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BLIND BACKSCATTERING EXPERIMENTAL DATA COLLECTED IN THE FIELD
AND AN APPROXIMATELY GLOBALLY CONVERGENT INVERSE ALGORITHM

ANDREY V. KUZHUGET∗◦ , LARISA BEILINA∗∗◦ , MICHAEL V. KLIBANOV‡◦ , ANDERS SULLIVAN†• , LAM

NGUYEN⋄• , AND MICHAEL A. FIDDY△◦

Abstract.

An approximately globally convergent numerical method for a 1-D Coefficient Inverse Problem for a hyperbolic PDE is
applied to image dielectric constants of targets from blind experimental data. The data were collected in the field by the
Forward Looking Radar of the US Army Research Laboratory. A posteriori analysis has revealed that computed and tabulated
values of dielectric constants are in a good agreement. Convergence analysis is presented.

1. Introduction. In this paper we test the 1-D version [31] of the numerical method of recent publica-
tions [5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 32, 48] for the case when the time resolved backscattering electric signal
is measured experimentally in the field. Measurements were conducted by the Forward Looking Radar built
in US Army Research Laboratory (ARL). All kinds of clutter were present at the site of data collection.
The data are severely limited. The goal of this radar is to detect and possibly identify shallow explosive-like
targets. Prior to this effort, the focus of the ARL team was on the image processing rather than on the
target detection and identification [37]. The current data processing procedure of ARL delivers only the
energy information. The algorithm of this paper computes values of dielectric constants of targets using
those data. These values represent a new, surprising and quite useful dimension of information for the ARL
team. A hope is that these values might be helpful in the target detection and identification process.

The UNCC/ChalmersGU team has worked only with the most challenging case of blind experimen-
tal data. “Blind” means that first computations were made by the UNCC/ChalmersGU team without
any knowledge of correct answers. Next, computational results were sent to the ARL team. The ARL
team has compared a posteriori those results with the reality and then revealed correct answers to the
UNCC/ChalmersGU team. The performance of the algorithm of above cited publications for transmitted
blind experimental data was presented in [27], see Tables 5 and 6 there. Images of [27] were refined in the
follow up publication [9] using the adaptivity technique of [3, 4].

In the above cited works a new numerical method was developed for some Multidimensional Coefficient
Inverse Problems (MCIPs) for a hyperbolic PDE with single measurement data. “Single measurement”
means that either only a single position of the point source or only a single direction of the incident plane
wave is considered. Because of many dangers on the battlefield, the single measurement arrangement is the
most suitable one for military applications. There were two goals of those publications:

Goal 1. To develop such a numerical method, which would have a rigorous guarantee obtaining a good
approximation for the exact solution of a CIP without using an advanced knowledge of neither a small
neighborhood of that solution nor of the background medium in the domain of interest.

Goal 2. This method should demonstrate a good performance on both computationally simulated and
experimental data.

It is well known that it is enormously challenging to achieve both Goals 1,2 simultaneously. Three
substantial obstacles are combined here: the minimal information content due to the single source only,
nonlinearity and ill-posedness. Therefore, it was inevitable in the above cited publications to introduce
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some natural approximations. Although those approximations cannot be rigorously justified sometimes,
still they have resulted in the simultaneous achievement of both goals, see more details in sections 4,6.
The numerical method of [5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 31, 32, 48] uses the structure of the underlying
PDE operator rather than a least squares functional. The above thoughts are reflected in the following
statement of the review paper [12] “The key philosophical focus of our review is the above point about natural
assumptions/approximations which make the technique numerically efficient.”

Because of the measurement scheme of the Forward Looking Radar, the UNCC/ChalmersGU team had
only one time resolved curve for each target. This curve was the voltage averaged over some readings (section
7). Only one component of the electric field was generated and measured in the backscattering regime. The
reality is 3-D, and the electric field propagation is governed by the full Maxwell’s system. However, the above
data structure has left us no choice but to model the process by a 1-D CIP using only one hyperbolic PDE.

The main challenge of working with these data was a huge misfit between them and computationally
simulated data, e.g. compare Figure 7.3-b) with Figures 7.4-b), d), f). Namely, the experimentally measured
curves are highly oscillatory, unlike computed ones. Therefore, to make the experimental data suitable
for the inversion, we apply a new data pre-processing procedure, which is a crucial step. This procedure
was unbiased, since we have worked with the blind data only. See [9, 27] for another data pre-processing
procedure for the case of transmitted data. Both these procedures are based on the intuition only. The only
justification for both is the accuracy of obtained results.

There are some classical numerical methods of solving 1-D CIPs for hyperbolic equations, see, e.g.
[19, 25, 36] and references cited therein. However, because of many uncertainties in our experimental data,
including the above misfit and the 3-D reality versus the 1-D mathematical model (also, see subsection 7.2),
it is yet unclear how those methods would perform for our data. This question deserves a separate research
effort.

There are also MCIPs with multiple measurement data. “Multiple measurements” means that the data
are generated either by the point source running along a manifold, or by the incident plane wave, whose
direction varies within a certain cone. These MCIPs have applications in medical imaging. We refer to
[1, 13, 16, 17, 21, 24, 38, 39, 40, 41] for some non-local reconstruction techniques for these MCIPs. An
analog of the technique of [5] for the case of a 2-D CIP for an elliptic PDE with the source running along
a straight line was developed [29, 42, 43]. Validation of the latter for the case of experimental data with
the application to stroke detection in brains of small animals was done in [44]. We point out that one of
the main keys to the success of numerical results of [1, 16, 17] for the reconstruction algorithms of Novikov
[38, 39, 40, 41] is the use of approximate mathematical models. The same can be said about [29, 42, 43, 44].
This concept is similar with the one above.

In section 2 we pose a CIP for a 1-D wave-like PDE. In section 3 we study some properties of the Laplace
transform of the solution of the forward problem. In section 4 we discuss the concept of the approximate
global convergence property. In section 5 we present our numerical method. Convergence analysis can be
found in section 6. In section 7 we describe the experimental setup, main uncertainties in experimental data
and the data pre-processing procedure. Imaging results are presented in section 8.

2. Statements of Forward and Inverse Problems. Let the function εr (x) , x ∈ R be the dielectric
constant, spatially distributed on the real line. Let the number d > 1. We assume below that

εr (x) ∈ [1, d) , εr ∈ C1 (R) , (2.1)

εr (x) = 1, x /∈ (0, 1) . (2.2)

Thus, the interval (0, 1) is our domain of interest in the inverse problem. The forward problem is

εr (x) utt = uxx, x ∈ R, t ∈ (0,∞) , (2.3)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) , (2.4)
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x0 = const. < 0. (2.5)

Coefficient Inverse Problem. Determine the coefficient εr (x) , assuming that the following function
g (t) is known

u (0, t) = g (t) , t ∈ (0,∞) . (2.6)

The function g (t) models the backscattering data measured by the Forward Looking Radar. The con-
dition t ∈ (0,∞) in (2.6) is not a restrictive one from the numerical standpoint. Indeed, we use the Laplace
transform (2.7) to solve this CIP. Since the kernel e−st of this transform decays rapidly with respect to t,
then in the actuality a finite time interval is sufficient. In addition, the data resulting from the pre-processing
procedure have a finite support in (0,∞) . Since this is the 1-D case, uniqueness theorems for this CIP are
well known, see, e.g. [36] and references cited therein.

Consider the Laplace transform

w (x, s) =

∞∫

0

u (x, t) e−stdt := Lu, s ≥ s = const. > 0, (2.7)

where the number s = s (εr) is sufficiently large. We call the parameter s pseudo frequency. Hence,

wxx − s2εr (x)w = −δ (x− x0) , x ∈ R, (2.8)

lim
|x|→∞

w (x, s) = 0, (2.9)

see Theorem 3.1 for the proof of (2.9). By (2.6)

w (0, s) = ϕ (s) := Lg, s ≥ s. (2.10)

We also need to know the derivative wx (0, s) ,

wx (0, s) = ρ (s) , s ≥ s.

Consider the fundamental solution w0 (x, s) of the problem (2.8), (2.9) for εr (x) ≡ 1. Then

w0 (x, s) = (2s)
−1

exp (−s |x− x0|) . (2.11)

Denote ŵ (x, s) = w (x, s) − w0 (x, s) . Using (2.8)-(2.10), we obtain

ŵxx − s2εr (x) ŵ = s2 (εr (x) − 1)w0, x ∈ R, (2.12)

lim
|x|→∞

ŵ (x, s) = 0, (2.13)

ŵ (0, s) = ϕ̂ (s) := ϕ (s) − (2s)
−1

exp (−s |x0|) . (2.14)

Also, (2.2) and (2.12)-(2.14) imply for x < 0

ŵxx − s2ŵ = 0, x < 0, (2.15)

lim
x→−∞

ŵ (x, s) = 0, (2.16)

ŵ (0, s) = ϕ̂ (s) . (2.17)

It follows from (2.15)-(2.17) that ŵ (x, s) = ϕ̂ (s) esx, x < 0. Hence, ŵx (0, s) = sϕ̂ (s) = s(ϕ (s) −
(2s)−1 exp (−s |x0|)) and thus since x0 < 0, we have

wx (0, s) := ρ (s) = sϕ (s) − exp (sx0) . (2.18)
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3. Some properties of the function w (x, s). Below Cα, α ∈ (0, 1) are Hölder spaces. In this section
we establish some properties of the function w = Lu, which we need for the convergence analysis. Let
f (t) , t > 0 be a piecewise continuous function such that |f (t)| ≤ Ceat, t > 1, where C = C (f) , a = a (f) =
const. > 0. Consider two types of the Laplace transform,

L1 (f) (t) =
1

2
√
πt3/2

∞∫

0

τ exp

(
−τ

2

4t

)
f (τ) dτ,

L2 (f) (s) =

∞∫

0

f (t) e−s2tdt, s >
√
a (f).

Lemma 3.1. L2 [L1 (f)] (s) = L (f) (s) for s > a (f) , where the operator L was defined in (2.7).
Proof. Using the formula (28) of section 4.5 of the book [2], we obtain

∞∫

0

[
1

2
√
πt3/2

τ exp

(
−τ

2

4t

)]
e−s2tdt = e−st, ∀s > 0. �

Theorem 3.1. Consider the function εr (x) ∈ Cα (R) satisfying the rest of conditions (2.1), (2.2).
Let (2.5) holds. Then for any number s > 0 there exists unique solution p (x, s) ∈ C2+α (|x− x0| ≥ β) ∩
C (R) , ∀β > 0 of the following problem

pxx − s2εr (x) p = −δ (x− x0) , x ∈ R, (3.1)

lim
|x|→∞

p (x, s) = 0. (3.2)

Also,

0 < p (x, s) ≤ w0 (x, s) , ∀x ∈ R. (3.3)

In addition, let |x− x0| ≥ β = const. > 0. Then there exists a sufficiently large number ŝ = ŝ (d, β) such
that

p (x, s) > wd (x, s) , ∀x ∈ [x0 + β,∞) , ∀s ≥ ŝ, (3.4)

where wd (x, s) is the fundamental solution of equation (2.8) for the case εr (x) ≡ d,

wd (x, s) = (2s)
−1

exp
(
−s

√
d |x− x0|

)
. (3.5)

Finally, there exists a sufficiently large number s = s (εr) > 0 such that

w (x, s) := L (u) (x, s) = p (x, s) , ∀s ≥ s (εr) , ∀x ∈ R. (3.6)

Thus, (3.2) implies that (2.9) holds for s ≥ s = s (εr) .
Proof. Let the function v (x, t) be the solution of the following Cauchy problem

εr (x) vt = vxx, (x, t) ∈ R × (0,∞) , (3.7)

v (x, 0) = δ (x− x0) . (3.8)
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Let the function v0 (x, t) be the solution of the problem (3.7), (3.8) for the case εr (x) ≡ 1,

v0 (x, t) =
1

2
√
πt

exp

[
− (x− x0)

2

4t

]
.

Let v̂ (x, t) = v (x, t) − v0 (x, t) . Then

v̂xx − εr (x) v̂t = (εr (x) − 1) v0t, v̂ (x, 0) = 0. (3.9)

Detailed estimates of the fundamental solution of a general parabolic equation in chapter 4 of the book [33]
imply that v̂ ∈ C2+α,1+α/2 (R × [0, T ]) , ∀T > 0. Denote

ṽ (x, t) =

t∫

0

v̂ (x, τ) dτ =

t∫

0

(v − v0) (x, τ) dτ. (3.10)

By (3.9)

ṽxx − εr (x) ṽt = (εr (x) − 1) v0, ṽ (x, 0) = 0. (3.11)

By (2.2), (2.5) εr (x) − 1 = 0 in a neighborhood of the source point {x0} . Hence, applying (2.2), we obtain
(εr (x) − 1) v0 (x, t) ≥ 0 in R× [0,∞) . Hence, applying the maximum principle of Theorem 1 of chapter 2 of
the book [23] to (3.11) we obtain

ṽ (x, t) ≤ 0 in R × [0,∞) . (3.12)

On the other hand, Theorem 11 of chapter 2 of [23] ensures that the fundamental solution of the parabolic
equation is positive for t > 0. Hence,

v (x, t) > 0, t > 0. (3.13)

Hence, (3.10), (3.12) and (3.13) imply that

0 <

t∫

0

v (x, τ) dτ ≤
t∫

0

v0 (x, τ) dτ. (3.14)

Using Fubini theorem, formula (27) of section 4.5 of the book [2] and (2.11), we obtain

L2




t∫

0

v0 (x, τ) dτ



 =
1

s2
L2 (v0) =

w0 (x, s)

s2
. (3.15)

Hence, using (3.13), (3.14) and Fubini theorem, we obtain

L2




t∫

0

v (x, τ) dτ



 =
1

s2
L2 (v) (x, s) :=

y (x, s)

s2
≤ w0 (x, s)

s2
, (3.16)

By (2.11) and (3.16)

lim
|x|→∞

y (x, s) = 0. (3.17)
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Next, by (3.10) and (3.11) ṽxx = εr (x) v − v0. Hence, |ṽxx| ≤ dv + v0. Therefore,

∞∫

0

|ṽxx (x, t)| e−s2tdt <∞.

Hence,

∂2
x

∞∫

0

ṽ (x, t) e−s2tdt =

∞∫

0

ṽxx (x, t) e−s2tdt = εr (x) y − w0. (3.18)

On the other hand,

∞∫

0

ṽxx (x, t) e−s2tdt =

∞∫

0




t∫

0

vxx (x, τ) dτ



 e−s2tdt−
∞∫

0




t∫

0

v0xx (x, τ) dτ



 e−s2tdt

= s−2 (yxx − w0xx) .

Comparing this with (3.18) and keeping in mind that w0xx − s2w0 = −δ (x− x0) , we obtain

yxx − s2εr (x) y = −δ (x− x0) . (3.19)

It follows from(3.19) that the function y (x, s) = L2 (v) (x, s) satisfies conditions (3.1), (3.2). It follows from
the above that y (x, s) ∈ C2+α (|x− x0| ≥ β) ∩ C (R) , ∀β, s > 0. Uniqueness of the solution of the problem
(3.1), (3.2) for this class of functions can be easily proven in the standard way using the maximum principle
for elliptic equations and (3.2). Hence, the problem (3.1), (3.2) has the unique solution p (x, s) := y (x, s) ∈
C2+α (|x− x0| ≥ β) ∩ C (R) , ∀β, s > 0. The right estimate (3.3) follows from (3.16), and the left estimate
follows from (3.16). Lemma 3.1 implies (3.6).

We now prove (3.4). We obtain from (2.2), (3.1) and (3.2)

p (x, s) =
exp (−s |x− x0|)

2s
− s

2

1∫

0

exp (−s |x− ξ|) (εr (ξ) − 1) p (ξ, s) dξ. (3.20)

Hence, by (2.1) and the right inequality (3.3)

p (x, s) ≥ exp (−s |x− x0|)
2s

− (d− 1)

4

1∫

0

exp (−s |x− ξ|) exp (−s |ξ − x0|) dξ.

Assume now that x ∈ (x0, 0) . Then

p (x, s) ≥ exp [−s (x− x0)]

2s
− (d− 1) exp [s (x+ x0)]

4

1∫

0

e−2sξdξ

=
exp [−s (x− x0)]

2s

[
1 − (d− 1)

(
1 − e−2s

)
e2sx

4

]
.

Therefore

p (x, s)

wd (x, s)
≥ exp

[
s
(√

d− 1
)

(x− x0)
] [

1 − (d− 1)
(
1 − e−2s

)
e2sx

4

]
, ∀x ∈ (x0, 0) .
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Hence, if β = const. ∈ (0, |x0|) , then there exists a number ŝ = ŝ (d, β) such that

p (x, s)

wd (x, s)
> 1, ∀s ≥ ŝ = ŝ (d, β) , ∀x ∈ . (3.21)

Consider now the difference p̃ (x, s) = p (x, s) − wd (x, s) . Then

p̃xx − s2εr (x) p̃ = s2 (εr (x) − d)wd < 0, x ∈ [x0 + β,∞) , (3.22)

lim
x→∞

p̃ (x, s) = 0. (3.23)

Let a > 1 be an arbitrary number. Consider the function p̃ (x, s) on the interval [x0 + β, a] for s ≥ ŝ (d, β) .
Then the maximum principle for elliptic equations, (3.21) and (3.22) imply that the negative minimum of
p̃ (x, s) on this interval can be achieved only at x = a. Setting a → ∞ and using (3.23), we obtain that
p̃ (x, s) ≥ 0 for x ∈ [x0 + β,∞) , s ≥ ŝ (d, β) .

Assume now that there exists a point x ∈ [x0 + β,∞) and a number s ≥ ŝ (d, β) such that p̃ (x, s) = 0.
Since p̃ (x, s) ≥ 0 for x ∈ [x0 + β,∞) , then

p̃ (x, s) = 0 = min
[x0+β,∞)

p̃ (x, s) . (3.24)

Hence, p̃xx (x, s) ≥ 0. However, this and (3.24) contradict to the inequality in (3.22). �

Corollary 3.1. Let the function εr (x) ∈ Cα (R), satisfies the rest of conditions (2.1), (2.2). For every
s > 0 and for every x ∈ R the integral of the Laplace transform L2 (v (x, t)) converges absolutely.

Proof. See (3.14), (3.15) and (3.16). �

Remark 3.1. By (3.6) the function ϕ (s) in (2.10) is defined only for s ≥ s (εr) . However, using Lemma
3.1 and Corollary 3.1, we set below ϕ (s) := L2 [L1 (g)] (s) , ∀s > 0, where the function g (t) is defined in
(2.6).

Theorem 3.2. Let the function εr (x) ∈ Cα (R), satisfies the rest of conditions (2.1), (2.2) and (2.5)
holds. Let the number s ≥ ŝ (|x0| , d) , where the number ŝ was defined in Theorem 3.1. Let the function
p (x, s; εr) := p (x, s) ∈ C2+α (|x− x0| ≥ β) ∩ C (R) , ∀β > 0 be the solution of the problem (3.1), (3.2).
Denote

fk (x, s; εr) = s−2∂k
x [ln p (x, s)] , k = 1, 2.

Then there exists a constant B = B (x0, d, s) > 1 such that for all such functions εr

‖fk (x, s; εr)‖C[0,1] ≤ B, k = 1, 2. (3.25)

Also, for any two functions ε
(1)
r , ε

(2)
r satisfying conditions of this theorem

∥∥∥fk

(
x, s; ε(1)r

)
− fk

(
x, s; ε(2)r

)∥∥∥
L2(0,1)

≤ B
∥∥∥ε(1)r − ε(2)r

∥∥∥
L2(0,1)

, k = 1, 2. (3.26)

Proof. In this proof B = B (x0, d, s) > 1 denotes different constants depending on listed parameters.
We have

f1 =
px

s2p
, f2 =

pxx

s2p
− p2

x

s2p2
. (3.27)

Hence, by (3.4)

|f1 (x, s; εr)| ≤ B |px (x, s; εr)| , |f2 (x, s; εr)| ≤ B
[
|pxx| + |px|2

]
(x, s; εr) , x ∈ [0, 1] . (3.28)
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To estimate the function |px| , we use the integral equation (3.20). We have for x ∈ (0, 1)

px (x, s) = −exp [−s (x− x0)]

2
+
s2

2

1∫

0

sgn (x− ξ) exp (−s |x− ξ|) (εr (ξ) − 1) p (ξ, s) dξ.

Hence, (2.1) and (3.3) imply that |px| ≤ B for x ∈ [0, 1] . Since δ (x− x0) = 0 for x ∈ [0, 1] , then (3.3)
implies that pxx = s2εr (x) p for x ∈ [0, 1] . Hence, by (2.1) and (3.3) |pxx| ≤ B, x ∈ [0, 1] . Thus, (3.28)
implies (3.25).

We now prove (3.26). Let p̃ (x, s) = p
(
x, s; ε

(1)
r

)
− p

(
x, s; ε

(2)
r

)
. Then by (3.1)

p̃xx − s2ε(1)r (x) p̃ = s2
(
ε(1)r − ε(2)r

)
(x) p

(
x, s; ε(2)r

)
, x ∈ R. (3.29)

In addition, it follows from (3.3) and (3.20) that functions ∂j
xp̃ (x, s) , j = 0, 1, 2 decay exponentially with

|x| → ∞. Hence, multiplying (3.29) by p̃, integrating over R and using (2.1) and (3.3), we obtain ‖p̃‖H1(R) ≤
B

∥∥∥ε(1)r − ε
(2)
r

∥∥∥
L2(0,1)

. Hence, by (3.25) and (3.29) lead to

‖p̃‖H2(0,1) ≤ B
∥∥∥ε(1)r − ε(2)r

∥∥∥
L2(0,1)

.

This, (3.4) and (3.27) imply (3.26). �

4. Approximate Global Convergence.

4.1. The concept. As to the 1-D version of that technique, which was published in [31] and which is
used here, originally the work [31] was considered “only as a preliminary step before applying similar ideas to
2-D and 3-D cases” (page 125 of [31]). The authors of [31] meant the incorporation of the Quasi-Reversibility
Method (QRM) in the technique of [5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 32, 48], see section 5.

Least squares functionals for MCIPs with single measurement data suffer from multiple local minima
and ravines. This implies the local convergence of conventional numerical methods for those MCIPs. The
latter means that iterations should start from a point located in a sufficiently small neighborhood of the
exact solution. The central question addressed in the above publications was: How to construct an effective
numerical method, which would lead to a point in a sufficiently small neighborhood of the exact solution of an
MCIP without any a priori information about that neighborhood? Furthermore, there should be a rigorous
guarantee of reaching that neighborhood.

Because of the enormous challenge of addressing this central question (section 1), the approach of
[5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 31, 32, 48] as well as of the current publication consists of the following six
steps:

Step 1. A reasonable approximate mathematical model is proposed. The accuracy of this model cannot
be rigorously estimated.

Step 2. A numerical method is developed, which works within the framework of this model.
Step 3. A theorem is proven, which guarantees that, within the framework of this model, the numerical

method of Step 2 indeed reaches a sufficiently small neighborhood of the exact solution, as long as the error,
both in the data and in some additional approximations is sufficiently small. It is central for our approach
that this theorem should not rely neither on the assumption about a knowledge of any point in a small
neighborhood of the exact solution nor on the assumption of a knowledge of the background medium inside
of the domain of interest.

Step 4. That numerical method is tested on computationally simulated data.
Step 5 (optional). The numerical method of Step 2 is tested on experimental data. To have a truly

unbiased case, blind data are preferable. This step is optional because it is usually not easy to actually get
experimental data.
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Step 6. Finally, if results of Step 4 and (optionally) Step 5 are good ones, then that approximate
mathematical model is proclaimed as a valid one.

Step 6 is logical, because its condition is that the resulting numerical method is proved to be effective, i.e.
Goal 2 is successfully met, also see the fourth Remark 4.1. It is sufficient to achieve that small neighborhood
of the exact solution after a finite (rather than infinite) number of iterations. Next, because of approximations
in the mathematical model, the resulting solution can be refined via a locally convergent numerical method.
The latter led to a two-stage numerical procedure in [6, 7, 8, 9, 10, 11, 12, 32, 48]. On the first stage the
numerical method of Step 2 is applied. On the second stage the Adaptive Finite Element Method (adaptivity)
for MCIPs takes the solution of the first stage as the starting point for iterations an refines it.

4.2. Definition. Considerations of subsection 4.1 led to the introduction of the approximate global
convergence property in [11, 12]. Since this definition is new, it is worthy to repeat it here. Recall that
one of backbone principles of the theory of ill-posed problems is that, given an ill-posed problem, it is
reasonable to assume uniqueness and existence of the exact solution of this problem for the “ideal” noiseless
data [11, 22, 26, 47]. It is not necessary that an algorithm addressing the above central question would
start from any point. In fact, it is sufficient if it would start from such a reasonable point, which would not
contain an information about a small neighborhood of the exact solution. The question of the validity of the
approximate mathematical model M of Definition 4.1 should be addressed in Steps 4,5 of subsection 4.1.

Definition 4.1 (approximate global convergence) [11, 12]. Consider a nonlinear ill-posed problem P .
Suppose that this problem has a unique solution x∗ ∈ B for the noiseless data y∗, where B is a Banach space
with the norm ‖·‖B . We call x∗ “exact solution” or “correct solution”. Suppose that a certain approximate
mathematical model M is proposed to solve the problem P numerically. Assume that, within the framework
of the model M, this problem has unique exact solution x∗M and let x∗M = x∗. Consider an iterative numerical

method for solving the problem P . Suppose that this method produces a sequence of points {xn}N
n=1 ⊂ B,

where N ∈ [1,∞) . Let a sufficiently small number θ ∈ (0, 1) . We call this numerical method approximately
globally convergent of the level θ, or shortly globally convergent, if, within the framework of the approximate
model M, a theorem is proven, which guarantees that, without any a priori knowledge of a sufficiently small
neighborhood of x∗, there exists a number N ∈ [1, N) such that

‖xn − x∗‖B ≤ θ, ∀n ≥ N. (4.1)

Suppose that iterations are stopped at a certain number k ≥ N. Then the point xk is denoted as xk := xglob

and is called “the approximate solution resulting from this method”.

Remarks 4.1:

1. We repeat that we have introduced this definition because, in simple terms, nothing else works for
MCIPs with single measurement data, see in section 1 comments about Goals 1,2.

2. The most important requirement of Definition 4.1 is that this numerical method should provide a
sufficiently good approximation for the exact solution x∗ without any a priori knowledge of a sufficiently
small neighborhood of x∗. Furthermore, one should have a rigorous guarantee of the latter, within the
framework of the model M . In other words, Step 1 of subsection 4.1 should be addressed.

3. Unlike the classical convergence, this definition does not require limn→∞ xn = x∗. Furthermore, the
total number N of iterations can be finite.

4. As to the use of the approximate mathematical model M, all equations of Mathematical Physics are
approximate ones. The main criterion of their validity is the accuracy of descriptions of experimental data,
which is exactly what we do. Also, it is well known that the Huygens-Fresnel optics is not yet rigorously
derived from the Maxwell equations, see section 8.1 of the classical book of Born and Wolf [14]. Nevertheless
it is the Huygens-Fresnel theory which describes the experimental data of the diffraction optics very well.
Furthermore, the entire optical industry nowadays is based on the Huygens-Fresnel theory. On the other
hand, the derivation of this theory from Maxwell equations is based on some non-rigorous approximations.
Analogously, although the numerical method of works [5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 32, 48], is based on
an approximate model, Goal 2 has been consistently achieved.
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5. Numerical Method. Although a detailed description of the numerical method of this section can
be found in [31], we still present it rather briefly here in order to refer to some formulas in the convergence
analysis in section 6. Also, because of (2.2), we consider here the function ln (w/w0) instead of lnw (x, s)
in [31]. Let w (x, s) ∈ C2+α (|x− x0| ≥ β) ∩ C (R) , ∀β, s > 0 be the solution of the problem (2.8), (2.9), see
Theorem 3.1.

5.1. Integral differential equation. Since by (3.3) w (x, s) > 0, we can consider the function r (x, s) ,

r (x, s) = s−2 [lnw (x, s) − lnw0 (x, s)] = s−2 ln [(w/w0) (x, s)] .

Then (2.8), (2.10) and (2.18) imply that

rxx + s2r2x − 2srx = εr (x) − 1, x > 0, (5.1)

r (0, s) = ϕ0 (s) , rx (0, s) = ϕ1 (s) , (5.2)

ϕ0 (s) = s−2 [lnϕ (s) − ln (2s)] + x0s
−1, ϕ1 (s) = 2/s− exp (sx0)

(
s2ϕ (s)

)−1
. (5.3)

By (2.2), (2.5), (2.8) and (2.9) w (x, s) = C (s) e−sx for x ≥ 1, where C (s) is a certain function s−dependent
on s. Hence,

rx (1, s) = 0. (5.4)

Differentiate equation (5.1) with respect to s. Then

q (x, s) = ∂sr (x, s) , ψ0 (s) = ϕ′
0 (s) , ψ1 (s) = ϕ′

1 (s) , (5.5)

r (x, s) = −
s∫

s

q (x, τ) dτ + V (x, s) , (5.6)

V (x, s) = s−2 [lnw (x, s) − lnw0 (x, s)] = r (x, s) . (5.7)

Here s > 0 is a sufficiently large number which is chosen in numerical experiments. We call V (x, s) the tail
function. Actually s is the regularization parameter of this method. Using (5.1)-(5.7), we obtain

qxx − 2s2qx

s∫

s

qx (x, τ) dτ + 2s




s∫

s

qx (x, τ) dτ




2

− 2sqx + 2

s∫

s

qx (x, τ) dτ

+ 2s2qxVx − 4sVx

s∫

s

qx (x, τ) dτ + 2s (Vx)2 − 2Vx = 0, s ∈ [s, s] ,

(5.8)

q (0, s) = ψ0 (s) , qx (0, s) = ψ1 (s) , qx (1, s) = 0, s ∈ [s, s] . (5.9)

Lemma 2.1 of [31] implies for k = 0, 1, 2

Dk
xr (x, s) = Dk

x




−1

s




x∫

x0

√
εr (ξ)dξ − (x− x0)


 +O

(
1

s3

)


 , x > 0, s→ ∞. (5.10)
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Hence, the function V (x, s) = r (x, s) is small for large values of s,

‖V (x, s)‖C2[0,1] = O (1/s) . (5.11)

The main difficulty of this numerical method is in the solution of the problem (5.8), (5.9). Equation
(5.8) has two unknown functions q and V . To approximate both of them, we use a predictor/corrector-like
scheme. First, given an approximation for V , we update q via equation (5.8), (5.9). Next, we update the
unknown coefficient εr (x) and solve the forward problem (2.8), (2.9) for s := s with this updated coefficient
εr (x) . This is our predictor-like step. On the corrector-like step we update the tail function V (x, s) via
(5.7).

Consider a partition of the interval [s, s] into N small subintervals with the grid step size h > 0 and
assume that the function q (x, s) is piecewise constant with respect to s,

s = sN < sN−1 < ... < s0 = s, si−1 − si = h; q (x, s) = qn (x) , for s ∈ (sn, sn−1] .

Let µ >> 1 be a large parameter which should be chosen in numerical experiments. Multiply both sides of
equation (5.8) by the Carleman Weight Function

Cn,µ (s) = exp [−µ (sn−1 − s)] , s ∈ (sn, sn−1] (5.12)

and integrate with respect to s ∈ (sn, sn−1). The CWF is introduced in order to mitigate the influence of

the nonlinear term Bn (µ, h) (q′n)
2

in the resulting equation. If h is fixed, then

Bn (µ, h) = O
(
µ−1

)
, µ→ ∞. (5.13)

We ignore the nonlinear term, since we have observed in our computations that it provides only an insignif-
icant impact in results for µ ≥ 50.. For each n we perform inner iterations with respect to the tail function.
This way we obtain functions qn,k, Vn,k. The equation for the pair (qn,k, Vn,k) is

q′′n,k −



A1,nh

n−1∑

j=0

q′j −A1,nV
′
n,k − 2A2,n



 q′n,k = −A2,nh
2




n−1∑

j=0

q′j




2

+ 2h

n−1∑

j=0

q′j + 2A2,nV
′
n,k



h
n−1∑

j=0

q′j





−A2,n

(
V ′

n,k

)2
+ 2A2,nV

′
n,k, q0 :≡ 0, x ∈ (0, 1) ,

(5.14)

qn,k (0) = ψ0,n, q
′
n,k (0) = ψ1,n, q

′
n,k (1) = 0, (5.15)

ψ0,n =
1

h

sn−1∫

sn

ψ0 (s) ds, ψ1,n =
1

h

sn−1∫

sn

ψ1 (s) ds. (5.16)

Here A1,n, A2,n are certain numbers, whose exact expression is given in [5, 11]. It is known that

max
µh≥1

(A1,n, A2,n) ≤ 8s2. (5.17)

5.2. The iterative process. Since equations (5.14) are generated by the Volterra-like integral dif-
ferential equation (5.8), it is natural to solve them sequentially starting from n = 1. Let ξ ∈ (0, 1) be a
sufficiently small number. Consider a function χ (x) ∈ C2 (R) such that

χ (x) =






1, x ∈ (ξ, 1 − ξ) ,
between 0 and 1 for x ∈ (0, ξ) ∪ (1 − ξ, 1) ,

0, x ∈ R� (0, 1) .
(5.18)
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The existence of such functions is well known from the Real Analysis course. We choose the first guess for
the tail function V0 (x) as in subsection 6.3. For each n ∈ [1, N ] we perform m iterations with respect to
tails. Hence, we obtain three finite sequences of functions:

{qn,k (x)}(N,m)
(n,k)=(1,1) , {Vn,k (x)}(N,m)

(n,k)=(1,1) ,
{
ε(n,k)

r (x)
}(N,m)

(n,k)=(1,1)
, x ∈ [0, 1] . (5.19)

Step n(1), n ∈ [1, N ] . Suppose that functions qj (x) ∈ H4 (0, 1) , Vn−1 (x) ∈ C3 [0, 1] are constructed. We
set Vn,1 (x) := Vn−1 (x) . Next, using the QRM (subsection 5.3), we approximately solve equation (5.14)
for k = 1 with over-determined boundary conditions (5.15) and find the function qn,1 ∈ H4 (0, 1) this way

(Remark 5.1). Hence, by the embedding theorem qn,1 ∈ C3 [0, 1] . Next, we find the approximation ε
(n,1)
r for

the unknown coefficient εr (x) via the following two formulas

rn,1 (x) = −hqn,1 − h

n−1∑

j=0

qj + Vn,1, x ∈ [0, 1] , (5.20)

ε(n,1)
r (x) = 1 + r′′n,1 (x) + s2n

[
r′n,1 (x)

]2 − 2snr
′
n,1 (x) , x ∈ [0, 1] , (5.21)

ε(n,1)
r (x) =






ε
(n,1)
r (x) , if ε

(n,1)
r (x) ∈ [1, d] , x ∈ [0, 1] ,

1, if ε
(n,1)
r (x) < 1, x ∈ [0, 1] ,

d, if ε
(n,1)
r (x) > d, x ∈ [0, 1] .

. (5.22)

Hence, ε
(n,1)
r ∈ C1 [0, 1] and ε

(n,1)
r ∈ Cα [0, 1] , ∀α ∈ (0, 1) . Formulas (5.20) and (5.21) are obvious discrete

analogs of formulas (5.1) and (5.6) respectively. Consider the function

ε̂(n,1)
r (x) = (1 − χ (x)) + χ (x) ε(n,1)

r (x) , x ∈ R. (5.23)

It can be easily proven that ε̂
(n,1)
r (x) ∈ [1, d] for x ∈ R. This implies the ellipticity of the operator (2.8) for

εr (x) := ε̂(n,1)
r (x) ∈ Cα (R) . (5.24)

Hence, we solve the forward problem (2.8), (2.9), (5.24) for s := s. Let wn,1 (x, s) be the solution of this
problem considered in Theorem 3.1. Then, using (5.7), we set for the next tail

Vn,2 (x) :=
lnwn,1 (x, s) − lnw0 (x, s)

s2
. (5.25)

Step n(k), n ∈ [1, N ] , k ∈ [2,m] . Suppose that functions qj (x) ∈ H4 (0, 1) , j ∈ [0, n− 1] ,
Vn,k (x) ∈ C2+α [0, 1] are constructed. Using the QRM, we approximately solve the problem equation

(5.14), (5.15). This gives us the function qn,k ∈ H4 (0, 1) ⊂ C3 [0, 1]. Next, we find the approximation

ε
(n,k)
r ∈ Cα [0, 1] for the function εr (x) , using formulas (5.20)-(5.22), where the index “1” is replaced with

the index “k”. Suppose now that n < N . Then we construct the function ε̂
(n,k)
r (x) via (5.23), where (n, 1)

is replaced with (n, k) and solve the forward problem (2.8), (2.9) with εr (x) := ε̂
(n,k)
r (x) at s := s. If k < m,

then define the tail Vn,k+1 (x) by an obvious analog of (5.25). If, however, n < N and k = m, then we set

Vn+1 (x) := Vn,m+1 (x) ∈ C3 [0, 1] , qn (x) := qn,m (x) (5.26)

and go to the step (n+ 1)(1) . If n = N and k = m, then we set εr,glob (x) := ε
(N,m)
r ∈ Cα [0, 1] and stop the

process. The function εr,glob (x) is our final solution as defined in Definition 4.1.
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5.3. The Quasi-Reversibility Method (QRM). The QRM was first proposed in [34]. We refer to,
e.g. [15, 18, 30] and references cited there for some further developments. The QRM can solve linear ill-posed
boundary value problems for many PDEs, including problems with over-determined boundary conditions. It
finds least squares solutions. Let

an,k (x) = A1,nh
n−1∑

j=0

q′j −A1,nV
′
n,k − 2A2,n,

and Hn,k (x) be the right hand side of equation (5.14). Then an,k ∈ C2 [0, 1] , Hn,k ∈ L2 (0, 1) . Equation
(5.14) can be rewritten as

Ln,k (qn,k) := q′′n,k − an,kq
′
n,k = Hn,k.

Let γ ∈ (0, 1) be the regularization parameter. In the QRM we minimize the following Tikhonov functional
with respect to the function qn,k subject to boundary conditions (5.15),

Jγ (qn,k, Hn,k) = ‖Ln,k (qn,k) −Hn,k‖2
L2(0,1) + γ ‖qn,k‖2

H4(0,1) , (5.27)

Remark 5.1. There is a peculiarity of this technique in the 1-D case. We use approximate least squares
QRM solutions of the problem (5.14), (5.15). On the other hand, it seems to be at the first glance that for
a given function Vn,k one can find the function qn,k via solving equation (5.14) with only two out of three
boundary conditions in (5.15). However, our attempt to do so for computationally simulated data has failed
to produce good quality results, see Remark 3.1 on page 130 of [31]. This is because of the approximate
nature of our mathematical model, see subsection 6.3.

Lemma 5.1 (Carleman estimate, see [31] and p. 168 in [30]). For any function u ∈ H2 (0, 1) with
u (0) = u′ (0) = 0 and for any parameter λ ≥ 1 the following Carleman estimate holds

1∫

0

(u′′)
2
e−2λxdx ≥ 1

16

1∫

0

[
8 (u′′)

2
+ λ (u′)

2
+ λ3 (u)

2
]
e−2λxdx. (5.28)

Lemma 5.2 [31]. For any number γ ∈ (0, 1) and for each function F ∈ L2 (0, 1) there exists unique
minimizer uγ ∈ H4 (0, 1) with uγ (0) = u′γ (0) = 0 of the functional Jγ (u, F ) in (5.27) and

‖uγ‖H4(0,1) ≤ Cγ−1/2 ‖F‖L2(0,1) ,

where the constant C > 0 is independent on an,k, F, uγ , γ. Let ‖an,k‖C[0,1] ≤ a0, where a0 = const. > 0. Let

the function u ∈ H4 (0, 1), Ln,k (u) = H and u (0) = u′ (0) = 0. Then there exists a constant K = K (a0) > 0
independent on F,H, uγ , u, γ such that

‖uγ − u‖H2(0,1) ≤ K
(
‖F −H‖L2(0,1) +

√
γ ‖u‖H4(0,1)

)
.

The proof of Lemma 5.2 is based on Lemma 5.1, Riesz theorem and the variational principle. The main
difference between Lemma 5.1 and Carleman estimates for elliptic operators in the n−D (n ≥ 2) case is that
we now have the integration in the right hand side of (5.28) over the entire interval (0, 1) rather than over a
subdomain of the original domain in n−D [35]. The absence of local minima of the functional (5.27) follows
from Lemma 5.2. It can be derived from Lemma 5.1 that it is not necessary to use the regularization term

γ ‖qn,k‖2
H4(0,1) in (5.27). Still, we use this term to ensure that functions ε

(n,k)
r ∈ C1 [0, 1] . Although Lemma

5.1 implies that it is not necessary to use the condition q′n,k (1) = 0, we use it in our computations to improve
the stability.

6. Convergence Analysis.
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6.1. The exact solution. Using again the concept of Tikhonov for ill-posed problems [11, 22, 26, 47],
we assume that there exists unique exact solution ε∗r (x) of our CIP with the “ideal” noiseless data g∗ (t)
in (2.6), and the function ε∗r (x) satisfies conditions (2.1), (2.2). Then ε∗r (x) generates functions, which are
defined similarly with the ones above, q∗0 ≡ 0,

r∗ (x, s) , V ∗ (x, s) := r∗ (x, s) , q∗ (x, s) = ∂sr
∗ (x, s) , q∗n (x) , ψ∗

0,n, ψ
∗
1,n, n ∈ [1, N ] . (6.1)

Similarly with (5.14), (5.15) we obtain from (5.8) and (5.9)

∂2
xq

∗
n −



A1,nh

n−1∑

j=0

∂xq
∗
j −A1,n∂xV

∗ − 2A2,n



 ∂xq
∗
n = −A2,nh

2




n−1∑

j=0

∂xq
∗
j




2

+ 2h

n−1∑

j=0

∂xq
∗
j

+ 2A2,n∂xV
∗



h
n−1∑

j=0

∂xq
∗
j



 −A2,n (∂xV
∗)

2
+ 2A2,n∂xV

∗ + F1,n (x, µ, h, s) , x

∈ (0, 1) ,

(6.2)

q∗n (0) = ψ∗
0,n, ∂xq

∗
n (0) = ψ∗

1,n, ∂xq
∗
n,k (1) = 0. (6.3)

In (6.2) Fn (x, µ, h) is the error function which is generated by averaging (5.16) of boundary functions ψ∗
0 , ψ

∗
1 .

Also, the nonlinear term Bn (µ, h) (∂xq
∗
n)

2
is included in F1,n. By embedding theorem there exists a constant

C2 ≥ 1 such that

‖f‖C[0,1] ≤ C2 ‖f‖H1(0,1) , ∀f ∈ H1 (0, 1) , . (6.4)

Let a given number C∗ > 0 be such that

max
n∈[1,N ]

‖q∗n‖C1[0,1] ≤
C∗

C2
, max

n∈[1,N ]
‖q∗n‖H4(0,1) ≤ C∗. (6.5)

6.2. Approximate mathematical model. Following Definition 4.1, we introduce in this subsection
an approximate mathematical model. Assumptions of this model are based on the asymptotic formulas
(5.10) and (5.11). These assumptions actually mean that we consider only the first term of the asymptotic
behavior of the tail function V ∗ (x, s) when the pseudo frequency s → ∞ and truncate the rest. We call s
the truncation pseudo frequency. A similar assumption is used in, e.g. geometrical optics. Our Approximate
Mathematical Model consists of the following two

Assumptions:
1. Let the parameter s > 1. Then there exists a function a∗ ∈ H4 (0, 1) such that the function V ∗ (x, s)

has the form

V ∗ (x, s) = s−1a∗ (x) , ∀s ≥ s, ∀x ∈ [0, 1] . (6.6)

2. The following equality holds

s−1a∗ (x) = s−2 [lnw∗ (x, s) − lnw0 (x, s)] . (6.7)

Compare (6.6), (6.7) with (5.7), (5.11). Using the third condition (6.1) and (6.7), we obtain

q∗ (x, s) = −s−2a∗ (x) . (6.8)

Consider equation (5.8) for the pair (q∗ (x, s) , V ∗ (x, s)) , s ∈ [s, s] . Then boundary conditions (5.9) are valid
with functions ψ∗

0 (s) , ψ∗
1 (s) . Hence, substituting in (5.8), (5.9) s := s and using (6.8), we obtain that the

function a∗ (x) is the solution of the following over-determined boundary value problem

∂2
xa

∗ (x) = 0, x ∈ (0, 1) , (6.9)
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a∗ (0) = −s2ψ∗
0 (s) , ∂xa

∗ (0) = −s2ψ∗
1 (s) , ∂xa

∗ (1) = 0. (6.10)

In (6.10) exact boundary data at x = 0 are used. In practice, however we have the non-exact data
boundary ψ0 (s) , ψ∗

1 (s) . Hence, consider the following boundary value problem for the function a (x)

∂2
xa (x) = 0, x ∈ (0, 1) , (6.11)

a (0) = −s2ψ0 (s) , ∂xa (0) = −s2ψ1 (s) , ∂xa (1) = 0. (6.12)

We solve the problem (6.11), (6.12) via the QRM (see Remark 5.1). Let the function aγ ∈ H4 (0, 1) be the
unique minimizer of the following analog of the QRM functional (5.27)

Jγ (a) = ‖a′′‖2
L2(0,1) + γ ‖a‖2

H4(0,1) , (6.13)

subject to boundary conditions (6.12). Because of (6.6)-(6.13), we define the first guess for the tail function
as

V0 (x) = s−1aγ (x) . (6.14)

Let σ ∈ (0, 1) be the level of the error in the boundary data. We assume that

|ψ0 (s) − ψ∗
0 (s)| + |ψ1 (s) − ψ∗

1 (s)| ≤ σ. (6.15)

Remarks 6.1.
1. Let aγ (x) be the approximate solution of the problem (6.11)- (6.13). Then substituting (6.14) in (5.1),

(5.6) at s = s, one can find a good approximation for the exact coefficient ε∗r (x) . Furthermore, Theorem 6.1

implies that all functions ε
(n,k)
r are good approximations for ε∗r (x) , as long as the total number of iterations

is not too large. This corresponds well with (4.1). Since we find aγ (x) only using the boundary data, then
this means that our approximate mathematical model is indeed a good one. Hence, we can stop iterations

on any function ε
(n,k)
r for those indices (n, k) , which are “allowed” by Theorem 6.1. Next, one can use

the adaptivity procedure to refine the solution (the end of subsection 4.1). This was confirmed numerically
in tests 2,3 of [6] as well as in tests 2,3 in section 4.16.2 of [11]. However, if not using the adaptivity for
refinement, then, quite naturally, one needs to find an optimal iteration number to stop, see Figures 7.3, 7.5,
7.6 and 7.8 of [5], Figures 3,4 in [9], Figures 6 in [27] and Figure 1-b) in [31] (this again corresponds well
with Definition 4.1). These figures can also be found in chapters 3-5 of the book [11], along with objective
stopping criteria for iterations.

2. Because of the approximate nature of equalities (6.6), (6.7), equation (6.9) does not match the
asymptotic behavior (5.10), which is the single self-contradiction of this approximate mathematical model.
The same can be stated about all other versions of this method in above cited publications. Nevertheless,
it was consistently demonstrated that this numerical method works well for both computationally simulated
and experimental data. Based on our numerical experience, we believe that this is because of two factors:
(1) The truncation of the asymptotic series with respect to 1/s at s→ ∞ in (6.6) is reasonable, and (2) The
use of the predictor-corrector procedure to update tails via solutions of forward problems.

Lemma 6.1. For each value of the regularization parameter γ ∈ (0, 1) there exists unique minimizer
aγ ∈ H4 (0, 1) of the functional (6.13) satisfying boundary conditions (6.12). The following estimates hold

‖aγ‖H4(0,1) ≤ Cs2γ−1/2 (|ψ0 (s)| + |ψ1 (s)|) ,

where the constant C > 0 is independent on aγ , γ, s, ψ0 (s) , ψ1 (s) . Let Assumptions 1,2 hold and the function
a∗ ∈ H4 (0, 1) be the solution of the problem (6.9), (6.10). Let (6.15) holds. Then there exists a constant
K > 0 independent on a∗ (x) , aγ (x) , γ, s, ψ0 (s) , ψ1 (s) such that

‖V0 − V ∗‖H2(0,1) ≤ Ks
(
σ +

√
γ ‖a∗‖H4(0,1)

)
.
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This lemma easily follows from Lemma 5.2, (5.5) and (6.6)-(6.14). Uniqueness within the framework of
this Approximate Mathematical Model can be easily derived, see Lemma 6.6.2 in [11] for a similar result.
We assume below that the above exact solution ε∗r (x) is exactly the same as the one within the framework
of this model, i.e.

ε∗r (x) = r∗xx + s2 (r∗x)
2 − 2sr∗x + 1, s ∈ [s, s] , x ∈ [0, 1] , (6.16)

see (5.1). Here the function r∗ is defined via (5.6), (5.7), where functions q, V are replaced with functions
q∗ (x, s) , V ∗ (x, s) , and (6.6)-(6.8) hold. Hence, (6.2)-(6.4) and (6.16) imply the following analogs of discrete
formulas (5.20), (5.21)

r∗n (x) = −hq∗n (x) − h

n−1∑

j=0

q∗j (x) + V ∗ (x, s) + F2,n (x, h, s) , x ∈ [0, 1] , (6.17)

ε∗r (x) = 1 + ∂2
xr

∗
n (x) + s2n [∂xr

∗
n (x)]

2 − 2sn∂xr
∗
n (x) + F3,n (x, h, s) , x ∈ [0, 1] . (6.18)

One can prove that

3∑

j=1

‖Fj,n‖L2(0,1) ≤ C1s
2
(
h+ µ−1

)
, (6.19)

where the constant C1 > 0 is independent on h, µ, s. We assume that

Fj,n ≡ 0, j = 1, 2, 3;ψ0,n = ψ∗
0,n, ψ1,n = ψ∗

1,n, n ∈ [1, N ] . (6.20)

Therefore the by (6.15) error is “allowed” only in numbers ψ∗
0 (s) , ψ∗

1 (s). We point out that an analog of
Theorem 6.1 can be proved very similarly for the realistic case (6.19) and when

∣∣ψ0,n − ψ∗
0,n

∣∣ ,
∣∣ψ1,n − ψ∗

1,n

∣∣ <
σ. So, condition (6.20) is introduced for brevity only. An additional simplification of the presentation comes
from balancing error parameters h, σ with the regularization parameter γ and parameters ξ, µ in (5.12) and
(5.18) as

σ =
√
γ =

√
2ξ = µ−1 := h. (6.21)

6.3. Approximate global convergence theorem. The main new element of Theorem 6.1 is that we
iteratively estimate tails, which was not done in [31]. To do this, we use (3.25) and (3.26). The proof of
Theorem 6.1 has some similarities with the proof of Theorem 6.7 of [11] for the 3-D case. However, estimates
of the H2−norm of the QRM solution qn,k in [11] are obtained in a subdomain of the domain Ω. In turn, this
leads to the estimate of the accuracy of the computed target coefficient in another subdomain of Ω rather
than in the entire Ω. On the othe hand, because of the 1-D case, (5.28) implies a stronger estimate of that
accuracy in the whole interval (0, 1) . Still, because of the above similarity with the proof of Theorem 6.7 of
[11], and also because the proof of Theorem 6.1 is rather technical, we only outline it here.

Theorem 6.1. (approximate global convergence). Let the function ε∗r (x) satisfying conditions (2.1),
(2.2) be the exact solution of our CIP for the noiseless data g∗ (t) in (2.6). Fix the truncation pseudo
frequency s > max (ŝ (d, |x0|) , 1) , where the number ŝ (d, |x0|) was defined in Theorem 3.1. Let two Assump-
tions of subsection 6.2 hold and ‖a∗‖H4(0,1) ≤ C∗, where C∗ is the constant defined in (6.5). Let the first

tail function V0 (x) be defined via (6.11)-(6.14). In addition, let conditions (6.15), (6.20) and (6.21) hold.
Let B = B (x0, d, s) > 1, C2, C

∗ and K be the numbers defined in Theorem 3.2, (6.4), (6.5) and Lemma 6.1.
Define B1 = B1 (x0, d, s) = max (C2, B, C

∗,Ks) . Consider the iterative process of subsection 5.2. Let the
number N ≥ 2 be independent on h. Then there exists a constant D = D (x0, d, s) ≥ 32s2B1 such that if for
a constant b > 1 independent on x0, d, s

h ∈ (0, h0) , h0 =
1

bD2Nm+2
, (6.22)
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then the following estimates are valid

‖qn,k − q∗n‖H2(0,1) ≤ D(n−1)m+k+2h, (6.23)

‖qn,k‖C1[0,1] ≤ 2C∗, (6.24)

∥∥∥ε(n,k)
r − ε∗r

∥∥∥
L2(0,1)

≤ D(n−1)m+k+1h, (6.25)

∥∥V ′
n,k − ∂xV

∗
∥∥

L2(0,1)
+

∥∥∥V
′′

n,k − ∂2
xV

∗
∥∥∥

L2(0,1)
≤ D(n−1)m+k+1h, (6.26)

∥∥V ′
n,k

∥∥
C[0,1]

≤ 2B1, (6.27)

∣∣∣∣∣∣
A1,nh

n−1∑

j=0

q′j −A1,nV
′
n,k − 2A2,n

∣∣∣∣∣∣
C[0,1]

≤ 18s2B1 := a0. (6.28)

Here qn,k are QRM solutions of boundary value problems (5.14), (5.15). In particular, let the number
ω ∈ (0, 1) be defined as

ω =
ln b

ln b+ (2Nm+ 2) lnD
.

Then (6.25) implies the Hölder-like estimate

∥∥∥ε(n,k)
r − ε∗r

∥∥∥
L2(0,1)

≤ hω := θ,

which guarantees the approximate global convergence property of the level θ of this iterative process within
the framework of the approximate mathematical model of subsection 6.2 (Definition 4.1).

Remarks 6.2.
1. Since the number N of s−subintervals (si, si−1) is assumed to be independent on the partition step

size h, then Theorem 6.1 requires the length of the total s−interval [s, s] covered in the iterative process
of subsection 5.2 to decrease with the decrease of h. This seems to be a natural requirement. Indeed, if
the number s− s would be independent on h, then this would mean the increase of the number of iteration
Nm = m·(s− s) /h.On the other hand, the error increases with the iteration number, especially for nonlinear
ill-posed problems. Hence, the number of iterations Nm is one of regularization parameters here. It was
pointed out on pages 156, 157 of the book [22] that the total number of iterations can often be regarded as
a regularization parameter in the theory of Ill-Posed Problems. Two other regularization parameters are s
and γ. Thus, we have a vector (Nm, s, γ) of regularization parameters.

2. Another argument justifying the smallness of the interval [s, s] is that the original equation (5.8)
contains Volterra-like integrals in nonlinear terms. It is well known from the standard ODE course that
existence of solutions of Volterra-like integral equations is guaranteed only on sufficiently small intervals.

Outline of the proof of Theorem 6.1. To avoid using new notations, below qn,k (x) means the QRM
solution of the problem (5.14), (5.15). The only exception is when we subtract (6.2) and (6.3) from (5.14),
(5.15) respectively. Denote

q̃n,k = qn,k − q∗n, ε̃
(n,k)
r = ε(n,k)

r − ε∗r, Ṽn,k = Vn,k − V ∗.
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Consider the case (n, k) = (1, 1) . First, by Lemma 6.1

∥∥∥Ṽ ′
1,1

∥∥∥
L2(0,1)

+
∥∥∥Ṽ ′′

1,1

∥∥∥
L2(0,1)

≤ B1h < D2h. (6.29)

Hence, (3.25), (6.4), (6.22) and (6.29) imply that

∥∥V ′
1,1

∥∥
C[0,1]

=
∥∥∥Ṽ ′

1,1 + ∂xV
∗
∥∥∥

C[0,1]
≤ C2D

2h+B1 ≤ 2B1. (6.30)

Estimates (6.29) and (6.30) establish (6.26) and (6.27) for (n, k) = (1, 1) . Consider now the function q̃1,1.
Subtracting (6.2) from (5.14) and (6.3) from (5.15), using (6.20) and setting n = k = 1, we obtain

q̃′′1,1 +
(
A1,1V

′
1,1 + 2A2,1

)
q̃′1,1 = −

[
A1,1∂xq

∗
1 +A2,1

(
V ′

1,1 + ∂xV
∗
)]
Ṽ1,1, x ∈ (0, 1) , (6.31)

q̃1,1 (0) = q̃′1,1 (0) = q̃′1,1 (1) = 0. (6.32)

We now need to estimate the QRM solution q1,1 of the problem (6.31), (6.32). By (5.17), (6.29) and (6.30)

∣∣A1,1V
′
1,1 + 2A2,1

∣∣ ≤ 8s2 (B1 + 2) ≤ 1

2
a. (6.33)

Next, using (3.25), (5.17), (6.5), (6.29) and (6.30), we obtain

∣∣A1,1∂xq
∗
1 +A2,1

(
V ′

1,1 + ∂xV
∗
)∣∣ ≤ 8s2 (C∗ + 3B1) ≤ 32s2B1,

∥∥∥
[
A1,1∂xq

∗
1 +A2,1

(
V ′

1,1 + ∂xV
∗
)]
Ṽ ′

1,1

∥∥∥ ≤ 32s2B2
1h ≤ D2h. (6.34)

We can take D ≥ K (a0) , where numbers a0 and K (a0) are defined in (6.33) and Lemma 5.2 respectively.
Hence, Lemma 5.2, (6.31), (6.32) and (6.34) imply that

‖q̃1,1‖H2(0,1) ≤ D3h, (6.35)

which proves (6.23) for q̃1,1. Next, to prove (6.24), we use (6.5), (6.22) and (6.35),

‖q1,1‖C1[0,1] ≤ C2 ‖q1,1‖H2(0,1) ≤ C2 ‖q̃1,1‖H2(0,1) + C2 ‖q∗1‖H2(0,1) ≤ 2C∗. (6.36)

Next, subtract (6.18) from (5.21). Note that by (2.1) and (5.22)
∣∣∣ε̃(n,k)

r (x)
∣∣∣ =

∣∣∣ε(n,k)
r (x) − ε∗r (x)

∣∣∣ ≤
∣∣∣ε(n,k)

r (x) − ε∗r (x)
∣∣∣ , ∀x ∈ [0, 1] . Hence, using (6.22), (6.29), (6.30), (6.35) and (6.36), we obtain

∥∥∥ε̃(1,1)
r (x)

∥∥∥
L2(0,1)

≤
(
D3h2 +B1h

) (
1 + s2 (3C∗h+ 3B1 + 2)

)

≤ 7s2
(
D3h2 +B1h

)
≤ 14s2Dh ≤ D2h,

which establishes (6.25) for n = k = 1. Next, using (3.26), (5.18), (5.23) and (6.21), we obtain

∥∥∥Ṽ ′
1,2

∥∥∥
L2(0,1)

+
∥∥∥Ṽ ′′

1,2

∥∥∥
L2(0,1)

≤ 2BD2h+
√

2ξd ≤ D3h.

Hence, similarly with (6.30)
∥∥V ′

1,2

∥∥ ≤ 2B1. Thus, (6.26) and (6.27) are established for n = 1, k = 2. The
rest of the proof can be done similarly using the mathematical induction. We need (6.28) to estimate norms
‖q̃n,k‖H2(0,1) via Lemma 5.2. The estimate (6.28) is proved using (5.17), (6.22) and (6.24). �
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Fig. 7.1: The schematic diagram of data collection by the Forward Looking Radar of US Army Research Laboratory.

7. Experimental Setup and Data Pre-Processing.

7.1. Data collection. The schematic diagram of the data collection by the Forward Looking Radar
is depicted on Figure 7.1. The time resolved electric pulses are emitted by two sources installed on the
radar. Only one component of the electric field is both originated and measured in the backscattering
regime. The data are collected by sixteen (16) detectors with the step size in time of 0.133 nanosecond.
Only shallow targets placed both below and above the ground can be detected. The depth of the upper
part of a shallow underground target is a few centimeters. The Ground Positioning System (GPS) provides
the distance between the radar and a point on the ground located above that target. The error in the
latter is a few centimeters. Time resolved voltages of backreflected signals are integrated over radar/target
distances between 20 meters and 8 meters, and they are also averaged with respect to both source positions
as well as with respect to readings of sixteen detectors. Since the radar/target distance is known, then it is
approximately known which part of the measured time resolved signal corresponds to the reflections from
that target, see Figure 7.1. However, clutter obviously obscures a significant part to that signal. For any
target of interest, only a single time dependent curve can be extracted from the vast amount of data, see
samples on Figures 7.4-b), d) ,f). This is the curve we have worked with in each of available five cases of
experimental data.

Since the radar/target distance is provided by GPS with a good accuracy, geometrical parameters of
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targets, including their depths, are not of an interest here. The main goal of our work was to provide to
calculate ratios R of dielectric constants

R =
εr(target)

εr(bckgr)
, (7.1)

where εr(bckgr) is the dielectric constant of the background medium. If εr(bckgr) is known, then (7.1)
enables to calculate εr(target). If a target is located above the ground, then εr(bckgr)= εr(air)= 1. Since
targets can be mixtures of constituent materials, then εr(target) is a certain weighted average of dielectric
constants of these materials. We image the ratio (7.1) rather than the function εr (x) itself, since (2.1)
requires that εr(bckgr) should have a constant value outside of our domain of interest x ∈ (0, 1) . The latter
was true only for targets located above the ground. However, in the case of underground targets, this
condition is invalid because of the air/ground interface. Below “1” stands for “1 meter”.

A separate question is about the meaning of the dielectric constant in metallic targets. Comparison of
Figures 7.2-a) and 7.2-b) shows that the electric field reflected from the metallic target is about the same
as the one reflected from the dielectric target with a large value of the dielectric constant. Next, we have
simulated the data for four large inclusion/background contrasts via solving the problem (2.8), (2.9). Figure
7.2-c) shows computed functions w (0, s)−w0 (0, s) , s ∈ [1, 12] for the case of a single inclusion embedded in
the interval (0, 1) with four different values of the function εr = 10, 20, 30, 40 in this inclusion, see Figure 7.3-
a) for the geometry. One can observe that these curves do not change much with the change of εr ∈ [10, 30] .
Furthermore, curves for εr = 30, 40 are almost the same. Therefore, based on Figures 7.2-a)-c), we choose
the interpretation (7.2) of the dielectric constant in metals. The physical meaning of (7.2) is unknown, and
we call it appearing dielectric constant for metals,

εr(metal) ∈ [10, 30] . (7.2)

7.2. Main uncertainties in the experimental data. To figure out what kind of ideal data one
should expect for the case of one target only, we have performed computational simulations via solving the
forward problem (2.3), (2.4) for the case of one target and for the source position

x0 = −1. (7.3)

In data simulation we have replaced R in (2.3) with the interval x ∈ (−6, 6) and have considered zero
Dirichlet boundary conditions for rather small times,

u (−6, t) = u (6, t) = 0, t ∈ (0, 4) . (7.4)

Condition (7.4) is imposed because the wavefront originated at the source position (7.3) does not reach
points x = ±6 for t ∈ (0, 4) . The structure of the medium and the computed function u (0, t) := g (t) are
depicted on Figures 7.3-a) and 7.3-b), respectively. In the case εr (target) = const. ∈ (0, 1) the function g (t)
looks similar (not shown), except that its peak points downwards. Note that the constant background on
Figures 7.3–a), b) corresponds to the fundamental solution of the 1-D wave equation vtt = vxx,

u0 (x, t) =
1

2
H (t− |x− x0|) ,

where H is the Heaviside function. Figures 7.4-b), d), f) show the experimental data for different targets.
A visual comparison of Figures 7.4-b), d), f) with Figure 7.3-b), confirms the above mentioned (section 1)
substantial discrepancy between computationally simulated and experimental data. This discrepancy is the
main challenge of working with these data.

In addition to the above misfit and the 3-D reality versus only a single curve for each target, there were
some other uncertainties here as well. The most significant uncertainties were:

1. The reference signal was not measured.
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a)

b)

c)

Fig. 7.2: Appearing dielectric constant for metals for computationally simulated data at a single frequency. a) The
amplitude of the electric field reflected from a dielectric target with εr = 10 in it. b) The amplitude of the electric
field reflected from a metallic target on the same frequency as one on a). Reflected fields a) and b) are very similar.
c) Computed functions (w − w0) (0, s) , s ∈ [1, 12] for the case when one inclusion is embedded in the interval (0, 1)
with different values of the function εr, see Figure 7.3-a) for the location of the inclusion. From top to bottom
εr = 10, 20, 30, 40. Curves for εr = 30, 40 almost coincide. Hence, the function w (0, s) does not change much with
the increase of the inclusion/background contrast from 10 to 40. Figures a)-c) justify the definition (7.2) of the
appearing dielectric constant for metals.

21



0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time steps, time T=[0;3.5]

 

 

ε=4.0, x=0.0

a) b)

Fig. 7.3: Computationally simulated data u (0, t) , where u (x, t) is the solution of the problem (2.1), (2.2) with the
source location x0 = −1. Boundary conditions (7.4) were used, since the wavefront did not yet reach points x = ±6
for times t ∈ (0, 4) . a) The function εr (x) , x ∈ (0, 1) . Also, εr (x) = 1 for x /∈ (0, 1) . b) The function u (0, t) in time
T = [0, 3.5].

2. The direction of the incident plane wave was oblique to the ground rather than orthogonal, see Figures
7.4-a), c), e).

3. Units for the amplitude of experimental data were unknown.

4. The location of the point source x0 was unknown. Thus, (7.3) is an intuitive choice.

5. The time moment t = 0 on the data was unknown.

6. The background was heterogeneous due to clutter.

Remark 7.1. It is because of items 4 and 5 that it was impossible to image locations of targets correctly.

At the same time, the UNCC/ChalmersGU team had the following two pieces of the information in
advance:

1. The presence of a single target for each data set.

2. It was known whether the target was located above or below the ground.

7.3. Data pre-processing. We need to pre-process the experimental data in such a way that the re-
sulting time resolved curves would look similarly with Figure 7.3-b), since this would fit, at least somehow, our
mathematical model. If the target is located above the ground, then εr(target)> 1, since εr(bckgr)=εr(air)=
1 in this case. Figure 7.3-b) indicates that one should select on the experimental curve only one downwards
looking peak in this case. However, if the target is buried in the ground, then there could be any relation
between εr(target) and εr(bckgr). Hence, based on Figures 7.3-a), b) as well as their analogs for the case
εr(target)¡εr(bckgr) (not shown), we have selected on each experimental curve the earliest peak of the largest
amplitude out of all other peaks. The rest of each curve was set to zero. More precisely, our selection of
that peak was as follows: this should be the earliest peak of the largest amplitude

out of

{
all peaks for a target buried in the ground,

all downwards looking peaks for a target above the ground.
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a) b)

c) d)

e) f)

Fig. 7.4: Targets and experimental data for Tests 1-3. The ground is dry sand with εr ∈ [3, 5] [45]. Because of the
blind study case, a), c), e) were released to the UNCC/ChalmersGU team only after computations were made. a)
Bush standing along the road (clutter). b) Scaled experimental data for a) (subsection 7.3). The horizontal axis is
time in nanoseconds with the time step 0.133 nanosecond. The vertical axis is the amplitude of the measured voltage.
c) Wood stake. d) Scaled experimental data for c). e) Metal box buried in the dry sand. f) Scaled experimental
data for e). The amplitude of largest downward looking peak on f) is 0.0072, whereas the amplitude of the largest
upwards looking peak is 0.007. Therefore, that downwards looking peak was used in our data pre-processing. A huge
misfit between experimental and computationally simulated data is evident: compare highly oscillatory curves of b),
d), f) with Figure 7.3-b). Waveforms of b), d), f) show why the radar detection and discrimination problem is so
challenging. One can see three very different types of targets, yet their signatures are very similar.
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a) b)

Fig. 7.5: The horizontal axis is time in nanoseconds with the time step size of 0.133 nanosecond. a) The pre-
processed experimental data for the bush standing along the road (clutter), see Figures 7.4-a),b). b) The pre-processed
experimental data for all five cases (superimposed). In terms of our mathematical model, we use these curves as
functions u (0, t) − u0 (0, t) .

We have assigned on each experimental curve the time zero {t = 0} to be such a point on the time axis, which
is one (1) nanosecond off to the left from the beginning of the selected peak. Next, we have multiplied the
resulting data by the scaling factor (below) and have regarded the resulting curve as the pre-processed data.
Figure 7.5-a) displays the pre-processed data for the case of Figure 7.4-b). Figure 7.5-b) shows superimposed
pre-processed curves for all five cases of experimental data we have possessed.

The measured amplitude for each case was of the order of 105. This is well above the amplitude of Figure
7.3-b). Hence, we have multiplied all signals by the same scaling factor 10−7. We have chosen this number
since the amplitudes of the Laplace transform of the resulting pre-processed data are about the same as
values of the function w (0, s) − w0 (0, s) for simulated solutions w (x, s) of the problem (2.8), (2.9) with
inclusion/background contrasts in εr ranging from 2 to 40, see Figure 7.2-c).

7.4. Functions ψ0 (s) and ψ1 (s). Let g̃ (t) be the pre-processed experimental data for any of our
targets. Based on Figures 7.5, we have calculated the Laplace transform (2.7) ϕ (s) = L (g) via the integration
over the interval t ∈ (0, 2) . Next, we have calculated the derivative ϕ′ (s) as

ϕ′ (s) = −
2∫

0

g̃ (t) te−stdt+ ∂sw0 (0, s) , (7.5)

where the function w0 (0, s) is defined in (2.11). It was observed in computational simulations of [31] that
the function ϕ (s) has the best sensitivity to the presence of inclusions for s ∈ [0.5, 1.2] . Nevertheless, we
have observed that the larger interval s ∈ [1, 12] provides better quality images for simulated data. The
function ϕ (s) was computed accurately for the entire interval s ∈ [1, 12] with the step size ∆s = 0.05 in
the s−direction. However, because of their dependence on the derivative ϕ′ (s) in (7.5), functions ψ0 (s) =
q (0, s) , ψ1 (s) = qx (0, s) have oscillated for s ∈ [3, 12]. On the other hand, our testing of computationally
simulated data has shown that oscillations should not be present.

Hence, we have pre-processed the function ψ0 (s) as follows. First, we have calculated ψ0 (s) for s ∈ [1, 2.5]
using the Laplace transform of the data, like in (7.5), with the 0.5 step size with respect to s. Next, we
have set ψ0 (12) := 0.025 · ψ0 (2.5) . Next, we have linearly interpolated in the plane (s, ψ0) between points
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(2.5, ψ0 (2.5)) and (12, ψ0 (12)) . And similarly for ψ1 (s) . Having functions ψ0 (s) , ψ1 (s) for our pre-processed
experimental data, we have calculated numbers ψ0,n, ψ1,n in (5.16), which are used as boundary conditions
for the QRM.

8. Imaging Results. A detailed description of the numerical implementation of the algorithm of
subsections 5.2, 5.3 can be found in [31]. We now briefly outline main elements as well as some differences with
[31]. Unlike [31], were only synthetic data were used, the values qn (1) were unknown to us now (naturally).
But this turned out not to be a problem. Indeed, our numerical experiments with computationally simulated
data have shown to us that the knowledge of the numbers qn (1) affects only the accuracy of the image of the
location of a target. However, it does not affect the accuracy of the reconstruction of the target/background
contrast in εr, which was our main goal, see Remark 7.1. Thus, unlike [31], we have not assigned any values
to qn (1) . The initial tail function was taken as in (6.14). Although Theorem 6.1 guarantees approximate
global convergence only for the case of a small s− interval, our computational experience tells us that the
interval s ∈ [1, 12] is an optimal one. We attribute this to the well known fact that convergence estimates
are rotinely much more pessimistic than computational results. This is because constants in convergence
theorems usually are largely over-estimated. Similarly, although the above theory works only for the case
εr (x) ≥ 1, this did not prevent us from computing one case whith R < 1 in (7.1).

We regard R := R (x) in (7.1) as x−dependent function. With respect to the results of this section,
εr (x) in (2.8) was replaced with R (x) . Thus, it is R (x) which was computed by the above algorithm.
Let Rcomp (x) be the computed coefficient R (x) . Then we define the computed target/background contrast
as R = maxRcomp (x) in the case when maxRcomp (x) > 1, and as R = minRcomp (x) in the case when
maxRcomp (x) ≤ 1. We set εr (target) := R · εr (bckgr) .

For each test we have also computed two curves: the Laplace transform of the pre-processed experimental
data and the function w (0, s) , where w (0, s) is the solution of the problem (2.8), (2.9) with εr (x) :=
Rcomp (x) . The interval s ∈ [1, 12] with the step size h = 0.5 was used for the latter. These these two curves
were very close to each other for all tests.

Test 1. Computationally simulated data. First, we verify that our algorithm provides an accurate
target/background contrast for computationally simulated data. We image the structure depicted on Figure
7.3-a). Figure 8.1-a) displays the resulting image. Recall that we are interested in accurate imaging of
target/background contrasts rather than in accurate imaging of locations of targets (subsection 7.1).The
imaged target/background contrast is 3.8, whereas the real contrast is 4. Thus, the imaged contrast is quite
accurate. This gives us a hope that contrasts for experimental data are also computed accurately.

Test 2. Image of a bush, see Figures 7.4-a), 7.5-a), b). This was the most difficult case, because the
target was highly heterogeneous one. Besides, the maximal of the modulus of the amplitude of the pre-
processed signal for this target exceeds this values for other targets by the factor of 2.57. Figures 8.1-b) and
8.1-c) display the resulting image and the above superimposed curves respectively. Only a small difference
between curves of Figure 7.4-c) is observed.

Test 3. Image of a wood stake, see Figures 7.4-c), 7.5-b). The computed image is displayed on Figure
8.1-d).

Test 4. Image of a metal box, see Figures 7.4-e), 7.5-b). The computed image is displayed on Figure
8.1-e).

Since we had five pieces of data in our possession, we have also imaged two more cases: plastic cylinder
and metal box, both buried in soil. Dielectric constants were not measured when the data were collected.
Therefore, we have compared computed values of dielectric constants with those listed in Tables [45, 46].
Note that these tables often provide a range of values rather than exact numbers. Soil was dry sand, where
the dielectric constant varies between 3 and 5 [45]. Denote εr,publ(target) the published value of the dielectric
constant for non-metallic targets. By (7.2) we regard εr,publ(target)∈ [10, 30] for metals. The case of bush
(vegetation) is not listed in [45, 46]. Hence, we took εr,publ(target) for vegetation from Figures 2,3 of [20].
Table 8.1 summarizes our results.

Conclusions.
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Target a/b R εr(bckgr) εr,comp(target) εr,publ(target)
Fig. 6-a) n/a 3.8 1 3.8 4, Fig. 6-a)
bush a 6.4 1 6.4 ∈ [3, 20], see [20]
wood stake a 3.8 1 3.8 ∈ [2, 6], see [45]
metal box b 3.8 ∈ [3, 5], see [45] ∈ [11.4, 19] ∈ [10, 30], see (7.2)
metal cylinder b 4.3 ∈ [3, 5], see [45] ∈ [12.9, 21.4] ∈ [10, 30], see (7.2)
plastic cylinder b 0.28 ∈ [3, 5], see [45] ∈ [0.84, 1.4] 1.2, see [46]

Table 8.1: Blindly computed values R for five targets, εr,comp(target):= R ·εr(bckgr). Here “a/b” means “above/below
the ground”. For “a” and “b” the background is air and dry sand, respectively.

Since dielectric constants were not measured in experiments, then the maximum what can be done is
to compare computational results with tabulated values. Therefore, the most important conclusion from
Table 8.1 is that blindly computed dielectric constants of targets fall well within tabulated limits. This was
achieved regardless on a severely limited information content, significant discrepancies between experimental
and computationally simulated data and some other significant uncertainties (subsection 7.2). Naturally,
these factors have resulted in a large and yet unknown noisy component in the data which we have used as
an input for our algorithm. Thus, we conclude that these results point towards both the adequacy of our
mathematical model and a high degree of robustness of our numerical method.

Detailed studies of larger experimental data sets are necessary to figure out accuracy boundaries of our
technique for this specific application. The authors hope to do so in the future.
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a) b)

c) d)

Fig. 8.1: Resulting images. a) The computed image for computationally simulated data (Test 1). Solid and dashed
lines are true and computed images, respectively. Recall that we are interested in accurate imaging of target/background
contrasts rather than in accurate imaging of locations of targets (subsection 7.1). The computed target/background
contrast is 3.8, which is 5% error. b) The computed image of the bush, see Figure 7.4-a). Here R = εr (x) = 8.5,
which is in the range of tabulated values εr ∈ [3, 20] [20]. c) Solid line is the Laplace transform of the pre-processed
data for b). Dashed line is the function w (0, s) − w0 (0, s) , where w (0, s) is the solution of the problem (2.8), (2.9)
with εr (x) := Rcomp (x) of b). d) The computed image of the wood stake, see Figure 7.4-c). Here R = 3.8, which is
in the range of tabulated values εr ∈ [2, 6] , see [45]. e) The computed image of the metal box, R = 3.8.
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