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Abstract. Caustics are curves with the property that a billiard trajectory, once tangent to it,
stays tangent after every reflection at the boundary of the billiard table. When the billiard table
is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal
ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are
closed polygons— are destroyed under generic perturbations of the billiard table. We prove
that none of the resonant elliptical caustics persists under a large class of explicit perturbations
of the original ellipse. This result follows from a standardMelnikov argument and the analysis
of the complex singularities of certain elliptic functions.
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1. Introduction and main result

Birkhoff [3] introduced the problem ofconvex billiard tablesmore than 80 years ago as a way
to describe the motion of a free particle inside a closed convex smooth curve. The particle is
reflected at the boundary according to the law “angle of incidence equals angle of reflection”.
Good modern starting points in the literature of the billiard problem are [11, 18].

Caustics—curves with the property that a billiard trajectory, once tangent to it, stays
tangent after every reflection— are the most distinctive geometric objects inside billiard
tables, since they are a geometric manifestation of the regularity of their tangent trajectories.
For example, integrable billiards have a continuum of caustics, whereas the nonexistence
of caustics inside a convex billiard table implies that there are some billiard trajectories
whose past and future behaviours differ dramatically. See,for instance, [13]. Hence, the
existence and persistence of caustics are two fundamental questions in billiards. Most of the
literature deals with convex caustics, since they are easier to understand and related to ordered
trajectories. Two exceptions are [8,§3] and [10].

We summarize the classical existence results as follows. Onthe one hand, if the boundary
curve is smooth enough and strictly convex, then there exists a collection of smooth convex
caustics close to the boundary of the table whose union has positive area [7, 12]. On the other
hand, Mather [13] proved that there are no smooth convex caustics inside a convex billiard
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table when its boundary curve has some flat point. Gutkin and Katok [8] gave a quantitative
version of Mather’s theorem.

The robustness of a smooth convex caustic is closely relatedto the arithmetic properties
of its rotation number, which measures the number of turns around the caustic per impact.
Caustics with Diophantine rotation numbers persist under small perturbations of the boundary
curve. This follows from standard KAM arguments [7, 12]. On the contrary,resonant caustics
—the ones whose tangent trajectories are closed polygons, so that their rotation numbers are
rational— are fragile structures that generically break up. See, for instance, [16].

This raises two complementary questions. First, to characterize the perturbations that
preserve/destroy a given resonant caustic of a billiard table. Second, to determine all resonant
caustics that are preserved/destroyed under a given perturbation of an integrable billiard table.
These questions have been studied by several authors. Baryshnikov and Zharnitsky [2] proved
that the perturbations preserving a given resonant causticof a smooth convex billiard table
form an infinite-dimensional Hilbert manifold. As a sample,we point out that this Hilbert
manifold is given by the set of billiard tables with constantwidth when the rotation number of
the unperturbed caustic is one half [10]. Concerning the second question, Ramı́rez-Ros [16]
gave a sufficient condition for the break-up of the resonant circular caustics inside a circular
billiard table, in terms of the Fourier coefficients of the perturbation, see Remark 3 below.

In this paper we tackle the second question when the billiardboundary is an ellipse. In
that case, the billiard dynamics is integrable and any billiard trajectory has a caustic [18]. The
caustics are the conics confocal to the original ellipse: confocal ellipses, confocal hyperbolas,
and the foci. Poncelet [15] showed that if a billiard trajectory inside an ellipse is a closed
polygon, then all the billiard trajectories sharing its caustic are also closed polygons. Even
more, if a billiard trajectory tangent to one of the elliptical caustics is a(m,n)-gon—a closed
polygon withn sides that makesm turns around its caustic—, then all the billiard trajectories
sharing its caustic are also(m,n)-gons, and their caustic is called(m,n)-resonant. (These
two definitions are not restricted to billiards inside ellipses.) We shall see in Section 4 that
there is a unique(m,n)-resonant elliptical caustic for any relatively prime integersm andn
such that1 ≤ m < n/2. Our main result is that all these resonant elliptical caustics break up
under a large class of explicit perturbations of the original ellipse, see Theorem 1.

The following notations are required to state the main result. Once fixed the ellipse

Q =

{

(x, y) ∈ R
2 :

x2

a2
+

y2

b2
= 1

}

, a > b > 0,

we consider its associated elliptic coordinates(µ, ϕ) given by the relations

x = c coshµ cosϕ, y = c sinh µ sinϕ,

wherec =
√
a2 − b2 is the semifocal distance ofQ. The equation of the ellipseQ in this

elliptic coordinates isµ ≡ µ0, wherecoshµ0 = a/c andsinh µ0 = b/c. Hence, any smooth
perturbationQǫ of the ellipseQ can be written in elliptic coordinates as

µ = µǫ(ϕ) = µ0 + ǫµ1(ϕ) + O(ǫ2), (1)

for some2π-periodic smooth functionµǫ(ϕ).
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Theorem 1. Letµ1(ϕ) be a2π-periodic entire function. Ifµ1(ϕ) is not constant (respectively,
µ′
1(ϕ) is notπ-antiperiodic), then none of the(m,n)-resonant elliptical caustics with oddn

(respectively, evenn) persists under the perturbation (1).

Our proof is based on the study of the persistence of the resonant rotational invariant
circles (resonant RICs) of some twist maps by means of a first-order Melnikov method. Only
convex caustics can be related to the RICs of those twist maps. Thus, there is no direct way to
extend the same procedure to the nonconvex caustic hyperbolas, but we believe that the same
results hold for them.

Remark1. If µǫ(ϕ) is constant, then the perturbed curvesQǫ are ellipses, so all caustics
(resonant or not) are preserved. Hence, the hypothesisµ1(ϕ) nonconstant is natural, since
we are using a first-order method. Nevertheless, we can stillstate some results when this
hypothesis fails. More precisely, let us assume that

µǫ(ϕ) = µ0 + ǫµ1 + · · ·+ ǫi−1µi−1 + ǫiµi(ϕ) + O(ǫi+1),

for someµ0, . . . , µi−1 ∈ R and some nonconstant2π-periodic entire functionµi(ϕ). Then:

• If n is odd, all the(m,n)-resonant elliptical caustics with oddn break up. This result is a
corollary of Theorem 1. It suffices to considerδ = ǫi as the new perturbative parameter,
Q∗

ǫ = {µ ≡ µ0 + · · · + ǫi−1µi−1} as the unperturbed ellipse, and to realize thatQǫ is a
O(δ)-perturbation ofQ∗

ǫ whose first-order term inδ verifies the hypotheses of Theorem 1.

• If n is even, we believe that all(m,n)-resonant elliptical caustics also break up, even if
µ′
i(ϕ) is π-antiperiodic, but we should use a second-order Melnikov method in order to

prove it. Unfortunately, the computations become too cumbersome.

Remark2. If we write the perturbed ellipseQǫ in Cartesian coordinates as

x2/a2 + y2/b2 + ǫP1(x, y) + O(ǫ2) = 1,

then2(a2 sin2 ϕ + b2 cos2 ϕ)µ1(ϕ) + abP1(a cosϕ, b sinϕ) = 0. In particular, the function
µ1(ϕ) is π-antiperiodic whenP1(x, y) is odd.

Remark3. The case of perturbed circular tables was studied using similar techniques in [16],
but the final result was quite different. Let us recall it for comparison. Any billiard trajectory
inside a circle of radiusr0 has some concentric circle of radius

√

r20 − λ2 as caustic, where
0 < λ < r0 plays the role of a caustic parameter. Ifλ = r0 sin(mπ/n), then the circular
caustic is(m,n)-resonant. Let us write the perturbed circle in polar coordinates(r, θ) as

r = rǫ(θ) = r0(1 + ǫr1(θ) + O(ǫ2)), (2)

for some smooth functionrǫ : T → R. Let
∑

l∈Z r̂
l
1e

ilθ be the Fourier expansion ofr1(θ)
andn ≥ 2. If there exists somel ∈ nZ \ {0} such that̂rl1 6= 0, then the(m,n)-resonant
circular caustics do not persist, see [16, Theorem 1]. In particular, it is not known if the
(m,n)-resonant circular caustics with odd (respectively, even)n break up whenr1(θ) is not
constant (respectively,r′1(θ) is notπ-antiperiodic).

We complete this introduction with a note on the organization. In Section 2 we develop a
general Melnikov theory to study the persistence of resonant RICs of twist maps. The general
setup is adapted to billiard maps in Section 3. Finally, Theorem 1 is proved in Section 4 by
analysing the complex singularities of certain elliptic functions, an idea borrowed from [6].
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2. Break-up of resonant invariant curves in twist maps

This section is a generalization of [16,§2], although several hypotheses have been weakened.
Namely, the unperturbed map can be nonintegrable, the resonant invariant circle does not
need to be horizontal, and the shift on the invariant circlescan be nonconstant. In spite of
it, the essential idea does not change. A similar theory is contained in [17]. For a general
background on twist maps we refer to the book [9,§9.3] or to the review [14].

Let T = R/2πZ, andπ1 : T × R → T be the natural projection. Sometimes it is
convenient to work in the universal coverR of T. We will use the coordinates(x, y) for both
T × R andR2. The lines of the formx = constant andy = constant will be called vertical
and horizontal, respectively. A tilde will always denote the lift of a function or set to the
universal cover. Ifg is a real-valued function,∂ig denotes the derivative with respect to theith
variable. We will assume that all the considered objects aresmooth. Here, smooth meansC∞.
In particular, all the dependences on the perturbative parameterǫ are assumed to be smooth.

We will consider certain diffeomorphisms defined on an open cylinder of the form
Z = T × Y , for some open bounded intervalY = (y−, y+) ⊂ R. Then Z̃ = R × Y is
an open strip of the plane. A diffeomorphismf : Z → Z is called anarea-preserving twist
mapwhen it preserves area, orientation, and verifies thetwist condition

∂2π̃1f̃(x, y) 6= 0, ∀(x, y) ∈ Z̃.

If the twist is positive (respectively, negative), then thefirst iterate of any vertical line tilts
to the right (respectively, left). We also assume, althoughit is not essential, thatf verifies
somerigid boundary conditions. To be more precise, we suppose that the twist mapf

can be extended continuously to the closed cylinderT × [y−, y+] as a rigid rotation on the
boundaries. That is, there exist someboundary frequenciesω± ∈ R, ω− < ω+, such that
f̃(x, y±) = (x+ ω±, y±).

Let D = {(x, x′) ∈ R
2 : ω− < x′ − x < ω+}. Then there exists a functionh : D → R

such thatf̃(x, y) = (x′, y′) if and only if

y = −∂1h(x, x
′), y′ = ∂2h(x, x

′). (3)

The functionh is called thegenerating functionof f . Besides, if(x′′, y′′) = f̃(x′, y′), then

∂2h(x, x
′) + ∂1h(x

′, x′′) = 0. (4)

We study the dynamics off , but it is often more convenient to work with the lift̃f , so
we will pass between the two without comment and, in what follows, the liftf̃ remains fixed.

A closed curveΥ ⊂ Z is said to be arotational invariant circle (RIC)of f when it is
homotopically nontrivial andf(Υ) = Υ. Birkhoff proved that all RICs are graphs of Lipschitz
functions. See, for instance, [14,§IV.C]. Let υ : T → Y be the Lipschitz function such that
Υ = graph υ := {(x, υ(x)) : x ∈ T}. If υ is smooth, we say thatΥ is asmooth RIC.

Twist maps do not form a closed set under composition. For instance, the square of a
twist map is not necessarily a twist map, and indeed typically it is not. Nevertheless, any
power of a twist map islocally twiston its smooth RICs.
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Lemma 2. If Υ = graph υ is a smooth RIC of an area-preserving twist mapf : Z → Z, then

∂2π̃1f̃
n(x, υ̃(x)) 6= 0, ∀x ∈ R, ∀n ≥ 1.

Proof. Given any pointp = (x, υ̃(x)) ∈ Υ̃, let pj = (xj, υ̃(xj)) = f̃ j(p), tj = (1, υ̃′(xj)),
andvj = (0, 1). We identify the tangent planesTpZ̃ with the Euclidean planeR2. Thus,
the vectortj is tangent toΥ̃ at the pointpj andvj is a vertical vector atpj. The linear map
df̃n(p) : TpZ̃ → TpnZ̃ is the composition of the linear mapsdf̃(pj) : Tpj Z̃ → Tpj+1

Z̃ for
j = 0, . . . , n− 1. Let aj, bj , cj, dj, αn, βn, γn, δn ∈ R be the coefficients such that

df̃(pj) : tj 7→ ajtj+1 + cjvj+1, vj 7→ bjtj+1 + djvj+1

df̃n(p) : t0 7→ αntn + γnvn, v0 7→ βntn + δnvn.

We note thatbj = ∂2π̃1f̃(pj) andβn = ∂2π̃1f̃
n(p). Let us suppose that the twist is positive,

sobj > 0. We want to prove thatβn > 0 for any integern ≥ 1. The case of negative twist is
completely analogous.

We deduce thatcj = 0 from the invariance of̃Υ. Hence,βn =
∑n−1

j=0
Dj−1

0 bjA
n−1

j+1 , where

Dj
i =

∏j
k=i dk andAj

i =
∏j

k=i ak. Besides, we note thatdj > 0 because the two components
of C \Υ are invariant. Finally, we get thataj > 0 from the preservation of orientation.

Roughly speaking, a RIC is said to beresonantwhen all its points are periodic, but we
need to be more precise. Let(x, y) ∈ Z be a periodic point of the twist mapf , and letn be its
least period. Then the exists an integerm such that its lift verifiesf̃n(x, y) = (x + 2πm, y).
Obviously,ω− < 2πm/n < ω+. Such a periodic point is said to be oftype(m,n). A RIC is
said to be(m,n)-resonantwhen all its points are periodic of type(m,n).

Let f be an area-preserving twist map with a(m,n)-resonant smooth RICΥ = graph υ.
Considering area-preserving twist perturbations of the form fǫ = f + O(ǫ), we prove in the
following lemma that there exists two graphsΥǫ = graph υǫ andΥ∗

ǫ = graph υ∗
ǫ O(ǫ)-close

toΥ and such thatfn
ǫ projects the first graph onto the second one along the vertical direction.

Lemma 3. There exist two smooth functionsυǫ, υ∗
ǫ : T → Y defined forǫ ∈ (−ǫ0, ǫ0), ǫ0 > 0,

such that:

(i) υǫ(x) = υ(x) + O(ǫ) andυ∗
ǫ (x) = υ(x) + O(ǫ), uniformly inx ∈ T; and

(ii) fn
ǫ (x, υǫ(x)) = (x, υ∗

ǫ (x)), for all x ∈ T.

Proof. We work with the lift of the maps. Once fixed an anglex ∈ R, let y0 = υ̃(x) and

G̃(y, ǫ) := π̃1f̃
n
ǫ (x, y)− x− 2πm.

This functionG̃(y, ǫ) verifies the hypotheses of the Implicit Function Theorem at the point
(y, ǫ) = (y0, 0), sinceG̃(y0, 0) = 0 and∂1G̃(y0, 0) = ∂2π̃1f̃

n(x, υ̃(x)) 6= 0, see Lemma 2.
Consequently, there existǫ0, η > 0 such that the equatioñG(y, ǫ) = 0 has exactly one solution
yǫ = y0 +O(ǫ) in the interval(y0 − η, y0 + η) for all ǫ ∈ (−ǫ0, ǫ0). We recall thatG̃(y, ǫ) had
x ∈ R as an extra parameter, but it appeared in a2π-periodic smooth way. Hence,ǫ0 andη can
be taken independent fromx, the estimate|yǫ−y0| = O(ǫ) is uniform inx, andyǫ depends in a
2π-periodic smooth way onx. Finally, setυ̃ǫ(x) = yǫ and theñυ∗

ǫ (x) is determined by means
of relationf̃n

ǫ (x, υ̃ǫ(x)) = (x + 2πm, υ̃∗
ǫ (x)). The functions̃υǫ, υ̃∗

ǫ : R → Y are2π-periodic
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and smooth, so they can be projected to two smooth functionsυǫ, υ
∗
ǫ : T → Y that verify the

two claimed properties by construction.
We say that a(m,n)-resonant smooth RICΥ of a twist mapf persistsunder an area-

preserving twist perturbationfǫ = f+O(ǫ)whenever the perturbed map has a(m,n)-resonant
RIC Υǫ for any small enoughǫ such thatΥǫ = Υ + O(ǫ). The corollary below follows
immediately from this definition.

Corollary 4. The resonant RICΥ persists under the perturbationfǫ if and only ifΥǫ = Υ∗
ǫ .

Therefore, it is rather useful to quantify the separation between the graphsΥǫ andΥ∗
ǫ .

Lemma 5. υ∗
ǫ (x)− υǫ(x) = L′

ǫ(x), whereLǫ : T → R is a function whose lift is

L̃ǫ(x) =

n−1
∑

j=0

hǫ(x̄j(x; ǫ), x̄j+1(x; ǫ)), x̄j(x; ǫ) = π̃1f̃
j
ǫ (x, υ̃ǫ(x)), (5)

andhǫ is the generating function offǫ.

Proof. As long as confusion is avoided, we will omit the dependence on x and ǫ. We
introduce the notations(x̄j , ȳj) = f̃ j(x, υ̃(x)) and w̄j = ∂x̄j/∂x for j = 0, . . . , n. Then
x̄0 = x and x̄n = x + 2πm, so w̄0 = w̄n = 1. Besides,ȳ0 = υ̃(x) and ȳn = υ̃∗(x).
From the implicit equations (3), we get that∂1h(x̄0, x̄1) = −ȳ0, ∂2h(x̄n−1, x̄n) = ȳn, and
∂2h(x̄j−1, x̄j) + ∂1h(x̄j , x̄j+1) = 0 for j = 1, . . . , n− 1. Therefore,̃L′(x) = ∂1h(x̄0, x̄1)w̄0+
∑n−1

j=1
(∂2h(x̄j−1, x̄j)+∂1h(x̄j , x̄j+1))w̄j+∂2h(x̄n−1, x̄n)w̄n = υ̃∗(x)− υ̃(x). It is immediate

to check that̃L : R → R is 2π-periodic, so it can be projected to a functionL : T → R.

Corollary 6. The resonant RICΥ persists under the perturbationfǫ if and only ifL′
ǫ(x) ≡ 0.

We shall say thatLǫ : T → R is thesubharmonic potentialof the resonant RICΥ under
the twist perturbationfǫ. It is rather natural to extract information from the low-order terms
of its expansionLǫ(x) = L0(x)+ ǫL1(x)+O(ǫ2). This is the main idea behind any Melnikov
approach to a perturbative problem. The zero-order termL0(x) is constant (and so useless),
sinceL′

0(x) = υ∗
0(x)−υ0(x) = υ(x)−υ(x) ≡ 0. We shall say that the first-order termL1(x)

is thesubharmonic Melnikov potentialof the resonant RICΥ under the twist perturbationfǫ.
The proposition below provides a closed formula for its computation.

Proposition 7. If hǫ = h+ ǫh1 +O(ǫ2), then the lift ofL1(x) is

L̃1(x) =
n−1
∑

j=0

h1(xj , xj+1), xj = π̃1f̃
j(x, υ̃(x)).

Proof. Given anyx ∈ R, we setxj = xj(x) := x̄j(x; 0) andzj = zj(x) := ∂2x̄j(x; 0) for
j = 0, . . . , n. Then theO(ǫ)-term of (5) is

L̃1(x) = ∂1h(x0, x1)z0 +

n−1
∑

j=1

(

∂1h(xj , xj+1) + ∂2h(xj−1, xj)
)

zj + ∂2h(xn−1, xn)zn +

n−1
∑

j=0

h1(xj , xj+1).
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Q

γ(ϕ)

γ(ϕ′)

ϑ ϑ

ϑ′

ϑ′

Figure 1. The billiard mapf(ϕ, ϑ) = (ϕ′, ϑ′).

Using the implicit equations (3) for the unperturbed twist map, the first summation vanishes.
The terms∂1h(x0, x1)z0 and∂2h(xn−1, xn)zn also vanish, sincēx0(x; ǫ) = x andx̄n(x; ǫ) =

x+ 2πm for all ǫ ∈ (−ǫ0, ǫ0). Besides,xj = xj(x) = x̄j(x; 0) = π̃1f̃
j(x, υ(x)).

The following corollary displays the most important property of the subharmonic
Melnikov potential in relation with the goals of this paper.

Corollary 8. If L1(x) is not constant, then the resonant RICΥ does not persist under the
perturbationfǫ.

Proof. It follows directly from Corollary 6 and the estimateLǫ = constant+ǫL1+O(ǫ2).

3. Break-up of resonant caustics in perturbed billiard tables

Let Q be a closed strictly convex smooth curve in the plane. Letγ : T → Q be a
counterclockwise parametrization. LetZ = T × (0, π) be an open cylinder. We can model
the billiard dynamics insideQ by means of a mapf : Z → Z, f(ϕ, ϑ) = (ϕ′, ϑ′), defined
as follows. If the particle hitsQ at a pointγ(ϕ) under an angle of incidenceϑ ∈ (0, π) with
the tangent vector atγ(ϕ), then, as the motion is free insideQ, the next impact point isγ(ϕ′),
the intersection point with the boundary and the next angle of incidence isϑ′ ∈ (0, π), as in
Figure 1. A straightforward computation shows thatf(ϕ, ϑ) = (ϕ′, ϑ′) if and only if

|γ′(ϕ)| cosϑ = −∂1h(ϕ, ϕ
′), |γ′(ϕ′)| cosϑ′ = ∂2h(ϕ, ϕ

′), (6)

whereh : T2 \ {ϕ′ 6= ϕ} → R is given byh(ϕ, ϕ′) = |γ(ϕ) − γ(ϕ′)|. Besides, the twist
condition holds:∂ϕ′/∂ϑ = h(ϕ, ϕ′)/|γ′(ϕ′)| sinϑ′ > 0. Finally, it is geometrically clear that
f verifies the rigid boundary conditions withω− = 0 andω+ = 2π.

A remark is in order. Equations (6) differ slightly from equations (3), but identity (4) still
holds and so the theory developed in the previous section still applies.
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Q

C

γ(ϕ)

ϑ−

ϑ+

0
0
0

0

π
2

π
2

π/2π/2 3π/23π/2 2π2ππ

π

π

π

Υ+

Υ−

Figure 2. Left: A (1, 4)-resonant convex smooth causticC. Right: Its two smooth RICs
Υ− = graphϑ− andΥ− = graphϑ− in the phase spaceZ = T× (0, π).

Obviously, one could write the map in the canonical coordinates —arclength parameter
for the boundary andcos ϑ as its conjugate— in order to haveh as a generating function, but
this is not a wise choice when dealing with ellipses.

Let us assume that there exists a closed convex smooth causticC contained in the region
enclosed byQ. Then the billiard mapf : Z → Z has two smooth RICsΥ± = graphϑ± ⊂ Z.
The functionsϑ± : T → (0, π) are easy to understand:ϑ+(ϕ) andϑ−(ϕ) are the angles
determined by the two tangent lines to the causticC from the pointγ(ϕ) ∈ Q, see Figure 2. In
particular,ϑ−(ϕ)+ϑ+(ϕ) = π. To fix ideas, we will assume thatΥ− andΥ+ correspond to the
billiard motion aroundC in the couterclockwise and clockwise senses, respectively. Hence,
0 < ϑ−(ϕ) < π/2 < ϑ+(ϕ) < π. There is an explicit formula relating the parametrization
of the billiard curveQ, the parametrization of the causticC, and the functionsϑ±. See, for
instance, [7, 10].

LetQ be a closed strictly convex smooth billiard boundary with a(m,n)-resonant convex
causticC, so that its RICΥ− is (m,n)-resonant and its RICΥ+ is (n−m,n)-resonant. We
say thatC persistsunder a perturbationQǫ = Q+O(ǫ) whenever the perturbed billiard curve
has a(m,n)-resonant causticCǫ for any small enoughǫ such thatCǫ = C +O(ǫ).

Let fǫ be the billiard map insideQǫ andL−

1 (ϕ) andL+

1 (ϕ) be the subharmonic Melnikov
potentials of the resonant RICsΥ− andΥ+ under the area-preserving twist perturbationfǫ.
Both potentials coincide, due to the time reversibility of the billiard dynamics. Therefore, we
can skip the± signs. In this context, we will say thatL1(ϕ) is the subharmonic Melnikov
potential of the resonant causticC for the perturbationQǫ.

Corollary 9. If L1(ϕ) is not constant, then the resonant causticC does not persist under the
perturbationQǫ.
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4. Break-up of resonant caustics in perturbed elliptic billiard tables

From now on, we will assume that the unperturbed billiard boundary is the ellipse

Q =

{

q = (x, y) ∈ R
2 :

x2

a2
+

y2

b2
= 1

}

, a > b > 0.

It is known that the convex caustics of the billiard insideQ are the confocal ellipses

Cλ =

{

q = (x, y) ∈ R
2 :

x2

a2 − λ2
+

y2

b2 − λ2
= 1

}

, 0 < λ < b.

Let ρ(λ) be the rotation number of the elliptical causticCλ. Thenρ : (0, b) → R is an
analytic increasing function such thatρ(0) = 0 and ρ(b) = 1/2. See, for instance, [4].
Thus, there is a unique(m,n)-resonant elliptical caustic for any relatively prime integersm
andn such that1 ≤ m < n/2. We shall see that the caustic parameterλ ∈ (0, b) of the
(m,n)-resonant caustic is implicitly determined by means of an equation containing a couple
of elliptic integrals, see equation (10).

The following lemma on elliptic billiards is useful to simplify the expression of the
subharmonic Melnikov potential later on.

Lemma 10. Let (qj)j∈Z be any billiard trajectory inside the ellipseQ with causticCλ. Let
pj = (qj+1 − qj)/|qj+1 − qj | be the unit inward velocities of the trajectory. Then

ab〈pj−1 − pj, D
−2qj〉 = 2λ, ∀j ∈ Z,

whereD = diag(a, b) is the diagonal matrix such thatQ = {q ∈ R
2 : 〈q,D−2q〉 = 1}.

Proof. We shall prove that given any pointq = (x, y) ∈ Q and any unit inward vector
p = (u, v) ∈ S

1, the lineℓ = {q + τp : τ ∈ R} is tangent to the conicCλ if and only if

λ = −(bxu/a + ayv/b) = −ab〈p,D−2q〉.
To begin with, we note that the lineℓ is tangent to the conicCλ if and only if the equation

of second order in the variableτ given by

(x+ τu)2/(a2 − λ2) + (y + τv)2/(b2 − λ2)− 1 = 0

has zero discriminant, which is equivalent to the equation
(

xu

a2 − λ2
+

yv

b2 − λ2

)2

=

(

u2

a2 − λ2
+

v2

b2 − λ2

)(

x2

a2 − λ2
+

y2

b2 − λ2
− 1

)

.

After some simplifications, we can rewrite this equation as

(xv − yu)2 = (b2 − λ2)u2 + (a2 − λ2)v2 = a2v2 + b2u2 − λ2,

sinceu2 + v2 = 1. Next, using thatx2/a2 + y2/b2 = 1, we obtain that

λ2 = (a2v2 + b2u2)(x2/a2 + y2/b2)− (xv − yu)2 = (bxu/a + ayv/b)2.

Thus, we have two possibilities:λ = ab〈p,D−2q〉 or λ = −ab〈p,D−2q〉. The first one is
discarded, becauseλ > 0 and〈p,D−2q〉 < 0. The second inequality follows from the fact
that the vectorp points inwardQ at q, whereasD−2q is an outward normal vector toQ at q.
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Finally, we note that−pj−1 = (qj−1 − qj)/|qj−1 − qj | andpj = (qj+1 − qj)/|qj+1 − qj|
are the two unit vectors that point inwardQ at the impact pointqj and give the two tangent
directions to the causticCλ. Therefore,λ = ab〈pj−1, D

−2qj〉 = −ab〈pj , D−2qj〉.
Proposition 11. Let Cλ be the(m,n)-resonant elliptical caustic confocal to the ellipseQ.
Given any angleϕ ∈ T, letqj = (a cosϕj, b sinϕj) be the vertexes of the(m,n)-gon inscribed
in Q and circumscribed aroundCλ such thatq0 = (a cosϕ, b sinϕ). Then the subharmonic
Melnikov potential of the causticCλ for the perturbed ellipse (1) is

L1(ϕ) = 2λ
n−1
∑

j=0

µ1(ϕj). (7)

Proof. The parametrization of the perturbed ellipse (1) is given by

γǫ(ϕ) = (c coshµǫ(ϕ) cosϕ, c sinhµǫ(ϕ) sinϕ) = γ0(ϕ) + ǫγ1(ϕ) + O(ǫ2),

whereγ0(ϕ) = (a cosϕ, b sinϕ), γ1(ϕ) = abµ1(ϕ)D
−2γ0(ϕ), andD = diag(a, b) as above.

The generating function of the billiard map inside the perturbed ellipse is

hǫ(ϕ, ϕ
′) = |γǫ(ϕ′)− γǫ(ϕ)| = h0(ϕ, ϕ

′) + ǫh1(ϕ, ϕ
′) + O(ǫ2).

The first terms of this expansion verify the identitiesh0(ϕ, ϕ
′) = |γ0(ϕ′) − γ0(ϕ)| and

h0(ϕ, ϕ
′)h1(ϕ, ϕ

′) = 〈γ0(ϕ′)− γ0(ϕ), γ1(ϕ
′)− γ1(ϕ)〉.

Let (qj)j∈Z be the billiard trajectory inside the ellipseQ with causticCλ such that
qj = γ0(ϕj) andϕ0 = ϕ. The unit inward velocities of this trajectory are

pj =
qj+1 − qj
|qj+1 − qj |

=
γ0(ϕj+1)− γ0(ϕj)

h0(ϕj , ϕj+1)
.

It follows from Proposition 7 that the subharmonic Melnikovpotential is

L1(ϕ) =

n−1
∑

j=0

h1(ϕj , ϕj+1)

=

n−1
∑

j=0

〈pj, γ1(ϕj+1)− γ1(ϕj)〉

= ab
n−1
∑

j=0

〈pj, µ1(ϕj+1)D
−2qj+1 − µ1(ϕj)D

−2qj〉

= ab

n−1
∑

j=0

〈pj−1 − pj, D
−2qj〉µ1(ϕj)

= 2λ

n−1
∑

j=0

µ1(ϕj).

We have used the periodicity in the fourth equality and Lemma10 in the last one.
Next, we give a couple of sufficient conditions for the subharmonic Melnikov potential

to be constant. These conditions are trivial. Nevertheless, they play a key role in our problem.
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Concretely, we shall check later on that they are also necessary conditions in the class of
2π-periodic entire functionsµ1(ϕ).

Corollary 12. Letµ1(ϕ) be any2π-periodic smooth function.

(i) If the periodn is odd, thenµ1(ϕ) constant⇒ L1(ϕ) constant.

(ii) If the periodn is even, thenµ′
1(ϕ) π-antiperiodic⇒ L1(ϕ) constant.

Proof. The casen odd is obvious. Ifn is even, the(m,n)-gons inscribed inQ and
circumscribed aroundCλ are symmetric with respect to the origin, soϕj+n/2 = ϕj + π and

L′

1(ϕ) = 2λ

n−1
∑

j=0

µ′

1(ϕj) = 2λ

n/2−1
∑

j=0

(µ′

1(ϕj) + µ′

1(ϕj + π)) .

In particular,n even andµ′
1(ϕ) π-antiperiodic⇒ L′

1(ϕ) ≡ 0 ⇒ L1(ϕ) constant.
The subharmonic Melnikov potential of the(m,n)-resonant caustic for the perturbed

circle (2) is

L1(θ) = 2r0 sin(mπ/n)

n−1
∑

j=0

r1(θj), θj = θ + 2πmj/n, (8)

see [16, Proposition 10]. We recall thatλ = r0 sin(mπ/n) is the (m,n)-resonant caustic
parameter of the circle of radiusr0. Besides, all the(m,n)-gons inscribed in the circle of
radiusr0 and circumscribed around the circle of radiusλ = r0 sin(mπ/n) are regular, so
their vertexes are of the formqj = (r0 cos θj , r0 sin θj) with θj = θ + 2πmj/n. Hence, the
function (8) is the limit of function (7) when botha andb tend tor0.

Although functions (7) and (8) look quite similar, they hidea crucial difference. There
is a simple formula for theθj angles, but not for theϕj ones. This has to do with the
fact that the billiard trajectories inside a circle of radius r0 sharing a circular caustic with
radiusλ = r0 sin(δ/2) have a rigid angular dynamics of the formθ 7→ θ + δ. On the
contrary, such a rigid angular dynamics does not take place for elliptic tables when the angle
ϕ is considered, which is a source of technical difficulties inthe study of the subharmonic
Melnikov potential (7). Nevertheless, it is possible to define a new angular parametert over
the ellipseQ in such a way that all billiard trajectories insideQ sharing the elliptical caustic
Cλ have a rigid angular dynamics of the formt 7→ t+ δ, for some constant shiftδ = δ(λ).

We need some notations on elliptic functions in order to define this angular parametert.
We refer to [1, 19] for a general background on elliptic functions. Given a quantityk ∈ (0, 1),
called themodulus, thenK = K(k) =

∫ π/2

0
(1 − k2 sin2 φ)−1/2dφ is thecomplete elliptic

integral of the first kind. We also writeK ′ = K ′(k) = K(
√
1− k2). Theamplitudefunction

ϕ = am t is defined through the inversion of the integral

t =

∫ ϕ

0

(1− k2 sin2 φ)−1/2dφ.

Then theelliptic sinusand theelliptic cosinusare defined by the trigonometric relations

sn t = sinϕ, cn t = cosϕ,
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respectively. Dependence on the modulus is denoted by a comma preceding it, so we can write
am(t, k), sn(t, k), andcn(t, k) to avoid any confusion. In the following lemma it is stated that
the angular dynamics becomes rigid in the angular parametert given byϕ = am(t, k). It
suffices to find the suitable modulusk for each elliptical causticCλ.

Lemma 13. Once fixed any caustic parameterλ ∈ (0, b), we set the modulusk ∈ (0, 1) and
the constant shiftδ ∈ (0, 2K) by the formulae

k2 =
a2 − b2

a2 − λ2
, δ/2 =

∫ ϑ/2

0

(1− k2 sin2 φ)−1/2dφ, (9)

whereϑ ∈ (0, π) is the angle such thatsin(ϑ/2) = λ/b. Let

qj = (a cosϕj, b sinϕj) = (a cn(tj , k), b sn(tj , k))

be any billiard trajectory inside the ellipseQ with causticCλ. Thentj+1 = tj + δ.

Proof. By definition,ϕj = am(tj , k), so tj+1 − tj =
∫ ϕj+1

ϕj
(1 − k2 sin2 φ)−1/2dφ. These

integrals are equal to a constantδ that depends only onCλ, see [5, page 1543]). The formula
for the constant shift is given in [5, page 1540].

Remark that ifa = b = r0 then the modulusk is equal to zero, the complete elliptic
integralK is equal toπ/2, the amplitude function is the identity, the elliptic sinus/cosinus are
the usual sinus/cosinus, the shiftδ ∈ (0, π) is given byλ = r0 sin(δ/2), and the dynamical
relationtj+1 = tj + δ becomesϕj+1 = ϕj + δ. Thus, we recover the known rigid angular
dynamics for circular tables as a limit of the formulae for elliptic tables.

From now on,k andδ will denote the modulus and the constant shift defined in (9).Thus,
we shall skip the dependence of the elliptic functions on themodulus. We note thatCλ has
eccentricityk. Besides,Cλ is the(m,n)-resonant elliptical caustic if and only if

nδ = 4Km. (10)

This identity has the following geometric interpretation.When a billiard trajectory makes
one turn aroundCλ, the old angular variableϕ changes by2π, so the new angular variable
t changes by4K. On the other hand, we have seen that the variablet changes byδ when a
billiard trajectory bounces once. Hence, a billiard trajectory inscribed inQ and circumscribed
aroundCλ makes exactlym turns aroundCλ aftern bounces if and only if (10) holds.

Proposition 14. Letµ1(ϕ) be any2π-periodic entire function.

(i) If the periodn is odd, thenL1(ϕ) constant⇔ µ1(ϕ) constant.

(ii) If the periodn is even, thenL1(ϕ) constant⇔ µ′
1(ϕ) π-antiperiodic.

Proof. Let ∆ = 2K + 2K ′i andz(t) = cn t+ i sn t. If ϕ = am t, then

eiϕ = cosϕ+ i sinϕ = cn t + i sn t = z(t),

e−iϕ = cosϕ− i sinϕ = cn t− i sn t = z(t +∆).
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We have used that the elliptic cosinus is∆-periodic, but the elliptic sinus is∆-antiperiodic.
We also recall that the elliptic cosinus/sinus are2K-antiperiodic meromorphic functions on
the whole complex plane whose unique singularities are the points of the form

τr,s = 2Kr + (1 + 2s)K ′i, r, s ∈ Z.

Besides, these singularities are just simple poles whose residues are

res(cn; τr,s) = (−1)r+s+1i/k, res(sn; τr,s) = (−1)r/k.

Thus, z(t) is a 2K-antiperiodic meromorphic function whose unique singularities are the
points of the set

P = {τr,2s+1 : r, s ∈ Z} = τ∗ + 2KZ+ 4K ′iZ, τ∗ = τ0,−1 = −K ′i.

As before, these singularities are just simple poles.
Let

∑

l∈Z µ̂le
ilϕ be the Fourier expansion ofµ1(ϕ). Then

µ1(am t) = µ1(ϕ) =
∑

l∈Z

µ̂le
ilϕ = µ̂−(z(t +∆)) + µ̂0 + µ̂+(z(t)),

whereµ̂−(z) =
∑

∞

l=1
µ̂−lz

l and µ̂+(z) =
∑

∞

l=1
µ̂lz

l. We note that the functionŝµ±(z) are
entire, becauseµ1(ϕ) is entire. Besides,

L1(am t) = L1(ϕ) = 2λ

n−1
∑

j=0

µ1(ϕj) = 2λ (L−(t) + nµ̂0 + L+(t)) , (11)

whereL−(t) =
∑n−1

j=0
µ̂−(z(t+∆+ jδ)) andL+(t) =

∑n−1

j=0
µ̂+(z(t+ jδ)). Let us study the

behaviour of these two functions around the pointτ∗ = −K ′i. Concretely, we shall prove that
L−(t) is analytic att = τ∗, whereasL+(t) has a nonremovable singularity att = τ∗ provided
µ1(ϕ) is nonconstant andn is odd, or providedµ′

1(ϕ) is notπ-antiperiodic andn is even.
We begin with a couple of simple observations. Ifj ∈ {0, . . . , n− 1}, then:

a) ℑ(τ∗ +∆+ jδ) = K ′, soτ∗ +∆+ jδ 6∈ P ; and

b) τ∗ + jδ ∈ P ⇔ 4Kmj/n = jδ ∈ 2KZ ⇔ 2jm ∈ nZ ⇔ 2j ∈ nZ ⇔ j ∈ {0, n/2}.
Here, we have used thatδ ∈ R, equation (10), andgcd(m,n) = 1. Besides, we stress
that the equalityj = n/2 only can take place whenn is even.

We deduce the following results from the above observations.

1) L−(t) is analytic att = τ∗, because so arez(t +∆+ jδ) for j = 0, . . . , n− 1.

2) If n is odd andµ1(ϕ) is nonconstant, then:

– The functionµ̂+(z) is nonconstant and entire;
– The functionL+(t)− µ̂+(z(t)) =

∑n−1

j=1
µ̂+(z(t + jδ)) is analytic att = τ∗;

– The composition̂µ+(z(t)) has a nonremovable singularity att = τ∗; and
– The function (11) is nonconstant, since it has a nonremovable singularity att = τ∗.

3) If n is even andµ′
1(ϕ) is notπ-antiperiodic, then:

– The sumσ̂(z) = µ̂+(z)+ µ̂+(−z) = 2
∑

∞

l=1
µ̂2lz

2l is a nonconstant entire function;
– z(t + nδ/2) = z(t + 2Km) = (−1)mz(t) = −z(t), sincem is odd;
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– µ̂+(z(t)) + µ̂+(z(t + nδ/2)) = σ̂(z(t));
– The functionL+(t)− σ̂(z(t)) is analytic att = τ∗;
– The composition̂σ(z(t)) has a nonremovable singularity att = τ∗; and
– The function (11) is nonconstant, since it has a nonremovable singularity att = τ∗.

Therefore, the proof follows by combining the above resultswith Corollary 12.
Finally, we note that our main result (namely, Theorem 1 stated in the introduction)

follows directly from Corollary 9 and Proposition 14.

Acknowledgments

SP-de-C was partially supported by the CRM and Brazilian agencies CNPq and FAPEMIG.
RR-R was supported in part by MICINN-FEDER Grant MTM2009-06973 (Spain) and CUR-
DIUE Grant 2009SGR859 (Catalonia). This work was completedwhile SP-de-C was a
visitor at the CRM at Barcelona (Spain). Useful conversations with Pablo S. Casas, Amadeu
Delshams, Vadim Kaloshin, and Vassilios Rothos are gratefully acknowledged.

References

[1] Abramowitz M and Stegun I 1972Handbook of Mathematical Functions(New York: Dover)
[2] Baryshnikov Yu and Zharnitsky V 2006 Sub-Riemannian geometry and periodic orbits in classical billiards

Math. Res. Lett.13587–598
[3] Birkhoff G D 1927 Dynamical Systems (Am. Math. Soc. Coll. Pub. vol. 9)(Providence RI: American

Mathematical Society)
[4] Casas P S and Ramı́rez-Ros R 2011 The frequency map for elliptic billiards SIAM J. Appl. Dyn. Syst.10

278–324
[5] Chang S-J and Friedberg R 1988 Elliptical billiards and Poncelet’s theoremJ. Math. Phys.291537–50
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