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Abstract

We perform a numerical study of the breakdown of hyperbolicity of quasi-periodic
attractors in the dissipative standard map. In this study, we compute the quasi-
periodic attractors together with their stable and tangent bundles. We observe that
the loss of normal hyperbolicity comes from the collision of the stable and tangent
bundles of the quasi-periodic attractor. We provide numerical evidence that, close to
the breakdown, the angle between the invariant bundles has a linear behavior with
respect to the perturbing parameter. This linear behavior agrees with the universal
asymptotics of the general framework of breakdown of hyperbolic quasi-periodic tori
in skew product systems.
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1 Introduction

The existence of quasi-periodic orbits for the dissipative standard map can
be established by several results in the literature (see for example [BHS96,
CCdlL11a]). Whenever the existence proofs are constructive they give rise to
very efficient numerical algorithms that allow us to continue the quasi-periodic
orbits and to explore their breakdown of analyticity [CC10]. It is known that
in the dissipative setting quasi-periodic attractors lie in normally attracting
manifolds [CCdlL11b]. The goal of this paper is to study numerically the
breakdown of hyperbolicity and the scaling relations of hyperbolicity that are
present close to the breakdown.

The proof of existence of quasi-periodic attractors in [CCdlL11a] is based on an ap-
proximate reducibility method that allows to write a KAM theorem in an a-posteriori
format. The a-posteriori format of the KAM theorem means that if, for a fixed Diophan-
tine number ω, there is parametrization (K, µ) of the quasi-periodic orbit that satisfies
very approximately an invariance equation and certain smoothness and non-degeneracy
conditions, then there exists a nearby true solution corresponding to a quasi-periodic at-
tractor. Moreover, the parameterization of the invariant torus is analytic whenever the
map is analytic. The analyticity of the invariant torus also holds when the approximate
solution (K, µ) is not analytic but only belongs to a Sobolev space Hs with a Sobolev
exponent s large enough.

The proof of this a-posteriori theorem is constructive and allows to produce very
effective numerical algorithms to continue the parameterization of the quasi-periodic orbits
in the perturvative parameter ε of the dissipative standard map. The technique at hand
also justifies a numerically implementable criterion for the breakdown of analyticity of the
quasi-periodic orbit as the Sobolev norms of the parameterization K blow up to infinity as
the continuing parameter ε approaches the value where the quasi-periodic solution breaks
down [CCdlL11a, CdlL10]. The breakdown of quasi-periodic solutions via this mechanism
has been explored numerically by one of the authors of the present work and A. Celletti
in [CC10].

In [CCdlL11a], the authors note that the approximate reducibility method in the
dissipative setting also allows to find changes of variables that make the linear cocycle
around the quasi-periodic orbit reducible, see [Fig11]. The geometric meaning of this
reducibility is that we can construct a linear coordinate system around the torus in which
there is a contracting space in the perpendicular direction. Since the whole construction
is done explicitly the procedure can be implemented producing algorithms that also allow
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us to compute the tangent and normal bundles to the parameterization (K, µ).
On the other hand, the construction of the parameterization and parameter (K, µ),

produces a smooth invariant torus. Since the change of variables that makes the linear
cocycle around the torus is reducible, we obtain that the tangent and normal bundles are
as smooth as the invariant torus. Moreover, Fenichel theory [Fen74, Fen77] states that,
for more general maps, the smoothness of the invariant bundles depends on the ratio of
the Lyapunov exponents. However, for the case of the dissipative standard map, the Lya-
punov multipliers associated with the invariant bundles remain constant. Therefore, the
breakdown of hyperbolicity can only occur when the invariant directions of the transversal
and tangential dynamics come close to each other. We observe that the collision of these
bundles is nonsmooth, i.e., the minimum distance between them approaches to zero while
the maximum distance stays away from zero.

In the present work we use the reducibility construction presented in Section 2.2,
to compute numerically the tangent and normal bundles to a quasi-periodic orbit of the
dissipative standard map. This technique allows us to continue the invariant torus very
close to the breakdown. In this way, we are able to approximate the smoothness of the
torus and of the map conjugating the dynamics on the torus to a rigid rotation. We
also compute the angle between the two bundles and observe numerically that as the
perturbing parameter ε approaches the breakdown of analyticity, the angle between the
bundles goes linearly to zero. We also observe that the minimum distance of the invariant
bundles near the breakdown is reached always at the same point of the invariant torus.

The linear behavior of the minimum distance was first observed in the pioneering
works [HdlL06a, HdlL07] in the context of quasi-periodic skew products. In [Fig11, FH11]
the authors study the relation between these asymptotics and the possible breakdown
scenarios in the context of quasi-periodic skew products. The fact that the minimum is
reached always at the same point agrees with the theoretical results of [BS08], where
the authors explore this type of collision between invariant bundles in the context of
Schrödinger operators in the perturbative regime.

2 Setup of the problem

We consider the dissipative standard map defined on the cylinder M = T × R given by
the equations fµ,ε(xn, yn) = (xn+1, yn+1) and

yn+1 = λyn + µ + ε V ′(xn)

xn+1 = xn + yn+1 , (2.1)

where 0 < λ < 1 is fixed, and µ, ε are parameters.
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As it is noted in [CCdlL11a], the map (2.1) is a conformally symplectic system. Let
Ω = dy ∧ dx be a symplectic form on the cylinder, then the map fµ,ε satisfies that

f ∗
µ,εΩ = λΩ. (2.2)

For certain values of the parameter µ it is known that conformally symplectic maps of
the form (2.2) have solutions that are quasi-periodic with a Diophantine rotation number
ω (see for instance [BHS96, CL09]).

2.1 Quasi-periodic orbits

In this paper, we will approximate quasi-periodic orbits by computing their parameteri-
zation K defined as folllows.

Definition 2.1 For a Diophantine number ω satisfying

|ωq − p| ≥ ν|q|−τ , p ∈ Z , q ∈ Z\{0} , (2.3)

the parameterization pair (K, µ) will be a function K : T→ T×R and µ ∈ R solving the
invariance equation

fµ,ε ◦K(θ) = K(θ + ω). (2.4)

In [CCdlL11a], the authors prove an a-posteriori theorem by means of a Newton
iteration in the spirit of Nash-Noser theory [Zeh75, Zeh76, CdlL10]. The Newton iteration
starts form an approximate solution (K, µ) satisfying some non-degeneracy conditions and
satisfying the invariance equation (2.4) very approximately. Namely, the function

e(θ) = fµ,ε ◦K(θ)−K(θ + ω) (2.5)

is small. Starting from the approximate solution (K, µ), we implement a Newton step
K + ∆ and µ + σ satisfying the Newton step equation

Dfµ(K(θ))∆(θ)−∆(θ + ω) + σ · ∂µfµ(θ) = −e(θ). (2.6)

If we are able to solve for ∆ and σ from equation (2.6) then the new norm of the error,

ẽ(θ) = fµ+σ,ε ◦ (K(θ) + ∆(θ))− (K(θ + ω) + ∆(θ + ω)),

of the new solution will be comparable to the square of the norm of the original error,
i.e.,

‖ẽ‖ ≈ ‖e‖2. (2.7)
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The problem that one runs into is that solving for ∆ and σ from (2.6), involves solving
difference equations with non-constant coeficients. As it is standard in Nash-Moser theory,
we will not try to solve equation (2.6) directly, but we will introduce approximate reduction
of Dfµ(K(θ)) to an upper triangular matrix (see equation (2.11)) that will allow us to
solve for ∆ and σ from the Newton step equation (2.6) approximately while keeping the
quadratic character of the iteration (2.7).

Remark 2.2 Let us identify some functions related to the invariant torus. We summarize
the standard notation (see for instance [OP08]) for completeness. We will consider the
function R : T→ R such that the invariant circle K = K(T) is the graph of R, i.e.,

K = {(θ, y) ∈ T× R : y = R(θ)}.

We will also consider the advance map g : T→ T defined by

fµ,ε(θ, R(θ)) = (g(θ), R ◦ g(θ)).

Then, the function K defined by the invariance equation (2.4) is the hull map parametriz-
ing the invariant torus. In particular if we consider the two components of K : T→ T×R,

K(θ) = (K1(θ), K2(θ)),

then K1 conjugates the advance map g to a rigid rotation by ω

g ◦K1(θ) = K1(θ + ω).

Later in the paper, when we explore the regularity of K1, it will be more convenient to
consider the periodic function

u(θ) = K1(θ)− θ. (2.8)

For convenience we will denote this function u as the conjugacy. We also remark that
both functions K1 and u are a byproduct of the computation of the parameterization K.

2.2 Reducibility of the cocycle

The conformally symplectic character of (2.1) then provides the existence of a reduction
of the dynamics around (K, µ) solving the invariance equation

fµ,ε ◦K(θ) = K(θ + ω). (2.9)

That is, we have that the matrix

M(θ) = [DK(θ)|J−1DK(θ)N(θ)] (2.10)

5



where

J =

(
0 1
−1 0

)
and N(θ) = (DK(θ)T DK(θ))−1,

reduces the derivative of (2.1) around K to an upper triangular matrix

Dfµ,ε(K(θ))M(θ) = M(θ + ω)

(
1 S(θ)
0 λ

)
. (2.11)

Furthermore, if (K, µ) only satisfies the invariance equation approximately in the sense
of (2.5), then the reduction (2.11) is valid approximately, i.e.

Dfµ,ε(K(θ))M(θ) = M(θ + ω)

(
1 S(θ)
0 λ

)
+ O(e). (2.12)

Remark 2.3 See [CCdlL11a] for details about this reduction and [dlLGJV05] for a si-
milar reduction in the symplectic setting.

Equation (2.12) allows us to introduce a quasi-Newton method to find the Newton
step (∆, σ) by means of solving for W (θ) = M(θ)∆(θ) and σ from

(
1 S(θ)
0 λ

)
W (θ)−W (θ + ω) = −M−1(θ + ω)[E(θ) + ∂µfµ(θ)σ]. (2.13)

Using this new form of the Newton step equation allows us to obtain estimates for the
existence theorem and to implement an efficient method for the computation and contin-
uation of quasi-periodic attractors for the dissipative standard map.

Remark 2.4 To solve for W : T → T × R form (2.13) we separate the function in two
components W = (W1, W2). If we denote by η(θ, σ) = −M−1(θ +ω)[E(θ)+∂µfµ(θ)σ] and
consider the components of η = (η1, η2), then we obtain the equivalent set of equations for
the components W1,2 and η1,2,

W1(θ)−W1(θ + ω) = η1(θ, σ)− S(θ)W2(θ),

λW2(θ)−W2(θ + ω) = η2(θ, σ).
(2.14)

The difference equations for W1,2 in (2.14) are usually called cohomology equations in the
literature. The second equation has a solution W2 for any ω and |λ| 6= 1. On the other
hand, the first eqution involves small divisors (see [dlL01]) and has a solution W1 when
ω satisfies (2.3) and ∫

T

η1(θ, σ)− S(θ)W2(θ)dθ = 0.
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To compute the solution W numerically it is useful to notice that the the equations
for W1,2 in (2.14) are diagonal in Fourier space. Let us write the functions in terms of
Fourier coefficients, i.e., W1,2(θ) =

∑
k∈Z

(W1,2)ke
2πikθ, η1,2(θ, σ) =

∑
k∈Z

(η1,2(σ))k e2πikθ,
and S(θ) =

∑
k∈Z

Ske
2πikθ. In Fourier space, the equation for W2 in (2.14) can be solved

for any σ,

(W2)k =
(η2(σ))k

λ− e2πikω
.

Note that the solution W2 depends on σ, i.e., W2 = W2(σ). Then, the solution W2(σ) can
be used to solve for W1,

(W1)k =
(η1(σ))k − (S ·W2(σ))k

1− e2πikω
,

by choosing a σ∗ so that (η1(σ
∗))0 − (S ·W2(σ

∗))0 = 0 and obtain W1.
Therefore, if we use the FFT to solve for the Newton step (M · W, σ∗), then the

methods are O(N log N) operations and O(N) storage, where N is the number of Fourier
modes used to discretize the functions.

To compute the invariant bundles of the torus we notice that a further change of vari-
ables can be performed. Given an invariant torus (K, µ), its stable and tangent bundles,
Es(θ) and Ec(θ), satisfy the reducibility equation

Dfµ,ε(K(θ))P (θ) = P (θ + ω)

(
1 0
0 λ

)
, (2.15)

where
P (θ) = [Ec(θ)|Es(θ)]. (2.16)

Since the matrix-valued map Dfµ,ε(K(θ)) can be reduced, via the linear change of
variables M(θ) in (2.10), to the upper diagonal matrix-valued map

Ŝ(θ) =

(
1 S(θ)
0 λ

)
,

it is enough to reduce Ŝ(θ) to the diagonal matrix. We reduce Ŝ(θ) by finding a matrix
P̂ (θ) such that

(
1 S(θ)
0 λ

)
P̂ (θ) = P̂ (θ + ω)

(
1 0
0 λ

)
. (2.17)

Remark 2.5 We are able to find such a P̂ (θ) since the system is dissipative. In this case
the dissipative character is given by 0 < λ < 1. In the case of expanding maps, i.e. λ > 1,
such a reduction is also possible, but the reduction breaks down in the conservative case
(λ = 1).
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In order to solve for P̂ (θ) we will separate the matrix in two components

P̂ (θ) = [V1(θ)|V2(θ)]. (2.18)

Solving the equation (2.17) for V1(θ), and V2(θ) we obtain the following

V1 =

(
1
0

)
and V2 =

(
v2(θ)

1

)
,

where the function v2(θ) will have to satisfy the cohomology equation

v2(θ)− λv2(θ + ω) = S(θ). (2.19)

Remark 2.6 Equation (2.19) has a solution for every ω and |λ| 6= 1. In terms of the
Fourier coefficients, if v2(θ) =

∑
k∈Z

v2,ke
2πikθ and S(θ) =

∑
k∈Z

Ske
2πikθ, then

v2,k =
Sk

1− λe2πikω
.

If λ < 1, the function v2(θ) can also be computed by evaluating the following sum

v2(θ) =
∞∑

j=0

λjS(θ + jω). (2.20)

¿From Lusin’s theorem and Poincaré recurrence theorem it follows that if S(θ) is measur-
able, then the sum (2.20) always converges to a measurable function v2(θ). Furthermore,
since (2.19) does not involve solving a small divisors problem (|λ| 6= 1), then the solution
v2(θ) is as smooth as the function S(θ).

Finally, we recover the matrix-valued map P (θ) as M(θ) · P̂ (θ) and, following [Fig11],
we can compute the minimum angle between the stable and tangent bundle around K(θ)
using the parameterization of the stable and tangent bundles given by the columns of
P (θ).

3 Breakdown of hyperbolicity

The fact that the matrix P (θ) in (2.15) exists implies that we can find a frame where the
dynamics are given by a diagonal matrix with 1 and λ as its Lyapunov multipliers. In
fact, for every k > 0

Dfk
µ,ε ◦K(θ) = P (θ + kω)

(
1 0
0 λk

)
P−1(θ). (3.21)
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where P (θ) is the same matrix in (2.15). In particular, this tells us that for every θ ∈ T,
there is a continuous decomposition of the tangent space ofM at K(θ)

TK(θ)M = Ec
K(θ) ⊕Es

K(θ) (3.22)

with Ec
K(θ) = Range(DK(θ)) and Es

K(θ) the corresponding eigenspace to the eigenvalues

λ. Therefore, the splitting (3.22) is continuous and invariant under Dfµ,ε and there is a
constant C such that

C−1λk|v| ≤ |Dfk
µ,ε ◦K(θ)v| ≤ Cλk|v| if and only if v ∈ Es

K(θ) (3.23)

and

C−1|v| ≤ |Dfk
µ,ε ◦K(θ)v| ≤ C|v| if and only if v ∈ Ec

K(θ). (3.24)

Therefore K = K(T) is a Normally Hyperbolic Invariant Manifold. Moreover, we can
verify that K is a Cr (one dimensional) manifold for any r ∈ N. Indeed, this is due to the
fact that the tangent space (3.22) has two different growth rates ρc = 1 and ρs = λ (using
the terminology in [Fen74, Fen77]). Thus, the regularity theory in [Fen77] implies that K
should be as regular as the map fµ,ε which is Cr, ∀r ∈ N.

Now since our curve K is Cr, one dimensional and since ω satisfies the Diophantine
condition (2.3), we can use the powerful results of [Her79, SK89, KO89] to verify that
the map, say u, conjugating the dynamics in K to a rigid rotation, is in Cr−τ−δ for a
small δ > 0. Moreover, the dissipative standard map fµ,ε is not only Cr but also analytic.
Therefore, by the bootstrap of analyticity result (Theorem 44 in [CCdlL11a]), we conclude
that the conjugacy u (see equation (2.8)) is an analytic function and remains analytic up
to the breakdown. Since the computation of the matrix-valued map P is done by analytic
changes of variables, the tangent and stable bundles are also anaylitic.

The Lyapunov multipliers (1 and λ) are constant along the family of invariant tori.
Hence, the only mechanism in which the hyperbolicity can break down is if the angle
between the bundles goes to zero and the bundles collide. Therefore, we explore the
breakdown of hyperbolicity by monitoring the minimum angle in θ between the stable
and tangent bundles and also the value of θ, θmin, and the value xmin = K1(θmin), where
that minimum angle is reached. We remark that measuring this angle numerically is
not difficult once we have computed parameterized representations of the bundles. The
algorithm to compute such parameterizations is discussed in the following section.

4 An algorithm to compute (K, µ) with stable and

tangent bundles

An algorithm to find an approximation to (K, µ) together with its stable and tangent
bundles comes from solving the simplified Newton step equation (2.13) and then using the
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computation of the function S(θ) to find a matrix P (θ) that satisfies the reduction (2.17).
As we mentioned above the solution P (θ) is constructed by first solving the equation (2.19)
and then performing the product M(θ) · P̂ (θ). Equation (2.19) is solved numerically by
means of an FFT.

An algorithm to compute (K, µ), with a desired accuracy tol, together with its stable
and tangent bundles is described below. We start from an approximation to K and µ

stored on a set of N + 1 points and compute ∆ and σ from the approximate reduction
obtained from the N points representing K.

Algorithm 4.1 1) Compute the error E = fµ,ε ◦ K − K ◦ Tω, where K ◦ Tω is the
translation by ω of K.

If ‖E‖ < tol, stop the algorithm and the pair (K, µ) is the approximation of the
invariant torus with the desired accuracy.

2) Compute the derivative α = DK.

3) From α construct the function N = [αT α]−1.

4) Construct the matrix M = [α, J−1 ◦KαN ].

5) From M construct its translated inverse. Call it β, then multiply it times the error
E. I.e., β = M−1 ◦ Tω and Ẽ = βE.

7) From α, N and K, construct the functions B, S, and A. Namely, B = αN S =
(B ◦ Tω)T Dfµ,ε ◦KJ−1B, and A = βDµ ◦K.

8) From S, construct the function v1 solving from v1 − λv1 ◦ Tω = S.

9) Construct Ŵ 0
2 and Ŵ2 by solving λW 0

2 −W 0
2 ◦Tω = −Ẽ2 and λŴ2−Ŵ2 ◦Tω = −Ã2.

10) Find σ so that 〈Ẽ1 + γ0〉 = 〈γ̂ + Ã1〉σ.

11) Compute W1 by solving the small divisors problem

W1 −W1 ◦ Tω = −Ẽ1 − γ0 + [SŴ2 + Ã1]σ.

12) K ← K + MW

µ← µ + σ .

13) If ‖MW‖ < tol, stop the algorithm. The pair (K, µ) is the approximation of the
invariant torus with the desired accuracy. If ‖MW‖ ≥ tol, repeat the process starting
from step 1).
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Once (K, µ) are computed via the previous iterations, the parameterization of the
invariant bundles is computed following the next steps:

14) v2 solves v2 − λv2 ◦ Tω = S.

15) With v2 construct P̂ as in (2.18).

16) Compute the parameterization P (θ) of the stable and tangent bundles as M(θ)·P̂ (θ).

We notice that all the steps in the algorithm are multiplications, computation of
derivatives, and solving difference equations with constant coefficients. All of these oper-
ations can be performed by means of FFT. In such a case, the total cost of computing a
new approximate solution (K + ∆, µ + σ) together with its stable and tangent bundle is
O(N log N) operations. In the following section we show some implementations of Algo-
rithm 4.1 that we performed to approximate and continue the invariant circle K(T), the
parameter µ and the tangent and stable bundle for the dissipative standard map (2.1)
close to the breakdown.

4.1 Numerical results on the breakdown of hyperbolicity

We implemented Algorithm 4.1 in the case of the dissipative standard map (2.1) with
V (x) = − 1

(2π)2
cos(2πx) and for several values of the dissipative constant λ. With the help

of the previous algorithm, we studied the breakdown of analycity of the invariant tori and
also the behavior of their invariant stable and tangent bundles near the breakdown. The
continuation is done as follows: First, we fix the value of the parameter λ with modulus
less than 1 and the Diophantine rotation number ω (the golden mean

√
5−1
2

). For ε = 0
we have that the invariant torus of (2.1) is K(θ) = (θ, ω) and µ = (1 − λ)ω. Then, we
perform a continuation, with respect to the parameter ε, to study the breakdown of the
invariant torus. At every step of the continuation, we compute (K, µ) using the Algorithm
4.1 together with its invariant stable and tangent bundles. At each step we also compute
the minimum distance between these invariant bundles and the value of the angle θ and
the (x, y) coordinates of the torus where the minimum distance is reached.

4.1.1 Collision between invariant bundles close to the breakdown

Figure 1 shows the evolution of the invariant bundles for λ = 0.4 with respect diferent
values of ε. Note that in this case the breakdown value of ε is near 0.9808192038, where
we can observe that the invariant bundles collide. Figure 1 also shows a very remarkable
fact, the collision between this invariant bundles is non-uniform. As the parameter ε

approaches the breakdown, the minimum distance between the bundles goes to zero,
while the maximum distance stays away from zero. Another important observation in this
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Figure 1: Stable (dashed line) and tangent (solid line) bundle of the invariant tori for
λ = 0.4 and for different values of ε. In the horizontal axis we plot the x coordinate of
the invariant torus and in the vertical axis we plot the angle α between the bundle and
the {x > 0} semiaxis. a) ε = 0.5, b) ε = 0.75, c) ε = 0.9502, d) ε = 0.98081920384.
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Figure 2: Minimum distance between the bundles near the breakdown for λ = 0.4. In the
horizontal axis we plot the parameter ε and in the vertical axis the minimum distance
between the invariant bundles.

figure is that, for values of ε close to the breakdown, the x coordinate of the invariant
torus where the minimum distance is reached is continuous with respect ε and has a limit
when the breakdown occurs.

Remark 4.2 We note that at the breakdown value, whenever there is a point x(θ) where
the invariant bundles collide, then the bundles will collide on every point of the orbit
x(θ + kω) for k ∈ Z. A similar phenomenon was observed in the context of the creation
of Strange Nonchaotic Attractors in [BS08, Bje09, Jäg09].

4.1.2 Asymptotic behavior close to the breakdown

We also explored the asymptotic behavior of the minimum distance of the invariant bun-
dles close to the breakdown. As we observe in figure 2, the minimum distance behaves
asymptotically like a straight line.

Remark 4.3 In the context of skew products, linear asymptotics of the minimum dis-
tance between the angles close to the breakdown of invariant bundles have been observed
[HdlL06b, HdlL06a, HdlL07]. In [FH10], one of the authors of the present work and A.
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Haro observe the similar linear asymptotics and prove the existence of the fiberwise hyper-
bolic torus using computer assisted methods. A rigorous proof for the linear asymptotics
appears in [BS08] for a particular case of skew products.

We verified numerically that

i) The asymptotics of the minimum distance between the invariant bundles is linear.

ii) The minimum distance is reached at a single point (xmin) for several values of λ.

In order to verify i) and ii), we have considered a grid of 1170 equidistant points with λ

in the interval [0.05, 0.95]. For each of the values in the grid, we have approximated both
the minimum distance and the corresponding angle.

Let D be the minimum distance between the tangent and the stable bundle. For every
λ, we have computed qualitative measures of the linear behavior D as follows. If for small
D and ε inside an interval, we find that the function D(ε) is very close to linear, then we
approximate the linear model

D(ε) = a(ε− b) (4.25)

and compute the coefficients a and b by linear fitting. We note that the fitted value of b

is a prediction of the value of the parameter ε where the breakdown occurs.
In figure 3, we show the values of b and a as functions of λ with λ inside the inverval

[0.05, 0.95]. Figure 4, shows the value of the angle xmin(λ) as which the minimum distance
is reached from every λ in our grid. We remark that xmin(λ) appears to be a smooth
function of λ for almost every λ, but has a corner close to λ = 0.4958. In figure 3 we
notice that close to the point of discotnuity of xmin(λ) there is a change in the behavior
of the coefficient a(λ).

4.1.3 Regularity of the torus at the breakdown

We have also explored the regularity of the parameterization of the invariant torus at
the breakdown. We remark that our methods allow us to approximate the parameteri-
zation K(θ) and the conjugacy u(θ) with ≈ 106 Fourier modes (see figure 5). Using the
CLP method [dlLP08, dlLP02, AdlLP05, OP08], we approximated the regularity of the
functions.

Remark 4.4 The CLP method is based on the Littlewood-Paley theorem. A periodic func-
tion f on the torus is Cr, r ≥ 0, with its rth derivative α-Hölder continuous if and only
if for every η ≥ 0 there exists a constant C such that for any t > 0

∥∥∥∥
(

∂

∂t

)η

e−t
√
−∆f(θ)

∥∥∥∥
L∞(T)

≤ Ctr+α−η.
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Figure 3: In a) we show the coefficient a obtained from the linear fitting of (4.25) for
different values of λ. In b) we show the coefficient b obtained form the linear fitting of
(4.25) for different values of λ.
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Figure 4: For several values of λ, the x coordinate of the invariant torus where the minimun
distance between the invariant bundles is achieved.
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Note that the linear operator
(

∂
∂t

)η
e−t

√
−∆ is diagonal in the Fourier base. Then, the CLP

method is based on the estimation of the quantity r + α by fitting. See the previous cited
works for more details on the technical implementation of this method.

We have obtained that, for every value of λ in (0, 1), the parameterization u(θ) is
≃ 0.6 Hölder continuous, and the graph of the invariant curve (x, R(x)) is differentiable
with derivative ≃ 0.1 Hölder continuous. Figure 6 shows the conjugacy u in (2.8) of the
invariant torus with respect to θ and the invariant torus in the phase space near the
breakdown when λ = 0.4. Note that the conjugacy u is less regular that the graph R of
the invariant curve.

Remark 4.5 The regularity of the conjugacy and parameterization is given up to one
digit of precision. This is due to the fact that our method is still not close enough to the
breakdown to predict the regularity up to higher accuracy.

Remark 4.6 In figure 5 a) we can obvserve that it appears some periodicity on the peaks
of the Fourier coefficients. See also figure 7. This is predicted by the renormalization theory
of dissipative maps and their relation with the limit case λ = 0, the circle maps. For more
details see [ROSS82, ORSS83] and references therein.
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Figure 5: Modulus of the Fourier coefficients of the invariant torus for the parameter
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µ = 0.36661891732. a) Fourier coefficients uk of the parameterization u(θ). Note that the
decay is linear for Fourier coefficients less than k ≈ 104 and that is nonlinear for bigger
k. This reflects that the invariant curve is not at the breakdown, but close to it (at a
distance ≈ 10−4). b) Fourier coefficients of the graph of the torus.
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[FH10] J.-Ll. Figueras and À. Haro. Reliable computation of robust response tori on
the verge of breakdown. http://www.ma.utexas.edu/mp arc, 10-185, 2010.
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[HdlL06a] À. Haro and R. de la Llave. Manifolds on the verge of a hyperbolicity break-
down. Chaos, 16(1):013120, 8, 2006.
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[Jäg09] T. H. Jäger. The creation of strange non-chaotic attractors in non-smooth
saddle-node bifurcations. Mem. Amer. Math. Soc., 201(945):vi+106, 2009.

[KO89] Y. Katznelson and D. Ornstein. The differentiability of the conjugation of
certain diffeomorphisms of the circle. Ergodic Theory Dynamical Systems,
9(4):643–680, 1989.

[OP08] A. Olvera and N. P. Petrov. Regularity properties of critical invariant circles
of twist maps, and their universality. SIAM J. Appl. Dyn. Syst., 7(3):962–
987, 2008.

20



[ORSS83] S. Ostlund, D. Rand, D. Sethna, and E. Siggia. Universal properties of the
transition from quasi-periodicity to chaos in dissipative systems. Physica D:
Nonlinear Phenomena, 8(3):303–342, 1983.

[ROSS82] D. Rand, S. Ostlund, J. Sethna, and E.D. Siggia. Universal transition from
quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett., 49:132–135,
Jul 1982.

[SK89] Ya. G. Sinai and K. M. Khanin. Smoothness of conjugacies of diffeomor-
phisms of the circle with rotations. Uspekhi Mat. Nauk, 44(1(265)):57–82,
247, 1989. English translation: Russian Math. Surveys, 44(1):69–99, 1989.

[Zeh75] E. Zehnder. Generalized implicit function theorems with applications to some
small divisor problems. I. Comm. Pure Appl. Math., 28:91–140, 1975.

[Zeh76] E. Zehnder. Generalized implicit function theorems with applications to some
small divisor problems. II. Comm. Pure Appl. Math., 29(1):49–111, 1976.

21


