution theory yields

dφ

dc
= k1 + k2c+ k3T (lnc− ln(1− c)), (1.2)

whereki, i = 1, 2, 3 are certain thermodynamical constants andT stands for the
temperature (see e.g. [7]). Here the constantsk1, k2 andK characterize interac-
tion of components in the binary mixture and can be positive or negative. If the
components in the medium are identical, they vanish and problem (1.1) becomes a
bi-Laplacian equation.
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Let us denote the right side of (1.2) byF (T, c). We assume that the variation of
the composition is small enough and linearize it around someconstantc = c0, such
that

F (T, c) ≈ k1 + k2c+ k3T (α+ β(c− c0)),

with α = ln

(

c0

1− c0

)

andβ =
1

c0(1− c0)
. Let us substitute the expression above

for F (T, c) into equation (1.1). We arrive at

∂u

∂t
= M∆m(k1 + k2c0 + αk3T + (k2 + k3βT )u−K∆u), m = 1, 2, (1.3)

with u = c−c0. The Cahn-Hilliard equation of sixth order arises, for instance, in the
context of epitaxially growing thin films, describes the formation of quantum dots
and their faceting (see e.g. [15], [16]). Such issues as the existence, stability and
some qualitative properties of solutions of the Cahn-Hilliard equation have been
studied extensively in recent years (see e.g. [3], [8], [11]). While the case of
m = 1 was covered in [22], we investigate in the present work the existence of
stationary solutions of problem (1.3), which can be writtenas

∆2(∆u+ V (x)u+ au) = f(x), (1.4)

where

V (x) = −k3βT0(x)

K
, f(x) =

αk3

K
∆2T0(x) + g(x), a = −k2 + k3βT∞

K
.

Here we writeT (x) = T∞ + T0(x), whereT∞ stands for the value of the temper-
ature at infinity, the limiting value ofT0(x) equals to zero as|x| → ∞ andg(x)
is a source term. We obtain a similar equation if we linearizethe nonlinear Cahn-
Hilliard equation about a solitary wave.

The potential functionV (x) is smooth and vanishes at infinity. The exact con-
ditions on it will be stated below, the functionf(x) belongs to the appropriate
weighted Hölder space, which will yield its square integrability, and a here is a
nonnegative constant. We will study equation (1.4) in the space of three dimen-
sions.

Let us recall that Fredholm solvability conditions affirm that an operator prob-
lemLu = f is solvable if and only if its right side is orthogonal to all solutionsw
of the homogeneous adjoint equationL∗w = 0. This fundamental result holds if the
operatorL satisfies the Fredholm property, namely its kernel has a finite dimension,
its image is closed, the codimension of the image is also finite.

The operator
Lu = ∆2(∆u+ V (x)u+ au),

considered as acting fromH6(R3) into L2(R3) (or in the corresponding Hölder
spaces) does not satisfy the Fredholm property. Indeed, when V (x) along with its
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derivatives of up to the fourth order vanishes at infinity, the essential spectrum of
this operator is the set of all complexλ for which the equation

∆2(∆u+ au) = λu

has a nontrivial bounded solution. When applying the Fourier transform, we arrive
at

λ = ξ4(a− ξ2), ξ ∈ R
3.

Thus the essential spectrum contains the origin. As a consequence, the operator
does not satisfy the Fredholm property, and solvability conditions of equation (1.4)
are not known. We will derive solvability conditions for this equation using the
technique developed in our preceding articles [18], [19], [20], [21], [22] and
[23]. This method is based on the spectral decomposition of self-adjoint operators.

Evidently, problem (1.4) can be conveniently rewritten in the equivalent form of
the system of the three second order equations











∆θ = f(x),

−∆v = θ(x),

−∆u − V (x)u− au = v(x)

(1.5)

in which the first two have explicit solutions up to a harmonicfunction due to the
fast rate of decay of their right sides by means of Assumption3 below, namely

θ0(x) := − 1

4π

∫

R3

f(y)

|x− y|dy, v0(x) :=
1

4π

∫

R3

θ0(y)

|x− y|dy (1.6)

with their properties established in Lemma 5 of the Appendix. Note that each of
the equations of the system above involves second order differential operators on
L2(R3) without Fredholm property. Their essential spectra areσess(−∆) = [0, ∞)
andσess(−∆ − V (x) − a) = [−a, ∞) for V (x) → 0 at infinity (see e.g. [9]),
such that neither of these operators has a finite dimensionalkernel. Solvability con-
ditions for operators of that kind have been studied extensively in recent articles
for a single Schrödinger type operator (see [18]), the sumsof second order differ-
ential operators (see [19]), the Laplacian operator with the drift term (see [20]).
Non Fredholm operators arise as well while studying the existence and stability of
stationary and travelling wave solutions of certain reaction-diffusion equations (see
e.g. [5], [6], [17] ). For the third equation in system (1.5) we introduce the
corresponding homogeneous problem

−∆w − V (x)w − aw = 0. (1.7)

We make the following auxiliary assumptions on the potential function of equation
(1.4). Note that the first one contains conditions onV (x) analogous to those stated
in Assumption 1.1 of [18] (see also [19], [20]).

3



Assumption 1.The potential functionV (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with someδ > 0 andx = (x1, x2, x3) ∈ R3 a.e. such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π.

Here and belowC stands for a finite positive constant andcHLS given on p.98 of
[12] is the constant in the Hardy-Littlewood-Sobolev inequality

∣

∣

∣

∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣

∣

∣
≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3).

Here and further down the norm of a functionf1 ∈ Lp(R3), 1 ≤ p ≤ ∞ is denoted
as‖f1‖Lp(R3).

Assumption 2. ∆2V ∈ L2(R3) and
∂3V

∂xi∂xj∂xk

∈ L∞(R3), i, j, k = 1, 2, 3.

Remark. Note that
∂2V

∂xj∂xk

∈ L2(R3), j, k = 1, 2, 3 since itsL2(R3) norm can

be easily controlled by the norms‖V ‖L2(R3) and‖∆2V ‖L2(R3) which are finite by
means of Assumptions 1 and 2 respectively.

Let us use the notation

(f1(x), f2(x))L2(R3) :=

∫

R3

f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are notsquare integrable, like
for instance some of those used in Assumption 3 below. We introduce the auxiliary
quantity

ρ(x) := (1 + |x|2) 1

2 , x = (x1, x2, x3) ∈ R
3 (1.8)

and the spaceCµ
a (R

3), wherea is a real number and0 < µ < 1 which consists of
all functionsu such that

uρa ∈ Cµ(R3).

HereCµ(R3) denotes the Hölder space and the norm onCµ
a (R

3) is defined as

‖u‖Cµ

a (R3) := supx∈R3|ρa(x)u(x)|+ supx,y∈R3

|ρa(x)u(x)− ρa(y)u(y)|
|x− y|µ .

Thus the space of all functions for which

∂αu ∈ C
µ

a+|α|(R
3), |α| ≤ l,

4



wherel is a nonnegative integer is being designated asCµ+l
a (R3). Let P (s) stand

for the set of polynomials of three variables of the order less or equal tos for s ≥ 0
andP (s) is empty whens < 0. We make the following technical assumption on
the right side of the linearized Cahn-Hilliard problem.

Assumption 3. Let the functionf(x) : R3 → R, such thatf(x) ∈ C
µ
8+ε(R

3)
for some0 < ε < 1, the functionθ0(x) is given by (1.6) and the orthogonality
relations

(f(x), p(x))L2(R3) = 0, (θ0(x), q(x))L2(R3) = 0 (1.9)

hold for any polynomialp(x) ∈ P (5) satisfying the equation∆p(x) = 0 and any
polynomialq(x) ∈ P (3) such that∆q(x) = 0 respectively.

Remark. The examples of such polynomials of the fifth and the third order are

p(x) = x5
1 + 5x1x

4
2 − 10x3

1x
2
2 + x3, q(x) = x3

1 − 2x1x
2
2 − x1x

2
3.

The set of possiblep(x) andq(x) includes constants, linear functions of three vari-
ables and many other examples as well.

By means of Lemma 2.3 of [18], under our Assumption 1 above on the potential
function, the operator−∆ − V (x) − a is self-adjoint and unitarily equivalent to
−∆− a onL2(R3) via the wave operators (see [10], [14])

Ω± := s− limt→∓∞eit(−∆−V )eit∆

with the limit understood in the strongL2 sense (see e.g. [13] p.34, [4] p.90). Thus,
−∆−V (x)−a onL2(R3) possesses only the essential spectrumσess(−∆−V (x)−
a) = [−a, ∞). By means of the spectral theorem, its functions of the continuous
spectrum satisfying

[−∆− V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3, (1.10)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [13] p.98)

ϕk(x) =
eikx

(2π)
3

2

+
1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.11)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3 (1.12)

form the complete system inL2(R3). We introduce the following auxiliary func-
tional space (see also [20], [21])

W̃ 2,∞(R3) := {w(x) : R3 → C | w,∇w,∆w ∈ L∞(R3)}. (1.13)
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As distinct from the standard Sobolev space we require here not the boundedness
of all second partial derivatives of the function but only ofits Laplacian. Our main
result is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hold,a ≥ 0 andv0(x) is given by (1.6).
Then problem (1.4) admits a unique solutionua ∈ H6(R3) if and only if

(v0(x), w(x))L2(R3) = 0 (1.14)

for anyw(x) ∈ W̃ 2,∞(R3) satisfying equation (1.7).

Remark. Note thatϕk(x) ∈ W̃ 2,∞(R3), k ∈ R3, which was established in
Lemma A3 of [20] under our assumptions on the potential function. Via (1.10)
these perturbed plane waves satisfy homogeneous problem (1.7) when the wave
vectork belongs to the sphere in three dimensions centered at the origin of radius√
a.

2. Proof of the main result

Using the auxiliary lemmas of the Appendix we proceed to prove the main state-
ment.

Proof of Theorem 4.The linearized Cahn-Hillard equation (1.4) is equivalent to
system (1.5) in which the second equation admits a solutionv0(x) given by (1.6).
The functionv0(x) ∈ L2(R3)∩L∞(R3) and|x|v0(x) ∈ L1(R3) by means of Lemma
5 and Assumption 3. Then according to Theorem 3 of [21] the third equation
in system (1.5) withv0(x) in its right side admits a unique solution inH2(R3) if
and only if orthogonality relation (1.14) holds. This function ua(x) ∈ H2(R3) ⊂
L∞(R3) via the Sobolev embedding theorem,a ≥ 0 satisfies the equation

−∆ua − V (x)ua − aua = v0(x).

Our goal is to show that the solution of problem (1.4)ua(x) ∈ H6(R3). Let us
apply the Laplacian operator to both sides of the formula above and use the second
equation in (1.5). This yields

∆2ua +∆(V ua) + a∆ua = θ0(x). (2.15)

We use the formula

∆(V ua) = V∆ua + 2∇V.∇ua + ua∆V, (2.16)

where the “dot” denotes the standard scalar product of two vectors in three dimen-
sions. The first term in the right side of (2.16) is square integrable sinceV (x) ∈
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L∞(R3) via Assumption 1 and∆ua(x) ∈ L2(R3). Similarly ua∆V ∈ L2(R3)
sinceua(x) ∈ L∞(R3) and∆V ∈ L2(R3) (see the Remark after Assumption 2).
For the second term in the right side of (2.16) we have∇ua(x) ∈ L2(R3) and
∇V ∈ L∞(R3) due to Lemma 6 of the Appendix. Hence∇V.∇ua ∈ L2(R3),
which yields∆(V ua) ∈ L2(R3) andθ0(x) is square integrable, which was proven
in Lemma 5 of the Appendix. Thus from equation (2.15) we obtain∆2ua ∈ L2(R3).
All partial third derivatives ofua are square integrable as well due to the elemen-
tary estimate in terms of the finiteL2(R3) norms ofua and∆2ua. This implies that
ua ∈ H4(R3). Let us apply the Laplacian operator to both sides of formula(2.15)
and use the first equation in system (1.5), which yields

∆3ua +∆(V∆ua) + 2∆(∇V.∇ua) + ∆(ua∆V ) + a∆2ua = f(x). (2.17)

Our goal is to analyze the terms of formula (2.17) in order to prove that they are
contained inL2(R3). The right side of this equation is square integrable via As-
sumption 3. Indeed, since supx∈R3 |ρ8+εf | ≤ C, we obtain the estimate

|f(x)| ≤ C

(ρ(x))8+ε
, x ∈ R

3 a.e., (2.18)

whereρ(x) is defined explicitly in (1.8). For the second term in the leftside of
(2.17) we have the formula

∆(V∆ua) = ∆V∆ua + 2∇V.∇(∆ua) + V∆2ua ∈ L2(R3). (2.19)

Indeed, the first term in the right side of (2.19) is square integrable since∆V ∈
L2(R3) (see the Remark after Assumption 2) and∆ua ∈ H2(R3) ⊂ L∞(R3) via
the Sobolev embedding theorem. The second term in the right side of (2.19) belongs
to L2(R3) because∇V ∈ L∞(R3) via Lemma 6 and∇(∆ua) ∈ L2(R3) for ua ∈
H4(R3). The last term in the right side of (2.19) is square integrable sinceV (x) ∈
L∞(R3) via Assumption 1 and∆2ua ∈ L2(R3).

Clearly, the third term in the left side of (2.17) can be easily written as

2
3
∑

k=1

∆

(

∂V

∂xk

∂ua

∂xk

)

.

We express each term of the sum above withk = 1, 2, 3 as

∂ua

∂xk

(

∆
∂V

∂xk

)

+ 2

(

∇ ∂V

∂xk

)

.

(

∇∂ua

∂xk

)

+
∂V

∂xk

(

∆
∂ua

∂xk

)

∈ L2(R3). (2.20)

Indeed, the first term in (2.20) belongs toL2(R3) since
∂ua

∂xk

is square integrable and

∆
∂V

∂xk

∈ L∞(R3) by means of Assumption 2. The second term in (2.20) is square
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integrable because∇ ∂V

∂xk

∈ L2(R3) (see the Remark after Assumption 2) and

∇∂ua

∂xk

∈ H2(R3) ⊂ L∞(R3) via the Sobolev embedding theorem forua ∈ H4(R3).

The last term in (2.20) is contained inL2(R3) due to the fact that∆
∂ua

∂xk

∈ L2(R3)

and by means of Lemma 6 we have
∂V

∂xk

∈ L∞(R3).

The fourth term in the left side of (2.17) can be expressed as

∆(ua∆V ) = ∆ua∆V + 2∇ua.∇(∆V ) + ua∆
2V ∈ L2(R3). (2.21)

This can be easily seen by analyzing the terms in the right side of (2.21). The first
one is present in formula (2.19) above and its square integrability was proven. The
second one is contained inL2(R3) since∇ua ∈ L2(R3) and∇(∆V ) ∈ L∞(R3) by
means of Assumption 2. The last term in the right side of (2.21) is square integrable
becauseua ∈ L∞(R3) via the Sobolev embedding theorem and∆2V ∈ L2(R3),
which was stated in Assumption 2.

Hence formula (2.17) implies that∆3ua ∈ L2(R3). Note that any fifth partial
derivative ofua is square integrable as well since itsL2(R3) norm can be easily
estimated above in terms of finiteL2(R3) norms ofua and∆3ua. Therefore, the
solution of problem (1.4)ua ∈ H6(R3).

To investigate the issue of uniqueness of such a solution we suppose there exist
u1, u2 ∈ H6(R3), which are two solutions of problem (1.4). Then their difference
u(x) = u1(x)− u2(x) ∈ H6(R3) satisfies equation (1.4) with vanishing right side,
namely

∆2(∆u+ V (x)u+ au) = 0. (2.22)

Obviouslyu,∆u ∈ L2(R3) andV u ∈ L2(R3) sinceV (x) satisfies Assumption 1.
Hencev(x) = −∆u − V (x)u − au ∈ L2(R3) and solves the second equation in
system (1.5), such that

∆θ = 0. (2.23)

Clearly we have

−∆v = ∆2u+ u∆V + 2∇V.∇u+ V∆u+ a∆u = θ(x) ∈ L2(R3). (2.24)

This can be easily verified since∆2u is square integrable foru ∈ H6(R3). The sec-
ond term in the middle part of (2.24) is contained inL2(R3) becauseu ∈ L∞(R3)
via the Sobolev embedding theorem and∆V ∈ L2(R3) (see the Remark after As-
sumption 2). The third term in the middle part of this formulaabove is square inte-
grable since∇V ∈ L∞(R3) due to Lemma 6 and∇u ∈ L2(R3). Finally, V∆u ∈
L2(R3) becauseV ∈ L∞(R3) by means of Assumption 1 and∆u ∈ L2(R3).

Due to the fact that the Laplace operator does not possess anynontrivial square
integrable zero modes, equations (2.23) and (2.24) yieldθ(x) = 0 a.e. inR3. Then
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by means of (2.24) withv(x) ∈ L2(R3) we obtain similarlyv(x) = 0 a.e. inR3.
Therefore, we arrive at the homogeneous problem(−∆ − V (x) − a)u = 0 a.e.
with u(x) ∈ L2(R3). This Schrödinger type operator in brackets is self-adjoint and
unitarily equivalent to−∆ − a onL2(R3) as discussed above, which implies that
u(x) = 0 a.e. inR3.

3. Appendix

Lemma 5. Let Assumption 3 hold. Then we have

θ0(x) ∈ L2(R3), v0(x) ∈ L2(R3) ∩ L∞(R3) and xv0(x) ∈ L1(R3).

Proof. According to the result of [2], for the solution of the Poisson equa-
tion θ0(x) (see (1.6)) under the conditionf(x) ∈ C

µ
8+ε(R

3) and the first orthogo-
nality relation in (1.9) given in Assumption 3 we haveθ0(x) ∈ C

µ+2
6+ε (R

3). Thus
supx∈R3 |ρ6+εθ0| ≤ C and therefore

|θ0(x)| ≤
C

(ρ(x))6+ε
, x ∈ R

3 a.e.

By means of definition (1.8) the functionθ0(x) is square integrable. Sinceθ0(x)
satisfies the second orthogonality relation in (1.9), via the result of [2] we arrive at
v0(x) ∈ C

µ+4
4+ε (R

3). Hence supx∈R3|ρ4+εv0| ≤ C, such that

|v0(x)| ≤
C

(ρ(x))4+ε
, x ∈ R

3 a.e.

The statement of the lemma aboutv0(x) easily follows from definition (1.8).

Lemma 6. Let Assumptions 1 and 2 hold. Then
∂V

∂xi

∈ L∞(R3), i = 1, 2, 3.

Proof. By using the standard Fourier transform it can be easily shown that
∥

∥

∥

∥

∥

∂V

∂xi

∥

∥

∥

∥

∥

2

L2(R3)

≤ ‖V ‖2L2(R3) + ‖∆V ‖2L2(R3) < ∞, i = 1, 2, 3

by means of Assumption 1 and the Remark after Assumption 2. Similarly
∥

∥

∥

∥

∥

∆
∂V

∂xi

∥

∥

∥

∥

∥

2

L2(R3)

≤ ‖V ‖2L2(R3) + ‖∆2V ‖2L2(R3) < ∞, i = 1, 2, 3

via Assumptions 1 and 2. Therefore,
∂V

∂xi

∈ H2(R3) ⊂ L∞(R3), i = 1, 2, 3 due

to the Sobolev embedding theorem.
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