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ABSTRACT. This is the second part of the work devoted to the study
of maps with decay in lattices. Here we apply the general theory de-
veloped in [FAILM10] to the study of hyperbolic sets. In particular, we
establish that any close enough perturbation with decay of an uncou-
pled lattice map with a hyperbolic set has also a hyperbolic set, with
dynamics on the hyperbolic set conjugated to the corresponding of the
uncoupled map. We also describe how the decay properties of the maps
are inherited by the corresponding invariant manifolds.

1. INTRODUCTION

The goal of this paper is to study hyperbolic sets in systems of maps
with weakly decaying interactions, which have been introduced as a model
in several scientific contexts. We refer to the Introduction of [FAILM10] for
more information and motivations for the study of coupled map lattices.

More precisely, in this paper we will study persistence of hyperbolic in-
variant sets and their invariant manifolds, we will study the regularity of
the manifolds and the conjugation as well as their decay properties, that is,
that the i-th component of an object depends weakly on the dynamics of
the map at far away components.

The first main result we present here is the persistence of the hyperbolic
set of an uncoupled map under C' perturbations with uniformly continuous
derivative. Any sufficiently close diffeomorphism must have a hyperbolic
set, whose dynamics is conjugated through a homeomorphism to the one
of the corresponding hyperbolic set of the original uncoupled map. This
result is achieved through a Shadowing Theorem, which also implies the
continuity of the conjugation with respect to the diffeomorphism, as well
as its uniqueness, provided it is close enough to the identity. Then, by
means of the implicit function theorem, we obtain that the conjugation also
has decay properties and depends smoothly on the diffeomorphism. We
remark that this last approach only provides a semiconjugation and it is the
Shadowing Theorem, with its uniqueness statement, which ensures that the
semiconjugation actually is a proper conjugation.

The second main result is the existence and decay properties of invariant
manifolds of hyperbolic sets when the perturbation has decay properties.
It should be noted that the existence of the invariant manifolds, as well as
their differentiability, could be inferred without too much work from the
standard approach [HP70], see also [CFdILO03], although there are several
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technicalities. Here we also obtain decay properties of these manifolds, which
happen to be the same as the ones of the map.

We use the functional analysis framework developed in the companion
paper [FAILM10]. This framework allows us to carry out proofs that fol-
low closely some carefully chosen classical proofs of existence of invariant
objects and their stability based on functional analysis. This framework
incorporates the decay properties and is such that permits to introduce a
differentiable manifold structure on the space of mappings having decay. Of
course, we will have to give up some properties such as compactness or sep-
arability (the maps, even if uniformly hyperbolic, have uncountably many
periodic orbits, except in trivial cases). Hence, we have to pay the price
that approximations, extensions are somewhat technical and some topolog-
ical arguments based on index, closed graph, uniform continuity, etc., have
to be completely abandoned. The functional analysis proofs that go through
have to be carefully chosen.

One advantage of the framework developed in [FAILM10] is that the decay
properties are preserved by several operations, so that we can formulate our
problems as fixed point problems rather than having to use more sophisti-
cated iterative methods.

Similar problems have been considered in other papers in the literature.
Notably in [BS88, Jia95, JP98, JAIL0O], which present other points of view
and consider other problems. Of course, the main goal of [JP98, JdIL0O]
is invariant measures of coupled map lattices and the geometric properties
are only studied as tools. On the other hand, this paper focuses on the
geometric properties and we do not discuss invariant measures.

The paper [Jia95] establishes structural stability of hyperbolic sets in some
uniform sense. The paper [JP98] uses a different formalism. It maintains
the compactness of the space (which is useful for the study of invariant
measures they undertake later), but it pays the price that the hyperbolicity
is not uniform and that there is no differentiable structure in the space of
maps. We also note that in [JP98], since the main goal is the invariant states,
the invariant manifolds are studied only through the conjugation, which is
defined only on the invariant set and does not give information on their
regularity. The methods in the paper [JdILOO] are more closely related to
the ones used here, including the use of decay functions and the fact that the
conjugation among the systems has also decay. As indicated in [FdILM10],
the formalism that we use now is different from that of [JdIL0O] since here
we pay attention to the boundary conditions at infinity and we emphasize
that the fact that the derivative is determined by the matrix elements is a
non-trivial assumption.

In Section 2 we will list the main definitions introduced in [FdILM10],
which we will use extensively here, and state the main theorems of the
present work.

Section 3 is devoted to the proof of the first of the main theorems, namely,
the structural stability of the maps with decay possessing hyperbolic invari-
ant sets restricted tho their hyperbolic sets if they are close enough to an
uncoupled map with a hyperbolic set.
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In Section 4 we will prove the second main theorem, concerning the exis-
tence and decay properties of the invariant manifolds of the hyperbolic sets
of maps with decay close to uncoupled maps.

Finally, four appendices collect technical proofs.

2. PRELIMINARY DEFINITIONS, SETTING AND MAIN RESULTS

We start by recalling some of the definitions and results in [FdILM10]
that we will use here. However, we encourage the reader to go through that
paper for the proofs of the different claims and a more detailed information.

2.1. The lattice manifold. We start by introducing the lattice itself, and
some related functions.
Let M be a n-dimensional compact Riemannian manifold. The distance
in M is
d(x,y) = inf{ length(y) | v is a curve joining = and y}.

Let Far = {(Up,¢) | ¢ : Uy C M — R™} be a finite atlas of M such that
all the transitions maps are C'°*° and, for each r, their r-th derivatives are
bounded. Let 2pg be the Lebesgue number of the open cover Uw,,¢)ernUs-

We will denote by exp the exponential map in M. Let dg be the injectivity
radius of exp.

Let pr = min{po, éo}. Let 7(z,y) : T, M — T,M be the isometry given by
the Levi-Civita connection. Let U, = {(v,y) € TM xM | d(p(v),y) < p+},
where p : TM — M is the tangent bundle projection. We introduce

7:Up, C TMxM — TM
(v,y) = 7@y
where x = p(v).

We will also consider e : M — RP, a C* isometric embedding.
There exists a map C™ map 7 : M x RP? — TM such that, for all € M,

n(x) - De(x) = 1d 7, ps-
Given d € N, we define lattice manifold as the set

M= 1] M,

i€z
which, with the distance
d(l’,y) = sup d(xiuyi)7 x,y € M,
i€Z4
where the d in the right-hand side is the finite-dimensional one, is a complete
metric space. The atlas

Fm ={(Up, @) | ¢ = (¢i);cza is a sequence with (U, ¢;) € Fur,
U¢ = int H Uz}
i€zd

allows us to model M as a Banach manifold over £, ,(R") = (>°(R").

Notice that if g : M — M, we can define its lift to the lattice G : M — M
as G(z); = g(x:), i € 2.

With this differential structure on M, the functions exp, 7, e and 7 lifted
to the lattice M from the corresponding finite-dimensional ones are C*° and
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their expressions in any chart of F have derivatives bounded independently
of the chart.

2.2. Linear and k-linear maps with decay. A decay function is a map
I':Z% — R* such that

(1) Dieza T'(0) <1,
() Syena T~ TG — k) <TG~ k), ik e 22
Given (X;);czq, a family of Banach spaces, we introduce the space £*°(X;) =
022,4(X;). Given (X;);cza and (Vi)jezqe, two families of Banach spaces, the
space of linear maps with decay I is
(2.1 Le(0=(X:), () = {A € L(=(X), () | [Allr < oo},

where L refers to the space of continuous linear maps, with

(2.2) | Allr = max{[|Al|,v(4)}
and
(2.3) v(A) = sup  sup [(Auw);|T(i—j)"".
i,jEZL  |ul<1
mu=0,l#j

Using the usual identification between the space of k-linear maps and the
space of linear maps on the space of (k — 1)-linear maps, the space Llli of
k-linear maps with decay is defined recursively by

LE(67°(;), €5°(V1)) = Lr (€ (), € (L (X3, £°(0))),
with the norm (2.2).

Linear and k-linear maps are stable under composition and contraction.
In particular,

(1) ifA e LIIE(EOO(Xi),EOO()},-)) and v € (°(X;), Av € Llli_l(éoo(Xi),Eoo(yi))
and [|Av[|r < [[Allr[[v], .

(2) If A € LE(° (D), £2(2;)) and B; € LY(6(X;), (D)), for j =
1,..., k, then the composition AB; --- By, € L?+"'+lk (0°(X;),0°(2))
and

|ABy -+ Bi|lr < [|Allr||Billr -« - | B|lr-

2.3. Holder and C" functions on M with decay. Let X C M be a
subset. Given 0 < o < 1 and a decay function we define the set of a-Holder
functions with decay as

Cf = CR(X,M) ={f: X = M| f €C% ra(f) < oo},

where

(2:4) Yalf) = sup Fa,(fi)D(i — )"
i,jEZ4

with

(2.5) 5oy (fi) = sup sup i@ fiw)

”Cll;jyl T £Yj - (xj ) yj)

This set is a complete metric space with the distance defined by
(2.6) doe(f, 9) = max(doa(f, 9),va(f,9))-
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where

(2.7) dee(f,9) = max(deo(f, 9), Ha(f,9))

@8)  Halfg) = sup S —elo@) — (/) +elg(w))]
zFy d (‘r7y)

and, for f,g € C2,

(2.9)  Aa,j(firgi) = sup sup lelfilz) - e(gi(;a)z - e(.fi(y)) *eloitw))
B ;]yl ;7Y zj,Yj)

and

(2.10) Yalf.9) = supFa;(fi, 9T — )"
2¥)

Let U C £>°(X;) be an open subset. The Banach space of C" functions
with decay is
(2.11)  CLEU,L=(V) = {F € C"(U,£>();)) | D*F(x) € L,
VeeU, 1 <k<r, ||[Flcp < oo},
where
(212) [Pl = max((1Fllco, puax sup | D*F(@)]e).

Then, given U C M, an open set, the Banach space of C” functions with
decay on U is

(2.13)
CHUL*(R")) = {G € C"(UAL=(RM)) | Gog™! € CL(¢(UsNU), £2(R)),
V(Ug, ¢) € i, |Gllcy < o0},

with
(2.14) IGllez = sup  [|Go¢ e,
Ug,9)€FN
and
(2.15) CHU,M) = {G € C"(U,M) | eo G € CL(U, {>(RP))},
with the distance
(2.16) dcr(G,G) = |leo G —eo Gy

With this distance, CT.(U, M) is a complete metric space.

2.4. Spaces of sections with decay. First we introduce
(2.17) St(M) = {0 € CL(M, M) | poo =1d,|lo|cr < oo}
the Banach space of CT. sections on M, where
loller = sup  |logller,
(Ug,$)EF M

with oy = moT¢pooo ¢!, the second component of the expression of o in
the coordinate chart (U, ¢) € Fu.

CH(M, M) can be modeled as a Banach manifold over Sf.(M). See Sec-
tion 5.6 in [FAILM10], for details.
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Given X a topological space (that may be a subset of M) and u : X — M,
we will say that v : X — TM is a section covering u if

(2.18) pov(x)=u(zx),

where p : TM — M is the tangent bundle projection.
We define the Banach spaces of bounded and continuous sections by
(2.19)
SUX)=8(X, M) ={v: X - TM|p(v(z)) =u(x), v bounded }

and, for u continuous,
(2.20)
SUX)=8SUX,M)={v:X - TM | p(v(z)) = u(z), v continuous },

with the norm

(2.21) Y]l cvo = sup ||v(z)]| = sup sup |v(x);.
zeX z€X jc7d

In [FAILM10] it is shown that T, M = ¢>°(T,, M), for all x € M. From that
it is deduced that S(X, M) = ¢>°((S2(X, M)),).

Finally, assume X C M. Given a C} function u : X — M, we define for
0<a<l,
(2.22)

a1 (X) = S2p(X, M) = {v € CO(X, TM) | p(u(a)) = ula), [¥]lcz < oo},

where

(2.23) [Vllcg = max(([v]lca, va(v))

and

(2‘24) ’Yoz(V) = S?JP@a,j(Vi)F(i _j)il

with

B3 oo = sy s RO~ Dot

=
With this norm, SﬁF(X, M) is a Banach space.

2.5. Uncoupled maps and hyperbolic sets. Let M be a compact n-
dimensional manifold and f : M — M a C" diffeomorphism. We consider
the uncoupled lattice map F' : M — M defined by f by

(2.26) Fi(z) = f(z2).

By Lemma 4.4 in [FAILM10], F is also a C" diffeomorphism and that, for
any x € M and v € T, M,

(2.27) D*F(a)o® = (D" f(a)uf*);czn.

Suppose that A = Ay C M is an invariant hyperbolic compact set for the
map f, that is, there exist a splitting ThAM = E° @ EY, invariant by T'f,
and A < 1 such that, for all x € A,

|Df(x)k;|
|Df71(33>|E;;‘

IN

A,
A.

IN
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As a consequence of the hyperbolicity the splitting is continuous. Moreover,

since A is compact, the splitting is uniformly continuous. We also have

that the projections 7%%(z) : T,M — Ey" are uniformly bounded in A.

Furthermore, it is well known (see Theorem 19.1.6 in [KH95], for instance)

that the splitting is C*/, for some oy > 0 depending on A and Lip f~!.
The hyperbolic properties of f are naturally lifted to F'. The set

(2.28) A=Ap=J[A={zeM]|zcn}

iezd
is invariant by F'. Moreover, from (2.27) with £ = 1, we have that the fiber
bundles £%, £ defined by

(2.29) E={veT,M|v € E;;Zu}
are invariant and
DF (@)l < A

Since E* and E° are subbundles of ThAM, £%, £“ are subbundles of Th M.

It follows from TAyM = E° @ E" that TaAM = £° ® £“. Moreover, the
projections 7" @ TpM — E" are defined as (7p"v); = w5 'v; and are
uniformly bounded in z for z € A. Indeed, if v € TaM and i € Z%, v; =
w5 v; + e vg, and |73, v;| < Clug|, for some C' independent of z;. Then, the
vectors my v defined by (m3"v); = w3 "v; belong to £ and v = v + v,
Furthermore, since the projections 73" are uniformly bounded, we have that
|(72"v)i| = |72 vi| < Clv;] < Cvl, and, then, |73“v| < C|v|. In particular,
the product norm is equivalent to the original one.

2.6. Main results. The first result deals with the structural stability of
uncoupled maps with hyperbolic sets in the space of C}. diffeomorphisms
on the lattice manifold M. This result is also true even if no decay prop-
erties are assumed on the perturbation of the uncoupled map F', but then,
of course, the conjugation does not have decay properties either (see Theo-
rem 3.7, in Section 3.3). If the perturbation has decay properties, these are
inherited by the conjugation.

Theorem 2.1. Assume that the uncoupled map F is C", with r > 3. Let
ay be the Holder exponent of the splitting of the underlying map f. Then,
there exist 0 < o™ < ay and a neighborhood V of F in CT such that, for any
eV and0<a<a
(1) there exists a unique close to the identity homeomorphism he that
satisfies

(230) @Oh¢:h¢OﬂAF.
Moreover, he € CF(Ap, M).
(2) The map V — C2 : ® — hg is C"73.

We remark that Theorem 2.1 follows in part from a version of the Shad-
owing Theorem that we prove in the context of lattice manifolds, which may
have interest by itself. See Theorem 3.1 in Section 3.2.
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In Section 3.6, Proposition 3.11, we will show that the sets Ag = ha(AF),
® €V, given by Theorem 2.1 are indeed hyperbolic. Next theorem provides
a description of their invariant stable and unstable manifolds, which also
have decay properties in several senses.

Theorem 2.2. Let FF : M — M be a C" uncoupled map, r > 4, F =
(icza, with f: M — M of class C" having a compact hyperbolic invariant
set. Let A be the hyperbolic set of F' and £ & EF its invariant splitting,
as defined in (2.28). Let V C C[.(M, M) be the neighborhood of F' given by
Theorem 2.1.

Given ® € V, let hg € CR(AFp,As) be the conjugation given by Theo-
rem 2.1, Ag = ho(AF) its hyperbolic set and EBEY its invariant hyperbolic
splitting.

Then, the hyperbolic set Ag possesses stable and unstable invariant man-
ifolds, WX, and WA, tangent to &3 and &g, resp., which are CY and are
foliated by le_?’ leaves. More concretely, there exists p > 0 and a map

T :B,={vels||v]|<p}C& — M,
such that
(1) range(Y*®) is invariant by P,
(2) for allv € &, d(®" 0 he(z), " 0 T*(v)) — 0, when n — oo,
(3) T* € CR(B,, M),
(4) for each x € Ap, the map ng;’z t By Né&Ep, — Mis Cr3, with
norm uniformly bounded in x and
(5) denoting 0, the zero vector in &}, ., D(ngh)(ox)ggw = &4 ha(z)

The same claim holds for Wx_ . replacing s by u and n by —n.

3. HYPERBOLIC SET

In this section we will obtain the conjugation of perturbations of uncou-
pled map lattices to the unperturbed system restricted to their respective
hyperbolic sets by using a version of the shadowing theorem in lattices. We
adapt the proofs of the related results for perturbations of uniformly hyper-
bolic systems in Shub [Shu78] to this setting. We strongly use that we work
with perturbations of uncoupled maps and that A, the hyperbolic set of the
uncoupled lattice map, is a product of compact sets. Similar results ap-
pear in [JP98]. The proof there follows the arguments in [KH95] which need
maps of class at least C2. In the paper [JP98] it is claimed that the invariant
manifolds of the points in the perturbed hyperbolic set are the image by the
conjugation of the corresponding ones of the unperturbed map. However,
the results only provide the conjugation on the hyperbolic set and hence the
conjugation may not be defined on the invariant manifolds as would be the
case if the hyperbolic set consists of a finite number of points.

3.1. Extension of the splitting. The splitting ThAM = E° ® E" can be
extended to a continuous splitting in a bounded neighborhood Up of A in
M. See [HP70] or [HPPS70]. [HP70], p. 148, attributes this to Mather. It
is also indicated in [KH95] (see the proofs of Prop. 6.4.4 and 6.4.6 in pp.
264-265). We denote the extension again by the same symbol.
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The extended splitting need not be invariant. Let

iy by
Gy dy
be the matrix of Df(x) represented with respect to the decompositions
T.M = E; & Ef and Tyy) M = E3 ) & EY ).
By the continuity of Df and the splitting and the compactness of A we

have that given d, > 0, we can reduce the size of the neighborhood Uy so
that if x € Uy

el A < A+ 0./2, bl |G| < 0u/2.

We recall that dp the injectivity radius of exp, that is, exp, : B(0,09) C
T, M — M is a diffeomorphism onto its image, introduced in 4.1 in [FdILM10].
For xz,z € M such that d(f(x),z) < 6y we define the linear map F, , :
T,M — T,M by

F.o = Dexp; ' (f(x))Df(x).

If z, 2 € Up we can write the matrix of F, ; with respect to the corresponding
decompositions of the tangent spaces as

Az 2 bz,ac
Czx dz,a:

If z = f(x), Dexp;!(f(z)) = Id and hence we have that if d(f(x),z) is

small
@zl |do ol < A4 60 |bzal, |eza] < 6.

We choose §, such that A + 0, < 1. Since A is compact there is p, > 0 such
that A + ps = UgeaB(x,px) C Upa. Then A + p, C [[,(A+pi) C [[;Ua
and since A+ p, is open, it is contained in the interior of [[, Ux. We denote
Ua = A+ ps. In Ua we have the decomposition Ty, M = E° @ EY, where £°
and & are defined formally as in (2.29) with the extended splitting in Ua.

3.2. The shadowing theorem. We denote Diff'*(M) the set of C' dif-
feomorphisms such that their derivative is uniformly continuous. The radius
px 18 the one introduced in Section 3.1 with J, small enough.

Theorem 3.1. Let ' : M — M be an uncoupled map F = (f);eza, with
f: M — M of class C' having a compact hyperbolic invariant set A. Let
A = [l;cga A. Then, there exist € > 0, 6 > 0, VA neighborhood of A in M
and V neighborhood of F in Diff**(M) such that if X is a topological space,
H : X — X is a homeomorphism, u : X — Va is a continuous map and
® €V, such that deo(uo H,®ou) < e there exists a unique continuous map
v:X — A+ p, such that

voH=®ouw, d(u,v) < 0.

Moreover, having fized uw and H, v depends continuously on ® and there
exists K > 0 such that

(31) dco(u,v) <cho(uoH,<I>ou).
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Symbolically,
)
decy i u /\T/l 7 /\T/l "
dluoH,Pou) <e an Y - X
H
implies
P
M - M
o 1 /T
X - X
H

Proof. We have to obtain v € C%(X, M) near u (satisfying d(u,v) < ¢ for
some §) such that

voH =®ouw,

or equivalently v = F(v), where
Fv)=®ovoH L

Throughout the proof we will denote d for the distance d-o. We take VA =
A + p,/2. We claim that if d(u o H,® o) is sufficiently small F sends
a neighborhood of u in CY(X, M) to the ball centered at u of radius Jo,
defined in Section 2.1 (see also the beginning of Section 4.1 in [FdILM10]).
More precisely, there exists 0 < 1 < 04/2 such that if

d(u,v)<51, d(q)¢F)<50/47 d(q)ou,uoH)<50/4

then d(F(v),u) < dp. Indeed,
(3.2) A(F(),u) <d@ovoH ' douoH ) +d(@®ouocH ' u).
The first term is bounded by

d(®ov,Pou) <d(®Pov,Fov)+dFov,Fou)+d(Fou,®ou)
and we use that F'is uncoupled and hence

d(F owv, F owu) = sup sup d(f(vi(z)), f(u;(x))).
ieZd xeX
By the uniform continuity of f on Uy, there exists §; < 6,/2 such that if
d(u,v) = sup; d(u;,v;) < 1 then d(f(vi(z)), f(u;(x))) < po/4 for all x € X
and moreover v(z) € A + p,.
The second term in (3.2) can be expressed as

d(®ouvoH Y uoHoH ') =d(®ou,uoH) < d/4.

Then d(F(v),u) < do.

Following [Mos69], the proof will be reduced to functional analysis in
C%(X, M). Hence, it will be useful to use the chart A of C°(X, M), defined
in a neighborhood of wu, introduced in (5.17) in Section 5.4 of [FAILM10],
ie.,

(Av)(z) = exply v(x) = (expy ) vi(2)) e
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We restrict its domain to the ball B(u,d;) C C°(X, M). We have the
diagram

F
B(“) 51) B B(u750)
A ! ! A
82,51<X7M) - 83(X7M>
f

where 83751 (X, M) is the ball of radius &; in S%(X, M), the space of con-
tinuous sections covering w introduced in Section 2.4 (see also Section 5.3
in [FAILM10]).

It is clear that F has a fixed point in 82751 (X, M) if and only if F has a
fixed point in B(u, d1).

Using this chart the operator F = AFA~! : 52761 (X, M) — SUX, M)
has the form

(3.3) (Fv) () = expyy B(exDyar1 o)) V(H ' (@))):
The map F can be written as the composition F = R o C where
(3.4) (Cv)(x) = H(v(x)),
(3.5) H(E) = exp;(lH(z)) (I)(eXpu(r) §), iffe Tu(m)M7
and
(3.6) (Rv)(x) = v(H !(z))

is the operator defined by (5.27) in [FdILM10]. Although C is similar to £
in (5.26) in [FAILM10], it has not the same structure and does not satisfy
the hypotheses of Proposition 5.6 in [FAILM10], where the regularity of £
was established. However we have

Proposition 3.2. If ® is C' and D® is uniformly continuous on M, then
C:8)5 (X, M) = 8 ;(X, M) is C' and

(3.7) (DC(v)Av)(z) = D(Hjz, ) M) (v(2)) Av ().

The proof of this proposition is placed in Appendix A.

Combining Proposition 3.2 with (3) of Proposition (5.7) in [FdILM10], we
have that F : 83751(X,M) — SUX, M) is CL.

We will apply a fixed point theorem for perturbations of hyperbolic maps
which we quote from [Shu78, Proposition 7.7].

Proposition 3.3. Let E be a Banach space and T : E — E a hyperbolic
linear map. More concretely let E = E1® Eo be a decomposition invariant by
T, where E1, Ey are closed subspaces. Assume that the norm of E is the max
norm of the ones of E1 and Ey. Let T; = Tjg, and assume that ||T1] < A

and |T;Y| < A Let f: B(0,r) C E — E be such that Lip(f — T) < &1 and
1£(0)|| < g2 with

(3.8) Atep <1, €9 <T(1—)\—€1).
Then f has a unique fized point py in B(0,7) and

1
(3.9) [Pl < m||f(0)||~
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Moreover the map f +— py is continuous from {f € CY(B(0,r),E) |
Lip(f —T) < 1— A} to E.

Theorem 3.1 follows directly from the next result.

Proposition 3.4. Under the hypotheses of Theorem 8.1, the operator F
satisfies the hypotheses of the fixed point theorem for perturbations of hyper-
bolic maps, Proposition 3.3, with f = F, T an auziliary map to be defined
below, E = SY(X, M), E; = S)(X,&%) By = S2(X,EY) and the radius v
small enough.

The proof of Proposition 3.4 is a consequence of the following two lemmas.
First we introduce two auxiliary operators G and G. For x,z € A + p, such
that d(F(x),z) < dp (as in Section 3.1) let

AZ7I = Dexpgl(F(:zr))DF(a:)
We write A, , with respect to the decomposition TM = E£° @ Y as
Qz.x bz,x
Az,x a ( Czx dz,a: > '
Since F is uncoupled A, ;& = (D exp. ! (f(z))Df(2;)€); and we have

lazal ldoal <A+ 0u, [baalslezal <.

The decomposition £ & £ is not invariant by A, if some x; ¢ A.
However it is invariant by

~ o O
L= ("% ).

We define G, G : SY(X, M) — S%(X, M) by

Gr(x) = Ay(wy w1 )V (H ' (2)),

Gv(z) = Ay(e) 1 (@) (H™

—
—
8
~
~

Lemma 3.5. Under the hypotheses of Theorem 3.1,

(1) G is hyperbolic and close to G in the space of linear operators.
(2) F is Lipschitz close to G.

Proof. (1) First we note that if & € £5, | A, €| < (A + 6,)|¢] and if n € EY,
|AZ2n| < (A + 6.)In|. Using the max norm in £% & £, which is equivalent
to the original one, we have

G () — Gr(x)| = sup [(G)i(w) — (Gv)i(=)]

(-1
= Sup ‘ ( lc)u(x),u(H—l(I))J'Vg (H X (gj)) >

(2

thus ||G — G|| = supy,<; |Gy — Gv|| < 6.
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(2) To estimate the Lipschitz constant of F —G we consider the derivative
D(F — G)(0). Since G is linear

D(F = G)(0)v(x)
=[D exp_(lm)(q)qul(x))D@(u(Hil(a:)))
— Dexp,y (FuH () DF (u(H "~ (2)))Jv(H ! (x))
=[Dexp_ (z )(<I>uH (a;)) — Dexp;(lz)(FuHil(a;))]D@(u(Hil(x)))V(Hfl(x))
o (Ful "} (2))[D2(u(H ! (2))) — DF (u(H ! (x)))Jv(H ' (2)).

Then since F is C! there exists a ball in SY such that in this ball DF—D.F(0)
is close to zero and hence Lip(F — G) is close to zero. O

Lemma 3.6. F(0) is small.
Proof. By the expression of F in (3.3)
(FO)(x) = exp;(lx) P(expy(r-1(2))0) = exp;(a)(QuH_l(m)).

Since d(®uH !, u) is small and exp, 'y is uniformly continuous in {(z,y) €
M x M | x €Uy, dz,y) <}

(3.10) exp (x)(CI)uH Y(z)) = exp (x)((I)uH L(z)) fexp;(lx)(u(x))

is small. O

+ Dexp ul

The function v(z) = exp,(, v(z) satisfies the conclusions of Theorem 3.1.
In particular (3.1) follows from
i(

d(ui(), vi(x)) = d(expy k) wile), expy k) i) = 10 - vi(a),

the fact that, by (3.9), [v| < ;=== |#(0)| and (3.10).
This ends the proof of Theorem 3.1. O

3.3. Conjugation. Now we can prove that, if ® € Diff**(M) is C'-close
to F, it has an invariant set close to the one of F' and the dynamics on the
invariant sets are topologically conjugated. In Section 3.6 we will show that
the obtained invariant set of ® is hyperbolic.

Theorem 3.7. Assume that ® € Diff%*(M) and dei (®, F) is small enough.
Then, there exists Ag C M invariant by ® and such that @5, is topolog-
ically conjugate to Fia,., that is, there exists a unique close to the identity
homeomorphism he : Ap — Ag, such that

@th) :hCDOF‘\AF'
Moreover, hp = 1d and he depends continuously on ®.

Proof. We apply the shadowing theorem to F' with different choices of X,
H and u. Let ¢,6 be as in the statement of Theorem 3.1, Un = A + p,/2,
with p, such that A + p, is contained in the neighborhood Va given by
Theorem 3.1, and V the neighborhood by the same theorem.

First we take X = A, H = F and u the inclusion ian from A into Ua.
Then, if ® € V and d(ip o F,® oin) < d(F,P) < €, there exists a unique
v € CY(A, A + p,) such that d(ia,v1) < & and

(3.11) vy 0 Fjp = ® o vy.
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By (3.1) we can take d(®, F') so small that d(ia,v1) < /2. From condition
(3.11) we deduce that Ag :=v1(A) C U is invariant by ®.

Next take X = Ag, H = ® and u the inclusion ia, from Ag into Ua. If
d(ing o ®, Foin,) < d(®, F) < ¢, there exists a unique vo € C%(Ag, A+ py)
such that d(ia,,v2) < 0/2 and

vgo@[)mq) = Fows.

On the other hand v o v; conjugates F' to itself. Since d(ve o v1,Ida) <
d(vgovy,ing, 0v1)+d(iag ovi,Id A) < 6 and Id A also conjugates F to itself,
by the uniqueness conclusion of Theorem 3.1, we must have vy o vy =1Id |a.
Analogously v1 o vy is close to the identity and conjugates ® to itself, thus
it must coincide with Id|a,. This implies that vy is a homeomorphism.
We take hg = v;. The continuous dependence of h on ® follows from the
continuous dependence of v on ® in Theorem 3.1. O

3.4. Hyperbolicity on spaces of Hélder sections with decay. Given
a section v covering i : Ap — M, the embedding given by i(x) = x, we
define its push forward by F as the linear operator

(3.12) F.(v)(z) = DF(F Yz)w(F~(z)), z€Ap.

Since A is invariant by F', Fi(v) is a well defined section covering i.

Proposition 3.8. There exists o < af such that for any 0 < a < o, the
operator F : Sffr — Sf}, where S’iofr was introduced in (2.22), is continuous
and hyperbolic. In particular, 1 & spec Fy.

The proof of this proposition is placed in Appendix C.

3.5. Holder regularity of the conjugation. Here we prove Theorem 2.1.
That is, that the conjugation hg obtained in Theorem 3.7 is CF. First we
reformulate the conjugation problem in terms of some suitable sections to
be able to apply the implicit function theorem in Banach spaces.

Proof of Theorem 2.1. Let hg be the conjugation given in Theorem 3.7. We
have that hg is close to the identity and depends continuously on ®. We
assume that ® is so close to F' that d(he,Id) < dp. Then there exists a
unique v € S such that

ho(w) = exp, V().

Moreover the fact that ® o F~! is close to the identity means that there
exists a unique o € S{.(M) (defined in (2.17)) such that

B(F(2)) = exp, o (x).

Hence we can write ®(y) = expp(,) o(F(y)). Then the conjugation condition
® o he = he o F' can be rewritten in the form

(313) eXp;1 €XPexp,, v(v)(x) O'(epr U(V) (.’E)) - I/(IE) =0
where
(3.14) v(v)(z) = eprl F(eXprl(l.) v(F~(x))).

We are let to introduce the operator
F:UCSH(M) xSF(AF) — SE(AF)
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defined by F(o,v) as the left-hand side of (3.13) on a suitable subset U. It
is immediate to check that F(0,0) = 0. We also have

Lemma 3.9. (1) F is C™=3 and the linear map D,F(0,0) is given by
(3.15) D,F(0,0)Av(z) = DF(F~ ! (z))Av(F~ () — Av(z).

(2) There exists 0 < o < ay such that, for any 0 < o < a*, D,F(0,0)
is invertible from Sp to Sf.

Proof. Observe that F(o,v) = Q(o,v(r)), being © the map introduced in
Proposition 5.11 in [FAILM10],  was defined in Lemma 5.8 in [FdILM10],
with j(u) = exp,u, u € T,M and J(z,w) = exp;l(expyw), x € M,
w € TyM and being v(v) the right-hand side of (3.14). Then F is C"3
since, by Proposition 5.11, € is C°° and, by Propositions 5.6 and 5.7,
in [FAILM10], v is C"3. Formula (3.15) follows from Propositions 5.6,
5.7, 5.11 and Lemma 5.8 in [FdILM10].

(2) follows from (3.12) and Proposition 3.8. O

As a consequence of Lemma 3.9 we can apply the implicit function theo-
rem to

(3.16) Flo,v)=0

and we obtain that there exists a neighborhood B of 0 in C} such that if
® is close enough to F then o(z) = exp, ! ®(F~!(x)) belongs to B and
there exists a unique v € Sf close to 0 such that (o,v) satisfies (3.16).
Then h(z) = exp, v(x) is the unique conjugation from F' to ® close to the
identity. Since v € S we also have h € S2. Moreover v depends C"~3 on o
and therefore h depends C™~3 on ®. O

Remark 3.10. Notice that we need the Shadowing Theorem in order to
prove that hg is a homeomorphism, since the solutions of (3.16) only provide
a semiconjugation. If one tries to formulate the equivalent relation for hg?,
the operator is no longer smooth and the implicit function theorem cannot
be applied.

3.6. Perturbation of hyperbolic sets. We have the following result

Proposition 3.11. Let F' and A be as in Theorem 3.1. There exist neigh-
borhoods Ua of A in M and V of F in Diff"O(M) such that if ® € V and
Ag is an invariant set of ® in Ua then Ag is hyperbolic.

Remark 3.12. If F'is C", r > 4, as a consequence of Theorem 2.2, in
Section 4.1, there will exist a neighborhood V of F' in CT. such that for any
® ¢ V the invariant splitting associated to its hyperbolic set is Cf and each
fiber can be described, written as a graph, by means of a Lr map between
appropriate £>° spaces.

Proof. Let Uy = A+ p, be the neighborhood of A and Ty, M = £° & E¥ the
decomposition introduced in Section 3.1. Let

a(z) b(x)

(x) d(z)
be the matrix representation of DF'(x) with respect to this decomposition
for 2 € Uy such that Uy N F~1(Us) C Uy.
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Given § > 0, if ® € V and V is small enough,
_ (=) b(z)
pa(e) = (2] 4
with
la@)| <X+4,  [b@) <8, fe(@)] <6 |d@)7H] <A+6.

If Ag C Us; is a closed invariant set for ® its unstable space is a fixed
point of the usual graph transform of a suitable auxiliary function.

Let D be the bundle over Ag such that its fiber is D, = L1(E2,EY), where

L1(&5,EY) is the unit ball in L(EZ,EY).

xr'~x i s

Let u € §* = {w € C%(A¢,D) | w(z) € D,} with the norm |wl|/s« =
SUpP,cp, |w(z)||. Given a section u € S* we want that

a(x) b(x)\ (u(x)
(c(:v) d(m)) <Id )
belongs to the graph of u(®(z)), that is,
(3.17) a(z)u(z) + b(z) = u(®(z))(c(z)u(z) + d(z)).
Let By be the ball of radius 1 in §*. Then we define 7 : By — §* by
(Tuw)(z) = (au+b)(cu+d) " H(@7H(z)) = (au+b)d  (d reut+1d) "L (@ (x)).

Note that this operator is well defined if § is small enough. The next calcu-
lation shows that if § is small enough 7 (B;) C Bj.

1Tul < sup [[(au+b)(@~" (@)l | (cu +d) = (@7 ()]

€A
A+
< —_—.
s O 20755
The space §* is complete. Now we estimate the Lipschitz constant of 7
17 (u) = T (v)]
= sup | [(au +b)(cu+d)™" — (av +b)(cv +d) )27 (z))]|
€A
< sup ([[(au+b)(ev+d) ™ e(v — u)(eu+d) " W)l| + lla(u = v)(ev +d) " W) )
ISA
A40 2 A+0
< 2 _ _
< [0+ 5)(1_(H5)5) 5+ O+ s <l =]l

Taking § sufficiently small 7 is a contraction. The unique fixed point
@ € By of T gives the unstable subspaces. Indeed, for every z € Ag, u(z)
verifies

(s o) (80) = (S i) e oy

(
po-1(2) (mg(gigx)) _ (igg Z((:;%)l <ﬂ(1:2(£;§:v)> _ (M@‘{i@i&(@) ,
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From the previous relation we have &(z) = (c(z)u(® 1 (z)) + d(x))Ex(x),
thus [|&2(2)[| = [[[e(z)a(@ (2)) + d(z)] (@)l < =5 1€2(2)]. Then,

using the max norm in &% @ &%,
DS~ (@)é(@)]| < (A + 28) € ()|

with A 4+ 26 < 1, if ¢ is small.
To obtain the stable bundle we begin with the invariance condition for
subspaces close to £°: we want that

a(z) b(z) Id
be on the graph of u(®(x)), that is,
u(®(z))(a(z) + b(x)u(r)) = c(z) + d(z)u(z).

To have a contraction we rewrite this condition in the form

u(z) = d(z) " u(@(@))(a(@) + b(x)u(z)) — c(z)].

Then, with analogous arguments as before, the stable bundle is obtained as
a fixed point.

Then Th, M has a hyperbolic splitting and therefore Ag is a hyperbolic
set. O

4. STABLE AND UNSTABLE MANIFOLDS OF Ag

4.1. Introduction. In the previous section we have dealt with the struc-
tural stability, in the C}. sense, of uncoupled lattice maps of the form (2.26),
with an underlying map possessing a hyperbolic set.

In this section, we will go further in the study of the hyperbolic set Ag of a

¢ perturbations ® of an uncoupled lattice map F' of such type, describing
its invariant stable and unstable manifolds. We recall that, in the finite-
dimensional case, the stable and unstable invariant manifolds of a compact
hyperbolic invariant set of C™ map are in general C® on the base point in
the hyperbolic set. However, they are foliated by C” invariant manifolds,
corresponding to the invariant manifolds of each point in the set. Here, we
will prove that the invariant manifolds of Ag are C} as functions on the
base point, and that the leaves corresponding to the invariant manifolds of
the points in Ag are 017273, in some appropriate sense.

We remark that in the proof of the decay properties of the manifolds
it is essential that ® is close enough to an uncoupled map F, in the C}
topology. However, the existence of the manifolds is guaranteed simply by
the hyperbolicity.

The rest of the section is devoted to the proof of Theorem 2.2. It will be
a consequence of Theorem 4.7, concerning the hyperbolicity of a fixed point
of a certain operator acting on spaces of sections, whose invariant manifolds
will be closely related to those we are looking for. The procedure will be
as follows. In Section 4.2, we will introduce the operator Ag acting on the
space of CF sections and on the space of bounded sections. By construction,
the zero section will be a fixed point of Ag. We will prove that this fixed
point is hyperbolic and, hence, has invariant manifolds.
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In order to prove that the zero section is indeed a hyperbolic fixed point
of the operator Ag, we will need to construct an appropriate splitting of the
space of CF sections, that we will carry out in Section 4.3. Once we state
Theorem 4.7, we will deduce Theorem 2.2 from the latter, in Section 4.5.

4.2. The action of ® on sections. In this section we will use the expo-
nential map in the form exp : Us, C TM — M x M, with Us = {v € TM |
|v] < 0}, and we will write exp(v) = (z, exp, v), for v € T, M, i.e., z = p(v).

Let he be the conjugation given by Theorem 2.1. We define the action of
® on a section v covering hg by

A¢(V)(CC) = eXp;:;(I) o®o CXPhgoF—1(z) V(Fil(x))'

Note that the above expression is well defined if ||v|| oo < 01 := Lip(®)dp.

For our purposes, it will be more convenient to rewrite Ag, by using the
operators L, and R p-1 introduced in (5.26) and (5.27), resp., in [FdILM10],
as

(4.1) Ag(v) = Ly, oRp-1(v) = Hpovo F71,
where Hg : Us, — T'M is the function
(4.2) Hp = exp L o(® oy, ® omy) o exp,

and m; : MxM — M, i =1,2, are the standard projections in the cartesian
product.

Remark 4.1. Notice that, by its definition, the value of Ag(v) at a point
x only depends on the value of v at F~1(x), that is, Ae(v)(z) = Ae(¥)(z),
whenever v(F~1(z)) = 0(F~1(z)).

Remark 4.2. The idea to obtain invariant manifolds of hyperbolic sets
by applying invariant manifolds theories for spaces of sections goes back
to [HP70]. Nevertheless, we call attention that our operator is different
from the one used in [HP70]. We have to rearrange the scheme so that the
dynamics is referred to the dynamics of the uncoupled map.

Let us denote by 0 the zero section covering he, that is, 0(x) € Tj, ()M
is the zero vector. Notice that we can identify 0(z) with he(z) by means
of the exponential, since expy,(,)©0(z) = he(z). From the conjugation
relation (2.30), we have that Ag(0) = 0.

In order to prove the hyperbolic character of 0 for Ag, we will need to
find a suitable splitting of the spaces of sections under consideration. This
is accomplished in the next section.

4.3. Splitting of spaces of sections. In this section we start with the
invariant hyperbolic splitting of Ta,M = £* & £° introduced in (2.29) to
find a near invariant hyperbolic splitting, under Ag, of the spaces of sections
we will work with.

We recall that, by construction, the projections 7% : Th, M — £“ and
7w Tap M — E° satisfy

(" (z)v)j = m(xzj)vy,  (7°(@)v); = 7°(25)v),
for all x € Ap, v € T, M, that is, they are uncoupled maps on each fiber,
where 7% : TAfM — TM and 7° : TAfM — T'M are the projections on the
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invariant hyperbolic splitting of the underlying map f, E* @ E?, introduced
in Section 2.5. Furthermore, the dependence of the projections on z is C%f.
This fact is quantified in next lemma and, in particular, in inequality (4.3).

Lemma 4.3. The vector bundles E* and E° are Cf, that is, there exists
C > 0 such that, for all z,y € A, v € TM, w € TyM and for all i € VAS

(4.3)  [(De(z)m"(z)v — De(y)m* (y)w)i|

< C(d™ (@i, yi) max{|v|, |wi|} + |De(zi)vi — De(y;)wil),
and the same inequality holds for m*, where e : M — (*°(RP) is the embed-
ding introduced in Section 2.1 (see also (4.10), in [FAILM10]), and d is the
distance in TM (see also Section 2.1 and (4.12) in [FAILM10]).

Moreover,

(4.4)  [De(z)r"(z)v — De(y)m"(y)w]|
< C(d* (z,y) max{|v], |w|} + [De(x)v — De(y)w]),
that is, the splitting is ap-Holder.

The proof of Lemma 4.3 is placed in Appendix B.

This splitting of Ta . M induces a splitting of the space of sections over A,
as described below.

Notice that, if v is a section covering the embedding i: Ap — M, i(z) =
x, so are the sections 7° o v and 7% o v.

In what follows we will use extensively the embedding e : M — ¢(*°(RP),
the left inverse of De, n : M x {*(RP) — TM and the connector T :
MXxTM — TM, introduced in Section 2.1 (see also (4.10), (4.13) and (4.9),
resp., in Section 4.2 of [FAILM10], for more details). In particular, all these
maps are uncoupled and, when written in charts, have uniformly bounded
derivatives.

Lemma 4.4. Let v be a section coveringi: Ap — M. Then
v=mov@®ntou.

Furthermore, there exists C' > 0 such that for any v € S (AF), with o <

ay, then T8 ov, " ov € S (Ap) and

(4.5) [m“ovlcg < Cllvlicg,  [Im*ovlcg < Clvlleg.

Proof. The first claim follows from v = 7% (x)v @ 7°(z)v, for all v € T, M.

Now we assume that v is Cf¥. To prove (4.5), we take j € 7%, and x,y €
Ap such that x; = y;, ¢ # j. Then, using that o < oy and inequality (4.3),
we have that, for any i € Z¢,

|(De(@)r" (z)v(z) — De(a)m" (y)v(y)),l
= |De(z;)m"(zi)vi(x) — De(x:)m" (yi)vi(y)|
< C(d™ (i, y;) max{|vi(z)], [vi(y)[} + | De(xi)vi(z) — De(yi)vi(y)])
< 1+ 10 HClllepT (@ — 5)d* (. 35).
In the same way, for any z,y € Ap, using (4.4), we obtain that
| De(z)m*(x)v(x) — De(x)m*(y)v(y)| < 2C|v[lcad(x,y),
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and, hence, the Holder norm of 7% o v is also bounded. O
We define the vector bundles £F and £F by
(4.6) €0 =T(@,he (), € = T(0, ha(2))EF,,

where 7 : U, C TMx M — T M is the connector introduced in Section 2.1
(see also (4.9), in [FAILM10]).

Notice that £ ,, €, C Thg(x)/M. Moreover, since 7 is a linear isometry
on each fiber, we have that Ty, )M = &, ® £ ,. We remark that this
splitting is not necessarily invariant, although we will see that it is close to
invariant.

We will use this splitting to induce a splitting of the space of sections
covering hg.

We define the operator 7, acting on sections covering he by

(4.7) TheV(z) = 7(ha(2), x)v(x).
Since 7(he(z), z) is a map from T}, ;) M to Ty M, Th,v is a section covering
i:Arp — Ap.

Analogously, the operator 7"® acting on sections covering i : Ap — Ap
is defined by
(4.8) hey(z) = 7(x, he (2))v(z).

Then, 7"*v is a section covering he.

Lemma 4.5. Let S5 +(Ap), STH(AF), Sﬁ@(AF) and SY(AF) be the spaces
of Cf and bounded sections introduced in (2.22) and (2.19) (see also (5.13)
and (5.8), in [FAILM10], resp). The operators T, and T"* defined above
satisfy
(1) 7y - S}OL‘@F(AF) — Sf‘F(AF) and Tp, : S;’L@(AF) — Sib(AF) are
linear and bounded,
(2) The Sf‘F(AF) — Sﬁ@r(AF) and Tp, : Sib(AF) — S;’L@(AF) are
linear and bounded.

Furthermore, Tp, © rhe =1d.

Proof. We prove (1), (2) being analogous.

We concentrate in proving that 74, : Si, r(Ar) — Sfy p(Ar) is bounded.
The case 7p, : Sﬁ@(Ap) — SP(Ap) is straightforward since 7(z,y) is an
isometry on each fiber and depends C'*° on = and y.

We compute a bound of the CF-norm of 73,,v. We take j € 7%,z y € Ap
such that x; = y;, for i # j. Let 8 and GP be the curves associated to v and
he given by Lemma A.2, in [FAILM10]. Let 3 : [0,1] — M be the curve
defined by §;(t) = x; = y;, for i # j and

Bi(t) = n(BY (1)) (tvy,; + (1 — t)va ),
where
Vg,j = De(h“b,j (.CU)) eXp}:;j(w) Ljy, Vyj = De(hq’:j (y)) eXp’:q::j(y) Yj

and 7(z) is the left inverse of De(z) introduced in (4.4), in [FdILMI10].
There exists C' > 0 depending only on M and the choice of 7, such that

the curve 3 satisfies d(5(t), B7(t)) < Cdco(he,1d), |Bi(t)| = 0, for i # j



HYPERBOLIC SETS ON LATTICES 21

and |ﬁ~](t)| < C(Va(ha)d*(zj,y;) + dco(he,1d)). Indeed, if i # j, since
B (t) is the minimal geodesic joining he;(x) and he;(y) (see Lemma A.2
in [FAILM10]) and z; = y;,

For ¢ = j, by construction, for some constants C; and C5 depending only
on 7, e and exp

d(B;(t), B5(1)) < Crlllvall + llvg.s

) < Cadeo(Id, hy).

The bound for Bj(t) follows from the estimates on 3”7 given by Lemma A.2
in [FAILM10].

By Theorem 2.1, we can assume that C'dpo(he,1d) < po, provided that
dcr.(®, F) is small enough.

Then, we can write

(4.9)  [(De(x)Thyv(x) — De(y)Thav(y))il
= |De(xi)7(he i(x), z:)vi(z) — De(yi)7(hei(y), yi)vi(y)|

_‘/ 7 (De(Bi(t)7 (7 (1), Bi(£))Bi(t)) dt

Hence, for a fixed t € (0,1), let (Uy, ¢) be a coordinate chart such that
B,,(67(t)) C Ug. Since d(B(t), 8P(t)) < po, we have that G(t) € Uy. Let
By = (ﬁg, ﬂ;), Bab Ty = (7‘;,7‘;) and ey be the expressions of the involved
curves and functions in this chart, following the notation introduced in A.1
in [FAILM10]. By inequalities (A.1), (A.2) and (A.3), in [FdILM10], we have
that the curves Bg, Bfﬁ have decay around the j component, in the sense
introduced, in (2.29) in Section 2.10 of [FAILM10], and, for some constant
C independent of v and the chart ¢,

185150 < Cd*(xj,y5), 163l < Clvlload™(xj,y5), 1831 < Cllvllce,

where the norm

(I -5

tel |ezd

was defined in (2.29) in [FdILM10].

Also, since, by construction, 3; = 0, for i # j, and the definition of ﬁ],
we have that

135110 < Cd*(x, ;).

Furthermore, since 74 and e4 are uncoupled, they are CT.. Their norm only
depends on the manifold M and the choice of the embedding. Hence, by
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Lemma 2.18 in [FAILM10], we have that

(Do) (1), B 3u(1)
o (Do B0 (34,4(0), B 1) 2,9)

< C|vllepd® (), y))T(E —5)7",

for some C' > 0. Claim (1) follows from inserting this last inequality
into (4.9).
Last claim follows from the fact that 7(z,y) o 7(y, z) = Id |7, ;- O

From the vector bundles £ and &£ defined in (4.6), we introduce

(4.10) S r(Ar) ={v € Sp, r(AF) | v(2) € Eg 4, Yo € AR}
and
(4.11) Spop(Ar) ={v € Sp, r(AF) | v(z) € EG 4y Yo € AR},

The spaces 82’:(A r) and SZ;E(A r) of bounded sections are defined analo-
gously.
Then, we have

Lemma 4.6. (1) S,l:q)(AF) = SEZ(AF) @SZ§(AF) and the projections, Ty
and F}SL(I), resp., are continuous.

(2) Sp, r(AF) = S, H(AF) © S (Ap) and the projections, i, and 77, _,
resp., are continuous.

Proof. Since m;  can be written as

(w1, 1) (@) = 72, ho (@) 7 (@) (hoo(2), 2)v(2),

the lemma follows from Lemmas 4.4 and 4.5. O

Using the splittings of 524> (Ap) and S, 1(AF), we define a new norm on
these spaces by setting

(4.12) IVllee = max{|lmh, viice, 7y, vice}
(4.13) [V]lee = max{||mh, oo, 75, vl o}
Lemma 4.6 implies that the prime norms are equivalent to the original norms

in S, and 52@- From now on, we will use norms (4.12) and (4.13) in S§!,
and qu), resp., which we will denote without prime.

4.4. Hyperbolicity of the operator Ag. In this section we state Theo-
rem 4.7 on the hyperbolicity of the zero section of Sy - and S;’L(P, which is a
fixed point of the operator Ag, introduced in (4.1). We will also describe the
regularity of the invariant manifolds of the zero section. Theorem 4.7 shows
that the invariant manifolds produced in the space of sections enjoy prop-
erties that allow to project them to geometric objects in the phase space,
namely, the invariant manifolds of Theorem 2.2.

Given p > 0, we will denote by V* and Vpb the balls of radius p in

Sp, r(Ar) and S,’;q) (AF), resp., V" = VN S}OL‘;F(AF) and, analogously,
Vs
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Using the splittings of S, (Ar) and 824) (AF) given by Lemma 4.6, we
will denote v = (v*, V"), where v" = 7} v and v° =} v.

Theorem 4.7. Assume that ® is C}. close to F', r > 4. Then, there exists
p > 0 such that the following holds true.

(1) The map Ag : V¥ — S 1(Ap) is well defined and C"=3. The zero
section in S,?%F(AF) is a hyperbolic fixed point of Ag. Let I/Vli’cS denote its

local stable invariant manifold. There exists a C"=3 function W** : V% —
Spar(AF) such that

Wi AV = {05 0 0) | v € Vi)

loc

Moreover, if v5,0% € V,°° satisfy v¥(z) = v%(z), for some x € Ap, then
s (x) = U () (2).

(2) The map Ag : Vpb — Sg@ (A) is well defined and CL.~2. The zero section
n S,bl<I> (AF) is a hyperbolic fized point of Ag. Let W/ll;’j denote its local stable
invariant manifold. There exists a CL° function W Vpb’S — S,l;::(AF)
such that ,

WAV = {5, 0 (0 | 0 € V),
Moreover, if v° 0° € Vpb’s satisfy v*(x) = v°(x), for some x € Ap, then
oo (v°) () = B2 (%) ().
b P b7 .8
(3) WO = WO s,
(4) For any x € A and v € & , with |[v|| < p, the map, induced by DUbs

Ap(v) 1 E§p — €yt w DU ()i (x),

where v° € Vpb’S and U° € SZ’;(AF) are such that v¥(x) = v and 0*(z) = w,
s well defined.

(5) The map Ag(v) is T-linear and its T'-norm is uniformly bounded in
T € Afp.

4.5. Deduction of Theorem 2.2 from Theorem 4.7. We start by in-
troducing two auxiliary lemmas we will use in the deduction of Theorem 2.2
from Theorem 4.7.

First we claim that we can construct (uncoupled) C' sections covering he
with a prescribed value at a given point, and that this construction is linear
(hence, regular) on each fiber of T, M. Actually, the map €2j_introduced
in the next lemma assigns to every v € £, a C section v such that v(x)
is the transport of v to hg(x) by the connector 7.

Lemma 4.8. There exists a map Q;  : Ep — 87" 1(M) with the following
properties:

(1) 4t is Lipschitz,

(2) @, (v)(x) = 7(2, ho(x))v, for allv € &, C TyM and

(3) it is linear on each fiber.
In particular, Q;‘;q} is C'°° on each fiber.

Furthermore, Q},  is uncoupled in the following sense: given j € 72, if
x, T € Ap satisfy x; = Z; whenever i # j, and v € T, M, v € Tz M satisfy
v; = 0;, for i # j (this comparison makes sense since TyM = (T, M)),
then ((,, (v) — Q5 (9))(2)); =0, fori # j, z € Ap.
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The proof of this lemma is deferred to Appendix E.
Next we check the regularity of the evaluation operator.

Lemma 4.9. (1) The map ev : S,?%F(AF) X Ap — Ta,M defined by
ev(v,z) = v(x) is continuous. Moreover, it is linear with respect its first
variable — which implies it is C°° with respect to its first variable — and Cf
with respect to x and

(4.14) Ya(ev(v,-)) < max{ya(he),[|V]cp}-

In particular, ev is a-Holder.
(2) The map ev : qu,(AF) X Ap — Ta, M defined by ev(v,z) = v(x) is
linear with respect its first variable and |ev(-,z)|| < 1. It is uncoupled with
respect to the identification qu) (Ap) = 500(52@ (AF)), that is, ev(v,x); =
Proof. We recall that the distance in T M was defined as
d(v,9) = max{d(z, T), | De(x)v — De(Z)0]|},
forveT,M, v €Tz M.
In order to prove (1), let (v, z), (7, %) € S, p(AF) x Ap. Then
(4.15) d(ev(v,x),ev(v,))
= max{d(he(z), ha(Z)), || De(ha(z))v () — De(he(2))7(2)]}-
Since hg is C“, we have that d(he(x), he(Z)) < H(he)d“(x,Z). Moreover
[ De(he(2))v(x) — De(ha ()7 ()]
< [|De(ha(x))v(z) — De(ha(2))v ()| + || De(ha(2))(v(2) — #(2))]
< [vllgad®(z, ) + Cllv — 7| o,

which yields the continuity of ev. By definition, it is linear with respect to v.

To finish the proof of (1), it only remains to see that ev is Cf with respect
to z. To this end, we take v € S’ (Ap) and j € 7% and we let z,% € Ap
such that xj, = Zy, for £ # j. By the Cf continuity of he, we have that

d(hei(z), he,i(Z)) < Ya(ha)I'(i — j)d*(z;,Z;). Moreover,
|(De(ha (z))v(z) — De(he(Z))v(Z))|
< || De(ha,i(x))vi(x) — De(he,i(Z))vi(T)|
< |wlleaT (i — 5)d* (x4, T;).
Hence, in view of (4.15),
d(ev(v, )i, ev(v, )i) < max{va(he), |vllcp T (i — j)d* (x5, Z5).
To prove (2), note that the linearity is obvious and , for any v € S}blq) (Afp),
lv(@)| < |lv]], for all z € Ap.
By definition, the map is uncoupled. O

Deduction of Theorem 2.2 from Theorem 4.7. Let §j be the map given in
Lemma 4.8, and ¥**® be the map such that its graph is invariant by Ag,
given in Theorem 4.7. We define, for z € Ap, v € Efry CToM,

(4.16) T*(v) =moexpoevo ((Id, V") o (v), 7).
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To see (1) note that, by construction, since the graph of ¥®# is invariant
by Ag, the range of T* is invariant by ®. More concretely, we claim that, if
v € &y [0l < py

(T%(v)) = T*(w),
where
w = ﬂ;(x) o7(hg o F(x), F(x))o exp;;OF(x) O(T%(v))
and W%(x) : TppyM — Sf:yF(x) is the natural projection. Note that w €
€t p(z)- Indeed, for v, = Q5 (v),¥4% 0 QF (v)) we have that

Ag () (F(2)) = expy, ) iy DO (0).

Since v, lies on the stable manifold of 0 for A4, the claim follows.

We remark that the definition of T# in (4.16) is independent of the choice
of the function wa, as soon as satisfies the properties listed in Lemma, 4.8.

Let us denote (Id, U**) by ¥ during the rest of the proof.

Since W** parameterizes the local stable manifold of the zero section
in Sy p, for all z € Ap and v € &, with [jv]] < p, d(®" o he(z), " o
T5(v)) — 0, when n — oo. This proves (2) of Theorem 2.2.

Now we check (3) of Theorem 2.2. First we note that, by Lemmas 4.8
and 4.9, since U** is C"~3, we have that Y* is a-Holder. Next, we take
j €7 x,& € Ap such that x; = &; for i # j, and v € TyM, ¥ € Tz M such
that v; = ¥;, for ¢ # j. We first observe that, since €2y is uncoupled,

(4.17) he (0)i(2) = Q (0)i(2), forall 2 € Ap and i # j.

On the other hand, since exp is uncoupled and uniformly C°°, there exists
C > 0, depending only on M, such that

(4.18)
d(T%(v)i, Y2(0);) <Cd(evio (¥ oy, (v),x),ev;o (Yo (0),Z))

SC(d(evi (Vo (v),x),evio0 (VYo (v),T))
Fdlovi o (W0 04, (0), ). evs o (¥ o 0, (), 7).

By Lemma 4.9, the map ev is Cp with respect to its second variable, and,
by (4.14),

(4.19) d(ev;o (Yol (v),7),ev;o (Vo (v),7))
< max{ya(ha), [V o G, (v)lop 3T (i = j)d* (z;, Z5).
On the other hand, we recall that
d(evio (Vo thp( v),Z),ev;o (Vo Qi@ (0), )
= max{d(z;, ), || (¥ 0 Qf , (0)(Z) — W o (0)(Z))ill) }
and, denoting v = Qf _(v) and v = Q; _(9),

1
(4.20) [[(@ 0 v(3) — U o #(2))s]| = H(/ DU(5 + t(v — ) (v — P)(F) dt) .

By Theorem 4.7, D¥(7) induces a Lt map at each point z, with | DU (2)(z )
C, for some positive constant C. Hence, since, by (4.17), (v(Z) — v(Z))r =
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for k # j, applying (1) in Lemma 4.8, we have that, for some constants
C,.C >0,
(W ov(Z) =W on(Z))l < O, (v)i(Z) = g (0)i(D)IT(E — J)
< CT (i = j)llv; — vsl.
Inserting this last inequality into (4.20), the claim is proven.
(4) follows from the regularity of each map in the definition of Y* in (4.16)
given by Theorem 4.7, Lemmas 4.8 and 4.9.

5) follows from the invariance of range(Y*) and the fact that is C%~2 on
(5) g r
each fiber. O

4.6. Proof of Theorem 4.7. Let 0 denote the zero section in S}‘:@I N S,liq).
By construction, Ag(0) = 0. The rest of the claim follows from proving that
0 is a hyperbolic fixed point for Ag in Sf - if der.(F, @) is small enough.
To do so, we will see that Ag is close, in the appropriate topology, to a map
for which 0 is a hyperbolic fixed point.

To begin with, we consider the map Ap(v) = Hp ov o F~! (see formu-
las (4.1) and (4.2)). By Propositions 5.6 and 5.7 in [FAILM10], Ag is C"3
when considered acting on Sp - sections and 017272 when acting on Sf’d.
Furthermore, by (5.28) and Proposition 5.7 in [FdILM10],

(4.21) (DAF(0)v)(z) = DE(F~Y(2))v(F~(z)).
By Lemma 4.4, Sf - = Si’r ® Siy'p- Using this decomposition, since the
splitting £ @ €1 is invariant by F', we can write
Ap 0
4.22 DAp(0) = | “E5s :
(1.22) w0 = (5,0 )
where Ap, s = TS © DAFr(0) o TS and Afg, , is defined analogously.

Lemma 4.10. Under the standing hypotheses on F, for any 0 < a < ay,
Afpyu Slad’?r — S%’?F, Afpss Sﬁi"} — SIad"fF are bounded linear maps and
AF . 15 tnvertible.

Moreover, there exist 0 < o* < ay such that, for any 0 < a < o™ and any
0<A< 1, there exists N > 0 such that

(4.23) JAZA Ll <A gl < A

The proof of this lemma is deferred to Appendix C.

Note that Apy = AN.

We would like to compare Apn with Ag~v. However, a direct comparison
is impossible since the operators act on different spaces. Because of this
reason we introduce

(4.24) Apn =Ty 0 Apn o T

with the operators 75, and 7'¢ defined in (4.7) and (4.8), resp. Since,
by Lemma 4.5, these operators are linear and bounded, DA~ (0) = 73, ©
DApx(0) o '@, Using the decomposition Shor = Si?ir @ S}?ﬁr and the
fact that, by construction, 7@ (8;""<) = 875", we have that

P, )

- Ay 0
4.2 D = [Fss )
(4.25) A (0) ( X AFW)
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Lemma 4.10 implies that
(4.26) IAGN ool 1AEN 6

FN uu
We choose A in Lemma 4.10 such that 0 < |7, [[||[7"¢ ||\ < 1.

Lemma 4.11. Assume r > 4. There exist C > 0 and €9 > 0 such that, if
dey (@, F) < eo,

(1) [[DA(0) — DAF(0)||L(3;7¢,F,S;7¢,F) < Cdcr (P, F),
(2) IDAs(0) — DAF(O)”LF(S};(I),SZ(D) < Cdcy (P, F).

-
< [I7hg 77 (A

The proof of Lemma 4.11 is rather cumbersome and is placed in Appen-
dix D.

Now, after Lemma 4.11, Theorem 4.7 follows almost immediately.

Indeed, from (1) in Propositions 5.6 and 5.7 in [FdILM10], we have that
Ag is a O3 map from some ball around 0 in S}%,F to S}%,F' Moreover,
by (1) in Lemma 4.11, we have that, if dcy(®, F) is small enough, the zero
section 0 € S,?@F is a hyperbolic fixed point for Ag. Hence, it possesses a
C"~3 stable invariant manifold. More concretely, there exists a C”~2 map
A S,?:F — 5}?{:1“ whose graph is invariant by Ag. Furthermore,
it is well known that this function ¥** is an attracting fixed point of the
graph transform operator in the space of C"~* maps, ¥ > G(¥), with

(4.27) G(¥)(v°) = A;}L (U(As s + AU (V°) + R (v®, U (1°))
- Au,sVS - Ru(ysa \I/(VS)))’

where A = D.Acp(O) + R, D.Acp(()) = js’s is’u> and R = (R&Ru),

Now, since Ag(v)(z) = Ag(P)(z), whenever v(F~1(z)) = #(F~1(x)) (see
Remark 4.1) and in view of (4.27), we have that, if U satisfies also ¥ (v*)(x) =
U (7°)(z), whenever v*(x) = ®(x) (for instance, if ¥ = 0), then so does
Uk = GF(W). Hence, U = limy_ o, ¥" satisfies the same property. This
concludes the proof of (1) in Theorem 4.7.

Now we prove (2) in Theorem 4.7. From (2) in Propositions 5.6 and 5.7
in [FAILM10], we have that Ag is a C1.~ % map from some ball around 0 in
Sﬁ@ to qu,' Hence, by (2) in Lemma 4.11 and Theorem 3.1 in [FdILM10],
the invariant manifolds of 0 € S;’Lq) are C’{Z*B, that is, there exists a C’I’lf?’ map
Pois . Vpb - 82;3 — SZ’: whose graph is invariant by Ag. This map coincides
with W%?* in the intersection of their domains, since both are attracting fixed
points of the same operator G, Sp, 1 C S}(l)@ and the inclusion is continuous.
With the same argument as before, we have that % (v%)(z) = ¥»*(7%)(z),
whenever v*(z) = *(z).

(3) follows from the fact that S§ C S and the inclusion is continuous.

(4) and (5) simply follow from the fact that ¥**(v)(z) only depends on
the the value of v at z and the fact that ¥%* is a C’I’:_Q map. O
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APPENDIX A. PROOF OF PROPOSITION 3.2

Instead of working with the explicit expression of H, we highlight the
set of its properties that permit to prove C! regularity. We have that H :
TuxyM — Ty x)M satisfies

(1) H is continuous,

(2) for all x € X, H(Tu(m)M) C Tu(h(m))M,

(3) for all x € X, Hir, M 18 C! and

(4) D(Hz, - ) is uniformly continuous and its modulus of continuity
is bounded independently of z € X.

The first three properties are quite obvious. The fourth one follows from
the fact that exp and exp~! are uncoupled, M is compact and ® is C'' with
D® uniformly continuous.

First we check that C is differentiable. Let v € 38751 and Av € S8 with
|Av|| small.

We have that

(C(v + Av) — C(v) — DC(v)Av)(x)

=H(v(z) + Av(x)) = H(v(z) = D(Hr, M) V(7)) Av(2)
+ R(v, Av)(z),

where
1
R(v, Av)(z) = /0 (D(Hr, . aa) (@) AV (@)~D(Hyr, ) (v(2))) Au(a) db.

Property (4) implies that |R(v, Av)(z)| < ¢||Av/|| if ||Av|| is small enough,
then C is differentiable at v.

The continuity of DC follows from

IDC() — DC(v)]|

= sup_sup [(D(Hyz, ) )V (2) — D(Hiz, a0 (v(2))) Av(a)]
|Av|<1zeX

<eglAv| <e

if ||/ — v|| small enough, by property (4).

APPENDIX B. PROOF OF LEMMA 4.3
The proof follows from the same claim for the finite-dimensional case.

Lemma B.1. Let T\ M = E" ® E*® be the hyperbolic splitting of the hy-
perbolic set A, introduced in Section 2.5. There exists C > 0 such that the
projections %% : TaoM — TaM satisfy, for all x,y € A and v € T, M,
w e TyM,

(B.1)  [De(z)m™*(x)v — De(y)m™" (y)w|
< C(d* (z, y) max{|v], |w[} + [De(x)v — De(y)wl),
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where e : M — RP is the embedding introduced in Section 2.1 (see also
Section 4.1 in [FAILM10]).

Proof. Let (TUy, T¢) be a chart of TM. The expression of the projections
7 and 7 in this chart are

TA\MNTU, C TU, =5  TM

T¢ | 1T
R" x R" ToTe, Rn o Rn

Ty and 73, satisfy 70" (z,v) = (z, Aj"(2)v), where for some constant C
depending only on M,
(B.2) A3 (x)v — AZ (y)w| < C(d™ (z,y) min{|v], [w[} + [v — w]).

On the other hand, we remark that there exists a constant C' such that, if
x,y € Uy (the domain of the chart ¢) and v € T, M, w € T,M, then

(B:3) [Do(x)v — Do(y)w| < C(|De(x)v — De(y)w| + d(z, y) min{[v], [w]}).

Indeed, using n(z) = De~!(x), the left inverse of De~!(x), we have that, for
some C' > 0,

|Dg(x)v — Do(y)w| =|ns(¢™" (x)) Deg(¢™" (x)) D(a)v
—16(¢07" () Deg (& (1)) Do (y)wl
<C(|De(x)v — De(y)w| + d(x, y) min{[v], [w]}).
Let 2py < 1 be the Lebesgue number of the open covering {Ug} of M.
Assume first that d(z,y) < po. Hence, there exists Uy such that x,y € Us.
Then, from (B.2) and (B.3), for any v € T, M, w € TyM and assuming
v = min{[v], |wl},
|De(z)m* (z)v—De(y)m" (y)w| = |Deg(x)mg(x) Dd(x)v — Dey(y)mg(y) Do(y)wl
<[(Deg(x) — Dey(y))mg(z)Do(x)v|
+ [Deg(y) (mg (z) D (z)v — 74 (y) Db (y)w)]
<Cd(z,y)lv| + C(d* (z,y) min(|Dg(x)v], [De(y)w|)
+ [Dé(x)v — Do (y)wl)
<C(d* (x,y) min{|v], |w|} + [De(x)v — De(y)w).
If d(z,y) > p,
| De(z)m" (x)v — De(y)m" (y)w| < |De(x)n" (x)v| + [De(y)m" (y)w]
< C'max{|v|, |lw|}
< Cp~™ (d™ (2, y) max{|v], [w|}
+ |De(x)v — De(y)w]).
O
Then, since the projections 7** : Tao .M — £"* are uncoupled, that is,
(m*5(x)v); = 7*(x;)v;, inequality (4.3) follows immediately from (B.1).

Finally, inequality (4.4) is obtained by taking supremum with respect to i
in (4.3).
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APPENDIX C. PROOF OF PROPOSITION 3.8 AND LEMMA 4.10

Proposition 3.8 follows directly from Lemma 4.10.
Now we proceed with the proof of Lemma 4.10.
The maps Ary,, and Apg s are, by definition, linear and, by Lemma 4.4,
|Apaall < sz, 21D AR (O)].
It follows from (4.21) that
(DAFR(0))~'v(z) = DFH(F(2))v(F(z)) = DAp-1(0)v(z).

As a consequence, Ap,,, is invertible and, for any v* € Sf“d’"F,

(C.1) Apua(x) = DFY(F(2))v"(F(z)).
In particular, | Az, || < Imse 121 DAp-1(0)]-

We proceed to prove (4.23) for Apn ¢ ¢, the other inequality being analo-
gous. To simplify notation, we will denote Apn ¢, by An.
It follows directly from the definition of Apw , . that, for any v € Sfy°r,

1Axvlco = sup Iz (2) D(FN) (F = (@) (F~ () )u (F~ ()|

TEAFR
(C.2) .
< sup |7 (@)[|AY [l co.

TEAR

Now we compute vo(Anv). Let p > 0. We claim that there exists C' > 1
such that, for any i,j € Z% and any z,y € Ap satisfying =, = yp, k # j, we
have that
(I) if d(z,y) = p,
(C.3) d((Anv)(2)i, (Anv)()i)
< CXN p~|[v[lca D (0)d (x5, ;) i=j
B C)‘N(Llpf_l)aNHVHC?F(Z_])da(xjay])a Z#]a
(D) if d(z,y) < p,
(C.4) d((Anv)(2)i, (Anv)()i)
<C(AY + N|DFIINpt = + | DF|IY (Lip f1) Y por =
+ AN (Lip M) [wlleaT (@ — 5)d* (5, yj)-
Assume for the moment that the claims for (I) and (IT) hold. Let 0 <
A < 1. If we take p = (2)\/5\)5)\%, then, substituting in (C.3) and (C.4),
we have that
(C.5)  d((Anv)(@)i, (Anv) ()T (@ — 5) 7 d ™ (), y5)
< max{X, CON + N(T [ DY + (IDf] Lip A7)
+ (ALip FH) I lleg,

where C' = min{C, (C/)) o IDf||71}. Since 0 < A < 1, we can choose
0 < a* < ay such that for any 0 < o < o,

BT
IDf|| Lip f'A7a <1,
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and, then, N large enough such that the right hand side of (C.5) is smaller
than .

It remains to prove the claims for (I) and (II).

We start by proving (I). If 4 = j, then, using that d(z,y)p~' > 1,

d((Anv) ()i, (Anv)(y)i) < 2 sup [(Anv) ()il

< 2K\ ||v]lgo < OAN p™ vl cp T(0)d* (2, 95),

where K = sup,cn,. [|7()| and C = 2K?T'(0)~!. This proves the first part
of the claim.
If ¢ # j, since F' and n® are uncoupled, we have that

d((Anv)(2)i, (Anv)(y)i)
= || () DAY (f N (@) (f (@a)) (i (F N (2) = ma(F =N ()]
< KAV d(vi(F~N (@), i (F~N (1))
< KXY (Lip =)™ vllop D = 5)d* (5, ;).
Finally we prove (II). Using the distance on T'M induced by the embed-

ding e and the map 7 introduced in Section 2.1 (see also (4.4) in [FdILM10]),
we have that

d((Anv)(z)i, (ANv)(y):)
=|De(x;)m(x:) DN (f N (@a))w (f N (o)) vi(F~N (2))
— De(y)m(yi) DN (f N () r (N (wa) )i (F N ()]
<a+b+ctd,

where

a =|(De(xi)m(xi)n(z:) — De(yi)m(yi)n(vi))
x De(a;) D [N (F~N (i) (f N () )ws (N ()],
yz)n

b =[De(y;)m(yi)n(y:)
x (De(wi) DY (F~N (wa))n(f =N (1)) — Dely) DY (f N (wa))n(f = (w)))
x De(f~N (@))m(f =N (zi))vi(F~ N ()],
¢ =|De(yi)m(ya) DN (f N (i) )n(f = (wi))
x (De(f =N (@))m(f =N (@) n(f = (1) = De(f =N (ya))m(fF N (wa))n(f = (2))
x De(f~N (w:))vi(F~ " (x))],
d =|De(yi)m(yi) DN (N (wi))m(f = i) n(f = (i)

x (De(f~ (z))vi(F~Y (x)) — De(f~ (yi) )i F =N (9)].

The proof of (II) can be obtained by observing that, for some constant
C > 0, depending only on M, the choice of e and 7, the value of I'(0) and f,
and using that o < ay we have the following simple bounds (C.6) to (C.9)
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for a, b, ¢ and d.

(C.6) o<V if i # j,
=\ CAN ]l T (0)d* (), ) if i = 4.

Since, for any chart, |D?(fV)|| < KN||Df||N~1,

(C.7) p< O if i # 7,
= | ONIDFINHvlleaT (0)d* (x4, y;)p'—  if i = j.

By (B.1),
0 if i # j,
(C8) < L o area e
CIDFIN (Lip Y)Y [ llcg DOV (ay, )%~ if i = J.
And
(C.9) d < OXY(Lip f) M Ivllep (i = 5)d” (x5, 35)-
Inequalities (C.6) to (C.9) imply (II). O

APPENDIX D. PROOF OF LEMMA 4.11

We start by proving (1). To begin with, we notice that, since dco(hg,1d)
is small, there exists C' > 0 such that for all + € Ap, the linear maps
T(he(z),z) and 7(z, he(x)) are well defined and

|(De(z)7(he(x), z) — De(ha(z)))v|| < Cdeo(he, Id )],
for all v € Tj,, ()M and
|(De(he(x))7(x, he(z)) — De(z))v|| < Cdeo(hg, Id)|v],
for all v € T, M. Hence, by the definition of Ag and Ap in (4.1) and (4.24),
resp., we have that, for some constant C' > 0,
I(DA2(0) = DAR(0))v[lco < C(dco(ha,1d) + dea (P, F))|[v[|co-
Now we proceed to compute 7o ((DAp — DAF)(0)v). To do so, we will

use some auxiliary functions provided by the following two lemmas.

Lemma D.1. Let X C M. There exist C > 0 and C > 0 such that for
any h € CF(X, M) with dcga(h,1d) < Cpo, j € Z% and z,y € X such that
Tk # Yk, for k # j, there exists a C*° map B : [0,1] x [0,1] — M such that,
for any i € Z¢, and any chart (Ug, @) with B(s,t) € Uy,

(1) B(0,0) ==x, B(0,1) =y, B(1,0) = h(z) and B(1,1) = h(y),

(2) [4B(s,t)i] < C(1 +7a(h)T(i — §)d*(xj,y;),
(3) |L£B(s,t);] < Cdeo(h,1d),
(4) |25 (6 0 B)(s, )| < Cdea(h,1d)T(i — §)d* (wj,y5).

Proof. Let h € C&(X, M), j € Z¢ and z,y € X such that z; = y;, for i # j.
By Lemma A.2 in [FAILM10], there exists a C* curve P : [0, 1] — M such
that 8P(0) = h(z), BP(1) = h(y) and |87 (t)| < Ciya(R)T(i —j)d*(x}, y;), for
some constant C] independent of the choice of h, j and z,y.

As a first step, we claim that we can choose two coordinate charts, (Uy, ¢)
and (Uy,v), such that z,h(z) € Uy, y,h(y) € Uy, Uy = int [[, Uy,, Uy =
int [[, Uy,, U, = Uy,, for i # j and pP(t); € Uy, for i # j, t € [0,1].
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If, furthermore, d(x;,y;) < po, where 2pg is the Lebesgue number of the
family (Us)w,,¢)eFy,» first introduced in Section 4.1 of [FAILM10], then it
is possible to assume that Ug = Uy, and 3P(t); € Uy, for t € [0, 1].

Indeed, associated to x = (z;), let (Up,,¢:) € Far be a collection of
charts in the chosen atlas on M (see Section 4.1 in [FdILM10]) such that
Bap (i) C Uy, Let Uy = int [[, Uy, and ¢ = (¢;). We have that (Uy, ¢) €
Fm, and x € Uy (since Boy,(x) C [, Bopo(zi) C [[; Ug,» we have that
Boyy(x) = int Bopy(x) C int [[; Boyy(x;) C int [[,Us, = Ug). Moreover,
taking 0 < C' < 1, since dea(Id, h) < Cpo < po, we have that h(z) € Uy.
Notice that, since z; = y;, for i # j, we have that h(y); € By, (h(y)i) C
Bapy(z;) C Ug,, for i # j. Let (Uy,,1;) be such that Bap,(y;) C Uy,
and (Uy,,¥i) = (Ug,, ¢s), for i # j. Then, taking Uy = int [], Uy, and
¥ = (¢), (Up,¥) € Fam and y,h(y) € Uyp. Also, since d(z;, 57 (t)) <
d(zi, h(x);) + d(h(z);, BY(t)) and, for some constant C > 0 depending only
on M and the embedding e, for i # j,

d(h(x)s, 67 (1)) < d(h(x)i, h(y):)
< C||eoh(x)1 —eoh(y)ill
)

= Cllec h(@)i — e(z:) — (e o h(y)i — e(w:))|
< C’dcg(ld,h) (i — 7)d“(zj,y5),

we have that d(z;, 37(t)) < po, if C' < (14+C sup; T'(i—3) sup,, o e d* (25, y;))
Finally, if d(z;,y;) < po, we simply take Uy, such that By, (z;) € Uy, , and,
since we are dealing with a single coordinate, the claim on the existence of
the two charts follows.

Now we proceed to define the map B. We start by assuming d(z;,y;) >
po- Let ﬁg = ¢o [P and ﬁi = 1) o 3P be the expressions of 4P in these charts.
By the construction of the charts, 5’)’1. = ﬁi’i, fori# 7. Let 0 < t; <1/2
such that 37 (t) € Uy, for all t € [0,¢1] and ﬁ;’(t) € Uy, for all t € [1 — 14, 1].
Let x : [0,1] — R be a C*° function such that 0 < x(¢) < 1for all ¢, x(0) =1,
x(1) =1 and x(t) =0 for ¢t € [t1,1 — t1]. Let BZJ :10,t1] — ¢;(Ug ;) and
BZJ :[1 —t1,1] = 4j(Uy ;) be the curves defined by

3 5(8) = (8(w) — ds(hy(2)x(t) + 55 ;(2)
3 (8) = (5(y;) — 5(hi(W))x(t) + 57, (1),

resp. We define, for 0 < s <1,

671 (1= )T, () + s8,(1), L€ [0,t),
B(S,t)j: ﬂp( ), t e [tl,l—tl],
UL =98 (1) + 58 (1), e (1—t,1],

and, for ¢ # j,

B(s, t)i = ¢; (1 = 8)¢u(w:) + 563 ,(t)).
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Now we check that the function B just defined satisfies (1), (2), (3)
and (4). By construction, B is C*°. Moreover, for ¢ # j, we have that

d d
|5 B il = I8l 2, 87 (0)] < Crva(M)T(k = )d* (25, y)-

Also, for some C' > 1,

L B(s, 0] = |82,(1) — on(a0)
< 185,:(t) — &3 o hi(@)| + |di 0 hi(x) — di(s)]
< O(|¢i 0 hi(y) — ¢i o hi(z)| + deo(1d, 1))
< C(|pi o hiy) — di(ya)| + |di(w:) — ¢i 0 hi(w)|) + do(Id, )
< 3Cdeo(1d, h).
Finally, for i # j, using the same argument,

2 d o
(60 B)(s, 1)l < Cl B (0] < dog (h 1)TG = §)d° (1),

Notice that in these bounds we have not used that d(x;,y;) > po, assumption
that only plays a role when i = j.
For i = j we have that, for ¢ € [0,t1), since p, “d®(xj,y;) > 1,

|%B(s,t)j| = |(1 = 8)(85(w5) — &5 (hy (@)X(®) + B5 ()]
< sup [ X(D)ldeo(Id, h) +7a (W (0)d" (25, y5)

< (Cpy ™ sup X()T0) ™" + v (h)T(0)d* (x5, ;)

Also, for some C > 0 depending only on M,

% B(s, 1) = (05(a;) — 05(h; ()| < Clde (. 1)
and
d2
(60 B) (s, 1)3] = (05(a) — d5(hi ()01

< Cdgo(h,Id)
< Cpy “deg (h,1d)T(0) ' T(0)d™ (x5, ;).

The bounds for t € [t;,1 —¢1] and t € (1 — ¢1,1] are obtained in the same
way.

Now we assume d(z;,y;) < po. For i # j, we define B(s,t); as in the case
d(zj,yj) > po. The bounds of their derivatives are already computed. For
i = j, since z;,y;, hj(x), hj(y),ﬁf(t) € Uy,, we define

B(s,1); = ;' (1=)[(1=t) (5 () =5 (j (2))) +1(65 (5)— 85 (h () 4565, 5 (£)).
Then we have that
\%B(s,t)j\ < 2Cdcp (14, h)+13 ()] < (2Cp5 T (0) ' +7a(A)T(0)d" (25, ;).
Also,

%B(s,t)j\ < 2Cdce(1d, h)
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and, finally

d? .

O

Lemma D.2. Let F: M — M be an uncoupled C" diffeomorphism. There
exist C > 0 and g > 0 such that for any ® : M — M, CL. diffeomorphism
such that dcr. (F,®) < e there exists a map Gro : [0,1] x M — M such
that Gre(0,2) = F(z), Gro(l,2) = ®(x), and, for any (s,z) € [0,1] x M
and any (Uy, ) such that Gra(s,x) € Uy,

0
(D.1) I550 0 Gra(s,2)| < Cdep (F, @),
0
(D.2) I5,¢°Gra(s, ) < CllFlcp,
2
(D‘S) ||(988x¢o GF,q’(SvSU)”LF < CdCF(Fv (1))’

Proof. We recall the definitions of exp : TM — M x M and exp~! : M x
M — T M. We define

(D.4) G(s,z) = my o exp(sexp HF(z), ®(z))).

The proof consists of checking that G satisfies all the properties claimed by
the Lemma, which follow from the chain rule, the algebra properties of Cf.
functions and the fact that der (F, @) is small. O

We will also need the following technical result.

Lemma D.3. Let F': M — M a C" uncoupled diffeomorphism. There ex-
ists C' > 0 and gq such that if ® : M — M is a CT. uncoupled diffeomorphism
with dey.(F, ®) < eo, then &~ s also CL and dCIc(F_l, 1) < Cdcr(F, ®).

Proof. Since F is uncoupled, so is F~!. In particular, since F is C", both
F and F~! are Ct. When expressed using the charts Ar and Ajq, where

Ap(®)(z) = exp™ (2, ® o F~(x))

(see Section 5.6 in [FAILM10] for more details on the subject), the map
® — ® o F! becomes v — v o F~!, which is linear and by Lemma 2.17
in [FAILM10], is continuous from the space of CT. sections to itself, with
bounded inverse. As a consequence, we can assume that ® is CT close to
the identity. By this reason, we only need to deal with the decay properties
of 1,

Since, by hypothesis, ® is a diffeomorphism, we only need to check that
®~!is a CL function. But, for any chart ¢, D@;l = (Dfl>¢)_1 o q);l and,
since D®y = Id + v, with ||v|| 1. < €9, we have that, if e9 < 1, the series
D@(;l = 3 50(—1)FvF converges to an element of Lr with norm bounded

by T'(0)™' — e9(1 — g9)~!. Then, the rest of the derivatives of ®~! are
obtained directly by applying the chain rule. The last statement follows
from D®~! —Id = Zk21(—1)k1/k. O
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Now we are in a position to compute v4((DAp — DAp)(0)v). Given
j €74 x,y € Ap with ; = y; for i # j, let B be the function given by
Lemma D.1. We also introduce

oG
G(s,t) = =57 (5, Gp-1,0-1 (s, B(5.1))),

which, by Lemmas D.2 and D.3 is well defined. Denoting AAr o = (DAg —
DAF)(0), we have that

| De(ha(y)) AARov(y) — De(he(z)) AAFrov(z)||

/d [De(B(1,1)) /ds B(1,1))G(s,1)
7(® ' o B(1,1), Gp-1 -1 (s, B(s, 1)) ds] dt

Taking charts and derivatives above, and applying the bounds in Lem-
mas D.1, D.2 and D.3, the bound for v,((DAs — DAF)(0)v) follows.

APPENDIX E. CONSTRUCTION OF SECTIONS

This Appendix is devoted to prove Lemma 4.8. We start with the case of a
finite-dimensional manifold and we will continue by lifting the construction
to the lattice M. The proof is divided in several technical lemmas.

We define the space of C“ sections covering the identity in M by

(E.1) Sig (M) ={v € C*(M,TM) | pov =1Idp, [[V]ce < oo},
where p: TM — M is the projection and

(E.2) [[v[lce = max{[[v|co, sup |[|De(z)v(z) — De(y)r(y)|d “(z,y)}.
z,yeEM,x#y
With this norm, Sf (M, TM) is a Banach space.
Given an open set U C R", a map £ € C"(U x M,TM) such that p o
&(u,x) =z, and 0 < k < r, we introduce

(E.3) [€ller = sup  [|€pllox,
(Ug,9)EF M

where &4(u, z) = T o &(u, ¢~ (z)) is the expression of £ in the chart ¢.

Lemma E.1. Let U C R" be an open convex set and & € C*(U x M, TM)
a map such that p o &(u,x) = x. Assume that ||€||c2 < oco. Then, the map
£:U — S (M) defined by £(u)(z) = &(u,x) is well defined. There exists
C > 0 such that

(E.4) 1€ (u, )llca < CliEllen
and
(E.5) Lip(&) < C||Dyél| -

Furthermore, if £ € C° and [|€]cs < o0, € is C and ||€]|cr < C||Duélcr,
and, if £ € C°, & is C°.
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Proof. Let x,& € M, and let 3 : [0,1] — M be a minimizing geodesic joining
them, that is, 5(0) = &, (1) = =, |5(t)| = d(z, Z). Then, since

(B6) | De(a)é(u,) ~ Deld)e(ud)] = | [ 5 (De(aeetu 5(0)) at]

for any fixed t € (0,1), we consider a chart (Uy, ¢) € Fps such that 3(t) €
U, and, following the notation introduced in A.1 in [FdILM10], using the
expressions ey, B4 and £ of e, 3 and ¢ in this chart and the corresponding
one of T'M, we can compute

®7) 1L (De(B(t))e(u, 51)))|

dt

=1 % (D (B6(0) ol 05(0)

<[D%ey(85(t)) 56 (t)és (u, Bs ()] + [ Deg(Bs(t) Doy (u, Bs(t)) Bo (t)]
<(lesllc2lésllen + lleslln sl cr)dte, )

<Cllgllord(z, ),

where C' = supy [|es | o1 Sup, yenr d'=%(z,y). Inequality (E.4) follows from
inserting inequality (E.7) into (E.6).
Now we prove inequality (E.5). Let u,u € U. We have that

g(u’ x) - 5(&, 33) = n(uv u, l‘)(u - ’EL),

where
1
(E.8) n(u, o, ) = / D, é(u+t(u —a),x)dt.
0

Hence, applying inequality (E.4) to n we obtain

I1€(u) = E(@)llow < lln(w, @, )| olu — 4l
< [[Duéller|u — al.

Now we assume that £ € C3. By Taylor’s formula, we have that

§(u+a)(z) = §(u, ) + Du(u, 2)i + R(u, @, )i,
where
1
R(u,u,x) = /0 (Dyé(u+ tu, z) — Dy&(u, x)) dt.

By (E.5), the maps u — D,{(u, -) and (u, @) — R(u,,-) to L(Sfy (M), Sfy (M)
are continuous. The Converse Taylor’s Theorem yields the claim.

For the C'*° case, we use the same argument, developing by Taylor up to
order k, for any k. O

Lemma E.2. There exists a map w : TM — Sfj (M) such that
w(v)(z) = v, for allv e T, M,

Moreover, w is C™ and linear on each fiber.
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Proof. Let {vy}w, .¢)eryy be a C° partition of unity associated to the
atlas Fpr of M. We recall that Fj; was introduced in Section 2.1 (see also
Section 4.1 in [FAILM10]). We define w : TM — S7 (M, TM) by

(E9) w)@ = Y. v/’ @v)/ (x)Dé() 'Dé(x)v, veTM.
(Ug,0)EF M

It is immediate from the definition that, for all x € M and for all v € T, M,
w(v) is, in fact, a C°° section covering the identity, it is linear on each fiber
and w(v)(x) = v, for all v € T, M. To check the differentiability of the map
w, we choose a coordinate chart (T'Uy,T)) of TM. The expression of w in
this chart is

wpw)(@) = Y. v 2@y 0w (y)De() D@ o v (y)w,

Us,0)EF M
for (y,w) € TY(TUy) and & € M, and depends C* on (y,w,Z). Applying
the last part of Lemma E.1 to wy, the claim follows. O

Now we lift the above result in the finite-dimensional manifold M to the
lattice M.

Lemma E.3. Let w : TM — S (M) be the map given by Lemma E.2.
Then the map Q : TM — £>°(Sf4 (M)) defined by

Q)i () = w(v)(z;), veT M, TeM
is C'° and linear on each fiber.

Proof. Given any chart T of TM, we have that for any (x,v) € TY(TUy),
zeM,

Qyi(x,0)(T) = w(wi, v;)(T;).
We can apply Corollary 2.3 in [FdILM10], and the result follows. O
Lemma E.4. The map 1: {>°(Spy (M)) — Sfyq (M) defined by
W) ()i = vilzi)
1s linear and bounded.

Proof. Linearity follows immediately from the definition. Since u(v) is un-
coupled, we have that

[/(v)[lse < T(0)~" sup [|vi]|ca-
i€Z4
Od

Proof of Lemma 4.8. Using the notations and results given by Lemmas 4.4,
4.5, E.3 and E.4, the map

Q. =norhe 010 Qes

satisfies all the claimed properties. O
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