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Abstract

We study the thermodynamic properties of a certain type of inhomogeneous Fermi and quantum spin

systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities

stays macroscopic, but very small as compared to the side–length of the box containing fermions or spins.

The present study is however not restricted to “macroscopic inhomogeneities” and also includes the (periodic)

microscopic and mesoscopic cases. We prove that – as in the homogeneous case – the pressure is, up to

a minus sign, the conservative value of a two–person zero–sum game, named here thermodynamic game.

Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning

what kind of object equilibrium states should be in the thermodynamic limit. Though, we give rigorous

statements on correlations functions for large boxes.

Keywords:Superconductivity – Hubbard model – Inhomogeneous systems – Thermodynamic game –

Two–person zero–sum game – BCS model

1. Introduction

Inhomogeneous quantum systems are of great physical interest. The inhomogeneities could, for instance,

correspond to inhomogeneously distributed impurities in crystals, to (space) inhomogeneous external potentials

and many other situations. Such quantum models are also interesting since some space homogeneous microscopic

theories, as the celebrated BCS model [1, 2, 3], can be seen as inhomogeneous quantum systems on the reciprocal

lattice of (quasi–) momenta.

Some general results concerning the spin case have been performed in [4]. Motivated by the BCS model and

the Duffield–Pulè method [5], the authors treat in [4] the thermodynamic pressure of “approximately symmetric”

spin models. Our study is thus reminiscent of [4, 5], but it extends to a much broader class of Fermi systems

with long–range interactions. In particular, we never use here the quantum spin representation of fermions as

it generally breaks the translation invariance of interactions.

Moreover, the technical approach used in [4] gives an infinite volume pressure through two variational problems

(∗) and (∗∗) over states on a much larger algebra than the original observable algebra of the model. By [4,

II.2 Theorem and II.3 Proposition (1)], both variational problems (∗) and (∗∗) have non–empty compact sets –

respectivelyM∗ andM∗∗ – of minimizers, but the link between them and (finite volume) Gibbs states is unclear.

By [4, II.3 Proposition (1)], extreme states of the convex and compact set M∗ are constructed from minimizers

of the second variational problem (∗∗) which, as the authors wrote in [4, p. 642], “can pose a formidable task”.

We treat here similar problems for Fermi and quantum spin systems, but obtain handy variational problems

instead, and some results on the asymptotics of Gibbs states in the thermodynamic limit. We are particularly

interested in the case where the two–particle interaction has a macroscopic range which stays (very) small as

compared to the side–length 2l (l ∈ N) of cubic boxes Λl ⊂ ZD (D ∈ N) containing fermions or spins.
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A prototype of such a model is for instance the strong coupling BCS model with inhomogeneous chemical

potential µ, magnetic field h, Hubbard–type interactions v, λ and BCS coupling function Γ defined by

UStr
l := −

∑
x∈Λl

µ
(
2−lx

)
(nx,↑ + nx,↓)−

∑
x∈Λl

h
(
2−lx

)
(nx,↑ − nx,↓)

+2
∑
x∈Λl

λ
(
2−lx

)
nx,↑nx,↓ +

1

|Λl|
∑
x,y∈Λl

v
(
2−lx, 2−ly

)
(nx,↑ + nx,↓) (ny,↑ + ny,↓)

− 1

|Λl|
∑
x,y∈Λl

Γ
(
2−lx, 2−ly

)
a∗x,↑a

∗
x,↓ay,↓ay,↑ (1.1)

for µ, λ, h ∈ C([−1/2, 1/2]D;R) and any symmetric continuous functions v and Γ from [−1/2, 1/2]d×[−1/2, 1/2]d

to R. The operator a∗x,s (resp. ax,s) creates (resp. annihilates) a fermion with spin s ∈ {↑, ↓} at lattice position

x ∈ ZD, whereas the particle number operator at position x and spin s is denoted by nx,s := a∗x,sax,s.

The first term of the right hand side of (1.1) corresponds to the strong coupling limit of the kinetic energy,

also called “atomic limit” in the context of the Hubbard model, see, e.g., [6, 7]. Note that the present results

do not apply when a kinetic energy of the type∑
x,y∈Λl, s∈{↑,↓}

J (|x− y|) a∗x,say,s , J : R+
0 → R ,

is added. Such a generalization is however possible and we postpone it to a separated paper. The second term of

(1.1) corresponds to the interaction between spins and the inhomogeneous magnetic field h. The third and fourth

terms represents the Hubbard–type (density–density) interactions. The fifth one is the BCS interaction written

in the x–space. The particular case we have in mind would be v (t, s) = κv (|t− s|) and Γ (t, s) = κΓ (|t− s|)
for continuous functions κv, κΓ ∈ C(R+

0 ;R) concentrated around 0 and t, s ∈ [−1/2, 1/2]d, but the result is

much more general. Note that neither the positivity (or negativity) of both functions v,Γ nor the positivity

(or negativity) of their Fourier transform is required. The model UStr
l is of interest as its homogeneous version

with constants µ, h,Γ ∈ R, v = 0 and λ ≥ 0 shows qualitatively the same density dependency of the critical

temperature observed in high–Tc superconductors [8, 9].

Note that the scaling factor 2−l used in (1.1) to define UStr
l means that the space scale of the inhomogeneity

(or the fluctuations of the interactions) involve a macroscopic number of lattice sites. This obviously does not

prevent the range of the interaction to be very small as compared to the side–length 2l of the box Λl. Similarly,

we model mesoscopic inhomogeneities by replacing the scaling factor 2−l with 2ηl2−l for some η ∈ (0, 1). It

means that – in the thermodynamic limit – the space scale of inhomogeneities is infinitesimal with respect to the

box side–length 2l whereas the lattice spacing is infinitesimal with respect to the space scale of inhomogeneities.

Indeed, the inhomogeneous BCS–like model UStr
l defined above is only a special example taken in the Banach

space of long–range inhomogeneous models treated here. The main feature of models in this Banach space is

that inhomogeneities of the short–range and long–range parts of the interactions are described by continuous

functions from a general topological space C1 to the one–site fermion algebra U{0}. Note also that square

integrability is required for the long–range part. This space of models includes, for instance, the celebrated

(reduced) BCS Hamiltonian represented in the momentum space. In particular, the usual kinetic energy is not

excluded in this case. Note again that the variational problem we derive for the pressure is different and easier

to handle with than the one resulting from [4] or the Duffield–Pulè method [5]. This application is explained in

Section 6.

We prove that the thermodynamic pressure results from a two–person zero–sum game, named here ther-

modynamic game following the terminology used in [10, Section 2.6]. Indeed, we recently studied in [10] a

Banach space of space homogeneous models for fermions or quantum spins on lattices with long–range inter-

actions and derived the precise structure of their (generalized) equilibrium states. These are governed by the

non–cooperative equilibria of a two–person zero–sum game, that is, the thermodynamic game. The results of

[10] are crucial here and we provide a rigorous extension of them to interactions with macroscopic fluctuations.

Microscopic and mesoscopic fluctuations are also treated here, but these two cases need further studies because

we impose periodicity. The mesoscopic case will be studied in more details in a separated paper.
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The method described in [10] provides a systematic way to study all correlation functions of space homoge-

neous long–range models by using the structure of (generalized) equilibrium states. Nevertheless, because of

the absence of space symmetries in inhomogeneous systems, it is not clear from the beginning what kind of

object the (generalized) (inhomogeneous) equilibrium states should be. Though, we can use results of [10] to

study correlation functions in large boxes. We thus go beyond previous works on inhomogeneous quantum spin

systems [4, 5].

The paper is organized as follows. In Section 2 we introduce the space of models and set up the problem.

Then, in Sections 3, 4, and 5 we study quantum systems with respectively periodic microscopic, macroscopic,

and periodic mesoscopic inhomogeneous interactions. Section 6 explains two applications on the BCS model

and the strong–coupling BCS–Hubbard model UStr
l with inhomogeneous magnetic field. Finally, Section 7 is an

appendix giving a short study on the thermodynamics of permutation invariant Fermi systems with long–range

interactions. The latter is based on [10, Chapter 5], but give further useful properties needed in our proofs.

Remark 1.1 (Quantum spin systems)

All results of this paper hold for quantum spin systems, but we concentrate our attention on fermion algebras.

They are indeed more difficult to handle because of the non–commutativity of elements on different lattice sites.

Remark 1.2 (Mixed inhomogeneities)

Our statements can also be extended to any physical system combining the three situations treated here (micro-

scopic, mesoscopic and macroscopic inhomogeneities).

2. Setup of the Problem

2.1 Lattices and Thermodynamic Limit

For simplicity we only consider D–dimensional cubic lattices L := ZD for D ∈ N. We consider a finite spin

set S and thus use a finite dimensional Hilbert space H with orthonormal basis {es}s∈S to represent states of a

particle in one arbitrary lattice site.

Then, the thermodynamic limit l → ∞ is defined via the sequence of cubic boxes

Λl := {x ∈ L : −2l−1 ≤ xj ≤ 2l−1 − 1, j = 1, . . . , D} ⊂ L (2.1)

of the lattice L with side–length 2l for l ∈ N.

2.2 Local Fermion Algebras

For every finite subset Λ ⊂ L, let UΛ ≡ UΛ (S) be the complex Clifford algebra with identity 1 and generators

{ax,s, a+x,s}x∈Λ,s∈S (annihilation and creation operators) satisfying the canonical anti–commutation relations

(CAR): 
ax,sax′,s′ + ax′,s′ax,s = 0 ,

a+x,sa
+
x′,s′ + a+x′,s′a

+
x,s = 0 ,

ax,sa
+
x′,s′ + a+x′,s′ax,s = δx,x′δs,s′1 .

(2.2)

The set UΛ is isomorphic to the algebra B(
∧
HΛ) of bounded linear operators on the fermion Fock space

∧
HΛ,

where

HΛ ≡ HΛ (S) :=
⊕
x∈Λ

Hx . (2.3)

Here, Hx is a copy of the finite dimensional Hilbert space H for every x ∈ L. The C∗–algebras UΛ for all

finite subsets Λ ⊂ L are called local fermion algebras of the lattice L. Note that we have canonical inclusions

UΛ ⊂ UΛ′ by identifying generators ax,s, a
+
x,s with x ∈ Λ ⊂ Λ′.
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Important transformations are the translations of local fermion algebras. The latter are the isomorphisms

αx : UΛ → UΛ+x of C∗–algebras uniquely defined by the condition

αx(ay,s) = ax+y,s , s ∈ S , y ∈ Λ (2.4)

for any fixed x ∈ L. Other useful transformations are the (gauge–) automorphisms σθ, θ ∈ R/(2πZ), of UΛ

which are uniquely defined by

σθ(ax,s) = eiθax,s , x ∈ L , s ∈ S . (2.5)

A special role is played by σπ. For any finite subset Λ ⊂ L, elements A,B ∈ UΛ satisfying σπ(A) = A and

σπ(B) = −B are respectively called even and odd, whereas elements A ∈ UΛ satisfying σθ(A) = A for all

θ ∈ [0, 2π) are called gauge invariant. The sub–algebra of even elements is thus defined by

U+
Λ := {A ∈ UΛ : A− σπ(A) = 0} ⊂ UΛ (2.6)

for any finite subset Λ ⊂ L.

States on local fermion algebras are linear functionals ρ ∈ U∗
Λ which are positive, i.e., for all A ∈ U , ρ(A∗A) ≥

0, and normalized, i.e., ρ(1) = 1. We denote by EΛ ⊂ U∗
Λ the set of all states on UΛ for any finite subset Λ ⊂ L.

2.3 Inhomogeneous Fermi Models

Such quantum systems are defined by an inhomogeneous local interaction, named here field, and an inhomo-

geneous long–range interaction. We start by describing the local interaction.

A field is a map ψ from a topological space C1 to the one–site C∗–algebra U{0} satisfying

ψ (t) = ψ (t)
∗ ∈ U+

{0} , t ∈ C1 .

The precise choice of the space C1 depends on the physical situation under consideration. In most cases of interest

this space is even compact. To be more concrete, for instance in Section 4, where macroscopic inhomogeneities

are considered, the topological space C1 is the D–dimensional unit cubic box [−1/2, 1/2]D with the usual metric

topology. We define next long–range interactions.

Let (A,A, a) be a separable measure space with A and

a : A → R+
0

being respectively some σ–algebra on A and some measure on A. The separability of (A,A, a) means, per

definition, that the space L2(A,C) ≡ L2(A, a,C) of square integrable complex valued functions on A is a

separable Hilbert space. Then, the Banach space of long–range interactions is the (real) space

L := L2(A,U+
{0})× L2(A,U+

{0}) (2.7)

of L2–interactions equipped with the norm

∥X∥L := ∥ϕa∥2 + ∥ϕ′a∥2 =

(∫
A
∥ϕa∥

2
U{0}

da (a)

)1/2

+

(∫
A

∥∥ϕ′a∥∥2U{0}
da (a)

)1/2

for any

X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L .

Two examples of such a space (A,A, a) are given in Section 6. For instance, in the case of the BCS model,

(A,A, a) can be chosen as A = R with da (a) = da being the usual Lebesgue measure. We are now in position

to define the Hamiltonian of inhomogeneous Fermi models.

A field ψ and a long–range interaction X ∈ L allow us to define inhomogeneous Fermi models on every cubic

box Λl by the Hamiltonian

Ul : =
∑
x∈Λl

αx (ψ (gl (x))) (2.8)

+2−Dl
∫
A

∑
x,y∈Λl

Γa (gl (x) , gl (y)) αx((ϕa + iϕ′a)
∗)αy(ϕa + iϕ′a)da (a) .
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Note that Ul = U∗
l ∈ U+

Λl
must be an even, self–adjoint local element. Recall also that the cubic box Λl ⊂ L

is defined by (2.1) and thus has volume |Λl| = 2Dl, whereas the translation αx is the map uniquely defined by

(2.4) for every x ∈ L. It remains to define the maps gl and Γ.

Here, gl is some function from the cubic box Λl to the topological space C1 for every l ∈ N. This map

(together with the precise choice of C1) characterizes the type of inhomogeneity considered. For instance, to set

C1 ≡ [−1/2, 1/2]D and gl (x) ≡ 2−lx for all x ∈ Λl yields macroscopic inhomogeneities. The latter corresponds

to the situation in which the space scale of fluctuations of the interaction is macroscopic, but can be arbitrarily

small as compared to the side–length 2l of the box Λl.

The map

Γ : A× C1 × C1 → [−1, 1]

is, as a function

Γ (t, s) : a 7→ Γa (t, s)

on A for each fixed t, s ∈ C1, the pointwise limit of some sequence of step (elementary) measurable functions

from A to [−1, 1]. In particular, Γ (t, s) is a measurable function and we require that

Γa (t, s) = Γa (s, t) , t, s ∈ C1 , a ∈ A ,

in order to ensure the self–adjointness of Ul. We also assume the existence of a (measurable) function

γ : A× C1 → [−1, 1] ,

which, as a function

γ (t) : a 7→ γa (t)

on A for each fixed t ∈ C1, is also the pointwise limit of some sequence of step measurable functions from A to

[−1, 1], and of a decomposition A = A− ∪ A+ into two disjoint measurable components A− and A+ such that

Γa (t, s) = ±γa (t) γa (s) , t, s ∈ C1 , a ∈ A± . (2.9)

For the topological spaces C1 chosen below, we explain latter that this last assumption does not represent any

loss of generality in practice, but is technically convenient. See the beginning of Sections 3, 4 or 5. Note also

that some continuity of the function γa(·) will be imposed depending on the particular application.

The set A− is related to long–range attractions, whereas A+ refers to long–range repulsions. In particular,

there is no restriction on the sign of Γa (t, s) (or its Fourier transform). The most difficult case is of course the

one for which both the long–range attraction and the repulsion are taken into account. Therefore, without loss

of generality, we consider that ∫
A±

da (a) > 0 and ϕa + iϕ′a ̸= 0 (2.10)

in the sense of L2(A,C).

2.4 Thermodynamic Functions at Finite Volume

Given any local state ρ ∈ EΛl
on UΛl

, the energy observable Ul = U∗
l ∈ UΛl

fixes the finite volume free–energy

density

fl (ρ) := 2−Dlρ(Ul)− β−12−DlS(ρ) (2.11)

at inverse temperature β ∈ (0,∞) for any l ∈ N. The first term in fl is the mean energy per unit of volume of

the physical system found in the state ρ, whereas S is the von Neumann entropy defined, for all ρ ∈ EΛl
, by

S(ρ) := Trace∧HΛl
(η(dρ)) ≥ 0 . (2.12)

Here, η(ζ) := −ζ log(ζ) and dρ is the density matrix of ρ ∈ EΛl
.

The state of a system in thermal equilibrium and at fixed mean energy per volume maximizes the entropy,

by the second law of thermodynamics. Therefore, it minimizes the free–energy density functional fl. Such
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well–known arguments lead to the study of the variational problem inf fl (EΛl
). The value of this variational

problem is directly related to the so–called pressure pl as

pl ≡ pl (ψ, γ) := β−12−Dl lnTrace∧HΛl

(
e−βUl

)
= − inf fl (EΛl

) . (2.13)

The latter is named in the literature the passivity of Gibbs states. Indeed, the solution of this variational

problem is precisely the Gibbs state gl ≡ gl (ψ, γ) defined by the density matrix

dgl
:=

e−βUl

Trace∧HΛl
(e−βUl)

(2.14)

for any β ∈ (0,∞) and l ∈ N. The proof of this property is a consequence of Jensen’s inequality, see, e.g., [8,

Lemma 6.3] for the fermionic case or [11, Proposition 6.2.22] for the case of quantum spins.

2.5 Thermodynamic Game

This two–person zero–sum game is directly related to a method known in the mathematical physics literature

as the approximating Hamiltonian method. Indeed, inspired by the Bogoliubov theory of superfluidity and the

BCS theory [1, 2, 3], Bogoliubov Jr. in 1966 [12, 13] and Brankov, Kurbatov, Tonchev, Zagrebnov during the

seventies and eighties [14, 15, 16] introduced a general method to analyze – on the level of the pressure – the

Bogoliubov–type approximation in a systematic way. The pivotal ingredient is to find an approximating Hamil-

tonian depending on some parameters which have to be optimized. In our monograph [10] we strongly generalize

this approach by also giving results on equilibrium states1, and interpret the Bogoliubov–type approximation

in terms of a two–person zero–sum game, named thermodynamic game.

This game is defined via approximating interactions depending on two L2–functions of L2(A±,C). The

Hilbert spaces L2(A±,C) are respectively associated with long–range repulsions (+) and attractions (−) and

split the Full space L2(A,C) as
L2(A,C) = L2(A+,C)⊕ L2(A−,C) .

Recall indeed that A = A− ∪ A+ with A− and A+ being two disjoint measurable sets.

Then, generic approximating interactions are defined by

u ≡ u (ϕ, κ, c−, c+) = ϕ+ 2

∫
A
κaRe

{(
ϕa + iϕ′a

)∗
(ca,+ − ca,−)

}
da (a) (2.15)

for any c± ∈ L2 (A±,C), one–site self–adjoint even element ϕ = ϕ∗ ∈ U+
{0}, long–range interaction

X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L

and any measurable function κ from A to [−1, 1]. Approximating interactions u = u∗ ∈ U+
{0} are associated

with a perturbed free–energy defined by

f (ϕ, κ, c−, c+) : = −
∫
A+

|ca,+|2 da (a) +
∫
A−

|ca,−|2 da (a)

−β−1 lnTrace∧H{0}

(
e−βu(ϕ,κ,c−,c+)

)
. (2.16)

One important example which is directly related to the Hamiltonian Ul corresponds to the choice ϕ = ψ (t) and

κ = γ(t), where γ(t) stands for the measurable function A → [−1, 1] defined by a 7→ γa(t).

Now, we endow the topological space C1 with some fixed probability measure m and define, in the case the

integral below makes sense, the approximating free–energy functional

F (c−, c+) ≡ F (ψ, γ, c−, c+) :=

∫
C1

f (ψ (t) , γ(t), c−, c+) dm (t)

1Applied to lattice fermions or quantum spins our results are more general than [12, 13, 14, 15, 16] even on the level of the
pressure. See discussions in [10, Section 2.10] for more details.
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for any c± ∈ L2 (A±,C). This function is the gain/loss function of the (two–person zero–sum) thermodynamic

game defined by

Fψ,γ := inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

F (ψ, γ, c−, c+) . (2.17)

Observe that, in general,

inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

F (ψ, γ, c−, c+)

> sup
c+∈L2(A+,C)

inf
c−∈L2(A−,C)

F (ψ, γ, c−, c+) .

Thus, this game may have no conservative value and, in particular, no non–conservative equilibrium (i.e.,

the functional F (ψ, γ, ·, ·) has no saddle point, in general). However, the gain/loss function F (ψ, γ, ·, ·) can be

extended in order to have a conservative value. This procedure is standard in game theory and we consider, with

this aim, the space C(L2
−, L

2
+) of functions L

2(A−,C) → L2(A+,C) which are continuous with respect to the

weak topologies of L2(A+,C) and L2(A−,C). Then we define the extended gain/loss functional Fext (ψ, γ, ·, ·)
from L2(A−,C)× C(L2

−, L
2
+) to R by

Fext (ψ, γ, c−, r+) := F (ψ, γ, c−, r+(c−)) .

From Lasry’s theorem (see, e.g., [10, Theorem 10.51]), we have for the corresponding conservative value:

Fext
ψ,γ = inf

c−∈L2(A−,C)
sup

r+∈C(L2
−,L

2
+)

Fext (ψ, γ, c−, r+)

= sup
r+∈C(L2

−,L
2
+)

inf
c−∈L2(A−,C)

Fext (ψ, γ, c−, r+) = Fψ,γ .

It turns out that the extended thermodynamic game even possesses non–conservative equilibria, i.e., the func-

tional Fext (ψ, γ, ·, ·) has saddle points. This will be proven below. Note that the conservative value Fext
ψ,γ = Fψ,γ

of the (extended) thermodynamic game is, up to a minus sign, the thermodynamic limit l → ∞ of the pressure

pl (2.13). Indeed, we show in the next sections that this game governs the thermodynamics of the systems

defined by the Hamiltonian Ul.

In particular, approximating (finite volume) equilibrium states are given by product states of the form

gl,c−,c+ ≡ gl,c−,c+, (ψ, γ) :=
⊗
x∈Λl

ωgl(x),c−,c+ ◦ α−x (2.18)

for all l ∈ N, where the parameters c− ≡ d− and c+ ≡ d+ = r+(d−) correspond to non–conservative equilibria

(d−, r+) of the game Fext
ψ,γ . Here, for all t ∈ C1, inverse temperatures β ∈ (0,∞) and parameters c± ∈ L2 (A±,C),

the functional ωt,c−,c+ is the Gibbs state on U{0} associated with the one–site Hamiltonian u (ψ (t) , γ (t) , c−, c+)

and thus defined by the density matrix

e−βu(ψ(t),γ(t),c−,c+)

Trace∧H{0}(e
−βu(ψ(t),γ(t),c−,c+))

. (2.19)

By [17, Theorem 11.2.], note that the tensor product in (2.18) is well–defined. Indeed, ωt,c−,c+ is an even state

as u ∈ U+
{0}, whereas ωgl(x),c−,c+ ◦ α−x is viewed as an even state on U{x} since αx is the translation map

U{0} → U{x} defined by (2.4) for every x ∈ L. We prove below that the product states gl,d−,d+ taken for any

solutions d± ∈ L2(A±,C) of the variational problem Fψ,γ minimize the free–energy density of the system in the

thermodynamic limit l → ∞.

3. Periodic Microscopic Fluctuations

3.1 Definitions

We start by analyzing the inhomogeneous model Ul, which is defined by (2.8), when the inhomogeneity is

microscopic and periodic. It means that the space scale of the fluctuations of the Hamiltonian is of the order
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of the size of the lattice spacing with some fixed periodicity. This situation is indeed easy to handle and a good

preparation to the macroscopic case treated thereafter.

With this aim, the topological space C1 will be in this section the D–dimensional cubic box Λn equipped with

the discrete topology for some fixed n ∈ N, see (2.1). The scale function gl ≡ g is the map from the box Λl to

C1 defined by

gl (x) = x mod
2nZ

≡ g (x) , x ∈ Λl , l ∈ N .

The probability measure m on the topological space C1 is here the counting measure defined by

m (Ω) = 2−Dn#(Ω) , Ω ⊂ C1 . (3.1)

Here, # (Ω) denotes the cardinality of the finite subset Ω ⊂ C1.

The choice C1 = Λn is technically convenient but the results below are also true for any finite box of the form

C1 = {1, · · · , L1} × · · · × {1, · · · , LD} ⊂ L := ZD .

Note additionally that all symmetric real–valued functions h(t, s) on C1 × C1 are finite sums of products of the

form ±f(t)f(s). Therefore, by redefining the measure space A, Assumption (2.9) on Γ does not represent any

loss of generality and is technically convenient.

3.2 Thermodynamics at Infinite Volume

We study now the thermodynamic properties of the inhomogeneous system defined by the Hamiltonian Ul.

In particular, we first prove that the thermodynamic game defined by (2.17) is directly related to the pressure

pl (2.13) in the thermodynamic limit l → ∞.

Theorem 3.1 (Thermodynamic limit of the pressure I)

For any field ψ and long–range interaction X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

pl = −Fψ,γ .

Proof. Take two integers l, n ∈ N with l ≥ n. Then, there exists an isomorphism ξ
(n)
l of C∗–algebras from

UΛl
≡ UΛl

(S) to UΛl−n
(Sn) for the spin set Sn := S×Λn. See Section 2.2 for the definition of these C∗–algebras.

The image of the Hamiltonian Ul ∈ UΛl
under the map ξ

(n)
l equals

V
(n)
l−n :=

∑
x∈Λl−n

αx(ψ̂) + 2−D(l−n)
∫
A

∑
x,y∈Λl−n

γ̂a αx((ϕ̂a + iϕ̂
′
a)

∗)αy(ϕ̂a + iϕ̂
′
a)da (a) , (3.2)

where γ̂ is the fixed measurable function defined by γ̂a := ±1 for a ∈ A± and

ψ̂ : =
∑
x∈Λn

ξ
(n)
l [αx (ψ (x))] , (3.3)

ϕ̂a : = 2−
Dn
2

∑
x∈Λn

ξ
(n)
l [γa (x) αx(ϕa)] , (3.4)

ϕ̂
′
a : = 2−

Dn
2

∑
x∈Λn

ξ
(n)
l

[
γa (x) αx(ϕ

′
a)
]
. (3.5)

The assertion then follows from Theorem 7.4. Note additionally that the pressure associated with V
(n)
l−n is

normalized with an inverse volume 2−D(l−n), whereas this inverse volume equals 2−Dl in pl (2.13). Therefore, in

the variational problem given by Theorem 7.4, one has to rescale the functions c± ∈ L2(A±,C) as c̃± = 2−
Dn
2 c±.

This rescaling allows to absorb the constants 2−
Dn
2 inside the approximating pressure and we get the probability

measure m defined by (3.1). We omit the details. 2
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Since the thermodynamic game resulting from Fψ,γ is pivotal, we now give its properties. Similar to (7.5),

(7.6) and (7.7), there are a L2–function d− ∈ L2(A−,C) and a (weak–norm continuous) map

r+ ≡ r+ (ψ, γ) : c− 7→ r+ (c−) (3.6)

from L2(A−,C) to L2(A+,C) such that

sup
c+∈L2(A+,C)

F(d−, c+) = inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

F(c−, c+) (3.7)

and

F(d−, r+ (d−)) = sup
c+∈L2(A+,C)

F(d−, c+) . (3.8)

The solutions d− and

d+ := r+ (d−) ∈ L2(A+,C)

of (3.7) and (3.8) are extremely useful because they allow for instance the construction (2.18) of approximating

minimizers gl,d−,d+ of the finite volume free–energy density fl (2.11):

Proposition 3.2 (Approximating finite volume minimizers I)

For any field ψ and long–range interaction X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

{
fl(gl,d−,d+)− inf fl(EΛl

)
}
= 0 .

Proof. Note first that

gl,d−,d+ [αx(A)αy(B)] = gl,d−,d+ [αx(A)] gl,d−,d+ [αy(B)] , A,B ∈ U{0} ,

for all x, y ∈ Λl such that x ̸= y. Moreover, since d± ∈ L2(A±,C) solve the variational problems (3.7) and

(3.8), by using the corresponding Euler–Lagrange equations we arrive at

da,− + r+ (d−) = da,− + da,+ =

∫
C1

γa (t)ωt,d−,d+(ϕa + iϕ′a)dm (t) (3.9)

in the sense of L2(A,C). By using the additivity of the von Neumann entropy S (2.12) for product states as

well as

ωg(x),d−,d+

(
u (ψ (g (x)) , γ (g (x)) , d−, d+)

)
− β−1S(ωg(x),d−,d+)

= −β−1 lnTrace∧H{0}

(
e−βu(ψ(g(x)),γ(g(x)),d−,d+)

)
(passivity of Gibbs states) for any x ∈ Λl together with (3.7), (3.8) and the gap equation (3.9), we then get

fl
(
gl,d−,d+

)
= 2−Dl

∑
x∈Λl

gl,d−,d+

(
αx [u (ψ (g (x)) , γ (g (x)) , d−, d+)]

)
−β−12−DlS(gl,d−,d+)−

∫
A+

|da,+|2 da (a)

+

∫
A−

|da,−|2 da (a) + o(1)

= 2−Dl
∑
x∈Λl

f
(
ψ (g (x)) , γ (g (x)) , d−, d−

)
+ o(1)

= F (ψ, γ, d−, d+) + o(1) = Fψ,γ + o(1)

as l → ∞. See respectively (2.15) and (2.16) for the definitions of u and f. The proof now follows from the

passivity of Gibbs states (2.13) and Theorem 3.1. 2
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By using the isomorphism2 ξ
(n)
l from UΛl

≡ UΛl
(S) to UΛl−n

(Sn) together with Theorem 7.2, the sequence

{gl}l∈N of Gibbs states (2.14) has a priori weak∗–accumulation points which all belong to the set of (infinite

volume) equilibrium states. These equilibrium states are permutation invariant on the fermion algebra3 for a

spin set Sn := S× Λn. Therefore, we can assume without loss of generality the weak∗–convergence of {gl}l∈N.

By Theorems 7.2 and 7.7, we can derive all correlation functions from the explicit Gibbs product states gl,d−,d+ :

Theorem 3.3 (Correlation functions I)

For any field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, there is a probability measure4 ν supported on the set C of

solutions of (3.7) such that, for any A1, . . . , Ap ∈ U{0} and x1, . . . , xp ∈ L with p ∈ N,

lim
l→∞

∣∣gl (αx1 (A1) · · ·αxp (Ap)
)

−
∫
C
gl,d−,r+(d−)

(
αx1 (A1) · · ·αxp (Ap)

)
dν(d−)

∣∣∣∣ = 0 .

Proof. By Theorem 7.5, the approximating minimizers gl,d−,d+ defined by (2.18) are the restriction on finite

volumes of the product states

ω⊗
2

Dn
2 d−,2

Dn
2 d+

|UΛl−n
(Sn) ◦ ξ

(n)
l .

Here, ω⊗
2

Dn
2 d−,2

Dn
2 d+

∈ E⊗
ψ̂,X̂

is constructed from ω
2

Dn
2 d−,2

Dn
2 d+

∈ Eψ̂,X̂ for l ≥ n, see (7.1). Here, ψ̂ is defined

by (3.3) and

X̂ := ({ϕ̂a}a∈A, {ϕ̂
′
a}a∈A) ∈ L ,

see (3.4) and (3.5). Therefore, we arrive at the assertion by using Theorems 7.2 and 7.7, provided one assumes

the weak∗–convergence of {gl}l∈N. 2

4. Macroscopic Fluctuations

4.1 Definitions

We study here fermion systems on lattices with macroscopic inhomogeneities. It means that the space scale

of fluctuations of the Hamiltonian Ul is of the order of the size of the box Λl.

With this aim, we consider the D–dimensional unit cubic box

C1 = [−1/2, 1/2]D

with the usual metric topology as the topological space C1. The scale function gl is then defined by

gl (x) = 2−lx ∈ C1 , x ∈ Λl , l ∈ N .

The probability measure m is the usual D–dimensional Lebesgue measure dDt on [−1/2, 1/2]D.

By using (continuous) partitions of unity of C1, note that continuous and symmetric real–valued functions

h(t, s) on C1×C1 can be arbitrarily well approximated (in the sense of uniform convergence) by sums of products

of the form ±f (t) f (s), where the function f is continuous on C1. Therefore, by redefining the measure space

A, Assumption (2.9) on Γ does not represent any loss of generality in the macroscopic case and is technically

convenient.

4.2 Thermodynamics at Infinite Volume

Like in Section 3.2 for the microscopic case, we first derive the thermodynamic limit l → ∞ of the pressure pl
(2.13) in order to relate the physical properties of the inhomogeneous macroscopic system to the thermodynamic

game defined by (2.17).

2See proof of Theorem 3.1.
3It is also known as the CAR algebra. See [10, Section 1.1] for more details.
4The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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Theorem 4.1 (Thermodynamic limit of the pressure II)

Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is

the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any

continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

pl = −Fψ,γ .

Proof. For any continuous field ψ, any map γ : A → C (C1; [−1, 1]) and every n ∈ N, let ψ(n) and γ(n) be their

piecewise constant approximations defined by

ψ(n) (t) : =
∑
y∈Λn

ψ
(
2−ny

)
1
[
t ∈

(
2−nC1 + 2−ny

)]
(4.1)

γ(n)a (t) : =
∑
y∈Λn

γa
(
2−ny

)
1
[
t ∈

(
2−nC1 + 2−ny

)]
(4.2)

for all t ∈ C1 and a ∈ A. The piecewise constant approximation Γ(n) of Γ is then defined by

Γ(n)
a (t, s) := ±γ(n)a (t) γ(n)a (s) , t, s ∈ C1 , a ∈ A± .

Let p
(n)
l := pl(ψ

(n), γ(n)) be the pressure associated with the Hamiltonian U
(n)
l defined by (2.8) for the field

ψ(n) and the coupling function γ
(n)
a , see (2.13). Then, by simple computations (see, e.g., [10, Lemma 6.1]),

lim
n→∞

lim sup
l→∞

|p(n)l − pl| = 0 . (4.3)

On the other hand, one can verify the existence of two constants R± ∈ (0,∞) not depending on n ∈ N ∪ {∞}
such that

Fψ(n),γ(n) < inf
c−∈L2(A−,C)
∥c−∥2>R−

sup
c+∈L2(A+,C)

F(ψ(n), γ(n), c−, c+) (4.4)

whereas, for any c− ∈ L2(A−,C) such that ∥c−∥2 ≤ R−,

sup
c+∈L2(A+,C)

F(ψ(n), γ(n), c−, c+) > sup
c+∈L2(A+,C)
∥c+∥2>R+

F(ψ(n), γ(n), c−, c+) . (4.5)

Here, ψ(∞) := ψ and γ(∞) := γ. Meanwhile, using similar arguments as in [10, Lemma 6.1],

F (c−, c+) ≡ F (ψ, γ, c−, c+) = lim
n→∞

F(ψ(n), γ(n), c−, c+) (4.6)

uniformly in bounded sets of L2
±(A,C). Therefore we infer from (4.4)–(4.6) that

lim
n→∞

∣∣Fψ(n),γ(n) − Fψ,γ
∣∣ = 0 . (4.7)

Knowing (4.3) and this last limit, it remains to prove that, for each fixed n ∈ N,

lim
l→∞

p
(n)
l = Fψ(n),γ(n) . (4.8)

By rearranging lattice sites (see, e.g., (5.3) with η = 0 and Λ0 ≡ {0}), one directly shows this assertion from

Theorem 3.1. 2

By the uniform limit (4.6), the maps

c− 7→ F (ψ, γ, c−, c+) and c+ 7→ F (ψ, γ, c−, c+) (4.9)

inherit the weak lower (−) and upper (+) semi–continuities of the maps

c− 7→ F(ψ(n), γ(n), c−, c+) and c+ 7→ F(ψ(n), γ(n), c−, c+) , (4.10)
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respectively. As a consequence, by (4.4)–(4.5) and the compactness of closed balls of finite radius in the weak

topology (Banach–Alaoglu theorem) together with concavity arguments similar to [10, Lemma 8.3 (♯)], there

are a L2–function d− ∈ L2(A−,C) and a map

r+ ≡ r+ (ψ, γ) : c− 7→ r+ (c−)

from L2(A−,C) to L2(A+,C) satisfying (3.7) and (3.8) for this case. We also infer from (4.4) and (4.5) that all

such L2–functions d− ∈ L2(A−,C) and

d+ := r+(d−) ∈ L2(A+,C)

belong to some fixed closed ball of finite radius. One can also extend [10, Lemma 8.8] to this case in order

to show that the map r+ is weak–norm continuous, that is, continuous with respect to the weak topology on

L2(A−,C) and the norm topology on L2(A+,C).

Like in the microscopic case, the optimizing L2–functions d± ∈ L2(A±,C) allow the construction (2.18) of

approximating minimizers gl,d−,d+ of the finite volume free–energy density fl (2.11):

Proposition 4.2 (Approximating finite volume minimizers II)

Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is

the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any

continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

{
fl(gl,d−,d+)− inf fl (EΛl

)
}
= 0 .

Proof. See the proof of Proposition 3.2, observing that the Euler–Lagrange equations for the present choice of

C1 = [−1/2, 1/2]D and dm (t) = dDt yield

da,− + da,+ = 2−Dl
∑
x∈Λl

γa (gl (x))ωgl(x),d−,d+(ϕa + iϕ′a) + o(1) (4.11)

in the sense of L2(A,C). 2

We denote by

g
(n)
l := gl(ψ

(n), γ(n)) , n ∈ N ,

the approximating Gibbs states associated with the piecewise constant approximations ψ(n), γ(n) of ψ, γ, see

(2.14) and (4.1)–(4.2). Then, assuming without loss of generality the weak∗–convergence of {g(n)l }l∈N, all

correlation functions of these Gibbs states are given by Theorem 3.3, when l → ∞. The latter implies the

following:

Theorem 4.3 (Approximated correlation functions II)

Assume that ψ is a continuous field and γ is a map from A to the Banach space C (C1; [−1, 1]) of contin-

uous functions of C1 which is the pointwise limit of some sequence of step measurable functions from A to

C (C1; [−1, 1]). Then, there is a probability measure5 ν supported on the set C of solutions of (3.7) such that,

for any A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L,

lim sup
l→∞

∣∣∣g(n)l

(
αx1 (A1) · · ·αxp (Ap)

)
−
∫
C
gl,d−,r+(d−)

(
αx1 (A1) · · ·αxp (Ap)

)
dν(d−)

∣∣∣∣ ≤ εn

with p, n ∈ N and εn → 0 as n→ ∞.

5The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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Proof. We start with some definitions related to ψ(n) (4.1) and γ(n) (4.2) for every n ∈ N ∪ {∞}, where

ψ(∞) := ψ and γ(∞) := γ. We denote by d
(n)
− and

r
(n)
+ := r+(ψ

(n), γ(n))

the solutions of the variational problems (3.7) and (3.8) for ψ(n) and γ(n) with r
(∞)
+ := r+. See also (3.6). By

(4.4)–(4.5), one has

∥d(n)− ∥2 ≤ R− (4.12)

for some constant R− ∈ (0,∞) not depending on n ∈ N ∪ {∞}. We also denote by

g
(n)
l,c−,c+

:= gl,c−,c+(ψ
(n), γ(n)) , n ∈ N , c± ∈ L2(A±,C) ,

the approximating minimizers (2.18) associated with ψ(n), γ(n).

Observe that all correlation functions of the Gibbs states g
(n)
l are given by Theorem 3.3 in the limit l → ∞:

There is a probability measure ν(n) supported on the set C(n) of solutions of (3.7) (for ψ(n), γ(n) of course) such

that

lim
l→∞

∣∣∣g(n)l

(
αx1 (A1) · · ·αxp (Ap)

)
−
∫
C(n) g

(n)

l,d−,r
(n)
+ (d−)

(
αx1 (A1) · · ·αxp (Ap)

)
dν(n)(d−)

∣∣∣∣ = 0
(4.13)

for any A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L and p, n ∈ N.
Now, we analyze the integrand of (4.13). For every fixed n ∈ N ∪ {∞} and c− ∈ L2(A−,C), the L2–function

r
(n)
+ (c−) is the unique minimizer of the functional q

(n)
c− defined, for all c+ ∈ L2(A+,C), by

q(n)c− (c+) : =

∫
A+

|ca,+|2 da (a)

+β−1

∫
C1

lnTrace∧H{0}

(
e−βu(ψ

(n)(t),γ(n)(t),c−,c+)
)
dDt . (4.14)

For any c+ ∈ L2(A+,C) and t ∈ R, note that

∂2t

{
∥r(n)+ (c−) + t(c+ − r

(n)
+ (c−)∥22

}
= 2∥r(n)+ (c−)− c+∥22 . (4.15)

On the other hand, for any c+ ∈ L2(A+,C), the map

t 7→ β−1

∫
C1

lnTrace∧H{0}

(
e
−βu

(
ψ(n)(t),γ(n)(t),c−,r

(n)
+ (c−)+t(c+−r

(n)
+ (c−))

))
dDt

from R to R is a pressure. It is convex and smooth. In particular, we deduce from (4.15) and the convexity of

the previous map that

∂2t q
(n)
c−

(
r
(n)
+ (c−) + t(c+ − r

(n)
+ (c−)

)
≥ 2∥r(n)+ (c−)− c+∥22 .

We then integrate twice this inequality between 0 and t ∈ [0, 1] using that r
(n)
+ (c−) minimizes the functional

q
(n)
c− to obtain the bound

q(n)c− (c+)− q(n)c− (r
(n)
+ (c−)) ≥ ∥r(n)+ (c−)− c+∥22 (4.16)

for all c± ∈ L2(A±,C) and n ∈ N ∪ {∞}.
We meanwhile know that

lim
n→∞

|q(n)c− (c+)− q(∞)
c− (c+) | = 0 (4.17)

uniformly in c± ∈ L2(A±,C) on bounded sets. Similar to (4.5), r
(n)
+ (c−) belongs to some fixed bounded set

(independent of n), provided c− ∈ L2(A−,C) is also in a fixed bounded set. Thus, we infer from (4.17) that

lim
n→∞

{
inf

c+∈L2(A+,C)
q(n)c− (c+)− inf

c+∈L2(A+,C)
q(∞)
c− (c+)

}
= 0
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uniformly in c− ∈ L2(A±,C) on bounded sets. We then combine this last equation with (4.16) and (4.17) to

arrive at the limit

lim
n→∞

∥r(n)+ (c−)− r+(c−)∥2 = 0 . (4.18)

The latter is uniform for c− ∈ L2(A−,C) on bounded sets. By using the passivity of one–site Gibbs states, we

deduce from (4.18) that the function

c− 7→
(
g
(n)

l,c−,r
(n)
+ (c−)

− gl,c−,r+(c−)

)(
αx1 (A1) · · ·αxp (Ap)

)
(4.19)

converges to zero as n→ ∞, uniformly in x1, . . . , xp ∈ L, l ∈ N, and in c− ∈ L2(A−,C) within a fixed bounded

set.

Note also that the map

c− 7→ g
(n)

l,c−,r
(n)
+ (c−)

(
αx1 (A1) · · ·αxp (Ap)

)
is weak continuous for every n ∈ N ∪ {∞}. As a consequence, by (4.13), it suffices now to study the weak∗–

convergence of the probability measures {ν(n)}∞n=1.

For all n ∈ N, the probability measures ν(n) are all supported in a closed ball of L2(A−,C) with radius R−
because of (4.12). Therefore, we can identify the probability measures {ν(n)}∞n=1 with positive and normalized

functionals on a C∗–algebra CR− of continuous functions on this ball. Since the set of states on a C∗–algebra

with identity is weak∗–compact, the sequence {ν(n)}∞n=1 has weak∗–accumulation points. By separability of

L2(A−,C), it follows that any closed ball of finite radius is separable and weakly compact because of Banach–

Alaoglu theorem. In particular, the weak topology in any closed ball of finite radius in the Hilbert space

L2(A−,C) is metrizable, see, e.g., [10, Theorem 10.10]. Thus, by [18, p. 245, S (d)], the set of continuous

functions on such balls is itself separable. In particular, the set of states on CR− is sequentially compact

with respect to the weak∗–topology. Therefore, by the Riesz–Markov theorem, we can assume without loss of

generality that the sequence {ν(n)}∞n=1 converges to some probability measure ν in the weak∗–topology.

This last property, together with the uniform convergence of (4.19) to zero as n→ ∞, yields the limit stated

in the theorem with C replaced with the support Cν of ν. It thus remains to prove that Cν is contained in the

set C of solutions of (3.7).

Assume that ν is not supported on C. Then, because C is a closed set, there is a non–empty, closed, bounded

subset B of the complement of C with ν(B) > 0 and

B ∩ C(n) ̸= ∅

for n ∈ N sufficiently large. Recall that C(n) is the set of solutions of (3.7) (for ψ(n), γ(n)) and contains the

support of the probability measure ν(n). Now take any sequence {d(n)− }∞n=1 ⊂ B with d
(n)
− ∈ C(n) for n ∈ N

sufficiently large. Using (4.4) together with the compactness (Banach–Alaoglu theorem) and metrizability of

closed balls of finite radius in the weak topology, we can assume without loss of generality that {d(n)− }∞n=1

converges weakly to some d− ∈ B. The map

c− 7→ sup
c+∈L2(A+,C)

F(ψ, γ, c−, c+)

from L2
−(A,C) to R is lower semi–continuous in the weak topology because it is the supremum of a family

{c− 7→ F(ψ, γ, c−, c+)}c+∈L2(A+,C)

of lower semi–continuous functionals, see (4.9). Using this property together with (4.6) and (4.7), we find that

d− solves (3.7), i.e., d− /∈ B. Hence, the probability measure ν must be supported on the set of solutions of

(3.7), i.e., Cν ⊂ C. 2

By using the above result, expectation values derived from the original Gibbs state gl ≡ g
(∞)
l associated with

the Hamiltonian Ul can be deduced in various situations for specific A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L with

p, n ∈ N, in the sense that

gl
(
αx1 (A1) · · ·αxp (Ap)

)
= g

(n)
l

(
αx1 (A1) · · ·αxp (Ap)

)
+ o(1) .
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This can be performed by using Griffiths arguments [19, 20, 21], which are based on convexity and differentia-

bility properties of the pressure. See also [8, Appendix]. An example is given in Section 6.2.

5. Periodic Mesoscopic Fluctuations

5.1 Definitions

We conclude by studying the mesoscopic case. The complete analysis of this situation is the subject of a

further paper. Here, we restrict ourselves to the periodic case.

Set C1 = RD with the usual metric topology and define the scale function gl by

gl (x) = 2ηl2−lx ∈ C1 , x ∈ Λl , l ∈ N , η ∈ (0, 1) . (5.1)

The case η = 0 clearly corresponds to the macroscopic case, whereas η = 1 leads to a microscopic situation. We

now add a hypothesis which is not imposed in the macroscopic case: The field ψ and the map γ from A×C1 to

[−1, 1] are assumed to be both (1, . . . , 1)–periodic. The probability measure m is then defined in this periodic

mesoscopic situation by

m (Ω) =

∫
Ω∩[−1/2,1/2]D

dDt

for all Borel sets Ω ⊂ C1.

Note that Assumption (2.9) on Γ can again be used without loss of generality in this case.

5.2 Thermodynamics at Infinite Volume

The thermodynamic study of the inhomogeneous system in the periodic mesoscopic situation is quite similar to

the macroscopic case. In particular, in the same way we prove Theorem 4.1 one shows that the thermodynamic

game defined by (2.17) again gives the pressure in the thermodynamic limit:

Theorem 5.1 (Thermodynamic limit of pressure III)

Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is

the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any

continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

pl = −Fψ,γ ,

where pl is the pressure defined by (2.13).

Proof. Since the field ψ and the map γ : A → C (C1; [−1, 1]) are assumed in this section to be both (1, . . . , 1)–

periodic, by the rescaling (5.1) all the information about the inhomogeneity remains inside each translated

box

Λl−[ηl] + 2l−[ηl]y , y ∈ Λ[ηl] . (5.2)

Therefore, for any continuous field ψ and γ : A → C (C1; [−1, 1]), we can use their piecewise constant and

(1, . . . , 1)–periodic approximations ψ(n) and γ(n) defined on the unit cell [−1/2, 1/2]
D

similarly as in (4.1)–

(4.2). Like in the macroscopic case (Theorem 4.1), we divide the |Λ[ηl]| = 2D[ηl] translated boxes (5.2) into

|Λn| = 2Dn smaller boxes. This strategy gets us to consider the Hamiltonian

W
(n)
l−n : =

∑
y∈Λ[ηl]

∑
x∈Λl−[ηl]−n

αx+2l−[ηl]y(ψ̃)

+2−D(l−n)
∫
A
da (a)

∑
y,y′∈Λ[ηl]

∑
x,x′∈Λl−[ηl]−n

γ̂a αx+2l−[ηl]y((ϕ̃a + iϕ̃
′
a)

∗)

αx′+2l−[ηl]y′(ϕ̃a + iϕ̃
′
a) , (5.3)
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where [z] is the integer part of z ≥ 0, γ̂ is the fixed measurable function defined by γ̂a := ±1 for a ∈ A± and

ψ̃ : =
∑
x∈Λn

α2l−[ηl]−nx

(
ψ(2−nx)

)
,

ϕ̃a : = 2−
Dn
2

∑
x∈Λn

γa(2
−nx) α2l−[ηl]−nx(ϕa) ,

ϕ̃
′
a : = 2−

Dn
2

∑
x∈Λn

γa(2
−nx) α2l−[ηl]−nx(ϕ

′
a) .

Then, similar to Theorem 4.1, for any fixed n ∈ N, the corresponding pressure defined by

p
(n)
l := β−12−D(l−n) lnTrace∧HΛ

(
e−βW

(n)
l−n

)
= pl(ψ

(n), γ(n))

converges in the thermodynamic limit to

lim
l→∞

p
(n)
l = −Fψ(n),γ(n)

for any n ∈ N. Therefore, we deduce the assertion by combining this last limit with similar estimates to (4.3)

and (4.7). 2

Like in the microscopic and macroscopic situations, one shows that the local Gibbs states gl,d−,d+ (2.18) for

all l ∈ N are still approximating minimizers of the finite volume free–energy density in the mesoscopic case:

Proposition 5.2 (Approximating finite volume minimizers III)

Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is

the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any

continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

lim
l→∞

{
fl
(
gl,d−,d+

)
− inf fl (EΛl

)
}
= 0 .

Other similar results to the macroscopic case (see Theorem 4.3) can be performed in the mesoscopic situation.

We refrain however from doing it. In fact, the periodic mesoscopic situation is a kind of “rearranging” of the

macroscopic case. See, e.g., proof of Theorem 5.1, in particular Equation (5.3). It is only discussed here in

order to give some intuition on this matter. A more general setting in which periodicity is not imposed will be

the subject of a separated paper.

6. Applications

6.1 The BCS Model

The reduced BCS Hamiltonian in the quasi–spin representation formulation equals

UBCSl :=
∑
k∈Λ∗

l

εkσ
z
k −

1

|Λl|
∑

k,k′∈Λ∗
l

U (k, k′)σ+
k σ

−
k′ (6.1)

with σ±
k := σxk ± iσyk. Here, σ

x
k, σ

y
k, σ

z
k are respectively the x, y, z components of the spin, the finite set

Λ∗
l :=

(
2−lπ

)
ZD ∩ [−π, π]D , l ∈ N , (6.2)

is the reciprocal lattice of (quasi–) momenta and

εk := D −
D∑
j=1

cos (kj) , k = (k1, . . . , kD) ∈ [−π, π]D
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is the usual kinetic energy of lattice particles. Note that the quasi–spin representation formulation of the BCS

Model is not necessary and we could directly use the fermionic setting. We only use it to be close to the setup

of [4, 5].

Because of the rescaling 2−l in the definition (6.2) of Λ∗
l , this example corresponds to a spin system with

macroscopic inhomogeneities as defined in Section 4.1 with C1 = [−π, π]D. Indeed, in this case

A = R , da (a) = da , ϕa = Re
(
f (a)σ+

0

)
, ϕ′a = Im

(
f (a)σ+

0

)
,

where da is the usual Lebesgue measure and f is any L2–function. The coupling function U (k, k′) is equal, for

k, k′ ∈ [−π, π]D, to

U (k, k′) :=

∫
A−

|f (a)|2 γa (k) γa (k′) da−
∫
A+

|f (a)|2 γa (k) γa (k′) da ,

where A− and A+ are any two disjoint measurable sets such that A− ∪ A+ = R and γ is any arbitrary map

from R to the Banach space C (C1; [−1, 1]) of continuous functions of C1 = [−π, π]D, which is the pointwise

limit of some sequence of step measurable functions from A to C (C1; [−1, 1]).

The thermodynamics of the BCS Hamiltonian at any inverse temperature β ∈ (0,∞) was rigorously analyzed

during the eighties [4, 5]. These studies were however only performed on the level of the pressure or the free–

energy density6. Moreover, the resulting variational problems are technically difficult to analyze. Indeed, [4]

yields an (infinite volume) pressure through two variational problems (∗) and (∗∗) over states on a much larger

algebra than the original observable algebra of the model. The proof of [5] starts with the use of some piecewise

constant approximations exactly as in the proof of Theorem 4.1, see [5, Eq. (2.3)]. But, the resulting variational

problem is again technically difficult to analyze. See, e.g., [5, Theorem 3] which gives the free–energy density

as a variational problem over three bounded functions of [−π, π]D analyzed in [5, Section 3].

By contrast, we directly infer from Theorem 4.1 that the thermodynamic limit of the pressure equals −FBCS

with

FBCS : = inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

{
−
∫
A+

|ca,+|2 da+
∫
A−

|ca,−|2 da

−
∫
C1

p (t, c−, c+) d
Dt

}
. (6.3)

Here, for any inverse temperature β ∈ (0,∞), all functions c± ∈ L2(A±,C) and (quasi–) momenta t ∈ C1 =

[−π, π]D, the pressure

p (t, c−, c+) := β−1 lnTrace∧H{0}

(
e−βu(εtσ

z
0 ,γ(t),c−,c+)

)
explicitly equals

p (t, c−, c+) = β−1 ln

(
cosh

(
β

√
4 |ϑt,+ (c+)− ϑt,− (c−)|2 + ε2t

))
+ β−1 ln 2

with

ϑt,± (c±) :=

∫
A±

γa (t) |f (a)| ca,±da .

The basic properties of the explicit variational problem (6.3) follow easily from the results of Section 4.2. See,

e.g., (3.7)–(3.8) and the approximated gap equation (4.11), the thermodynamic limit of which is similar to [5,

Eq. (3.14)]. Moreover, Section 4.2 also gives approximating minimizers gl,d−,d+ (2.18) of the free–energy density

in finite boxes (Proposition 4.2) as well as approximated correlation functions (Theorem 4.3). The latter goes

beyond previous results [4, 5] on the BCS Model.

6These studies can nevertheless yield some information about expectation values by using Griffiths arguments [19, 20, 21]. See,
e.g., [5, Section 4].
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6.2 The Strong–Coupling BCS–Hubbard Model with Inhomogeneous Magnetic Field

This model is defined in a cubic box Λl by (1.1) with homogeneous chemical potential µ ∈ R, inhomogeneous

magnetic field h ∈ C([−1/2, 1/2]D;R), Hubbard–type interaction v = 0, λ ∈ R+
0 and BCS coupling constant

Γ ∈ R+
0 . Of course, our results still apply to the general model (1.1), but we restrict our application to this more

specific example because it can easily be studied. Indeed, its homogeneous version with constants µ, h,Γ ∈ R,
v = 0, λ ∈ R+

0 can explicitly be analyzed and qualitatively shows in the thermodynamic limit the same kind of

density dependency of the critical temperature observed in high–Tc superconductors [8, 9].

In order to use Griffiths arguments [19, 20, 21] we consider a perturbed version of the strong–coupling BCS–

Hubbard Model with inhomogeneous magnetic field. This perturbed model is defined by the Hamiltonian

UStr
l,Ω : = −µ

∑
x∈Λl

(nx,↑ + nx,↓) + 2λ
∑
x∈Λl

nx,↑nx,↓

−
∑
x∈Λl

[
h
(
2−lx

)
+ δχΩ

(
2−lx

)]
(nx,↑ − nx,↓)

−2−Dl
∑
x,y∈Λl

[
Γ + δ̃χΩ

(
2−lx

)
χΩ

(
2−ly

)]
a∗x,↑a

∗
x,↓ay,↓ay,↑

(6.4)

for real parameters µ, δ, δ̃ ∈ R, λ,Γ ≥ 0 and where h ∈ C(C1;R) and χΩ is the characteristic function of any

measurable subset

Ω ⊆ C1 = [−1/2, 1/2]D.

Recall that the operator a∗x,s (resp. ax,s) creates (resp. annihilates) a fermion with spin s∈ {↑, ↓} at lattice

position x ∈ ZD, D = 1, 2, 3, ..., whereas nx,s := a∗x,sax,s is the particle number operator at position x and spin

s. The case δ = δ̃ = 0 is the strong–coupling BCS–Hubbard model with inhomogeneous magnetic field which is

denoted here by UStr
l,∅ .

As explained in the introduction, the first term of the right hand side of (6.4) represents the strong coupling

limit of the kinetic energy, also called “atomic limit” in the context of the Hubbard model, see, e.g., [6, 7].

The one–site interaction with positive coupling constant λ ≥ 0 represents the (screened) Coulomb repulsion

as in the celebrated Hubbard model. The third term corresponds to the interaction between spins and the

inhomogeneous magnetic field

h
(
2−lx

)
+ δχΩ

(
2−lx

)
, x ∈ Λl .

The last term is the BCS interaction written in the x–space. In the BCS model (6.1) and for δ̃ = 0, it corresponds

to take U (k, k′) = Γ ∈ R+
0 for all k, k′ ∈ [−π, π]D.

This example on the lattice L := ZD is a Fermi system with macroscopic inhomogeneities as defined in Section

4.1. Indeed,

A = {a} , a (a) = 1 , ϕa = Re (a0,↓a0,↑) , ϕ′a = Im (a0,↓a0,↑) .

By approximating the characteristic function χΩ by continuous functions, using Theorem 4.1 and the gauge

invariance of the model we directly obtain that the thermodynamic limit of the pressure equals −FStr with

FStr := inf
r≥0

{
r −

∫
C1

p̃ (t, r) dDt

}
= r−

∫
C1

p̃ (t, r) dDt .

Here, for all t ∈ C1 = [−1/2, 1/2]D and order parameters r ∈ [0,∞),

p̃ (t, r) := β−1 ln
{
cosh (β [h (t) + δχΩ (t)]) + e−λβ cosh (βϵt,r)

}
+ µ+ β−1 ln 2

with

ϵt,r := {(µ− λ)2 + r(Γ + δ̃χΩ (t))}1/2 .

Using Griffiths arguments [19, 20, 21] and explicit computations of the derivative of the pressure with respect

to δ, δ̃ ∈ R, we can compute the (infinite volume) Cooper pair condensate density

rΩ := lim
l→∞

 1

|Ωl|2
∑

x,y∈Ωl

Trace∧HΛl

(
a∗x,↑a

∗
x,↓ay,↓ay,↑e

−βUStr
l,∅

)
Trace∧HΛl

(e−βU
Str
l,∅ )


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as well as the (infinite volume) magnetization density

mΩ := lim
l→∞

 1

|Ωl|
∑
x∈Ωl

Trace∧HΛl

(
(nx,↑ − nx,↓) e

−βUStr
l,∅

)
Trace∧HΛl

(e−βU
Str
l,∅ )


on the subset Ωl := 2lΩ ∩ Λl with 2−Dl |Ωl| = |Ω|+ o(1). Indeed, away from any critical point (defined by the

existence of a first order phase transition), the Cooper pair condensate density equals

rΩ =
r

|Ω|

∫
Ω

e−βλ sinh (βϵt,r)

2ϵt,r (cosh (βh (t)) + e−βλ cosh (βϵt,r))
dDt

whereas the magnetization density is equal to

mΩ =
1

|Ω|

∫
Ω

sinh (βh (t))

cosh (βh (t)) + e−βλ cosh (βϵt,r)
dDt .

In particular, in the limit (β → ∞) of low temperatures, one can verify that mΩ = O
(
e−βK

)
for someK ∈ (0,∞)

and rΩ = O (r) whenever

h (t) < hc := {(µ− λ)2 + rΓ}1/2 − λ .

However, a strong and local macroscopic magnetic field h
(
2−lx

)
> hc on some macroscopic domain Ωl = 2lΩ∩Λl

will become magnetized even if a global superconducting phase exists, that is, when r > 0. In this case,

rΩ = O
(
e−βK

)
and the local macroscopic magnetic field expels the Cooper pair condensate from the region

Ωl ⊂ Λl.

This last phenomenon is however more subtle in real superconductors because we do not take into account

the (full) Meißner effect. The latter is defined here by the existence of steady surface currents which annihilate

all the magnetization inside the bulk of the superconductor. The description of this finite volume effect needs

a more general free–energy density taking into account the magnetic energy, see, e.g., [22, Eq. (2.11)]. Such a

study is non–trivial and we will perform it later.

7. Appendix

For the reader’s convenience, we give a short complementary study of the thermodynamics of permutation

invariant Fermi systems with long–range interactions described in [10, Chapter 5]. We only focus on results

which are relevant for our present analysis.

First, a permutation invariant model is given by a self–adjoint even element ϕ = ϕ∗ ∈ U+
{0} and a long–range

interaction

X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L .

See (2.7) for the definition of the set L of long–range (permutation invariant) interactions. Its Hamiltonian is

defined in the box Λl, l ∈ N, by

Ûl :=
∑
x∈Λl

αx (ϕ) + 2−Dl
∫
A

∑
x,y∈Λl

γ̂aαx((ϕa + iϕ′a)
∗)αy(ϕa + iϕ′a)da (a)

with γ̂a being a fixed measurable function such that γ̂a = ±1 for any a ∈ A±. Like in Section 2.3 note that

A = A− ∪ A+ is decomposed into two disjoint measurable components A− and A+. To avoid trivial cases, we

also assume (2.10).

By [10, Corollary 5.9], the infinite volume pressure

Pϕ,X := lim
l→∞

{
β−12−Dl lnTrace∧HΛl

(
e−βÛl

)}
is given by a variational principle on the set E{0} of one–site states on U{0}:
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Theorem 7.1 (Thermodynamic limit of the pressure IV)

For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

Pϕ,X = − inf
ρ∈E{0}

{∫
A
γ̂a|ρ(ϕa + iϕ′a)|2da(a) + ρ(ϕ)− β−1S(ρ)

}
with S being the von Neumann entropy defined by (2.12).

Since the von Neumann entropy S is continuous, the (infinite volume) pressure Pϕ,X is given by an infimum

of a continuous functional over the compact and convex set E{0} of one–site states on U{0}. In particular, this

variational problem has a non–empty set Eϕ,X of minimizers. Each ω ∈ Eϕ,X turns out to be even (see Theorem

7.5), that is, ω = ω◦σπ with σπ defined by (2.5) for θ = π. Therefore, from [17, Theorem 11.2.], every minimizer

ω ∈ Eϕ,X uniquely defines a so–called product state ω⊗ satisfying

ω⊗(αx1(A1) · · ·αxn(An)) = ω(A1) · · ·ω(An) (7.1)

for all n ∈ N, A1, . . . , An ∈ U{0} and any x1, . . . , xn ∈ L such that xj ̸= xk for j ̸= k. We denote by E⊗
ϕ,X the set

of all product states constructed from Eϕ,X ⊂ E{0}. By [10, Corollary 5.10], this set completely characterizes

the equilibrium states in the thermodynamic limit of the model defined by the local element ϕ = ϕ∗ ∈ U+
{0} and

the long–range permutation invariant interaction X ∈ L:

Theorem 7.2 (Weak∗–limit of Gibbs equilibrium states)

For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, the weak∗–accumulation points of Gibbs equilibrium

states with density matrices

e−βÛl

Trace∧HΛl
(e−βÛl)

, l ∈ N ,

belong to the weak∗–closed convex hull co(E⊗
ϕ,X) of the set E⊗

ϕ,X .

Remark 7.3 (Geometric structure of the set of equilibrium states)

As defined in [10, Definition 2.13], co(E⊗
ϕ,X) is the set of permutation invariant equilibrium states. By the

Størmer theorem in the lattice CAR–algebra version [10, Theorem 5.2], extreme states of the weak∗–compact

and convex set EΠ of permutation invariant states are product states and vice versa. In particular, the set of

permutation invariant equilibrium states is a face of EΠ.

To describe the set Eϕ,X explicitly it suffices to use the following equality∫
A±

|ρ(ϕa + iϕ′a)|2da(a) (7.2)

= sup
c±∈L2(A±,C)

{
−
∫
A±

|ca,±|2da(a) + 2

∫
A±

Re
(
ca,±ρ(ϕa + iϕ′a)

)
da(a)

}
for all one–site states ρ ∈ E{0}. Indeed, using this and Theorem 7.1 one gets

Pϕ,X = − inf
ρ∈E{0}

inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

{
−
∫
A+

|ca,+|2da(a) +
∫
A−

|ca,−|2da(a)

+2

∫
A
Re

(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)

)
da(a) + ρ(ϕ)− β−1S(ρ)

}
.

The two infima in Pϕ,X clearly commute with each other. Doing this, one can next use the von Neumann

min–max theorem to exchange the infimum over states and the supremum over L2(A+,C). In other words,

Pϕ,X = − inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

inf
ρ∈E{0}

{
−
∫
A+

|ca,+|2da(a) +
∫
A−

|ca,−|2da(a)

+2

∫
A
Re

(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)

)
da(a) + ρ(ϕ)− β−1S(ρ)

}
. (7.3)
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For more details, see [10, Chapter 8 and Theorem 10.50 ].

By using the passivity of Gibbs states (see Theorem 7.1 with X = 0 ∈ L) note that, for all c± ∈ L2(A±,C),

inf
ρ∈E{0}

{
2

∫
A
Re

(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)

)
da(a) + ρ(ϕ)− β−1S(ρ)

}
= −β−1 lnTrace∧H{0}

(
e−βu(ϕ,1,c−,c+)

)
(7.4)

with u (ϕ, 1, c−, c+) being the one–site Hamiltonian (2.15). By (7.3), we obtain the following assertion:

Theorem 7.4 (Pressure and thermodynamic game)

For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

Pϕ,X = − inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

f (ϕ, 1, c−, c+)

with f being the perturbed free–energy density (2.16).

It is relatively easy to check that these last variational problems over L2(A±,C) have optimizers d± ∈
L2(A±,C) satisfying

sup
c+∈L2(A+,C)

f (ϕ, 1, d−, c+) = inf
c−∈L2(A−,C)

sup
c+∈L2(A+,C)

f (ϕ, 1, c−, c+) (7.5)

and

f (ϕ, 1, d−, d+) = sup
c+∈L2(A+,C)

f (ϕ, 1, d−, c+) . (7.6)

See [10, Lemmata 8.3–8.4] for more details.

Observe that d+ is uniquely determined as a function of d−. More generally, the variational problem

sup
c+∈L2(A+,C)

f (ϕ, 1, c−, c+) = f(ϕ, 1, c−, r+ (c−))

defines a weak–norm continuous map

r+ ≡ r+ (ϕ, 1) : c− 7→ r+ (c−) (7.7)

from L2(A−,C) to L2(A+,C), see [10, Lemma 8.8]. In particular, d+ = r+ (d−). Define by

Cϕ,X :=
{
d− ∈ L2(A−,C) : f (ϕ, 1, d−, r+ (d−)) = −Pϕ,X

}
the non–empty set of solutions d− of the variational problem over L2(A−,C) in (7.5). Note that this set is

L2–norm bounded and weakly compact.

The von Neumann min–max theorem [10, Theorem 10.50] used in (7.3) also implies (see, e.g., [10, Section 9.1])

that the set Eϕ,X is completely characterized by the minimizers of the variational problem (7.4) for solutions

d− ∈ Cϕ,X and d+ := r+ (d−) of (7.5)–(7.6). Using the passivity of Gibbs states, we thus arrive at our next

statement:

Theorem 7.5 (Extremal equilibrium states)

For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,

Eϕ,X =
{
ωd−,r+(d−) : d− ∈ Cϕ,X

}
,

where ωc−,c+ is the Gibbs state with density matrix

e−βu(ϕ,1,c−,c+)

Trace∧H{0}(e
−β(u(ϕ,1,c−,c+)))

for any c± ∈ L2(A±,C). In particular, any minimizer ω ∈ Eϕ,X is an even state.
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Observe that the variational problem (7.2) has of course a unique maximizer da,± (ρ) := ρ(ϕa + iϕ′a) in

L2(A±,C). It is thus easy to see that any solution d− ∈ Cϕ,X and ωd−,d+ ∈ Eϕ,X satisfy the Euler–Lagrange

equation

da,− + da,+ = ωd−,d+(ϕa + iϕ′a) (7.8)

in the sense of L2(A,C). Recall that d+ := r+ (d−). This equation is also named gap equation by analogy with

the BCS theory [1, 2, 3] for conventional superconductors. Indeed, within this theory, the existence of a non–zero

solution d− implies a superconducting phase as well as a gap in the spectrum of the effective (approximating)

BCS Hamiltonian. The equation satisfied by d− ∈ Cϕ,X is called gap equation in the Physics literature because

of this property.

The gap equation (7.8) is quite useful. For instance, it allows to show that the sets Cϕ,X and Eϕ,X are

homeomorphic:

Lemma 7.6 (Homeomorphism between Cϕ,X and Eϕ,X)

For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, the map

d− 7→ ωd−,r+(d−)

from the set Cϕ,X equipped with the weak topology to the finite dimensional set Eϕ,X is a homeomorphism (with

respect to the unique locally convex topology of Eϕ,X ⊂ U∗
{0}).

Proof. We first remark that this map must be a bijection because of (7.8). The continuity of its inverse also

results from (7.8). It remains to prove its continuity.

By separability of L2(A,C), observe that the weak topology of Cϕ,X is metrizable. It thus suffices to consider

convergent sequences (instead of general nets) in Cϕ,X to prove continuity. Take any sequence

{d(n)− }∞n=0 ⊂ Cϕ,X ⊂ L2(A−,C)

of L2–functions weakly converging to d
(∞)
− . Since the set Cϕ,X is weakly compact, d

(∞)
− ∈ Cϕ,X . Moreover,

the map r+ from L2(A−,C) to L2(A+,C) defined by (7.7) is weak–norm continuous, see [10, Lemma 8.8].

Consequently, the sequence

{r+(d(n)− )}∞n=0 ⊂ L2(A+,C)

of L2–functions converges in norm to r+(d
(∞)
− ). The weak convergence of {d(n)− }∞n=0 also yields the norm

convergence of the interaction

Φ
(n)
− :=

∫
A−

d
(n)
a,−(ϕa + iϕ′a)da(a) ∈ U+

{0} , n ∈ N , (7.9)

towards

Φ
(∞)
− :=

∫
A−

d
(∞)
a,− (ϕa + iϕ′a)da(a) ∈ U+

{0} .

This can be seen as follows.

Recall that the set Cϕ,X is norm bounded and observe also that the set of measurable step functions with

support of finite measure is dense in L. Thus, by the Cauchy–Schwarz inequality, for any ε > 0, there are N step

functions defined by φk, φ
′
k ∈ U+

{0} for all a ∈ Ik, with N ∈ N and Ik ∈ A satisfying Ik ⊂ A− and a (Ik) < ∞
for k ∈ {1, . . . , N}, such that∥∥∥∥∥

∫
A−

d
(n)
a,−(ϕa + iϕ′a)da(a)−

N∑
k=1

φk

∫
Ik

d
(n)
a,−da(a)

∥∥∥∥∥ ≤ ε

uniformly in n ∈ N ∪ {∞}. Therefore, the weak convergence of {d(n)− }∞n=0 to d
(∞)
− yields the norm convergence

of Φ
(n)
− to Φ

(∞)
− . The same obviously holds true for

Φ
(n)
+ :=

∫
A+

r+(d
(n)
− )(ϕa + iϕ′a)da(a) ∈ U+

{0} , n ∈ N ∪ {∞} ,
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by weak–norm continuity of the map r+.

Now, let the free–energy density f (∞) be defined, for all ρ ∈ E{0}, by

f (∞) (ρ) := 2ρ(Re(Φ
(∞)
+ )− Re(Φ

(∞)
− )) + ρ(ϕ)− β−1S(ρ) .

We infer from the passivity of Gibbs states that, for any n ∈ N ∪ {∞},

f (∞)(ω
d
(n)
− ,r+(d

(n)
− )

) = −β−1 lnTrace∧H{0}

(
e
−βu

(
ϕ,1,d

(n)
− ,r+(d

(n)
− )

))
+2ω

d
(n)
− ,r+(d

(n)
− )

(Re(Φ
(∞)
+ )− Re(Φ

(n)
+ ))

+2ω
d
(n)
− ,r+(d

(n)
− )

(Re(Φ
(n)
− )− Re(Φ

(∞)
− )) .

The map

U 7→ β−1 lnTrace∧H{0}

(
e−βU

)
from U+

{0} to R is Lipschitz continuous. Because of the norm convergence of Φ
(n)
± to Φ

(∞)
± , it is then straight-

forward to see that

lim
n→∞

f (∞)(ω
d
(n)
− ,r+(d

(n)
− )

) = inf f (∞)
(
E{0}

)
(7.10)

= −β−1 lnTrace∧H{0}

(
e
−βu

(
ϕ,1,d

(∞)
− ,r+(d

(∞)
− )

))
.

By compactness of the set E{0}, the sequence

{ω
d
(n)
− ,r+(d

(n)
− )

}∞n=0 ⊂ E{0} (7.11)

has accumulation points. On the other hand, the functional f (∞) is continuous and has

ω
d
(∞)
− ,r+(d

(∞)
− )

∈ E{0} (7.12)

as unique minimizer on E{0}. By (7.10), it follows that the sequence (7.11) must converge to (7.12) as n→ ∞.

2

Finally, recall that the set Cϕ,X is weakly compact which, by Lemma 7.6, implies the weak∗–compactness of

E⊗
ϕ,X . Therefore, we infer from [23, Proposition 1.2] that, for any ϖ ∈ co(E⊗

ϕ,X), there is a probability measure,

i.e., a normalized positive Borel regular measure, ν̃ϖ on co(E⊗
ϕ,X) such that

ν̃ϖ(E⊗
ϕ,X) = 1 and ϖ =

∫
E⊗
ϕ,X

dν̃ϖ(ω
⊗) ω⊗.

Going back to the set Cϕ,X by using Lemma 7.6 we give a complete characterization of the set co(E⊗
ϕ,X) of

equilibrium states:

Theorem 7.7 (Structure of the set of equilibrium states)

For any ϖ ∈ co(E⊗
ϕ,X), there is a probability measure7 νϖ supported on the set Cϕ,X such that

νϖ(Cϕ,X) = 1 and ϖ =

∫
Cϕ,X

dνϖ(d−) ω
⊗
d−,r+(d−) .

Here, ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L.

7The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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