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Abstract. We consider the Cauchy problem for a general inhomogeneous lin-

ear partial differential equation with constant coefficients in two complex vari-
ables. We obtain necessary and sufficient conditions for the multisummability

of formal solutions in terms of analytic continuation properties and growth

estimates of some functions connected with the inhomogeneity. The results
are presented in the general framework of 1/p-fractional equations.

1. Introduction

We study the initial value problem for a general inhomogeneous linear 1/p-partial
differential equation with constant coefficients in two complex variables t, z

P (∂
1/p
t , ∂1/p

z )u(t, z) = f̂(t, z), (∂
1/p
t )nu(0, z) = ϕn(z) for n = 0, ...,m− 1,(1)

where p ∈ N, P (λ, ξ) is a polynomial of degree m with respect to λ, the inhomogene-

ity f̂(t, z) is a formal t1/p-power series and the Cauchy data ϕn(z) are 1/p-analytic
functions (i.e. the functions z 7→ ϕn(zp) are analytic) in a complex neighbourhood
of the origin. By the fractional 1/p-derivative we mean the linear operator on the
space of z1/p-power series defined by

∂1/p
z

( ∞∑
n=0

unz
n/p

Γ(1 + n/p)

)
:=

∞∑
n=0

un+1z
n/p

Γ(1 + n/p)
.

For p = 1, ∂
1/p
z is the usual derivative and then (1) is the initial value problem for

inhomogeneous linear partial differential equation with constant coefficients, where

the inhomogeneity f̂(t, z) is a formal power series with respect to t and the Cauchy
data ϕn(z) are analytic functions in a complex neighbourhood of the origin.

The characterisation of summable solutions of homogeneous linear PDEs with
constant coefficients was previously studied by Balser [1, 3, 4], Balser and Miyake
[8], Ichinobe [10], Lutz, Miyake and Schäfke [15], Malek [16], Michalik [17, 19, 20]
and Miyake [21]. The summability properties of formal solutions of inhomoge-
neous equations was also investigated. Let us mention the papers of Balser [5] and
Michalik [18] about the inhomogeneous heat equation, Balser and Loday-Richaud
[7] about the inhomogeneous heat equation with variable coefficients and the paper
of Balser, Duval and Malek [6], which is devoted to the abstract inhomogeneous
Cauchy problem. We also refer to Balser and Yoshino [9], where the Gevrey order
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of formal solutions of general inhomogeneous linear PDEs with constant coefficients
is characterised.

Since 1/p-derivative is the Caputo fractional derivative for 1/p-analytic functions
[13], our previous papers [19, 20] and the present one give a new insight into the
theory of fractional partial differential equations. Our approach is based on formal
1/p-power series solutions, 1/p-analytic functions and their integral representations.
On the other hand, the α-analytic solutions of fractional ordinary differential equa-
tions was studied in [12, 14] and the kind of fractional version of Duhamel principle
was obtained in [23]. The survey of last results about the fractional partial differ-
ential equations can be found in [11].

In the paper we construct the formal solution û(t, z) of (1) and study its Gevrey
asymptotic properties. The main result concerns a characterisation of multisumma-
bility of solutions û(t, z) in terms of inhomogeneity. We proceed as follows. After

making a suitable transformation of û(t, z) and of f̂(t, z), we can assume that the
Cauchy data vanish. We represent P (λ, ξ) in the form

(2) P (λ, ξ) = P0(ξ)(λ− λ1(ξ))m1 ...(λ− λl(ξ))ml ,

where P0(ξ) is a polynomial and λ1(ξ),...,λl(ξ) are characteristic roots of multiplicity
m1,...,ml (m1 + ... + ml = m). In general, the formal solution of (1) may be not
uniquely defined. To avoid this inconvenience, we choose a formal series ĝ(t, z)

satisfying the equation P0(∂
1/p
z )ĝ(t, z) = f̂(t, z) and we find the formal solution

û(t, z) of (1), which is uniquely determined by ĝ(t, z). Next we show that û(t, z)
satisfies

û(t, z) =

l∑
j=1

mj∑
k=1

ûjk(t, z)

with ûjk(t, z) being a formal solution of

(∂
1/p
t − λj(∂1/p

z ))kujk(t, z) = ĝjk(t, z),

where λj(∂
1/p
z ) is a kind of pseudodifferential operator introduced in our paper [20]

with λj(ξ) defined by (2), and ĝjk(t, z) is a formal series connected with ĝ(t, z).
We prove that the Gevrey order of ûjk(t, z) depends on the order qj of the pole
of λj(ξ) at infinity and on the Gevrey order of ĝ(t, z). We also characterise the
analytic continuation (for qj = 1) and summability (for qj > 1) of ûjk(t, z) in terms
of ĝ(t, z). Finally, we obtain the characterisation of multisummable solutions of (1)
in terms of ĝ(t, z).

In the paper we apply the similar tools to that introduced in our previous papers

[19, 20]. In particular, we use the fractional derivatives ∂
1/p
z , the pseudodifferential

operators λ(∂
1/p
z ) and the operators Bα,β , which are related to the Borel transfor-

mations.

2. Notation, Gevrey formal power series and Borel summability

We use the following notation. The complex disc in Cn with a centre at the
origin and a radius r > 0 is denoted by Dn

r := {z ∈ Cn : |z| < r}. To simplify
notation, we write Dr instead of D1

r . If the radius r is not essential, then we write
it Dn (resp. D) for short.
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A sector in a direction d ∈ R with an opening ε > 0 in the universal covering

space C̃ of C \ {0} is defined by

S(d, ε) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, r > 0}.

Moreover, if the value of opening angle ε is not essential, then we write Sd for short.
We denote by Ŝd the set Sd ∪D.

By O(G) we understand the space of analytic functions on a domain G ⊆ Cn.
The Banach space of analytic functions on Dr, continuous on its closure and
equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted by E(r).

The space of formal power series

û(t, z) =

∞∑
j=0

uj(z)t
j with uj(z) ∈ E(r)

is denoted by E(r)[[t]]. Moreover, we set E[[t]] :=
⋃
r>0

E(r)[[t]].

In this section we also recall some definitions and fundamental facts about the
Gevrey formal power series and Borel summability. For more details we refer the
reader to [2].

Definition 1. A function u(t, z) ∈ O(S(d, ε) × Dr) is of exponential growth of
order at most s > 0 as t → ∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and any
ε1 ∈ (0, ε) there exist A,B <∞ such that

max
|z|≤r1

|u(t, z)| < AeB|t|
s

for every t ∈ S(d, ε1).

The space of such functions is denoted by Os(S(d, ε)×Dr). We also write Os(Ŝd×
D) for the space Os(Sd ×D) ∩ O(Ŝd ×D).

Analogously, a function ϕ(z) ∈ O(S(d, ε)) is of exponential growth of order at
most s > 0 as z → ∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there exist
A,B <∞ such that

|ϕ(z)| < AeB|z|
s

for every z ∈ S(d, ε1).

The space of such functions is denoted by Os(S(d, ε)). We also set Os(Ŝd) :=

Os(Sd) ∩ O(Ŝd).

Definition 2. Let k > 0. A formal power series

û(t, z) :=

∞∑
j=0

uj(z)t
j with uj(z) ∈ E(r)(3)

is 1/k-Gevrey formal power series in t if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABjΓ(1 + j/k) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t over E(r) is denoted by E(r)[[t]]1/k.

We also set E[[t]]1/k :=
⋃
r>0

E(r)[[t]]1/k.



4 S LAWOMIR MICHALIK

Definition 3. Let k > 0 and d ∈ R. A formal series û(t, z) ∈ E[[t]]1/k defined by
(3) is called k-summable in a direction d if and only if its k-Borel transform

ṽ(t, z) :=

∞∑
j=0

uj(z)
tj

Γ(1 + j/k)
∈ Ok(Ŝd ×D).

The k-sum of û(t, z) in the direction d is represented by the Laplace transform of
ṽ(t, z)

uθ(t, z) :=
1

tk

∫ ∞(θ)

0

e−(s/t)k ṽ(s, z) dsk,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with θ ∈
(d− ε/2, d+ ε/2).

For every k > 0 and d ∈ R, according to the general theory of moment summa-
bility (see Section 6.5 in [2]), a formal series (3) is k-summable in the direction d if
and only if the same holds for the series

∞∑
j=0

uj(z)
j!Γ(1 + j/k)

Γ(1 + j(1 + 1/k))
tj .

Consequently, we obtain a characterisation of k-summability (analogous to Defini-
tion 3), if we replace the k-Borel transform by the modified k-Borel transform

v(t, z) := Bkû(t, z) :=

∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))

and the Laplace transform by the Ecalle acceleration operator

uθ(t, z) = t−k/(1+k)

∫ ∞(θ)

0

v(s, z)C1+1/k((s/t)k/(1+k)) dsk/(1+k)

with θ ∈ (d− ε, d+ ε). Here integration is taken over the ray eiθR+ and C1+1/k(ζ)
is defined by

C1+1/k(ζ) :=
1

2πi

∫
γ

u−1/(k+1)eu−ζu
k/(k+1)

du

with a path of integration γ as in the Hankel integral for the inverse gamma function
(from∞ along arg u = −π to some u0 < 0, then on the circle |u| = |u0| to arg u = π,
and back to ∞ along this ray).

Hence the k-summability is characterised as follows

Proposition 1. Let k > 0 and d ∈ R. A formal series û(t, z) given by (3) is
k-summable in a direction d if and only if its modified k-Borel transform

Bkû(t, z) =

∞∑
j=0

uj(z)
j!tj

Γ(1 + j(1 + 1/k))
∈ Ok(Ŝd ×D).

We are now ready to define multisummability in some multidirection.

Definition 4. Let k1 > ... > kn > 0. We say that a real vector (d1, ..., dn) ∈ Rn is
an admissible multidirection if and only if

|dj − dj−1| ≤ π(1/kj − 1/kj−1)/2 for j = 2, ..., n.

Let k = (k1, ..., kn) ∈ Rn+ and let d = (d1, ..., dn) ∈ Rn be an admissible multi-
direction. We say that a formal power series û(t, z) given by (3) is k-summable in
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the multidirection d if and only if û(t, z) = û1(t, z) + ...+ ûn(t, z), where ûj(t, z) is
kj-summable in the direction dj for j = 1, ..., n.

3. α-Derivatives, α-analytic functions and operators Bα,β

In this section, in a similar way to [20], we introduce some tools to study divergent
solutions of linear partial differential equations. First, we define some kind of
fractional derivatives ∂αz of the formal power series in C[[zα]]. These operators are
the natural generalisation of the derivative ∂z defined into the space C[[z]]. Namely,
we have

Definition 5. Let α ∈ Q+. The linear operator on the space of formal power series
∂αz : C[[zα]]→ C[[zα]] defined by the formula

(4) ∂αz

( ∞∑
n=0

un
Γ(1 + αn)

zαn
)

=

∞∑
n=0

un+1

Γ(1 + αn)
zαn

is called an α-derivative.
The right-inversion operator ∂−αz : C[[zα]]→ C[[zα]] given by

∂−αz

( ∞∑
n=0

un
Γ(1 + αn)

zαn
)

=

∞∑
n=1

un−1

Γ(1 + αn)
zαn

is called an α-integral.

Remark 1. Observe that such defined α-derivative satisfies

∂αz z
αn =

{
0 for n = 0

Γ(1+αn)
Γ(1+α(n−1))z

α(n−1) for n = 1, 2, 3, ...

The same property has the Caputo derivative, which is defined (see (2.4.15) and
(2.4.14) in [13]) by

CDα
0+ϕ(z) :=

1

Γ(n− α)

∫ z

0

ϕ(n)(t) dt

(z − t)α−n−1
for α 6∈ N0, n ∈ N, n− 1 < α < n

and CDn
0+ϕ(z) := ϕ(n)(z) for n ∈ N. Precisely speaking, the Caputo derivative

satisfies (see Property 2.16 and (2.1.17) in [13])

CDα
0+z

β =
Γ(1 + β)

Γ(1 + β − α)
zβ−α, CDα

0+z
k = 0 for k = 0, ..., n− 1,

where n− 1 < α < n, β > n− 1, and n ∈ N.

Analogously, the α-integral satisfies ∂−αz zαn = Γ(1+αn)
Γ(1+α(n+1))z

α(n+1). The same

property has the Riemann-Liouville fractional integral defined (see (2.2.1) in [13])
by

Iα0+ϕ(z) :=
1

Γ(α)

∫ z

0

ϕ(t) dt

(z − t)1−α ,

which satisfies (see (2.2.10) in [13]) for β > −1:

Iα0+z
β =

Γ(1 + β)

Γ(1 + α+ β)
zα+β .

We have
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Proposition 2. If ϕ̂(z) ∈ C[[zα]] and m ∈ N then

(5) (∂−αz )mϕ̂(z) = ∂z

∫ z

0

(z − s)mα

Γ(1 +mα)
ϕ̂(s) ds.

Proof. Let ϕ̂(z) =
∑∞
n=0

ϕn

Γ(1+nα)z
nα. Then the right-hand side of (5) is equal to

RHS = ∂z

∞∑
n=0

ϕn
Γ(1 + nα)Γ(1 +mα)

∫ z

0

(z − s)mαsnα ds.

Moreover, using the beta integral we have∫ z

0

(z − s)mαsnα ds = z(m+n)α+1

∫ 1

0

(1− t)mαtnα dt

= z(m+n)α+1B(1 +mα, 1 + nα) = z(m+n)α+1 Γ(1 +mα)Γ(1 + nα)

Γ(2 + (m+ n)α)
.

Hence

RHS = ∂z

∞∑
n=0

ϕn
Γ(2 + (m+ n)α)

z(m+n)α+1 =
∞∑
n=0

ϕn
Γ(1 + (m+ n)α)

z(m+n)α

=

∞∑
n=m

ϕn−m
Γ(1 + nα)

znα = LHS.

�

Definition 6. We say that a function u(z) is α-analytic on G ⊆ C (or, generally,
on G ⊆ Cn), where G is a complex neighbourhood of the origin, if and only if the
function ζ 7→ u(ζ1/α) is analytic for every z = ζ1/α ∈ G. The space of α-analytic
functions on G is denoted by Oα(G).

We also say that a function u(t, z) is (α, β)-analytic on G1×G2 ⊆ C2 if and only if
the function (τ, ζ) 7→ u(τ1/α, ζ1/β) is analytic for every (t, z) = (τ1/α, ζ1/β) ∈ G1×
G2. The space of (α, β)-analytic functions on G1×G2 is denoted by Oα,β(G1×G2).

Moreover, analogously to Definition 1, we denote byOsα(Ŝd) (resp. byOsα,β(Ŝd1×
Ŝd2)) the space of α-analytic functions on Ŝd (resp. the space of (α, β)-analytic

functions on Ŝd1 × Ŝd2) of exponential growth of order at most s there.

If the formal power series û(z) ∈ C[[zα]] is convergent in a complex neighbour-
hood of the origin, then its sum u(z) is the α-analytic function near the origin. For
such functions we have well defined α-derivative given by (4), which coincides with
the Caputo fractional derivative (see Remark 1).

We also define the α-Taylor series of u(z) ∈ Oα(D) by the formula

u(z) =

∞∑
n=0

(∂αz )nu(0)

Γ(1 + αn)
zαn.

Remark 2. For any z0 ∈ C we define the α-derivative on the space C[[(z− z0)α]] by
the formula

∂αz−z0

( ∞∑
n=0

un
Γ(1 + αn)

(z − z0)αn
)

=

∞∑
n=0

un+1

Γ(1 + αn)
(z − z0)αn.
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If the formal power series û(z) ∈ C[[(z − z0)α]] is convergent in a neighbourhood
G of z0, then its sum u(z) is the α-analytic function with respect to z0 on G. The
α-Taylor series of u(z) with respect to z0 is given by

u(z) =

∞∑
n=0

(∂αz−z0)nu(z0)

Γ(1 + αn)
(z − z0)αn.

Definition 7. The α-exponentional function eα(z) is defined by

eα(z) := Eα(zα) =

∞∑
n=0

zαn

Γ(1 + αn)
,

where Eα(z) denotes the Mittag-Leffler function.

The function eα(z) plays the role of the exponential function ez in the case of
α-analytic functions. By the definition of eα(z) and by the results on the Mittag-
Leffler function (see [22]), we have

Proposition 3. The function eα(z) satisfies the following properties:

a) eα(z) ∈ Oα(C) and there exists C <∞ such that |eα(z)| ≤ Ce|z| for every
z ∈ C,

b) for every a ∈ C we have ∂αz eα(az) = aαeα(az),
c) if α < 2 and arg z ∈ (π/2, 2π/α− π/2) then eα(z)→ 0 as z →∞.

Remark 3. Observe that eα(z) satisfies{
(∂αz − 1)eα(z) = 0
eα(0) = 1.

More generally, for every m ∈ N we define the function eα,m(z) as the solution of
the Cauchy problem (∂αz − 1)meα,m(z) = 0

(∂αz )jeα,m(0) = 0 for j = 0, ...,m− 2
(∂αz )m−1eα,m(0) = 1.

It means that
(6)

eα,m(z) =

∞∑
n=0

n(n− 1) · ... · (n−m+ 2)

(m− 1)!

zαn

Γ(1 + αn)
=

∞∑
n=m−1

(
n

m− 1

)
zαn

Γ(1 + αn)
.

In a similar way to eα(z), the function eα,m(z) satisfies the properties a) and c) of
Proposition 3.

Since α ∈ Q+ and every q/p-analytic function is also 1/p-analytic, without loss of
generality we may take α = 1/p, where p ∈ N. Observe that 1/p-analytic function
is in fact an analytic function defined on the Riemann surface of p

√
z. Hence we

have the following integral representation

Proposition 4 (see Lemma 1 in [20]). Let ϕ(z) ∈ O1/p(Dr). Then for every
|z| < ε < r and k ∈ N we have

(7) (∂1/p
z )kϕ(z) =

1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

0

ζk/pe1/p(zζ)e−wζ dζ dw
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for θ ∈ (− argw − π/2,− argw + π/2), where
∮ p
|w|=ε denotes that we integrate p

times around the positively oriented circle of radius ε.
Moreover, there exist % ∈ (0, r) and A,B <∞ such that

sup
|z|<%

|(∂1/p
z )kϕ(z)| ≤ ABk/pΓ(1 + k/p) for k = 0, 1, ...

The formula (7) motivates the introduction of some kind of pseudodifferential
operators on the space of 1/p-analytic functions. To this end, let q(ξ) be an analytic

function for |ξ| > |ζ1/p
0 | of polynomial growth at infinity. Following [20] we define

q(∂1/p
z )e1/p(zζ) := q(ζ1/p)e1/p(zζ).

Hence for every ϕ(z) ∈ O1/p(Dr) we have

(8) q(∂1/p
z )ϕ(z) :=

1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

q(ζ1/p)e1/p(zζ)e−wζ dζ dw

with θ ∈ (− argw − π/2,− argw + π/2). Since q(ξ) is a holomorphic function for

|ξ| > |ζ1/p
0 | and is of polynomial growth at infinity, the left-hand side of (8) is a

well-defined 1/p-analytic function in a complex neighbourhood of the origin.

Now we introduce the operators Bα,β , which are related to the modified k-Borel
operators Bk. Using the operators Bα,β we reduce the question about summability
to the study of the solution of the appropriate Kowalevskaya type equation.

Definition 8. Let α, β ∈ Q+. We define a linear operator on the space of formal
power series

Bα,β : E[[tα]]→ E[[tβ ]]

by the formula

Bα,β
(
û(t, z)

)
= Bα,β

( ∞∑
n=0

un(z)

Γ(1 + αn)
tαn
)

:=

∞∑
n=0

un(z)

Γ(1 + βn)
tβn.

Observe that for any formal series û(t, z) ∈ E[[t]] and µ, ν ∈ N, µ > ν, we get

Bkû(t, z) = (B1,µ/ν û)(tν/µ, z) with µ/ν = 1 + 1/k.

Hence for k ∈ Q+ we reformulate Proposition 1 as follows

Proposition 5. Let µ, ν ∈ N, µ > ν, k = (µ/ν − 1)−1. Then the formal series
û(t, z) ∈ E[[t]] is k-summable in a direction d if and only if

B1,µ/ν û(t, z) ∈ Ok+1
µ/ν,1(Ŝ(d+2jπ)ν/µ ×D) for j = 0, ..., µ− 1.

We recall the important properties of the operators Bα,β , which play the crucial
role in our study of summability. Namely, immediately from the definition we have

Proposition 6 (see also Proposition 4 in [20]). Let α, β ∈ Q+ and û(t, z) ∈ E[[tα]].
Then operator Bα,β and derivatives satisfy the following commutation formulas:

a) Bα,β∂αt û(t, z) = ∂βt B
α,β û(t, z),

b) Bα,β∂zû(t, z) = ∂zB
α,β û(t, z),

c) Bα,βP (∂αt , ∂z)û(t, z) = P (∂βt , ∂z)B
α,β û(t, z) for any polynomial P (λ, ξ)

with constant coefficients.

At the end of this section, following [20], we extend the notion of Gevrey orders
and Borel summability to formal power series in t1/p.
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Definition 9. Let γ ∈ Q+. The Banach space of γ-analytic functions on Dr,
continuous on its closure and equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted

by Eγ(r).

Definition 10. Let k > 0 and γ ∈ Q+. A formal power series

û(t, z) :=

∞∑
j=0

uj(z)t
j/p with uj(z) ∈ Eγ(r)

is 1/k-Gevrey formal power series in t1/p if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABj/pΓ(1 + j/kp) for j = 0, 1, . . .

with some positive constants A and B.
The set of 1/k-Gevrey formal power series in t1/p over Eγ(r) is denoted by

Eγ(r)[[t1/p]]1/k. We also set Eγ [[t1/p]]1/k :=
⋃
r>0

Eγ(r)[[t1/p]]1/k.

Definition 11. Let k > 0 and d ∈ R. A formal series û(t, z) ∈ Eγ [[t1/p]]1/k is
called k-summable in a direction d if and only if the series ŵ(t, z) := û(tp, z) is
kp-summable in a direction d/p.

Similarly to Proposition 5, we have the following characterisation of k-summability
by the operators Bα,β

Proposition 7 (see Proposition 7 in [20]). Let µ, ν ∈ N, µ > ν, k = (µ/ν − 1)−1

and d ∈ R. The formal series û(t, z) ∈ E1/p[[t
1/p]] is k-summable in a direction d

if and only if

B1/p,µ/νpû(t, z) ∈ Ok+1
µ/νp,1/p(Ŝ(d+2jπ)ν/µ ×D) for j = 0, ..., µ− 1.

4. The formal solution

In this section we find the formal solution of inhomogeneous fractional linear
PDE and we prove the version of Duhamel principle for fractional equations. We
also show that the solution of general inhomogeneous fractional equation is equal
to the sum of simple inhomogeneous pseudodifferential equations.

Let us consider the Cauchy problem for general inhomogeneous fractional linear
PDE with constant coefficients{

P (∂
1/p
t , ∂

1/p
z )ũ(t, z) =

ˆ̃
f(t, z)

(∂
1/p
t )nũ(0, z) = ϕn(z) ∈ O1/p(D) for n = 0, ...,m− 1,

(9)

where
ˆ̃
f(t, z) ∈ E1/p[[t

1/p]] and P (λ, ξ) is a polynomial of degree m ∈ N with respect
to λ. In other words

(10) P (λ, ξ) = P0(ξ)λm −
m∑
j=1

Pj(ξ)λ
m−j = P0(ξ)

(
λm −

m∑
j=1

P̃j(ξ)λ
m−j

)
,

where P0(ξ), ..., Pm(ξ) are polynomials and P̃j(ξ) := Pj(ξ)/P0(ξ) (j = 1, ...,m) are
rational functions.
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Without loss of generality we may assume that the Cauchy data ϕn(z) vanish.
Indeed, after substitution

u(t, z) := ũ(t, z)−
m−1∑
n=0

ϕn(z)

Γ(1 + n/p)
tn/p

we reduce the Cauchy problem (9) to{
P (∂

1/p
t , ∂

1/p
z )u(t, z) = f̂(t, z)

(∂
1/p
t )nu(0, z) = 0 for n = 0, ...,m− 1,

(11)

where

f̂(t, z) :=
ˆ̃
f(t, z)− P (∂

1/p
t , ∂1/p

z )

m−1∑
n=0

ϕn(z)

Γ(1 + n/p)
tn/p ∈ E1/p[[t

1/p]].

Using the pseudodifferential operators defined by (8) we have

P (∂
1/p
t , ∂1/p

z ) = P0(∂1/p
z )

(
(∂

1/p
t )m −

m∑
j=1

P̃j(∂
1/p
z )(∂

1/p
t )m−j

)
=: P0(∂1/p

z )P̃ (∂
1/p
t , ∂1/p

z ).

Observe that, if P0(∂
1/p
z ) 6= const. then the Cauchy problem (11) is not uniquely

determined. In the homogeneous case this problem was solving by the choice of
so called normalised formal solution (see [3] and [19]). In the inhomogeneous case
the formal solution is determined by the function ĝ(t, z) ∈ E1/p[[t

1/p]] (see also [9]),
which satisfies the equation

P0(∂1/p
z )ĝ(t, z) = f̂(t, z).

For given ĝ(t, z) there is exactly one formal solution û(t, z) of the Cauchy problem{
P̃ (∂

1/p
t , ∂

1/p
z )u(t, z) = ĝ(t, z)

(∂
1/p
t )nu(0, z) = 0 for n = 0, ...,m− 1,

(12)

which is also a solution of (11) and is called the formal solution of (11) determined
by ĝ(t, z).

We have

Proposition 8. The formal solution of (11) determined by ĝ(t, z) is given by

(13) û(t, z) =

∞∑
n=0

(∂
−1/p
t )n+mqn(∂1/p

z )ĝ(t, z),

where qn(ξ) is the solution of the difference equation

qn(ξ) =

m∑
j=1

P̃j(ξ)qn−j(ξ) for n ≥ 1(14)

with the initial conditions q0(ξ) = 1 and q−1(ξ) = ... = q−m+1(ξ) = 0.

Proof. Since qn(ξ) are rational functions, they are of polynomial growth at infin-
ity and they are holomorphic for sufficient large |ξ|. Hence the pseudodifferential

operators qn(∂
1/p
z ) are well defined.
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To finish the proof, it is sufficient to show that the formal series given by (13) is

a solution of (12). To this end observe that (∂
1/p
t )nû(0, z) = 0 for n = 0, ...,m− 1

and

P̃ (∂
1/p
t , ∂1/p

z )û(t, z)

= (∂1/p
z )

∞∑
n=0

(∂
−1/p
t )nqn(∂1/p

z )ĝ(t, z)−
m∑
j=1

∞∑
n=0

(∂
−1/p
t )n+jP̃j(∂

1/p
z )qn(∂1/p

z )ĝ(t, z)

=

∞∑
n=0

(∂
−1/p
t )nqn(∂1/p

z )ĝ(t, z)−
∞∑
n=1

m∑
j=1

(∂
−1/p
t )nP̃j(∂

1/p
z )qn−j(∂

1/p
z )ĝ(t, z)

=

∞∑
n=0

(∂
−1/p
t )nqn(∂1/p

z )ĝ(t, z)−
∞∑
n=1

(∂
−1/p
t )nqn(∂1/p

z )ĝ(t, z)

= q0(∂1/p
z )ĝ(t, z) = ĝ(t, z).

�

Now, we show the following version of Duhamel’s principle.

Theorem 1. The formal power series û(t, z) is a solution of (11) determined by
ĝ(t, z) if and only if

û(t, z) = (∂
1/p
t )p−1

∫ t

0

û(t, z; s) ds,

where û(t, z; s) is a formal solution of homogeneous equation


P̃ (∂

1/p
t−s, ∂

1/p
z )u(t, z; s) = 0

(∂
1/p
t−s)

nu(t, z; s)|t=s = 0 (n = 0, ...,m− 2)

(∂
1/p
t−s)

m−1u(t, z; s)|t=s = ĝ(s, z)

(15)

for every s ∈ [0, t].

Proof. By the 1/p-Taylor formula, the solution of (15) is given by

(16) û(t, z; s) =

∞∑
n=0

(t− s)n/p

Γ(1 + n/p)
q̃n(∂1/p

z )ĝ(s, z),

where q̃n(ξ) satisfies the difference equation (14) for n ≥ m with the initial condi-
tions q̃0(ξ) = ... = q̃m−2(ξ) = 0 and q̃m−1(ξ) = 1. It means that

q̃n(ξ) = qn−m+1(ξ) for n ≥ 0,(17)
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where qn−m+1(ξ) were defined in Proposition 8. Hence, by (16), (17) and Proposi-
tion 2, we have∫ t

0

û(t, z; s) ds =

∞∑
n=0

q̃n(∂1/p
z )

∫ t

0

(t− s)n/p

Γ(1 + n/p)
ĝ(s, z) ds

=

∞∑
n=0

q̃n(∂1/p
z )(∂

−1/p
t )n+pĝ(t, z)

=

∞∑
n=m−1

qn−m+1(∂1/p
z )(∂

−1/p
t )n−m+1(∂

−1/p
t )m−1+pĝ(t, z)

=

∞∑
n=0

qn(∂1/p
z )(∂

−1/p
t )n(∂

−1/p
t )m−1+pĝ(t, z).

Finally, by Proposition 8, we have

(∂
1/p
t )p−1

∫ t

0

û(t, z; s) ds =

∞∑
n=0

qn(∂1/p
z )(∂

−1/p
t )n(∂

−1/p
t )mĝ(t, z) = û(t, z).

�

Let λ1(ξ), ..., λl(ξ) be characteristic roots of λ 7→ P (λ, ξ) of multiplicity m1,...,ml

(m1 + ...+ml = m), where P (λ, ξ) is a polynomial defined by (10). It means that

(18) P (λ, ξ) = P0(ξ)P̃ (λ, ξ) = P0(ξ)(λ− λ1(ξ))m1 ...(λ− λl(ξ))ml

and λj(ξ) are algebraic functions. Hence there exists R <∞ such that the functions
λj(ξ) are holomorphic for |ξ| ≥ R, at least in the multiple-valued sense. Moreover
for every characteristic function λj(ξ) there exist a pole order qj ∈ Q and a leading
term λj ∈ C \ {0} satisfying limξ→∞ λj(ξ)/ξ

qj = λj . Hence, as in (8), we have the

pseudodifferential operator λj(∂
1/p
z ), which for every ϕ(z) ∈ O1/p(Dr) is defined by

(19) λj(∂
1/p
z )ϕ(z) :=

1

2pπi

∮ p

|w|=ε
ϕ(w)

∫ ∞(θ)

ζ0

λj(ζ
1/p)e1/p(zζ)e−wζ dζ dw,

where ζ0 = Rpeiθ, θ ∈ (− argw − π/2,− argw + π/2) and ε < r. Observe that by

(18) we can factor the operator P (∂
1/p
t , ∂

1/p
z ) as

P (∂
1/p
t , ∂1/p

z ) = P0(∂1/p
z )(∂

1/p
t − λ1(∂1/p

z ))m1 ...(∂
1/p
t − λl(∂1/p

z ))ml .

Now, using Proposition 8 and the factorisation of operator P̃ (∂
1/p
t , ∂

1/p
z ), we

obtain the following decomposition of solution of (11) determined by ĝ(t, z) .

Theorem 2. Let û(t, z) be a formal solution of

P̃ (∂
1/p
t , ∂1/p

z )u(t, z) = ĝ(t, z), (∂
1/p
t )nu(0, z) = 0 n = 0, ...,m− 1,

where

P̃ (∂
1/p
t , ∂1/p

z ) = (∂
1/p
t − λ1(∂1/p

z ))m1 ...(∂
1/p
t − λl(∂1/p

z ))ml .

Then û(t, z) =
∑l
j=1

∑mj

k=1 ûjk(t, z), where ûjk(t, z) is a formal solution of{
(∂

1/p
t − λj(∂1/p

z ))kujk(t, z) = ĝjk(t, z)

(∂
1/p
t )nujk(0, z) = 0 n = 0, ..., k − 1



MULTISUMMABILITY OF FORMAL SOLUTIONS 13

and ĝjk(t, z) = djk(∂
1/p
z )ĝ(t, z) for some holomorphic functions djk(ξ) of polynomial

growth.

Proof. By Theorem 1, û(t, z) = (∂
1/p
t )p−1

∫ t
0
û(t, z; s) ds and û(t, z; s) is a solution

of 
P (∂

1/p
t−s, ∂

1/p
z )u(t, z; s) = 0

(∂
1/p
t−s)

nu(t, z; s)|t=s = 0 for n = 0, ...,m− 2

(∂
1/p
t−s)

m−1u(t, z; s)|t=s = ĝ(s, z).

Let us recall that

û(t, z; s) =

∞∑
n=0

(t− s)n/p

Γ(1 + n/p)
q̃n(∂1/p

z )ĝ(s, z),

where the rational functions q̃n(ξ) satisfy

q̃n(ξ) =

m∑
j=1

P̃j(ξ)q̃m−j(ξ) (n ≥ m), q̃0(ξ) = ... = q̃m−2(ξ) = 0, q̃m−1(ξ) = 1.

On the other hand

q̃n(ξ) =

l∑
j=1

mj−1∑
k=0

cjk(ξ)
n!

(n− k)!
λnj (ξ),

where cjk(ξ) are the holomorphic functions of polynomial growth for sufficiently
large |ξ| (see Section 5 in [19] for more details) and λj(ξ) are characteristic roots
of multiplicity mj .

It means that

û(t, z; s) =
( l∑
j=1

mj−1∑
k=0

cjk(∂1/p
z )

∞∑
n=0

n!

(n− k)!
λnj (∂1/p

z )
(t− s)n/p

Γ(1 + n/p)

)
ĝ(s, z).

Hence

û(t, z; s) =
l∑

j=1

mj−1∑
k=0

ûjk(t, z; s)

and

ûjk(t, z; s) = cjk(∂1/p
z )

∞∑
n=0

n!

(n− k)!
λnj (∂1/p

z )
(t− s)n/p

Γ(1 + n/p)
ĝ(s, z)

satisfies the equation
(∂

1/p
t−s − λj(∂

1/p
z ))kujk(t, z; s) = 0

(∂
1/p
t−s)

nujk(t, z; s)|t=s = 0 for n = 0, ..., k − 1

(∂
1/p
t−s)

kujk(t, z; s)|t=s = ĝjk(s, z),

where

ĝjk(t, z) = djk(∂1/p
z )ĝ(t, z) and djk(ξ) = k!cjk(ξ)λkj (ξ).

Applying once again Theorem 1 we obtain the assertion. �
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By the above theorem, it is sufficient to consider the equation

{
(∂

1/p
t − λ(∂

1/p
z ))ku(t, z) = ĝ(t, z)

(∂
1/p
t )nu(0, z) = 0, n = 0, ..., k − 1.

We will investigate the behaviour of solution û(t, z) depends on the pole order q of
the characteristic root λ(ξ).

• For q = 1 we will study the analytic continuation property of u(t, z) depends
on g(t, z).
• For q > 1 we will study the summability property of û(t, z) depends on
ĝ(t, z).

5. Gevrey estimates

In this section we study the Gevrey order of formal solution to inhomogeneous
equation. The similar result was proved by Balser and Yoshino [9].

Theorem 3. Let û(t, z) be a formal solution of (11) determined by a Gevrey series

ĝ(t, z) ∈ E1/p[[t
1/p]]s of order s > 0 and let û(t, z) =

∑l
j=1

∑mj−1
k=0 ûjk(t, z) be a

decomposition of solution constructed in Theorem 2. Then ûjk(t, z) is a Gevrey
series of order max{qj − 1, s} with respect to t, where qj ∈ Q is a pole order of
characteristic root λj(ξ).

Proof. By Theorem 2, ûjk(t, z) is a formal solution of

{
(∂

1/p
t − λj(∂1/p

z ))kujk(t, z) = ĝjk(t, z)

(∂
1/p
t )nujk(0, z) = 0 for n = 0, ..., k − 1,

where ĝjk(t, z) = djk(∂
1/p
z )ĝ(t, z). By Theorem 1, ûjk(t, z) = (∂

1/p
t )p−1

∫ t
0
ûjk(t, z; s) ds,

where ûjk(t, z; s) satisfies


(∂

1/p
t − λj(∂1/p

z ))kujk(t, z; s) = 0

(∂
1/p
t )nu(t, z; s)|t=s = 0 for n = 0, ..., k − 2

(∂
1/p
t )k−1u(t, z; s)|t=s = ĝjk(s, z).

If ĝ(t, z) =
∑∞
m=0

gm(z)
Γ(1+m/p) t

m/p then ĝjk(t, z) =
∑∞
m=0

djk(∂1/p
z )gm(z)

Γ(1+m/p) tm/p. Hence

ûjk(t, z; s) =

∞∑
n=0

∞∑
m=0

(t− s)n/psm/p

Γ(1 + n/p)Γ(1 +m/p)

n!

(n− k)!
λn(∂1/p

z )djk(∂1/p
z )gm(z)
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and using the beta integral

ûjk(t, z) = (∂
1/p
t )p−1

∫ t

0

ûjk(t, z; s) ds

=

∞∑
n=0

∞∑
m=0

n!

(n− k)!
λn(∂1/p

z )djk(∂1/p
z )gm(z)(∂

1/p
t )p−1

∫ t

0

(t− s)n/psm/p

Γ(1 + n/p)Γ(1 +m/p)
ds

=

∞∑
n=0

∞∑
m=0

n!

(n− k)!
λn(∂1/p

z )djk(∂1/p
z )gm(z)(∂

1/p
t )p−1 t

n+m
p +1

Γ(2 + n+m
p )

=

∞∑
n=0

∞∑
m=0

n!

(n− k)!
λn(∂1/p

z )djk(∂1/p
z )gm(z)

t
n+m+1

p

Γ(1 + n+m+1
p )

=

∞∑
l=1

tl/p

Γ(1 + l/p)

l−1∑
m=0

(l −m− 1)!

(l −m− 1− k)!
λl−m−1(∂1/p

z )djk(∂1/p
z )gm(z)

=:

∞∑
l=1

ul(z)t
l/p

Γ(1 + l/p)
.

Since ĝ(t, z) ∈ E1/p[[t
1/p]]s, there exist A,B <∞ and % > 0 such that

sup
|z|<%/2

|gm(z)| ≤ ABmΓ(1 +m(s+ 1)/p) for m = 0, 1, ...

Now, repeating the proof of Theorem 1 in [19], we obtain the estimate

|ul(z)| ≤
l−1∑
m=0

(l −m− 1)!

(l −m− 1− k)!
|λl−m−1(∂1/p

z )djk(∂1/p
z )gm(z)|

≤ ÃB̃l
l−1∑
m=0

Γ(1 + (l −m− 1)q/p)Γ(1 +m(s+ 1)/p)

for z ∈ D%/2. Hence there exist C,D <∞ such that

sup
|z|<%/2

|ul(z)| ≤ CDlΓ(1 + l(s̃+ 1)/p) for l = 0, 1, 2, ...,

where s̃ = max{s, q − 1}. �

6. Analytic solution

In this section we study the solution of the Cauchy problem{
(∂

1/p
t − λ(∂

1/p
z ))mu(t, z) = g(t, z)

(∂
1/p
t )nu(0, z) = 0, n = 0, ...,m− 1,

(20)

where g(t, z) ∈ O1/p(D
2), λ(ξ) ∈ O(|ξ| > |ζ1/p

0 |) and limξ→∞ λ(ξ)/ξ = λ ∈ C \ {0}.
We would like to find the necessary and sufficient conditions for the analytic

continuation property of solution

(21) u(t, z) ∈ Os1/p(Ŝd ×D)

in terms of inhomogeneity g(t, z).
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Since g(t, z) = (∂
1/p
t − λ(∂

1/p
z ))mu(t, z), we immediately obtain the necessary

condition for (21)

u(t, z) ∈ Os1/p(Ŝd ×D) =⇒ g(t, z) ∈ Os1/p(Ŝd ×D).

But this condition is too weak, as the following example shows. Let us consider the
equation

∂tu− ∂zu =
1

(1− z)2
, u(0, z) = 0.

Observe that the inhomogeneity satisfies g(t, z) = 1
(1−z)2 ∈ O(Ŝ0 × D), but the

solution u(t, z) = 1
1−t−z −

1
1−z is not analytic on Ŝ0 ×D.

To find the better characterisation of (21) in terms of g(t, z), we define the
function
(22)

Gm(g, λ(·); t, z) :=

∫ t

0

∮ p

|w|=ε
g(s, w)

∫ ∞
ζ0

e1/p,m((t−s)λp(ζ1/p))e1/p(zζ)e−wζ dζ dw ds,

where the function e1/p,m(z) is given by (6).
Deforming the path of integration with respect to w in (22) and repeating the

proof of Lemma 3 in [20] (see also Lemma 2 in [19]) we obtain

Lemma 1. Let s > 1 and g(t, z) ∈ Os1/p(Ŝd×Ŝd+p arg λ). Then also Gm(g, λ(·); t, z) ∈
Os1/p(Ŝd × Ŝd+p arg λ).

We show the connection between the function Gm(g, λ(·); t, z) and the solution
of the Cauchy problem (20)

Lemma 2. Let u(t, z) be a solution of (20). Then the function Gm(g, λ(·); t, z)
satisfies the following formulas

(a) λm−1(∂
1/p
z )u(t, z) = (∂

1/p
t )p−1 1

2pπiGm(g, λ(·); t, z),
(b) λk(∂

1/p
z )Gm−k(g, λ(·); t, z) = (∂

1/p
t −λ(∂

1/p
z ))kGm(g, λ(·); t, z) for k = 0, ...,m−

1,

(c) g(t, z) = (∂
1/p
t − λ(∂

1/p
z ))(∂

1/p
t )p−1 1

2pπiG1(g, λ(·); t, z).

Proof. By Theorem 1 we have that

λm−1(∂1/p
z )u(t, z) = (∂

1/p
t )p−1

∫ t

0

∞∑
n=m−1

(t− s)n/p

Γ(1 + n/p)

(
n

m− 1

)
λn(∂1/p

z )g(s, z) ds

= (∂
1/p
t )p−1

∫ t

0

1

2pπi

∮ p

|w|=ε
g(s, w)

∫ ∞
ζ0

e1/p,m((t− s)λp(ζ1/p))e1/p(zζ)e−wζ dζ dw ds

= (∂
1/p
t )p−1 1

2pπi
Gm(g, λ(·); t, z).

Hence we obtain (a). To show (b) we take k ∈ {0, ...,m− 1} and v(t, z) = (∂
1/p
t −

λ(∂
1/p
z ))ku(t, z). Applying (a) we have

(23) λm−1(∂1/p
z )v(t, z) = (∂

1/p
t )p−1 1

2pπi
(∂

1/p
t − λ(∂1/p

z ))kGm(g, λ(·); t, z).
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On the other hand, v(t, z) satisfies (20) with m replaced by m− k. Hence by (a)

(24) λm−1−k(∂1/p
z )v(t, z) = (∂

1/p
t )p−1 1

2pπi
Gm−k(g, λ(·); t, z)

Combining (23) and (24) we obtain (b). To show (c) we consider the Cauchy
problem (20) with m = 1. Then by (a) we have

g(t, z) = (∂
1/p
t − λ(∂1/p

z ))u(t, z) = (∂
1/p
t − λ(∂1/p

z ))(∂
1/p
t )p−1 1

2pπi
G1(g, λ(·); t, z).

�

Combining Lemmas 1 and 2 we obtain

Proposition 9. Let us assume that s > 1, d ∈ R and û(t, z) is a formal solution
of (20). Then

u(t, z) ∈ Os1/p(Ŝd × Ŝd+p arg λ)⇐⇒ g(t, z) ∈ Os1/p(Ŝd × Ŝd+p arg λ).

By the above, we have the sufficient condition for (21)

g(t, z) ∈ Os1/p(Ŝd × Ŝd+p arg λ) =⇒ u(t, z) ∈ Os1/p(Ŝd ×D),

which unfortunately is too strong. Indeed, the function u(t, z) = t
1−z ∈ O(Ŝ0 ×D)

is a solution of

∂tu− ∂zu =
1

1− z
− t

(1− z)2
, u(0, z) = 0,

but inhomogeneity is not analytic on Ŝ0 × Ŝ0.
From this we must find another condition on inhomogeneity, which characterise

the solution of (20) satisfying (21). Such condition, unfortunately not so direct, is
given by

Proposition 10. Let us assume that s > 1, d ∈ R and û(t, z) is a formal solution
of (20). Then

u(t, z) ∈ Os1/p(Ŝd ×D)⇐⇒ Gm(g, λ(·); t, z) ∈ Os1/p(Ŝd ×D).

Proof. Immediately by Lemma 2. �

By Lemma 2, we have

Remark 4. If Gm(g, λ(·); t, z) ∈ Os1/p(Ŝd×D) then also Gj(g, λ(·); t, z) ∈ Os1/p(Ŝd×
D) for j = 1, ...,m− 1 and g(t, z) ∈ Os1/p(Ŝd ×D).

Similarly, by Proposition 9, we obtain

Remark 5. If g(t, z) ∈ Os1/p(Ŝd × Ŝd+p arg λ) then Gm(g, λ(∂
1/p
z ); t, z) ∈ Os1/p(Ŝd ×

D).

As a corollary to Theorem 2, we have

Proposition 11. Let û(t, z) =
∑l
j=1

∑mj−1
k=0 ûjk(t, z) be a decomposition of solu-

tion of (11) constructed in Theorem 2. Then for n1, n2 ∈ N, s > 1 and d1, d2 ∈ R we

have that u(t, z) ∈ Osn1/p,n2/p
(Ŝd1×D) if and only if ujk(t, z) ∈ Osn1/p,n2/p

(Ŝd1×D)

for every k = 1, ..,mj and j = 1, ..., l.
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Proof. (⇐=) If ujk(t, z) ∈ Osm/p,n/p(Ŝd1 ×D) for every k = 1, ..,mj and j = 1, ..., l

then also û(t, z) =
∑l
j=1

∑mj

k=1 ûjk(t, z) satisfies the same property.

(=⇒) We define for k = 1, ..,mj and j = 1, ..., l the operator

Pjk(∂
1/p
t , ∂1/p

z ) := (∂
1/p
t − λj(∂1/p

z ))mj−k
l∏

n=1,n6=j

(∂
1/p
t − λn(∂1/p

z ))mn .

Observe that ũjk(t, z) := Pjk(∂
1/p
t , ∂

1/p
z )u(t, z) satisfies the equation{

(∂
1/p
t − λj(∂1/p

z ))kũjk(t, z) = ĝ(t, z)

(∂
1/p
t )nũjk(0, z) = 0, n = 0, ..., k − 1.

On the other hand, by Theorem 2, ujk(t, z) satisfies{
(∂

1/p
t − λj(∂1/p

z ))kujk(t, z) = ĝjk(t, z)

(∂
1/p
t )nujk(0, z) = 0, n = 0, ..., k − 1,

where ĝjk(t, z) = djk(∂
1/p
z )ĝ(t, z). Hence

ujk(t, z) = djk(∂1/p
z )ũjk(t, z) = djk(∂1/p

z )Pjk(∂
1/p
t , ∂1/p

z )u(t, z)

and if u(t, z) ∈ Osm/p,n/p(Ŝd1 ×D) then also ujk(t, z) ∈ Osm/p,n/p(Ŝd1 ×D). �

7. Summable solution

If the pole order of λ(ξ) is equal to q > 1, we apply the operator B1/p,q/p to the
study of summability property. In this way we reduce the problem of summability
to the study of the analytic solutions of the Kowalevskaya type equations considered
in the previous section. As a result, we obtain the characterisation of summability
of û(t, z) in terms of ĝ(t, z).

Theorem 4. Let us assume that û(t, z) is a formal solution of the equation{
(∂

1/p
t − λ(∂

1/p
z ))mu(t, z) = ĝ(t, z)

(∂
1/p
t )ju(0, z) = 0 j = 0, ...,m− 1,

(25)

a pole order of λ(ξ) is equal to q = µ/ν > 1 (µ, ν ∈ N) and d ∈ R.
Then the following conditions are equivalent

(a) û(t, z) is (q − 1)−1-summable in a direction d,

(b) B1/p,q/pû(t, z) ∈ Oq/(q−1)
q/p,1/p (Ŝ(d+2nπ)/q ×D) for n = 0, ..., µ− 1,

(c) Gm(B1/p,q/pĝ, λ̃j(∂
1/νp
z ); t, z) ∈ Oq/(q−1)

q/p,1/p (Ŝ(d+2nπ)/q×D) for n = 0, ..., µ−1

and j = 0, ..., µ− 1, where λ̃j(ξ) := ej2πi/µλ1/µ(ξν).

Proof. The equivalence between (a) and (b) is given by Proposition 7. To show
equivalence between (b) and (c), observe that v(t, z) := B1/p,q/pû(t, z) satisfies the
equation{

(∂
µ/νp
t − λ((∂

1/νp
z )ν))mv(t, z) = ĥ(t, z)

(∂
1/νp
t )jv(0, z) = 0, j = 0, ..., µm− 1,
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where ĥ(t, z) = B1/p,q/pĝ(t, z). By Theorem 2, v(t, z) =
∑µ−1
j=0

∑m
k=1 vjk(t, z) and

vjk(t, z) satisfies the equation{
(∂

1/νp
t − λ̃j(∂1/νp

z ))kvjk(t, z) = ĥjk(t, z),

(∂
1/νp
t )nvjk(0, z) = 0, n = 0, ..., k − 1,

(26)

where ĥjk(t, z) = djk(∂
1/νp
z )ĥ(t, z) for some holomorphic functions djk(ξ) of poly-

nomial growth and λ̃j(ξ) := ej2πi/µλ1/µ(ξν). Observe that a pole order of λ̃j(ξ) is
equal to 1.

By Proposition 11, v(t, z) ∈ Oq/(q−1)
q/p,1/p (Ŝ(d+2nπ)/q × D) if and only if vjk(t, z) ∈

Oq/(q−1)
q/p,1/p (Ŝ(d+2nπ)/q×D) (n ∈ N) for j = 0, ..., µ−1 and k = 1, ...,m. Moreover, by

Proposition 10, vjk(t, z) ∈ Oq/(q−1)
q/p,1/p (Ŝ(d+2nπ)/q) if and only if Gk(hjk, λ̃j(·); t, z) ∈

Oq/(q−1)
q/p,1/p (Ŝ(d+2nπ)/q × D). Since Gk(hjk, λ̃j(·); t, z) = djk(∂

1/νp
z )Gk(h, λ̃j(·); t, z)

and using Remark 4 we obtain the equivalence between (b) and (c). �

Corollary 1. Under the assumptions of Theorem 4, if moreover B1/p,q/pĝ(t, z) ∈
Oq/(q−1)
q/p,1/p (Ŝ(d+2kπ)/q× Ŝ(d+pλ+2lπ)/q) for every k = 0, ..., µ−1, l = 0, ..., µ−1, where

λ is a leading term of λ(ξ), then the formal solution û(t, z) of (25) is (q − 1)−1-
summable in a direction d.

Proof. Repeating the proof of Theorem 4 we have that

B1/p,µ/νpû(t, z) =

µ−1∑
j=0

m∑
k=1

vjk(t, z)

and vjk(t, z) satisfies (26). Observe that

lim
ξ→∞

λ̃j(ξ)

ξ
= lim
ξ→∞

e2jπi/µ
(λ(ξν)

ξµ

)1/µ

= e2jπi/µjλ1/µ =: λ̃j

and arg λ̃j = (arg λ+ 2jπ)/µ.

Hence B1/p,q/pĝ(t, z) ∈ Oq/(q−1)
q/p,1/p (Ŝ(d+2kπ)/q × Ŝ(d+2kπ)/q+pν arg λ̃j

) for j, k =

0, ..., µ − 1 if and only if B1/p,q/pĝ(t, z) ∈ Oq/(q−1)
q/p,1/p (Ŝ(d+2kπ)/q × Ŝ(d+2lπ+arg λ)/q)

(k, l = 0, ..., µ− 1). The conclusion is given by Remark 5. �

8. Multisummable solution

In this section we return to the general inhomogeneous equation{
P (∂

1/p
t , ∂

1/p
z )u(t, z) = f̂(t, z)

(∂
1/p
t )nu(0, z) = 0 for n = 0, ...,m− 1,

(27)

where

P (λ, ξ) = P0(ξ)

ñ∏
j=1

lj∏
i=1

(λ− λji(ξ))mji

and λji(ξ) is a characteristic root of pole order qj ∈ Q for j = 1, ..., ñ and i = 1, ..., lj .
Without loss of generality we may assume that there exist exactly n pole orders of
characteristic roots, which are greater than 1, say 1 < q1 < ... < qn < ∞ and let
µj , νj ∈ N and kj > 0 be such that µj/νj = qj and kj = (qi − 1)−1 for j = 1, ..., n.
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By the Duhamel principle the formal solution û(t, z) is determined by a for-
mal power series ĝ(t, z) ∈ E1/p[[t

1/p]], which satisfies the equation P0(∂z)ĝ(t, z) =

f̂(t, z).
By Theorem 2

(28) û(t, z) =

ñ∑
j=1

lj∑
i=1

mij∑
m=1

ûjim(t, z),

where ûjim(t, z) satisfies{
(∂

1/p
t − λji(∂1/p

z ))mujim(t, z) = ĝjim(t, z) = djim(∂
1/p
z )ĝ(t, z)

(∂
1/p
t )lujim(0, z) = 0 for n = 0, ...,m− 1.

To study of summability property of formal solution of (27), we define a kind of
multisummability as follows

Definition 12. Let (d1, ..., dn) ∈ Rn be an admissible multidirection. We say
that û(t, z) is (k1, ..., kn)-summable in the multidirection (d1, ..., dn) with respect
to decomposition (28) if and only if ûjim(t, z) is kj-summable in the direction dj
(for j = 1, ..., n) and is convergent (for j = n + 1, ..., ñ), where i = 1, ..., lj and
m = 1, ...,mji.

Remark 6. If g(t, z) ∈ O1/p(D
2) then, by Theorem 3, ûjim(t, z) is a Gevrey se-

ries of order qj − 1. Hence, if û(t, z) is (k1, ..., kn)-summable in the multidirection
(d1, ..., dn) then ûjim(t, z) is kj-summable in the direction dj (if qj > 1) or is conver-
gent (if qj ≤ 1). It means that û(t, z) is (k1, ..., kn)-summable in the multidirection
(d1, ..., dn) with respect to decomposition (28).

Observe that, by Theorem 4, we have

Theorem 5. Under the above conditions, the formal solution û(t, z) of (27) deter-
mined by ĝ(t, z) is (k1, ..., kn)-summable in an admissible multidirection (d1, ..., dn)

with respect to decomposition (28) if and only if Gmji
(B1/p,qj/pĝ, λ̃jik(∂

1/vjp
z ); t, z) ∈

Okj+1

qj/p,1/p
(Ŝ(dj+2lπ)/qj × D) for l = 0, ..., µj − 1 k = 0, ..., µj − 1, i = 1, ..., lj and

j = 1, ..., n, where λ̃jik(ξ) := ek2πi/µjλ
1/µj

ji (ξνj ).

Moreover, by Remark 6, we obtain

Corollary 2. Under the above conditions, the formal solution û(t, z) of (27) deter-
mined by g(t, z) ∈ O1/p(D

2) is (k1, ..., kn)-summable in an admissible multidirection

(d1, ..., dn) if and only if Gmji(B
1/p,qj/pg, λ̃jik(∂

1/vjp
z ); t, z) ∈ Okj+1

qj/p,1/p
(Ŝ(dj+2lπ)/qj×

D) for l = 0, ..., µj − 1 k = 0, ..., µj − 1, i = 1, ..., lj and j = 1, ..., n, where

λ̃jik(ξ) := ek2πi/µjλ
1/µj

ji (ξνj ).

Repeating the previous considerations with Theorem 4 replaced by Corollary 1,
we also obtain the following sufficient condition for multisummability

Corollary 3. Under the above conditions, if B1/p,qj/pĝ(t, z) ∈ Okj+1

qj/p,1/p
(Ŝ(dj+2kπ)/qj×

Ŝ(dj+pλji+2lπ)/qj ) for k = 0, ..., µj − 1, l = 0, ..., µj − 1, i = 1, ..., lj and j = 1, ..., n,
then the formal solution û(t, z) of (27) determined by ĝ(t, z) is (k1, ..., kn)-summable
in the admissible multidirection (d1, ..., dn) with respect to decomposition (28).
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9. Example

In the last section we give a simple example, which illustrate this theory. Namely,
let û(t, z) be a formal solution of

(∂t − ∂2
z )(∂t − ∂3

z )u(t, z) = f̂(t, z), u(0, z) = ∂tu(0, z) = 0.

Then û(t, z) = û1(t, z) + û2(t, z), where

(∂t − ∂2
z )u1(t, z) = c1(∂z)f̂(t, z) =: f̂1(t, z), u1(0, z) = 0, c1(ζ) =

1

ζ2(1− ζ)

(∂t − ∂3
z )u2 = c2(∂z)f̂(t, z) =: f̂2(t, z), u1(0, z) = 0, c2(ζ) =

1

ζ2(ζ − 1)
.

Observe that λ1(ζ) = ζ2 and λ2(ζ) = ζ3, so q1 = 2 and q2 = 3.
Applying the operators B1,qi we have that vi(t, s) := B1,qi ûi(t, s) (i = 1, 2)

satisfy

(∂2
t − ∂2

z )v1(t, z) = B1,2f̂1(t, z) =: g1(t, z), ∂nt v1(0, z) = 0, n = 0, 1

(∂3
t − ∂3

z )v2(t, z) = B1,3f̂2(t, z) =: g2(t, z), ∂nt v1(0, z) = 0, n = 0, 1, 2.

We have v1(t, z) = v11(t, z) + v12(t, z), where

(∂t − ∂z)v11(t, z) = d11(∂z)g1(t, z) =: g11(t, z), v11(0, z) = 0, d11(ζ) =
1

2ζ
,

(∂t + ∂z)v12(t, z) = d12(∂z)ĝ1(t, z) =: g12(t, z), v12(0, z) = 0, d12(ζ) = − 1

2ζ
.

It means that v11(t, z) =
∫ t

0
g11(s, z+ t−s) ds and v12(t, z) =

∫ t
0
g12(s, z−(t−s)) ds

Analogously v2(t, z) = v21(t, z) + v22(t, z) + v23(t, z), where

(∂t − ∂z)v21(t, z) = d21(∂z)g2(t, z) =: g21(t, z), v21(0, z) = 0, d21(ζ) =
1

3ζ2
,

(∂t − e2πi/3∂z)v22 = d22(∂z)g2(t, z) =: g22(t, z), v22(0, z) = 0, d22(ζ) =
e2πi/3

3ζ2
,

(∂t − e4πi/3∂z)v23 = d23(∂z)g2(t, z) =: g23(t, z), v23(0, z) = 0, d23(ζ) =
e4πi/3

3ζ2
.

Hence v21(t, z) =
∫ t

0
g21(s, z+ t− s) ds, v22(t, z) =

∫ t
0
g22(s, z+ e2πi/3(t− s)) ds and

v23(t, z) =
∫ t

0
g23(s, z + e4πi/3(t− s)) ds.

Finally, we have that if f(t, z) ∈ O(D2) then the formal solution û(t, z) is (1, 1/2)-
summable in a multidirection (d1, d2)

⇐⇒ v1(t, z) ∈ O2((Ŝd1/2 ∪ Ŝd1/2+π)×D) and v2(t, z) ∈ O3/2((Ŝd2/3 ∪ Ŝd2/3+2π/3 ∪
Ŝd2/3+4π/3)×D)
⇐⇒ the function f(t, z) satisfies the following conditions:

a)
∫ t

0
B1,2f(s, z + t− s) ds ∈ O2((Ŝd1/2 ∪ Ŝd1/2+π)×D),

b)
∫ t

0
B1,2f(s, z − (t− s)) ds ∈ O2((Ŝd1/2 ∪ Ŝd1/2+π)×D),

c)
∫ t

0
B1,3f(s, z + t− s) ds ∈ O3/2((Ŝd2/3 ∪ Ŝd2/3+2π/3 ∪ Ŝd2/3+4π/3)×D),

d)
∫ t

0
B1,3f(s, z + e2πi/3(t− s)) ds ∈ O3/2((Ŝd2/3 ∪ Ŝd2/3+2π/3 ∪ Ŝd2/3+4π/3)×D),

e)
∫ t

0
B1,3f(s, z + e4πi/3(t− s)) ds ∈ O3/2((Ŝd2/3 ∪ Ŝd2/3+2π/3 ∪ Ŝd2/3+4π/3)×D).
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