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Abstract. This is the second part of the work devoted to the study
of maps with decay in lattices. Here we apply the general theory de-
veloped in [FdlLM10] to the study of hyperbolic sets. In particular, we
establish that any close enough perturbation with decay of an uncou-
pled lattice map with a hyperbolic set has also a hyperbolic set, with
dynamics on the hyperbolic set conjugated to the corresponding of the
uncoupled map. We also describe how the decay properties of the maps
are inherited by the corresponding invariant manifolds.

1. Introduction

The goal of this paper is to study hyperbolic sets in systems of maps
with weakly decaying interactions, which have been introduced as a model
in several scientific contexts. We refer to the Introduction of [FdlLM10] for
more information and motivations for the study of coupled map lattices.

More precisely, in this paper we will study persistence of hyperbolic in-
variant sets and their invariant manifolds, we will study the regularity of
the manifolds and the conjugation as well as their decay properties, that is,
that the i-th component of an object depends weakly on the dynamics of
the map at far away components.

The first main result we present here is the persistence of the hyperbolic
set of an uncoupled map under C1 perturbations with uniformly continuous
derivative. Any sufficiently close diffeomorphism must have a hyperbolic
set, whose dynamics is conjugated through a homeomorphism to the one
of the corresponding hyperbolic set of the original uncoupled map. This
result is achieved through a Shadowing Theorem, which also implies the
continuity of the conjugation with respect to the diffeomorphism, as well
as its uniqueness, provided it is close enough to the identity. Then, by
means of the implicit function theorem, we obtain that the conjugation also
has decay properties and depends smoothly on the diffeomorphism. We
remark that this last approach only provides a semiconjugation and it is the
Shadowing Theorem, with its uniqueness statement, which ensures that the
semiconjugation actually is a proper conjugation.

The second main result is the existence and decay properties of invariant
manifolds of hyperbolic sets when the perturbation has decay properties.
It should be noted that the existence of the invariant manifolds, as well as
their differentiability, could be inferred without too much work from the
standard approach [HP70], see also [CFdlL03], although there are several

Date: May 21, 2010.

1



2 E. FONTICH, R. DE LA LLAVE, AND P. MARTÍN

technicalities. Here we also obtain decay properties of these manifolds, which
happen to be the same as the ones of the map.

We use the functional analysis framework developed in the companion
paper [FdlLM10]. This framework allows us to carry out proofs that fol-
low closely some carefully chosen classical proofs of existence of invariant
objects and their stability based on functional analysis. This framework
incorporates the decay properties and is such that permits to introduce a
differentiable manifold structure on the space of mappings having decay. Of
course, we will have to give up some properties such as compactness or sep-
arability (the maps, even if uniformly hyperbolic, have uncountably many
periodic orbits, except in trivial cases). Hence, we have to pay the price
that approximations, extensions are somewhat technical and some topolog-
ical arguments based on index, closed graph, uniform continuity, etc., have
to be completely abandoned. The functional analysis proofs that go through
have to be carefully chosen.

One advantage of the framework developed in [FdlLM10] is that the decay
properties are preserved by several operations, so that we can formulate our
problems as fixed point problems rather than having to use more sophisti-
cated iterative methods.

Similar problems have been considered in other papers in the literature.
Notably in [BS88, Jia95, JP98, JdlL00], which present other points of view
and consider other problems. Of course, the main goal of [JP98, JdlL00]
is invariant measures of coupled map lattices and the geometric properties
are only studied as tools. On the other hand, this paper focuses on the
geometric properties and we do not discuss invariant measures.

The paper [Jia95] establishes structural stability of hyperbolic sets in some
uniform sense. The paper [JP98] uses a different formalism. It maintains
the compactness of the space (which is useful for the study of invariant
measures they undertake later), but it pays the price that the hyperbolicity
is not uniform and that there is no differentiable structure in the space of
maps. We also note that in [JP98], since the main goal is the invariant states,
the invariant manifolds are studied only through the conjugation, which is
defined only on the invariant set and does not give information on their
regularity. The methods in the paper [JdlL00] are more closely related to
the ones used here, including the use of decay functions and the fact that the
conjugation among the systems has also decay. As indicated in [FdlLM10],
the formalism that we use now is different from that of [JdlL00] since here
we pay attention to the boundary conditions at infinity and we emphasize
that the fact that the derivative is determined by the matrix elements is a
non-trivial assumption.

In Section 2 we will list the main definitions introduced in [FdlLM10],
which we will use extensively here, and state the main theorems of the
present work.

Section 3 is devoted to the proof of the first of the main theorems, namely,
the structural stability of the maps with decay possessing hyperbolic invari-
ant sets restricted tho their hyperbolic sets if they are close enough to an
uncoupled map with a hyperbolic set.
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In Section 4 we will prove the second main theorem, concerning the exis-
tence and decay properties of the invariant manifolds of the hyperbolic sets
of maps with decay close to uncoupled maps.

Finally, four appendices collect technical proofs.

2. Preliminary definitions, setting and main results

We start by recalling some of the definitions and results in [FdlLM10]
that we will use here. However, we encourage the reader to go through that
paper for the proofs of the different claims and a more detailed information.

2.1. The lattice manifold. We start by introducing the lattice itself, and
some related functions.

Let M be a n-dimensional compact Riemannian manifold. The distance
in M is

d(x, y) = inf{ length(γ) | γ is a curve joining x and y}.
Let FM = {(Uφ, φ) | φ : Uφ ⊂ M → Rn} be a finite atlas of M such that
all the transitions maps are C∞ and, for each r, their r-th derivatives are
bounded. Let 2ρ0 be the Lebesgue number of the open cover ∪(Uφ,φ)∈FM

Uφ.
We will denote by exp the exponential map in M . Let δ0 be the injectivity

radius of exp.
Let ρτ = min{ρ0, δ0}. Let τ(x, y) : TxM → TyM be the isometry given by

the Levi-Civita connection. Let Uρτ = {(v, y) ∈ TM×M | d(p(v), y) < ρτ},
where p : TM →M is the tangent bundle projection. We introduce

τ : Uρτ ⊂ TM ×M → TM
(v, y) 7→ τ(x, y)v

where x = p(v).
We will also consider e : M → RD, a C∞ isometric embedding.
There exists a map C∞ map η : M ×RD → TM such that, for all x ∈M ,

η(x) ·De(x) = Id |TxM .
Given d ∈ N, we define lattice manifold as the set

M =
∏
i∈Zd

M,

which, with the distance

d(x, y) = sup
i∈Zd

d(xi, yi), x, y ∈M,

where the d in the right-hand side is the finite-dimensional one, is a complete
metric space. The atlas

FM = {(Uφ, φ) | φ = (φi)i∈Zd is a sequence with (Ui, φi) ∈ FM ,

Uφ = int
∏
i∈Zd

Ui}.

allows us to model M as a Banach manifold over `∞
i∈Zd(Rn) = `∞(Rn).

Notice that if g : M →M , we can define its lift to the lattice G : M→M
as G(x)i = g(xi), i ∈ Zd.

With this differential structure on M, the functions exp, τ , e and η lifted
to the lattice M from the corresponding finite-dimensional ones are C∞ and
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their expressions in any chart of FM have derivatives bounded independently
of the chart.

2.2. Linear and k-linear maps with decay. A decay function is a map
Γ : Zd → R+ such that

(1)
∑

i∈Zd Γ(i) ≤ 1,
(2)

∑
j∈Zd Γ(i− j)Γ(j − k) ≤ Γ(i− k), i, k ∈ Zd.

Given (Xi)i∈Zd , a family of Banach spaces, we introduce the space `∞(Xi) =
`∞
i∈Zd(Xi). Given (Xi)i∈Zd and (Yi)i∈Zd , two families of Banach spaces, the

space of linear maps with decay Γ is

(2.1) LΓ(`∞(Xi), `∞(Yi)) = {A ∈ L(`∞(Xi), `∞(Yi)) | ‖A‖Γ <∞},
where L refers to the space of continuous linear maps, with

(2.2) ‖A‖Γ = max{‖A‖, γ(A)}
and

(2.3) γ(A) = sup
i,j∈Zd

sup
|u|≤1

πlu=0,l 6=j

|(Au)i|Γ(i− j)−1.

Using the usual identification between the space of k-linear maps and the
space of linear maps on the space of (k − 1)-linear maps, the space LkΓ of
k-linear maps with decay is defined recursively by

LkΓ(`∞(Xi), `∞(Yi)) = LΓ(`∞(Xi), `∞(Lk−1
Γ (Xi, `∞(Yi)))),

with the norm (2.2).
Linear and k-linear maps are stable under composition and contraction.

In particular,
(1) ifA ∈ LkΓ(`∞(Xi), `∞(Yi)) and v ∈ `∞(Xi), Av ∈ Lk−1

Γ (`∞(Xi), `∞(Yi))
and ‖Av‖Γ ≤ ‖A‖Γ‖v‖,

(2) If A ∈ LkΓ(`∞(Yi), `∞(Zi)) and Bj ∈ L
lj
Γ (`∞(Xi), `∞(Yi)), for j =

1, . . . , k, then the compositionAB1 · · ·Bk ∈ Ll1+···+lk
Γ (`∞(Xi), `∞(Zi))

and
‖AB1 · · ·Bk‖Γ ≤ ‖A‖Γ‖B1‖Γ · · · ‖Bk‖Γ.

2.3. Hölder and Cr functions on M with decay. Let X ⊂ M be a
subset. Given 0 < α ≤ 1 and a decay function we define the set of α-Hölder
functions with decay as

CαΓ = CαΓ (X,M) = {f : X →M | f ∈ Cα, γα(f) <∞},
where

(2.4) γα(f) = sup
i,j∈Zd

γ̃α,j(fi)Γ(i− j)−1

with

(2.5) γ̃α,j(fi) = sup
xl=yl
l 6=j

sup
xj 6=yj

d(fi(x), fi(y))
dα(xj , yj)

.

This set is a complete metric space with the distance defined by

(2.6) dCα
Γ
(f, g) = max(dCα(f, g), γα(f, g)).
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where

dCα(f, g) = max(dC0(f, g),Hα(f, g)),(2.7)

Hα(f, g) = sup
x 6=y

|e(f(x))− e(g(x))− e(f(y)) + e(g(y))|
dα(x, y)

,(2.8)

and, for f, g ∈ CαΓ ,

(2.9) γ̃α,j(fi, gi) = sup
xl=yl
l 6=j

sup
xj 6=yj

|e(fi(x))− e(gi(x))− e(fi(y)) + e(gi(y))|
dα(xj , yj)

and

(2.10) γα(f, g) = sup
i,j

γ̃α,j(fi, gi)Γ(i− j)−1.

Let U ⊂ `∞(Xi) be an open subset. The Banach space of Cr functions
with decay is

(2.11) CrΓ(U , `∞(Yi)) = {F ∈ Cr(U , `∞(Yi)) | DkF (x) ∈ LkΓ,
∀x ∈ U , 1 ≤ k ≤ r, ‖F‖Cr

Γ
<∞},

where

(2.12) ‖F‖Cr
Γ

= max(‖F‖C0 , max
1≤k≤r

sup
x
‖DkF (x)‖Γ).

Then, given U ⊂M, an open set, the Banach space of Cr functions with
decay on U is

(2.13)
CrΓ(U, `∞(Rn)) = {G ∈ Cr(U, `∞(Rn)) | G◦φ−1 ∈ CrΓ(φ(Uφ∩U), `∞(Rn)),

∀(Uφ, φ) ∈ FN , ‖G‖Cr
Γ
<∞},

with

(2.14) ‖G‖Cr
Γ

= sup
(Uφ,φ)∈FN

‖G ◦ φ−1‖Cr
Γ
,

and

(2.15) CrΓ(U,M) = {G ∈ Cr(U,M) | e ◦G ∈ CrΓ(U, `∞(RD))},
with the distance

(2.16) dCr
Γ
(G, G̃) = ‖e ◦G− e ◦ G̃‖Cr

Γ
.

With this distance, CrΓ(U,M) is a complete metric space.

2.4. Spaces of sections with decay. First we introduce

(2.17) SrΓ(M) = {σ ∈ CrΓ(M,M) | p ◦ σ = Id , ‖σ‖Cr
Γ
<∞}

the Banach space of CrΓ sections on M, where

‖σ‖Cr
Γ

= sup
(Uφ,φ)∈FM

‖σφ‖Cr
Γ
,

with σφ = π2 ◦ Tφ ◦ σ ◦φ−1, the second component of the expression of σ in
the coordinate chart (Uφ, φ) ∈ FM.
CrΓ(M,M) can be modeled as a Banach manifold over SrΓ(M). See Sec-

tion 5.6 in [FdlLM10], for details.
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GivenX a topological space (that may be a subset ofM) and u : X →M,
we will say that ν : X → TM is a section covering u if

(2.18) p ◦ ν(x) = u(x),

where p : TM→M is the tangent bundle projection.
We define the Banach spaces of bounded and continuous sections by

(2.19)
Sbu(X) = Sbu(X,M) = {ν : X → TM | p(ν(x)) = u(x), ν bounded }

and, for u continuous,
(2.20)
S0
u(X) = S0

u(X,M) = {ν : X → TM | p(ν(x)) = u(x), ν continuous },

with the norm

(2.21) ‖ν‖Cb,0 = sup
x∈X

‖ν(x)‖ = sup
x∈X

sup
i∈Zd

|ν(x)i|i.

In [FdlLM10] it is shown that TxM = `∞(TxiM), for all x ∈M. From that
it is deduced that Sbu(X,M) ∼= `∞((Sbu(X,M))i).

Finally, assume X ⊂M. Given a CαΓ function u : X →M, we define for
0 < α ≤ 1,
(2.22)
Sαu,Γ(X) = Sαu,Γ(X,M) = {ν ∈ Cα(X,TM) | p(ν(x)) = u(x), ‖ν‖Cα

Γ
<∞},

where

(2.23) ‖ν‖Cα
Γ

= max(‖ν‖Cα , γα(ν))

and

(2.24) γα(ν) = sup
i,j

γ̃α,j(νi)Γ(i− j)−1

with

(2.25) γ̃α,j(νi) = sup
xi=yi
i6=j

sup
xj 6=yj

|De(ui(y))νi(y)−De(ui(x))νi(x)|
dα(xj , yj)

.

With this norm, Sαu,Γ(X,M) is a Banach space.

2.5. Uncoupled maps and hyperbolic sets. Let M be a compact n-
dimensional manifold and f : M → M a Cr diffeomorphism. We consider
the uncoupled lattice map F : M→M defined by f by

(2.26) Fi(x) = f(xi).

By Lemma 4.4 in [FdlLM10], F is also a Cr diffeomorphism and that, for
any x ∈M and v ∈ TxM,

(2.27) DkF (x)v⊗k = (Dkf(xi)v⊗ki )i∈Zd .

Suppose that Λ = Λf ⊂M is an invariant hyperbolic compact set for the
map f , that is, there exist a splitting TΛM = Es ⊕ Eu, invariant by Tf ,
and λ < 1 such that, for all x ∈ Λ,

|Df(x)|Es
x
| ≤ λ,

|Df−1(x)|Eu
x
| ≤ λ.
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As a consequence of the hyperbolicity the splitting is continuous. Moreover,
since Λ is compact, the splitting is uniformly continuous. We also have
that the projections πs,u(x) : TxM → Es,ux are uniformly bounded in Λ.
Furthermore, it is well known (see Theorem 19.1.6 in [KH95], for instance)
that the splitting is Cαf , for some αf > 0 depending on λ and Lip f−1.

The hyperbolic properties of f are naturally lifted to F . The set

(2.28) ∆ = ∆F =
∏
i∈Zd

Λ = {x ∈M | xi ∈ Λ}

is invariant by F . Moreover, from (2.27) with k = 1, we have that the fiber
bundles Es, Eu defined by

(2.29) Es,ux = {v ∈ TxM | vi ∈ Es,uxi
}

are invariant and

|DF (x)|Es
x
| ≤ λ,

|DF−1(x)|Eu
x
| ≤ λ.

Since Eu and Es are subbundles of TΛM , Es, Eu are subbundles of T∆M.
It follows from TΛM = Es ⊕ Eu that T∆M = Es ⊕ Eu. Moreover, the

projections πs,ux : TxM → Es,ux are defined as (πs,ux v)i = πs,uxi vi and are
uniformly bounded in x for x ∈ ∆. Indeed, if v ∈ T∆M and i ∈ Zd, vi =
πsxi

vi + πuxi
vi, and |πs,uxi vi| ≤ C|vi|, for some C independent of xi. Then, the

vectors πs,ux v defined by (πs,ux v)i = πs,uxi vi belong to Es,ux and v = πsxv+ πuxv.
Furthermore, since the projections πs,uxi are uniformly bounded, we have that
|(πs,ux v)i| = |πs,uxi vi| ≤ C|vi| ≤ C|v|, and, then, |πs,ux v| ≤ C|v|. In particular,
the product norm is equivalent to the original one.

2.6. Main results. The first result deals with the structural stability of
uncoupled maps with hyperbolic sets in the space of CrΓ diffeomorphisms
on the lattice manifold M. This result is also true even if no decay prop-
erties are assumed on the perturbation of the uncoupled map F , but then,
of course, the conjugation does not have decay properties either (see Theo-
rem 3.7, in Section 3.3). If the perturbation has decay properties, these are
inherited by the conjugation.

Theorem 2.1. Assume that the uncoupled map F is Cr, with r ≥ 3. Let
αf be the Hölder exponent of the splitting of the underlying map f . Then,
there exist 0 < α∗ ≤ αf and a neighborhood Ṽ of F in CrΓ such that, for any
Φ ∈ Ṽ and 0 < α ≤ α∗,

(1) there exists a unique close to the identity homeomorphism hΦ that
satisfies

(2.30) Φ ◦ hΦ = hΦ ◦ F|∆F
.

Moreover, hΦ ∈ CαΓ (∆F ,M).
(2) The map Ṽ → CαΓ : Φ 7→ hΦ is Cr−3.

We remark that Theorem 2.1 follows in part from a version of the Shad-
owing Theorem that we prove in the context of lattice manifolds, which may
have interest by itself. See Theorem 3.1 in Section 3.2.
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In Section 3.6, Proposition 3.11, we will show that the sets ∆Φ = hΦ(∆F ),
Φ ∈ Ṽ, given by Theorem 2.1 are indeed hyperbolic. Next theorem provides
a description of their invariant stable and unstable manifolds, which also
have decay properties in several senses.

Theorem 2.2. Let F : M → M be a Cr uncoupled map, r ≥ 4, F =
(f)i∈Zd, with f : M →M of class Cr having a compact hyperbolic invariant
set. Let ∆F be the hyperbolic set of F and EsF ⊕ EuF its invariant splitting,
as defined in (2.28). Let V ⊂ CrΓ(M,M) be the neighborhood of F given by
Theorem 2.1.

Given Φ ∈ V, let hΦ ∈ CαΓ (∆F ,∆Φ) be the conjugation given by Theo-
rem 2.1, ∆Φ = hΦ(∆F ) its hyperbolic set and EsΦ⊕EuΦ its invariant hyperbolic
splitting.

Then, the hyperbolic set ∆Φ possesses stable and unstable invariant man-
ifolds, W s

∆Φ
and W u

∆Φ
, tangent to EsΦ and EuΦ, resp., which are CαΓ and are

foliated by Cr−3
Γ leaves. More concretely, there exists ρ > 0 and a map

Υs : Bρ = {v ∈ EsF | |v| < ρ} ⊂ EsF →M,

such that
(1) range(Υs) is invariant by Φ,
(2) for all v ∈ EsF,x, d(Φn ◦ hΦ(x),Φn ◦Υs(v)) → 0, when n→∞,
(3) Υs ∈ CαΓ (Bρ,M),
(4) for each x ∈ ∆F , the map Υs

|Es
F,x

: Bρ ∩ EsF,x → M is Cr−3
Γ , with

norm uniformly bounded in x and
(5) denoting 0x the zero vector in EsF,x, D(Υs

|Es
F,x

)(0x)EsF,x = EsΦ,hΦ(x).

The same claim holds for W u
∆Φ

, replacing s by u and n by −n.

3. Hyperbolic set

In this section we will obtain the conjugation of perturbations of uncou-
pled map lattices to the unperturbed system restricted to their respective
hyperbolic sets by using a version of the shadowing theorem in lattices. We
adapt the proofs of the related results for perturbations of uniformly hyper-
bolic systems in Shub [Shu78] to this setting. We strongly use that we work
with perturbations of uncoupled maps and that ∆, the hyperbolic set of the
uncoupled lattice map, is a product of compact sets. Similar results ap-
pear in [JP98]. The proof there follows the arguments in [KH95] which need
maps of class at least C2. In the paper [JP98] it is claimed that the invariant
manifolds of the points in the perturbed hyperbolic set are the image by the
conjugation of the corresponding ones of the unperturbed map. However,
the results only provide the conjugation on the hyperbolic set and hence the
conjugation may not be defined on the invariant manifolds as would be the
case if the hyperbolic set consists of a finite number of points.

3.1. Extension of the splitting. The splitting TΛM = Es ⊕ Eu can be
extended to a continuous splitting in a bounded neighborhood UΛ of Λ in
M . See [HP70] or [HPPS70]. [HP70], p. 148, attributes this to Mather. It
is also indicated in [KH95] (see the proofs of Prop. 6.4.4 and 6.4.6 in pp.
264–265). We denote the extension again by the same symbol.
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The extended splitting need not be invariant. Let(
ãx b̃x
c̃x d̃x

)
be the matrix of Df(x) represented with respect to the decompositions
TxM = Esx ⊕ Eux and Tf(x)M = Esf(x) ⊕ Euf(x).

By the continuity of Df and the splitting and the compactness of Λ we
have that given δ∗ > 0, we can reduce the size of the neighborhood UΛ so
that if x ∈ UΛ

|ãx|, |d̃−1
x | < λ+ δ∗/2, |b̃x|, |c̃x| < δ∗/2.

We recall that δ0 the injectivity radius of exp, that is, expx : B(0, δ0) ⊂
TxM→M is a diffeomorphism onto its image, introduced in 4.1 in [FdlLM10].
For x, z ∈ M such that d(f(x), z) < δ0 we define the linear map Fz,x :
TxM → TzM by

Fz,x = D exp−1
z (f(x))Df(x).

If x, z ∈ UΛ we can write the matrix of Fz,x with respect to the corresponding
decompositions of the tangent spaces as(

az,x bz,x
cz,x dz,x

)
.

If z = f(x), D exp−1
z (f(x)) = Id and hence we have that if d(f(x), z) is

small
|az,x|, |d−1

z,x| < λ+ δ∗, |bz,x|, |cz,x| < δ∗.

We choose δ∗ such that λ+ δ∗ < 1. Since Λ is compact there is ρ∗ > 0 such
that Λ + ρ∗ = ∪x∈ΛB(x, ρ∗) ⊂ UΛ. Then ∆ + ρ∗ ⊂

∏
i(Λ + ρ∗) ⊂

∏
i UΛ

and since ∆+ρ∗ is open, it is contained in the interior of
∏
i UΛ. We denote

U∆ = ∆+ρ∗. In U∆ we have the decomposition TU∆
M = Es⊕Eu, where Es

and Eu are defined formally as in (2.29) with the extended splitting in U∆.

3.2. The shadowing theorem. We denote Diff1,0(M) the set of C1 dif-
feomorphisms such that their derivative is uniformly continuous. The radius
ρ∗ is the one introduced in Section 3.1 with δ∗ small enough.

Theorem 3.1. Let F : M → M be an uncoupled map F = (f)i∈Zd, with
f : M → M of class C1 having a compact hyperbolic invariant set Λ. Let
∆ =

∏
i∈Zd Λ. Then, there exist ε > 0, δ > 0, V∆ neighborhood of ∆ in M

and V neighborhood of F in Diff1,0(M) such that if X is a topological space,
H : X → X is a homeomorphism, u : X → V∆ is a continuous map and
Φ ∈ V, such that dC0(u ◦H,Φ ◦u) < ε there exists a unique continuous map
v : X → ∆ + ρ∗ such that

v ◦H = Φ ◦ v, d(u, v) < δ.

Moreover, having fixed u and H, v depends continuously on Φ and there
exists K > 0 such that

(3.1) dC0(u, v) < KdC0(u ◦H,Φ ◦ u).
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Symbolically,

Φ ∈ V
d(u ◦H,Φ ◦ u) < ε

and

Φ
M −→ M

u ↑ ↑ u
X −→ X

H

implies
Φ

M → M
v ↑ /// ↑ v

X → X
H

Proof. We have to obtain v ∈ C0(X,M) near u (satisfying d(u, v) < δ for
some δ) such that

v ◦H = Φ ◦ v,
or equivalently v = F̃(v), where

F̃(v) = Φ ◦ v ◦H−1.

Throughout the proof we will denote d for the distance dC0 . We take V∆ =
∆ + ρ∗/2. We claim that if d(u ◦ H,Φ ◦ u) is sufficiently small F̃ sends
a neighborhood of u in C0(X,M) to the ball centered at u of radius δ0,
defined in Section 2.1 (see also the beginning of Section 4.1 in [FdlLM10]).
More precisely, there exists 0 < δ1 < δ∗/2 such that if

d(u, v) < δ1, d(Φ, F ) < δ0/4, d(Φ ◦ u, u ◦H) < δ0/4

then d(F̃(v), u) < δ0. Indeed,

(3.2) d(F̃(v), u) ≤ d(Φ ◦ v ◦H−1,Φ ◦ u ◦H−1) + d(Φ ◦ u ◦H−1, u).

The first term is bounded by

d(Φ ◦ v,Φ ◦ u) ≤ d(Φ ◦ v, F ◦ v) + d(F ◦ v, F ◦ u) + d(F ◦ u,Φ ◦ u)

and we use that F is uncoupled and hence

d(F ◦ v, F ◦ u) = sup
i∈Zd

sup
x∈X

d(f(vi(x)), f(ui(x))).

By the uniform continuity of f on UΛ, there exists δ1 < δ∗/2 such that if
d(u, v) = supi d(ui, vi) < δ1 then d(f(vi(x)), f(ui(x))) < ρ0/4 for all x ∈ X
and moreover v(x) ∈ ∆ + ρ∗.

The second term in (3.2) can be expressed as

d(Φ ◦ u ◦H−1, u ◦H ◦H−1) = d(Φ ◦ u, u ◦H) < δ0/4.

Then d(F̃(v), u) < δ0.
Following [Mos69], the proof will be reduced to functional analysis in

C0(X,M). Hence, it will be useful to use the chart A of C0(X,M), defined
in a neighborhood of u, introduced in (5.17) in Section 5.4 of [FdlLM10],
i.e.,

(Av)(x) = exp−1
u(x) v(x) = (exp−1

ui(x)
vi(x))i∈Zd .
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We restrict its domain to the ball B(u, δ1) ⊂ C0(X,M). We have the
diagram

F̃
B(u, δ1) −→ B(u, δ0)

A ↓ ↓ A
S0
u,δ1

(X,M) −→ S0
u(X,M)

F
where S0

u,δ1
(X,M) is the ball of radius δ1 in S0

u(X,M), the space of con-
tinuous sections covering u introduced in Section 2.4 (see also Section 5.3
in [FdlLM10]).

It is clear that F has a fixed point in S0
u,δ1

(X,M) if and only if F̃ has a
fixed point in B(u, δ1).

Using this chart the operator F = AF̃A−1 : S0
u,δ1

(X,M) → S0
u(X,M)

has the form

(3.3) (Fν)(x) = exp−1
u(x) Φ(expu(H−1(x)) ν(H

−1(x))).

The map F can be written as the composition F = R ◦ C where

(Cν)(x) = H(ν(x)),(3.4)

H(ξ) = exp−1
u(H(x)) Φ(expu(x) ξ), if ξ ∈ Tu(x)M,(3.5)

and

(3.6) (Rν)(x) = ν(H−1(x))

is the operator defined by (5.27) in [FdlLM10]. Although C is similar to L
in (5.26) in [FdlLM10], it has not the same structure and does not satisfy
the hypotheses of Proposition 5.6 in [FdlLM10], where the regularity of L
was established. However we have

Proposition 3.2. If Φ is C1 and DΦ is uniformly continuous on M, then
C : S0

u,δ1
(X,M) → S0

u◦H(X,M) is C1 and

(3.7) (DC(ν)∆ν)(x) = D(H|Tu(x)M)(ν(x))∆ν(x).

The proof of this proposition is placed in Appendix A.
Combining Proposition 3.2 with (3) of Proposition (5.7) in [FdlLM10], we

have that F : S0
u,δ1

(X,M) → S0
u(X,M) is C1.

We will apply a fixed point theorem for perturbations of hyperbolic maps
which we quote from [Shu78, Proposition 7.7].

Proposition 3.3. Let E be a Banach space and T : E → E a hyperbolic
linear map. More concretely let E = E1⊕E2 be a decomposition invariant by
T , where E1, E2 are closed subspaces. Assume that the norm of E is the max
norm of the ones of E1 and E2. Let Tj = T|Ej

and assume that ‖T1‖ ≤ λ

and ‖T−1
2 ‖ ≤ λ. Let f : B(0, r) ⊂ E → E be such that Lip(f − T ) < ε1 and

‖f(0)‖ ≤ ε2 with

(3.8) λ+ ε1 < 1, ε2 < r(1− λ− ε1).

Then f has a unique fixed point pf in B(0, r) and

(3.9) ‖pf‖ <
1

1− λ− ε1
‖f(0)‖.
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Moreover the map f 7→ pf is continuous from {f ∈ C1(B(0, r), E) |
Lip(f − T ) < 1− λ} to E.

Theorem 3.1 follows directly from the next result.

Proposition 3.4. Under the hypotheses of Theorem 3.1, the operator F
satisfies the hypotheses of the fixed point theorem for perturbations of hyper-
bolic maps, Proposition 3.3, with f = F , T an auxiliary map to be defined
below, E = S0

u(X,M), E1 = S0
u(X, Es) E2 = S0

u(X, Eu) and the radius r
small enough.

The proof of Proposition 3.4 is a consequence of the following two lemmas.
First we introduce two auxiliary operators G and G̃. For x, z ∈ ∆ + ρ∗ such
that d(F (x), z) < δ0 (as in Section 3.1) let

Az,x = D exp−1
z (F (x))DF (x).

We write Az,x with respect to the decomposition TM = Es ⊕ Eu as

Az,x =
(
az,x bz,x
cz,x dz,x

)
.

Since F is uncoupled Az,xξ = (D exp−1
zi

(f(xi))Df(xi)ξ)i and we have

|az,x|, |d−1
z,x| < λ+ δ∗, |bz,x|, |cz,x| < δ∗.

The decomposition Esx ⊕ Eux is not invariant by Az,x if some xi /∈ Λ.
However it is invariant by

Ãz,x =
(
az,x 0
0 dz,x

)
.

We define G, G̃ : S0
u(X,M) → S0

u(X,M) by

Gν(x) = Au(x),u(H−1(x))ν(H
−1(x)),

G̃ν(x) = Ãu(x),u(H−1(x))ν(H
−1(x)).

Lemma 3.5. Under the hypotheses of Theorem 3.1,

(1) G̃ is hyperbolic and close to G in the space of linear operators.
(2) F is Lipschitz close to G.

Proof. (1) First we note that if ξ ∈ Esx, |Ãz,xξ| < (λ + δ∗)|ξ| and if η ∈ Eux ,
|Ã−1

z,xη| < (λ + δ∗)|η|. Using the max norm in Es ⊕ Eu, which is equivalent
to the original one, we have

|Gν(x)− G̃ν(x)| = sup
i
|(Gν)i(x)− (G̃ν)i(x)|

= sup
i

∣∣∣∣( bu(x),u(H−1(x)),iν
u
i (H−1(x))

cu(x),u(H−1(x)),iν
s
i (H

−1(x))

)∣∣∣∣ ,
thus ‖G − G̃‖ = sup‖ν‖≤1 ‖Gν − G̃ν‖ ≤ δ∗.
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(2) To estimate the Lipschitz constant of F−G we consider the derivative
D(F − G)(0). Since G is linear

D(F − G)(0)ν(x)

=[D exp−1
u(x)(ΦuH

−1(x))DΦ(u(H−1(x)))

−D exp−1
u(x)(FuH

−1(x))DF (u(H−1(x)))]ν(H−1(x))

=[D exp−1
u(x)(ΦuH

−1(x))−D exp−1
u(x)(FuH

−1(x))]DΦ(u(H−1(x)))ν(H−1(x))

+D exp−1
u(x)(FuH

−1(x))[DΦ(u(H−1(x)))−DF (u(H−1(x)))]ν(H−1(x)).

Then since F is C1 there exists a ball in S0
u such that in this ballDF−DF(0)

is close to zero and hence Lip(F − G̃) is close to zero. 2

Lemma 3.6. F(0) is small.

Proof. By the expression of F in (3.3)

(F0)(x) = exp−1
u(x) Φ(expu(H−1(x)) 0) = exp−1

u(x)(ΦuH
−1(x)).

Since d(ΦuH−1, u) is small and exp−1
x y is uniformly continuous in {(x, y) ∈

M ×M | x ∈ ŪΛ, d(x, y) ≤ δ0}
(3.10) exp−1

u(x)(ΦuH
−1(x)) = exp−1

u(x)(ΦuH
−1(x))− exp−1

u(x)(u(x))

is small. 2

The function v(x) = expu(x) ν(x) satisfies the conclusions of Theorem 3.1.
In particular (3.1) follows from

d(ui(x), vi(x)) = d(exp−1
ui(x)

ui(x), exp−1
ui(x)

vi(x)) = |0− νi(x)|,

the fact that, by (3.9), |ν| ≤ 1
1−λ−ε1 |F(0)| and (3.10).

This ends the proof of Theorem 3.1. 2

3.3. Conjugation. Now we can prove that, if Φ ∈ Diff1,0(M) is C1-close
to F , it has an invariant set close to the one of F and the dynamics on the
invariant sets are topologically conjugated. In Section 3.6 we will show that
the obtained invariant set of Φ is hyperbolic.

Theorem 3.7. Assume that Φ ∈ Diff1,0(M) and dC1(Φ, F ) is small enough.
Then, there exists ∆Φ ⊂ M invariant by Φ and such that Φ|∆Φ

is topolog-
ically conjugate to F|∆F

, that is, there exists a unique close to the identity
homeomorphism hΦ : ∆F → ∆Φ, such that

Φ ◦ hΦ = hΦ ◦ F|∆F
.

Moreover, hF = Id and hΦ depends continuously on Φ.

Proof. We apply the shadowing theorem to F with different choices of X,
H and u. Let ε, δ be as in the statement of Theorem 3.1, U∆ = ∆ + ρ∗/2,
with ρ∗ such that ∆ + ρ∗ is contained in the neighborhood V∆ given by
Theorem 3.1, and V the neighborhood by the same theorem.

First we take X = ∆, H = F and u the inclusion i∆ from ∆ into U∆.
Then, if Φ ∈ V and d(i∆ ◦ F,Φ ◦ i∆) ≤ d(F,Φ) < ε, there exists a unique
v1 ∈ C0(∆,∆ + ρ∗) such that d(i∆, v1) < δ and

(3.11) v1 ◦ F|∆ = Φ ◦ v1.
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By (3.1) we can take d(Φ, F ) so small that d(i∆, v1) < δ/2. From condition
(3.11) we deduce that ∆Φ := v1(∆) ⊂ U is invariant by Φ.

Next take X = ∆Φ, H = Φ and u the inclusion i∆Φ
from ∆Φ into U∆. If

d(i∆Φ
◦Φ, F ◦ i∆Φ

) ≤ d(Φ, F ) < ε, there exists a unique v2 ∈ C0(∆Φ,∆+ρ∗)
such that d(i∆Φ

, v2) < δ/2 and

v2 ◦ Φ|∆Φ
= F ◦ v2.

On the other hand v2 ◦ v1 conjugates F to itself. Since d(v2 ◦ v1, Id ∆) ≤
d(v2 ◦v1, i∆Φ

◦v1)+d(i∆Φ
◦v1, Id ∆) < δ and Id ∆ also conjugates F to itself,

by the uniqueness conclusion of Theorem 3.1, we must have v2 ◦ v1 = Id |∆.
Analogously v1 ◦ v2 is close to the identity and conjugates Φ to itself, thus
it must coincide with Id |∆Φ

. This implies that v1 is a homeomorphism.
We take hΦ = v1. The continuous dependence of h on Φ follows from the
continuous dependence of v on Φ in Theorem 3.1. 2

3.4. Hyperbolicity on spaces of Hölder sections with decay. Given
a section ν covering i : ∆F → M, the embedding given by i(x) = x, we
define its push forward by F as the linear operator

(3.12) F∗(ν)(x) = DF (F−1(x))ν(F−1(x)), x ∈ ∆F .

Since ∆F is invariant by F , F∗(ν) is a well defined section covering i.

Proposition 3.8. There exists α∗ ≤ αf such that for any 0 < α ≤ α∗, the
operator F∗ : Sαi,Γ → Sαi,Γ, where Sαi,Γ was introduced in (2.22), is continuous
and hyperbolic. In particular, 1 6∈ specF∗.

The proof of this proposition is placed in Appendix C.

3.5. Hölder regularity of the conjugation. Here we prove Theorem 2.1.
That is, that the conjugation hΦ obtained in Theorem 3.7 is CαΓ . First we
reformulate the conjugation problem in terms of some suitable sections to
be able to apply the implicit function theorem in Banach spaces.

Proof of Theorem 2.1. Let hΦ be the conjugation given in Theorem 3.7. We
have that hΦ is close to the identity and depends continuously on Φ. We
assume that Φ is so close to F that d(hΦ, Id ) < δ0. Then there exists a
unique ν ∈ S0 such that

hΦ(x) = expx ν(x).

Moreover the fact that Φ ◦ F−1 is close to the identity means that there
exists a unique σ ∈ SrΓ(M) (defined in (2.17)) such that

Φ(F−1(x)) = expx σ(x).

Hence we can write Φ(y) = expF (y) σ(F (y)). Then the conjugation condition
Φ ◦ hΦ = hΦ ◦ F can be rewritten in the form

(3.13) exp−1
x expexpx v(ν)(x)

σ(expx v(ν)(x))− ν(x) = 0

where

(3.14) v(ν)(x) = exp−1
x F (expF−1(x) ν(F

−1(x))).

We are let to introduce the operator

F : U ⊂ SrΓ(M)× SαΓ (∆F ) → SαΓ (∆F )
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defined by F(σ, ν) as the left-hand side of (3.13) on a suitable subset U . It
is immediate to check that F(0, 0) = 0. We also have

Lemma 3.9. (1) F is Cr−3 and the linear map DνF(0, 0) is given by

(3.15) DνF(0, 0)∆ν(x) = DF (F−1(x))∆ν(F−1(x))−∆ν(x).

(2) There exists 0 < α∗ ≤ αf such that, for any 0 < α ≤ α∗, DνF(0, 0)
is invertible from SαΓ to SαΓ .

Proof. Observe that F(σ, ν) = Ω(σ, v(ν)), being Ω the map introduced in
Proposition 5.11 in [FdlLM10], Ĥ was defined in Lemma 5.8 in [FdlLM10],
with j(u) = expx u, u ∈ TxM and J(x,w) = exp−1

x (expy w), x ∈ M,
w ∈ TyM and being v(ν) the right-hand side of (3.14). Then F is Cr−3

since, by Proposition 5.11, Ω is C∞ and, by Propositions 5.6 and 5.7,
in [FdlLM10], v is Cr−3. Formula (3.15) follows from Propositions 5.6,
5.7, 5.11 and Lemma 5.8 in [FdlLM10].

(2) follows from (3.12) and Proposition 3.8. 2

As a consequence of Lemma 3.9 we can apply the implicit function theo-
rem to

(3.16) F(σ, ν) = 0

and we obtain that there exists a neighborhood B of 0 in CrΓ such that if
Φ is close enough to F then σ(x) = exp−1

x Φ(F−1(x)) belongs to B and
there exists a unique ν ∈ SαΓ close to 0 such that (σ, ν) satisfies (3.16).
Then h(x) = expx ν(x) is the unique conjugation from F to Φ close to the
identity. Since ν ∈ SαΓ we also have h ∈ SαΓ . Moreover ν depends Cr−3 on σ
and therefore h depends Cr−3 on Φ. 2

Remark 3.10. Notice that we need the Shadowing Theorem in order to
prove that hΦ is a homeomorphism, since the solutions of (3.16) only provide
a semiconjugation. If one tries to formulate the equivalent relation for h−1

Φ ,
the operator is no longer smooth and the implicit function theorem cannot
be applied.

3.6. Perturbation of hyperbolic sets. We have the following result

Proposition 3.11. Let F and ∆ be as in Theorem 3.1. There exist neigh-
borhoods U∆ of ∆ in M and V of F in Diff1,0(M) such that if Φ ∈ V and
∆Φ is an invariant set of Φ in U∆ then ∆Φ is hyperbolic.

Remark 3.12. If F is Cr, r ≥ 4, as a consequence of Theorem 2.2, in
Section 4.1, there will exist a neighborhood V of F in CrΓ such that for any
Φ ∈ V the invariant splitting associated to its hyperbolic set is CαΓ and each
fiber can be described, written as a graph, by means of a LΓ map between
appropriate `∞ spaces.

Proof. Let U1 = ∆+ ρ∗ be the neighborhood of ∆ and TU1M = Es⊕Eu the
decomposition introduced in Section 3.1. Let(

ã(x) b̃(x)
c̃(x) d̃(x)

)
be the matrix representation of DF (x) with respect to this decomposition
for x ∈ U2 such that U2 ∩ F−1(U2) ⊂ U1.
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Given δ > 0, if Φ ∈ V and V is small enough,

DΦ(x) =
(
a(x) b(x)
c(x) d(x)

)
with

‖a(x)‖ < λ+ δ, ‖b(x)‖ < δ, ‖c(x)‖ < δ, ‖d(x)−1‖ < λ+ δ.

If ∆Φ ⊂ U2 is a closed invariant set for Φ its unstable space is a fixed
point of the usual graph transform of a suitable auxiliary function.

Let D be the bundle over ∆Φ such that its fiber is Dx = L1(Esx, Eux ), where
L1(Esx, Eux ) is the unit ball in L(Esx, Eux ).

Let u ∈ S∗ = {w ∈ C0(∆Φ,D) | w(x) ∈ Dx} with the norm ‖w‖S∗ =
supx∈∆Φ

‖w(x)‖. Given a section u ∈ S∗ we want that(
a(x) b(x)
c(x) d(x)

) (
u(x)
Id

)
belongs to the graph of u(Φ(x)), that is,

(3.17) a(x)u(x) + b(x) = u(Φ(x))(c(x)u(x) + d(x)).

Let B1 be the ball of radius 1 in S∗. Then we define T : B1 → S∗ by

(T u)(x) = (au+b)(cu+d)−1(Φ−1(x)) = (au+b)d−1(d−1cu+Id )−1(Φ−1(x)).

Note that this operator is well defined if δ is small enough. The next calcu-
lation shows that if δ is small enough T (B1) ⊂ B1.

‖T u‖ ≤ sup
x∈∆Φ

‖(au+ b)(Φ−1(x))‖ ‖(cu+ d)−1(Φ−1(x))‖

≤ (λ+ 2δ)
λ+ δ

1− (λ+ δ)δ
.

The space S∗ is complete. Now we estimate the Lipschitz constant of T :

‖T (u)− T (v)‖
= sup

x∈∆Φ

‖[(au+ b)(cu+ d)−1 − (av + b)(cv + d)−1](Φ−1(x))‖

≤ sup
y∈∆Φ

(
‖(au+ b)(cv + d)−1c(v − u)(cu+ d)−1(y)‖+ ‖a(u− v)(cv + d)−1(y)‖

)
≤

[
(λ+ 2δ)

( λ+ δ

1− (λ+ δ)δ

)2
δ + (λ+ δ)

λ+ δ

1− (λ+ δ)δ

]
‖u− v‖.

Taking δ sufficiently small T is a contraction. The unique fixed point
û ∈ B1 of T gives the unstable subspaces. Indeed, for every x ∈ ∆Φ, û(x)
verifies(

a(x) b(x)
c(x) d(x)

) (
û(x)
Id

)
=

(
û(Φ(x))(c(x)û(x) + d(x))

c(x)û(x) + d(x)

)
∈ graph û(Φ(x)).

Moreover, if ξ ∈ Eu, ξ(x) = (ξ1(x), ξ2(x)) = (û(x)ξ2(x), ξ2(x)) and

DΦ−1(x)
(
û(x)ξ2(x)
ξ2(x)

)
=

(
a(x) b(x)
c(x) d(x)

)−1 (
û(x)ξ2(x)
ξ2(x)

)
=

(
û(Φ−1(x))ξ̂2(x)

ξ̂2(x)

)
.
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From the previous relation we have ξ2(x) = (c(x)û(Φ−1(x)) + d(x))ξ̂2(x),
thus ‖ξ̂2(x)‖ = ‖[c(x)û(Φ−1(x)) + d(x)]−1ξ2(x)‖ ≤ λ+δ

1−(λ+δ)δ‖ξ2(x)‖. Then,
using the max norm in Eu ⊕ Es,

‖DΦ−1(x)ξ(x)‖ ≤ (λ+ 2δ)‖ξ(x)‖

with λ+ 2δ < 1, if δ is small.
To obtain the stable bundle we begin with the invariance condition for

subspaces close to Es: we want that(
a(x) b(x)
c(x) d(x)

) (
Id
u(x)

)
be on the graph of u(Φ(x)), that is,

u(Φ(x))(a(x) + b(x)u(x)) = c(x) + d(x)u(x).

To have a contraction we rewrite this condition in the form

u(x) = d(x)−1[u(Φ(x))(a(x) + b(x)u(x))− c(x)].

Then, with analogous arguments as before, the stable bundle is obtained as
a fixed point.

Then T∆Φ
M has a hyperbolic splitting and therefore ∆Φ is a hyperbolic

set. 2

4. Stable and unstable manifolds of ∆Φ

4.1. Introduction. In the previous section we have dealt with the struc-
tural stability, in the CrΓ sense, of uncoupled lattice maps of the form (2.26),
with an underlying map possessing a hyperbolic set.

In this section, we will go further in the study of the hyperbolic set ∆Φ of a
CrΓ perturbations Φ of an uncoupled lattice map F of such type, describing
its invariant stable and unstable manifolds. We recall that, in the finite-
dimensional case, the stable and unstable invariant manifolds of a compact
hyperbolic invariant set of Cr map are in general Cα on the base point in
the hyperbolic set. However, they are foliated by Cr invariant manifolds,
corresponding to the invariant manifolds of each point in the set. Here, we
will prove that the invariant manifolds of ∆Φ are CαΓ as functions on the
base point, and that the leaves corresponding to the invariant manifolds of
the points in ∆Φ are Cr−3

Γ , in some appropriate sense.
We remark that in the proof of the decay properties of the manifolds

it is essential that Φ is close enough to an uncoupled map F , in the CrΓ
topology. However, the existence of the manifolds is guaranteed simply by
the hyperbolicity.

The rest of the section is devoted to the proof of Theorem 2.2. It will be
a consequence of Theorem 4.7, concerning the hyperbolicity of a fixed point
of a certain operator acting on spaces of sections, whose invariant manifolds
will be closely related to those we are looking for. The procedure will be
as follows. In Section 4.2, we will introduce the operator AΦ acting on the
space of CαΓ sections and on the space of bounded sections. By construction,
the zero section will be a fixed point of AΦ. We will prove that this fixed
point is hyperbolic and, hence, has invariant manifolds.
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In order to prove that the zero section is indeed a hyperbolic fixed point
of the operator AΦ, we will need to construct an appropriate splitting of the
space of CαΓ sections, that we will carry out in Section 4.3. Once we state
Theorem 4.7, we will deduce Theorem 2.2 from the latter, in Section 4.5.

4.2. The action of Φ on sections. In this section we will use the expo-
nential map in the form exp : Uδ0 ⊂ TM→M×M, with Uδ = {v ∈ TM |
|v| < δ}, and we will write exp(v) = (x, expx v), for v ∈ TxM, i.e., x = p(v).

Let hΦ be the conjugation given by Theorem 2.1. We define the action of
Φ on a section ν covering hΦ by

AΦ(ν)(x) = exp−1
hΦ(x) ◦Φ ◦ exphΦ◦F−1(x) ν(F

−1(x)).

Note that the above expression is well defined if ‖ν‖Cb < δ1 := Lip(Φ)δ0.
For our purposes, it will be more convenient to rewrite AΦ, by using the

operators LHΦ
andRF−1 introduced in (5.26) and (5.27), resp., in [FdlLM10],

as

(4.1) AΦ(ν) = LHΦ
◦ RF−1(ν) = HΦ ◦ ν ◦ F−1,

where HΦ : Uδ1 → TM is the function

(4.2) HΦ = exp−1 ◦(Φ ◦ π1,Φ ◦ π2) ◦ exp,

and πi : M×M→M, i = 1, 2, are the standard projections in the cartesian
product.

Remark 4.1. Notice that, by its definition, the value of AΦ(ν) at a point
x only depends on the value of ν at F−1(x), that is, AΦ(ν)(x) = AΦ(ν̃)(x),
whenever ν(F−1(x)) = ν̃(F−1(x)).

Remark 4.2. The idea to obtain invariant manifolds of hyperbolic sets
by applying invariant manifolds theories for spaces of sections goes back
to [HP70]. Nevertheless, we call attention that our operator is different
from the one used in [HP70]. We have to rearrange the scheme so that the
dynamics is referred to the dynamics of the uncoupled map.

Let us denote by 0 the zero section covering hΦ, that is, 0(x) ∈ ThΦ(x)M
is the zero vector. Notice that we can identify 0(x) with hΦ(x) by means
of the exponential, since exphΦ(x) ◦0(x) = hΦ(x). From the conjugation
relation (2.30), we have that AΦ(0) = 0.

In order to prove the hyperbolic character of 0 for AΦ, we will need to
find a suitable splitting of the spaces of sections under consideration. This
is accomplished in the next section.

4.3. Splitting of spaces of sections. In this section we start with the
invariant hyperbolic splitting of T∆F

M = Eu ⊕ Es introduced in (2.29) to
find a near invariant hyperbolic splitting, under AΦ, of the spaces of sections
we will work with.

We recall that, by construction, the projections πu : T∆F
M → Eu and

πs : T∆F
M→ Es satisfy

(πu(x)v)j = πu(xj)vj , (πs(x)v)j = πs(xj)vj ,

for all x ∈ ∆F , v ∈ TxM, that is, they are uncoupled maps on each fiber,
where πu : TΛf

M → TM and πs : TΛf
M → TM are the projections on the
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invariant hyperbolic splitting of the underlying map f , Eu⊕Es, introduced
in Section 2.5. Furthermore, the dependence of the projections on x is Cαf .
This fact is quantified in next lemma and, in particular, in inequality (4.3).

Lemma 4.3. The vector bundles Eu and Es are Cαf , that is, there exists
C > 0 such that, for all x, y ∈ ∆, v ∈ TxM, w ∈ TyM and for all i ∈ Zd,

(4.3) |(De(x)πu(x)v −De(y)πu(y)w)i|
≤ C(dαf (xi, yi) max{|vi|, |wi|}+ |De(xi)vi −De(yi)wi|),

and the same inequality holds for πs, where e : M→ `∞(RD) is the embed-
ding introduced in Section 2.1 (see also (4.10), in [FdlLM10]), and d is the
distance in TM (see also Section 2.1 and (4.12) in [FdlLM10]).

Moreover,

(4.4) |De(x)πu(x)v −De(y)πu(y)w|
≤ C(dαf (x, y) max{|v|, |w|}+ |De(x)v −De(y)w|),

that is, the splitting is αf -Hölder.

The proof of Lemma 4.3 is placed in Appendix B.
This splitting of T∆F

M induces a splitting of the space of sections over ∆F ,
as described below.

Notice that, if ν is a section covering the embedding i : ∆F →M, i(x) =
x, so are the sections πs ◦ ν and πu ◦ ν.

In what follows we will use extensively the embedding e : M→ `∞(RD),
the left inverse of De, η : M × `∞(RD) → TM and the connector τ :
M×TM→ TM, introduced in Section 2.1 (see also (4.10), (4.13) and (4.9),
resp., in Section 4.2 of [FdlLM10], for more details). In particular, all these
maps are uncoupled and, when written in charts, have uniformly bounded
derivatives.

Lemma 4.4. Let ν be a section covering i : ∆F →M. Then

ν = πs ◦ ν ⊕ πu ◦ ν.
Furthermore, there exists C > 0 such that for any ν ∈ Sαi,Γ(∆F ), with α ≤
αf , then πs ◦ ν, πu ◦ ν ∈ Sαi,Γ(∆F ) and

(4.5) ‖πu ◦ ν‖Cα
Γ
≤ C‖ν‖Cα

Γ
, ‖πs ◦ ν‖Cα

Γ
≤ C‖ν‖Cα

Γ
.

Proof. The first claim follows from v = πu(x)v ⊕ πs(x)v, for all v ∈ TxM.
Now we assume that ν is CαΓ . To prove (4.5), we take j ∈ Zd, and x, y ∈

∆F such that xi = yi, i 6= j. Then, using that α ≤ αf and inequality (4.3),
we have that, for any i ∈ Zd,

|
(
De(x)πu(x)ν(x)−De(x)πu(y)ν(y)

)
i
|

= |De(xi)πu(xi)νi(x)−De(xi)πu(yi)νi(y)|
≤ C

(
dαf (xi, yi) max{|νi(x)|, |νi(y)|}+ |De(xi)νi(x)−De(yi)νi(y)|

)
≤ (1 + Γ(0)−1)C‖ν‖Cα

Γ
Γ(i− j)dα(xj , yj).

In the same way, for any x, y ∈ ∆F , using (4.4), we obtain that

|De(x)πu(x)ν(x)−De(x)πu(y)ν(y)| ≤ 2C‖ν‖Cα
Γ
dα(x, y),
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and, hence, the Hölder norm of πu ◦ ν is also bounded. 2

We define the vector bundles EuΦ and EsΦ by

(4.6) EuΦ,x = τ(x, hΦ(x))EuF,x, EsΦ,x = τ(x, hΦ(x))EsF,x,
where τ : Uρτ ⊂ TM×M→ TM is the connector introduced in Section 2.1
(see also (4.9), in [FdlLM10]).

Notice that EuΦ,x, EsΦ,x ⊂ ThΦ(x)M. Moreover, since τ is a linear isometry
on each fiber, we have that ThΦ(x)M = EuΦ,x ⊕ EsΦ,x. We remark that this
splitting is not necessarily invariant, although we will see that it is close to
invariant.

We will use this splitting to induce a splitting of the space of sections
covering hΦ.

We define the operator τhΦ
acting on sections covering hΦ by

(4.7) τhΦ
ν(x) = τ(hΦ(x), x)ν(x).

Since τ(hΦ(x), x) is a map from ThΦ(x)M to TxM, τhΦ
ν is a section covering

i : ∆F → ∆F .
Analogously, the operator τhΦ acting on sections covering i : ∆F → ∆F

is defined by

(4.8) τhΦν(x) = τ(x, hΦ(x))ν(x).

Then, τhΦν is a section covering hΦ.

Lemma 4.5. Let SαhΦ,Γ
(∆F ), Sαi,Γ(∆F ), SbhΦ

(∆F ) and Sbi (∆F ) be the spaces
of CαΓ and bounded sections introduced in (2.22) and (2.19) (see also (5.13)
and (5.8), in [FdlLM10], resp). The operators τhΦ

and τhΦ defined above
satisfy

(1) τhΦ
: SαhΦ,Γ

(∆F ) → Sαi,Γ(∆F ) and τhΦ
: SbhΦ

(∆F ) → Sbi (∆F ) are
linear and bounded,

(2) τhΦ : Sαi,Γ(∆F ) → SαhΦ,Γ
(∆F ) and τhΦ

: Sbi (∆F ) → SbhΦ
(∆F ) are

linear and bounded.
Furthermore, τhΦ

◦ τhΦ = Id .

Proof. We prove (1), (2) being analogous.
We concentrate in proving that τhΦ

: SαhΦ,Γ
(∆F ) → SαId ,Γ(∆F ) is bounded.

The case τhΦ
: SbhΦ

(∆F ) → Sbi (∆F ) is straightforward since τ(x, y) is an
isometry on each fiber and depends C∞ on x and y.

We compute a bound of the CαΓ -norm of τhΦ
ν. We take j ∈ Zd, x, y ∈ ∆F

such that xi = yi, for i 6= j. Let β and βp be the curves associated to ν and
hΦ given by Lemma A.2, in [FdlLM10]. Let β̃ : [0, 1] → M be the curve
defined by β̃i(t) = xi = yi, for i 6= j and

β̃j(t) = η(βpj (t))
(
tvy,j + (1− t)vx,j

)
,

where

vx,j = De(hΦ,j(x)) exp−1
hΦ,j(x)

xj , vy,j = De(hΦ,j(y)) exp−1
hΦ,j(y)

yj

and η(z) is the left inverse of De(z) introduced in (4.4), in [FdlLM10].
There exists C > 0 depending only on M and the choice of η, such that
the curve β̃ satisfies d(β̃(t), βp(t)) ≤ CdC0(hΦ, Id ), | ˙̃βi(t)| = 0, for i 6= j
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and | ˙̃βj(t)| ≤ C
(
γα(hΦ)dα(xj , yj) + dC0(hΦ, Id )

)
. Indeed, if i 6= j, since

βpi (t) is the minimal geodesic joining hΦ,i(x) and hΦ,i(y) (see Lemma A.2
in [FdlLM10]) and xi = yi,

d(β̃i(t), β
p
i (t)) = d(xi, β

p
i (t))

≤ d(xi, hΦ,i(x)) + d(hΦ,i(x), β
p
i (t))

≤ d(xi, hΦ,i(x)) + d(hΦ,i(x), hΦ,i(y))

≤ 3d(xi, hΦ,i(x)) ≤ 3dC0(Id , hΦ).

For i = j, by construction, for some constants C1 and C2 depending only
on η, e and exp

d(β̃j(t), β
p
j (t)) ≤ C1(‖vx,j‖+ ‖vy,j‖) ≤ C2dC0(Id , hΦ).

The bound for ˙̃
βj(t) follows from the estimates on β̇p given by Lemma A.2

in [FdlLM10].
By Theorem 2.1, we can assume that CdC0(hΦ, Id ) < ρ0, provided that

dCr
Γ
(Φ, F ) is small enough.

Then, we can write

(4.9) |(De(x)τhΦ
ν(x)−De(y)τhΦ

ν(y))i|
= |De(xi)τ(hΦ,i(x), xi)νi(x)−De(yi)τ(hΦ,i(y), yi)νi(y)|

=
∣∣ ∫ 1

0

d

dt

(
De(β̃i(t))τ(β

p
i (t), β̃i(t))βi(t)

)
dt

∣∣.
Hence, for a fixed t ∈ (0, 1), let (Uφ, φ) be a coordinate chart such that
Bρ0(β

p(t)) ⊂ Uφ. Since d(β̃(t), βp(t)) < ρ0, we have that β̃(t) ∈ Uφ. Let
βφ = (βpφ, β

2
φ), β̃φ, τφ = (τ1

φ , τ
2
φ) and eφ be the expressions of the involved

curves and functions in this chart, following the notation introduced in A.1
in [FdlLM10]. By inequalities (A.1), (A.2) and (A.3), in [FdlLM10], we have
that the curves βpφ, β

2
φ have decay around the j component, in the sense

introduced, in (2.29) in Section 2.10 of [FdlLM10], and, for some constant
C independent of ν and the chart φ,

‖β̇pφ‖j,Γ ≤ Cdα(xj , yj), ‖β̇2
φ‖j,Γ ≤ C‖ν‖Cα

Γ
dα(xj , yj), ‖β2

φ‖ < C‖ν‖Cα
Γ
,

where the norm

‖β‖j,Γ = sup
t∈I

sup
l∈Zd

|β̇l(t)|Γ(l − j)−1

was defined in (2.29) in [FdlLM10].
Also, since, by construction, ˙̃

βi = 0, for i 6= j, and the definition of ˙̃
βj ,

we have that

‖β̇pφ‖j,Γ ≤ Cdα(xj , yj).

Furthermore, since τφ and eφ are uncoupled, they are CrΓ. Their norm only
depends on the manifold M and the choice of the embedding. Hence, by
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Lemma 2.18 in [FdlLM10], we have that

| d
dt

(
De(β̃i(t))τ(β

p
i (t), β̃i(t))βi(t)

)
|

= | d
dt

(
Deφ(β̃φ,i(t))τφ(β

p
φ,i(t), β̃φ,i(t))β

2
φ,i(t)

)
|

≤ C‖ν‖Cα
Γ
dα(xj , yj)Γ(i− j)−1,

for some C > 0. Claim (1) follows from inserting this last inequality
into (4.9).

Last claim follows from the fact that τ(x, y) ◦ τ(y, x) = Id |TxM. 2

From the vector bundles EuΦ and EsΦ defined in (4.6), we introduce

(4.10) Sα,uhΦ,Γ
(∆F ) = {ν ∈ SαhΦ,Γ

(∆F ) | ν(x) ∈ EuΦ,x, ∀x ∈ ∆F }

and

(4.11) Sα,shΦ,Γ
(∆F ) = {ν ∈ SαhΦ,Γ

(∆F ) | ν(x) ∈ EsΦ,x, ∀x ∈ ∆F }.

The spaces Sb,uhΦ
(∆F ) and Sb,shΦ

(∆F ) of bounded sections are defined analo-
gously.

Then, we have

Lemma 4.6. (1) SbhΦ
(∆F ) = Sb,uhΦ

(∆F )⊕Sb,shΦ
(∆F ) and the projections, πuhΦ

and πshΦ
, resp., are continuous.

(2) SαhΦ,Γ
(∆F ) = Sα,uhΦ,Γ

(∆F )⊕Sα,shΦ,Γ
(∆F ) and the projections, πuhΦ

and πshΦ
,

resp., are continuous.

Proof. Since πuhΦ
can be written as

(πuhΦ
ν)(x) = τ(x, hΦ(x))πu(x)τ(hΦ(x), x)ν(x),

the lemma follows from Lemmas 4.4 and 4.5. 2

Using the splittings of SbhΦ
(∆F ) and SαhΦ,Γ

(∆F ), we define a new norm on
these spaces by setting

‖ν‖′Cα
Γ

= max{‖πuhΦ
ν‖Cα

Γ
, ‖πuhΦ

ν‖Cα
Γ
},(4.12)

‖ν‖′Cb = max{‖πuhΦ
ν‖Cb , ‖πuhΦ

ν‖Cb}.(4.13)

Lemma 4.6 implies that the prime norms are equivalent to the original norms
in SαhΦ,Γ

and SbhΦ
. From now on, we will use norms (4.12) and (4.13) in SαhΦ,Γ

and SbhΦ
, resp., which we will denote without prime.

4.4. Hyperbolicity of the operator AΦ. In this section we state Theo-
rem 4.7 on the hyperbolicity of the zero section of SαhΦ,Γ

and SbhΦ
, which is a

fixed point of the operator AΦ, introduced in (4.1). We will also describe the
regularity of the invariant manifolds of the zero section. Theorem 4.7 shows
that the invariant manifolds produced in the space of sections enjoy prop-
erties that allow to project them to geometric objects in the phase space,
namely, the invariant manifolds of Theorem 2.2.

Given ρ > 0, we will denote by V α
ρ and V b

ρ the balls of radius ρ in
SαhΦ,Γ

(∆F ) and SbhΦ
(∆F ), resp., V α,s

ρ = V α
ρ ∩ Sα,shΦ,Γ

(∆F ) and, analogously,

V b,s
ρ .
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Using the splittings of SαhΦ,Γ
(∆F ) and SbhΦ

(∆F ) given by Lemma 4.6, we
will denote ν = (νs, νu), where νu = πuhΦ

ν and νs = πshΦ
ν.

Theorem 4.7. Assume that Φ is CrΓ close to F , r ≥ 4. Then, there exists
ρ > 0 such that the following holds true.
(1) The map AΦ : V α

ρ → SαhΦ,Γ
(∆F ) is well defined and Cr−3. The zero

section in SαhΦ,Γ
(∆F ) is a hyperbolic fixed point of AΦ. Let Wα,s

loc denote its
local stable invariant manifold. There exists a Cr−3 function Ψα,s : V α,s

ρ →
Sα,uhΦ,Γ

(∆F ) such that

Wα,s
loc ∩ V

α
ρ = {(νs,Ψs

α(νs)) | νs ∈ V α,s
ρ }.

Moreover, if νs, ν̃s ∈ V α,s
ρ satisfy νs(x) = ν̃s(x), for some x ∈ ∆F , then

Ψα,s(νs)(x) = Ψα,s(ν̃s)(x).
(2) The map AΦ : V b

ρ → SbhΦ
(∆F ) is well defined and Cr−2

Γ . The zero section
in SbhΦ

(∆F ) is a hyperbolic fixed point of AΦ. Let W b,s
loc denote its local stable

invariant manifold. There exists a Cr−3
Γ function Ψb,s : V b,s

ρ → Sb,uhΦ
(∆F )

such that
W b,s
loc ∩ V

b
ρ = {(νs,Ψb,s(νs)) | νs ∈ V b,s

ρ }.
Moreover, if νs, ν̃s ∈ V b,s

ρ satisfy νs(x) = ν̃s(x), for some x ∈ ∆F , then
Ψb,s(νs)(x) = Ψb,s(ν̃s)(x).
(3) Ψα,s = Ψb,s

|V α,s
ρ

.
(4) For any x ∈ ∆F and v ∈ EsΦ,x with ‖v‖ < ρ, the map, induced by DΨb,s,

AΨ(v) : EsΦ,x → EuΦ,x : w 7→ DΨb,s(ν)ν̂(x),

where νs ∈ V b,s
ρ and ν̂s ∈ Sb,shΦ

(∆F ) are such that νs(x) = v and ν̂s(x) = w,
is well defined.
(5) The map AΨ(v) is Γ-linear and its Γ-norm is uniformly bounded in
x ∈ ∆F .

4.5. Deduction of Theorem 2.2 from Theorem 4.7. We start by in-
troducing two auxiliary lemmas we will use in the deduction of Theorem 2.2
from Theorem 4.7.

First we claim that we can construct (uncoupled) Cα sections covering hΦ

with a prescribed value at a given point, and that this construction is linear
(hence, regular) on each fiber of T∆F

M. Actually, the map Ωs
hΦ

introduced
in the next lemma assigns to every v ∈ EsF,x a Cα section ν such that ν(x)
is the transport of v to hΦ(x) by the connector τ .

Lemma 4.8. There exists a map Ωs
hΦ

: EsF → Sα,shΦ,Γ
(M) with the following

properties:
(1) it is Lipschitz,
(2) Ωs

hΦ
(v)(x) = τ(x, hΦ(x))v, for all v ∈ EsF,x ⊂ TxM and

(3) it is linear on each fiber.
In particular, Ωs

hΦ
is C∞ on each fiber.

Furthermore, Ωs
hΦ

is uncoupled in the following sense: given j ∈ Zd, if
x, x̃ ∈ ∆F satisfy xi = x̃i whenever i 6= j, and v ∈ TxM, ṽ ∈ Tx̃M satisfy
vi = ṽi, for i 6= j (this comparison makes sense since TxM = `∞(TxiM)),
then ((Ωs

hΦ
(v)− Ωs

hΦ
(ṽ))(z))i = 0, for i 6= j, z ∈ ∆F .
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The proof of this lemma is deferred to Appendix E.
Next we check the regularity of the evaluation operator.

Lemma 4.9. (1) The map ev : SαhΦ,Γ
(∆F ) × ∆F → T∆Φ

M defined by
ev(ν, x) = ν(x) is continuous. Moreover, it is linear with respect its first
variable – which implies it is C∞ with respect to its first variable – and CαΓ
with respect to x and

(4.14) γα(ev(ν, ·)) ≤ max{γα(hΦ), ‖ν‖Cα
Γ
}.

In particular, ev is α-Hölder.
(2) The map ev : SbhΦ

(∆F ) × ∆F → T∆Φ
M defined by ev(ν, x) = ν(x) is

linear with respect its first variable and ‖ev(·, x)‖ ≤ 1. It is uncoupled with
respect to the identification SbhΦ

(∆F ) = `∞(SbhΦ
(∆F )), that is, ev(ν, x)i =

νi(xi).

Proof. We recall that the distance in TM was defined as

d(v, ṽ) = max{d(x, x̃), ‖De(x)v −De(x̃)ṽ‖},
for v ∈ TxM, ṽ ∈ Tx̃M.

In order to prove (1), let (ν, x), (ν̃, x̃) ∈ SαhΦ,Γ
(∆F )×∆F . Then

(4.15) d(ev(ν, x), ev(ν̃, x̃))

= max{d(hΦ(x), hΦ(x̃)), ‖De(hΦ(x))ν(x)−De(hΦ(x̃))ν̃(x̃)‖}.
Since hΦ is Cα, we have that d(hΦ(x), hΦ(x̃)) ≤ H(hΦ)dα(x, x̃). Moreover

‖De(hΦ(x))ν(x)−De(hΦ(x̃))ν̃(x̃)‖
≤ ‖De(hΦ(x))ν(x)−De(hΦ(x̃))ν(x̃)‖+ ‖De(hΦ(x̃))(ν(x̃)− ν̃(x̃))‖
≤ ‖ν‖Cαdα(x, x̃) + C‖ν − ν̃‖Cb ,

which yields the continuity of ev. By definition, it is linear with respect to ν.
To finish the proof of (1), it only remains to see that ev is CαΓ with respect

to x. To this end, we take ν ∈ SαhΦ,Γ
(∆F ) and j ∈ Zd and we let x, x̃ ∈ ∆F

such that xk = x̃k, for k 6= j. By the CαΓ continuity of hΦ, we have that
d(hΦ,i(x), hΦ,i(x̃)) ≤ γα(hΦ)Γ(i− j)dα(xj , x̃j). Moreover,

‖(De(hΦ(x))ν(x)−De(hΦ(x̃))ν(x̃))i‖
≤ ‖De(hΦ,i(x))νi(x)−De(hΦ,i(x̃))νi(x̃)‖
≤ ‖ν‖Cα

Γ
Γ(i− j)dα(xj , x̃j).

Hence, in view of (4.15),

d(ev(ν, x)i, ev(ν, x̃)i) ≤ max{γα(hΦ), ‖ν‖Cα
Γ
}Γ(i− j)dα(xj , x̃j).

To prove (2), note that the linearity is obvious and , for any ν ∈ SbhΦ
(∆F ),

‖ν(x)‖ ≤ ‖ν‖, for all x ∈ ∆F .

By definition, the map is uncoupled. 2

Deduction of Theorem 2.2 from Theorem 4.7. Let Ωs
hΦ

be the map given in
Lemma 4.8, and Ψα,s be the map such that its graph is invariant by AΦ,
given in Theorem 4.7. We define, for x ∈ ∆F , v ∈ EsF,x ⊂ TxM,

(4.16) Υs(v) = π2 ◦ exp ◦ ev ◦ ((Id ,Ψα,s) ◦ Ωs
hΦ

(v), x).
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To see (1) note that, by construction, since the graph of Ψα,s is invariant
by AΦ, the range of Υs is invariant by Φ. More concretely, we claim that, if
v ∈ EsF,x, ‖v‖ ≤ ρ,

Φ(Υs(v)) = Υs(w),

where
w = πsF (x) ◦ τ(hΦ ◦ F (x), F (x)) ◦ exp−1

hΦ◦F (x) Φ(Υs(v))

and πsF (x) : TF (x)M → EsF,F (x) is the natural projection. Note that w ∈
EsF,F (x). Indeed, for νv = (Ωs

hΦ
(v),Ψα,s ◦ Ωs

hΦ
(v)) we have that

AΦ(νv)(F (x)) = exp−1
hΦ◦F (x) Φ(Υs(v)).

Since νv lies on the stable manifold of 0 for AΦ, the claim follows.
We remark that the definition of Υs in (4.16) is independent of the choice

of the function Ωs
hΦ

, as soon as satisfies the properties listed in Lemma 4.8.
Let us denote (Id ,Ψα,s) by Ψ during the rest of the proof.
Since Ψα,s parameterizes the local stable manifold of the zero section

in SαhΦ,Γ
, for all x ∈ ∆F and v ∈ EsF,x with ‖v‖ ≤ ρ, d(Φn ◦ hΦ(x),Φn ◦

Υs(v)) → 0, when n→∞. This proves (2) of Theorem 2.2.
Now we check (3) of Theorem 2.2. First we note that, by Lemmas 4.8

and 4.9, since Ψα,s is Cr−3, we have that Υs is α-Hölder. Next, we take
j ∈ Zd, x, x̃ ∈ ∆F such that xi = x̃i for i 6= j, and v ∈ TxM, ṽ ∈ Tx̃M such
that vi = ṽi, for i 6= j. We first observe that, since Ωs

hΦ
is uncoupled,

(4.17) Ωs
hΦ

(v)i(z) = Ωs
hΦ

(ṽ)i(z), for all z ∈ ∆F and i 6= j.

On the other hand, since exp is uncoupled and uniformly C∞, there exists
C > 0, depending only on M , such that

d(Υs(v)i,Υs(ṽ)i) ≤Cd(evi ◦ (Ψ ◦ Ωs
hΦ

(v), x), evi ◦ (Ψ ◦ Ωs
hΦ

(ṽ), x̃))

≤C
(
d(evi ◦ (Ψ ◦ Ωs

hΦ
(v), x), evi ◦ (Ψ ◦ Ωs

hΦ
(v), x̃))

+ d(evi ◦ (Ψ ◦ Ωs
hΦ

(v), x̃), evi ◦ (Ψ ◦ Ωs
hΦ

(ṽ), x̃))
)
.

(4.18)

By Lemma 4.9, the map ev is CαΓ with respect to its second variable, and,
by (4.14),

(4.19) d(evi ◦ (Ψ ◦ Ωs
hΦ

(v), x), evi ◦ (Ψ ◦ Ωs
hΦ

(v), x̃))

≤ max{γα(hΦ), ‖Ψ ◦ Ωs
hΦ

(v)‖Cα
Γ
}Γ(i− j)dα(xj , x̃j).

On the other hand, we recall that

d(evi ◦ (Ψ ◦ Ωs
hΦ

(v), x̃), evi ◦ (Ψ ◦ Ωs
hΦ

(ṽ), x̃)

= max{d(xi, x̃i), ‖(Ψ ◦ Ωs
hΦ

(v)(x̃)−Ψ ◦ Ωs
hΦ

(ṽ)(x̃))i‖)}

and, denoting ν = Ωs
hΦ

(v) and ν̃ = Ωs
hΦ

(ṽ),

(4.20) ‖(Ψ ◦ ν(x̃)−Ψ ◦ ν̃(x̃))i‖ = ‖
( ∫ 1

0
DΨ(ν̃ + t(ν − ν̃))(ν − ν̃)(x̃) dt

)
i
‖.

By Theorem 4.7,DΨ(ν̂) induces a LΓ map at each point z, with ‖DΨ(ν̂)(z)‖Γ ≤
C, for some positive constant C. Hence, since, by (4.17), (ν(x̃)− ν̃(x̃))k = 0
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for k 6= j, applying (1) in Lemma 4.8, we have that, for some constants
C, C̃ > 0,

‖(Ψ ◦ ν(x̃)−Ψ ◦ ν̃(x̃))i‖ ≤ C‖Ωs
hΦ

(v)i(x̃)− Ωs
hΦ

(ṽ)i(x̃)‖Γ(i− j)

≤ C̃Γ(i− j)‖vj − ṽj‖.
Inserting this last inequality into (4.20), the claim is proven.

(4) follows from the regularity of each map in the definition of Υs in (4.16)
given by Theorem 4.7, Lemmas 4.8 and 4.9.

(5) follows from the invariance of range(Υs) and the fact that is Cr−2
Γ on

each fiber. 2

4.6. Proof of Theorem 4.7. Let 0 denote the zero section in SαhΦ,Γ
∩SbhΦ

.
By construction, AΦ(0) = 0. The rest of the claim follows from proving that
0 is a hyperbolic fixed point for AΦ in SαhΦ,Γ

if dCr
Γ
(F,Φ) is small enough.

To do so, we will see that AΦ is close, in the appropriate topology, to a map
for which 0 is a hyperbolic fixed point.

To begin with, we consider the map AF (ν) = HF ◦ ν ◦ F−1 (see formu-
las (4.1) and (4.2)). By Propositions 5.6 and 5.7 in [FdlLM10], AF is Cr−3

when considered acting on SαId ,Γ sections and Cr−2
Γ when acting on SbId .

Furthermore, by (5.28) and Proposition 5.7 in [FdlLM10],

(4.21) (DAF (0)ν)(x) = DF (F−1(x))ν(F−1(x)).

By Lemma 4.4, SαId ,Γ = Sα,sId ,Γ ⊕ Sα,uId ,Γ. Using this decomposition, since the
splitting EuF ⊕ EsF is invariant by F , we can write

(4.22) DAF (0) =
(
AF,s,s 0

0 AF,u,u

)
,

where AF,s,s = πSα,s
Id ,Γ

◦DAF (0) ◦ πSα,s
Id ,Γ

, and AF,u,u is defined analogously.

Lemma 4.10. Under the standing hypotheses on F , for any 0 < α ≤ αf ,
AF,u,u : Sα,uId ,Γ → Sα,uId ,Γ, AF,s,s : Sα,sId ,Γ → Sα,sId ,Γ are bounded linear maps and
AF,u,u is invertible.

Moreover, there exist 0 < α∗ < αf such that, for any 0 < α < α∗ and any
0 < λ̃ < 1, there exists N > 0 such that

(4.23) ‖A−1
FN ,u,u

‖ ≤ λ̃, ‖AFN ,s,s‖ ≤ λ̃.

The proof of this lemma is deferred to Appendix C.
Note that AFN = ANF .
We would like to compare AFN with AΦN . However, a direct comparison

is impossible since the operators act on different spaces. Because of this
reason we introduce

(4.24) ÃFN = τhΦ
◦ AFN ◦ τhΦ ,

with the operators τhΦ
and τhΦ defined in (4.7) and (4.8), resp. Since,

by Lemma 4.5, these operators are linear and bounded, DÃFN (0) = τhΦ
◦

DAFN (0) ◦ τhΦ . Using the decomposition SαhΦ,Γ
= Sα,shΦ,Γ

⊕ Sα,uhΦ,Γ
and the

fact that, by construction, τhΦ(Sα,u,shΦ,Γ
) = Sα,u,sId ,Γ , we have that

(4.25) DÃFN (0) =
(
ÃFN ,s,s 0

0 ÃFN ,u,u

)
.
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Lemma 4.10 implies that

(4.26) ‖Ã−1
FN ,u,u

‖, ‖ÃFN ,s,s‖ ≤ ‖τhΦ
‖‖τhΦ‖λ̃.

We choose λ̃ in Lemma 4.10 such that 0 < ‖τhΦ
‖‖τhΦ‖λ̃ < 1.

Lemma 4.11. Assume r ≥ 4. There exist C > 0 and ε0 > 0 such that, if
dCr

Γ
(Φ, F ) < ε0,

(1) ‖DAΦ(0)−DÃF (0)‖L(Sα
hΦ,Γ,S

α
hΦ,Γ) < CdCr

Γ
(Φ, F ),

(2) ‖DAΦ(0)−DÃF (0)‖LΓ(Sb
hΦ
,Sb

hΦ
) < CdCr

Γ
(Φ, F ).

The proof of Lemma 4.11 is rather cumbersome and is placed in Appen-
dix D.

Now, after Lemma 4.11, Theorem 4.7 follows almost immediately.
Indeed, from (1) in Propositions 5.6 and 5.7 in [FdlLM10], we have that

AΦ is a Cr−3 map from some ball around 0 in SαhΦ,Γ
to SαhΦ,Γ

. Moreover,
by (1) in Lemma 4.11, we have that, if dCr

Γ
(Φ, F ) is small enough, the zero

section 0 ∈ SαhΦ,Γ
is a hyperbolic fixed point for AΦ. Hence, it possesses a

Cr−3 stable invariant manifold. More concretely, there exists a Cr−3 map
Ψα,s : V α

ρ ⊂ Sα,shΦ,Γ
→ Sα,uhΦ,Γ

whose graph is invariant by AΦ. Furthermore,
it is well known that this function Ψα,s is an attracting fixed point of the
graph transform operator in the space of Cr−4 maps, Ψ 7→ G(Ψ), with

(4.27) G(Ψ)(νs) = A−1
u,u

(
Ψ(As,sνs +As,uΨ(νs) +Rs(νs,Ψ(νs))

−Au,sν
s −Ru(νs,Ψ(νs))

)
,

where AΦ = DAΦ(0) + R, DAΦ(0) =
(
As,s As,u
Au,s Au,u

)
and R = (Rs, Ru).

Now, since AΦ(ν)(x) = AΦ(ν̃)(x), whenever ν(F−1(x)) = ν̃(F−1(x)) (see
Remark 4.1) and in view of (4.27), we have that, if Ψ satisfies also Ψ(νs)(x) =
Ψ(ν̃s)(x), whenever νs(x) = ν̃s(x) (for instance, if Ψ = 0), then so does
Ψk = Gk(Ψ). Hence, Ψα,s = limk→∞ Ψk satisfies the same property. This
concludes the proof of (1) in Theorem 4.7.

Now we prove (2) in Theorem 4.7. From (2) in Propositions 5.6 and 5.7
in [FdlLM10], we have that AΦ is a Cr−2

Γ map from some ball around 0 in
SbhΦ

to SbhΦ
. Hence, by (2) in Lemma 4.11 and Theorem 3.1 in [FdlLM10],

the invariant manifolds of 0 ∈ SbhΦ
are Cr−3

Γ , that is, there exists a Cr−3
Γ map

Ψb,s : V b
ρ ⊂ Sb,shΦ

→ Sb,uhΦ
whose graph is invariant by AΦ. This map coincides

with Ψα,s in the intersection of their domains, since both are attracting fixed
points of the same operator G, SαhΦ,Γ

⊂ S0
hΦ

and the inclusion is continuous.
With the same argument as before, we have that Ψb,s(νs)(x) = Ψb,s(ν̃s)(x),
whenever νs(x) = ν̃s(x).

(3) follows from the fact that SαΓ ⊂ Sb and the inclusion is continuous.
(4) and (5) simply follow from the fact that Ψα,s(ν)(x) only depends on

the the value of ν at x and the fact that Ψb,s is a Cr−2
Γ map. 2
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Appendix A. Proof of Proposition 3.2

Instead of working with the explicit expression of H, we highlight the
set of its properties that permit to prove C1 regularity. We have that H :
Tu(X)M→ Tu(X)M satisfies

(1) H is continuous,
(2) for all x ∈ X, H(Tu(x)M) ⊂ Tu(h(x))M,
(3) for all x ∈ X, H|Tu(x)M is C1 and
(4) D(H|Tu(x)M) is uniformly continuous and its modulus of continuity

is bounded independently of x ∈ X.
The first three properties are quite obvious. The fourth one follows from

the fact that exp and exp−1 are uncoupled, M is compact and Φ is C1 with
DΦ uniformly continuous.

First we check that C is differentiable. Let ν ∈ S0
u,δ1

and ∆ν ∈ S0
u with

‖∆ν‖ small.
We have that

(C(ν + ∆ν)− C(ν)−DC(ν)∆ν)(x)

=H(ν(x) + ∆ν(x))−H(ν(x))−D(H|Tu(x)M)(ν(x))∆ν(x)

+R(ν,∆ν)(x),

where

R(ν,∆ν)(x) =
∫ 1

0

(
D(H|Tu(x)M)(ν(x)+t∆ν(x))−D(H|Tu(x)M)(ν(x))

)
∆ν(x) dt.

Property (4) implies that |R(ν,∆ν)(x)| ≤ ε‖∆ν‖ if ‖∆ν‖ is small enough,
then C is differentiable at ν.

The continuity of DC follows from

‖DC(ν ′)−DC(ν)‖
= sup

‖∆ν‖≤1
sup
x∈X

|
(
D(H|Tu(x)M)(ν ′(x))−D(H|Tu(x)M)(ν(x))

)
∆ν(x)|

≤ ε‖∆ν‖ ≤ ε

if ‖ν ′ − ν‖ small enough, by property (4).

Appendix B. Proof of Lemma 4.3

The proof follows from the same claim for the finite-dimensional case.

Lemma B.1. Let TΛf
M = Eu ⊕ Es be the hyperbolic splitting of the hy-

perbolic set Λ, introduced in Section 2.5. There exists C > 0 such that the
projections πs,u : TΛM → TΛM satisfy, for all x, y ∈ Λ and v ∈ TxM ,
w ∈ TyM ,

(B.1) |De(x)πs,u(x)v −De(y)πs,u(y)w|
≤ C(dαf (x, y) max{|v|, |w|}+ |De(x)v −De(y)w|),
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where e : M → RD is the embedding introduced in Section 2.1 (see also
Section 4.1 in [FdlLM10]).

Proof. Let (TUφ, Tφ) be a chart of TM . The expression of the projections
πu and πs in this chart are

TΛM ∩ TUφ ⊂ TUφ
πu,πs

−−−→ TM
Tφ ↓ ↓ Tφ

Rn × Rn
πu

φ ,π
s
φ−−−→ Rn × Rn

,

πuφ and πsφ, satisfy πs,uφ (x, v) = (x,As,uφ (x)v), where for some constant C
depending only on M ,

(B.2) |As,uφ (x)v −As,uφ (y)w| ≤ C(dαf (x, y) min{|v|, |w|}+ |v − w|).

On the other hand, we remark that there exists a constant C such that, if
x, y ∈ Uφ (the domain of the chart φ) and v ∈ TxM , w ∈ TyM , then

(B.3) |Dφ(x)v−Dφ(y)w| ≤ C(|De(x)v−De(y)w|+ d(x, y) min{|v|, |w|}).

Indeed, using η(x) = De−1(x), the left inverse of De−1(x), we have that, for
some C > 0,

|Dφ(x)v −Dφ(y)w| =|ηφ(φ−1(x))Deφ(φ−1(x))Dφ(x)v

− ηφ(φ−1(y))Deφ(φ−1(y))Dφ(y)w|
≤C(|De(x)v −De(y)w|+ d(x, y) min{|v|, |w|}).

Let 2ρ0 < 1 be the Lebesgue number of the open covering {UΦ} of M .
Assume first that d(x, y) < ρ0. Hence, there exists Uφ such that x, y ∈ Uφ.
Then, from (B.2) and (B.3), for any v ∈ TxM , w ∈ TyM and assuming
|v| = min{|v|, |w|},
|De(x)πu(x)v−De(y)πu(y)w| = |Deφ(x)πuφ(x)Dφ(x)v −Deφ(y)πuφ(y)Dφ(y)w|

≤|(Deφ(x)−Deφ(y))πuφ(x)Dφ(x)v|
+ |Deφ(y)(πuφ(x)Dφ(x)v − πuφ(y)Dφ(y)w)|

≤Cd(x, y)|v|+ C(dαf (x, y) min(|Dφ(x)v|, |Dφ(y)w|)
+ |Dφ(x)v −Dφ(y)w|)

≤C(dαf (x, y) min{|v|, |w|}+ |De(x)v −De(y)w|).

If d(x, y) > ρ,

|De(x)πu(x)v −De(y)πu(y)w| ≤ |De(x)πu(x)v|+ |De(y)πu(y)w|
≤ Cmax{|v|, |w|}
≤ Cρ−αf (dαf (x, y) max{|v|, |w|}
+ |De(x)v −De(y)w|).

2

Then, since the projections πu,s : T∆F
M → Eu,s are uncoupled, that is,

(πu,s(x)v)i = πu,s(xi)vi, inequality (4.3) follows immediately from (B.1).
Finally, inequality (4.4) is obtained by taking supremum with respect to i
in (4.3).
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Appendix C. Proof of Proposition 3.8 and Lemma 4.10

Proposition 3.8 follows directly from Lemma 4.10.
Now we proceed with the proof of Lemma 4.10.
The maps AF,u,u and AF,s,s are, by definition, linear and, by Lemma 4.4,

‖AF,s,s‖ ≤ ‖πSα,s
Id ,Γ

‖2‖DAF (0)‖.
It follows from (4.21) that

(DAF (0))−1ν(x) = DF−1(F (x))ν(F (x)) = DAF−1(0)ν(x).

As a consequence, AF,u,u is invertible and, for any νu ∈ Sα,uId ,Γ,

(C.1) AF,u,uν
u(x) = DF−1(F (x))νu(F (x)).

In particular, ‖A−1
F,u,u‖ ≤ ‖πSα,u

Id ,Γ
‖2‖DAF−1(0)‖.

We proceed to prove (4.23) for AFN ,s,s, the other inequality being analo-
gous. To simplify notation, we will denote AFN ,s,s by AN .

It follows directly from the definition of AFN ,s,s that, for any ν ∈ Sα,sId ,Γ,

‖ANν‖C0 = sup
x∈∆F

‖πs(x)D(FN )(F−N (x))πs(F−N (x))ν(F−N (x))‖

< sup
x∈∆F

‖πs(x)‖λN‖ν‖C0 .
(C.2)

Now we compute γα(ANν). Let ρ > 0. We claim that there exists C ≥ 1
such that, for any i, j ∈ Zd and any x, y ∈ ∆F satisfying xk = yk, k 6= j, we
have that
(I) if d(x, y) ≥ ρ,

(C.3) d((ANν)(x)i, (ANν)(y)i)

≤

{
CλNρ−α‖ν‖Cα

Γ
Γ(0)dα(xj , yj), i = j

CλN (Lip f−1)αN‖ν‖Cα
Γ
Γ(i− j)dα(xj , yj), i 6= j,

(II) if d(x, y) < ρ,

(C.4) d((ANν)(x)i, (ANν)(y)i)

≤C
(
λN +N‖Df‖N−1ρ1−α + ‖Df‖N (Lip f−1)Nραf−α

+ λN (Lip f−1)αN
)
‖ν‖Cα

Γ
Γ(i− j)dα(xj , yj).

Assume for the moment that the claims for (I) and (II) hold. Let 0 <

λ̃ < 1. If we take ρ = (2λ/λ̃)
1
αλ

N−1
α , then, substituting in (C.3) and (C.4),

we have that

(C.5) d((ANν)(x)i, (ANν)(y)i)Γ(i− j)−1d−α(xj , yj)

≤ max{λ̃, C̃(λN +N(λ
1−α

α ‖Df‖)N + (‖Df‖Lip f−1λ
αf−α

α )N

+ (λ(Lip f−1)α)N )}‖ν‖Cα
Γ
,

where C̃ = min{C, (C/λ̃)
αf−α

α ‖Df‖−1}. Since 0 < λ < 1, we can choose
0 < α∗ < αf such that for any 0 < α ≤ α∗,

‖Df‖Lip f−1λ
αf−α

α < 1,
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and, then, N large enough such that the right hand side of (C.5) is smaller
than λ̃.

It remains to prove the claims for (I) and (II).
We start by proving (I). If i = j, then, using that d(x, y)ρ−1 ≥ 1,

d((ANν)(x)i, (ANν)(y)i) ≤ 2 sup
x∈∆F

‖(ANν)(x)i‖

≤ 2K2λN‖ν‖C0 ≤ CλNρ−α‖ν‖Cα
Γ
Γ(0)dα(xj , yj),

where K = supx∈∆F
‖πs(x)‖ and C = 2K2Γ(0)−1. This proves the first part

of the claim.
If i 6= j, since F and πs are uncoupled, we have that

d((ANν)(x)i, (ANν)(y)i)

= ‖πsi (xi)DfN (f−N (x))πi(f−N (xi))(νi(F−N (x))− νi(F−N (y)))‖
≤ K2λNd(νi(F−N (x)), νi(F−N (y)))

≤ K2λN (Lip f−1)αN‖ν‖Cα
Γ
Γ(i− j)dα(xj , yj).

Finally we prove (II). Using the distance on TM induced by the embed-
ding e and the map η introduced in Section 2.1 (see also (4.4) in [FdlLM10]),
we have that

d((ANν)(x)i, (ANν)(y)i)

=|De(xi)π(xi)DfN (f−N (xi))π(f−N (xi))νi(F−N (x))

−De(yi)π(yi)DfN (f−N (yi))π(f−N (yi))νi(F−N (y))|
≤ a + b + c + d,

where

a =|(De(xi)π(xi)η(xi)−De(yi)π(yi)η(yi))

×De(xi)DfN (f−N (xi))π(f−N (xi))νi(F−N (x))|,
b =|De(yi)π(yi)η(yi)

× (De(xi)DfN (f−N (xi))η(f−N (xi))−De(yi)DfN (f−N (yi))η(f−N (yi)))

×De(f−N (xi))π(f−N (xi))νi(F−N (x))|,
c =|De(yi)π(yi)DfN (f−N (yi))η(f−N (yi))

× (De(f−N (xi))π(f−N (xi))η(f−N (xi))−De(f−N (yi))π(f−N (yi))η(f−N (yi)))

×De(f−N (xi))νi(F−N (x))|,
d =|De(yi)π(yi)DfN (f−N (yi))π(f−N (yi))η(f−N (yi))

× (De(f−N (xi))νi(F−N (x))−De(f−N (yi))νi(F−N (y)))|.

The proof of (II) can be obtained by observing that, for some constant
C > 0, depending only on M , the choice of e and η, the value of Γ(0) and f ,
and using that α < αf we have the following simple bounds (C.6) to (C.9)
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for a, b, c and d.

(C.6) a ≤

{
0 if i 6= j,

CλN‖ν‖Cα
Γ
Γ(0)dα(xj , yj) if i = j.

Since, for any chart, ‖D2(fN )‖ ≤ KN‖Df‖N−1,

(C.7) b ≤

{
0 if i 6= j,

CN‖Df‖N−1‖ν‖Cα
Γ
Γ(0)dα(xj , yj)ρ1−α if i = j.

By (B.1),

(C.8) c ≤

{
0 if i 6= j,

C‖Df‖N (Lip f−1)N‖ν‖Cα
Γ
Γ(0)dα(xj , yj)ραf−α if i = j.

And

(C.9) d ≤ CλN (Lip f−1)αN‖ν‖Cα
Γ
Γ(i− j)dα(xj , yj).

Inequalities (C.6) to (C.9) imply (II). 2

Appendix D. Proof of Lemma 4.11

We start by proving (1). To begin with, we notice that, since dC0(hΦ, Id )
is small, there exists C > 0 such that for all x ∈ ∆F , the linear maps
τ(hΦ(x), x) and τ(x, hΦ(x)) are well defined and

‖(De(x)τ(hΦ(x), x)−De(hΦ(x)))v‖ ≤ CdC0(hΦ, Id )|v|,
for all v ∈ ThΦ(x)M and

‖(De(hΦ(x))τ(x, hΦ(x))−De(x))v‖ ≤ CdC0(hΦ, Id )|v|,
for all v ∈ TxM. Hence, by the definition of AΦ and ÃF in (4.1) and (4.24),
resp., we have that, for some constant C > 0,

‖(DAΦ(0)−DÃF (0))ν‖C0 ≤ C(dC0(hΦ, Id ) + dC1(Φ, F ))‖ν‖C0 .

Now we proceed to compute γα((DAΦ − DÃF )(0)ν). To do so, we will
use some auxiliary functions provided by the following two lemmas.

Lemma D.1. Let X ⊂ M. There exist C > 0 and C̃ > 0 such that for
any h ∈ CαΓ (X,M) with dCα

Γ
(h, Id ) < C̃ρ0, j ∈ Zd and x, y ∈ X such that

xk 6= yk, for k 6= j, there exists a C∞ map B : [0, 1]× [0, 1] →M such that,
for any i ∈ Zd, and any chart (Uφ, φ) with B(s, t) ∈ Uφ,

(1) B(0, 0) = x, B(0, 1) = y, B(1, 0) = h(x) and B(1, 1) = h(y),
(2) | ddtB(s, t)i| ≤ C(1 + γα(h))Γ(i− j)dα(xj , yj),
(3) | ddsB(s, t)i| ≤ CdC0(h, Id ),
(4) | d2dtds(φ ◦B)(s, t)i| ≤ CdCα

Γ
(h, Id )Γ(i− j)dα(xj , yj).

Proof. Let h ∈ CαΓ (X,M), j ∈ Zd and x, y ∈ X such that xi = yi, for i 6= j.
By Lemma A.2 in [FdlLM10], there exists a C∞ curve βp : [0, 1] →M such
that βp(0) = h(x), βp(1) = h(y) and |β̇pi (t)| ≤ C1γα(h)Γ(i− j)dα(xj , yj), for
some constant C1 independent of the choice of h, j and x, y.

As a first step, we claim that we can choose two coordinate charts, (Uφ, φ)
and (Uψ, ψ), such that x, h(x) ∈ Uφ, y, h(y) ∈ Uψ, Uφ = int

∏
i Uφi

, Uψ =
int

∏
i Uψi

, Uφi
= Uψi

, for i 6= j and βp(t)i ∈ Uφi
for i 6= j, t ∈ [0, 1].
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If, furthermore, d(xj , yj) < ρ0, where 2ρ0 is the Lebesgue number of the
family (Uφ)(Uφ,φ)∈FM

, first introduced in Section 4.1 of [FdlLM10], then it
is possible to assume that Uφ = Uψ and βp(t)j ∈ Uφj

, for t ∈ [0, 1].
Indeed, associated to x = (xi), let (Uφi

, φi) ∈ FM be a collection of
charts in the chosen atlas on M (see Section 4.1 in [FdlLM10]) such that
B2ρ0(xi) ⊂ Uφi

. Let Uφ = int
∏
i Uφi

and φ = (φi). We have that (Uφ, φ) ∈
FM, and x ∈ Uφ (since B2ρ0(x) ⊂

∏
iB2ρ0(xi) ⊂

∏
i Uφi

, we have that
B2ρ0(x) = intB2ρ0(x) ⊂ int

∏
iB2ρ0(xi) ⊂ int

∏
i Uφi

= Uφ). Moreover,
taking 0 < C̃ < 1, since dCα

Γ
(Id , h) < C̃ρ0 < ρ0, we have that h(x) ∈ Uφ.

Notice that, since xi = yi, for i 6= j, we have that h(y)i ∈ Bρ0(h(y)i) ⊂
B2ρ0(xi) ⊂ Uφi

, for i 6= j. Let (Uψj
, ψj) be such that B2ρ0(yj) ⊂ Uψj

,
and (Uψi

, ψi) = (Uφi
, φi), for i 6= j. Then, taking Uψ = int

∏
i Uψi

and
ψ = (ψi), (Uψ, ψ) ∈ FM and y, h(y) ∈ Uψ. Also, since d(xi, β

p
i (t)) ≤

d(xi, h(x)i) + d(h(x)i, β
p
i (t)) and, for some constant Ĉ > 0 depending only

on M and the embedding e, for i 6= j,

d(h(x)i, β
p
i (t)) ≤ d(h(x)i, h(y)i)

≤ Ĉ‖e ◦ h(x)i − e ◦ h(y)i‖

= Ĉ‖e ◦ h(x)i − e(xi)− (e ◦ h(y)i − e(yi))‖

≤ ĈdCα
Γ
(Id , h)Γ(i− j)dα(xj , yj),

we have that d(xi, β
p
i (t)) < ρ0, if C̃ < (1+Ĉ supi Γ(i−j) supxj ,yj∈M dα(xj , yj))−1.

Finally, if d(xj , yj) < ρ0, we simply take Uφj
such that B2ρ0(xj) ∈ Uφj

, and,
since we are dealing with a single coordinate, the claim on the existence of
the two charts follows.

Now we proceed to define the map B. We start by assuming d(xj , yj) ≥
ρ0. Let βpφ = φ◦βp and βpψ = ψ ◦βp be the expressions of βp in these charts.
By the construction of the charts, βpφ,i = βpψ,i, for i 6= j. Let 0 < t1 < 1/2
such that βpj (t) ∈ Uφj

for all t ∈ [0, t1] and βpj (t) ∈ Uψj
for all t ∈ [1− t1, 1].

Let χ : [0, 1] → R be a C∞ function such that 0 ≤ χ(t) ≤ 1 for all t, χ(0) = 1,
χ(1) = 1 and χ(t) = 0 for t ∈ [t1, 1 − t1]. Let β̃pφ,j : [0, t1] → φj(Uφ,j) and
β̃pψ,j : [1− t1, 1] → ψj(Uψ,j) be the curves defined by

β̃pφ,j(t) = (φj(xj)− φj(hj(x)))χ(t) + βpφ,j(t)

β̃pψ,j(t) = (ψj(yj)− ψj(hj(y)))χ(t) + βpψ,j(t),

resp. We define, for 0 ≤ s ≤ 1,

B(s, t)j =


φ−1
j ((1− s)β̃pφ,j(t) + sβpφ,j(t)), t ∈ [0, t1),
βpj (t), t ∈ [t1, 1− t1],
ψ−1
j ((1− s)β̃pψ,j(t) + sβpψ,j(t)), t ∈ (1− t1, 1],

and, for i 6= j,

B(s, t)i = φ−1
i ((1− s)φi(xi) + sβpφ,i(t)).
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Now we check that the function B just defined satisfies (1), (2), (3)
and (4). By construction, B is C∞. Moreover, for i 6= j, we have that

| d
dt
B(s, t)i| = |s|| d

dt
βpi (t)| ≤ C1γα(h)Γ(k − j)dα(xj , yj).

Also, for some C > 1,

| d
ds
B(s, t)i| = |βpφ,i(t)− φi(xi)|

≤ |βpφ,i(t)− φi ◦ hi(x)|+ |φi ◦ hi(x)− φi(xi)|
≤ C(|φi ◦ hi(y)− φi ◦ hi(x)|+ dC0(Id , h))

≤ C(|φi ◦ hi(y)− φi(yi)|+ |φi(xi)− φi ◦ hi(x)|) + dC0(Id , h)

≤ 3CdC0(Id , h).

Finally, for i 6= j, using the same argument,

| d
2

dtds
(φ ◦B)(s, t)i| ≤ C| d

dt
βpi (t)| ≤ dCα

Γ
(h, Id )Γ(i− j)dα(xj , yj).

Notice that in these bounds we have not used that d(xj , yj) ≥ ρ0, assumption
that only plays a role when i = j.

For i = j we have that, for t ∈ [0, t1), since ρ−α0 dα(xj , yj) > 1,

| d
dt
B(s, t)j | = |(1− s)(φj(xj)− φj(hj(x)))χ̇(t) + β̇pφ,j(t)|

≤ sup
t
|χ̇(t)|dC0(Id , h) + γα(h)Γ(0)dα(xj , yj)

≤ (C̃ρ1−α
0 sup

t
|χ̇(t)|Γ(0)−1 + γα(h))Γ(0)dα(xj , yj).

Also, for some C > 0 depending only on M ,

| d
ds
B(s, t)j | = |(φj(xj)− φj(hj(x))| ≤ CdCα

Γ
(h, Id )

and

| d
2

dtds
(φ ◦B)(s, t)j | = |(φj(xj)− φj(hj(x)))χ̇(t)|

≤ CdC0(h, Id )

≤ Cρ−α0 dCα
Γ
(h, Id )Γ(0)−1Γ(0)dα(xj , yj).

The bounds for t ∈ [t1, 1 − t1] and t ∈ (1 − t1, 1] are obtained in the same
way.

Now we assume d(xj , yj) < ρ0. For i 6= j, we define B(s, t)i as in the case
d(xj , yj) ≥ ρ0. The bounds of their derivatives are already computed. For
i = j, since xj , yj , hj(x), hj(y), β

p
j (t) ∈ Uφj

, we define

B(s, t)j = φ−1
j ((1−s)[(1−t)(φj(xj)−φj(hj(x)))+t(φj(yj)−φj(hj(y)))]+sβpφ,j(t)).

Then we have that

| d
dt
B(s, t)j | ≤ 2ĈdCα

Γ
(Id , h)+|β̇pj (t)| ≤ (2Ĉρ1−α

0 Γ(0)−1+γα(h))Γ(0)dα(xj , yj).

Also,

| d
ds
B(s, t)j | ≤ 2ĈdCα

Γ
(Id , h)
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and, finally

| d
2

dtds
(φ ◦B)(s, t)j | ≤ 2ĈdCα

Γ
(Id , h).

2

Lemma D.2. Let F : M→M be an uncoupled Cr diffeomorphism. There
exist C > 0 and ε0 > 0 such that for any Φ : M→M, CrΓ diffeomorphism
such that dCr

Γ
(F,Φ) < ε0 there exists a map GF,Φ : [0, 1] ×M → M such

that GF,Φ(0, x) = F (x), GF,Φ(1, x) = Φ(x), and, for any (s, x) ∈ [0, 1]×M
and any (Uφ, φ) such that GF,Φ(s, x) ∈ Uφ,

‖ ∂
∂s
φ ◦GF,Φ(s, x)‖ ≤ CdCr

Γ
(F,Φ),(D.1)

‖ ∂
∂x
φ ◦GF,Φ(s, x)‖LΓ

≤ C‖F‖C1
Γ
,(D.2)

‖ ∂2

∂s∂x
φ ◦GF,Φ(s, x)‖LΓ

≤ CdCr
Γ
(F,Φ),(D.3)

Proof. We recall the definitions of exp : TM→M×M and exp−1 : M×
M→ TM. We define

(D.4) G(s, x) = π2 ◦ exp(s exp−1(F (x),Φ(x))).

The proof consists of checking that G satisfies all the properties claimed by
the Lemma, which follow from the chain rule, the algebra properties of CrΓ
functions and the fact that dCr

Γ
(F,Φ) is small. 2

We will also need the following technical result.

Lemma D.3. Let F : M→M a Cr uncoupled diffeomorphism. There ex-
ists C > 0 and ε0 such that if Φ : M→M is a CrΓ uncoupled diffeomorphism
with dCr

Γ
(F,Φ) < ε0, then Φ−1 is also CrΓ and dCr

Γ
(F−1,Φ−1) < CdCr

Γ
(F,Φ).

Proof. Since F is uncoupled, so is F−1. In particular, since F is Cr, both
F and F−1 are CrΓ. When expressed using the charts AF and AId , where

AF (Φ)(x) = exp−1(x,Φ ◦ F−1(x))

(see Section 5.6 in [FdlLM10] for more details on the subject), the map
Φ 7→ Φ ◦ F−1 becomes ν → ν ◦ F−1, which is linear and by Lemma 2.17
in [FdlLM10], is continuous from the space of CrΓ sections to itself, with
bounded inverse. As a consequence, we can assume that Φ is CrΓ close to
the identity. By this reason, we only need to deal with the decay properties
of Φ−1.

Since, by hypothesis, Φ is a diffeomorphism, we only need to check that
Φ−1 is a CrΓ function. But, for any chart φ, DΦ−1

φ = (DΦφ)−1 ◦ Φ−1
φ and,

since DΦφ = Id + ν, with ‖ν‖LΓ
< ε0, we have that, if ε0 < 1, the series

DΦ−1
φ =

∑
k≥0(−1)kνk converges to an element of LΓ with norm bounded

by Γ(0)−1 − ε0(1 − ε0)−1. Then, the rest of the derivatives of Φ−1 are
obtained directly by applying the chain rule. The last statement follows
from DΦ−1 − Id =

∑
k≥1(−1)kνk. 2



36 E. FONTICH, R. DE LA LLAVE, AND P. MARTÍN

Now we are in a position to compute γα((DAΦ − DÃF )(0)ν). Given
j ∈ Zd, x, y ∈ ∆F with xi = yi for i 6= j, let B be the function given by
Lemma D.1. We also introduce

G(s, t) =
∂GF,Φ
∂x

(s,GF−1,Φ−1(s,B(s, t))),

which, by Lemmas D.2 and D.3 is well defined. Denoting ∆AF,Φ = (DAΦ−
DÃF )(0), we have that

‖De(hΦ(y))∆AF,Φν(y)−De(hΦ(x))∆AF,Φν(x)‖

=
∫ 1

0

d

dt
[De(B(1, t))

∫ 1

0

d

ds
(τ(B(s, t), B(1, t))G(s, t)

τ(Φ−1 ◦B(1, t), GF−1,Φ−1(s,B(s, t))) ds] dt

Taking charts and derivatives above, and applying the bounds in Lem-
mas D.1, D.2 and D.3, the bound for γα((DAΦ −DÃF )(0)ν) follows.

Appendix E. Construction of sections

This Appendix is devoted to prove Lemma 4.8. We start with the case of a
finite-dimensional manifold and we will continue by lifting the construction
to the lattice M. The proof is divided in several technical lemmas.

We define the space of Cα sections covering the identity in M by

(E.1) SαId (M) = {ν ∈ Cα(M,TM) | p ◦ ν = IdM , ‖ν‖Cα <∞},

where p : TM →M is the projection and

(E.2) ‖ν‖Cα = max{‖ν‖C0 , sup
x,y∈M,x 6=y

‖De(x)ν(x)−De(y)ν(y)‖d−α(x, y)}.

With this norm, SαId (M,TM) is a Banach space.
Given an open set U ⊂ Rn, a map ξ ∈ Cr(U ×M,TM) such that p ◦

ξ(u, x) = x, and 0 ≤ k ≤ r, we introduce

(E.3) ‖ξ‖Ck = sup
(Uφ,φ)∈FM

‖ξφ‖Ck ,

where ξφ(u, x) = Tφ ◦ ξ(u, φ−1(x)) is the expression of ξ in the chart φ.

Lemma E.1. Let U ⊂ Rn be an open convex set and ξ ∈ C2(U ×M,TM)
a map such that p ◦ ξ(u, x) = x. Assume that ‖ξ‖C2 < ∞. Then, the map
ξ̄ : U → SαId (M) defined by ξ̄(u)(x) = ξ(u, x) is well defined. There exists
C > 0 such that

(E.4) ‖ξ(u, ·)‖Cα ≤ C‖ξ‖C1

and

(E.5) Lip(ξ̄) ≤ C‖Duξ‖C1 .

Furthermore, if ξ ∈ C3 and ‖ξ‖C3 < ∞, ξ̄ is C1 and ‖ξ̄‖C1 ≤ C‖Duξ‖C1,
and, if ξ ∈ C∞, ξ̄ is C∞.



HYPERBOLIC SETS ON LATTICES 37

Proof. Let x, x̃ ∈M , and let β : [0, 1] →M be a minimizing geodesic joining
them, that is, β(0) = x̃, β(1) = x, |β̇(t)| = d(x, x̃). Then, since

(E.6) |De(x)ξ(u, x)−De(x̃)ξ(u, x̃)| =
∣∣∣ ∫ 1

0

d

dt

(
De(β(t))ξ(u, β(t))

)
dt

∣∣∣,
for any fixed t ∈ (0, 1), we consider a chart (Uφ, φ) ∈ FM such that β(t) ∈
Uφ and, following the notation introduced in A.1 in [FdlLM10], using the
expressions eφ, βφ and ξφ of e, β and ξ in this chart and the corresponding
one of TM , we can compute

(E.7) | d
dt

(De(β(t))ξ(u, β(t)))|

=| d
dt

(Deφ(βφ(t))ξφ(u, βφ(t)))|

≤|D2eφ(βφ(t))β̇φ(t)ξφ(u, βφ(t))|+ |Deφ(βφ(t))D2ξφ(u, βφ(t))β̇φ(t)|
≤(‖eφ‖C2‖ξφ‖C0 + ‖eφ‖C1‖ξφ‖C1)d(x, y)

≤C‖ξ‖C1dα(x, y),

where C = supφ ‖eφ‖C1 supx,y∈M d1−α(x, y). Inequality (E.4) follows from
inserting inequality (E.7) into (E.6).

Now we prove inequality (E.5). Let u, ũ ∈ U . We have that

ξ(u, x)− ξ(ũ, x) = η(u, ũ, x)(u− ũ),

where

(E.8) η(u, ũ, x) =
∫ 1

0
Duξ(ũ+ t(u− ũ), x) dt.

Hence, applying inequality (E.4) to η we obtain

‖ξ̄(u)− ξ̄(ũ)‖Cα ≤ ‖η(u, ũ, ·)‖Cα |u− ũ|
≤ ‖Duξ‖C1 |u− ũ|.

Now we assume that ξ ∈ C3. By Taylor’s formula, we have that

ξ̄(u+ ũ)(x) = ξ(u, x) +Duξ(u, x)ũ+R(u, ũ, x)ũ,

where

R(u, ũ, x) =
∫ 1

0
(Duξ(u+ tũ, x)−Duξ(u, x)) dt.

By (E.5), the maps u 7→ Duξ(u, ·) and (u, ũ) 7→ R(u, ũ, ·) to L(SαId (M),SαId (M))
are continuous. The Converse Taylor’s Theorem yields the claim.

For the C∞ case, we use the same argument, developing by Taylor up to
order k, for any k. 2

Lemma E.2. There exists a map ω : TM → SαId (M) such that

ω(v)(x) = v, for all v ∈ TxM ,

Moreover, ω is C∞ and linear on each fiber.
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Proof. Let {νφ}{(Uφ,φ)∈FM} be a C∞ partition of unity associated to the
atlas FM of M . We recall that FM was introduced in Section 2.1 (see also
Section 4.1 in [FdlLM10]). We define ω : TM → SαId (M,TM) by

(E.9) ω(v)(x̃) =
∑

(Uφ,φ)∈FM

ν
1/2
φ (x̃)ν1/2

φ (x)Dφ(x̃)−1Dφ(x)v, v ∈ TxM.

It is immediate from the definition that, for all x ∈M and for all v ∈ TxM ,
ω(v) is, in fact, a C∞ section covering the identity, it is linear on each fiber
and ω(v)(x) = v, for all v ∈ TxM . To check the differentiability of the map
ω, we choose a coordinate chart (TUψ, Tψ) of TM . The expression of ω in
this chart is

ωψ(y, w)(x̃) =
∑

(Uφ,φ)∈FM

ν
1/2
φ (x̃)ν1/2

φ ◦ ψ−1(y)Dφ(x̃)−1D(φ ◦ ψ−1)(y)w,

for (y, w) ∈ Tψ(TUψ) and x̃ ∈ M , and depends C∞ on (y, w, x̃). Applying
the last part of Lemma E.1 to ωψ, the claim follows. 2

Now we lift the above result in the finite-dimensional manifold M to the
lattice M.

Lemma E.3. Let ω : TM → SαId (M) be the map given by Lemma E.2.
Then the map Ω : TM→ `∞(SαId (M)) defined by

Ω(v)i(x̃) = ω(vi)(x̃i), v ∈ TxM, x̃ ∈M

is C∞ and linear on each fiber.

Proof. Given any chart Tψ of TM, we have that for any (x, v) ∈ Tψ(TUψ),
x̃ ∈M,

Ωψ,i(x, v)(x̃) = ω(xi, vi)(x̃i).

We can apply Corollary 2.3 in [FdlLM10], and the result follows. 2

Lemma E.4. The map ı : `∞(SαId (M)) → SαΓ,Id (M) defined by

ı(ν)(x)i = νi(xi)

is linear and bounded.

Proof. Linearity follows immediately from the definition. Since ı(ν) is un-
coupled, we have that

‖ı(ν)‖Sα
Γ
≤ Γ(0)−1 sup

i∈Zd

‖νi‖Cα .

2

Proof of Lemma 4.8. Using the notations and results given by Lemmas 4.4,
4.5, E.3 and E.4, the map

Ωs
hΦ

= πs ◦ τhΦ ◦ ı ◦ Ω|Es
F

satisfies all the claimed properties. 2
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