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The volumes under review (cf. MR 2004i:28001 and MR 2005f:28001)
complete the English translations of the first six “Books” that are the core
of the author’s Éléments de mathématique series:

Book I: Theory of Sets
Book II: Algebra (Vol. I, Chs. 1–3; Vol. II, Chs. 4–7)
Book III: General Topology (Vol. I, Chs. 1–4; Vol. II, Chs. 5–10)
Book IV: Functions of a Real Variable
Book V: Topological Vector Spaces
Book VI: Integration (Vol. I, Chs. 1–6; Vol. II, Chs. 7–9)

The 6-Book set will be referred to as the “core” of the series; it serves
as the foundation for the Books that follow. Their titles are abbreviated, for
convenient reference, as S, A, GT, FRV, TVS and INT. The corresponding
French versions are abbreviated E, A, TG, FVR, EVT and INT (for Théorie

des ensembles, Algèbre, Topologie générale, Fonctions d’une variable réelle,
Espaces vectoriels topologiques, and Intégration).

At the end of S there is a “Summary of Results”, abbreviated S, R; since
S, IV abbreviates Chapter IV of S, we may think of S, R as the concluding
chapter of S. It is a succinct summary of the definitions, symbols and results
(stated without proof) deduced in S from the axioms assumed there, that
are to serve as the set-theoretical foundation for subsequent Books. It is, in
effect, a primer for the language in which the rest of the series is written.

Claude Chevalley: “It took us about four years to bring out the first
fascicle, the one on results in the theory of sets. The writing of the complete
text on the theory of sets had been put back to later. The first fascicle had
been published so that readers would understand the ideas of the theory
that would be employed constantly by Bourbaki.” ([DG], p. 20).

None of the other 5 Books of the “core” includes a “Summary of Re-
sults”, although a partial Summary for Topologie générale was published
as a separate fascicle (in 1953, decades before the publication of the defini-
tive ‘bound edition’ of Vol. 2 of TG); and a Summary for Espaces vectoriels

topologiques was published in 1955, based on the first edition of all five
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chapters, rendered obsolete by the changes in EVT. In a sense, this leaves
these Books ‘open-ended’, subject to revision or even to the addition of new
chapters, whereas Book I is intended to be immutable.

Books that have followed: Algèbre commutative (AC), Théories spec-

trales (TS), Variétés différentielles et analytiques (VAR), Groupes et algèbres

de Lie (LIE).
There is a summary of results VAR, R, published (in 1971) in two ‘vol-

umes’ (Fascs. XXXIII and XXXVI) without an antecedent VAR, that pro-
vided provisional references for use in existing chapters of LIE (as indicated
in the footnote on the first page of LIE, Ch. II, published in 1972).

Is the “core” a textbook? Yes. It is a textbook for self-study, not a
textbook for a course in the usual sense.

From the “To the Reader” reproduced at the beginning of each bound
volume, “The Elements of Mathematics series takes up mathematics at their
beginning, and gives complete proofs.” And later, “ . . . every statement in the
text assumes as known only those results which have already been discussed
in the same chapter, or in the previous chapters . . . ” (of the same or earlier
Books).

Pierre Cartier: “You can think of the first books of Bourbaki as an
encyclopedia. If you consider it as a textbook, it’s a disaster ([PC], p. 24).
. . . When I was a student, every time that Bourbaki published a new book,
I would just buy it or borrow it from the library, and learn it. For me, for
people in my generation, it was a textbook. But the misunderstanding is
that it should be a textbook for everybody ([PC], p. 25).”

Jean Dieudonné: “ . . . [we wanted to produce] a demonstrative text,
from beginning to end.” ([D1], p. 138)

Self-contained (no references to external sources), essentially complete
proofs (L. Schwartz and J.-P. Serre in [PP]). Minor steps are omitted from
proofs, presumably to maintain the flow of the exposition and to engage the
reader’s participation. Clues to the author’s mindset may be gleaned from
the paragraph “How detailed should a proof be?” in Dieudonné’s contribu-
tion to How to write mathematics ([SHSD], pp. 63–64]): “For textbooks . . .

all the details must be filled in with only the exception of the completely
trivial ones. In my opinion, a textbook where a lot of proofs are ‘left to
the reader’ or relegated to exercises, is entirely useless for a beginner.” An
opinion of particular weight, as its author was responsible for the ‘final draft’
of the Bourbaki fascicles ([PC], p. 28); I suspect that a large part of the task
was to prune out omissible steps. A grain of salt: the meaning of ‘com-
pletely trivial’ must be judged through the eyes of the beholder. {Some of
my own experiences in navigating such gaps while studying Intégration are
documented in “intnotes.pdf”, posted at the University of Texas web site for
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archiving mathematical documents (www.ma.utexas.edu/mp–arc/) as item
08–193 in the folder for 2008.}

Target readership and prerequisites

From To the Reader : “In principle, it [the ‘Elements’ series] requires
no particular knowledge of mathematics on the reader’s part, but only a
certain familiarity with mathematical reasoning and a certain capacity for
abstract thought. Nevertheless, it is directed especially to those who have a
good knowledge of at least the content of the first year or two of a university
mathematics course.”

Here, “university” must be given its meaning in French higher edu-
cation. According to Dieudonné ([PP]) the work is written for readers at
least at the level of the beginning of the ‘third cycle’, having had at least
4 years of university study, for “future Doctors”; judging from the contents
of Dixmier’s textbooks [JD] for the two years of the ‘first cycle’ (more de-
manding than the first two undergraduate years of any university of my
experience), I would guess that the student Dieudonné describes is at the
threshold of a doctoral thesis. On the same wave length, Pierre Cartier
(in 1997): “The first six books of Bourbaki comprise the basic background
knowledge of a modern graduate student.” ([PC], p. 24, col. 3). Yet, strictly
speaking, a student who has gone through the first cycle as conceived in
Dixmier’s course qualifies for the prerequisites of To the Reader.

The design of the exposition makes it possible for a reader to go directly
to the topic targeted for study, and work through earlier results as needed,
guided by the frequent back-references and the index of terminology.

The unique procedure by which the work is written is described in detail
by Dieudonné ([D1], p. 141 and [MM], p. 57), Chevalley ([DG], p. 20, col. 1),
Cartier ([PC], p. 23, col. 3), and, in [PP], by all of the above plus Cartan
and Samuel; the benefits of the intense self-criticism it entails are evident in
the advances made in successive editions of chapters of the Books.

Reflections on the author’s objectives

To some extent, this entails attempting to read the author’s mind . . .

but the author has left many clues.

1. At the outset (1934–35) the objective was to write an updated Traité

d’analyse to replace the outdated books then in use (A. Weil, in [PP]).
Chevalley: “The project, at that time, was extremely naive: the basis for
teaching the differential calculus was Goursat’s Traité, very insufficient on
a number of points. The idea was to write another to replace it. This, we
thought, would be a matter of one or two years. Five years later, we had
still published nothing.” ([DG], p. 19).
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2. Somewhere along the way, the goal posts were moved. Dieudonné:
“The idea was that it would be finished in three years, and in this time we
should draft the basic essentials of mathematics. Events and history decided
differently ([D1], p. 136).” The foundation was to be the theory of sets; the
method, axiomatic; the novelty, the concept of a mathematical ‘structure’
([DG], p. 19).

3. The term ‘structure’ is best illustrated by an example (for an in-
formal definition, see S, R, §8). From Bourbaki’s perspective, a topological
group is an ‘algebraic structure’ equipped with a ‘topological structure’ such
that the two structures are ‘compatible’ via suitable axioms (that the alge-
braic operations of composition and inversion are continuous functions) (GT,
Ch. III, §1, No. 1, Def. 1). It is an astonishing consequence of compatibility
that there exists an abundant supply of continuous real-valued functions on
the group, thanks to its associated (left or right) ‘uniform structure’ ([W1];
GT, Ch. III, §3, No. 1, Def. 1 and Ch. IX, §1, No. 5, Th. 2).

Topological groups were in the air ‘at the creation’: A. Haar had recently
proved (1933) the existence, on every locally compact group having a count-
able base for open sets, a measure invariant under, say, left-translation—a
result to whose generalization to arbitrary locally compact groups, along
with the proof of uniqueness up to a scalar multiple, J. von Neumann, A.
Weil and H. Cartan contributed. If, in addition, one imposes commutativity
on the group, one arrives at a platform that supports abstract harmonic
analysis [W2].

Whence the author’s objective of ascertaining the fundamental struc-
tures (of which the “core” high-lights order structure, algebraic structure,
topological structure and uniform structure), and demonstrating the pos-
sibility, in principle, of reconstructing ‘all of mathematics’ by a judicious
combination of appropriate structures.

4. In particular, to bring ‘abstract harmonic analysis’ as conceived in
[W2] (at the ‘frontier’ in 1934) within range of an advanced graduate course.

5. To set a standard for mathematical textbook exposition.

6. To set a standard for a basic set of symbols.

7. To set a standard for mathematical typesetting. Before the TEX
era, formulas were a chronic headache for author and typesetter. The last
page-and-a-half of Weil’s review of Chevalley’s AMS ‘Survey’ [W3] is an
essay on when and where a formula can be broken and when it must be
displayed (regardless of its ‘importance’); and publishers are cautioned that
the tendency to cram (Weil’s word) as much as possible onto a page has a
cost in intelligibility.

8. To learn from each other. An objective implicit in Chevalley’s de-
scription of Bourbaki’s working style ([DG], p. 20, col. 1): “Strong bonds
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of friendship existed between us, and when the problem of recruiting new
members was raised we were all in agreement that this should be as much
for their social manner as their mathematical ability. This allowed our work
to submit to a rule of unanimity: anyone had the right to impose a veto. As
a general rule, unanimity over a text only appeared at the end of seven or
eight successive drafts. When a draft was rejected, there was a procedure
foreseen for its improvement . . . The general lines in which the new draft
should go was indicated in such a way that the new author would know
what he had to do. It was always someone else who was charged with the
next draft. There was never an example of a first draft being accepted.”

9. The reader in Y + 2K . We are the Y + 2K readers of Euclid’s
“Elements”. Bourbaki has played with this idea from the beginning.

The first paragraph of the Introduction to Book I: “Ever since the time
of the Greeks, mathematics has involved proof; and it is even doubted by
some whether proof, in the precise and rigorous sense which the Greeks gave
to this word, is to be found outside mathematics. We may fairly say that this
sense has not changed, because what constituted a proof for Euclid is still a
proof for us; and in times when the concept has been in danger of oblivion,
and consequently mathematics itself has been threatened, it is to the Greeks
that men have turned again for models of proof. But this venerable bequest
has been enlarged during the past hundred years by important acquisitions.”

The early Summary of results fascicles featured, as frontispiece, a pho-
tograph of ruins of an ancient sculpture, tactfully omitted from the final
version in the bound edition of Book I.

Dieudonné, when asked why the word “Elements” was chosen for the
title of the author’s series, replied “Because of Euclid, obviously!”; while
Weil, noting that unusually little is known of Euclid, acknowledged having
always suspected that Euclid was a fictitious person in the genre of Bourbaki
([PP], Part 1).

Cartier, in an ironic vein: “Bourbaki was to be the New Euclid, he
would write a textbook for the next 2000 years.” ([PC], p. 27, col. 2)

Pierre Samuel (in an ‘insider’s review’ [MR 43#2] of the édn. reliée of
A-I): “ . . . in a time in which the indiscriminate use of science and technology
threatens the future of the human race, or at least the future of what we
now call ‘civilization’, it is surely essential that a well integrated report about
our mathematical endeavors be written and kept for the use of a latter day
‘Renaissance’. As Thucydides said . . . ”

Can there remain any doubt?
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Were the author’s objectives attained?

l. Initial objective. A remark by Cartier suggests that FVR might be
regarded as partially fulfilling the original objective described by Chevalley:
“ . . . there is [in the “core”] an elementary calculus text, a very good book,
that was the influence of Jean Delsarte” ([PC], p. 25, col. 3). However, the
scope of FVR is far from that of the classical treatises on analysis (absent,
for example, are complex function theory and partial differential equations).

Dieudonné’s monumental Éléments d’analyse [D2] attains the objec-
tive single-handedly. From the Introduction to Volume 1 (I do not have
the English translation): “J’ai donc finalement été amené à tenter d’écrire

l’équivalent, pour les mathématiciens de 1970, de ce qu’avaient été pour

les étudiants des années 1880–1920 les Traités d’analyse de Jordan, Picard

et Goursat.” Renouncing the ‘utmost generality’ of Bourbaki, topological
spaces are generally assumed to be, if not metrizable, then at least ‘uni-
formizable’ (definable by a family of pseudometrics). Metrizable spaces are
taken to be separable when possible. Compactness is defined only for metriz-
able spaces ([D2], Vol. 1, Ch. III, §16), in sequential terms—obviating the
need for a detour through axiomatic set theory—and one has a sequen-
tial proof of the compactness of a countable product of metrizable compact
spaces ([D2], Vol. 2, Ch. XII, 12.5.9). The construction of Haar measure is re-
stricted to separable, metrizable, locally compact groups (loc. cit., Ch. XIV,
§1).

2. Revised objective. According to Cartier (in [PP], Part 2), the ‘ob-
jective as originally contemplated’ had been accomplished by 1975. The
publication dates of the bound volumes (listed later in this review) are con-
sistent with viewing the “core” as the ‘revised objective’.

3. Applications of the method. FRV, TVS and INT already provide ex-
amples of the method of ‘structures’. Books subsequently derived from the
“core” by the author’s method: AC (Algèbre commutative), VAR (Variétés

différentielles et analytiques), LIE (Groupes et algèbres de Lie) and TS
(Théories spectrales). The objective was sufficiently accomplished to raise
the question as to whether there was any point in continuing (Serre and
Schwartz in [PP], Cartier in [PP] and in [PC], p. 26, col. 3). The last segment
in [PP] is the recitation of a formal invitation to the funeral ceremony for
Nicolas Bourbaki, deceased November 11, 1968 at his residence in Nancago.
Closing remarks by André Revuz, that Bourbaki is not dead, or rather, that
if he is then he lives on in at least the subconscious of every mathematician.

4. Abstract harmonic analysis. Accomplished in Ch. II of Théories

spectrales.
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5. A standard for mathematical textbook exposition.

From the Introduction of a recent paper in a distinguished journal: “The
editor . . . has asked me to survey the recent work of . . . . Space is limited
and I have been advised to use ‘Bourbaki style’, and so this is an account
of the essentials of the theory and a few of its applications, with complete
proofs as far as possible.”

Q.E.D.

6. A standard for a basic set of symbols. The success of the author’s
choice may be seen in its evident influence on mathematical typesetting.

As measure of the stability of the Index of Notations in the Summary
of Results fascicle for the Theory of Sets, a complete list of the changes of
symbols in the 2nd edition (1951) of the fascicle to the final version in E, R
(1970) is as follows:

the line for {{{ A becomes {{{ A, X --- A (an alternative notation for the
complement),

x → f(x) becomes x 7→ f(x) ,
fA becomes f

∣

∣A (the restriction of f to A ),
c1, c2, pr1, pr2 becomes pr1, pr2 (the alternative ci for the i’th coor-

dinate projection is dropped).

The symbols sup and inf are introduced in the 3rd edition [B1] (in
the 2nd edition the concepts of supremum and infimum are defined, but the
notations are not) as are lim

−→
and lim

←−
(in the 2nd edition, direct and inverse

limits are not discussed).

The door is not shut for new notations in later Books (for example,
Supp for the support of a numerical function, defined in Book III).

7. Mathematical typesetting. The stability and the widespread accep-
tance of Bourbaki’s notations surely helped prepare the ground for the de-
velopment and adoption of typesetting programs such as TEX, assured in
advance of widespread applicability.

In particular, apart from the title pages, the volumes under review were
typeset entirely in Leo (v. 3.4), a TEX-based WYSIWYG typesetting pro-
gram running in DOS, from ABK Software. I welcome this opportunity to
express my debt and my gratitude to the family (Arlan, Karen and Bruce)
that created this superb tool.

8. To learn from each other. Chevalley, in connection with the inclusion
of the axiomatic set theory treated in Book I, to which there was initial
resistance but eventual accord: “Bourbaki had a great advantage: one always
accepted the possibility of a sharp change of opinion . . . No one in Bourbaki
had the impression of talking to a wall. In this sense it was a very remarkable
phenomenon of collaboration.” ([DG], p. 20)
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The success of the strategy is clearly visible in the great advances
that were made in successive editions (of, for example, Espaces vectoriels

topologiques and Intégration).

The testimony of Dieudonné ([D1], pp. 143–144): “ . . . a Bourbaki
member is supposed to take an interest in everything he hears . . . There
is no question of asking everyone to be a universal mathematician; this is
reserved for a small number of geniuses. But still, one should take an interest
in everything, and be able, when the time comes, to write a chapter of the
treatise, even if it is not in one’s specialty. This is something which has
happened to practically every member, and I think most of them have found
it extremely beneficial. In any case, in my personal experience, I believe
that if I had not been submitted to this obligation to draft questions I did
not know a thing about, and to manage to pull through, I should never have
done a quarter or even a tenth of the mathematics I have done.”

9. The reader in Y + 2K . Stay tuned . . . .

Miscellaneous comments on the Books of the “core”

As expert reviews of the constituent fascicles are already available in
reviewing journals, the present comments are more in the nature of supple-
menting the remarks in To the reader. For Books II–V, a few results cited in
INT are indicated so as to give an idea of the demands of INT on the earlier
Books.

For Book I, the comments pertain to the “core” as a whole. I know very
little of what is in Book I. My attempt to read the Book from the beginning
bogged down early in Chapter I (page I.36), with the feeling that I was not
learning anything I wanted to know and disbelief that I would ever finish
the task.

On occasion, I felt the need to study several topics in Chapter III: well-
ordered sets (§2), cardinality (§3), combinatorial analysis (§5, No. 8), inverse
limits and direct limits (§7).

Book I: Theory of sets

Why is it here?

1. In a word, Zorn. In GT, convergence in a topological space is defined
in terms of the concept of ‘filter’, and compactness is characterized in terms
of an ‘ultrafilter’; for the concept to be useful, it is essential to know that
every filter can be enlarged to an ultrafilter, the proof of which entails . . .

Zorn’s Lemma. Also, the existence of a basis for a vector space is proved
using Zorn’s Lemma (A, II, §7, No. 1, Th. 1). And Zorn’s Lemma figures in
the proof of the Hahn-Banach theorem (TVS, Ch. II, §3, No. 2, Th. 1).
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In Book I, Zorn’s Lemma (théorème de Zorn) is derived as a consequence
of the well-ordering theorem (théorème de Zermelo), which is proved on the
basis of the Axiom of Choice (axiome de Zermelo). As the “core” intends
to be self-contained, and proofs to be complete, a unit on the theory of sets
is imposed.

A necessary prelude to the preceding paragraph is the definition of or-
dered (totally ordered, well-ordered) set (S, III, §§ 1, 2), in effect, the concept
of a set equipped with an ‘order structure’. But the concept of ‘structure’
is the subject of Ch. IV (see item 3 below), so the appearance of the term
‘order structure’ must await S, IV, §1, No. 4, Example 1. It is a curious
anomaly that the term ‘order structure’ can be found in the index of S, R
but not in the index of S.

2. Cardinality. Book I includes a restrained treatment of cardinal num-
ber (S, III, §3). The concept figures in the dimension of a vector space (A, II,
§7, No. 2, Th. 3), in distinguishing between finite and infinite sets (S, III, §4,
No. 1), and between countable and uncountable sets (S, III, §6, No. 4). Car-
dinal arithmetic is extensively developed, the cardinality of the denumerably
infinite and the cardinality of the continuum are singled out, but the ℵ no-
tations are not defined. Well-ordered sets and Zermelo’s theorem enter early
(S, III, §2), and every set of cardinal numbers is shown to be well-ordered
for the natural ordering (S, III, §3, No. 2, Th. 1), but ordinal numbers are
not defined in the text (they are introduced and developed in the exercises).
The Continuum Hypothesis and the contributions of Kurt Gödel and Paul
Cohen are mentioned briefly in the text (E, p. III.50; S, p. 189) and discussed
more fully (for experts in axiomatic set theory) in the Historical Note.

In S, R, countability is discussed in the text, and cardinal numbers are
mentioned in a footnote that refers the reader to Ch. III, but ordinal numbers
are not mentioned.

3. Mathematical structure. An informal definition of a mathematical
‘structure’ is given in §8, of S, R, which, in practice, the reader need not
know. Chapter IV is devoted to a full-dress treatment of the subject. I do
not understand what is going on on page IV.1.

From my readings in Books II–VI, I have acquired the näıve impression
that a ‘species of structure’ (for example, ‘topological group’) is something
like a category (a term not defined in the “core”), and that Chapter IV is
akin to a recipe of how to construct a category from sets, with examples
of some of the things one considers within a species of structure—such as
morphisms, ordering (finer, coarser), initial and final structures, induced
structures, product structures, quotient structures, universal mappings.

The option of recasting the Elements in terms of categories was consid-
ered but rejected (cf. P. Cartier in [PC], p. 26 and in [PP]).
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4. The reader in Y + 2K . Think of S, R as the Rosetta Stone.

How to avoid reading Book I. The concept is not heresy. In [PP],
Dieudonné describes Book I as an insupportable burden on the reader, that
no one reads, and with cause; while Serre and Schwartz echo the sentiment,
and suggest that the Summary of Results would have sufficed.

An alternate strategy is to read the set theory part (the first 66 pages)
of Irving Kaplansky’s Set theory and metric spaces (Allyn & Bacon, Boston,
1972; 2nd edn., Chelsea, New York, 1977), which includes a thorough treat-
ment of cardinal and ordinal numbers, and rely thereafter on S, R.

The particular relevance of the book is that it grew out of a course
at the University of Chicago (“Theory of sets”, Math. 261) in the early
1950’s of the ‘Stone Age’; with Weil and supportive colleagues (Saunders
MacLane, Marshall Stone, . . .) on the faculty, and Dieudonné on the faculty
of nearby Northwestern University, Chicago could fairly be called a hotbed
of Bourbakism, earning its half (along with the University of Nancy) of the
mythical ‘University of Nancago’.

Book II: Algebra

Relatively few of the results in A are needed in Books III–VI, the lion’s
share being targeted for Algebra itself; for example, Galois theory, rings with
minimum condition and the deeper results on multilinear algebra, while not
needed in other books of the “core”, impose themselves.

Beyond generalities on groups, rings, modules and vector spaces, as
found in Chs. I and II of A, the demands of INT on A include the following:

The ‘decomposition theorem’ for lattice-ordered abelian groups (A, VI,
§1, No. 10, Th. 1) is cited in the chapter on Riesz spaces (INT, II, §1, No. 1).

Some intricate tensor product identifications (A, II, §7, No. 7) are ap-
plied to function spaces (INT, III, §1, No. 2, Prop. 5), and in INT, III, §4,
No. 2, the product of two measures (loc. cit., No. 1, Def. 1) is shown to be an
extension of their algebraic tensor product as linear forms (A, II, §3, No. 2).

In INT, VII, §3, No. 3 the ‘classical groups’ (general linear, affine, uni-
modular, triangular) provide examples for calculating Haar measure (cf. A,
II, §10, No. 7; A, II, §9, No. 4; A, III, §8, No. 9; A, III, §8, No. 6, formula
(31)).

The structure theorem for finitely generated abelian groups (A, VII, §4,
No. 7, Th. 3) is cited in a structure theorem on connected topological groups
(INT, VII, §3, No. 2, Prop. 5).

Book III: General topology

TG is largely driven by the needs of EVT and INT (and, to a lesser
degree, the needs of FVR). When I started to read Intégration, I had read
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Chs. I, II and X of TG; the citation of TG is so extensive that, by the end,
I had found it ‘time-efficient’ to read TG from cover-to-cover (excluding the
exercises).

It is important to note that GT is not a translation of TG; Volumes I
and II of GT (both published in 1966) were translated from the most recent
editions of the fascicles of Topologie générale available at the time, whereas
the corresponding volumes of TG were not published until 1971 and 1974,
respectively.

In particular, Chapter IX of TG is at least 2 editions later than Chapter
IX of GT, incorporating changes that are critical for Chapter IX of INT;
namely:

(i) in GT, Souslin spaces and Lusin spaces are required to be metrizable,
whereas in TG they need only be Hausdorff (Ch. IX, §6, Nos. 2 and 4);

(ii) to Ch. IX, §6, TG adds a new No. 8 (on the Souslin graph theorem),
so that the former Nos. 8, 9 become Nos. 9, 10;

(iii) to Ch. IX, TG also adds a new appendix (on Lindelöf spaces);

(iv) the definition of a ‘capacity’ in GT (Ch. IX, §6, No. 9, Def. 8) is
changed in TG (Ch. IX, §6, No. 10, Def. 9), leading to a generalization of
GT, loc. cit., Th. 5 to TG, loc. cit., Th. 6.

I have not systematically compared GT and TG, but I can report that
to the four subsections of GT, Ch. VIII, §4, TG adds No. 5. Continuité des

racines d’un polynôme.

Book IV: Functions of a real variable

The demands of INT on FRV are minimal: convex functions (Ch. I, §4),
regulated functions (Ch. II, §§ 1, 2), the logarithm function (Ch. III, §1) and
the gamma function (Ch. VII, §1). Explicitly:

A characterization of convexity for a twice-differentiable numerical func-
tion (FRV, I, §4, No. 4, Cor. of Prop. 8) is cited in proving Hölder’s inequal-
ity (INT, I, No. 2, Prop. 2), with some help from the Hahn-Banach theorem
(TVS, II, §5).

The natural logarithm ln (FRV, III, §1, No. 1) figures in a proposition
(INT, I, No. 3, Prop. 5) destined for application in the study of the set of
values of p for which a given measurable function belongs to L p (INT, IV,
§6, No. 5, Prop. 4).

The theory of regulated functions (FRV, II, §1) assures that when ‘mea-
sure’ is defined, ‘Lebesgue measure’ immediately qualifies (INT, III, §1,
No. 3, Example II).

The gamma function (FRV, Ch. VII) figures in the formula for the
measure of the unit ball in Euclidean space (INT, V, §8, No. 7) and in the
calculation of Gaussian integrals (INT, IX, §6, No. 4).
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Book V: Topological vector spaces
1. The destinies of Books V and VI are intertwined, as a ‘measure’ is

defined in Ch. III of INT as a continuous linear form on a suitable topological
vector space. Citations of TVS in INT range from the definition of a pointed
convex cone (TVS, II, §2, No. 4) on page I.1 of INT, to the self-duality of a
real Hilbert space (TVS, V, §1, No. 7, Th. 3) on page IX.97 of INT.

Before undertaking INT, it is advisable to read Chapters I and II of
TVS, then study the more specialized topics in Chapters III–V as the need
arises, and count on ending up having read TVS from cover-to-cover.

2. Assigned a major role in the definition of a ‘measure’ on a locally
compact space is the concept of ‘locally convex direct limit’ (or ‘inductive
limit’) of locally convex spaces (the term will be explained below), cited on
page III.2 of INT. The purpose of the following remarks is to help the reader
navigate—and even circumnavigate—this thorny topic.

To set the stage, let F be a topological vector space (over C or over
R ), let E be a vector space over the same field, and let u : F → E be a
linear mapping of F into E . One is interested in compatible topologies on
E for which u is continuous. The trivial, or coarsest topology ( ∅ and E
the only open sets) is such a topology (cf. GT, III, §1, No. 1, Example 1, and
TVS, I, §1, No. 1, Def. 1). It can happen that there is no other. For example,
if F is a topological vector space (say over R ) whose only continuous linear
form is identically zero, and if u is a nonzero linear form on F , then the
linear mapping u : F → R (with R regarded as a 1-dimensional vector
space over R ) is rendered continuous only by the coarsest topology, as the
only other candidate—the usual topology—is ruled out by the assumption
on F .

{For, suppose R has a compatible topology other than the coarsest
topology. Let A be a closed subset other than ∅ and R , and let x ∈ A .
Then {x} is not dense in R , therefore its translate {0} is not dense in R ,
whence {0} is closed in R (TVS, I, §2, No. 1, Cor. of Prop. 1), and so R
is Hausdorff for the topology (GT, III, §1, No. 2, Prop. 2), consequently this
topology on R is the usual one (TVS, I, §2, No. 2, Prop. 2).}

An example of such a space F is the classical space denoted (S) by
Banach, derived from the vector space of Lebesgue-measurable functions

f : [0, 1] → R and the pseudo-metric (f, g) 7→
∫ |f−g|

1+|f−g|

( ∫

the Lebesgue

integral
)

. {The details are thrashed out in [FA], p. 63, Theorem 15.10. See
also Exercise 4 of TVS, Ch. I, §2, which avoids measure theory but entails
modifying the absolute value function of the coefficient field R .}

To get to the point: when we are assured that there exists a finest locally
convex topology rendering u continuous (TVS, II, §4, No. 4, Prop. 5), we
take the message with a grain of salt: it may be the coarsest topology (cf.
[JH], p. 157, first paragraph) .

12



In preparation for the application in the definition of a measure in
Ch. III of INT, if (Fα) is any family of topological vector spaces (over
C or over R ), E is any vector space over the same field, and gα : Fα → E
is any family of linear mappings, there exists a finest locally convex topology
T on E that renders continuous every gα (TVS, loc. cit., Prop. 5). It is
called the locally convex final topology for the family of linear mappings (gα) .
The essence of the proof is a clever description of a fundamental system of
neighborhoods of 0 for such a topology T (cf. the next-to-last paragraph of
TVS, II, §8, No. 2 for the relation between the real and complex cases).

Caution: There may be a compatible topology strictly finer than T

that renders the gα continuous (TVS, II, §4, Exer. 15)—but not a locally
convex one.

In particular, if (Eα, fβα) is a direct system (or ‘inductive system’) of
locally convex spaces (indexed by an ordered set directed to the right), where,
for α 6 β, fβα : Eα → Eβ is a continuous linear mapping, fγα = fγβ ◦ fβα

when α 6 β 6 γ , and fαα is the identity mapping on Eα for all α , and
if E = lim

−→
Eα is the vector space direct limit of the system (A, Ch. II,

§6, No. 2), the locally convex final topology for the family of canonical
mappings Eα → E is called the locally convex direct limit of the family
(TVS, II, §4, No. 4, Example II). With the above Caution in mind, it is
good terminological hygiene to not omit the ‘locally convex’ when using this
term. Note that when all the fβα are injective, then so are the fα (S, R,
§6, No. 13).

3. There is a situation in which the locally convex final topology for a
family of mappings is assured of being nontrivial. Suppose (Fα) is a fam-
ily of locally convex topological vector spaces, E is a vector space, and,
for every index α , gα : Fα → E is a linear mapping. Suppose, in addi-
tion, that there already exists a nontrivial (i.e., not the coarsest topology)
locally convex topology S on E such that every gα is continuous, that

is,
−1
g α(S) is contained in the given topology Sα on Fα . Then the finest

locally convex topology T on E that renders continuous the gα is finer
than S , hence is also nontrivial. Moreover, if S is Hausdorff, then so is
the finer topology T . The property that characterizes T uniquely is the
following: A linear mapping f : E → G of E into a locally convex space G
is continuous if and only if the composition f ◦ gα : Fα → G is continuous

for every α (TVS, II, §4, No. 4, Prop. 5).
4. Continuing in the foregoing situation, the continuity of gα for T

means that
−1
gα(T) ⊂ Sα . If, moreover, Sα =

−1
gα(S) , that is, Sα is the
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initial topology for gα (GT, I, §2, No. 3, Example 1), then
−1
gα(S) = Sα ⊃

−1
gα(T) ; but the reverse inclusion results from S ⊂ T , and so

(∗) −1
gα(T) =

−1
gα(S) = Sα for all α .

Thus Sα is also the initial topology for gα when E is equipped with T .
5. A special case of importance for INT: If E is a locally convex topo-

logical vector space, with topology S , and if (Fα) is a family of linear
subspaces of E , each equipped with the topology Sα = S ∩ Fα induced
by S (i.e., the initial topology for the canonical injection gα : Fα → E )
(GT, I, §3, No. 1, Def. 1), then the locally convex final topology T for the
family satisfies

(∗) T ∩ Fα = S ∩ Fα for all α ,

that is, Sα is also the topology induced by T on Fα . If now f : E → G is
a linear mapping of E into a locally convex space G , then f ◦ gα = f

∣

∣Fα ,
therefore f is continuous with respect to T if and only if its restriction
to Fα is continuous with respect to Sα for every α ; thus, one has a test
for the continuity of f with respect to T that can be applied without
reference to T itself.

Book VI: Integration

In the first 8 chapters, all ‘measures’ are defined for a locally compact
space, whereas the 9’th and final chapter presents a theory of measure for
Hausdorff spaces, with an eye on applications in probability theory.

Why are locally compact spaces a natural setting for the theory? The
question is addressed in the Introduction to the Book. To the answers given
there, one may add the following. The existence of an invariant measure on
a locally compact topological group is a major preoccupation of the theory,
and raises the question of whether local compactness is essential. It is shown
in an appendix to Weil’s monograph [W2] that a group with no topology,
but with a left-invariant measure defined on a tribe (σ-algebra) closed un-
der left-translation, satisfying two innocent-looking measure-theoretic con-
ditions, can be regarded as a dense subgroup of a locally compact group.

INT is largely driven by the needs of Théories spectrales, perhaps the
first ‘direct descendant’ of the “core”. It would not be frivolous to regard the
first 8 chapters of INT as a ‘Lemma’ to Chapter II of TS (Groupes localement

compacts commutatifs). {The 9th chapter, published in 1969, is not cited
in TS (published in 1967), hence can be omitted by the reader headed for
abstract harmonic analysis.}
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Publisher and translator each made an embarrassing mistake, in Vol-
umes I and II, respectively:

The blank page after the Ch. I Historical Note and the resulting in-
correct running heads was the result of a mechanical production error—
the printout was correct but the physical pages were incorrectly assembled.
A reprinting should remedy the error.

The translator’s blunder was in the referencing in Chapter IX, where
some of the references to GT should be changed to TG; more about this in
the notes for Chapter IX below.

Chapter I: Inequalities of convexity

The inequality proved in No. 1, Prop. 1 serves as the basis for the
Hölder and Minkowski inequalities in No. 2, as well as the semi-norms Np

(1 6 p < +∞) that are the work-horses of the development of the theory
of integration generated by a ‘measure’ (the term is defined in Ch. III). Its
proof begins with a citation of the Hahn-Banach theorem (TVS, II, §5).

Chapter II: Riesz spaces

A Riesz space (also known as a vector lattice) is a real vector space
whose additive group is a lattice-ordered group (A, VI, §1, No. 9) in which
a positive scalar multiple of a positive element is positive, so that the set of
positive elements is a convex cone). A Riesz space is said to be fully lattice-

ordered if every nonempty subset that is bounded above has a least upper
bound.

The theory developed in Ch. II is the basis for showing that every ‘real
measure’ on a locally compact space X is the difference of two positive
measures, and that the vector space M (X;R) of real measures is a fully
lattice-ordered Riesz space (Ch. III, §1, No. 5). This leads to the positive
measure |µ| associated with a ‘complex measure’ µ (loc. cit., No. 6), and
eventually to the ‘outer measure’ |µ|* from which flows the theory of inte-
gration with respect to µ (Ch. IV, §3, No. 4).

A linear subspace B of a fully lattice-ordered Riesz space E is called a
band if (1) for every element x of B , the elements y of E such that |y| 6 |x|
also belong to B , and (2) for every nonempty subset C of B that is bounded
above, the supremum of C in E also belongs to B . The concept resurfaces
in the author’s formulation of the Radon-Nikodym theorem (Ch. V, §5, No. 5,
Cor. 2 of Th. 2).

Chapter III: Measures on locally compact spaces

The daunting topological preliminaries in §1, No. 1 of this chapter are
sufficiently general to accommodate the definition of a measure with values
in a locally convex topological vector space (Ch. VI, §2, No. 1, Def. 1), far
more general than what is required for the definition of a complex measure.
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A substantial simplification is available, that permits the reader primarily
interested in complex measures to save a lot of time and effort, as follows.

A (complex) measure on the locally compact space X is defined to be a
continuous linear form on the vector space K (X;C) of continuous complex-
valued functions on X with compact support, equipped with an ingenious
locally convex topology (described below). The proposed simplification is
in the definition of that topology; the idea is to dispense with the theory of
direct limits and arrive at the topology by a more direct path.

For each compact subset K of X , K (X,K;C) denotes the linear sub-
space of K (X;C) formed by the functions f ∈ K (X;C) with support
contained in K (i.e., such that f = 0 on X --- K). Equipped with the
norm ‖f‖ = sup

x∈K

|f(x)| , K (X,K;C) is a Banach space (not to be con-

fused with C (K;C) ). On the other hand, K (X;C) is itself a normed
space for the sup-norm, which defines the topology Tu of uniform con-
vergence in X . The topology of K (X,K;C) coincides with the topology
induced by Tu , in other words, the initial topology for the canonical injec-
tion ιK : K (X,K;C) → K (X;C) . Thus Tu is a locally convex topology
on K (X;C) that renders continuous every ιK .

The topology on K (X;C) we are interested in is the locally convex final

topology T for the family of linear mappings ιK : K (X,K;C) → K (X;C)
as described above in the remarks on Book V. Thus, T is the finest locally
convex topology on K (X;C) that renders every ιK continuous. In particu-
lar, T ⊃ Tu , so T is nontrivial (i.e., is not the coarsest topology); and since
Tu is Hausdorff, so is T . We know that T is uniquely determined by the
property that a linear mapping of K (X;C) into a locally convex space is
continuous if and only if its composition with every ιK is continuous. {The
fact that T can be regarded as the locally convex direct limit topology for
K (X;C) regarded as the union of the increasing directed family of subspaces
K (X,K;C) , with the canonical mappings ιLK : K (X,K;C) → K (X,L;C)
for K ⊂ L , is interesting but inessential for the definition of measure.}

A closed set in a topological space remains closed for a finer topology; in
particular, every K (X,K;C) is closed for T . Since ιK is continuous for T ,
−1
ι K(T) ⊂ Tu ∩K (X,K;C) (the topology induced by Tu on K (X,K;C) ),
that is, T ∩ K (X,K;C) ⊂ Tu ∩ K (X,K;C) ; the reverse inclusion follows
from T ⊃ Tu , thus

T ∩ K (X,K;C) = Tu ∩ K (X,K;C) ,

so that T also induces on K (X,K;C) its original topology.
To summarize: A linear form µ : K (X;C) → C is called a measure

(or complex measure) if it is continuous for the topology T on K (X;C) .
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Thus the set M (X;C) of measures on X is the dual of the space
K (X;C) equipped with the locally convex topology T , bringing to bear
the resources of TVS to the theory of integration. {Extensive use is made of
several topologies on M (X;C) (cf. Ch. III, §1, No. 10; §3, No. 4, Prop. 9;
§4, No. 3; Ch. V, §3); for a critique of the author’s treatment from the
perspective of category theory, see [CH], [FK].}

What has the ‘shortcut’ saved? The raw materials for the direct limit
are the family

(

K (X,K;C)
)

K∈K
of linear subspaces of K (X;C) , indexed by

the set K of all compact subsets of X , directed to the right by the inclusion
relation ⊂ , along with the canonical injections K (X,K;C) → K (X,L;C)
when K ⊂ L . We have dispensed with the need to

(i) construct the vector space direct limit lim
−→

K∈KK (X,K;C), already

provided by K (X;C) ;

(ii) construct the associated canonical injections, already provided by
the inclusion mappings K (X,K;C) → K (X;C) ;

(iii) equip K (X;C) with a locally convex topology to assure the non-
triviality of the locally convex direct limit topology, a role already played by
the topology Tu .

Moreover, the fact that the norm topology on K (X,K;C) is induced by
Tu leads to simple proofs that it is also induced by T , and that K (X,K;C)
is also closed in K (X;C) for T . Since T is a locally convex final topology,
a linear mapping g : K (X;C) → G of K (X;C) into a locally convex
space G is continuous for T if and only if g ◦ ιK is continuous for every K .
To say that g ◦ ιK is continuous means that g

∣

∣K (X,K;C) is continuous
for the topology on K (X,K;C) induced by that of K (X;C) ; this induced
topology is the same whether it is induced by T or by Tu , namely, it is the
topology of uniform convergence. Thus g is continuous for T if and only
if g

∣

∣K (X,K;C) is continuous for the sup-norm topology. It follows that a
linear form µ : K (X;C) → C is a measure if and only if its restriction to
K (X,K;C) is continuous for the norm topology for every K .

That is, the definition of a measure need not refer to direct limits at all.
This was, indeed, the procedure in the first edition of Chs. I–IV (published in
1952). The possibility of characterizing measures as linear forms continuous
with respect to a suitable locally convex topology was noted (for real-valued
functions) in Ch. III, §2, No. 2, and sketched in an Exercise. But a (real)
measure on a locally compact space X was officially defined to be a linear
form on the vector space K (X;R) of continuous real-valued functions on X
with compact support, such that for every compact subset K of X the
restriction of the form to the linear subspace K (X,K;R) is continuous when
K (X,K;R) is equipped with the topology of uniform convergence. That
such measures can be regarded as the continuous linear forms on K (X;R)
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equipped with the locally convex direct limit topology is recognized in the
first edition (1953) of Esp. vect. top. (Ch. II, §2, No. 4, Exemple 3), which
cites the above-mentioned Exercise, and it is this reference that is cited in
the Introduction to the first edition (1959) of Ch. VI of Intégr., where, finally,
a real measure on X is recognized as a continuous linear form on the real
locally convex space K (X;R) (see p. VI.1 of INT, where the references
have been up-dated). Before the second edition of Chs. I–IV of Intégr. was
published (1965), one had to wait until Ch. VI, §2, No. 8 of Intégr. for a
definition of a complex measure m—analyzed in terms of the vector-valued
measure m

∣

∣K (X;R)
(

not to be confused with the ‘real part’ 1

2

(

m + m
)

of m
)

with values in C regarded as a 2-dimensional Banach space over R .
Chevalley records that the choice of definition between measure as a

linear form (favored by Weil) and measure as a set function (favored by
De Possel) was long and vigorously debated before settling on linear forms
([DG], p. 20, col. 2; [PP], Part 1). The principle of unanimous decisions
must have been severely tested.

Chapter IV: Extension of a measure. Lp spaces.

The second edition of the French fascicle for Chs. I–IV, on which the
translation is based, was reviewed by W. A. J. Luxemburg (MR 36#2763);
the first edition was reviewed thoroughly by Leopoldo Nachbin (MR 14,960h).

In the 2nd edition, the theory of extremal points of compact convex sets
in Hausdorff locally convex spaces is substantially expanded and sharpened
(Ch. IV, §7), featuring work of Gustave Choquet (Choquet boundary) and
Errett Bishop (peak points of function algebras).

In the 1st edition, the topic of measure as a linear form and as a set
function, in the context of a set without topology, is treated ‘in parallel’
as the last subsection (mesures abstraites) of §§1–5 of Ch. IV. In the 2nd
edition, measure in the context of a set without topology is abandoned, and
measure as a set function is concentrated in Nos. 9–11 of Ch. IV, §4 and
is restricted to locally compact spaces, culminating in a theorem relating
numerical measures in the sense of Bourbaki with regular Borel measures on
locally compact spaces in the sense of Halmos (INT, IV, §4, No. 11, Cor. of
Th. 5; [H1], Sec. 56, Ths. D and E, pp. 247–248).

Chapter V: Integration of measures

The 2nd edition of the fascicle for this chapter, on which the translation
is based, was reviewed by Bertram Walsh (MR 35#322), the first edition
having been reviewed by J. C. Oxtoby (MR 18,881c).

From the wealth of ideas in this chapter, the treatment of two familiar
theorems gives some insight into the author’s approach.

1. Fubini’s theorem on multiple integrals. Each point t of a locally
compact space T defines the ‘point measure’ εt : f → f(t)

(

f ∈ K (T;R)
)

.
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If µ is a positive measure on T , the notation

µ(f) =

∫

f(t) dµ(t) =

∫

εt(f) dµ(t)

invites the notation µ =
∫

εt dµ(t) . The ‘integration of measures’ alluded to
in the chapter title is a theory of integration, with respect to µ , of positive-
measure-valued functions T → M+(X;R), where X is another locally com-
pact space, giving meaning to notations such as

∫

λt dµ(t) for functions
t 7→ λt ∈ M+(X;R).

Among the numerous applications is Fubini’s theorem expressing an
integral with respect to a product measure µ⊗µ′ (µ, µ′ measures on T, T′ )
as an iterated integral (Ch. V, §8, No. 4, Th. 1); the idea is to regard µ⊗µ′

as the integral
∫

λ
′

t dµ(t) of the function t 7→ λ′t = εt ⊗ µ′ .
A special class of functions Λ : t 7→ λt , called ‘diffusions’, is singled out

for development in §3, Nos. 5, 6; an impressive calculus for them is worked
out, including a treatment of the composition of diffusions, for which an
associative law is proved. From the text, one example and two exercises
devoted to diffusions, I drew no insights into the applications for which they
are destined, but the reader who knows will appreciate the exposition.

2. Radon-Nikodym theorem. In the author’s formulation (Ch. V, §5,
No. 5, Th. 2), if λ is a positive measure on X , the following conditions on
a measure µ ∈ M (X;R) are equivalent:

a) every ‘locally λ-negligible set is locally µ-negligible’;
b) µ = f · λ for some ‘locally λ-integrable’ function f (loc. cit., No. 2,

Def. 2);
c) µ belongs to the band generated by λ in the Riesz space M (X;R)

(loc. cit., No. 5, Cor. 2 of Th. 2).
{In the terminology of [H1], the measures µ in the band generated by

λ are the ‘signed measures’ that are ‘absolutely continuous’ with respect
to λ ([H1], p. 97, Th. H and pp. 128–129, Th. B).}

A consequence of the foregoing is the possibility of defining a measure
f(µ1, . . . , µn) for real measures µ1, . . . , µn and certain functions f : Rn →
R , leading to a startling formula: if θ is a complex measure, and if µ and
ν are the real measures such that θ = µ + iν (Ch. III, §1, No. 5), then

|θ| =
√

µ2 + ν2 (Ch. V, §5, No. 9; here, the right member means f(µ, ν)
for the function f(s, t) =

√
s2 + t2 on R2 ).

Chapter VI: Vectorial integration

The original French fascicle for this chapter was reviewed by Nicolae
Dinculeanu (MR 23 #A2033). Published in 1959, it is ‘unaware’ of the
second editions of Chs. I–IV and V. (The same is true of Chs. VII and VIII,
but the revisions are less significant for them than for Ch. VI.)
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Treated in this chapter are vector-valued integrals, resulting from :

(i) a vector-valued function and a numerical (real or complex) measure
(§1, No. 1, Def. 1),

(ii) a vector-valued measure and a numerical function (§2, No. 2, Def. 2),
and

(iii) a function with values in a Banach space F , a measure with values
in a Banach space G , and a continuous bilinear mapping of F×G into H ,
leading to an integral in H by a procedure too complex to digest in a sentence
(§2, No. 7, Prop. 11).

A key concept for Ch. VI is that of a µ-adequate mapping t 7→ λt ∈
M+(X) (t ∈ T) , where X and T are locally compact spaces, a term that
was introduced in the 1st edition of Ch. V. In the 2nd edition of Ch. V, the
term was redefined to be a weaker (more general) concept (INT, V, §3, No. 1,
Def. 1), putting in question the validity of assertions involving it in Ch. VI.
Not to worry. Anticipating this problem, the definition in the 2nd edition of
Ch. V is followed by a theorem that explains the exact relation between the
two definitions (INT, loc. cit., Prop. 2b) and shows that they are equivalent
when X has a countable base for open sets (INT, loc. cit., Prop. 2c), thereby
making it possible for assertions in the text of Ch. VI to remain valid for the
new definition, as explained in the footnote on page VI.2. (But the status
of the Exercises will have to be decided on a case-by-case basis; fortunately,
proofs in the text are not permitted to depend on the exercises.)

The reader should also be alerted to two changes in No. 4 of §3: the
definition of µ-measurable equivalence relation (loc. cit., Def. 3), and the
next-to-last sentence in the paragraph that precedes the definition, have
been revised.

Chapter VII: Haar measure

Chapter VIII: Convolution and representations

The reviews by Edwin Hewitt of the original French fascicle for Chs.
VII and VIII (MR 31# 3539), and of the fascicle for Ch. IX are models of
technical mastery and expository skill.

Chapters VII and VIII are primarily devoted to general (not necessarily
abelian) locally compact groups, the abelian case being the subject of Ch. II
of TS; I found especially rewarding the calculation of Haar measures in
examples of classical groups (INT, VII, §3, No. 3).

Chapter IX: Measures on Hausdorff topological spaces

The original French fascicle for Ch. IX was reviewed by Edwin Hewitt
(MR 43#2183).
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The chapter depends heavily on the 3rd edition of Ch. IX of Top. gén., to
which I did not have access; in the translation, I juggled references between
GT (most convenient for readers) and TG (the gold standard) . . . and I made
some mistakes.

The differences between GT and TG signaled in items (i)–(iv) of the
notes for Book III resulted in some incorrect translations of references (but
the surrounding text is correct). I was well aware of the differences when I
studied TG in 1975, but when I translated Ch. IX of INT in 2002, I seem
to have forgotten item (i), i.e., that in GT, Souslin and Lusin spaces were
required to be metrizable, rendering the results there inapplicable in the
Hausdorff environment of Ch. IX of INT.

{In hindsight, I can infer that the above-mentioned 3rd edition was
aware of items (i), (iii) and (iv), but not of (ii) and its effect on the numbering
of subsequent subsections and theorems.}

The needed repairs to references and footnotes are as follows:

IX.10. In the footnote (1), change the reference to TG, IX, §6, No. 10,
Th. 6.

IX.31, `. 9. Change GT to TG.

IX.63, `. −3,−2. Change the reference to GT, loc. cit., Cor. 1 of Th. 1.

IX.64. `. 14. Change GT to TG.

IX.64. In ``. 18 and 19, change the (repeated) reference to TG, loc.

cit., No. 4, Prop. 11.

IX.93, `. 6. In the reference to TVS, replace “No. 2, Th. 1” by “No. 1,
Scholium”.

IX.97. In the reference to TVS in line 4 of the Remark, replace “No. 2,
Th. 1” by “No. 1, Scholium”.

IX.18. Revise footnote 1 as follows:
1 The cited appendix on Lindelöf spaces does not appear in GT. Lindelöf spaces are

defined in GT in Ch. I, §9, Exer. 14. Souslin spaces (and Lusin spaces) are defined in
TG for Hausdorff spaces (TG, IX, §6, No. 2, Def. 2 and No. 4, Def. 7); in GT they are
required to be metrizable (GT, IX, §6, No. 2, Def. 2 and No. 4, Def. 6).

IX.31. Revise footnote (1) to the following:
(1) A capacity f on T is said to be right-continuous if, for every compact set K

in T , f(K) = inf
U

f(U) as U runs over the open sets U ⊃ K . In GT, a “capacity” is

defined by three axioms (GT, IX, §6, No. 9, Def. 8). In TG, a function satisfying only the
first two is called a capacity, but a right-continuous capacity also satisfies the third (TG,
loc. cit., Remarque).

IX.40. Revise footnote (2) as follows:
(2) Cf. the footnote to Remark 1 of §1, No. 9.

IX.48. Revise footnote (2) to the following:
(2) In GT, every Souslin space has a countable base for open sets (GT, IX, §6,

No. 2, Prop. 4), hence is Lindelöf (GT, I, §9, Exer. 14); but see the footnote on p. IX.18.
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IX.48. In the line following the first display in the proof of Prop. 3,
change the reference to TG, IX, §6, No. 10 and attach to it the following
footnote (3):

(3) See footnote (1) on p. IX.31.

IX.49. Delete footnote (4) and revise footnote (3) to be the following
new footnote (4):

(4) In GT, every Borel set in a Souslin space is a Souslin set (GT, IX, §6, No. 3,
Prop. 11); but see the footnotes on pp. IX.18 and IX.31.

IX.64. Add the following footnote (1) to the statement of Cor. 2:
(1) Cf. the footnote on p. IX.18.

IX.87. Revise footnote (2) as follows:
(2) The term espace mesuré was used in the first edition of Ch. III (§2, No. 2, p. 52)

for a space (locally compact, there) equipped with a measure.

The uneven history of the bound editions and translations.

The relation between the French and English versions is complicated.
Books II, IV and V were translated from the definitive ‘bound edition’
(édition reliée). Books I and III were translated from fascicles of the chap-
ters available prior to the publication of the French ‘bound edition’, hence do
not reflect the author’s ‘last word’. Book VI never received an édition reliée;
it was translated from the most recent fascicles of the constituent chapters,
of which Chs. 1–5 received 2nd editions and Chs. 6–9 did not. Here they
are, with dates of publication:

French Date English Date

E 1970 S 1968
A–I 1970 A–I 1974
A–II 1981 A–II 1990
TG–I 1971 GT–I 1966
TG–II 1974 GT–II 1966
FVR 1976 FRV 2004
EVT 1981 TVS 1987
Intégration 1965 (Chs. 1–4) INT–I 2004

1967 (Ch. 5)
1959 (Ch. 6)
1963 (Chs. 7, 8) INT–II 2004
1969 (Ch. 9)

Mathematical Reviews’ treatment of ‘bound editions’ has been equally
erratic. No translation volume has ever received more than an “editors’ re-
view” consisting of references to reviews of the French fascicles that preceded
the French édition reliée. Of the French éditions reliées, only A–I, A–II and
EVT received actual reviews. The situation in detail:
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(S) The book was translated from fascicles and published 2 years before
E; it received an editors’ review (MR 38#5631) listing the fascicle reviews.
When E was published, it received an editors’ review (MR 43#1849) citing
the ‘review’ of S. The translator is not identified.

(A–I) The French édition reliée was reviewed by Pierre Samuel (MR
43#2), presumably one of its authors. Apparently Bourbaki’s rule of se-
crecy was still staunch, as self-reviews were contrary to MR policy, but we
are grateful for the reviewer’s privileged insight into the nature of the revi-
sions incorporated in the edition. The translation, published 4 years later,
received the predictable editors’ review (MR 50#6689). The translator is
not identified.

(A–II) The French édition reliée was reviewed by Robert Gilmer (MR
84d:00002). The translation (by P. M. Cohn and J. Howie) was published
9 years later; it is listed in MR on-line as MR1994218 with the comment
“There will be no review of this item.” As I do not have access to a printed
version of MR, I can only guess from the ‘unformatted’ MR number that the
listing was never printed.

(GT–I) Translated from French fascicles, its review (MR 34#5044a)
identifies the edition numbers of the fascicles and gives their review numbers;
TG–I, published 5 years later, received an editors’ review (MR 50#11111)
citing the ‘review’ of GT–I.

(GT–II) Translated from French fascicles, its review (MR 34#5044b)
identifies the edition numbers of the fascicles and gives their review numbers.
TG–II, published 8 years later, seems not to be listed at all in MR; this is
regrettable, as there were changes to Chapter IX that were critical for Ch. IX
of Intégration, rendering GT–II an inadequate reference (see the comments
on Book VI, Chapter IX above).

The translations GT are excellent, the translator (unidentified) occa-
sionally declining the author’s terminology so as to conform with established
usage in English (e.g., translating espace séparé as Hausdorff space, and es-

pace dénombrable à l’infini as σ-compact).

(FRV) The first edition of Fonctions d’une variable réelle was published
in two fascicles, Chs. I–III and Chs. IV–VII, in 1949 and 1951, respectively,
and duly reviewed (MR 11, 86h and MR 13, 631a). A second edition of the
first fascicle received an editor’s review (MR 27#1340), referring the reader
to the review of the first edition. When the édition reliée was published
in 1976, it received an editors’ review (MR 58 #28327), “There will be no
review of this item”, with no reference to the fascicle reviews. Presumably
FVR corrected the errata (more than 75, a good many of them significant)
accumulated in published lists (Feuilles d’errata). The English translation
(by Philip Spain), published in 2004, is listed on-line as MR2013000, with
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the statement “There will be no review of this item”; a missed opportunity
to signal a half-century of evolution of Book IV.

(TVS) The review of EVT by Eberhard Gerlach (MR 83k:46003) lists
the table of contents of the 5 chapters by their section (§) titles. The editors’
review of the translation by H. G. Eggleston and S. Madan (MR 88g:46002)
adds no further information.

The first edition consisted of two fascicles, for Chs. I, II and Chs. III–
V. They received detailed reviews by J. L. Kelley (MR 14,880b and MR
17,1109e); the heading of the on-line version of the latter review appears to
be corrupted, labeling it as the review of the 39-page Fascicule de résultats.

The first fascicle received a thoroughly revised and expanded 2nd edi-
tion; its editors’ review consists of the author’s one-sentence Preface (MR
34#3277). Chs. I, II of EVT appear to be essentially the same as their 2nd
edition (but the Appendix on fixed-point theorems at the end of Ch. II has
been expanded and moved to the end of Ch. IV).

(INT) There was no édition reliée of Intégration. The editors’ reviews of
the two volumes (MR 2004i:28001 and MR 2005f:28001) consist of a listing
of the reviews of the French fascicles from which the translation was made.

Although the 2nd editions of Chs. I–V created some terminology incon-
sistencies with Ch. VI, a result in Chapter V (§3, No. 1, Prop. 2) makes it
possible for the chapters to co-exist without having to re-write Ch. VI, as
explained in a footnote on page VI.2 (and in the notes above for Chapter
VI).
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Review of Intégration (Chs. I–IV) by N. Bourbaki, Hermann,
Paris, 1952.

[JD] DIXMIER, Jacques, Cours de mathématiques du premier cycle.
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