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Abstract

The geometry of complex networks has a close relationship with their
structure and function. In this paper, we introduce an inhomogeneous
random network G(n, {ci}, {pi}), called the colored random network, and
investigate its Gromov-hyperbolicity. We show that the colored random
networks are non-hyperbolic in the regime

Pm
i=1 c2

i pi = c/n for c > 1,
by approximation to binomial random graphs. Numerical simulations are
provided to illustrate our results.
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1 Introduction

Generally speaking, trees are graphs with some very basic interconnection struc-
tures which stand for low dimensionality, low complexity, efficient information
decomposition and often turns out to be the borderline between tractable and
intractable cases [1]. A natural generalization of the concept of tree is that of
Gromov hyperbolic graph [6]. Gromov hyperbolicity is strikingly important not
only in coarse geometry or large-scale geometry [3, 7] but also in many applied
fields such as communication networks [10, 12], cyber security [8], phylogenetics
[4, 5] and statistical physics [11].

Hyperbolicity is observed in many real world scale-free networks like Internet
[8, 9] and data networks at the IP layer [12]. For the classical G(n, p) model of
random graphs [2], it is well-known that G(n, p) are tree-like when p = o(1/n)
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for large enough n, which roughly implies that they are hyperbolic within this
regime. However, the recent work [13] shows that, with positive probability,
they are not δ-hyperbolic (in the sense of Gromov) for any positive δ when
p = Θ(1/n). The definition of δ-hyperbolic will be developed in detail in Sec-
tion 2. This phenomenon is further confirmed by extensive simulations and is
interpreted as “lack of hyperbolicity” in random graphs by the authors of [13].

In this paper, we introduce a kind of inhomogeneous random graph model,
G(n, {ci}, {pi}), which we referred to as colored random graph, and study its
Gromov-hyperbolicity. Each vertex in this random network is assigned with a
color i with probability ci, and possible links are established among vertices with
same colors (see Section 2 for details). Therefore, the edges in G(n, {ci}, {pi})
are interdependent and the network topology is separated clique-like, which
resembles the moving neighborhood network models [14, 15] arisen in social
network modeling. Based on an approximation to Erdős-Rényi random graph,
we prove that the colored random network is not δ-hyperbolic for any positive
δ. Numerical results reveal a surprising degree of closeness between these two
models.

The rest of the paper is organized as follows. In Section 2, we define
our colored random network and present the tree-likeness parameter, Gromov-
hyperbolicity. Section 3 contains the analytical result of non-hyperbolicity for
classical random graphs and numerical simulations in Section 4 illustrate and
validate our approximation. We conclude the paper in Section 5.

2 Model and preliminaries

In this section, we present some necessary preliminaries leading to the notion of
hyperbolicity and colored random networks.

Any simple, but not necessarily finite, graph G = (V,E) is defined by its
vertex set V and edge set E. A graph G together with the usual shortest-
path metric on it, d : V × V → {0, 1, 2, · · · }, gives rise to a metric space, or
metric graph (G, d). Thus, for a pair of vertices x, y ∈ V , d(x, y) is the distance
between them. Note that x and y form an edge if and only if d(x, y) = 1.
For S, T ⊆ V , we write d(S, T ) for minx∈S,y∈T d(x, y). We often omit the
brackets and adopt the convention that x stands for the singleton set {x} when
no confusion can be caused. A path of length k in G is a sequence of distinct
vertices x0, x1, x2, · · · , xk such that d(xi−1, xi) = 1 for i = 1, · · · , k. A cycle of
length k, or k-cycle, is a cyclic sequence of k distinct vertices x1, x2, · · · , xk ∈ V
such that d(xi, xj) = 1 whenever j = i+1( mod k); we will reserve the notation
(x1x2 · · ·xk) for this cycle.

Suppose the metric graph (G, d) has bounded local geometry, i.e., the degree
of its vertices is uniformly bounded. Hence, all vertex pairs in G have at least
one shortest paths, or geodesic, between them. We denote a geodesic between a
pair of vertices x and y by [xy], which may be regarded as just one of possibly
many shortest paths between them. In such a situation, (G, d) is said to be a
geodesic metric space [6]. A geodesic triangle ∆xyz on vertices x, y, z is defined
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as [xy]∪ [yz]∪ [zx], and it is called δ-thin if each of the geodesics [xy], [yz] and
[zx] is contained within the δ-neighborhoods of the other two geodesics for the
metric d. More specifically, [xy] ⊆ Nδ([yz]) ∪ Nδ([zx]), and similarly for [yz]
and [zx]. A geodesic triangle ∆xyz is δ∗-fat if δ∗ is the smallest δ for which
∆xyz is δ-thin. The notion of Gromov-hyperbolicity is then defined as follows.

Definition 1. A geodesic metric graph is δ-hyperbolic if all geodesic triangles
are δ-thin, for some fixed δ ≥ 0.

It is straightforward to check that all tree graphs are δ-hyperbolic with δ = 0.
A hyperbolic graph is also said to have negative or hyperbolic curvature. This
concept of hyperbolicity comes from the work of Gromov in geometric group
theory encapsulating many of the global features of the geometry of complete,
simply connected manifolds of negative curvature [3]. Other definitions of cur-
vature, such as Gauss-Bonnet curvature, count the triangles or polygons that
meet at each vertex defining a local curvature, not incorporating the global per-
formance of networks. In Section 4, an equivalent characterization of Gromov-
hyperbolicity will be provided.

Next, we introduce our random network model. Let m be a natural number
and ci, pi ∈ [0, 1] for i = 1, · · · ,m. Suppose that

∑m
i=1 ci = 1, and that V is a

set of n vertices. The colored random graph G(n, {ci}, {pi}) on V is defined as
follows.

Let {1, 2, · · · ,m} be m types of colors, and we consider a random coloring
of the vertices in V by

f : V → {1, 2, · · · ,m}. (1)

For each vertex v ∈ V , we define P (f(v) = i) = ci and the coloring of a vertex is
independent with that of other vertices. In other words, n vertices are assigned
colors independently and identically distributed according to the probability
distribution {c1, · · · , cm}. For each pair of different vertices (vi, vj), an edge
occurs with probability pk if and only if f(vi) = f(vj) = k. There is no edges
between vi and vj if f(vi) 6= f(vj).

Clearly, the binomial random graph model G(n, p) can be viewed as the
special case of m = 1 (and c1 = 1), i.e., G(n, 1, p). It is straightforward to show
that, for a pair of different vertices (vi, vj), the edge is present with probability∑m

k=1 c2
kpk. In the sequel, our analysis will based on the binomial random graph

model G(n,
∑m

k=1 c2
kpk), and our simulation results in Section 4 implies that it

is a sharp approximation for large n as far as the hyperbolicity is concerned.

3 Positive measure of δ-fat triangles

From Definition 1, if a graph G is δ-hyperbolic, then for any geodesic triangle
∆ ⊂ G, there is some δ∗ ≤ δ < ∞ such that ∆ is δ∗-fat. We will show that with
positive probability the random network contains δ-fat triangles for arbitrary
large δ as n → ∞, which implies non-hyperbolicity. The following result is more
or less implicit in [13], and we include the complete proofs here not only for the
convenience of the reader but also to make the argument self-contained.
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Theorem 2. Suppose that δ ≥ 0 and
∑m

k=1 c2
kpk = c/n for some c > 1. We

have

lim inf
n→∞

P
(
G

(
n,

m∑
k=1

c2
kpk

)
contains a δ-fat triangle

)
≥ 1

4
e−6cδc6δ+1(2 − e−6cδc6δ+1) > 0. (2)

Proof. The random graph G(n, c/n) for c > 1 almost surely has a unique
giant component of size γn, where γ is the unique solution of 1 − γ = e−cγ

in the interval (0, 1), c.f. [2]. Without loss of generality, we assume the giant
component has size n and consider the hyperbolicity/non-hyperbolicity in the
giant component.

Let a = 6δ. For any a vertices x1, x2 · · · , xa, it is clear that there exists
a δ-fat triangle on the cycle (x1x2 · · ·xa). The probability q that G(n, c/n)
contains an induced a-cycle on vertices x1, x2 · · · , xa with a single connection
to the giant component is shown to be given by

q =
(a − 1)!

2
a(n − a)

( c

n

)a+1(
1 − c

n

)(n
2)−(n−a

2 )−a−1

=
a!
2

(n − a)
( c

n

)a+1(
1 − c

n

) a(2n−3)−a2−2
2

. (3)

Let X be a random variable that counts the number of induced a-cycles
on vertices y1, y2 · · · , ya in G\{x1, x2 · · · , xa} with a single connection to the
giant component. We denote by P1 the probability that G(n, c/n) contains an
induced cycle (x1x2 · · ·xa) and another distinct induced cycle (y1y2 · · · ya), both
of which have a single connection to the giant component. Therefore, by using
the Markov inequality and (3), we have

P1 = P (X ≥ 1|A) · P (A) ≤ EX · q =
(

n − a

a

)
q2, (4)

where A represents the event that graph G(n, c/n) contains an induced cycle
(x1x2 · · ·xa) having a single connection to the giant component.

Next, we want to compute the probability P2 that G(n, c/n) contains only
one induced cycle (x1x2 · · ·xa) with a single connection to the giant component.
It follows from (3) and (4) that

P2 = q − P1 ≥ q −
(

n − a

a

)
q2. (5)

Hence, utilizing (5), the probability that G(n, c/n) contains at least one induced
cycle (x1x2 · · ·xa) which has a single connection to the giant component is
bounded below by(

n

a

)
P2 ≥

(
n

a

)(
q −

(
n − a

a

)
q2

)
> ρ(1 − ρ), (6)
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where ρ :=
(
n
a

)
q. From the comment just before Eq. (3), the probability

on the left-hand side of (2) is also lower bounded by the above probability.
Consequently,

P
(
G

(
n,

c

n

)
contains a δ-fat triangle

)
> ρ(1 − ρ). (7)

By (3) and the inequality na/a! >
(
n
a

)
> (n − a)a/a!, we get

(n − a

2n

)(
1 − c

n

)an(
1 − c

n

)− (a+1)(a+2)
2

ca+1 > ρ

>
(n − a)a+1

2na+1

(
1 − c

n

)an(
1 − c

n

)− (a+1)(a+2)
2

ca+1. (8)

Since limn→∞ ρ = e−caca+1/2 ∈ (0, 1) for all a, c > 1, we have

lim inf
n→∞

P
(
G

(
n,

c

n

)
contains a δ-fat triangle

)
≥ lim inf

n→∞
ρ(1 − ρ)

=
1
2
e−caca+1

(
1 − 1

2
e−caca+1

)
> 0, (9)

which readily concludes the proof. ¥

4 Numerical simulations

We have shown that the random graph G(n,
∑m

k=1 c2
kpk) are not hyperbolic

for
∑m

k=1 c2
kpk = c/n with c > 1 due to existence of a non-zero probability of

arbitrary fat triangles. In this section, we will illustrate that G(n,
∑m

k=1 c2
kpk)

is a nice approximation to the colored random network G(n, {ci}, {pi}), which
has similar non-hyperbolic properties.

We first provide an equivalent characterization of Gromov-hyperbolicity and
introduce the curvature plot of a network, which has been successfully applied to
some physical networks [12]. For any geodesic triangle ∆xyz in a graph (G, d),
we define

δ∆xyz = min
w∈G

max{d(w, [xy]), d(w, [yz]), d(w, [zx])}, (10)

where, as defined in Section 2, d(w, [xy]) is the shortest distance between vertex
w and all the other vertices on geodesic [xy]. Let

δ = max
∆xyz⊆G

δ∆xyz. (11)

Then δ is finite if and only if the graph G is δ-hyperbolic [6]. Instead of the
maximum taken in (11), the curvature plot Fig. 1 shows the average value δa

of δ∆xyz for all triangles whose shortest side is L, as a function of L. That is,
δa = δa(L), where L = min{d(x, y), d(y, z), d(z, x)}. Results for random graphs
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Figure 1: Curvature plots for random graphs G(n, c/n) with c = 1.5 and differ-
ent sizes n. Each quantity is an average over 50 realizations.

G(n, c/n) with c = 1.5 of different sizes are shown. We can see from Fig. 1 that
a linear increase in δa(L) saturating at a plateau whose height increases as the
size of the graph is increased. In addition, all the three curves coincide before
their plateaus. Therefore, we are in a position to infer that δa(L) is unbounded
with the increase of L for n → ∞, which obviously is a stronger demonstration
of non-hyperbolicity than the probabilistic lower bound obtained in Theorem 2.

Now we want to compare the binomial random graph G(n,
∑m

k=1 c2
kpk) with

our colored random network G(n, {ci}, {pi}). Take m = 3 colors, c1 = 0.6,
c2 = 0.3 and c3 = 0.1. Choose p1 = 2c/n, p2 = c/2n and p3 = 135c/2n so that∑m

k=1 c2
kpk = c/n holds. For c = 1.5, results for different size n are shown in Fig.

2, Fig. 3 and Fig.4. We observe that the approximation is sharper for larger
n, which indicates that the colored random networks are also non-hyperbolic in
the regime of

∑m
k=1 c2

kpk = c/n with c > 1.
Let m = 3, c1 = 0.5, c2 = 0.3, c3 = 0.2, p1 = 3c/n, p2 = c/n and p3 = 21c/n.

Hence, we have
∑m

k=1 c2
kpk = c/n. Fig. 5 shows the similar result for c = 2.

The approximation is nice indeed.

5 Conclusion

In this paper we propose a heterogeneous random graph model, the colored
random network, and study its Gromov-hyperbolicity. We demonstrate the
lack of hyperbolicity in colored random networks by approximations to classical
random graphs. Since our approximation is based on numerical simulations, the



Lack of Gromov-hyperbolicity in colored random networks 33

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

δ a

L

classical random graph
colored random network

Figure 2: Curvature plots for random graphs G(n,
∑m

k=1 c2
kpk) and

G(n, {ci}, {pi}) with c = 1.5 and n = 1000. Each quantity is an average over 50
realizations.
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Figure 3: Curvature plots for random graphs G(n,
∑m

k=1 c2
kpk) and

G(n, {ci}, {pi}) with c = 1.5 and n = 5000. Each quantity is an average over 50
realizations.
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Figure 4: Curvature plots for random graphs G(n,
∑m

k=1 c2
kpk) and

G(n, {ci}, {pi}) with c = 1.5 and n = 10000. Each quantity is an average
over 50 realizations.
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Figure 5: Curvature plots for random graphs G(n,
∑m

k=1 c2
kpk) and

G(n, {ci}, {pi}) with c = 2 and n = 10000. Each quantity is an average over 50
realizations.
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corresponding analytical results would be interesting. This issue remains open
for future research.
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