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Abstract. We discuss approximations of a given order of accuracy to first and higher deriva-
tives on a structured grid in N dimensions using a basis of stencils. The basis of stencils follows
from a truncated Taylor series expansion of the nodal values when the extent and the consistency of
the approximation are imposed, together with the order of the error. The approximations include
points which do not lie on grid lines passing through the point of discretization. Examples of such
discretizations are diagonal discretizations, and a generalization of the formulation of Hildebrand.
The basis of stencils is a convenient tool for generating and optimizing discretizations. The opti-
mization is for the truncation error, or for stability and time step. In problems with a preferential
direction such as the advection equation, the approximations are directional discretizations. The
reduction of directional components of the truncation error leads to streamline approximations.
Significant error reductions are possible, but they require a very regular grid. The stability and the
time step in three dimensions increases threefold. The optimizations also apply to unstructured
grids, but the computational advantage in three dimensions is marginal. The limiting functions for
the grid-based derivatives are coupled, which complicates their solution.
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1. Introduction.

The subject of this paper is approximations to first and higher derivatives on a struc-
tured grid in N dimensions. The classical one-dimensional grid-aligned approximations
restrict the nodes to the grid coordinate lines passing through the point where the approx-
imation of the derivative is needed. The new approximations include nodes in the stencil
beyond the grid coordinate lines, which improves accuracy and stability. Discretizations
based on the same ideas are then developed for unstructured grids.

The search for improved discretizations has been going on for at least thirty years,

[1,
2,
3,
4,
5,
6]

see e.g. [1]–[6], and references therein. These efforts for the discretization of the advection
equation are on structured and unstructured grids in the Finite Difference (FD), the Finite
Volume (FV), the Finite Element (FE), and the Residual Distribution (RD) formulation.

The Flux Vector Distribution (FVD) approach is described in [7], with discretizations
derived on unstructured and structured grids. Only distribution with the N scheme has
been considered. This is an unnecessary restriction, and leads to inconsistent approxima-
tions on unstructured grids consisting of tetrahedra. The diagonal central second order
discretization which has been found is an eye opener. Until now, it is tacitly assumed
that only upwind discretizations can benefit from information supplied by the advection
direction.

We start with a presentation of diagonal discretizations for the first derivative of any
order of accuracy. Diagonal discretizations can also be obtained with a generalization
of the formulation of Hildebrand. They form a class of one-dimensional approximations
which in a natural way incorporate points which lie on diagonals of the grid. The theory of
limiters is extended to directional discretizations. The limiting functions for the grid-based
derivatives are coupled, which complicates their solution.
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A more general approach for an approximation is to consider a cluster of grid points
going beyond the grid lines or diagonals passing through the point of approximation.
The nodal values are developed in a truncated Taylor series expansion with respect to
the point of discretization. The conditions of consistency of the approximation and the
order of the error restrict the desired approximation to a basis of stencils. The basis of
stencils represent degrees of freedom in the choice of the approximation of a derivative.
With a basis of stencils, a systematic exploration of an approximation becomes possible.
Various properties of the approximation are now easily accessible for optimization such as
accuracy, stability, and the time step. The purpose is that the optimizations will lead to
the use of coarser grids, or result in faster convergence, which translates into a reduction
of the computational cost for the same quantitative result.

In problems with a preferential direction such as the advection equation, the approxi-
mations are directional discretizations. This application of a basis of stencils is the major
subject of this paper. For optimization of the approximation, the error term is expressed in
an axis system tied to the advection direction. We can obtain first and higher directional
derivatives, both pure and mixed. The stencil of the approximation follows the flow direc-
tion, like the classical upwind discretizations, but now also for some central discretizations.
An important constraint is continuity of the discretization when a variation of the flow
direction triggers a change of stencil.

For the steady state solution of an advection equation, error terms which contain a
streamline component are unimportant. The degrees of freedom of the basis of stencils can
be used in some cases to eliminate the remaining low-order error terms which are normal to
the streamline. The result is a streamline approximation to the derivative with an increased
order of accuracy. This has been proposed by Sidilkover [8] for advection problems, but the
approach has more general applications. For some central approximations the improvement
is two orders of accuracy, with the additional advantage that for systems of equations
no decomposition or wave model is needed. Following established practice, for unsteady
problems we apply this method in a space of one lower dimension, and we interpret the
suppressed space coordinate as the time axis.

However, this streamline error reduction is based on perfectly regular grids, and in
practical applications the gains are limited, except for the FD formulation. Mapping to a
uniform grid is possible, but only partly restores accuracy on a fairly smooth grid.

For adirectional problems, such as e.g. an approximation involving a Laplacian, the
grid-based representation can be used for the error reduction. This has been exploited by
Dahlquist and Bjork [9]. The error reductions can be important.

The analysis and optimization of the approximation can also take place in the Fourier
domain. We consider stability properties and the time step, which are closely related to
the propagation properties of waves. For an advection equation, the time step restriction
is improved from ∆t ∼ (

∑
|ai|)−1 to ∆t ∼ (max |ai|)−1, where ai are the velocity compo-

nents. In three dimensions, this improves the stability threefold. The gain in time step for
both steady and unsteady problems is less sensitive to irregular grids. The amplification
of error components can be reduced for the errors with high frequencies, which improves
convergence when a multi-grid solver is used.

Optimization of the truncation error can entail improvement in the Fourier domain
and vice versa. For a given application, a balance has to be struck between both types of
optimization.
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2. Directional discretizations.

We start by giving an expression of diagonal discretizations of the first derivative at
point P . This point is situated at node (i, j, k, . . . ) on a structured grid in N dimensions
with basis G(~x, ~y, ~z, . . . ) and grid spacings ∆x, ∆y, ∆z, . . . . We wish to approximate
a first derivative of u in a preferential direction. The preferential direction is e.g. the
advection direction of a flow, ~a = (ax, ay, az, . . . )T . Therefore, we define a directional
local basis B(~e1, ~e2, ~e3, . . . ) of curvilinear coordinates which has the unit vector ~e1 along
the preferential direction, i.e. ~e1 = ~a/a, where a is the magnitude of the velocity. In an
advection equation, we encounter the stream-wise derivative ~a · ~∇u = a~e1 · ~∇u = a∂u/∂e1.
The approximation of the derivative ∂u/∂e1 is expressed in grid-based derivatives ux, uy,
uz, . . . . The purpose is to choose each of the derivatives ux, uy, uz, . . . in such a way that
the error in the discretization of the combination ∂u/∂e1 is reduced for certain advection
directions.

2.1. A general diagonal discretization.

In the one-dimensional grid-aligned approximation, the error is least when the flow
is along a grid line. The reason is that the approximation is then based on nodes along
a streamline. This eliminates the presence of cross-wind error terms. The idea behind
diagonal discretizations is to extend this property for flow along diagonals of the grid. We
choose the following combination of ux, uy, uz, . . . for the approximation of ∂u/∂e1.

Consider the case that the flow is along the x-axis, ~e1 = (1, 0, 0, . . . )T . Since ∂u/∂e1 =
~e1 · ~∇u = ux we look for a discretization of ux which only uses nodes on the x-axis,

(ux)i,j,k,... =
1

∆x

{
a−mui−m,j,k,... + a−m+1ui−m+1,j,k,... + · · ·

+ an−1ui+n−1,j,k,... + anui+n,j,k,...

}
. (2.1)

Equation (2.1) represents a general approximation of a first derivative taking a stencil on
the x-axis with an extent of (i−m, . . . , i+n) using coefficients a−m, . . . , an. This is shown
in Fig. 2.1, where the nodes with their respective weights are indicated, omitting the part
j, k, . . . in the nodal indices. The position of point P is at node i as indicated in this, and
in the following figures.

i

i i+1i-1 i+ni+n-1i-m+1i-m
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-m+1

a
-m

... ...

Figure 2.1. The nodes on the x-axis involved in the derivative ux of (2.1) with their respective
weights.

Next, consider the case that the flow is along the diagonal in the x-y plane. This means
that ~e1 = (∆x,∆y, 0, . . . )T /∆d1, with ∆d2

1 = ∆x2 + ∆y2, and ~e1 · ~∇u = (ux∆x+ uy∆y)/∆d1.
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We take now a discretization which only uses nodes on that diagonal,

ux∆x+ uy∆y
∆d1

=
1

∆d1

{
a−mui−m,j−m,k,... + a−m+1ui−m+1,j−m+1,k,... + · · ·

+ an−1ui+n−1,j+n−1,k,... + anui+n,j+n,k,...

}
. (2.2)

The discretization uses for the points on the diagonal the same coefficients as in (2.1).
This is shown in Fig. 2.2, where the nodes with their respective weights are indicated,
omitting the part k, . . . in the nodal indices.
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Figure 2.2. The nodes in the x-y-plane along the diagonal involved in the derivative of (2.2) with
their respective weights.

Since ux is defined by (2.1), a subtraction gives

(uy)i,j,k,... =
1

∆y

{
a−m(ui−m,j−m,k,... − ui−m,j,k,... )

+ a−m+1(ui−m+1,j−m+1,k,... − ui−m+1,j,k,...)
+ · · ·
+ an−1(ui+n−1,j+n−1,k,... − ui+n−1,j,k,... )
+ an(ui+n,j+n,k,... − ui+n,j,k,... )

}
. (2.3)

This derivative is schematically indicated in Fig. 2.3, where the coefficient an is the weight
which is applied to the difference of the points i + n, j + n, k, . . . and i + n, j, k, . . . , and
so on.

This procedure can be repeated for the body diagonal in x-y-z space, which gives

(uz)i,j,k,... =
1

∆z

{
a−m(ui−m,j−m,k−m,... − ui−m,j−m,k,... )

+ a−m+1(ui−m+1,j−m+1,k−m+1,... − ui−m+1,j−m+1,k,...)
+ · · ·
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Figure 2.3. The nodes in the x-y-plane involved in the uy derivative of (2.3), which is the difference
between the value on the diagonal and the x-axis, multiplied by their respective weights.

+ an−1(ui+n−1,j+n−1,k+n−1,... − ui+n−1,j+n−1,k,... )
+ an(ui+n,j+n,k+n,... − ui+n,j+n,k,... )

}
, (2.4)

and so on for each additional dimension.

The effect of this choice of stencils is that the approximation becomes one-dimensional
when the flow is aligned with the x-axis or with one of the diagonals mentioned. The error
term contains then only the stream-wise derivatives along ~e1, while the other derivatives
are absent. This reduces the error in the approximation in a significant way compared to
one-dimensional discretizations along grid lines only. Later on we will show that diagonal
discretizations are applied with the optimal time step. Note that the node of discretization
(i, j, k, . . . ) appears only in ux.

This discretization can be used for any flow direction, but its principal range of appli-
cation is ax/∆x ≥ ay/∆y ≥ az/∆z ≥ . . . ≥ 0, and permutations thereof for other directions.

It is possible to create discretizations which are one-dimensional in other directions,
e.g. the direction (2, 1)T in the x-y-plane. The condition is now that ai = 0 for i odd, since
we want to use the same coefficients ai both on the x-axis and on the nodes defined by
the direction (2, 1)T . This extra condition will have the effect that it lowers the maximum
order of accuracy which can be obtained on a stencil of a given extent.

The diagonal discretization has the peculiarity that the stencil contains only points
on grid lines and on diagonals, but not in between. The effect of inclusion of other points
in the stencil will be discussed in §4. It is possible to construct approximations with the
diagonal property which contain points outside diagonals and grid lines.

In the following, we will give some examples of diagonal discretizations, where again
the position of point P is emphasized in the drawings.
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2.2. A first order upwind diagonal discretization.
A first order diagonal upwind discretization in N dimensions is given by

(ux)i,j,k,... =
1

∆x
(ui,j,k,... − ui−1,j,k,...) ,

(uy)i,j,k,... =
1

∆y
(ui−1,j,k,... − ui−1,j−1,k,...) ,

(uz)i,j,k,... =
1

∆z
(ui−1,j−1,k,... − ui−1,j−1,k−1,...) ,

... (2.5)

This discretization is a special case of (2.1), (2.3), and (2.4), with m = 1, n = 0, a−1 = −1,
and a0 = 1. The stencils for this discretization in two dimensions are shown in Fig. 2.4,
and in three dimensions in Fig. 2.5 for the case ax/∆x ≥ ay/∆y ≥ az/∆z ≥ · · · ≥ 0.

∆xux = ∆y uy =

1-1
1

-1

Figure 2.4. The stencils for the derivatives ux and uy of (2.5) in two dimensions.

∆xux = ∆y uy = ∆z uz =

x

z

y
1

-1

-1
-1 1

1

Figure 2.5. The stencils for the derivatives ux, uy, and uz of (2.5) in three dimensions.

This discretization has a history of some twenty years [4, 8] and is nowadays called
the N scheme. Of the above class of discretizations, it is the only one which is currently
known. An analysis of this discretization is presented in [10].

2.3. A second order central diagonal discretization.
A second order diagonal central discretization in N dimensions is given by

(ux)i,j,k,... =
1

2∆x
(ui+1,j,k,... − ui−1,j,k,...) ,

(uy)i,j,k,... =
1

2∆y
(ui+1,j+1,k,... − ui+1,j,k,... + ui−1,j,k,... − ui−1,j−1,k,...) ,

(uz)i,j,k,... =
1

2∆z
(ui+1,j+1,k+1,... − ui+1,j+1,k,... + ui−1,j−1,k,... − ui−1,j−1,k−1,...) ,

... (2.6)

This discretization is a special case of (2.1), (2.3), and (2.4), with m = n = 1, a−1 = −1/2 ,
a0 = 0, and a1 = 1/2 . This discretization has been derived in two dimensions in [7]. It is
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the average of two first order upwind discretizations, (2.5), for advection speeds ~a and −~a.
The stencils for this discretization in two dimensions are shown in Fig. 2.6, and in three
dimensions in Fig. 2.7.

∆xux = ∆y uy =
1/2-1/2

1/2

1/2

-1/2

-1/2

Figure 2.6. The stencils for the derivatives ux and uy of (2.6) in two dimensions.

∆xux = ∆y uy = ∆z uz =

1/2 x

z

-1/2 1/2

-1/2

1/2

-1/2

y
1/2

-1/2 1/2

-1/2

Figure 2.7. The stencils for the derivatives ux, uy, and uz of (2.6) in three dimensions.

2.4. A second order upwind diagonal discretization.

A second order diagonal upwind discretization is given by

(ux)i,j,k,... =
1

∆x

(
3
2ui,j,k,... − 2ui−1,j,k,... + 1

2ui−2,j,k,...

)
,

(uy)i,j,k,... =
1

∆y

(
− 2(ui−1,j−1,k,... − ui−1,j,k,...) + 1

2(ui−2,j−2,k,... − ui−2,j,k,...)
)
,

(uz)i,j,k,... =
1

∆z

(
− 2(ui−1,j−1,k−1,... − ui−1,j−1,k,...) + 1

2(ui−2,j−2,k−2,... − ui−2,j−2,k,...)
)
,

... (2.7)

This discretization is a special case of (2.1), (2.3), and (2.4), with m = 2, n = 0, a−2 = 1/2 ,
a−1 = −2, and a0 = 3/2 . The stencils for this discretization in two dimensions are shown
in Fig. 2.8, and in three dimensions in Fig. 2.9.

∆xux = ∆y uy =

3/2 -1/2-21/2

1/2

-2

2

Figure 2.8. The stencils for the derivatives ux and uy of (2.7) in two dimensions.
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∆xux = ∆y uy = ∆z uz =

3/2

x

z

1/2 -1/2
-2

-2

2y 2
1/2 -1/2

1/2

-2

Figure 2.9. The stencils for the derivatives ux, uy, and uz of (2.7) in three dimensions.

2.5. A third order upwind biased diagonal discretization.

A third order diagonal upwind biased discretization is given by

(ux)i,j,k,... =
1

6∆x

(
ui−2,j,k,... − 6ui−1,j,k,... + 3ui,j,k,... + 2ui+1,j,k,...

)
,

(uy)i,j,k,... =
1

6∆y

(
ui−2,j−2,k,... − ui−2,j,k,...

−6(ui−1,j−1,k,... − ui−1,j,k,...)
+3(ui,j,k,... − ui,j,k,...)
+2(ui+1,j+1,k,... − ui+1,j,k,...)

)
,

(uz)i,j,k,... =
1

6∆z

(
ui−2,j−2,k−2,... − ui−2,j−2,k,...

−6(ui−1,j−1,k−1,... − ui−1,j−1,k,...)
+3(ui,j,k,... − ui,j,k,...)
+2(ui+1,j+1,k+1,... − ui+1,j+1,k,...)

)
,

... (2.8)

This discretization is a special case of (2.1), (2.3), and (2.4), with m = 2, n = 1, a−2 = 1/6 ,
a−1 = −1, a0 = 1/2, and a1 = 1/3 . The stencils for this discretization in two dimensions
are shown in Fig. 2.10.

6∆xux = 6∆y uy =

3-61 -2-12

2

1

6

-6

Figure 2.10. The stencils for the derivatives ux and uy of (2.8) in two dimensions.
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2.6. A fourth order central diagonal discretization.

(ux)i,j,k,... =
1

12∆x

(
ui−2,j,k,... − 8ui−1,j,k,... + 8ui+1,j,k,... − ui+2,j,k,...

)
,

(uy)i,j,k,... =
1

12∆y

(
ui−2,j−2,k,... − ui−2,j,k,...

−8(ui−1,j−1,k,... − ui−1,j,k,...)
+8(ui+1,j+1,k,... − ui+1,j,k,...)
−(ui+2,j+2,k,... − ui+2,j,k,...)

)
,

(uz)i,j,k,... =
1

12∆z

(
ui−2,j−2,k−2,... − ui−2,j−2,k,...

−8(ui−1,j−1,k−1,... − ui−1,j−1,k,...)
+8(ui+1,j+1,k+1,... − ui+1,j+1,k,...)
−(ui+2,j+2,k+2,... − ui+2,j+2,k,...)

)
,

... (2.9)

This discretization is a special case of (2.1), (2.3), and (2.4), with m = n = 2, a−2 = 1/12 ,
a−1 = −8/12 , a0 = 0, a1 = 8/12, and a2 = −1/12 . The stencils for this discretization in
two dimensions are shown in Fig. 2.11.

12∆xux = 12∆y uy =

8-81 1-1-1

-1

1

8

8

-8

-8

Figure 2.11. The stencils for the derivatives ux and uy of (2.9) in two dimensions.

2.7. Other diagonal discretizations.

From these few examples, the general idea will be clear. The formulation allows to
extend a one-dimensional discretization to a diagonal directional discretization. The list of
possible candidates is long, which is why we have limited ourselves to those few examples.
The discretizations can be used in any scheme.

Further on, we will analyze the discretizations given above as example, and we will
look at the degrees of freedom which appear when we include nodes outside the axis and
diagonals. The Lax-Wendroff scheme will be treated separately.

The higher order discretizations can be limited to the monotone first order diagonal
discretization, as described in appendix A.
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3. A generalization of the formulation of Hildebrand.

A formulation which generates one-dimensional discretizations has been given by Hilde-
brand [11], which we can generalize to N dimensions as follows.

The starting point is a Taylor series expansion [12], which expresses the unknown
u(~r + ∆~r) in u(~r), the displacement ∆~r and space derivatives,

u(~r + ∆~r) =
(

1 +∇r +
∇2
r

2!
+
∇3
r

3!
+ · · ·

)
u(~r) . (3.1)

The projection of the gradient ~∇ = (∂/∂x , ∂/∂y , ∂/∂z , . . . )T on the displacement vector
∆~r is ∇r = ∆~r · ~∇ . We restrict the displacement vector ∆~r to discrete jumps between
nodes (i, j, k, . . . ) and (l,m, n, . . . ) on the grid. The grid difference vector ~gd = (l − i,
m − j, n − k, . . . )T of the grid indices will be used to express the displacement vector.
We introduce the grid spacing diagonal matrix Dg = diag(∆x,∆y,∆z, . . . ) to write ∆~r =
Dg · ~gd = ((l − i)∆x, (m− j)∆y, (n− k)∆z, . . . )T , and ∇r as ∇r = (l − i)∆x∂/∂x + (m−
j)∆y∂/∂y+(n−k)∆z∂/∂z+ · · · . Remark that ∇r is a function of all the space derivatives.

In operator form, the displacement is represented by E∆~ru(~r) = u(~r + ∆~r). On the
grid, this means that E∆~r ui,j,k,... = u l,m,n,.... The Taylor series (3.1) can be condensed to
E∆~r = e∇r , which leads to

∇r = lnE∆~r = − lnE−∆~r , (3.2)

since E∆~r = E−1
−∆~r .

We need at least N different vectors ~gd or ∆~r in order to obtain all the N space
derivatives present in ∇r of (3.2). In the one-dimensional case, the choice of vectors ~g1Dd
is the set of axes, (1, 0, 0, . . . )T , (0, 1, 0, . . . )T , etc, which decouples the space derivatives
in (3.2). For diagonal directional discretizations, the choice of vectors ~g diag

d is the x-axis
and diagonals, (1, 0, 0, . . . )T , (1, 1, 0, . . . )T , etc, and the various space derivatives are found
by subtraction, like in §2.

The next step is to write the displacement operator E∆~r in (3.2) as a function of a
difference operator in the direction ∆~r. The difference operator can be e.g. a forward
difference operator, a backward difference operator or a central difference operator. In the
one-dimensional case, the difference operators generate differences along the various axes ;
for the diagonal case, the differences are along the x-axis and diagonals. As an example,
consider the vectors of backward differences

~d−1D =


ui,j,k,... − ui−1,j,k,...

ui,j,k,... − ui,j−1,k,...

ui,j,k,... − ui,j,k−1,...
...

 and ~d−diag =


ui,j,k,... − ui−1,j,k,...

ui−1,j,k,... − ui−1,j−1,k,...

ui−1,j−1,k,... − ui−1,j−1,k−1,...
...

 , (3.3)

where for the diagonal differences we have taken the differences of (2.5). The difference
operator is d− = ~gd · ~d−, where ~gd is one of the N vectors which are needed to find the N
space derivatives, and ~d− is one of the expressions of (3.3). Then, we have E−∆~r = 1−d−.
The logarithm of (3.2) can be expanded in the series − ln(1 − d) = d + d2

/2 + d3
/3 + · · · ,

and the approximation for ∇r becomes

∇r = d− +
(d−)2

2
+

(d−)3

3
+ · · · . (3.4)



a basis for discretizations 11

To the lowest order, we have for the diagonal case ∇rui,j,k,... = d−diagui,j,k,..., which gives
us back the discretization of (2.5). Including the second term in eq. (3.4) gives the second
order upwind discretization of (2.7).

The generalization of the formalism of Hildebrand can be extended with the diagonal
forward difference,

~d+ =


ui+1,j,k,... − ui,j,k,...

ui+1,j+1,k,... − ui+1,j,k,...

ui+1,j+1,k+1,... − ui+1,j+1,k,...
...

 , (3.5)

the diagonal central difference ~d c = 1/2 (~d+ + ~d−),

~d c = 1
2


ui+1,j,k,... − ui−1,j,k,...

ui+1,j+1,k,... − ui+1,j,k,... + ui−1,j,k,... − ui−1,j−1,k,...

ui+1,j+1,k+1,... − ui+1,j+1,k,... + ui−1,j−1,k,... − ui−1,j−1,k−1,...
...

 , (3.6)

and the diagonal half-integer formulations

~dh− =


ui,j,k − ui−1/2,j,k

ui−1/2,j,k − ui−1/2,j−1/2,k

ui−1/2,j−1/2,k − ui−1/2,j−1/2,k−1/2
...

 , (3.7)

and similar for the diagonal forward and central differences ~dh+ and ~dhc. The abbreviations
E = E∆~r, E− = E−∆~r = E−1, and powers of E such as E−1/2 are used in relations between
the difference operators,

d+ = E − 1 , d c = 1
2(E − E−1) ,

d− = 1− E−1 , d+d− = d−d+ = d+ − d− =
(
dhc
)2

,

d− = E−1d+ , dhc = dc
{

1 + 1
4

(
dhc
)2 }−1/2

, (3.8)

which are the one-dimensional relations.
The generalization of the formalism of Hildebrand amounts to extending the difference

operators and the shift operator to more dimensions. To obtain the N individual deriva-
tives, the formulation has to be applied N times with the complete set of grid differences
~gd. Instead of using diagonal differences, other differences can be applied which incorpo-
rate nodes which do not lie on grid axes or diagonals. Examples of such approximations
are given in §5 and §6.

The first derivatives of the previous section have been found with the generalization
of the formulation of Hildebrand. We can use the new formulation also to generate higher
directional derivatives. For mixed derivatives we use permutations of (3.3), (3.5), (3.6),
and (3.7) since we need derivatives along e2, e3, . . . . When using the half-integer differ-
ences, the resulting derivative can be transferred to the nodes by the use of interpolations.
Some examples of higher derivatives are given in §5 and §6.
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4. Derivatives devised with a basis of stencils.

The idea of directional discretizations is to reduce for certain preferential directions
some error terms in the approximation, or to optimize in the Fourier domain. The previous
two sections gave prescriptions how to generate such discretizations in a somewhat abstract
and formal way. A more general approach is to use the error in the discretization as a
tool to find and analyze discretizations, directional or adirectional. This includes diagonal
discretizations.

The present approach exploits a basis of stencils to describe all the possible discretiza-
tions which approximate a certain derivative. The basis of stencils follows from a truncated
Taylor series expansion on a cluster of nodes. The extent and the consistency of the ap-
proximation is imposed together with the order of the error. The basis of stencils which is
used in the approximation of a derivative is a convenient tool for generating and optimizing
discretizations. The method applies also to higher derivatives.

The Taylor series expansion (3.1) is a standard tool to analyze and generate one-
dimensional discretizations, without the invocation of a basis of stencils. The concept of
a basis, even if not explicitly mentioned, can be discerned in numerical literature. This is
mostly for first order upwind discretizations in two or three dimensions, or second order
approximations in two space dimensions. The absence of a basis of stencils in more than
one dimension may be an explanation that with few exceptions the Taylor series has been
used to analyze a given discretization, instead of being involved in the generation of multi-
dimensional approximations. Sidilkover [8] discusses limited upwind discretizations on a
small stencil in two dimensions, and later with Roe in three dimensions [10]. Hirsch [13]
applies the Taylor series to analyze a nine point stencil. Koren [14] has used the basis on
a 2×2 grid to generate and analyze upwind discretizations. They all come close to the
concept of a basis of stencils in more than one dimension. These publications focus on
reducing the cross wind derivatives in the error of the approximation, since this improves
the accuracy of the solution of an advection equation.

4.1. The derivative expressed in a series related to the preferential direc-
tion.

In the Finite Difference method, a general expression for the approximation Dp of a
pth derivative at the node with indices (i, j, k, . . . ) is

Dp =
∑

l,m,n,...∈S
Cl,m,n,...ul,m,n,... . (4.1)

The approximation of the derivative is a linear combination of the values us at the points
of the stencil S with weights Cl,m,n,.... We develop each of the values us into a truncated
Taylor series with respect to the point P where the approximate derivative is sought. The
series is expressed in the local orthogonal basis B, showing clearly various contributions
of derivatives along the local axes. This enables us to choose a combination of points and
weights which minimizes certain error terms. For approximations to derivatives which do
not depend on a preferential direction, we take the basis B aligned with the grid axes.

The expansion of the nodal values in a series takes place in two steps. First, we apply the
Taylor series expansion of (3.1) to the nodes us of the stencil in the grid-based coordinate
system G. Then, we apply a coordinate transformation to the local basis B. This means
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that for a certain point us with indices (l,m, n, . . . ) in (4.1), we write

u l,m,n,... = ui,j,k,... +
rmax∑
r=1

1
r!

(
(l − i)∆x ∂

∂x
+ (m− j)∆y ∂

∂y
+ (n− k)∆z

∂

∂z
+ · · ·

)r
u ,

(4.2)
where the error in u l,m,n,... depends on the last term in the series, which is determined
by the upper limit in the summation, rmax. The term between brackets in (4.2) can be
written as

(q1 + q2 + q3 + · · · )r =
∑

n1,n2,n3,...

r!
n1!n2!n3! . . .

qn1
1 qn2

2 qn3
3 . . . , (4.3)

where the sum is over all non-negative integers n1, n2, n3, . . . for which n1+n2+n3+· · · = r.
The partial derivatives appearing in the truncated Taylor series expansions can be

rewritten in derivatives of the local basis B. We consider here a rotation between B and
G, with the linear coordinate transformation

x = t1,1e1 + t1,2e2 + t1,3e3 + · · · ,
y = t2,1e1 + t2,2e2 + t2,3e3 + · · · ,
z = t3,1e1 + t3,2e2 + t3,3e3 + · · · ,

... , (4.4)

where the coefficients tα,β depend on the angles between the two coordinate systems. The
derivative of u with respect to both systems is derived from (4.4) as

∂u

∂x
= t1,1

∂u

∂e1
+ t1,2

∂u

∂e2
+t1,3

∂u

∂e3
+ · · · ,

∂u

∂y
= t2,1

∂u

∂e1
+ t2,2

∂u

∂e2
+t2,3

∂u

∂e3
+ · · · ,

∂u

∂z
= t3,1

∂u

∂e1
+ t3,2

∂u

∂e2
+t3,3

∂u

∂e3
+ · · · ,

... , (4.5)

which can be used in (4.2). Finally, the expansion can be substituted in (4.1), and the
coefficients Cl,m,n,... are adjusted such that Dp approximates the pth derivative.

The choice of Cl,m,n,... is not unique. There are many criteria, of which the extent of the
stencil, the desired truncation error, a specific behavior in the Fourier domain for stability
and wave propagation properties, and computational cost are the most common. The art of
designing numerical discretizations consists in finding the optimum for a given application
among sometimes conflicting constraints. The extent of the stencil is especially important
for multi-block solvers where a small stencil reduces data transfer between blocks.

For directional discretizations, an additional constraint is imposed : optimize the dis-
cretization by reducing for certain preferential directions unwanted terms in the error
expressed in the local basis B of the approximation, or optimize in the Fourier domain.
E.g. for a second order accurate approximation of the first derivative ∂u/∂e1, we will elim-
inate other terms than ∂3u/∂e31 for the case that the flow is along the x-axis or diagonals,
as described in §2.1.
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The systematic way of the construction of discretizations for first and higher derivatives
as described above is very well suited for implementation in a computer program. Given
that manual analysis becomes very error-prone and tedious in three or more dimensions on
grids which go beyond 23 points, the use of a computer program which handles symbolic
manipulation is indispensable. The discussion in this paper is based on the output of such
a program, called Generate Directional Discretizations (GDD). This program for various
approximations to derivatives is written in MuPAD [15].

The solution by GDD of (4.1) together with (4.2)–(4.5) is a consistent approximation
of the derivative under consideration, characterized by the extent of the stencil and the
order of accuracy. The result is in the form of a fixed stencil with a basis of stencils. The
basis of stencils represent the degrees of freedom in the approximation. This is similar
to describing a plane in space by a vector from the origin to the plane, together with
two degrees of freedom, which are the two basis vectors in the plane. The fixed stencil
in the approximation, like the vector from the origin to the plane, can be chosen with
freedom. Transformations such as symmetry operations and orthogonalization improve
the simplicity and beauty of a basis. The idea of a basis of stencils is the cardinal point
in formulating discretizations, and the generation of the basis by means of a computer
program is instrumental. The basis of stencils with its degrees of freedom constitute a
formal and systematic extension of the work of Sidilkover [8], Hirsch [13], and Koren [14].
Appendix B contains an overview of the number of stencils for the first, second, and third
stream-wise derivatives in one, two and three dimensions for different extent of the stencils.

On a structured grid in any number of dimensions, the surrounding of each node is
similar to another. A consistent approximation with a basis of stencils can be expressed in a
FD, FV or other formulation. On unstructured grids, the number of elements surrounding
a node may be different. A consistent approximation is possible in a FD formulation. A
discontinuous flux computation in a FV formulation, or a RD or FVD distribution based
on the N scheme may lead to an inconsistent approximation [7].

In the following sections, we will focus on directional discretizations of up to fourth
order accuracy. Emphasis will be on structured grids in two and in three dimensions. We
will also consider a node surrounded by triangles in two dimensions and by tetrahedra in
three dimensions with low order approximations. For simplicity of notation, we take the
point for the discretization of the derivative at the origin, i.e. i = j = k = . . . = 0.

5. Directional discretizations of derivatives in two dimensions.

We start with low order directional discretizations of ∂u/∂e1 in two dimensions. The
bases are manageable small and easy to draw and comprehend. The directional approxi-
mation can be used for the scalar advection equation in nonlinear or linear form,

∂u

∂t
+
∂f

∂x
+
∂g

∂y
= 0 , or

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
= 0 , (5.1)

with ax = ∂f/∂u, ay = ∂g/∂u, and the velocity a =
√
a2
x + a2

y.

5.1. Directional first order upwind discretizations of the first derivative in
two dimensions on a 2× 2 grid.

We start with the lowest order directional discretization of ∂u/∂e1. The number of basis
stencils on the 2×2 stencil is small. This simplifies a detailed exposition of the different
steps in the analysis of the discretization and its various optimizations.
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This stencil has been the subject of much investigation. Two papers are relevant to
our discussion. Koren [14] effectively uses a basis of stencils to generate discretizations
with certain properties. Sidilkover [8] does not use a basis, but introduces a limiter for a
more accurate compact discretization. The discussion below uses the basis of stencils to
generalize their results, and to prepare the stage for higher order discretizations, also in
three dimensions.

The basis of stencils. From the space of all possible discretizations on a 2× 2 grid, we
will consider the subspace of consistent first order approximations of the first derivative
∂u/∂e1 expressed in grid-based derivatives ux and uy. The consistent discretization of ux
and uy can be written as

∆xux =∆xux,f + ∆xux,b(kx) = u0,0 − u−1,0 + kx {u0,0 − u−1,0 − u0,−1 + u−1,−1} ,
∆y uy =∆y uy,f + ∆y uy,b(ky) = u0,0 − u0,−1 + ky {u0,0 − u−1,0 − u0,−1 + u−1,−1} .

(5.2)

This solution comprises two parts. The first part of (5.2), symbolically indicated by
ux,f and uy,f , is the fixed stencil. The second part indicated by ux,b and uy,b involves the
parameters kx and ky. The parameters represent two degrees of freedom due to the basis
of stencils. These parameters correspond to the parameters δ1 and δ2 of Koren [14]. The
stencils are shown in Fig. 5.1 for ux and uy respectively, where the basis consists of one
stencil b. The scaling of the basis stencils is such that the nodal values are integers. The
smallest non-zero value is ±1.

∆xux = + kx×

∆y uy = + ky ×

1-1

0 0

1-1

-11

1

-10

0 -1

-11

1

Figure 5.1. The fixed stencil and the basis stencils used in the discretization of ux and uy of (5.2).

The application of a grid-based Taylor series expansion shows that the fixed stencils
are first order approximations to the first derivative, and the part involving the parameters
k is an approximation to the mixed second derivative ∂2u/∂x∂y. The appearance of degrees
of freedom represented by stencils of higher derivatives multiplied by parameters is typical
of discretizations in more than one dimension. The second derivative takes more than two
points in one dimension. Here, we find a mixed derivative ; the pure second derivative is
also absent.

The parameters can be constants or a function of the preferential direction α, k = k(α),
which will make the discretization of ∂u/∂e1 also dependent on the angle. This is accepted
practice in distribution discretizations, but in a FD context Koren [14] has been perhaps
the first to consider angle dependent discretizations in two dimensions. In the following,
the notation k will be used as a shorthand for k(α). The one-dimensional grid-aligned
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discretization is obtained with kx = ky = 0 while the diagonal approximation of (2.5)
has kx = 0, ky = −1. This confirms that the choice of the fixed stencil is free. We have
chosen the fixed stencil in (5.2) such that the x and y derivatives are their mirror image
with respect to the diagonal. Another possibility for a symmetric fixed stencil is the choice
kx = ky, e.g. kx = ky = −1/2, see Fig. 5.2.

∆xux,f = ∆y uy,f =

1/2-1/2

-1/2 1/2

1/21/2

-1/2-1/2

Figure 5.2. Alternative fixed stencils for the approximations of ux and uy.

We continue the discussion with the stencils of (5.2). Other choices of fixed stencils
give similar results, sometimes more elaborate or more compact.

The approximation in stream-wise coordinates. We use the coordinate transformation
of (4.4) in two dimensions. For a preferential direction with angle α, ~e1 = (cosα, sinα)T ,
and the transformation is a rotation over the angle α from the fixed axes to the local basis,

e1 = x cosα+ y sinα
e2 = −x sinα+ y cosα

or
x = e1 cosα− e2 sinα
y = e1 sinα+ e2 cosα

. (5.3)

This transformation is used in (4.5).
We will consider the principal region, 0 ≤ α ≤ π/4, where cosα ≥ sinα ≥ 0, and

ax/∆x ≥ ay/∆y ≥ az/∆z ≥ . . . ≥ 0. For other flow angles we will use a permutation of the
discretization.

On a regular grid with ∆x = ∆y = h, the approximation to the first stream-wise
derivative is

∂u

∂e1
= ~e1 · ~∇u =

1
h

{
u0,0{(1 + kx) cosα+ (1 + ky) sinα}

−u−1,0{(1 + kx) cosα+ ky sinα}

−u0,−1{ kx cosα+ (1 + ky) sinα}

+u−1,−1{ kx cosα+ ky sinα}
}
. (5.4)

The coefficients kx and ky appear only in the combination k = kx cosα+ ky sinα, and
we can write

∂u

∂e1
=

1
h
{(k + cosα+ sinα)u0,0 − (k + cosα)u−1,0 − (k + sinα)u0,−1 + ku−1,−1} . (5.5)

The coefficient k is therefore the central parameter which determines the properties of
the approximation. This is reflected in the analysis of the discretization where the mono-
tonicity and stability will depend only on k. The individual parameters kx and ky are
important when considering the continuity of the approximation, and above all for coding
the discretization.
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Monotonicity of the approximation. First order discretizations are commonly used as
a fall-back. When a higher-order discretization generates an oscillatory solution near a
discontinuity, a limiting function reduces the discretization to a monotonic first order one.

The standard approach to obtain a monotonic scheme is to ensure that un+1 is a
convex average of the nodal values. For the advection equation, (5.1), where ax = a cosα,
ay = a sinα, the Euler backward scheme is un+1

0,0 = un0,0 − a∆t∂u/∂e1. The monotonicity
conditions for the discretization of (5.5) are therefore

1− a∆t
h

(k + cosα+ sinα) ≥ 0 , k + cosα ≥ 0 , k + sinα ≥ 0 , and k ≤ 0 . (5.6)

For sufficiently small ∆t and on the principal region where cosα ≥ sinα ≥ 0, this reduces
to

0 ≥ k ≥ − sinα . (5.7)

The monotonicity domain for k is given as the shaded region in Fig. 5.3.

0 π/8 π/4
α

-0.8

-0.6

-0.4

-0.2

0
k

Figure 5.3. The region of k which satisfies the monotonicity conditions of (5.7).

The one-dimensional grid-aligned discretization has k = 0 which is the upper limit,
and the diagonal discretization of (2.5) has k = − sinα, the lower limit. The latter exhibits
also the maximum time step, ∆t ≤ h/(a cosα) = h/ax. For α = 0 they meet at k(0) = 0.

Finite Difference and Finite Volume formulations. In a FD formulation, the derivatives
of (5.2) are used in the approximation of ∂u/∂t of (5.1).

The FV discretization in a cell-vertex formulation uses fluxes through the edges which
make up the dual cell around the nodes which are positioned at the vertices of the grid.
For node (0,0), the dual cell is indicated in Fig. 5.4 by the dashed edges. In a cell-centered
perspective, the grid edges form the cells with the nodes at the centers. The flux bal-
ance through these edges generates the variation of the nodal values ∂u/∂t, when (5.1) is
integrated over the dual volume.

The approximation of (5.2) translates into the edge fluxes fi±1/2,j and gi,j±1/2 as
follows.

In a Flux Vector Splitting (FVS) context, the fluxes are in the linear case, for ax ≥
ay ≥ 0,

fi−1/2,j = ax {(1 + kx)ui−1,j − kxui−1,j−1} ,
gi,j−1/2 = ay {(1 + ky)ui,j−1 − kyui−1,j−1} , (5.8)

and in the non-linear case

fi−1/2,j = (1 + kx)f(ui−1,j)− kxf(ui−1,j−1) ,

gi,j−1/2 = (1 + ky)g(ui,j−1)− kyg(ui−1,j−1) . (5.9)
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a

j 0

1

-1

i

-1 0 1

Figure 5.4. The edges which make up the dual cell surrounding node (0,0) in a vertex-centered
Finite Volume formulation.

The standard FVS interpretation is that the fluxes of (5.8) or (5.9) are the result of the
nodal split fluxes

f+
i,j =

{
(1 + kx)f(ui,j)→ edge i+ 1/2 , j

−kxf(ui,j)→ edge i+ 1/2 , j + 1
,

g+
i,j =

{
(1 + ky)g(ui,j)→ edge i, j + 1/2

−kyg(ui,j)→ edge i+ 1, j + 1/2
. (5.10)

The distribution of these split fluxes is shown in Fig. 5.5.

a

j

i

i+1/2

1+k  

-k  
j+1/2

-k  

x

y

x

y1+k  

Figure 5.5. The nodal splitting of the flux and distribution to the edges according to (5.10). Left :
the contribution to ux (fi+1/2,j and fi+1/2,j+1), right : to uy (gi,j+1/2 and gi+1,j+1/2).

The FVS formulation means distributing the nodal flux over the dual edges of the
grid, while the Flux Vector Distribution method described in [7] amounts to distributing
the edge fluxes over the nodes. In the non-linear case, the fluxes are split and distributed
according to the nodal advection speed, ax = ∂f/∂u, ay = ∂g/∂u.

Remark that the directional computation of an interface flux amounts to a directional
extrapolation, and the approximations in this paper lend themselves for directional ex-
trapolations.
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In a Flux Difference Splitting (FDS) context, computation of the fluxes is based on
an edge averaged state. The edge based average advection speeds ~ae = (ax,e, ay,e)T decide
which nodes contribute to the edge flux. In Harten et al. [16], an average state is used
in the construction of the flux difference. In their one-dimensional context, the average is
a function of the two states adjacent to the edge. Here, there are six nodes which may
contribute to the edge flux, and the average is of those six nodes. The flux computation
is now according to (5.8), where the velocities ax and ay are a function of the average of
the six nodes surrounding the dual edge.

The extension to fluxes for systems of equations is the standard one-dimensional grid-
aligned one, where averages and matrices matrices now may be a function the unknowns
of more than two nodes.

Continuity of the approximation. The stencil of the discretization uses certain nodes
for flow angles 0 ≤ α ≤ π/4. For the remaining angles, a permutation is used. It is
important that the approximation of ∂u/∂e1 depends continuously on the unknowns when
the changing flow angle forces a change of stencil.

In the FD context, this means that for α = 0 the stencil of ∂u/∂e1 should have a mirror
symmetry with respect to the x-axis, while for α = π/4 the mirror symmetry of the stencil
has to be with respect to the diagonal in the x-y plane.

This is respected by the one-dimensional grid-aligned approximation. Also the diagonal
discretizations of §2 satisfy the above requirements, and are continuous by construction.
Consider e.g. a flow almost parallel with the x-axis. For both α ↓ 0 and α ↑ 0, the
approximation of ∂u/∂e1 uses only nodes on the x-axis. A similar diagonal one-dimensional
approximation results when the flow is aligned with a diagonal of the grid, such as shown
in Fig. 5.4. For α ↓ π/4, the node (0,−1) vanishes from the discretization, while for α ↑ π/4,
the node (−1, 0) disappears. When α = π/4, the approximation uses u0,0 − u−1,−1.

The use of the basis of stencils obliges us to impose continuity explicitly. For the present
degrees of freedom, described by the flow direction dependent coefficients kx(α) and ky(α),
this means that kx(0) = 0. There is no constraint for α = π/4 since the stencils associated
with the degrees of freedom are symmetric with respect to the diagonal.

Continuity of the solution is a more severe constraint in the FV context. In a FV
discretization, the nodal values are updated using the flux balance through the edges which
make up the dual cell volume, as described by (5.8)–(5.10), and by Fig. 5.5. The edge fluxes
used in this balance should be continuously dependent on the nodal values when α leaves
the domain [0, π/4], and a different stencil is used for the flux approximation. Continuity
is now individually imposed on the ux and uy derivatives. If this is not the case, the fluxes
computed with FVS may be inconsistent, and with FDS the discontinuity may introduce
wiggles.

For α = 0, ay = 0, the g-flux (uy derivative) is absent from the approximation. The
continuity condition is the same as in the FD case.

When the flow is along a diagonal of the grid, α = π/4, the conditions become more
severe. In the approximation of ∂u/∂e1, the transition from α < π/4 to α > π/4 amounts to
swapping the x and y axes. The continuity of the approximation means that at α = π/4

the x and y derivatives should be their mirror image with respect to the diagonal. In terms
of the basis of stencils, this implies that kx(π/4) = ky(π/4).

Remark that the latter condition is not satisfied by the diagonal discretization of §2,
kx = 0, ky = −1. The FV implementation of a diagonal discretization gives indeed incorrect
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solutions when the advection direction is close to the diagonal. Concerning continuity, the
FV method is for diagonal discretizations an exception to the FD and distribution methods.
Since the discretizations of §2 cannot be used in a FV context, we need to make the degrees
of freedom a function of the advection direction for the diagonal discretizations.

Some simple continuous monotone diagonal discretizations with the optimal time step,
k = − sinα, are obtained with e.g.

kx = 1
2(cos(2α)− 1) , ky = 1

2 sin(2α)− 1 , (5.11)

or with
kx = ky = − sinα

cosα+ sinα
. (5.12)

In both cases, at α = π/4 the grid-based derivatives reduce to the stencils with kx = ky =
−1/2, which are the fixed stencils of Fig. 5.2. The approximations for ux and uy are their
mirror image for α = π/4, and the swapping of both derivatives which takes place when
the advection direction passes the diagonal has no effect.

The approximation of (5.11) emphasizes the i = −1 nodes in the computation of uy,
and is the diagonal approximation for α = 0. In (5.12), the i = 0 nodes have greater
weight in the computation of uy, and we find for α = 0 the one-dimensional grid-aligned
approximation. The treatment of ux is not vastly different between the two discretizations.
The approximations are identical for α = π/4.

Both approximations satisfy the previously mentioned continuity and monotonicity
constraints, and have the optimal time step. We have an example of two different dis-
cretizations which are indistinguishable in the analysis of their numerical behavior. Yet,
they may give different results, e.g. in the presence of a discontinuity.

Continuity is also important when the time step is computed. The one-dimensional
grid-aligned time step ∆t = h/(ax + ay) or the diagonal optimal time step ∆t = h/ax can
be computed directly at the node in a FD fashion. Alternatively, during the computation
of the fluxes, the term ax + ay or ax which is used in the time step calculation can be
accumulated in parallel with the flux computation. This has then to be done in a way
which ensures continuity when the stencil changes.

Computing the flow angle. The dependence on the flow angle increases the computa-
tional cost, but not excessively so. A reasonably economic way to compute the coefficients
of (5.11) and (5.12) on an irregular grid is to make use of tanα. Given a diagonal vector
~v1 and a grid vector ~v2, Fig. 5.6, a convenient definition of α is that α = 0 for ~a//~v2, and
that α = π/4 for ~a//~v1.

a

2

1

v

v

I

II

a

Figure 5.6. Computing tanα, given the advection vector ~a, and two grid-related vectors ~v1 and ~v2.
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With the configuration of Fig. 5.6, and writing ~a = a~e1,

tanα =
I
II

=
~e1 · ~v2⊥
~v1 · ~v2⊥

~v1 · ~v2

~e1 · ~v2
, (5.13)

where ~v2 ·~v2⊥ = 0. In a numerical code, the dot products involving ~e1 are already computed
in order to find the nodes which are used in the computation of the fluxes. The remaining
geometric factors ~v2 · ~v2⊥ and ~v1 · ~v2 can be stored.

The factors of (5.10) expressed in terms of tα = tanα using the option of (5.11) are then
1/(1 + t2α) and t2α/(1 + t2α). With the choice of (5.12), the factors are 1/(1 + tα) and tα/(1 + tα).

An alternative to this computation of the angle on an irregular grid is a transformation
to a uniform (ξ, η) grid with x = x(ξ, η) and y = y(ξ, η). In the ξ − η plane we find the
angle simply by arctan(η/ξ). This transformation, while simplifying the angle evaluation,
only partly restores accuracy in a FV context on a fairly smooth grid.

Optimizing the directional error. The directional error in the approximation of ∂u/∂e1,
(5.4), is obtained with a Taylor series expansion expressed in the local basis,

~e1 · ~∇u =
∂u

∂e1
+ h

{
c20

∂2u

∂e2
1

+ c11
∂2u

∂e1∂e2
+ c02

∂2u

∂e2
2

}
+O(h2) , (5.14)

where cmn is the coefficient of ∂2u/∂em1 ∂e
n
2
, excluding the factor h. The coefficients cmn are

(see also Koren [14])

c20 = 1
2k sin(2α) + 1

4(cosα+ sinα)(sin(2α)− 2) ,
c11 = k cos(2α) + 1

2 sin(2α)(cosα− sinα) ,
c02 = −1

4 sin(2α)(2k + cosα+ sinα) , (5.15)

which depend on the coefficient k. With the fixed stencil of Fig. 5.2, the coefficients are
c20 = 1/2 (k sin(2α) − cosα − sinα), c11 = 1/2 (2k cos(2α) − cosα + sinα) and c02 =
−1/2 k sin(2α). A pure one-dimensional approximation for a given angle α∗ has c02(α∗) =
c11(α∗) = 0, but these constraints can only be met for certain angles α∗.

A measure of the error of the discretizations is the average value Imn, the scaled norm
over the domain (0, π/4),

Imn =
4
π
|cmn|L1

=
4
π

∫ π/4

0
|cmn|dα . (5.16)

The degrees of freedom give the opportunity to reduce some, but not all, of these error
terms.

A major error reduction is obtained with directional discretizations when the pure
normal derivative term in the error is eliminated. According to (5.14), this is obtained by
taking the degrees of freedom such that c02 = 0. This approach has been advocated by
Sidilkover [8] since this increases the accuracy for steady state approximations with one
order, and is further elaborated by Hirsch [13]. We can rewrite the error part ε of (5.14)
as

ε = h

{(
c20

∂

∂e1
+ c11

∂

∂e2

)
∂u

∂e1
+ c02

∂2u

∂e2
2

}
+O(h2) . (5.17)

The reason for the error reduction is that a smooth steady solution of the advection
equation contains no stream-wise derivative terms, since the numerical approximation
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of ∂u/∂e1 is of O(h). This implies that also ∂2u/∂e21 and ∂2u/∂e1∂e2 are of O(h), and the
terms with coefficients c20 and c11 become irrelevant in the error of (5.17). A first order
approximation of ∂u/∂e1 which sets c02 = 0 (or of O(h)) then takes care of ∂2u/∂e22 and gives
a solution which is second order accurate at steady state. When c02 = 0, the coefficient
c11 cannot be eliminated simultaneously according to (5.15), see also Koren [14], but this
is not needed as explained above.

We will indicate by a streamline approximation an approximation which eliminates
the pure normal derivative in the error term.

If the flow is near steady state, the most important variations are normal to the ad-
vection direction. The most important coefficient is therefore c02, then c11 and c20.

The case of an equation with a source term is discussed by Sidilkover [8], while
Hirsch [13] considers more accurate time discretizations in a Lax-Wendroff type of de-
velopment.

For the unsteady case we cannot obtain a second order solution with the approximation
of (5.2). This can easily be seen when we consider a simple wave solution in the stream-wise
direction ~a of the form

U(x, y, t) = Ua cos(ωt− x cosα− y sinα) . (5.18)

With this solution, the error in (5.14) becomes ε = [1/2 cosα(1 + 2 sinα sin(2α)(sinα −
cosα)) − 1/2 k sin(4α)]hU . For α = 0, ε = 1/2hU . Also for other angles a nonzero error
remains.

It is possible to construct approximations with an increased order of the error for
unsteady problems. We take in the approximation of ∂u/∂e1 the y-axes as the time variable.
This is an established practice for one-dimensional grid-aligned discretizations, and works
also for directional discretizations like the above with c02 = 0. We obtain an approximation
in one space dimension which is second order in time and space when the time step ∆t is
proportional to h. This is explained in more detail for the central approximations later in
this paper.

The error term c02 is eliminated by choosing k = −1/2 (cosα+sinα), or kx = −1/2 (1+
(1 + 2ky) tanα). First of all, this is incompatible for α = 0 with the continuity condition
kx(0) = 0 for the FD and FV formulations. Also the monotonicity condition (5.7) is
breached with this choice everywhere on the principal region 0 ≤ α ≤ π/4.

The monotonicity condition is assuming constant coefficients, i.e. it is linear, or in-
dependent of the unknowns (but dependent on α). The solution k = −1/2 (cosα + sinα)
can be rendered monotone by making the discretization non-linear using the unknowns
and limiters. The solution is monitored for oscillations, and when they appear, the con-
dition c02 = 0 is relaxed in order to revert to a monotone approximation. The practice
of limiters has been mentioned before when a higher order discretizations is limited to a
first order approximation. An example is given in appendix A where limiters are discussed
for diagonal discretizations. The present application of limiters is different in that the
oscillatory higher order approximation is not an approximation on a larger stencil, but an
approximation with c02 = 0.

This type of limiting has a long history, and the procedure is effectively present in
the Stream-wise Upwind Petrov-Galerkin method (SUPG) in the Finite Element (FE)
formulation [17, 18].

On structured grids, Sidilkover [8] has analyzed discretizations with coefficients k which
are independent of the flow angle in a FV context. This limited version of the N scheme
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is named the S scheme. He continued his analysis with Roe in [10] and [19], extending the
stencil with one point.

The unstructured limited discretizations appeared in the Residual Distribution formu-
lation [20] with the NN scheme of Deconinck, the PSI scheme of Struijs, and the Level
scheme of Roe. Shortly after, Sidilkover showed that the PSI scheme is a minmod limited
N scheme on triangles. The PSI scheme has an order of accuracy of about 1.6 [21], similar
to the SUPG FE discretizations. It has the property of preserving a linear solution, which
is the equivalent on unstructured grids of the increased accuracy of structured grids when
c02 = 0. The non monotonic discretizations reach an order of accuracy of 2.

An approach slightly different from [8] is to write the discretization with c02 = 0 as the
monotone directional discretization of (5.11) or (5.12) plus a correction term. The limiting
is based on restricting the new value of node (0,0), un+1

0,0 , to the range [u−1,0,u−1,−1].
These two nodes are the upstream nodes in the diagonal discretization. For the optimal
time step, ∆t = h/ax, the monotone solution is un+1

0,0,mon = ay/axu−1,−1 + (ay − ax)/axu−1,0.
The correction term for k = 0 is uc = 1/2 (1 − ay/ax) [(u0,0 − u−1,0)− (u0,−1 − u−1,−1)].
The limiting is simply restricting un+1

0,0,mon + uc to the range [u−1,0,u−1,−1]. To this can be
added a limiting of uc such that k → 0 for α→ 0 for continuity in a FVS formulation.

The Fourier components. For the analysis in the Fourier domain we use components
of the form

Uni,j = U0ρ
neI(iφx+jφy) , (5.19)

where U0ρ
n is the amplitude of the component at time level n, φx and φy are the phase

angles in x and y direction, and I is the imaginary unit, I2 = −1. We take as grid size
∆x = ∆y = h, and φx = hκx and φy = hκy where κx and κy are the wave numbers in
the two grid directions. The amplification factor for the discretization of (5.4) in an Euler
backward scheme is

G =
Un+1
i,j

Uni,j
= R(G) + I(G) = gr + I gi , (5.20)

with

G = 1− ν
{

cosα(1− e−Iφx) + sinα(1− e−Iφy)

+ k(α)(e−I(φx+φy) − e−Iφy − e−Iφx + 1)
}
,

gr = 1− ν
{

cosα(1− cosφx) + sinα(1− cosφy)

+ k(α)(cos(φx + φy)− cosφy − cosφx + 1)
}
,

gi = −ν
{

cosα sinφx + sinα sinφy

+ k(α)(sinφx + sinφy − sin(φx + φy))
}
, (5.21)

where ν = a∆t/h. We use the notation k(α) to show explicitly the dependence on α. The
dissipation and dispersion depend on this parameter and can therefore be optimized, but
this will not be explored further here.

For arbitrary k and for φx = π, φy = 0, stability imposes that ∆t ≤ h/(a cosα) = h/ax.
This is the optimal step for stability which we encountered for the diagonal directional
approximation with k = − sinα ensuring monotonicity.
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For the one-dimensional grid-aligned approximation with k = 0 and for the reduced
diffusion approximation with k = −1/2 (cosα + sinα), the time step based on stability
is ∆t ≤ h/{a (cosα+ sinα)} = h/(ax + ay). For arbitrary flow angle the optimal and one-
dimensional time step limitations generalize to h/max(|ax|, |ay|) and h/(|ax|+ |ay|) respec-
tively.

In the case of the diagonal discretization, kx = 0, ky = −1, the discretization is one-
dimensional for α = 0 and for α = π/4. The amplification of (5.21) is in the first case gr =
1+ν(cosφx−1) and gi = −ν sinφx. In the second case, gr = 1+1/2

√
2 ν(cos(φx+φy)−1)

and gi = −1/2
√

2 ν sin(φx + φy). Since the wave numbers transform according to (5.3),
we can rewrite the latter in a stream-wise wave number κe1 , gr = 1 + νe(cosφe1 − 1)
and gi = −νe sinφe1 where νe = a∆t/h

√
2 and φe1 = h

√
2κe1 . The behavior in both cases

is similar, as expected. The degrees of freedom can be used to aim for isotropy in the
behavior in the Fourier domain, that is to reduce the dependence of the amplification or
the dispersion on the flow angle.

On this small grid, we have revisited the one-dimensional grid-aligned approximation,
the diagonal approximation (the N scheme), and the streamline approximation. A con-
tinuous diagonal approximation is necessary for the FV approximation. The properties of
these discretizations are summarized in Table 5.1.

Table 5.1. Numerical properties of the one-dimensional grid-aligned approximation, the diagonal
approximation, the continuous diagonal approximation, and the streamline approximation.

discretization continuity monotonicity streamline switching time step

one-dimensional y y n π/2 h/(ax + ay)

diagonal y(FD), n(FV) y n π/4 h/ax

cont. diagonal y y n α h/ax

streamline n n y α †
The symbol α in the column switching indicates a discretization which depends con-
tinuously on the flow angle α.
† : to be determined with the stability of the space operator.

We compare in Fig. 5.7 the coefficients cmn and the average error values Imn in Ta-
ble 5.2. The limited discretization will have errors somewhere between the diagonal dis-
cretization and the streamline discretization.

Table 5.2. The average error values Imn for discretizations of Table 5.1.

discretization I20 I11 I02

one-dimensional 0.424 0.124 0.212

diagonal 0.574 0.052 0.062

streamline, k = −1/2 (cosα+ sinα) 0.637 0.264 0.0
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Figure 5.7. The error coefficients cmn for discretizations of Table 5.1.

5.2. Directional second order discretizations of the first derivative in two
dimensions on a 3× 3 grid.

This is the [−1, 1]2 nine-point stencil considered by Hirsch [13]. We will analyze the
discretizations from the viewpoint of a basis of stencils. Special attention will be given to
the continuity of the approximation, using where necessary coefficients k which depend on
the flow angle α.

The basis of stencils. Our starting point will be the subspace of consistent second order
approximations of the first derivative on a 3× 3 grid as generated by the program GDD,

∆xux = ∆xux,f + ∆xux,b(kx1, kx2, kx3) = 1
2 (u1,0 − u−1,0) + kx1b

1 + kx2b
2 + kx3b

3 ,

∆y uy = ∆y uy,f + ∆y uy,b(ky1, ky2, ky3) = 1
2 (u0,1 − u0,−1) + ky1b

1 + ky2b
2 + ky3b

3 ,
(5.22)

where bi is the basis stencil i, see Fig. 5.8,

b1 = u−1,0 − 2u0,0 + u1,0 − u−1,−1 + 2u0,−1 − u1,−1 ,

b2 = −u−1,1 + 2u−1,0 − u−1,−1 + u0,1 − 2u0,0 + u0,−1 ,

b3 = −u−1,1 + u1,1 + 4u−1,0 − 4u0,0 − 3u−1,−1 + 4u0,−1 − u1,−1 . (5.23)

This solution comprises two parts. The first part of (5.22), symbolically indicated by
ux,f and uy,f , is the fixed stencil. We have taken for the fixed stencil the one-dimensional
discretization in the x and y directions. The second part indicated by ux,b and uy,b involves
the parameters kxi and kyi, i = 1 . . . 3. The parameters represent six degrees of freedom due
to the basis of stencils b = {b1, b2, b3}, (5.23). The stencils of the basis b are approximations
of mixed third derivatives ; the grid is too small for pure third derivatives. In the space
of consistent second order approximations of the first derivative, approximations to the
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Figure 5.8. The basis of stencils b = {b1, b2, b3} of (5.23), corresponding to the degrees of freedom
for ux and uy of (5.22).

second derivative are by definition absent. It is of course possible to add an artificial
viscosity term separately. Such discretizations are discussed in §5.4.

The basis stencils are the same for ux and for uy. The coefficients kxi and kyi appear
in the approximation of ∂u/∂e1 in the combination ki = kxi cosα+ kyi sinα as before. The
diagonal approximation of (2.6) has kxi = 0, ky1 = ky2 = −1/2, and ky3 = 1/2.

In the previous section we had a basis of only one stencil ; we now have a basis of
three stencils. A particular approximation of a grid-based derivative of (5.22), e.g. ux, is
therefore given by a fixed stencil and the vector ~kx = (kx1, kx2, kx3)T with respect to a
basis b.

The upper triangle of the basis stencils in figure Fig. 5.8 consists of the three nodes
(1,0), (0,1), and (1,1). The weight of these nodes is w1, w2, and w3 respectively, and has a
value of either 0 or 1, depending on bi. This means that the vector ~kx corresponds to the
weights of the upper triangle. The program GDD generates the basis in such a way that
there is always an upper triangle which has this property.

We can orthogonalize the basis b when we have a inner product. Also an orthonormal
basis is possible, using the normalization procedure of Gram-Schmidt.

Let us denote by bipq the value of stencil bi at the node (p, q), and take as inner product
the Hadamard product bi · bj =

∑1
p,q=−1 b

i
pqb

j
pq, which satisfies the common requirements

of an inner product. The basis b of stencils of Fig. 5.8 is not orthogonal since b1 · b2 = 0,
but b1 · b3 6= 0, and b2 · b3 6= 0.

The orthogonalization procedure does not produce a beautiful basis, but applying
symmetry does. We obtain a convenient orthogonal basis by splitting the stencils of the
basis b in their antisymmetric and symmetric parts abi and sbi respectively, as described
in [13], see Fig. 5.9.

By itself, the antisymmetric stencils abi of Fig. 5.9 do not form a basis. In the ~k
notation, ab1 = (0,−2, 1)T , ab2 = (−2, 0, 1)T , ab3 = (−1,−1, 1)T , and the antisymmetric
stencils are dependent since 2 ab3 = ab1 +ab2. Also the node (0,0) is by definition absent in
an asymmetric stencil. We need to include the symmetric stencil to form the orthogonal
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Figure 5.9. The basis stencils b1, b2, and b3 of (5.23), split in an antisymmetric part abi, left, and
a symmetric part sbi, right.

basis B = {ab2, ab1, sb3}, used with parameters Kxi and Kyi, combined in Ki.
We have inversed in this basis the order of ab1 and ab2 for reasons of symmetry. The

stencil B2 = ab1 is symmetric in x = 0 and antisymmetric in y = 0. This asymmetry in
the y direction leads to a skewness in the stencil of the ux-derivative. Likewise, the stencil
B1 = ab2 creates an asymmetry in the x direction and a skewness in the derivative uy. It
is an approximation to the mixed third derivative 2∆x2∆y ∂3u/∂x2∂y.

We will use the term regular for approximations where the stencil of uy is the stencil
of ux mirrored in the x = y diagonal. A straight approximation of a derivative in the
x-direction indicates that the stencil is antisymmetric in x = 0 and symmetric in y = 0,
and similar for a derivative along y. This is an approximation without skewness.

The basis stencil B2 is B1 mirrored in the x = y diagonal, and a regular approximation
has

Ky2 = Kx1 and Kx2 = Ky1, or K2 = Ky1 cosα+Kx1 sinα . (5.24)

Remark that Kx2 6= 0 or Ky1 6= 0 introduces a skewness in the approximation.
The choice Kx = (0, 0, 0)T , Ky = (1/4, 1/4, 0)T gives the diagonal approximation

of (2.6).
The symmetric stencil B3 = sb3 is an approximation to the mixed fourth derivative

−∆x2∆y2 ∂4u/∂x2∂y2, but it is the sum of basis stencils approximating third derivatives
since B3 = (2, 2,−1)T . The error of the stencil is one order higher than the truncation
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error, and the symmetric stencil is therefore of secondary importance in the approximation.
Concerning the truncation error, a reduced basis which is sufficient to describe second order
accurate approximations to the first derivative is therefore b′ = {ab2,a b1}. This basis will
generate asymmetric (central) approximations.

The diagonal discretizations of §2 are designed to reduce the approximation to a purely
one-dimensional discretization which uses only nodes on the diagonal when α = π/4 with
the idea to eliminate the coefficients cmn withm+n = 3,m < 3 for that direction. However,
the restriction to use only nodes on the diagonal is unnecessary. When we impose in GDD
the condition that at α = π/4, cmn = 0 with m+n = 3, m < 3, we get the solution of (2.6)
with the basis {B3}. The additional constraint therefore reduces the basis, but permits
approximations which use nodes outside the diagonal.

Monotonicity of the approximation. The update using (5.22) is not monotone.

Continuity of the approximation. We will consider the principal region, 0 ≤ α ≤ π/4,
where cosα ≥ sinα ≥ 0, and ax/∆x ≥ ay/∆y ≥ az/∆z ≥ . . . ≥ 0. For other flow angles we
will use a permutation of the discretization.

For the central discretizations we have two types of stencils. The fixed stencils such as
the one-dimensional grid-aligned central approximation do not change when the flow angle
changes. For these fixed stencils we will mainly consider regular approximations. This is
effectively the continuity condition for all flow angles. Breaking the symmetry between uy
and ux is possible, but this will not improve the accuracy or the stability.

On the other hand, there are central flow-angle dependent discretizations. The stencils
can change when the flow angle passes a grid line or a diagonal. This is the case for the
diagonal discretization of §2.3. The central stencils can also be continuous functions of
the flow angle. They behave like the upwind approximations of the previous section, and
continuity conditions apply for the discretization with respect to the flow angle. This
means that the symmetry is imposed at only two flow angles, α = 0 and α = π/4.
They are k1(0) = −2k3(0) and k1(π/4) = k2(π/4). For the FV formulation, the condi-
tions kx1(0) = −2kx3(0), kx1(π/4) = ky2(π/4), kx2(π/4) = ky1(π/4) and kx3(π/4) = ky3(π/4)
apply, which are not satisfied by (2.6) in FV form. When we use the orthogonal basis
B, the FD conditions are K2(0) = 0 and K1(π/4) = K2(π/4), and for the FV formu-
lation the conditions are Kx2(0) = 0, Kx1(π/4) = Ky2(π/4), Kx2(π/4) = Ky1(π/4) and
Kx3(π/4) = Ky3(π/4). Since the discretization of (2.6) is not continuous in the FV for-
mulation, we construct a continuous version with (5.11) or (5.12) in an average of the
velocities ~a and −~a.

Flow-angle dependent approximations for systems of equations. The easiest way to
apply the central discretizations which depend on flow angles to system of equations is to
consider the approximation as a sum of upwind discretizations with opposite speeds, and
to apply FVS or FDS according to preference.

Optimizing the directional error. The directional error in the approximation of ∂u/∂e1
of (5.22) is given by

~e1 · ~∇u =
∂u

∂e1
+ h2

{
c30

∂3u

∂e3
1

+ c21
∂3u

∂e2
1∂e2

+ c12
∂3u

∂e1∂e2
2

+ c03
∂3u

∂e3
2

}
+ h3

{ k+l=4∑
k,l

dk,l
∂4u

∂ek1∂e
l
2

}
+O(h4) , (5.25)
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where cmn is the coefficient of ∂3u/∂em1 ∂e
n
2
, excluding the factor h2, and similar dkl. In

basis B, the coefficients cmn take the form

c30 = 1
6(cos4α+ sin4α) + sin(2α)(K1 sinα+K2 cosα) ,

c21 = −1
4 sin(2α) cos(2α) +K1(3 cos(2α) + 1) sinα+K2(3 cos(2α)− 1) cosα ,

c12 = 1
4 sin2(2α) +K1(3 cos(2α)− 1) cosα−K2(3 cos(2α) + 1) sinα ,

c03 = sin(2α)( 1
12 cos(2α)−K1 cosα+K2 sinα) . (5.26)

The coefficients dkl are proportional to K3 ; taking K3 = 0 eliminates the terms dkl. We
have the parameters K1 and K2 to optimize the leading error terms between brackets
of (5.25), where the parameters are constants or a function of the flow direction α.

A streamline approximation eliminates the term c03 altogether in (5.26). If we cast (5.25)
in a form similar to (5.17), we see that this means that the steady solution of the advection
problem, (5.1) will be fourth order accurate when K3 = 0.

A solution is K1(α) = 1/12 cosα and K2(α) = 1/12 sinα, with e.g. Kx2 = Ky1(α) = 0
and Kx1(α) = Ky2(α) = 1/12 . This corresponds to the stencils

∆xux = 1
12 (u1,1 + 4u1,0 + u1,−1 − u−1,1 − 4u−1,0 − u−1,−1) ,

∆y uy = 1
12 (u−1,1 + 4u0,1 + u1,1 − u−1,−1 − 4u0,−1 − u1,−1) , (5.27)

which are shown in Fig. 5.10.
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Figure 5.10. The stencils ux and uy of (5.27) which eliminate the term c03 in (5.26).

These stencils are regular since they are their mirror image with respect to the diagonal.
They can be applied in a FV context, e.g. as fixed stencils ux,f and uy,f in the approxima-
tion, or in the generalized method of Hildebrand, replacing the generating approximation
of (3.6). The approximation for ux can be interpreted as the average of 1/2 (ui+1,j−ui−1,j)
with weights 1/6 , 4/6, and 1/6 for j = 1, 0,−1 respectively.

For a general approximation it is convenient to use the fixed stencils of (5.27) together
with the orthogonal basis B. With this representation the choice Kx = (−1/12 , 0, 0)T ,
Ky = (0,−1/12 , 0)T gives the one-dimensional grid-aligned discretization, and Kx =
(−1/12 , 0, 0)T , Ky = (1/4 , 1/6 , 0)T produces the diagonal approximation of (2.6). Due
to the symmetry of the new fixed stencils, the continuity conditions are unaffected. The
directional errors reduce to

c30 = 1
6 + sin(2α)(K1 sinα+K2 cosα) ,

c21 = K1(3 cos(2α) + 1) sinα+K2(3 cos(2α)− 1) cosα ,
c12 = 1

6 +K1(3 cos(2α)− 1) cosα−K2(3 cos(2α) + 1) sinα ,
c03 = sin(2α)(−K1 cosα+K2 sinα) . (5.28)
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The general streamline approximation, i.e. the solution c03 = 0 in (5.28) is

K1 cosα = K2 sinα or Kx1 cos2 α−Ky2 sin2 α+ (Ky1 −Kx2) sinα cosα = 0 . (5.29)

This relation reduces the number of undetermined parameters with one, and has to be
combined with the continuity conditions.

An approximation with flow-angle independent stencils is

Kx1 = Ky2 = 0, Ky1 = Kx2 or K1 = Kx2 sinα, K2 = Kx2 cosα , (5.30)

which is not subject to the continuity constraints. The stencil is regular, but the parameter
Kx2 introduces a skewness to the stencils.

The parameter K2 can be used to reduce the remaining error terms, or to optimize in
the Fourier domain. We can substitute (5.29) in (5.28) to obtain the terms

c03 = 0 , c12 = 1
6 − 2K2 sinα , c21 = 2K2

cos(2α)
cosα

, c30 = 1
6 + 2K2 sinα . (5.31)

The parameter K3 is present in the coefficient c04 = 1/8K3(cos(4α) − 1), which can
therefore be eliminated by taking K3 = 0. The coefficient c05 can only be minimized, but
not eliminated.

A pure one-dimensional approximation for a given angle α∗ has to satisfy c03(α∗) =
c12(α∗) = c21(α∗) = 0, but these constraints can only be met for certain angles α∗. We
note that for α = 0, c12 and c21 cannot both be zero, and the streamline approximation
with c03 = 0 is not one-dimensional along the x axis. For α = π/4, a pure one-dimensional
approximation needs K2(π/4) = 1/12

√
2.

For the unsteady problem in one dimension we use the y-axis as the time variable.
With an advection speed of ~a = (a, 1)T and ~∇u = (∂/∂x, ∂/∂t)T , the steady approximation
a~e1 · ~∇u = 0 now represents ut + aux = 0, and the angle α is between 0 and π.

The fixed stencil of (5.27) translates to

∆xux = 1
12

(
un+1
i+1 + 4uni+1 + un−1

i+1 − u
n+1
i−1 − 4uni−1 − un−1

i−1

)
,

∆t ut = 1
12

(
un+1
i+1 + 4un+1

i + un+1
i−1 − u

n−1
i+1 − 4un−1

i − un−1
i−1

)
, (5.32)

The error of this scheme follows from the truncated Taylor series expansion in x and t,

~e1 · ~∇u =
∂u

∂t
+ a

∂u

∂x
+

1
6

(
∆x2 ∂

2

∂x2
+ ∆t2

∂2

∂t2

)(
∂u

∂t
+ a

∂u

∂x

)
+O(∆x4,∆x2∆t2,∆t4) .

(5.33)
The term ut + aux between brackets is at least of O(∆x2,∆t2), and we obtain an approx-
imation which is fourth order in time and space when the time step ∆t is proportional to
∆x.

We use the Fourier components of the previous section to obtain an expression for the
amplification factor of (5.32),

G2 (I sinφx + ν(cosφx + 2)) + 4GI sinφx + I sinφx − ν(cosφx + 2) = 0 . (5.34)

Both roots of this quadratic expression for G(ν, φx) have a magnitude of one for all values
of ν and φx.
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The steady two-dimensional or unsteady one-dimensional analysis is valid for a per-
fectly regular grid. When this is not the case, the cancellation of terms, which is at the
basis of the error reduction, is not valid anymore. The solutions revert to second order on
a distorted grid. On a reasonably smooth grid an important reduction of the error can still
be observed. In a FD context, the grid coordinates can be included in the derivations of
this section directly, and the approximation retains the accuracy. In a FV method where
the edge flux is used in two neighboring cells, a full grid correction is theoretically not
possible. A coordinate transformation to a uniform ξ-η plane only partly restores accuracy
on a fairly smooth grid.

A similar observation holds for the diagonal approximations of §2, but these discretiza-
tions are less sensitive to grid quality.

The Fourier components. The stability analysis for central discretizations takes place
in two steps. First, the stability domain of the space operator Ω is determined. The complex
eigenvalues Ωj should satisfy the condition Re(Ωj) ≤ 0 ∀j.

Then, a suitable time integration method is chosen. An Euler backward scheme is not
stable for a central discretization, but e.g. a four-step Runge-Kutta or an implicit time
integration leads to a stable solution. The stability region of the four step Runge-Kutta
method in the Ω∆t plane includes the imaginary axis until the value 2.78, and the real
axes until the value -1.

We use the Fourier components to find the eigenvalues of the space operator for the
discretization of (5.22) when the approximation is based on the fixed stencil of (5.27) to-
gether with the basis B. The use of Fourier components corresponds to periodic boundary
conditions for the space operator. The eigenvalues are then

Ωl,m = −4
a

h

(
1
12I
(

cosα sinφx(cosφy + 2) + sinα sinφy(cosφx + 2)
)

+K1I sinφx(cosφy − 1) +K2I sinφy(cosφx − 1)

−K3(cosφx − 1)(cosφy − 1)
)
, (5.35)

where φx = ∆xkx = lπ/N , l = 0 . . . N , and φy = ∆yky = mπ/N , m = 0 . . . N , with N the
number of points in one direction.

The general expression for the eigenvalues, (5.35), includes a real part related to the
parameter K3. This parameter is associated with the symmetric stencil which represents
a Laplacian smoother. The Runge-Kutta time integration method accommodates space
operators with eigenvalues which have a negative real part. This implies that we need
K3 ≤ 0. A quick investigation reveals that |<(Ω)| ≤ 1 for −3/5 / K3 ≤ 0. However, a full
analysis of the discretizations with the eigenvalues of (5.35) permitting the optimal time
step with a real part within the stability domain of the Runge-Kutta time integration is
beyond the scope of this paper. We restrict ourselves to imaginary eigenvalues, K3 = 0.

For the one-dimensional grid-aligned discretizations with Kx = (−1/12 , 0, 0)T , Ky =
(0,−1/12 , 0)T , the eigenvalues of the space operator are

Ωl,m = −a
h
I(cosα sinφx + sinα sinφy) . (5.36)

The largest eigenvalues Ωmax are obtained for sinφx = sinφy = 1, φx = φy = π/2 with the
value Ωmax(α) = −a/hI(cosα + sinα). This eigenvalue restricts the time step of the time
integration.
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For the diagonal approximation of (2.6), Kx = (−1/12 , 0, 0)T , Ky = (1/4 , 1/6 , 0)T , the
eigenvalues are

Ωl,m = −a
h
I
(
(cosα− sinα) sinφx + sinα sin(φx + φy)

)
. (5.37)

For angles 0 ≤ α ≤ π/4, the largest eigenvalue Ωmax(α) = −a/hI cosα appears when
φx = π/2 and φy = 0. For these phase angles, the eigenvalues of (5.35) with K3 = 0
coincide, and the time step which is associated with these eigenvalues is therefore the
optimal time step. The allowable time step is larger by a factor (cosα+ sinα)/cosα than
the one-dimensional grid-aligned discretization. This is similar to the first order upwind
discretization. The time step restriction ∆t ∼ h/(a cosα) = h/ax is typical for diagonal
discretizations.

The general streamline approximation with flow-angle independent stencils of (5.30),
c03 = 0, taking K3 = 0, has the eigenvalues

Ωl,m = − a

3h
I
{

cosα sinφx(cosφy + 2) + sinα sinφy(cosφx + 2)

+ 12Kx2

[
cosα sinφy(cosφx − 1) + sinα sinφx(cosφy − 1)

]}
. (5.38)

The streamline stencil of (5.27) has Kx2 = 0, and the eigenvalues in (5.38) attain a maxi-
mum at α = π/4 and φx = φy, cosφx = 1/2(

√
3− 1), of Ωmax(π/4) = −a/3hI

√
2 sinφx(2 +

cosφx) ≈ 1.04. The expression of Ωmax as function of the flow angle is complicated, but
Ωmax smoothly increases between 1 and 1.04 for angles 0 ≤ α ≤ π/4. The streamline stencil
of (5.27) also has the optimal stability. The skewness introduced by Kx2 is detrimental to
stability. The approximations with Kx2 = ±1/12 have a maximum of the one-dimensional
grid-aligned stability.

The optimal time step can be an additional design criterion for flow-angle dependent
approximations. Assume that we are interested in purely imaginary eigenvalues, and that
the parameters K1(α) and K2(α) are expressed in a sum of associated Legendre polyno-
mials, using sets of parameters κ1 and κ2. For any flow angle α, we try to minimize the
magnitude of Ω computed with these values of κ. In the optimal case, this should not
exceed a/h cosα. An analytical solution to this problem is difficult to formulate due to the
large number of parameters involved. For a given flow angle α we can use an optimization
procedure to determine the parameters κ. This procedure is then repeated for some angles
between 0 and π/4, and an analytic expression for the κ’s can be fitted to this data. A
detailed analysis and exploration of this method is outside the scope of this paper.

Instead, we will consider briefly the optimal time step of (5.35) for the streamline
discretization with c03 = 0, (5.29). The most simple expression for K2 which satisfies
the continuity constraint K2(0) = 0 is K2 = f sinα, where the factor f remains to be
determined. A brute force approach consists in computing Ω for a large number of the
combinations of φx, φy, and α, and verifying for which values of f the condition Ω =
a/h cosα is respected. The result is

f = 1
6 , K2 = 1

6 sinα , (5.39)

and we can take for Kx2 and Ky2 the coefficients of (5.11) or (5.12) multiplied by −1/6.
Then K1 follows from (5.29), e.g. Kx1 = Kx2 tanα and Ky1 = Ky2 tanα which satisfy also
the continuity constraints. At α = 0 we start with the streamline approximation of (5.27),
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while at α = π/4, Kx1 = Ky1 = Kx2 = Ky2 = 1/12. The stencils of ux and of uy for flow
along the diagonal are shown in Fig. 5.11. The sum of ux and uy is 1/2 (u11 − u−1−1), the
diagonal approximation for ∂u/∂e1.

12∆xux = 12∆y uy = -2
0

-1

-2

-3

3

2

12

-2 21

-2

2

-3 -1

0

3

Figure 5.11. The stencils for ux and uy at α = π/4 which eliminate the term c03 while permitting
the optimal time step due to a maximum amplification Ω = a/h cosα.

The eigenvalues of this discretization are

Ωl,m = −a
h
I
{

1
3 cosα sinφx(cosφy + 2) + sinα cosφx sinφy

+
2 sin2 α

3 cosα
sinφx(cosφy − 1)

}
, (5.40)

and the maxima correspond to the optimal time step of the diagonal discretization.
The streamline approximation of (5.27) is slightly less optimal in stability, but it has

the advantage of avoiding the dependence on the flow angle. For systems of equations a
decomposition with FVS or FDS in traveling waves is avoided. Furthermore, while the
application in FD of the stencils of Fig. 5.11 is straightforward, the implementation in
FV is not. This is due to the presence of stencil B2 in ux and of B1 in uy. A solution is
to incorporate the first in the g-flux and the second in the f -flux. There is no streamline
optimal time step solution with Ky1 = 0 and Ky1 = 0 which is at the same time continuous.

The diagonal approximation of (2.6) and the streamline stencil of (5.39) are both
dependent on the flow angle. The first changes stencil each π/4, the second modifies the
approximation continuously. It is possible to get the optimal stability of the diagonal
approximation with fixed stencils, but then we have to drop the streamline condition. We
examine the regular approximations, condition (5.24), at angles α = 0 and α = π/4 to find
Kx1 = 1/6 with the stencils of Fig. 5.12.

4∆xux = 4∆y uy =

-1

1

1

-1-1

1 1

-1

Figure 5.12. The stencils for ux and uy which give an approximation of ∂u/∂e1 with the optimal
stability of the diagonal approximation.

Remark that the approximation for ∂u/∂e1 using the stencils of Fig. 5.12 is one-di-
mensional along the diagonals, but not along the grid axes. The improvement in stability
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compared to the one-dimensional grid-aligned approximation has a price of double the
truncation error. Compared to the diagonal discretization it removes the flow dependency,
but quadruples the error. The eigenvalues of the space operator of this discretization are

Ωl,m = −a
h
I(cosα sinφx cosφy + sinα cosφx sinφy) . (5.41)

The maximum eigenvalue of Ω, excluding the scaling factor a/h as a function of the
flow angle α is given in Fig. 5.13 for the above approximations.

0 π/8 π/4

α

0.5

1

1.5

Ωmax(α) one-dimensional
diagonal
streamline, fixed

Figure 5.13. The maximum eigenvalue of Ω, excluding the scaling factor a/h, as a function of the
flow angle α for the three approximations : one-dimensional grid-aligned (5.36), diagonal (5.37) and
streamline (5.38) with Kx2 = 0. The flow-angle dependent streamline approximation (5.39), and
the fixed stencil with optimal stability, Fig. 5.12, share the curve of the diagonal approximation.

For a time-accurate numerical simulation, the global time step is determined by the
maximum value of Ωmax, and the streamline approximation is almost as good as the diag-
onal approximation. With a local time step, the streamline approximation is somewhere
in between the diagonal and the one-dimensional grid-aligned approximation.

For multi-grid solvers, the amplification of the high frequency components is of impor-
tance. We show in Fig. 5.14 the behavior of Ωmax for π/2 ≤ |φx|, |φy| ≤ π of the above
approximations.

0 π/8 π/4

α

0.5

1

1.5

Ωmax(α) one-dimensional
diagonal
streamline, fixed
streamline, angle dependent
fixed, optimal stability

Figure 5.14. The maximum eigenvalue of Ω in the high frequency domain π/2 ≤ |φx|, |φy| ≤ π,
excluding the scaling factor a/h, as a function of the flow angle α for the five approximations : one-
dimensional grid-aligned (5.36), diagonal (5.37), streamline (5.38) with Kx2 = 0, the flow-angle
dependent streamline approximation (5.39), and the fixed stencil with optimal stability Fig. 5.12.

The degrees of freedom of the stability in (5.35) permit also optimization for this type
of application, but this is not explored in this paper.
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The error of the directional discretizations is significantly smaller than for the one-
dimensional grid-aligned discretizations, for which

c30 = 1
24(3 + cos(4α)) , c03 = 1

24 sin(4α) ,
c21 = 1

8(1− cos(4α)) , c12 =−1
8 sin(4α) . (5.42)

We have used the basis of stencils to add new central approximations to the previously
known one-dimensional grid-aligned approximation and the diagonal approximation. They
are a continuous diagonal approximation, a fixed streamline approximation, a streamline
angle-dependent approximation, and a fixed approximation with optimal stability. The
properties of these discretizations are summarized in Table 5.3.

Table 5.3. Numerical properties of the central one-dimensional grid-aligned approximation, the
diagonal approximation, the fixed streamline approximation, the streamline angle-dependent ap-
proximation, and the fixed approximation with optimal stability.

discretization continuity streamline switching Ωmax

one-dimensional y n fixed (ax + ay)/h

diagonal y(FD), n(FV) n π/4 ax/h

continuous diagonal y n α ax/h

streamline, fixed y y fixed 1.04 a/h
†

streamline, angle y y α ax/h

fixed, opt. stability y n fixed ax/h

In the column switching, the symbol α indicates a discretization which
depends continuously on the flow angle α.
† : the stability of the streamline discretization varies little with the flow
angle α.

We compare for the above discretizations the coefficients cmn in Fig. 5.15, and the
average error values Imn in Table 5.4.

Table 5.4. The average values Imn for the discretizations of ∂u/∂e1 of Table 5.3.

discretization I30 I21 I12 I03

one-dimensional 0.125 0.080 0.125 0.0265

diagonal 0.227 0.057 0.068 0.0073

streamline, fixed 0.167 0.0 0.167 0.0

streamline, angle-dep., K2 = 1/6 sinα 0.227 0.065 0.106 0.0

fixed, optimal stability 0.250 0.159 0.250 0.0531

The reduction in the error c03 for the diagonal discretization compared to the one-
dimensional grid-aligned discretization is 3.65. This reduction is of the same order as for
the first order discretization. The fixed stencil with optimal time step doubles this error.
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Figure 5.15. The coefficients of the error terms for the approximations of Table 5.3.

5.3. Directional first order discretizations of the first derivative in two di-
mensions on a 3× 3 grid.

The first order upwind discretizations discussed by Sidilkover [8] and by Koren [14]
occupy a stencil which fits in a 3× 3 grid. Their considerations are to improve multi-grid
properties.

The basis for a first order discretization of the first derivative is given by

∆xux = ∆xux,f + ∆xux,b(kx1, . . . , kx6) = (u0,0 − u−1,0) +
6∑
i=1

kxib
i ,

∆y uy = ∆y uy,f + ∆y uy,b(ky1, . . . , ky6) = (u0,0 − u0,−1) +
6∑
i=1

kyib
i , (5.43)

where bi is the basis stencil i, see Fig. 5.16.

The nodes on the extended upper triangle are (1,-1), (0,0), (1,0), (-1,1), (0,1), and
(1,1), and have a weight 1 or 0 in the basis stencils b1 . . . b6 respectively.

When we enforce the diagonal condition, i.e. at α = π/4 we set cmn = 0 with m+n = 2,
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Figure 5.16. The stencils of the basis of (5.43).

m < 2, the program GDD gives the solution

∆xux = ∆xux,f + ∆xux,b(ky1, . . . , ky4) = (u0,0 − u−1,0) + (ky3 + ky4 − ky1 − ky2)b′1 ,

∆y uy = ∆y uy,f + ∆y uy,b(ky1, . . . , ky5) = (u0,0 − u0,−1) +
5∑
i=1

kyib
′i , (5.44)

where b′i is the basis stencil i,

b′1 = b1, b′2 = b3 − 2b2, b′3 = b4 + 2b2, b′4 = b5, and b′5 = b6 − 2b2. (5.45)

The diagonal constraint has reduced the basis of stencils of Fig. 5.16 to five stencils.
Furthermore, the approximations of the derivatives ux and uy are now linked via the
parameters ky1 . . . ky4.

The splitting of the basis stencils b in symmetric and antisymmetric stencils as de-
scribed in §5.2 leads to the basis B′ = {ab1, ab2, sb1, sb2, sb3, sb4}. This basis is neither
orthogonal nor really beautiful, and we impose some more conditions of symmetry to ar-
rive at the orthogonal basis B with coefficients K of Fig. 5.17. Only the first three stencils
appear in the truncation error as lowest order contribution.
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Figure 5.17. An orthogonal basis B of stencils for (5.43).

Monotonicity of the approximation. The expression for ∂u/∂e1 using (5.43) based on
ki leads to the monotonicity constraints on the principal region

k1 ≤ 0 , k3 ≤ 0 , k4 ≤ 0 , k5 ≤ 0 , k6 ≤ 0 , k2 + k3 + 2k4 + 2k5 + 2k6 + cosα ≥ 0 ,
k1 + k2 + 2k3 + k4 + 2k5 + 3k6 ≤ 0 , 2k1 + k2 + 2k3 + k5 + 2k6 + sinα ≥ 0 ,

k2 + cosα+ sinα ≤ h

a∆t
. (5.46)

The monotonicity conditions in basis B are

K2 − 2K3 −K4 −K5 +K6 ≤ 0 , −K1 +K3 + 2K5 − 2K6 − cosx ≤ 0 ,
−K2 − 2K3 +K4 −K5 +K6 ≤ 0 , K1 +K3 + 2K4 − 2K6 − sinx ≤ 0 ,

4K3 + 4K6 + cosα+ sinα ≤ h

a∆t
, K1 +K3 − 2K4 − 2K6 ≤ 0 ,

−K2 − 2K3 −K4 +K5 − 2K6 ≤ 0 , −K1 +K3 − 2K5 − 2K6 ≤ 0 ,
K2 − 2K3 +K4 +K5 +K6 ≤ 0 . (5.47)

For the optimal time step, ∆t ≤ h/(a cosα) = h/ax, k2 = − sinα, and k1 = k3 = k5 =
k6 = 0, and 0 ≥ k4 ≥ −1/2 (cosα + sinα). The more general monotone solution which
involves the six basis stencils does not have the optimal time step.
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Continuity of the approximation. The FD conditions for continuity of the discretization
with respect to the flow angle for α = 0 are K2 = 0, K4 = 0. In a FV formulation they
are Kx2 = 0 and Kx4 = 0. At the diagonal, α = π/4, the conditions are for the FD
method K1 = 0, K4 = K5, and for the FV method Kx1 = −Ky1, Kx2 = Ky2, Kx3 = Ky3,
Kx4 = Ky5, Kx5 = Ky4, and Kx6 = Ky6. Similar conditions hold in basis b.

Optimizing the directional error. In basis B, the error c02 in the approximation of
∂u/∂e1 is

c02 = −1
4 sin(2α)(cosα+ sinα) +K1 cos(2α)− 2K2 sin(2α)− 3K3 . (5.48)

The streamline solution c02 = 0 follows from (5.48) and can be combined with the conti-
nuity constraints ; a particular upwind solution which is continuously dependent on α for
0 ≤ α ≤ π/4 is given in [14]. It is also possible to have c03 = 0 and c04 = 0, but not c05 = 0.

To see if there is a monotone discretization with c02 = 0, substitute the solution
of (5.48) in the expression for ∂u/∂e1, or directly in (5.46), and check if there is an angle
α for which the new conditions are infringed. This is a problem of the class of constraint
optimization, and solution methods can be found in the book of Strang [22]. We have used
the code HOPDM [23] to check the new monotonicity constraint. The monotonicity with
c02 = 0 is satisfied for α = 0 and for α = π/4, but not for α = π/6.

With this result, we look for a continuous streamline approximation without imposing
monotonicity on the purely upwind part for 0 ≤ α ≤ π/4. In basis b, this means that the
stencils 1, 3, 5, and 6 are absent. The streamline condition with only two basis stencils left
is

c02 = −1
2 sin(2α)k2 + 1

2(cos(2α) + 1)k4 − 1
4 sin(2α)(cosα+ sinα) . (5.49)

Combined with continuity at α = 0 and at α = π/4, a solution is

kx2 = 1
2(cos(2α)− 1) , ky2 = −1

2 , kx4 = 0 , ky4 = 1
2 cos(2α) ,

k2 = −1
2 sinα(1 + sin(2α)) , k4 = 1

2 sinα cos(2α) , (5.50)

see also Sidilkover [8] and Koren [14].
We note that the freedom due to the basis of stencils can also be used to find a least non-

monotone solution. When the monotonicity coefficients of the discretization, e.g. (5.46),
cannot be satisfied, then choose the coefficients k such that the offending monotonicity
coefficients are minimized in some norm. This may reduce the need for limiting or for
artificial viscosity.

5.4. Directional second order discretizations of stream-wise second deriva-
tives in two dimensions on a 3× 3 grid.

The concept of directional discretizations applies also to higher derivatives, e.g. ∂2u/∂e21,
the stream-wise second derivative. With the coordinate transformation of (5.3) we have

∂2u

∂e2
1

= cos2α
∂2u

∂x2
+ 2 cosα sinα

∂2u

∂x∂y
+ sin2α

∂2u

∂y2
. (5.51)

In the previous sections we have focused on ∂u/∂e1 and the grid-based representation ux
and uy, but now we look for uxx, uxy and uyy, (5.51). The procedure to obtain directional
discretizations is the same : optimize the error in the approximation to the derivative by
reducing unwanted terms in the combination of the three derivatives.
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The starting point is the subspace of consistent approximations of ∂2u/∂e21 on a 3 × 3
grid,

∆x2 uxx =∆x2 uxx,f + ∆x2 uxx,b(kxx) = 1
4(u−1,1 + 2u−1,0 + u−1,−1

− 2u0,1 − 4u0,0 − 2u0,−1 + u1,1 + 2u1,0 + u1,−1) + kxxb ,

∆y2 uyy =∆y2 uyy,f + ∆y2 uyy,b(kyy) = 1
4(u−1,1 − 2u−1,0 + u−1,−1

+ 2u0,1 + 4u0,0 + 2u0,−1 + u1,1 − 2u1,0 + u1,−1) + kyyb ,

∆x∆y uxy =∆x∆y uxy,f + ∆x∆y uxy,b(kxy)
=1

4(u1,1 − u−1,1 − u1,−1 + u−1,−1) + kxyb , (5.52)

where b is the basis stencil,

b = u−1,1 − 2u−1,0 + u−1,−1 − 2u0,1 + 4u0,0 − 2u0,−1 + u1,1 − 2u1,0 + u1,−1 , (5.53)

see Fig. 5.18.
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Figure 5.18. The stencils for uxx, uxy, and uyy of (5.52) with the stencil of the degree of freedom,
approximating ∆x2∆y2 ∂4u/∂x2∂y2.

The transformation for the second derivative normal to the advection direction is
∂2u/∂e22 = cos2α∂

2u/∂y2 − 2 cosα sinα∂2u/∂x∂y + sin2α∂
2u/∂x2, and the approximation of

∂2u/∂e22 uses also the grid-based derivatives of (5.52). We will use the notation kxx1, kxy1,
and kyy1 for ∂2u/∂e21 and kxx2, kxy2, and kyy2 for ∂2u/∂e22. The approximation of ∂2u/∂e21
depends on the parameter k1 = kxx1 cos2α+ 2kxy1 sinα cosα+ kyy1 sin2α, and ∂2u/∂e22 on
k2 = kyy2 cos2α− 2kxy2 sinα cosα+ kxx2 sin2α.

The basis stencil approximates the fourth mixed derivative ∆x2∆y2 ∂4u/∂x2∂y2 which
we encountered before. The fixed stencils are chosen for obtaining simple directional er-
rors. We will consider the principal region, 0 ≤ α ≤ π/4, where cosα ≥ sinα ≥ 0, and
ax/∆x ≥ ay/∆y ≥ az/∆z ≥ . . . ≥ 0. For other flow angles we will use a permutation of the
discretization.

The continuity of the discretization of ∂2u/∂e21 leads at α = π/4 to the condition
kxx1(π/4) = kyy1(π/4), while kxy1 imposes no extra conditions thanks to the symmetry
of the stencil. Similar conditions hold for ∂2u/∂e22.
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The one-dimensional grid-aligned discretization is obtained both for ∂2u/∂e21 and ∂2u/∂e22
with kxx = kyy = −1/4 and kxy = 0 or k = −1/4. For the diagonal discretization this is
obtained with kxx1 = kyy1 = −1/4 and kxy1 = 1/4, and with kxx2 = kyy2 = kxy2 = −1/4

respectively, or k = 1/4 (sin(2α) − 1). The stencils of uxy used in the diagonal approxi-
mation are shown in Fig. 5.19. The stencils for the approximations of uxx and uyy of the
diagonal approximation are the one-dimensional grid-aligned derivatives. The diagonal
approximation is continuous.

∆x∆y uxy = ∆x∆y uxy =1
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0 1/2

01/2
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-1/20
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Figure 5.19. The stencils of the approximation of ∂2u/∂x∂y used in the diagonal discretizations of
∂2u/∂e21, left, and ∂2u/∂e22, right.

The diagonal discretization eliminates again the cross-derivatives when the flow is along
the x-axis or along the diagonal, and reduces the approximation to a pure one-dimensional
second derivative for α = 0 or α = π/4.

The directional error ε in the approximation of the second stream-wise derivative
∂2u/∂e21 is obtained with a Taylor series expansion expressed in the local basis,

ε = h2

{(
c40

∂2

∂e2
1

+ c31
∂2

∂e1∂e2
+ c22

∂2

∂e2
2

)
∂2u

∂e2
1

+ c13
∂4u

∂e1∂e3
2

+ c04
∂4u

∂e4
2

}
+O(h4) , (5.54)

where cmn is the coefficient of ∂4u/∂em1 ∂e
n
2
, excluding the factor h4. The coefficients cmn

take the form

c40 = 1
4k1 sin2(2α) + 1

12(1 + sin2(2α)) ,
c31 = sin(2α) cos(2α)(k1 + 1

4) ,

c22 = k1(1− 3
2 sin2(2α)) + 1

4(1− sin2(2α)) ,
c13 = − sin(2α) cos(2α)(k1 + 1

12) ,

c04 = 1
4k1 sin2(2α) . (5.55)

For ∂2u/∂e22 the coefficients are c40 = 1/4 k2 sin2(2α), c31 = sin(2α) cos(2α)(k2 + 1/12),
c22 = k2(1 − 3/2 sin2(2α)) + 1/4 cos2(2α), c13 = − sin(2α) cos(2α)(k2 + 1/4), and c04 =
1/4 k2 sin2(2α) + 1/12(1 + sin2(2α)).

When solving ∂2u/∂e21 = 0, the coefficients c40, c31, and c22 are irrelevant in the er-
ror, (5.54). However, the terms c13 and c04 cannot be set to zero simultaneously. For the
advective derivative ∂u/∂e1 a streamline approximation represents a condition on one nor-
mal derivative in the error term. For a second derivative there are two conditions. The fixed
stencils of (5.52) result in c04 = 0, but c13 6= 0. Let us call this an incomplete streamline
approximation.

The sum of c13∂
4u/∂e1∂e

3
2

+ c04∂
4u/∂e42 can be eliminated when k1 is made data-depen-

dent, i.e. a form of limiting. The estimation of ∂4u/∂e1∂e
3
2

and ∂4u/∂e42 requires nevertheless
a larger stencil.
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The Laplacian is an elliptic operator not related to an advection direction, and is
invariant under rotation, ∂2u/∂e21+∂2u/∂e22 = ∂2u/∂x2+∂2u/∂y2. The stencils of the Laplacian
which are based on the diagonal approximations of ∂2u/∂e21 +∂2u/∂e22 are shown in Fig. 5.20
for the case that the local basis B is along the x-axis and for the local basis B along the
diagonal.

∆x∆y∇2 = ∆x∆y∇2 =-4 11

1

1

-4

1

1 1

1

Figure 5.20. The stencils for the approximation of ∂2u/∂e21 + ∂2u/∂e22 for the case that the local
basis B is along the x-axis and for the local basis B along the diagonal.

It is possible to optimize the Laplacian since the errors are given by

c40 = c04 = 1
4k3 sin2(2α) + 1

12(1 + sin2(2α)) ,
c31 = −c13 = sin(2α) cos(2α)(k3 + 1

3) ,

c22 = k3(1− 3
2 sin2(2α)) + 1

2 cos2(2α) , (5.56)

where k3 is the degree of freedom in the approximation of the Laplacian. These errors are
in basis B since we add the directional second derivatives, (5.55) and below. For α = 0 we
get the grid-based errors. Taking k3 = −1/3 and ∆x = ∆y = h leads to the stencil

h2

(
∂2u

∂e2
1

+
∂2u

∂e2
2

)
= 1

6( u−1,1 + 4u−1,0 + u−1,−1 + 4u0,1 − 20u0,0 + 4u0,−1

+u1,1 + 4u1,0 + u1,−1) , (5.57)

which is shown in Fig. 5.21.

6h2

(
∂2u

∂e2
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+
∂2u

∂e2
2
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= -20

44
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4

1
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1

1

Figure 5.21. The stencil for the approximation of the Laplacian with an error of O(h4).

This is the approximation of Dahlquist and Bjork [9]. The error ε of this approximation,
substituting k3 = −1/3 in (5.56) and following a reasoning like (5.17), is of O(h4). The
individual stencils are averages of one-dimensional second derivatives, Fig. 5.22.

When we interpret the y-axis as time, and take a new variable X = ax, we obtain the
subsonic wave equation utt + a2uXX = 0 with

∆X2 uXX = 1
12(un+1

i+1 − 2un+1
i + un+1

i−1 + 10uni+1 − 20uni + 10uni−1

+ un−1
i+1 − 2un−1

i + un−1
i−1 ) ,
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Figure 5.22. The derivatives uxx and uyy which add up to the stencil of Fig. 5.20.

∆t2 utt = 1
12(un+1

i+1 − 2uni+1 + un−1
i+1 + 10un+1

i − 20uni + 10un−1
i

+ un+1
i−1 − 2uni−1 + un−1

i−1 ) . (5.58)

This is a fourth order approximation in ∆t and in ∆X

The analysis for the supersonic case involves ∂2u/∂e21 − ∂2u/∂e22, and the analysis is
similar. This derivative is not rotationally independent, and we take α = 0 to find that
k3 = 0 leads to

h2

(
∂2u

∂e2
1

− ∂2u

∂e2
2

)
= u−1,0 − u0,1 − u0,−1 + u1,0 . (5.59)

The stencil of (5.59) has fourth order accuracy at convergence, and is shown in Fig. 5.23.
The individual stencils for uxx and uyy are the ones shown in Fig. 5.18.

h2

(
∂2u

∂e2
1

− ∂2u

∂e2
2

)
= 11

-1

-1

Figure 5.23. The stencil for the approximation of ∂2u/∂e21 − ∂
2u/∂e22 with an error of O(h4).

A comparison is made for three discretization of ∂2u/∂e21, the one-dimensional grid-
aligned discretization, kxx1 = kyy1 = −1/4 and kxy1 = 0, the diagonal discretization,
kxx1 = kyy1 = −1/4 and kxy1 = 1/4, and the incomplete streamline discretization of (5.52)
with k1 = 0. The coefficients are shown in Fig. 5.24, and the average values in Table 5.4.

Table 5.5. The average values Imn of the error terms of the second stream-wise derivative ∂2u/∂e21 :
one-dimensional grid-aligned, diagonal, and the incomplete streamline stencil.

discretization I40 I31 I22 I13 I04

one-dimensional 0.094 0.0 0.0625 0.053 0.0313

diagonal 0.120 0.053 0.0625 0.016 0.0047

incomplete streamline 0.125 0.080 0.125 0.027 0.0

The second stream-wise directional discretizations have less error than the one-dimen-
sional grid-aligned approximations. They can be used as directional artificial dissipation
since they can be applied separately with different coefficients in the stream-wise and
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Figure 5.24. The coefficients of the error terms of the second stream-wise derivative : one-
dimensional grid-aligned, diagonal, and the incomplete streamline approximation.

in the normal direction. When both coefficients are the same, the resulting Laplacian is
optimal with k = −1/6, but not optimal with the diagonal approximation.

Upwind or upwind biased second derivatives can be derived in the same way on a larger
stencil, but are beyond the scope of this paper.

5.5. Combining various approximations.

We have encountered in the previous sections approximations to derivatives with an
increased accuracy and stability. The approximation for the Laplacian gains two orders
of accuracy, while the advection derivative ∂u/∂e1 gained one or two orders for the steady
advection equation on the 3× 3 grid. We now turn our attention to the linear advection-
diffusion equation with a source term,

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
+ ν∇2u = s(x, y) . (5.60)

We will start by looking at the one-dimensional advection equation with a source term at
steady state,

ax
∂u

∂x
− s(x) = 0 . (5.61)
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Suppose that we use an approximation of ax∂u/∂x which has an error ε of the form

ε = hjcj
∂j

∂xj

(
ax
∂u

∂x

)
+O(hk) , with k > j , (5.62)

with cj some constant or function, which is typical of the approximations of the previous
sections. The term between brackets in (5.62) is not of O(hj) due to the presence of
the source term in (5.61). This is easily cured by including a correction term −s(x) in
the approximation. The correction term should use the same spatial approximation as
the advection term, and it is convenient to discretize together ∂/∂x(axu− hs). This is the
remedy of Sidilkover [8], who corrected the flux approximation to fi+1/2 = (axu−hs)i+1/2.
The new discretization of (5.61) has an error

ε = hjcj
∂j

∂xj

(
ax
∂u

∂x
− hs

)
+O(hk) , (5.63)

where the term between brackets is now of O(hj), which leads to the desired error reduc-
tion.

This procedure works also in higher dimensions. The effect of the source on stability and
convergence remains to be analyzed. For systems a decomposition in waves is necessary.

The Laplacian and the diffusion term can be treated as a source term when discretizing
an advection equation.

For the unsteady solution, (5.60), we seek the approximation in one more dimension,
and take the time variable along the new axis.

The non-linear problem uses the discretizations described in previous sections.

5.6. Directional fourth order discretizations of the first derivative in two
dimensions on a 5× 5 grid.

The analysis is similar to the one given in §5.2. On this grid, the space of consistent
approximations has a basis of ten different stencils. We use the upper triangle property to
denote the basis stencils. The upper triangle nodes are (2,−1), (1,0), (2,0), (0,1), (1,1),
(2,0), (-1,2), (0,2), (1,2), and (2,2) respectively, and for basis stencil bi the weight of all
these nodes is zero, except for upper triangle node i which has a weight of one. This basis
can be found on the website [24]. The continuity constraints are similar to the ones of §5.2.
There is no monotonic approximation.

We use a streamline fixed stencil, ∂5u/∂e52 = 0 or c05 = 0, see Fig. 5.25. Similar to the
fixed stencil (5.27), also c06 = 0, and at steady state the solution of the advection equation
is of O(h6).

The basis B̃ with antisymmetric and symmetric stencils is B̃ = {ab1, . . . , ab5, ab7,
sb1, . . . , sb4}. The antisymmetric stencils are important for the lowest order of the error
of ∂u/∂e1, while the symmetric stencils appear one order higher in the error, and remain
important for the Fourier analysis. This basis is not very convenient to work with, even
when we apply the orthogonalization procedure. It is more practical to transform B̃ to the
regular fully orthogonal basis B of which the antisymmetric stencils are shown in Fig. 5.26.

With this basis it is easy to construct regular discretizations for which the stencil of
uy is the stencil of ux mirrored in the x = y diagonal. The basis stencils 4, 5, and 6 have
this property with respect to stencils 1, 2, and 3 respectively. A regular approximation has
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Figure 5.25. The fixed stencils for the directional fourth order approximations of ux and uy in two
dimensions with the streamline property, ∂5u/∂e52 = 0 or c05 = 0, but also c06 = 0.

Kx4 = Ky1 and Ky4 = Kx1, or K4 = Ky1 cosα+Kx1 sinα, and similar for the combinations
K5 and K2, and K6 and K1.

A straight approximation has Kx4 = Kx5 = Kx6 = Ky1 = Ky2 = Ky3 = 0, and a
regular straight approximation only depends on Kx1, Kx2, and Kx3.

The continuity conditions with this basis are trivial.
With the fixed stencils of Fig. 5.25 and basis B for the one-dimensional grid-aligned

discretization, the K’s are zero, except Kx1 = Ky4 = 1/120. The diagonal approxima-
tion of (2.9) uses the same vector Kx, while Ky = 1/7(1/24,−2/3,−1/6,−1/10,−2/3,−1/6,
0, 0, 0, 0)T .

The error terms c05 and c14, expressed in basis B, are

c05 = sin(2α)
{
− (2K1 +K2) cos3α− 7K3 sin2α cosα

+ (2K4 +K5) sin3α+ 7K6 cos2α sinα
}
,

c14 =− 1
120(cos(4α) + 3)

+ (2K1 +K2) cos3α(cos2α− 4 sin2α)− 14K3 cosα sin2α(2 sin2α− 3 cos2α)

+ (2K4 +K5) sin3α(sin2α− 4 cos2α)− 14K6 sinα cos2α(2 cos2α− 3 sin2α) . (5.64)

The coefficients of the error terms of O(h5) depend on the symmetric stencils, and are
proportional to the parameters K7–K10.

We can obtain c05 = 0 by solving (5.64) e.g. for K1,

K1 = −1
2K2 + 7

2K6 tanα− 7
2K3 tan2α+ tan3α(K4 + 1

2K5) . (5.65)

The substitution of this solution in c14 gives

c14 = − 1
120(cos(4α) + 3)− 6(2K4 +K5) sin3α+ 7 sin(2α)(2K3 sinα−K6 cosα) , (5.66)

which can only be optimized. The analysis is similar to the one of §5.2 and will not be
repeated here.
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Figure 5.26. The regular antisymmetric fully orthogonal basis stencils for the fourth order approx-
imations.

Streamline stencils which are independent of the flow angle have to satisfy (5.65) for
all angles α. This constraint translates to

Kx4 = 1
2(−Kx5 + 7Ky3), Ky4 = −1

2Ky5, Kx1 = −1
2Kx2,

Ky1 = 1
2(7Kx6 −Ky2), and Ky6 = Kx3 , (5.67)

which is not subject to the continuity constraints.

We will follow the steps of §5.2 in the stability analysis of the approximation which
consists of the fixed stencil of Fig. 5.25 with basis B and with periodic boundary conditions.
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The parameters K1 . . .K6 contribute to the imaginary part, and K7 . . .K10 to the real part
of Ωl,m. The imaginary part of the eigenvalues of the space operator are

Ωl,m = −I a
h

(
1
15

[
cosα sinφx(20− cosφx(2(cosφy − 1)2 + 5))

+ sinα sinφy(20− cosφy(2(cosφx − 1)2 + 5))
]

+8 sinφx(cosφy − 1)
{

(2K1 cosφx +K2)(cosφy − 1) +K3(cosφx − 1)(4 cosφy + 3)
}

+8 sinφy(cosφx − 1)
{

(2K4 cosφy +K5)(cosφx − 1) +K6(cosφy − 1)(4 cosφx + 3)
})

.

(5.68)

The one-dimensional grid-aligned discretization has the eigenvalues

Ωl,m = − a

3h
I{cosα sinφx(cosφx − 4) + sinα sinφy(cosφy − 4)} . (5.69)

The maximum eigenvalues are found at φx = φy = φm with cosφm = 1 − 1/2
√

6, which

gives Ω = a/hI(cosα+ sinα)M where M =
[
1/4 + 2

√
2/3
]1/2 ≈ 1.37.

For the diagonal approximation of (2.9), the eigenvalues are

Ωl,m = − a

3h
I
{

(cosα− sinα) sinφx(cosφx − 4)

+ sinα sin(φx + φy)(cos(φx + φy)− 4)
}
, (5.70)

which are purely imaginary. The eigenvalues follow the pattern of the second order diagonal
discretization, one term dependent on cosα − sinα multiplying a function of φx, and
another term which is dependent on sinα multiplying the same function which depends
now on φx + φy. The maximum eigenvalue is the optimal one, Ω = a/hIM cosα.

The fixed stencil has a maximum value of the eigenvalues which is some 5–12% larger
than those of the one-dimensional grid-aligned discretization.

The general streamline approximation with flow-angle independent stencils of (5.67) is
complicated to optimize. We observed in §5.2 that the optimal time step was for regular
straight stencils. Combined with the streamline condition for fixed stencils, we arrive at
an additional condition, 2Kx1 + Kx2 = 0, and we are left with two parameters, Kx2 and
Kx3. The choice of Kx2 = −1/24 and Kx3 = −1/16 gives an approximation which is close
to optimal. This approximation is shown in Fig. 5.27.

Among the discretizations on the 5×5 grid, the approximation derived in [7] using the
FVD method with the N-distribution is given by the stencils of Fig. 5.28. Like the other
discretizations discussed in this section, it is a central discretization.

The eigenvalues for this approximation are

Ω = cosα
[
6 sinφx − 3 sinφy + 4 cosφx sinφy + 2 cosφy sinφx(1− cosφx)

]
+ sinα

[
6 sinφy − 3 sinφx + 4 cosφy sinφx + 2 cosφx sinφy(1− cosφy)

]
. (5.71)
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Figure 5.27. The fixed stencils for the directional fourth order approximations of ux and uy in two
dimensions with the streamline property c05 = 0, and also c06 = 0, and with optimized time step.
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Figure 5.28. The stencils for the FVD directional fourth order central approximations of ux and
uy in two dimensions of [7].
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Figure 5.29. The maximum eigenvalue of Ω, excluding the scaling factor a/h, as a function of
the flow angle α for the approximations : one-dimensional grid-aligned (5.69), diagonal (5.70), the
streamline approximation of Fig. 5.25, the optimized streamline approximation of Fig. 5.27, and
the directional FVD approximation of Fig. 5.28.

The maximum eigenvalue of Ω, excluding the scaling factor a/h, as a function of the
flow angle α is given in Fig. 5.29 for the above approximations.

The stability of the optimal streamline approximation is 5% worse than the optimal
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diagonal approximation at α = π/4. A flow-angle dependent optimal streamline approxima-
tion, or dropping the streamline condition, is therefore hardly warranted. The systematic
construction of approximations which exhibit the optimal Ω, i.e. having the lowest maxi-
mum eigenvalue, also in the high frequency range, is a task which is outlined in §5.2, and
which we will leave for later.

A comparison of the error components is made for the above discretizations. The six
different coefficients are shown in Fig. 5.30, and the average values in Table 5.6.
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Figure 5.30. The coefficients of the error terms for the approximations of Fig. 5.29.

The reduction in the error of I05 for the diagonal discretization compared to the one-
dimensional grid-aligned discretization is 6.16. For the FVD version this is about 1.6. For
I14, this is 2.64 and 1.72 respectively. The error reduction increases with the order of the
discretization.
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Table 5.6. The average values Imn for the approximations of Fig. 5.29.

discretization I50 I41 I32 I23 I14 I05

one-dimensional 0.021 0.027 0.042 0.0 0.021 0.00531

diagonal 0.070 0.048 0.060 0.020 0.008 0.00086

streamline 0.025 0.021 0.050 0.021 0.025 0.0

optimal streamline 0.134 0.257 0.425 0.257 0.134 0.0

directional, FVD 0.049 0.032 0.045 0.021 0.014 0.00138

5.7. Directional second and third order upwind discretizations of the first
derivative in two dimensions on a 5× 5 grid.

The third order accurate approximation on the 5×5 grid has a basis of 15 stencils [24],
which can be rewritten in 6 antisymmetric stencils with an error of O(h4), and 9 symmetric
stencils with an error of O(h3). It is possible to choose the mix of stencils such that a fourth
order approximation results, but this is not the purpose at present, just like second order
approximations were not the aim in §5.3. We will consider upwind discretizations with
one-dimensional fixed stencils, and start by restricting the domain to the 16 point stencil
on [−2, 1]2. The basis has now 6 stencils, of which an orthogonalized version B is given
in Fig. 5.31.

In this orthogonalized basis, only stencils B1, B2, and B3 are of O(h3). The continuity
conditions for α = 0 are Kxi = 0 for i = 1 . . . 6. A streamline approximation in this basis
satisfies

2Kx1 − 5Ky2 = 0 , Kx2 = Ky3 = 1
120 , and 2Ky1 − 5Kx3 = 0 , (5.72)

but does not comply with the continuity conditions.
Like in §5.3, the extra upwind nodes [−2, 2], [−1, 2], and [0, 2] can be included in an

upwind stencil on the principal region, leading to three extra basis stencils. These three
stencils have weights 1,−4, 6,−4, 1 on i = −2, 1, 0 respectively. In this basis of nine stencils,
the continuity conditions are for α = 0

Kx1 = 0 , Kx2 = 0 , Kx3 +Kx5 = 0 , Kx4 −Kx6 = 0 , (5.73)

and for α = π/4

Kx1 = Ky2 , Kx2 = Ky1 , Kx3 = Ky3 , Kx4 = Ky4 , Kx5 = Ky6 , Kx6 = Ky5 ,

Kxi = Kyi = 0 for i = 7 . . . 9 . (5.74)

The streamline condition translates into

−10Kx1+Ky7 +Ky8 +Ky9 + 1
12 = 0 , Ky2 = 1

120 ,

Kx7 +Kx8 +Kx9 = 0 , Kx2 = Ky3 = 1
120 . (5.75)

The continuity and streamline conditions can be solved together, involving flow-angle
dependent coefficients. The degrees of freedom can be used to strive for isotropy of the
directional error and of the Fourier representation with respect to the flow angle. The
optimization in the Fourier domain includes also an optimal time step and an optimization
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Figure 5.31. The basis stencils used in the approximation for the third order upwind approximation.

of the smoothing properties for a multi-grid application. This is, together with boundary
stencils, beyond the scope of this paper.

The diagonal discretizations use twelve basis stencils for uy and ten for ux. The latter
depends also on eight of the coefficients ky, similar to (5.44). The upwind-biased subset
of approximations is found on the region i ≤ 1 and i + j ≤ 1. On this domain, we find
the FD continuous diagonal approximation of §2.5, (2.8). A FV continuous approximation
can be derived in the spirit of (5.11), (5.12).

The second order accurate discretizations have a basis of 19 stencils. When we consider
the monotonicity of the approximation like in §5.3, we obtain equations similar to (5.46).
Using again the code HOPDM [23] we verify that there is no second order monotonic
approximation on the 5× 5 grid.

The upwind basis on the [−2, 0]2 region consists of three stencils ; including the nodes
[−2, 1], [−2, 2], and [−1, 1] leads to a basis of six stencils. On this extended base, we can
apply the optimizations described for the third order upwind biased discretizations.

The central approximation of §5.2 needs streamline upwind stencils at the boundary
with the property c03 = 0. For a node on the left boundary we consider the sector 0 ≤ i ≤ 2,
−2 ≤ j ≤ 2 where nine stencils are available. These stencils are not sufficient to satisfy
the condition c04 = 0, and we need to enlarge the domain to 0 ≤ i ≤ 3. There are many
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streamline solutions for the node (0, j) on this domain. We retain the stencils given by

12∆xux =− 3u0,j+1 + 4u1,j+1 − u2,j+1 − 12u0,j + 16u1,j − 4u2,j

− 3u0,j−1 + 4u1,j−1 − u2,j−1 ,

24∆yuy = 7u0,j+1 + 11u1,j+1 − 7u2,j+1 + u3,j+1

− 7u0,j−1 − 11u1,j−1 + 7u2,j−1 − u3,j−1 , (5.76)

which apply to the left boundary of the domain, and which are shown in Fig. 5.32.

12∆xux = 24∆y uy =16
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Figure 5.32. The boundary stencils for the derivatives ux and uy of (5.76) with the streamline
property and c04 = 0.

The streamline stencils with c04 = 0 for the corner are the mirror image of each other,
as can be seen from Fig. 5.33. They are again weighted averages of upwind differences.

24∆xux = 24∆y uy =
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Figure 5.33. The corner stencils of ux and uy used in the approximation for the second order
streamline derivative, with c04 = 0.

The above approximations are chosen for compactness and symmetry properties. An
additional constraint which is not taken into account is the time step restriction for the
overall approximation, and this may lead to yet different stencils.

The translation to FV interface fluxes is straightforward.

Among the second order upwind discretizations are the one-dimensional grid-aligned
approximation and the diagonal approximation of (2.7). Their stencils is on the quadrant
i ≤ 0, j ≤ 0. Another example is the second order almost upwind discretization found
in [7]. This approximation is derived on a regular grid consisting of triangles by the FVD
method. The discretization is given by

∆xux = 2u0,0 − 2u−1,0 − 1
2u0,1 − 1

2u−1,−1 + 1
2u−2,−1 + 1

2u−1,1 ,

∆yuy = 3
2u−1,0 − 3

2u−1,−1 − 1
2u0,−1 + 1

2u0,1 + 1
2u−1,−2 − 1

2u−1,1 , (5.77)

and the stencils are given in Fig. 5.34.
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This discretization includes the node (0,1), and the approximation is not strictly up-
wind. It is not a pure one-dimensional discretization when the flow is along the x-axis or
along the diagonal. The approximation is discontinuous for α = 0.

∆xux = ∆y uy =

2

1/2 -1/2

-2

-1/21/2

-1/2 1/2

3/2

-1/2-3/2

1/2

Figure 5.34. The stencils for the FVD directional upwind approximations of ux and uy in two
dimensions of [7], (5.77).

The four coefficients cnm for the one-dimensional grid-aligned discretization, the diago-
nal discretization of (2.7), and the FVD discretization above are shown in Fig. 5.35, and the
average values in Table 5.7. The corresponding coefficients for the central approximations
are given in Table 5.4.
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Figure 5.35. The coefficients of the error terms for the one-dimensional grid-aligned discretization,
the diagonal discretization of (2.7), and the FVD discretization, (5.77).

The reduction in the error for the diagonal discretization compared to the one-dimen-
sional grid-aligned discretization is 3.65, which is the same as for the second order central
directional discretization. The FVD directional discretization reduces the term c03 by twice
that amount, 7.29, but now the next term c12 may become important.
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Table 5.7. The average values Imn for the one-dimensional grid-aligned discretization, the diagonal
discretization of (2.7), and the FVD discretization, (5.77).

discretization I30 I21 I12 I03

one-dimensional 0.250 0.159 0.250 0.0531

diagonal 0.455 0.114 0.136 0.0146

FVD directional 0.432 0.261 0.273 0.0073

5.8. The scheme of Lax and Wendroff.
This numerical scheme is based on a Taylor series development in time for the unknown

at the point of computation P , see [25],

un+1 = un + ∆tut + 1
2∆t2utt + · · · . (5.78)

Applied to an N -dimensional linear advection equation,

ut + ~a · ~∇u = 0 or ut = −aue1 , (5.79)

the partial derivatives with respect on time in (5.78) can be rewritten in space derivatives.
When the Taylor series is truncated after the second term, the resulting scheme is

un+1 = un − a∆tue1 + 1
2(a∆t)2ue1e1 . (5.80)

Many variants of the Lax-Wendroff scheme have since been derived, including non-linear
versions, or interpretations as a multi-level scheme. For an overview, also on related
schemes like the Beam and Warming scheme and the McCormack scheme, see [26]. We
will restrict the discussion to the linear case in a one-step scheme.

For the first derivative in (5.80) in two dimensions, we use the stream-wise fixed stencil
and basis B = {B1, B2, B3} with coefficients K1,K2,K3 of §5.2, and for the second deriva-
tive the incomplete streamline fixed stencil and the basis stencil B4 with coefficient K4

of §5.4. Remark that B3 = B4. With this combination of derivatives there is no increase
in the order of accuracy at steady state.

The coefficients cmn in the error of ∂u/∂e1 of the Lax-Wendroff scheme can be found
in Fig. 5.15, and the average error values Imn in Table 5.4.

For the stability of the Lax-Wendroff scheme, the amplification G as a function of
ν = a∆t/h depends on the coefficients K,

G(ν) = 1− ν
(

1
3I
[

cosα sinφx(cosφy + 2) + sinα sinφy(cosφx + 2)
]

+ 4K1I sinφx(cosφy − 1) + 4K2I sinφy(cosφx − 1)

− 4(K3 + 1
2νK4)(cosφx − 1)(cosφy − 1)

− 1
2ν(cos(2α)(cosφx − cosφy)− sin(2α) sinφx sinφy + cosφx cosφy − 1)

)
,

(5.81)

where the first part is just (5.35).
An analytic optimization of (5.81) involves many variables. Computing G, given K,

for a range of α, φx, and φy, gives a first impression of the maximum value of ν for a
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Table 5.8. The maximum allowable value of ν for different combinations of a first derivative of §5.2,
and a second derivative of §5.4 in the Lax-Wendroff scheme.

XXXXXXXXXXX
∂2u/∂e21

∂u/∂e1 one-dim. diagonal streamline opt. time step

one-dimensional 0.503 0.943 0.958 0.943

diagonal x 1.0 0.820 x

x : the scheme is not stable.

stable approximation. For the various combinations of first and second derivatives in the
Lax-Wendroff approximation, the maximum value of ν is given in Table 5.8.

Approximations involving as second derivative the incomplete streamline stencil are
unstable. Awaiting a full parametric optimization of (5.81), we note that with directional
discretizations the Lax-Wendroff scheme almost doubles the allowable time step compared
to the one-dimensional grid-aligned scheme, while improving accuracy. The optimal com-
binations is a diagonal stencil for both the first and the second derivative. These stencils
are flow-angle dependent, and a good compromise with fixed stencils is the streamline ap-
proximation for the first derivative and the one-dimensional approximation for the second
derivative. It is remarkable that this combination has a larger ν than the combination
diagonal and one-dimensional.

In order to obtain a streamline approximation which increases the order of accuracy
at steady state, rewrite (5.80) as

un+1 = un − a∆t
∂

∂e1
(u− 1

2a∆t
∂u

∂e1
) , (5.82)

and approximate the term between brackets with the streamline approximation of (5.27).
This means that ue1 is required at the nodes used in the streamline approximation. How-
ever, the explicit time integration of (5.82) is unstable, also in one dimension.

6. Directional discretizations of derivatives in three dimensions.

We continue the analysis in three dimensions of the directional discretizations of ∂u/∂e1.
This discretization appears in the scalar advection equation in nonlinear or linear form,

∂u

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 , or

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
+ az

∂u

∂z
= 0 , (6.1)

with ax = ∂f/∂u, ay = ∂g/∂u, az = ∂h/∂u, and the velocity a =
√
a2
x + a2

y + a2
z.

The bases contain many stencils, but properties like symmetry, orthogonality, and
regularity will help to make even large bases manageable.

6.1. Directional first order upwind discretizations of the first derivative in
three dimensions on a 2× 2× 2 grid.

We start with the simplest discretizations, following the steps of the two-dimensional
analysis. Discretizations on this grid have been analyzed in [10].
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The basis of stencils. The conditions ax ≥ 0, ay ≥ 0, and az ≥ 0 define an upwind
region where the 2× 2× 2 stencil is situated. For the fixed stencils of the approximation
to ∂u/∂e1 we take the one-dimensional grid-aligned upwind discretization. The basis for
consistent first order upwind approximations to the first derivative contains four stencils
for each grid-based derivative, where in two dimensions we have just one basis stencil. The
program GDD orders the basis stencil using the upper tetrahedron consisting of the four
nodes (0,0,-1), (0,-1,0), (-1,0,0), and (0,0,0). At these nodes basis stencil bi has a weight
one. The stencils which represent various second derivatives are shown in Fig. 6.1.
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Figure 6.1. The basis of stencils for ux, uy, and uz used in the first order approximation of the first
derivative ∂u/∂e1. The stencils represent approximations to second derivatives.

The diagonal approximation of (2.5) is obtained with the stencil coefficients k taken
as kx = (0, 0, 0, 0)T , ky = (0, 1, 1,−1)T , and kz = (1, 0, 0,−1)T .

The stencil B4 with k = (−1,−1,−1, 1)T is an approximation to the third derivative
∆x∆y∆z ∂3u/∂x∂y∂z, see Fig. 6.2. The error of this stencil is one order higher than the trun-
cation error, and in the following we take as basis B = {b1, b2, b3, B4} with coefficients K.
The diagonal approximation of (2.5) is with this basis the combination Kx = (0, 0, 0, 0)T ,
Ky = (−1, 0, 0,−1)T , and Kz = (0,−1,−1,−1)T .

B4 =

1

1

1

-1

1

-1

-1

-1

Figure 6.2. The stencil B4 which is used in basis B.

The diagonal condition restricts the basis to {B4}. The fixed stencils and the basis
used in [10] can be expressed in basis b or in B.

We call an approximation regular when a rotation of the stencil ux along the (1, 1, 1)T

axis over 2π/3 gives uy, and uy leads to uz. The permutation from the stencil of ux to the
stencil uy can also be obtained from two successive mirror operations in the x = y plane
and in the x = z plane.
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In basis B, the stencils b2 and b3 are regular permutations of b1. A regular approxima-
tion has therefore Kz3 = Ky2 = Kx1, Kx3 = Kz2 = Ky1, and Ky3 = Kx2 = Kz1.

The approximation in stream-wise coordinates. The coordinate transformation of (4.4)
in three dimensions relates the local basis B with the grid basis G. The transformation
between two arbitrary axes systems consists of three successive rotations involving the
Euler angles. We can use a less complicated transformation since we are interested in the
principal region ax/∆x ≥ ay/∆y ≥ az/∆z ≥ 0. For other flow angles we use a permutation
of the discretization.

On this restricted domain, two successive rotations transfer the grid x-axis to the e1-
axis of the local basis B. The first is in the grid basis G around the z-axis with angle
α, resulting in the axis system A′(x′, y′, z′) with z′ = z. This is followed by a rotation
around the y′-axis with angle β, as shown in Fig. 6.3. The axis system is A′′(x′′, y′′, z′′),
with y′′ = y′. Another rotation with a yet unspecified angle γ around the x′′ = e1-axis
positions the e2 and e3 axes, giving the directional axis system B.

This choice of rotations differs from the Euler angles in the choice of the third rotation
axis. Also, we define the second rotation positive to have α, β > 0 for the flow with ax ≥ 0,
ay ≥ 0, and az ≥ 0.

x

y

z = z’

x’’= e

β

α

x’

2

e
3

z’’

e

γ

1

y’= y’’

Figure 6.3. The three rotations linking the axes of the grid basis G = {x, y, z} with the axes of the
local basis B = {e1, e2, e3}.

The rotations are given by their matrices, ~x = Mα~x
′, ~x ′ = Mβ~x

′′, and ~x ′′ = Mγ~e,
similar to (5.3),

Mα =

cosα − sinα 0
sinα cosα 0

0 0 1

 , Mβ =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 , Mγ =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 ,

(6.2)
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and the transformation ~x = M~e = MαMβMγ~e of (4.4) is

M =

cosα cosβ − sinα cos γ + cosα sinβ sin γ − sinα sin γ − cosα sinβ cos γ
sinα cosβ cosα cos γ + sinα sinβ sin γ cosα sin γ − sinα sinβ cos γ

sinβ − cosβ sin γ cosβ cos γ

 ,

(6.3)
which is used in (4.5). The inverse of M , M−1 = MT , is used in ~e = M−1~x, and in the
expression for the derivative along e1,

∂u

∂e1
= cosα cosβ

∂u

∂x
+ sinα cosβ

∂u

∂y
+ sinβ

∂u

∂z
, (6.4)

which only involves the angles α and β. The coefficients kxi, kyi, and kzi appear therefore
in (6.4) as

ki = kxi cosα cosβ + kyi sinα cosβ + kzi sinβ. (6.5)

In basis B with coefficients K, we arrive at

∂u

∂e1
=

1
h

{
(K4 + cosα cosβ + sinα cosβ + sinβ)u0,0,0

+(K3 −K4 − cosα cosβ)u−1,0,0 + (K2 −K4 − sinα cosβ)u0,−1,0

+(K1 −K4 − sinβ)u0,0,−1 − (K2 +K3 −K4)u−1,−1,0

−(K1 +K3 −K4)u−1,0,−1 − (K1 +K2 −K4)u0,−1,−1

+(K1 +K2 +K3 −K4)u−1,−1,−1

}
. (6.6)

Monotonicity of the approximation. On the principal region ax/∆x ≥ ay/∆y ≥ az/∆z ≥
0, the velocity components are ax = a cosα cosβ, ay = a sinα cosβ, and az = a sinβ.
The Euler backward scheme for (6.1) with (6.6) expresses un+1 as an average of the nodes
of the stencil. The monotonicity condition states that this should be a convex average,
which leads to eight conditions on the K’s similar to (5.6),

K3 −K4 − cosα cosβ ≤ 0 , K2 −K4 − sinα cosβ ≤ 0 , K1 −K4 − sinβ ≤ 0 ,

K1 +K2 +K3 −K4 ≤ 0 , K4 + cosα cosβ + sinα cosβ + sinβ ≤ h

a∆t
,

K2 +K3 −K4 ≥ 0 , K1 +K3 −K4 ≥ 0 , K1 +K2 −K4 ≥ 0 . (6.7)

The monotonicity conditions are satisfied by the one-dimensional grid-aligned approxima-
tion with a time step restriction ∆t ≤ h/[a (cosα cosβ + sinα cosβ + sinβ)] = h/(ax + ay + az).
The diagonal discretization is also monotone and has a less restrictive time step of ∆t ≤
h/(a cosα cosβ) = h/ax, see also [10].

The combination of optimal time step and monotonicity is obtained with the coeffi-
cients

K1 = − sinα cosβ , K2 = K3 = − sinβ , and K4 = − sinα cosβ − sinβ . (6.8)

Finite Difference and Finite Volume formulations. The FV formulation in three dimen-
sion uses fluxes through the sides of the dual volume surrounding the node. The fluxes
can be written similar to (5.8)–(5.9) using the approximation of (6.6).
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Continuity of the approximation. On the principal region ax/∆x ≥ ay/∆y ≥ az/∆z ≥ 0,
the continuity in a FD context in basis B of the approximation of ∂u/∂e1 with respect to
changing flow directions imposes the following conditions on the K’s :

1. Flow in the z = 0 plane, β = 0, where ∂u/∂e1 = cosα ∂u/∂x+ sinα ∂u/∂y. The stencil
should have mirror symmetry with respect to the z = 0 plane, and on this small
stencil this implies that the weights of the nodes outside of the z = 0 plane should
be zero. This means that K1(α, 0) = K4(α, 0) and K2(α, 0) = K3(α, 0) = 0.

2. Flow in the x = y plane, α = π/4 and ∂u/∂e1 = 1/2
√

2 cosβ(∂u/∂x + ∂u/∂y) +
sinβ ∂u/∂z. The stencil should have mirror symmetry with respect to the plane x = y
and K2(π/4, β) = K3(π/4, β). The stencils b1 and B4 have this symmetry.

3. Flow in the y = z plane, βα = arctan(sin(α)) with ∂u/∂e1 = (1 + sin2 α)−1/2

[cosα ∂u/∂x + sinα(∂u/∂y + ∂u/∂z)]. The stencil should have mirror symmetry with
respect to the plane y = z. This requires K1(α, βα) = K2(α, βα).

Combinations of these conditions occur at intersections of the delimiting planes. For the
vector ~e1 along the x-axis, α = β = 0, and conditions 1 and 3 apply. When ~e1 is along
the diagonal in the x-y plane, α = π/4, β = 0. Conditions 1 and 2 apply. Finally, when ~e1

is along the body diagonal in x-y-z space, α = π/4, β = arctan(1/2
√

2), and conditions 2
and 3 apply.

For a FV application as explained in §5.1, the fluxes f , g, and h should be continuously
dependent on the unknowns at the nodes when the stencil changes position on the grid.
The individual stencils ux, uy and uz will have to satisfy additional mirror conditions :

1. The derivatives ux and uy should each have mirror symmetry with respect to the z =
0 plane, and the conditions on K now apply to Kx and Ky individually, Kx1(α, 0) =
Kx4(α, 0), Ky1(α, 0) = Ky4(α, 0), and also Kx2(α, 0) = Kx3(α, 0) = Ky2(α, 0) =
Ky3(α, 0) = 0.

2. The derivatives ux and uy should be their mirror image with respect to the x =
y plane and uz should have mirror symmetry with respect to that plane. This
translates into Kx1(π/4, β) = Ky1(π/4, β), Kx2(π/4, β) = Ky3(π/4, β), Kx3(π/4, β) =
Ky2(π/4, β), Kx4(π/4, β) = Ky4(π/4, β), and Kz2(π/4, β) = Kz3(π/4, β).

3. The derivatives uy and uz should be their mirror image with respect to the y = z
plane and ux should have mirror symmetry with respect to that plane. The FV
conditions are Ky1(α, βα) = Kz2(α, βα), Ky2(α, βα) = Kz1(α, βα), Ky3(α, βα) =
Kz3(α, βα), Ky4(α, βα) = Kz4(α, βα), and finally Kx1(α, βα) = Kx2(α, βα).

The remaining constraints are the combinations of 1 and 3, 1 and 2, and 2 and 3 as before.
In the FD formulation, the diagonal directional discretizations of §2 depend contin-

uously on the grid unknowns for all flow angles. However, these discretizations are not
continuous in a FV formulation. Condition 2 is violated since Kx1 6= Ky1 and Kx4 6= Ky4,
and also condition 3 is infringed with Ky3 6= Kz3. The monotone solution with the diagonal
time step in the FV formulation needs K’s which depend on the flow angles.
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Solutions of (6.8) which are FV continuous are similar to (5.11) and (5.12). The ap-
proximation which is diagonal for α = β = 0 is

Kx1 = 1
4(cos(2α)− 1)(cos(2β) + 1) , Ky1 = 1

2(1
2 sin(2α)− 1)(cos(2β) + 1) ,

Kz1 = −1
2 sinα sin(2β) ,

Kx2 = Kx3 = 1
2(cos(2α)− 1)(1− cos(2β)) ,

Ky2 = Ky3 = 1
2(1

2 sin(2α)− 1)(1− cos(2β)) ,
Kz2 = Kz3 = sinα sin(2β)− 1 ,
Kx4 = 1

4(cos(2α)− 1)(3− cos(2β)) , Ky4 = 1
2(1

2 sin(2α)− 1)(3− cos(2β)) ,
Kz4 = 1

2 sinα sin(2β)− 1 . (6.9)

The approximation which is one-dimensional grid-aligned for α = β = 0 has Kx = Ky =
Kz, which leads to

Kx1 = Ky1 = Kz1 =
− sinα cosβ

cosα cosβ + sinα cosβ + sinβ
,

Kx2 = Ky2 = Kz2 = Kx3 = Ky3 = Kz3 =
− sinβ

cosα cosβ + sinα cosβ + sinβ
,

Kx4 = Ky4 = Kz4 = Kx1 +Kx2 . (6.10)

At the x − y diagonal in the z = 0 plane, k1 = k4 = −1/2 and k2 = k3 = 0, while at the
body diagonal x = y = z, we have k1 = k2 = k3 = −1/3 and k4 = −2/3.

Computing the flow angles. We determine the angles α and β in a fashion similar
to Fig. 5.6 and (5.13).

Consider the tetrahedron which is formed by the node p0 at the origin, the node p1 on
the x axis, the node p2 on the diagonal x = y in the z = 0 plane, and by the node p3 on
the body diagonal x = y = z, see Fig. 6.4. On an irregular grid, this tetrahedron will have
an angle p0p1p2 or p1p2p3 or p0p2p3 which is not straight.

Define the vectors ~p1 = −−→p0p1, ~p2 = −−→p0p2 and ~p3 = −−→p0p3, and write ~a = a~e1,

~e1 = a1~p1 + a2~p2 + a3~p3 , (6.11)

with

a1 =
1
VT
~e1 · (~p2 × ~p3) , a2 =

1
VT
~e1 · (~p3 × ~p1) , and a3 =

1
VT
~e1 · (~p1 × ~p2) , (6.12)

where the volume of the tetrahedron is VT = ~p1 · (~p2 × ~p3). The vector ~p4 = −−→p0p4 is the
projection of the vector ~e1 in the plane p0p1p2. The projection is parallel to the vector
~p23 = −−→p2p3. This projection ensures that α = π/4 when ~e1 is in the plane p0p2p3. We use
the vectors ~p1, ~p4, and ~p2 in the method of (5.13) to find

tanα =
(a2 + a3)~p1 · ~p2

a1~p1 · ~p2 + (a2 + a3)~p2 · ~p2
. (6.13)

The projection of the vector ~e1 in the plane p0p1p3 gives the vector ~p5 = −−→p0p5, where the
projection is again parallel to the vector ~p23 = −−→p2p3. The vectors ~p4, ~e1, and ~p5 enable us
to find

tanβ =

a3

a∗2 + a3
~p4 · ~p5

a3

a∗2 + a3
~p4 · ~p5 + ~p5 · ~p5

sinα , (6.14)
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Figure 6.4. The projections used in the determination of the angles α and β.

where a∗2 = a2 + ε cosα|~p1||~p3|. We use a factor ε to compute a∗2, since for α ↓ 0 both a2

and a3 → 0. A numerical code which computes tanβ is then in trouble.
The computation of the angles this way is complicated. A three-dimensional transfor-

mation to a uniform (ξ, η, ζ) grid avoids this problem, and the angles are α = arctan(η/ξ)
and β = arctan(ζ/p(ξ2 + η2)). Like in two dimensions, the angle evaluation is easy, but the
accuracy in a FV context on a fairly smooth grid is only partly restored.

Optimizing the directional error. The error of the first order approximation of ∂u/∂e1
is composed of six derivatives ∂2u/∂el1∂e

m
2 ∂e

n
3

with coefficients clmn, l + m + n = 2. These
coefficients are elaborate functions of the three rotation angles α, β, and γ, but c200 is
independent of γ.

Like in two dimensions, we consider the highest derivatives normal to the direction ~e1.
In three dimensions, these derivatives are in the e2-e3 plane normal to the e1 axis. In this
plane, a vector ~r normal to e1 is indicated in Fig. 6.5.

e

e
2

3 r

ϕ

Figure 6.5. The e2-e3 plane with vector ~r normal to ~e1.

We can express the derivative along r in the derivatives with respect to e2 and e3. The
transformation e2 = r cosφ and e3 = r sinφ leads to

∂u

∂r
= cosφ

∂u

∂e2
+ sinφ

∂u

∂e3
. (6.15)
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The second derivative in the r direction is

∂2u

∂r2
= cos2φ

∂2u

∂e2
2

+ 2 cosφ sinφ
∂2u

∂e2∂e3
+ sin2φ

∂2u

∂e2
3

. (6.16)

We take therefore as a measure of the overall error for given angles α, β, and γ the
combinations

cr2 = c200 ,

cr1 = cosφ c110 + sinφ c101 ,

cr0 = cos2φ c020 + 2 cosφ sinφ c011 + sin2φ c002 . (6.17)

The streamline error reduction cr0 = 0 for any angle φ is obtained with c020 = c002 =
c011 = 0, and this requires

K1 = −1
2(sinα+ cosα) cosβ , K2 = −1

2(cosα cosβ + sinβ) ,
K3 = −1

2(sinα cosβ + sinβ) . (6.18)

Each of the coefficients c0ij , i+j = 2, depend on the angle γ, but the solution to cr0 = 0 is
only dependent on the angles α and β. There are contributions from three basis stencils,
since the error of the fourth stencil is one order higher than the truncation error. Like
in two dimensions, the update for cr0 = 0 is not monotone and the coefficients are not
continuous.

We wish to write the coefficients cr of (6.17) as functions of the angles α and β. Let us
start by choosing the angle γ, e.g. γ = 0. For a certain combination of the angles α and β,
the coefficients cr then only depend on φ. We take for cr the largest absolute value present
on the domain φ ∈ [0, 2π]. This means that we can compute cr(α, β) for any value of γ.

When the angle β = 0, the coefficients cr depend only on α. This corresponds to the
two-dimensional case, Fig. 5.7. Since cr is computed with an absolute value, we can make
a comparison when we take the absolute value of the curves of Fig. 5.7. Varying γ, we find
that cr0(α, 0) is the two-dimensional coefficient c02 for γ = 0 modulo π/2.

Taking γ = 0, the transformation of (6.3) simplifies to

M =

cosα cosβ − sinα − cosα sinβ
sinα cosβ cosα sinα sinβ

sinβ 0 cosβ

 . (6.19)

The transformation depends now on two angles. The coefficients in (6.5) are therefore
k = k(α, β).

The measure of the error of the discretizations involves averages of the coefficients cr
over the angles α and β. The averages I are over the part of a sphere limited by the x axis,
the x-y diagonal, and the x-y-z diagonal, for which 0 ≤ α ≤ π/4, and 0 ≤ β ≤ arctan(sinα).
This corresponds to having ax/∆x ≥ ay/∆y ≥ az/∆z ≥ 0. Figure 6.6 shows the area, while
the delimiting axes are indicates at the corners of the deformed triangle.

The surface of this area is

S =
∫ π/4

0

{∫ arctan(sinα)

0
cosβ dβ

}
dα =

π

12
, (6.20)
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Figure 6.6. The area of integration in the α-β plane. The position of the x axis, the x-y diagonal,
and the x-y-z diagonal are indicated.

and the average over the surface is

Ir =
1
S

∫ π/4

0

{∫ arctan(sinα)

0
cr cosβ dβ

}
dα . (6.21)

The coefficient cr0 is shown for the one-dimensional grid-aligned approximation and for
the diagonal directional approximation in Fig. 6.7.

0
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0.3

0.4

one-dim.

diagonal

α

β

cr0

Figure 6.7. The coefficient cr0 for the one-dimensional grid-aligned approximation and for the
diagonal approximation.

For the diagonal discretization, the coefficient cr0 is zero at the x axis, the x-y diagonal,
and the x-y-z diagonal, the corners indicated in Fig. 6.6.

The average values Ir2, Ir1, and Ir0 are listed in Table 6.1 for the one-dimensional
grid-aligned approximation, the diagonal approximation, and the streamline directional
approximation with cr0 = 0.

The Fourier components. For the analysis in the Fourier domain we use components
of the form

Uni,j,k = U0ρ
neI(iφx+jφy+kφz) , (6.22)
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Table 6.1. The average values I for the one-dimensional upwind discretization, the directional
central discretization of (2.5), and the streamline approximation.

discretization Ir2 Ir1 Ir0

one-dimensional 0.375 0.152 0.268

diagonal 0.640 0.092 0.111

streamline, cr0 = 0 0.750 0.401 0.0

similar to §5.1. The amplification factor for the discretization of (6.6) in an Euler backward
scheme is

G = 1− ν
{

cosα cosβ(1− e−Iφx) + cosβ sinα(1− e−Iφy) + sinβ(1− e−Iφz)

+K1e
−Iφz(e−Iφx − 1)(e−Iφy − 1) +K2e

−Iφy(e−Iφx − 1)(e−Iφz − 1)

+K3e
−Iφx(e−Iφy − 1)(e−Iφz − 1) +K4(1− e−Iφx)(1− e−Iφy)(1− e−Iφz)

}
,

gr = 1− ν
{

cosα cosβ(1− cosφx) + cosβ sinα(1− cosφy) + sinβ(1− cosφz)

+K1(cosφz − cos(φx + φz)− cos(φy + φz) + cos(φx + φy + φz))
+K2(cosφy − cos(φx + φy)− cos(φy + φz) + cos(φx + φy + φz))
+K3(cosφx − cos(φx + φy)− cos(φx + φz) + cos(φx + φy + φz))
−K4(cosφx + cosφy + cosφz − cos(φx + φy)− cos(φx + φz)− cos(φy + φz)

+ cos(φx + φy + φz)− 1)
}
,

gi = −ν
{

cosα cosβ sinφx + cosβ sinα sinφy + sinβ sinφz
+K1(− sinφz + sin(φx + φz) + sin(φy + φz)− sin(φx + φy + φz))
+K2(− sinφy + sin(φx + φy) + sin(φy + φz)− sin(φx + φy + φz))
+K3(− sinφx + sin(φx + φy) + sin(φx + φz)− sin(φx + φy + φz))
+K4(sinφx + sinφy + sinφz − sin(φx + φy)− sin(φx + φz)− sin(φy + φz)

+ sin(φx + φy + φz))
}
, (6.23)

where ν = a∆t/h. For arbitrary K and for φx = π, φy = 0, φz = 0, stability imposes that
∆t ≤ h/(a cosα cosβ) = h/ax. This is the optimal step for stability which we find for the
diagonal approximation. The one-dimensional grid-aligned approximation has a time step
based on stability which is ∆t ≤ h/[a (cosα cosβ + sinα cosβ + sinβ)] = h/(ax + ay + az).

6.2. Directional second order discretizations of the first derivative in three
dimensions on a 3× 3× 3 grid.

We continue the analysis on the [−1, 1]3 stencil with 27 nodes. This is the second
smallest stencil in three dimensions, but the small increase in size causes a huge increase
in degrees of freedom.

The basis of stencils. On a 3× 3× 3 grid around the origin, the basis for a consistent
second order approximation to the first derivative ∂u/∂e1 consists of 17 stencils [24]. The
terms represent various third derivatives. The stencils generated by the program GDD
have one node with a weight of one in the upper tetrahedron.
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The basis B̃ with ten antisymmetric and seven symmetric stencils is B̃ = {ab1, . . . ,
ab8, ab10, ab12, sb1, . . . , sb7}. This basis is not very convenient to work with, even when we
apply the orthogonalization procedure. It is more practical to transform B̃ to the regular
fully orthogonal basis B, of which some of the stencils are shown in Fig. 6.8. This basis is
the result of pursuing simple expressions for the directional error and for the amplification.
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Figure 6.8. Some of the basis stencils for the second order approximations on the [−1, 1]3 stencil.
The remaining stencils are obtained by rotations of these stencils.
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With the corner nodes ±1, stencil B1 is an approximation to the mixed third deriva-
tive 8∆x∆y∆z ∂3u/∂x∂y∂z. Stencil B2 is an approximation to the mixed third derivative
2∆x∆z2 ∂3u/∂x∂z2−2∆x∆y2 ∂3u/∂x∂y2. A rotation along the (1, 1, 1)T axis over 2π/3 gives
stencil B3, which in turn leads to stencil B4. Stencil B5 is an approximation to the mixed
third derivative −6∆x∆z2 ∂3u/∂x∂z2−6∆x∆y2 ∂3u/∂x∂y2, and leads to B6 and B7. Stencil
B8 is an approximation to the fifth derivative 2∆x∆y2∆z2 ∂5u/∂x∂y2∂z2, and produces
with the regular rotation B9, which in turn gives B10.

Considering the symmetric stencils, B11 is an approximation to the fourth derivative
4∆x2∆y∆z ∂4u/∂x2∂y∂z and leads to B12 and to B13, while stencils B16 and B15 follow
from B14, an approximation to the fourth derivative 3∆y2∆z2 ∂4u/∂y2∂z2. Finally, B17 is
an approximation to the sixth derivative ∆x2∆y2∆z2 ∂6u/∂x2∂y2∂z2. With this basis it is
easy to construct regular discretizations. The first seven stencils are the most important
since they are the first to show up in the truncation error.

The basis b of 17 third derivatives is transformed to basis B, where seven stencils
are approximations of third derivatives. The remaining 10 stencils are approximations of
fourth derivatives up to a sixth derivative. In two dimensions, the highest derivative in the
new basis is a fourth derivative.

Concerning the antisymmetric part, a regular approximation has Kx1 = Ky1 = Kz1,
Kz4 = Ky3 = Kx2, Kx4 = Kz3 = Ky2, and Ky4 = Kx3 = Kz2. Similar relations hold
for for the combinations K5, K6, and K7, and K8, K9, and K10. This means that K1 =
Kx1(cosα cosβ+sinα cosβ+sinβ), K3 = Kz2 cosα cosβ+Kx2 sinα cosβ+Ky2 sinβ, and
K4 = Ky2 cosα cosβ +Kz2 sinα cosβ +Kx2 sinβ, and so on.

For a straight approximation we have Kyi = Kzi = 0 for i = 2, 5, 8, Kzi = Kxi = 0 for
i = 3, 6, 9, Kxi = Kyi = 0 for i = 4, 7, 10, and Kxi = Kyi = Kzi = 0, for i = 1, 11, 12, 13.

A regular approximation now depends on seven parameters, ignoring stencils 8–10,
while in two dimensions there were two parameters.

Monotonicity of the approximation. The update is not monotone.

Continuity of the approximation. We consider discretizations on the principal region
ax/∆x ≥ ay/∆y ≥ az/∆z ≥ 0. For other flow angles we use a permutation of the discretiza-
tion. For the angle-dependent approximations, the continuity of the approximation with
respect to changing flow directions imposes the following conditions on the K’s which are
related to the antisymmetric/symmetric basis B. The notation K stands for K(α, β) :

1. Flow in the z = 0 plane, β = 0, and K1 = K4 = K7 = K10 = K11 = K12 = 0.

2. Flow in the x = y plane, α = π/4, and K2 + K3 = 0, K4 = 0, K5 − K6 = 0,
K8 −K9 = 0, K11 −K12 = 0, and K14 −K15 = 0.

3. Flow in the y = z plane, βα = arctan(sin(α)), and K2 = 0, K3+K4 = 0, K6−K7 = 0,
K9 −K10 = 0, K12 −K13 = 0, and K15 −K16 = 0.

Combinations of these conditions occur at intersections of the delimiting planes, as ex-
plained before. For a FV application, the individual stencils ux, uy, and uz will have to
satisfy additional mirror conditions :

1. The derivatives ux and uy should each have mirror symmetry with respect to the
z = 0 plane, and the above conditions on K now apply to Kx.
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2. The derivatives ux and uy should be their mirror image with respect to the x = y
plane, and uz should have mirror symmetry with respect to that plane. The relations
Kxi = Kyj , Kxj = Kyi, and Kzi = Kzj hold for i = 5, j = 6, for i = 8, j = 9, for
i = 11, j = 12, and for i = 14, j = 15. With the opposite sign we have Kx2 = −Ky3,
Kx3 = −Ky2, and Kz2 = −Kz3. Finally, Kxi = Kyi for i = 1, 7, 10, 13, 16, 17,
Kx4 = −Ky4, and Kz4 = 0.

3. The derivatives uy and uz should be their mirror image with respect to the y = z
plane, and ux should have mirror symmetry with respect to that plane. The relations
Kyi = Kzj , Kyj = Kzi, and Kxi = Kxj hold for i = 6, j = 7, for i = 9, j = 10, for
i = 12, j = 13, and for i = 15, j = 16. With the opposite sign we have Ky3 = −Kz4,
Ky4 = −Kz3, and Kx3 = −Kx4. Finally, Kyi = Kzi for i = 1, 5, 8, 11, 14, 17, and
Ky2 = −Kz2, and Kx2 = 0.

The remaining constraints are the combinations of 1 and 3, 1 and 2, and 2 and 3.
The diagonal discretization of (2.6) is not continuous in the FV formulation. With (6.9)

or (6.10) we obtain a continuous version taking an average of the velocities ~a and −~a.

Optimizing the directional error. The error of the second order approximation of ∂u/∂e1
is composed of ten third derivatives ∂3u/∂el1∂e

m
2 ∂e

n
3

with coefficients clmn, l + m + n = 3.
The highest derivative normal to the direction e1 is

∂3u

∂r3
= cos3φ

∂3u

∂e3
2

+ 3 cos2φ sinφ
∂3u

∂e2
2∂e3

+ 3 cosφ sin2φ
∂3u

∂e2∂e2
3

+ sin3φ
∂3u

∂e3
3

. (6.24)

We take therefore as a measure of the overall error the derivatives with normal components
in the combinations

cr3 = c300 ,

cr2 = cosφ c210 + sinφ c201 ,

cr1 = cos2φ c120 + 2 cosφ sinφ c111 + sin2φ c102 ,

cr0 = cos3φ c030 + 3 cos2φ sinφ c021 + 3 cosφ sin2φ c012 + sin3φ c003 . (6.25)

These coefficients are easiest computed taking a streamline fixed stencil, similar to §5.2, Fig. 5.10,
and (5.27). Such a stencil is shown in Fig. 6.9 for the approximation of ux. The derivatives
uy and uz are the regular permutations of ux.
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Figure 6.9. An approximation for ux which, when combined with the regular approximations for
uy and uz, leads to a streamline approximation of ∂u/∂e1.
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The streamline error reduction cr0 = 0 for any angle φ is obtained with c030 = c021 =
c012 = c003 = 0, leading to

cosα cosβ[3K5(2 cos2α cos2β − 1)− 4K1 sinα cosβ sinβ]

+3K6 sinα cosβ(2 sin2α cos2β − 1) + 3K7 sinβ(2 sin2 β − 1) = 0 ,
K2 cosα cosβ − 3K6 sinα cosβ + 3K7 sinβ = 0 ,
3K5 cosα cosβ +K3 sinα cosβ − 3K7 sinβ = 0 ,
3K5 cosα cosβ − 3K6 sinα cosβ −K4 sinβ = 0 . (6.26)

Each of the coefficients c0ij , i+ j = 3, depend on the angle γ, but the solution to cr0 = 0
is only dependent on the angles α and β.

Streamline stencils which are independent of the flow angle have to satisfy (6.26) for
all angles α, β. When we restrict the approximation to regular straight derivatives with
the low order basis stencils B1–B7, the solution is the stencil of Fig. 6.9. Like in two
dimensions, no degrees of freedom remain. Nevertheless, in three dimensions the stencils
B8, B9, B10, and B17 can be used while retaining a fourth order solution for the advection
equation at steady state. For a regular straight streamline approximation, we have two
degrees of freedom more than in two dimensions, (5.38). In both cases, the final degree of
freedom introduces skewness.

We eliminate the angle γ from the coefficients of (6.25) by comparing cr0 for β = 0
with the two-dimensional coefficient c03 of Fig. 5.15. The solution is, as before, γ = 0
modulo π/2.

The streamline stencil can also be used for a two-dimensional time dependent approxi-
mation, like (5.32), For the unsteady problem we use the z-axis as the time variable. With
an advection speed ~a = (a, b, 1)T and ~∇u = (∂/∂x, ∂/∂y, ∂/∂t)T , the steady approximation
a~e1 · ~∇u = 0 now represents ut + aux + buy = 0. The angle α is between 0 and π, and the
angle β is between 0 and π/2. We have

∆xux = 1
12

(
un+1
i+1,j + uni+1,j+1 + 2uni+1,j + uni+1,j−1 + un−1

i+1,j

− un+1
i−1,j − u

n
i−1,j+1 − 2uni−1,j − uni−1,j−1 − un−1

i−1,j

)
,

∆y ux = 1
12

(
un+1
i,j+1 + uni+1,j+1 + 2uni,j+1 + uni−1,j+1 + un−1

i,j+1

− un+1
i−1,j − u

n
i−1,j+1 − 2uni,j−1 − uni−1,j−1 − un−1

i−1,j

)
,

∆t ut = 1
12

(
un+1
i+1,j + un+1

i,j+1 + 2un+1
i,j + un+1

i−1,j + un+1
i,j−1

− un−1
i−1,j − u

n−1
i−1,j+1 − 2un−1

i−1,j − u
n−1
i−1,j−1 − u

n−1
i−1,j

)
. (6.27)

The error of this scheme follows from the truncated Taylor series expansion in x, y,
and t,

~e1 · ~∇u =
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
+ 1

6

(
∆x2 ∂

2

∂x2
+ ∆y2 ∂

2

∂y2
+ ∆t2

∂2

∂t2

)(
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y

)
+O(∆x4,∆y4,∆x2∆t2,∆y2∆t2,∆t4) . (6.28)

The term ut + aux + buy between brackets is at least of O(∆x2,∆y2,∆t2), and we obtain
an approximation which is fourth order in time and space when the time step ∆t is
proportional to ∆x and ∆y.
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The Fourier components. We compute the eigenvalues of the space operator with
periodic boundary conditions using basis B with the fixed stencil of Fig. 6.9, and obtain

Ωl,m,n = −4
a

h

{
I
[

1
12

(
cosα cosβ sinφx(cosφy + cosφz + 1)

+ sinα cosβ sinφy(cosφx + cosφz + 1)
+ sinβ sinφz(cosφx + cosφy + 1)

)
− 2K1 sinφx sinφy sinφz
+K2 sinφx(cosφz − cosφy)
+K3 sinφy(cosφx − cosφz)
+K4 sinφz(cosφy − cosφx)
+K5 sinφx(cosφy + cosφz − 4 cosφy cosφz + 2)
+K6 sinφy(cosφz + cosφx − 4 cosφz cosφx + 2)
+K7 sinφz(cosφx + cosφy − 4 cosφx cosφy + 2)
+ 2K8 sinφx(cosφy − 1)(cosφz − 1)
+ 2K9 sinφy(cosφz − 1)(cosφx − 1)
+ 2K10 sinφz(cosφx − 1)(cosφy − 1)

]
− 2K11(cosφx − 1) sinφy sinφz
− 2K12(cosφy − 1) sinφz sinφx
− 2K13(cosφz − 1) sinφx sinφy
+K14(2 cosφx + 1)(cosφy − 1)(cosφz − 1)
+K15(2 cosφy + 1)(cosφz − 1)(cosφx − 1)
+K16(2 cosφz + 1)(cosφx − 1)(cosφy − 1)
+ 2K17(cosφx − 1)(cosφy − 1)(cosφz − 1)

}
. (6.29)

For two-dimensional flow β = 0, φz = 0, the stencils such as e.g. B1 collapse, and the
eigenvalues of (5.35) are recovered.

The eigenvalues are not particularly useful in printed form. This is especially the case in
three dimensions, where the basis of stencils tends to be large. Using a program capable of
symbolic manipulations, starting with the GDD basis [24], basis B is easily reconstructed,
and the analysis can be performed on a computer.

We discuss briefly the eigenvalues of the space operator for some approximations. The
one-dimensional grid-aligned approximation has Kxi = Kyi = Kzi = 0, except Kx8 =
Ky9 = Kz10 = 1/18, and Kx5 = Ky6 = Kz7 = 1/36. The purely imaginary eigenvalues are

Ωl,m,n = −a
h
I(cosα cosβ sinφx + sinα cosβ sinφy + sinβ sinφz) . (6.30)

The largest eigenvalues are obtained for sinφx = sinφy = sinφz = 1, φx = φy = φz =
π/2 with the value −a/hI(cosα cosβ + sinα cosβ + sinβ). The time step restriction in
a Runge-Kutta scheme is therefore proportional to h/[a (cosα cosβ + sinα cosβ + sinβ)] =
h/(ax + ay + az).

For the diagonal approximation of (2.6), Kxi is the same as for the one-dimensional
grid-aligned approximation, −Ky2 = Ky3 = 1/8, Ky5 = −1/24, Ky6 = −1/72, Ky8 = −1/12,
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and Ky9 = −1/36. The values for Kz are Kz1 = Kz2 = −Kz3 = 1/8, −Kz5 = −Kz6 =
Kz8 = Kz9 = 1/24, Kz7 = −1/18, and Kz10 = 1/72. The purely imaginary eigenvalues are

Ωl,m,n = −a
h
I
(

cosβ [
(

cosα− sinα) sinφx + sinα sin(φx + φy) ]

+ sinβ [ sin(φx + φy + φz)− sin(φx + φy) ]
)
. (6.31)

The largest eigenvalue is −a/hI cosα cosβ, and it leads to a time step restriction ∆t ∼
h/(a cosα cosβ) = h/ax, which is the optimal time step.

The regular straight streamline approximation with flow-angle independent stencils is
given in Fig. 6.9. When we include the fifth derivative stencils stencils B8, B9, and B10,
one free parameter Kx8 remains, and the amplification is

Ωl,m,n = −a
h
I
{

1
3

[
cosα cosβ sinφx(cosφy + cosφz + 1)

+ sinα cosβ sinφy(cosφz + cosφx + 1)
+ sinβ sinφz(cosφx + cosφy + 1)

]
+8Kx8

[
cosα cosβ sinφx(1− cosφy)(1− cosφz)

+ sinα cosβ sinφy(1− cosφz)(1− cosφx)
+ sinβ sinφz(1− cosφx)(1− cosφy)

] }
. (6.32)

The eigenvalues for the fixed stencil of Fig. 6.9 are those with Kx8 = 0, and vary between
1 and 1.04. Like in two dimensions, the time step is not optimal.

The stability can be marginally improved for β > 0 with the degree of freedom repre-
sented by Kx8, and the optimal value for Kx8 is around −1/48. The discretization for ux
is shown in Fig. 6.10.
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Figure 6.10. An approximation for ux to be combined with regular permutations for uy and uz for
a fixed streamline approximation with optimal stability.

A better stability of the steam line approximation needs flow-angle dependent stencils.
This is a more complicated problem than in two dimensions, if only due to the larger
number of parameters involved. A simple guessed solution like in two dimensions does not
lead to the desired result. A more complete optimization is left for later.

The straight regular approximation without the streamline condition depends on the
parameters Kx2, Kx5, and Kx8. The minimal value of the eigenvalues at α = π/4, βα =
arctan(sin(α)) is estimated by brute force, varying the parameters. An optimum is reached
for Kx2 = 0, Kx5 = 1/72, and Kx8 = −1/18, and the approximation for ux is shown
in Fig. 6.11.
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1
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Figure 6.11. An approximation for ux which, when combined with similar regular rotated approx-
imations for uy and uz, has the optimal stability for approximation of ∂u/∂e1.

The eigenvalues which are associated with this approximation with optimal time step
are

Ωl,m,n = cosα cosβ sinφx cosφy cosφz
+ sinα cosβ cosφx sinφy cosφz + sinβ cosφx cosφy sinφz . (6.33)

The maximum eigenvalue of Ω, excluding the scaling factor a/h, as a function of the flow
angle α is given in Fig. 6.12 for the above approximations.

0
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π/8

0.6
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1.8
one-dim.

streamline

streamline, Kx8= −1/48

opt. stab.

diagonal

Ωmax(α, β)

α

β

Figure 6.12. The stability expressed by Ωmax(α, β) for the one-dimensional grid-aligned approxi-
mation, the streamline approximations with Kx8 = 0 and Kx8 = −1/48, the fixed approximation
with optimal stability, Fig. 6.11, and the diagonal approximation.

The surface of Ωmax(α, β) of (6.33), based on the stencil of Fig. 6.11, follows the one
for the diagonal approximation, except for higher values of α and β. With αm = π/4 and
βm = arctan(sinαm), we find Ωmax(αm, βm) = 2/3 for (6.33), and Ωmax(αm, βm) =

√
3/3

for the diagonal approximation.
Optimizing the high frequency domain of the eigenvalues is a task we leave for later.

The coefficients cr are a function of the angles α and β, and cr0 is shown for the one-
dimensional grid-aligned approximation, the diagonal approximation and the fixed stencil
with optimal stability in Fig. 6.13.
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Figure 6.13. The coefficient cr0 for the one-dimensional grid-aligned approximation, the diagonal,
and the fixed optimal stable approximation.

For the diagonal discretization, Fig. 6.13, the coefficient cr0 is zero at the x axis, the
x-y diagonal, and the x-y-z diagonal, the corners indicated in Fig. 6.6.

The average values for the above discretizations, together with the streamline approx-
imation, are listed in Table 6.2.

Table 6.2. The average values Imn of the error terms of the derivative ∂u/∂e1 for the one-dimensional
discretization, the diagonal discretization, the streamline approximation, and the fixed stencil with
optimal stability.

Ir3 Ir2 Ir1 Ir0

one-dimensional 0.100 0.091 0.170 0.058

diagonal 0.288 0.110 0.137 0.025

streamline 0.167 0.0 0.167 0.0

optimal stability 0.300 0.183 0.440 0.115

6.3. Directional second order discretizations of stream-wise second deriva-
tives in three dimensions on a 3× 3× 3 grid.

Using the coordinate transformation of (6.3), we have

∂2u

∂e2
1

= cos2α cos2β
∂2u

∂x2
+ sin2α cos2β

∂2u

∂y2
+ sin2β

∂u

∂z2

+ 2 cosα cos2β sinα
∂2u

∂x∂y
+ 2 cosα cosβ sinβ

∂2u

∂x∂z
+ 2 sinα cosβ sinβ

∂2u

∂y∂z
. (6.34)

The analysis of approximations like ∂2u/∂e22 is similar and will not be treated here.
The basis consists of ten stencils, three antisymmetric and seven symmetric. We recycle

the basis of §6.2 by taking stencils 8 . . . 17 from Fig. 6.8, which constitute stencils 1 . . . 10
in our new basis. In this basis, stencils 1 . . . 3 and 10 are approximations which have an
error which is one or two orders beyond the truncation error.
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The fixed incomplete streamline stencils which result in cr0 = 0, but cr1 6= 0, are shown
in Fig. 6.14,
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Figure 6.14. The stencils for uxx and uxy, which are used together with the regular permutations
for the remaining grid-based second derivatives in ∂2u/∂e21 of (6.34).

In this basis, the one-dimensional grid-aligned approximation is recovered with kyz4 =
kxz5 = kxy6 = −1/16, kyy7 = kzz7 = kxx8 = kzz8 = kxx9 = kyy9 = −1/12 and kxx10 =
kyy10 = kzz10 = 1/6, and the diagonal approximation needs kxz4 = kyz5 = kxz6 = kyz6 =
−kxy6 = 1/16, kyz7 = kxz8 = kxy9 = 1/12, kzz7 = kyy7 = kzz8 = kxx8 = kxx9 = kyy9 =
−1/12, kxx10 = kyy10 = kzz10 = 1/6, and kxy10 = kxz10 = kyz10 = −1/48. The stencils for
the cross derivatives of the diagonal approximation are shown in Fig. 6.15.
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4∆x∆z uxz =

x

z

y

1
1

-1

-1
-1

-1 2
-1

-1

1

-1

1

-1

1

1-1

-1

1

-1

-1

1 2

-1

1

-1

1

-1

-1

1

1-1

1

-1

-1

1

-1 2

Figure 6.15. The stencils for the cross derivatives of the diagonal approximation.

Remark that the diagonal approximation is not regular since uyz is not a regular per-
mutation of uxy. When we use only regular permutations of uxy we have an approximation
of ∂2u/∂e21 shown in Fig. 6.16. We will call this approximation regular non-diagonal. There
is no regular diagonal approximation of ∂2u/∂e21.
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Figure 6.16. The approximation of ∂2u/∂e21 with the regular non-diagonal approximation for the
case that e1 is along the body diagonal.

These approximations are used on the principal region ax/∆x ≥ ay/∆y ≥ az/∆z ≥ 0.
For other flow angles we use a permutation of the discretization.

The continuity conditions for the second derivative in the z = 0 plane for the FV
formulation are Kxx3 = Kxx4 = Kxx5 = Kxy3 = Kxy4 = Kxy5 = Kyy3 = Kyy4 =
Kyy5 = 0, and K3 = K4 = K5 = 0 with FD. For the x = y plane this is Kxx1 =
Kxx2 − 2Kxy1 + 2Kxy2 − Kyy1 + Kyy2, Kxx4 = Kxx5 − 2Kxy4 + 2Kxy5 − Kyy4 + Kyy5,
Kxx7 = Kxx8 − 2Kxy7 + 2Kxy8 − Kyy7 + Kyy8, Kxz1 = Kxz2 − Kyz1 + Kyz2, Kxz4 =
Kxz5−Kyz4 +Kyz5, Kxz7 = Kxz8−Kyz7 +Kyz8, Kzz1 = Kzz2, Kzz4 = Kzz5, Kzz7 = Kzz8,
andK1 = K2,K4 = K5 andK7 = K8. The conditions for the y = z plane areKxx2 = Kxx3,
Kxx5 = Kxx6, Kxx8 = Kxx9, Kxy2 = Kxy3 −Kxz2 + Kxz3, Kxy5 = Kxy6 −Kxz5 + Kxz6,
Kxy8 = Kxy9 − Kxz8 + Kxz9, Kyy2 = Kyy3 − 2Kyz2 + 2Kyz3 − Kzz2 + Kzz3, Kyy5 =
Kyy6 − 2Kyz5 + 2Kyz6 −Kzz5 +Kzz6, Kyy8 = Kyy9 − 2Kyz8 + 2Kyz9 −Kzz8 +Kzz9, and
K2 = K3, K5 = K6, K8 = K9. The approximations presented above are continuous.

Like in two dimensions, there is no streamline approximation, and limiting is needed
to obtain a higher order steady solution of the approximation. The conditions for cr0 = 0
are

K4 sinβ = sinα cosβK6 , K5 sinβ = cosα cosβK6 , Ki = 0, i = 7 . . . 9 . (6.35)

The coefficients cr0 depend on the angle γ. We eliminate this dependency from the
coefficients by comparing cr0 for β = 0 with the two-dimensional coefficient c04 of Fig. 5.24.
The solution is, as before, γ = 0 modulo π/2.

The optimal Laplacian with symmetries imposed has one degree of freedom, stencil
B10, and is shown in Fig. 6.17.

This approximation lends itself to time accurate discretizations in two dimensions.

The coefficients cr are a function of the angles α and β, and cr0 is shown for the
one-dimensional grid-aligned approximation, the diagonal approximation, and the regular
non-diagonal approximation in Fig. 6.18.

For the diagonal discretization, Fig. 6.18, the coefficient cr is zero at the x axis, the
x-y diagonal, and the x-y-z diagonal, the corners indicated in Fig. 6.6.

The average values for the above discretizations are listed in Table 6.3.



76 robert struijs

6∆x2∆y2∆z2∇2 = x

z

y

1

1

1

1

11

1

1

1

1
1

1
2

2

2

2

2

2 -24

Figure 6.17. The optimal Laplacian.
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Figure 6.18. The coefficient cr0 for the one-dimensional grid-aligned approximation, the diagonal,
and the regular non-diagonal approximation.

Table 6.3. The average values Imn of the error terms of the second stream-wise derivative ∂2u/∂e21 :
one-dimensional grid-aligned, diagonal, the incomplete streamline stencil, and the regular non-
diagonal stencil.

Ir5 Ir4 Ir3 Ir2 Ir1

one-dimensional 0.100 0.024 0.108 0.084 0.053

diagonal 0.155 0.087 0.103 0.028 0.013

incomplete streamline 0.150 0.091 0.220 0.057 0.0

regular non-diagonal 0.129 0.054 0.163 0.104 0.058

6.4. Boundary approximations for the second order first derivative in three
dimensions.

On larger grids, we present boundary stencils for the streamline second order approxi-
mation of the first derivative, (6.26). The streamline approximations cr0 = 0 are given for
the case that the boundary node is on a single boundary plane i = 0, Fig. 6.19.

When the boundary node is on two boundary planes, i = 0 and j = 0, we get the
stencils of Fig. 6.20 and Fig. 6.21.

Finally, with the boundary node on the intersection of three boundary planes, i = 0
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Figure 6.19. Streamline boundary approximations for the boundary at i = 0 for the central ap-
proximation of §6.2. The boundary stencil ux is shown with two basis stencils, and uy with also
two basis stencils. A rotation over π/4 along the i grid line through the point of discretization of
uy gives uz.

j = 0 and k = 0, we get the stencils of Fig. 6.22.
These boundary stencils reduce to Fig. 5.32 and Fig. 5.33 in two dimensions. No

attempt has been made to use the degrees of freedom to find boundary stencils which
lead to an optimally stable approximation.

6.5. The scheme of Lax and Wendroff.

For the first derivative in (5.80) in three dimensions we use the stream-wise fixed
stencil and basis B with coefficients K of §6.2, and for the second derivative the incom-
plete streamline fixed stencil and the basis stencils of §6.3. The latter we will indicate by
coefficients K ′ .

The coefficient cr0 in the error of ∂u/∂e1 of the Lax-Wendroff scheme can be found
in Fig. 6.13, and the average error values Imn in Table 6.2.
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Figure 6.20. Streamline boundary approximations for the boundary at the intersection i = j = 0
for the central approximation of §6.2. The boundary stencil uz is given with four basis stencils.

The amplification G as a function of ν = a∆t/h for the stability of the Lax-Wendroff
scheme depends on the 27 coefficients K and K ′. The amplification G is similar to Ω
of (6.29), where K8 appears with K ′1 etc., cf. (5.81) and (5.35).

An analytic optimization is complicated. A first impression of the maximum value of ν
for a stable approximation is to compute G, given K, for a range of α, β, φx, φy, and φz.
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Figure 6.21. Streamline boundary approximations for the boundary at the intersection i = j = 0
for the central approximation of §6.2. The boundary stencil ux is shown with two basis stencils. A
regular rotation over π/4 gives uy.

For some combinations of first and second derivatives in the Lax-Wendroff approximation
the maximum value of ν is given in Table 6.4.

Table 6.4. The maximum allowable value of ν for different combinations of a first derivative of §6.2
and a second derivative of §6.3 in the Lax-Wendroff scheme.

XXXXXXXXXXX
∂2u/∂e21

∂u/∂e1 one-dim. diagonal streamline opt. time step

one-dimensional 0.339 x 0.944 0.914

diagonal x x 0.550 x

x : the scheme is not stable.

Approximations involving the incomplete streamline stencil as second derivative are
unstable, like in two dimensions. Also discritizations with the regular non-diagonal sten-
cil are unstable. The combination of the diagonal approximation is only stable with a
streamline first order approximation. Unexpectedly, the scheme involving a diagonal ap-
proximation for the first derivative is unstable. In two dimensions, this combination gave
the best result. The diagonal second derivative is not regular. This may reduce stability.

A full parametric analysis of the amplification for the optimization of ν remains to
be done. Nevertheless, the streamline first order approximation with a one-dimensional
second derivative in a Lax-Wendroff scheme almost triples the stability compared with
the full one-dimensional scheme.
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Figure 6.22. Streamline boundary approximations for the boundary at the intersection i = j =
k = 0 for the central approximation of §6.2. The boundary stencil uz is presented with four basis
stencils. A regular rotation over π/4 gives uy, and consequently uz.

7. Directional discretizations on unstructured grids.

On unstructured grids, the creation of approximations by means of a basis of stencils,
analysis and optimization is similar to structured grids. The bases are generated with the
program GDD, which now reads an unstructured stencil.
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However, the number of volumes like triangles or tetrahedra which surround a node
on unstructured grids may vary. The stencil is the same everywhere on a structured grid,
except for the one-sided approximations at the boundaries. Even if the structured grid is
distorted, the same approximations are used for any interior node in a FD or FV solver.

On an unstructured grid, the one-dimensional FV method leads to a consistent approx-
imation. The distribution methods based on the N scheme lose consistency on irregular
grids, and in three dimensions [7].

The basis of stencils can be applied on irregular grids in a FD context. Consistency
and optimization are applied to the individual nodes.

We will consider first order upwind and second order central discretizations in two and
three dimensions. First order upwind approximations have been treated from different
points of view elsewhere, see e.g. [6]. In the following, we will use as fixed stencils for
ux, uy, and uz the approximations which result from a FV approach, presented in a FD
formulation.

7.1. Directional first order upwind discretizations of the first derivative in
two dimensions on equilateral triangles.

A simple regular unstructured grid in two dimensions is composed of equilateral trian-
gles with h the length of the side. The point of discretization is surrounded by six triangles,
and the stencil is a hexagon. The node numbers of this stencil are shown in Fig. 7.1.

4

6

1
5

3

2

7

Figure 7.1. The node numbers on the hexagonal stencil.

The first order approximation on this grid is shown in Fig. 7.2.
We consider the principal region 0 ≤ α ≤ π/6. For other flow angles a permutation is

used. On the principal region, upwind discretizations reduce the basis to the single stencil
b with k2 = −k1, k3 = k1, and k4 = 0, see Fig. 7.3.

We replace the fixed stencils by those of the distribution N scheme, Fig. 7.4.
The first order upwind stream-wise derivative is, with the fixed stencils of Fig. 7.4, and

the basis stencil b of Fig. 7.3,

∂u

∂e1
=

1
h
{(−k + cosα+ 1√

3
sinα)u1 + (k − 2√

3
sinα)u4

+(−k − cosα+ 1√
3

sinα)u5 + ku6} . (7.1)

The monotonicity conditions for this approximation are

1− a∆t
h

(−k + cosα+ 1√
3

sinα) ≥ 0 , −k + 2√
3

sinα ≥ 0 ,

k + cosα− 1√
3

sinα ≥ 0 , k ≤ 0 . (7.2)

For sufficiently small ∆t and on the principal region this reduces to

0 ≥ k ≥ 1√
3

sinα− cosα . (7.3)
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Figure 7.2. The FV derivatives ux and uy, together with the basis stencils for the first order
discretization on a hexagonal stencil.

b = -1
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1

1

Figure 7.3. The single basis stencil b for the first order upwind discretization.

hux = huy = 1
3

√
3×-1

1
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1
1

Figure 7.4. The distribution N scheme derivatives ux and uy for the first order discretization on a
hexagonal stencil.

The fixed stencil of Fig. 7.2 has k = 1/3(
√

3 sinα − cosα) and is monotone, but has a
smaller allowable time step than the stencil of Fig. 7.4.

The streamline solution satisfies c02 = 0 with

c02 =
1
4

(3 cos2 α− sin2 α)(k − 1
3

√
3 sinα) . (7.4)

The simple solution kx = 0 and ky = 1/3
√

3 does not satisfy the monotonicity conditions,
and is not continuous at α = π/6.
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7.2. Directional second order central discretizations of the first derivative
in two dimensions on equilateral triangles.

The basis for the central second order approximations is shown in Fig. 7.5.
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6 × huy =
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1-1
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Figure 7.5. The derivatives ux and uy, together with the basis stencil b, for the second order central
discretization on a hexagonal stencil.

The basis consist of one stencil. There are less degrees of freedom than on the structured
grid since the stencil contains less nodes.

A directional analysis gives as error terms

c30 = −1
8 + 1

4k cos(3α) , c21 = 3
4k sin(2α) ,

c12 = 1
8 + 3

4k cos(3α) , c03 = −1
4k sin(3α) . (7.5)

This reveals that the fixed FV derived stencil has the streamline property.
The general streamline approximation has k = 0, and the FV stencil is the only flow-

angle independent streamline approximation.

7.3. Directional second order central discretizations of the first derivative
in three dimensions on an icosahedron.

We take an icosahedron as the stencil. The point of discretization is surrounded by
twenty tetrahedra. The surface consists of equilateral triangles, which edge length is about
5% longer than the distance to the center. We take the nodes on a sphere with radius h.
These nodes are permutations of (p h, q h, 0) with p =

√
(5 +

√
5)/10 and q =

√
(5−

√
5)/10 .

On this grid, we have a basis of three stencils. The fixed stencil for ux and the basis
stencil b1 is shown in Fig. 7.6. The remaining fixed derivatives uy and uz, and basis stencils
b2 and b3 are obtained by rotations.

With this basis there are no streamline stencils possible. There are just not enough
degrees of freedom, since we have a compact surrounding of the node at the origin.

The first order upwind discretization has a basis of nine stencils on this grid.

This result is a drawback for unstructured methods in three dimensions. While a
subdivision of space in tetrahedra with equilateral sides is impossible, the icosahedron
comes very close. In other words, an unstructured grid generator is likely to fill large
amounts of the domain with nodes which are surrounded by twenty tetrahedra and twelve
nodes, just like an icosahedron.
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Figure 7.6. The fixed stencil ux and the basis stencil b1 for the second order approximation. The
remaining grid derivatives and basis stencils are obtained with rotations.

It is of course possible to consider a stencil which includes nodes which are further
away, but then it may be easier to apply a classical fourth order method, at perhaps a
lower cost.

We can still define a regular straight approximation, for which kx1 = ky2 = kz3, and
with the remaining k’s zero.

The stability analysis indicates that the amplification of the fixed stencil is almost
optimal. The regular approximation with kx1 near 1/6 reduces Ωmax(0, 0) from 1.3 to 1.2,
but increases the maximum value for α = π/4.

Optimization in the high frequency part of the eigenvalues is possible.
Unstructured second order discretizations in three dimensions are therefore facing the

problems of hardly an increase in stability, an absence of stream-wise discretization, com-
bined with the restriction to a FD discretization for consistency.

7.4. Directional second order central discretizations of the first derivative
in three dimensions on twenty four tetrahedra.

We will take as the stencil for this central approximation a cluster of twenty four
tetrahedra. This cluster can be constructed as follows. Consider a cube, dissected into six
tetrahedra ([7]), see Fig. 7.7.

x

z

y

Figure 7.7. A subdivision of a cube in six tetrahedra.

The node at the origin is surrounded by eight of such cubes, and the node is part of
twenty four tetrahedra. The resulting approximation is shown in Fig. 7.8.
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Figure 7.8. The fixed stencil ux and the basis stencil b1 for the second order approximation. The
remaining grid derivatives and basis stencils are obtained with rotations.

The basis consists of three stencils. On this grid, we cannot have straight approxima-
tions. Regular approximations require kx1 = ky2 = kz3, and the remaining k’s zero.

We can obtain the fixed stencil of Fig. 7.8 with the basis of §6.2, taking there Kx =
1/144(6, 0, 6, 0, 8,−1,−3,−8,−1,−3, 0, 0, 0, 0, 0, 0, 0)T , and similar for the other derivati-
ves. The basis stencils are symmetric, and e.g. b1 is the combination b1 = 1/4(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1,−1, 1,−2, 1, 0, 0)T .

A directional analysis reveals that the fixed stencils, obtained from a FV method, form
a streamline approximation. We now have enough nodes for streamline approximations,
without increasing the number of basis stencils compared to the icosahedron grid.

The question is if an unstructured grid generator will produce such configuration in
a majority of the cases. Starting with a structured grid is no solution, since the ease of
generating an unstructured grid is mainly the reason for unstructured solvers.

In Fig. 7.9 we have collected the stability surfaces of Ωmax(α, β) for the structured
central optimal stable approximation of Fig. 6.11 and the unstructured approximations on
20 and 24 tetrahedra, the latter one computed with the structured tools of the previous
section.

0 π/8 π/40
π/8

0.8

1.0

1.2

1.4 icosahedron

24 tetrahedra (structured)

opt. stab.

Ωmax(α, β)

α

β

(structured)

Figure 7.9. The stability expressed by Ωmax(α, β) for the unstructured approximation on 20 tetra-
hedra, on 24 tetrahedra (structured), and the structured approximation with optimal stability.
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For given grid size h, the allowable time step is smaller on the icosahedron grid than
on the structured grid. The comparison would be fairer when we consider an unstructured
hu and a structured hs which give the same node density.

8. Numerical results.

We will present here the first results for some approximations. We restrict ourselves to
first order and second order approximations in two dimensions, for the scalar advection
equation and the Euler equations. This enables us to verify part of the analysis presented
before, and to get an impression of the properties of a few approximations.

We start with a scalar linear advection problem, comparing the convergence of the
first order upwind approximation in the one-dimensional grid-aligned version, and with
the diagonal discretization. The behavior is known [4, 8, 10], but for completeness we
include here the convergence plot for the two approximations. The test problem is a unit
square domain with 32×32 cells on a regular grid. At the inlet a profile is specified, which
is advected through the domain with flow direction α. The convergence in the L∞ norm
is shown in Fig. 8.1.

0 20 40 60 80 100 120

number of iterations

0

-5

-10

-15

conv. (L∞)
one-dim., 0◦
diagonal, 0◦
one-dim., 45◦
diagonal, 45◦

Figure 8.1. The convergence in the L∞ norm for first order upwind approximations for the linear
advection problem on a regular grid of 32 × 32 cells, with local time step for flow angles 0◦ and
45◦.

As expected, the number of iterations is virtually independent of the flow angle for the
diagonal approximation.

For an assessment of the accuracy, we consider the central second order approxima-
tion in the three forms : the standard one-dimensional grid-aligned version, the diagonal
approximation of (2.6), and the streamline approximation of (5.32). The latter is without
the correction of §5.5.

We use the linear scalar advection problem on a unit square domain with a flow angle
of α = 30◦ on a regular grid with 12-33 nodes on each axis and a smooth exponential inlet
profile. The error is the difference of the numerical result and the analytical solution, and
is similar for FD and the FV method, Fig. 8.2.

The slope is 2, 2.5, and 4 for the three approximations respectively in either the L1, L2

or in the L∞ norm. The improved accuracy is compromised, or even lost, on a less regular
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Figure 8.2. The log of the error in L∞ norm as function of the log of the grid size h for three central
second order approximations : the standard one-dimensional grid-aligned version, the diagonal
approximation of (2.6), and the streamline approximation of (5.32).

grid in the FV method. On the somewhat deformed grid of Fig. 8.3, the errors are shown
in Fig. 8.4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.3. A slightly deformed grid on the unit domain.

A whiff of fourth order artificial viscosity is needed. The accuracy is reduced, and the
slopes are 1.9, 2.4, and 2.6 respectively. The streamline approximation is now similar to the
diagonal approximation, but the error is less than of the one-dimensional approximation.
Convergence is better than for the one-dimensional grid-aligned approximation.

Only the FD method can take into account in a derivation similar to (5.32) the actual
grid node positions. The alternative is a coordinate transformation, as discussed in §5.2,
but this does not restore the accuracy in this case.

The behavior for systems of equations is analyzed by computing the solution of the
Euler equations for subsonic flow in a channel which has a sinusoidal bump on the lower
wall [27]. The grid of the channel is shown in Fig. 8.5 for the grid size h = 1/12 in the
uniform region.
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Figure 8.4. The log of the error in L∞ norm as function of the log of the grid size h for the three
central second order approximations on the grid of Fig. 8.3.

0.00 1.00 2.00 3.00 4.00
0.00

1.00

Figure 8.5. The grid of the channel with bump for the grid size 1/12 in the uniform region.

We compute FV solutions with the one-dimensional central second order approxima-
tion, with the streamline approximation of (5.32), and the latter with a transformation to
a uniform computational grid. The streamline approximations are without the correction
of §5.5.

The spurious entropy is for subsonic flow an indication of the error, but in practice the
behavior of a parameter like the Mach number may be important. We apply characteristic
boundary conditions with the Mach number M = 0.3 imposed at the outlet, with at the
inlet free-stream conditions. The entropy S = p/ργ − 1, based on adimensional values, and
the Mach number are shown in Fig. 8.6 for grid sizes between 1/12 – 1/34.

The slopes of the entropy S are 1.7, 1.7, and 2.7 respectively for the three approxi-
mations. The grid transformation on this relatively smooth grid helps to recover some of
the accuracy of the streamline approximation, but does not produce any improvement for
the one-dimensional computation. The error of solution judged by the entropy is consid-
erably lower for the streamline approximations than for the one-dimensional grid-aligned
approximation. The reduced error for the streamline approximations is less visible in the
Mach number, but still permits a coarser grid. For the same quantitative result about half
the number of grid points is needed in two dimensions. The computational cost per node
is only about 5% more than the one-dimensional approximation. Combined with better
convergence, Fig. 8.7, the streamline approximations permit computational savings.
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Figure 8.6. The log of the extremum of the entropy S and the extremum of the Mach number as
function of the log of the grid size h for the three central second order approximations.

9. Conclusion.

In this paper, we have described methods to construct approximations for advection
equations on an extended stencil, which include nodes which lie beyond the grid axes
passing through the node of discretization.

A basis of stencils expresses the most general approximation to a derivative. The
basis follows from a Taylor series expansion of the nodes present in the stencil. Tuning
the degrees of freedom leads to optimization of the error of the approximation, or of
the stability. The number of degrees of freedom is large. It is possible, and sometimes
necessary, to make approximations a function of the advection direction. Continuity of the
approximation when switching stencils is important.

We can classify the new approximations in the following groups :
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Figure 8.7. The convergence in the L∞ norm for the three central approximations for the channel
flow problem with grid size 1/34, with global time step.

Diagonal discretizations use only nodes on grid lines and diagonals which are passing
through the point of discretization. For the flow direction along those lines they reduce to
a stream-wise approximation.

This class of discretizations exhibits the optimal stability and time step. We find in
any number of space dimensions the same stability limit as in one dimension. In three
dimension, this means an improvement of a factor of three in time step compared to the
currently available discretizations.

The diagonal approximation depends piece wise on the flow angle and is continuous
in the FD method, but not in the FV method. The latter method can be accommodated
when making the approximation continuously dependent on the advection direction.

The dependency on the flow angle makes this approximation suited for scalar equations,
or for systems of equations with commuting Jacobian matrices. The Jacobian matrices for
the Euler equations do not commute. Solving these equations requires a flux splitting, a
procedure currently used in upwind schemes.

Streamline approximations focus on eliminating the leading error term normal to the
streamline. At steady state this leads to an increase in the order of accuracy of the ap-
proximation. Unsteady computations benefit also from this improvement. The stencil of
the approximation includes nodes outside the diagonals and grid lines passing through the
node of discretization.

The streamline property is based on a careful elimination of error terms, and is very
sensitive to grid quality. The accuracy of a FV streamline approximation suffers on a
deformed grid, but shows still an improvement over the currently available approximations.
A FD approximation can take into account the actual position of the nodes, and retain
accuracy on a deformed mesh.

In upwind approximations, the streamline condition is in conflict with continuity of the
approximations. A first order streamline method also breaches the monotonicity condition.
Limiting is needed to reconcile these properties in case of non-monotone solutions.

Streamline boundary stencils for the central second order approximation occupy a
stencil which protrudes one layer deeper in the interior domain.

General approximations combine some of the above optimizations, on a stencil includ-
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ing nodes outside the diagonals and grid lines passing through the node of discretization.
A second order central approximation exists which has almost the optimal stability,

while being flow-angle independent. The price of the fixed stencil is a significantly larger
truncation error.

A fourth order central approximation on a fixed stencil has been found in two dimen-
sions which combines the streamline property with the optimal time step.

The Lax-Wendroff scheme is a combination of a first and a second derivative. The
new approximations result in a time step which is 95% of the optimal time step in three
dimensions, and the optimal time step in two dimensions. There is no regular diagonal
second derivative in three dimensions.

Degrees of freedom can be used for improving smoothing properties in a multi-grid
application.

The method of Hildebrand for generating discretizations is extended to more than one
space dimension. This includes approximations for higher derivatives and the diagonal
discretizations. Approximations which are produced this way have to be verified afterwards
for truncation error and stability.

The basis of stencils applies also to unstructured grids. The inherently varying number
of surrounding elements on an unstructured grid limits the use of a basis of stencils to a FD
application. The natural surrounding of a node in three dimensions with twenty tetrahedra
is insufficient to permit a central streamline approximation. There are enough nodes in
two dimensions, and remarkably, FV approximation are streamline discretizations.

Restricting a higher order approximation to a monotone first order approximation
requires limiters. Due to the coupling of the various grid-based derivatives in the approx-
imation, an implicit solution of the limiting function is needed, which may be costly. If
strict monotonicity cannot reasonably be obtained, a second best choice is approximate
limiters or artificial viscosity. Application to problems with strong discontinuities will have
to reveal the practical value of the new discretizations in non smooth flow.

The discretizations presented in this paper need further analysis. This concerns es-
pecially application to discontinuous problems, systems of equations, the damping of the
schemes for multi-grid application, behavior with preconditioning of the equations, multi-
level and implicit discretizations, application to equations in entropy or symmetrizing
variables and so on.

We can state with confidence that the schemes are more accurate and stable than those
nowadays available, but the major contribution may be the improvement of the time step.
The implementation in existing codes is trivial, and the extent of the stencils of directional
discretizations does not exceed the extent of the stencils which are currently in use.

The actual gain in computational efficiency will only be known after rigorous testing
using multi-block codes in an industrial environment.
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Appendix A. Limiters for diagonal discretizations.

We extend the limiters of grid-aligned one-dimensional discretizations to the diagonal
discretizations of §2 in two dimensions. We apply the method of Spekreijse [29] for the
case a∆y > b∆x > 0, and write a general update of node ui,j involving the nodes uk,l with
k ∈ . . . , i− 1, i, i+ 1, . . . and l ∈ . . . , j − 1, j, j + 1, . . . as

un+1
i,j − u

n
i,j = −a∆t

∆x
Ani,j

(
uni,j − uni−1,j

)
− b∆t

∆y
Bn
i,j

(
uni−1,j − uni−1,j−1

)
. (A.1)

The monotonicity coefficients Ani,j and Bn
i,j are a function of all the unknowns uk,l. Mono-

tonicity for the steady state can easily be shown with the aid of (A.1) by taking un+1
i,j = uni,j ,

which gives the convex average

ui,j =

(
a

∆x
Ai,j −

b

∆y
Bi,j

)
ui−1,j +

b

∆y
Bi,jui−1,j−1

a

∆x
Ai,j

. (A.2)

The scheme is monotone under the conditions that the monotonicity coefficients Ani,j and
Bn
i,j are positive and bounded,

0 ≤ a

∆x
Ai,j −

b

∆y
Bi,j ≤ L , 0 ≤ Bn

i,j ≤ L , L > 0 . (A.3)

This means that the steady state solution will be monotone, but it will be possible to find
initial data for which the scheme is not TVD [29]. For the first order diagonal upwind
discretization, (2.5), the monotonicity coefficients are

Ani,j = 1 , Bn
i,j = 1 , (A.4)

and the discretization is monotone.
Let us derive the monotonicity conditions for the second order diagonal upwind dis-

cretization, (2.7), and the linear advection equation. The FV framework is used where the
unknowns at the edges are limited for monotonicity. We define limiter functions φx and
φy, and the limited variables as follows :

uLi+1/2,j = ui,j + 1
2φ

x
i,j (ui,j − ui−1,j) ,

uLi,j+1/2 = ui−1,j + 1
2φ

y
i,j (2ui−1,j − ui−2,j − ui−2,j−1) , (A.5)

where we don’t specify yet on which variables the limiting functions depend. The update
in case of the Euler backward scheme becomes

un+1
i,j − u

n
i,j =− a∆t

∆x
(
ui,j − ui−1,j + 1

2φ
x
i,j(ui,j − ui−1,j)− 1

2φ
x
i−1,j(ui−1,j − ui−2,j)

)
− b∆t

∆y
(
ui−1,j − ui−1,j−1 + 1

2φ
y
i,j (2ui−1,j − ui−2,j − ui−2,j−1)

− 1
2φ

y
i,j−1 (2ui−1,j−1 − ui−2,j−1 − ui−2,j−2)

)
.

(A.6)

Therefore, the monotonicity coefficients Ani,j and Bn
i,j of eq. (A.1) are

Ani,j = 1 +
1
2
φxi,j − 1

2φ
x
i−1,j

ui−1,j − ui−2,j

ui,j − ui−1,j
= 1 + 1

2φ
x
i,j − 1

2

φxi−1,j

R∗i−1,j

,
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Bn
i,j = 1 + 1

2φ
y
i,j

2ui−1,j − ui−2,j − ui−2,j−1

ui−1,j − ui−1,j−1
− 1

2φ
y
i,j−1

2ui−1,j−1 − ui−2,j−1 − ui−2,j−2

ui−1,j − ui−1,j−1

= 1 + 1
2si,jφ

y
i,j −

φyi,j−1

Si,j−1
, (A.7)

where

si,j =
2ui−1,j − ui−2,j − ui−2,j−1

ui−1,j − ui−1,j−1
, Si,j =

ui−1,j − ui−1,j−1

2ui−1,j−1 − ui−2,j−1 − ui−2,j−2
,

Ri,j =
ui,j − ui−1,j

ui+1,j − ui,j
. (A.8)

These expressions show similarities with the monotonicity coefficients of one-dimensional
theory [30, 31], where

Ani,j = 1 + 1
2φ

x
i,j − 1

2

φxi−1,j

Ri−1,j
with Ri,j =

ui,j − ui−1,j

ui−1,j − ui−2,j
, (A.9)

in which case the limiter φ is a function of the ratio of successive differences of the un-
knowns in a one-dimensional direction. In the ratios of (A.9), the successive differences
involve different directions.

For smooth flow, the one-dimensional ratio of differences Ri,j is equal to 1, and for a
second order solution, we need φ(1) = 1. Let us consider a one-dimensional flow solution,

u1D
i,j = u0 + ua(~ri,j · ~n) = u0 + ua(i∆xnx + j∆y ny) , (A.10)

where u0 is constant, ua is a function of the position ~ri,j and ~n//~∇u is the direction of the
gradient of the one-dimensional solution. For a linear solution, ua(~ri,j · ~n) = ua · (~ri,j · ~n),
where ua is a constant, see fig. A.1.

u
2

u
1

a

n

β

u
3

Figure A.1. A linear solution with the gradient in direction ~n.

The smooth one-dimensional flow solution applied to the monotonicity ratios of (A.9)
gives at steady state, when ~n = ±

(
b
−a
)
,

Ri,j = 1 , si,j =
2nx∆x+ ny∆y

ny∆y
, Si,j =

ny∆y
2nx∆x+ ny∆y

. (A.11)

The ratios si,j and Si,j do not have a value of one in smooth flow at steady state. We
introduce therefore the scaled ratios with

c =
a∆x− 2b∆y

a∆y
= 1− 2γ , where γ =

b∆x
a∆y

, 0 ≤ γ ≤ 1 , s̃ =
s

c
, and S̃ = S ∗ c .

(A.12)
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In these new variables, the monotonicity condition of (A.3) can be rewritten as L ≥ Ai,j ≥
γBi,j ≥ 0, or

L ≥ 1 + 1
2φ

x
i,j − 1

2

φxi−1,j

Ri−1,j
≥ γ

{
1 + c

(
1
2 s̃i,jφ

y
i,j −

1
2

φyi,j−1

S̃i,j−1

)}
≥ 0 . (A.13)

The limiter function φy poses no problem. Any of the classical limiters will do. It is the
coupling of the limiting functions φx and φy in (A.13) which creates a complication. For
γ ≤ 1/2, an independent solution for φx can be found, but for values of γ ≥ 1/2, the
limiting values of φx and φy have to be found simultaneously. Due to this coupling, the
solution of the limiting values requires an implicit step, even in an explicit scheme. The
problem is of the class of constraint optimization, and solution methods can be found in
the book of Strang [22].

For the central scheme of (2.6) the relevant variables are

si,j =
ui+1,j+1 − ui−1,j

ui−1,j − ui−1,j−1
, Si,j =

ui−1,j − ui−1,j−1

(ui+1,j − ui−1,j−1)
. (A.14)

Again, the limiter values are coupled.
When limiters become impractical, the pragmatic choice of artificial viscosity could be

considered.

Appendix B. An overview of the number of basis stencils.

Grid-based derivatives are in this paper expressed as as the sum of a fixed stencil and a
basis of stencils. We present the number of stencils on a domain [−m,n]N with N = 1, 2, 3
the number of dimensions, and m + n the number of nodes along each grid coordinate.
The derivatives are used in the approximation of the first, second and third stream-wise
derivatives ∂u/∂e1, ∂

2u/∂e21, and ∂3u/∂e31. The number of stencils in the tables B.1, B.2,
and B.3 corresponds to the number of degrees of freedom for each of the grid-based deri-
vatives which contributes to the stream-wise derivative. The number of degrees of freedom
is large, even on relatively small grids, especially in three dimensions. The number of ba-
sis stencils is proportional to (m+ n)N . Only in one dimension there are approximations
which consist of the fixed stencil only, and for which the basis is empty. The computation
of large bases in three dimensions is time consuming, which explains the missing numbers
in table B.3.

The basis can be transformed to one which contains only antisymmetric and symmetric
stencils. The symmetry is with respect to the gravity center of the domain, 1/2 (n −m)
in each coordinate direction. This has the effect that a part of the basis has a truncation
error which is an order higher than the remaining part, and therefore becomes of secondary
importance. Other constraints like regularity of the basis described in §5.2 further reduce
the degrees of freedom.

There is redundancy in the tables since for given m+n, the basis for the approximation
of the first derivative of order M is also the basis for the approximation of the second
derivative of order M−1 on the same domain. This pattern continues for higher derivatives.
The number of antisymmetric and symmetric stencils is therefore only given for the first
derivative, with the exception of some of the second derivatives. The bases for second order
approximations of second derivatives on 3N nodes, fourth order on 5N nodes and so on
have no first derivative counterpart.
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Also the splitting in antisymmetric and symmetric basis stencils exhibits a pattern.
For a given number of nodes m+n and approximations of order M and M − 1, either the
number of antisymmetric basis stencils or the number of symmetric basis stencils are the
same. The same holds for given m+n and M between the a derivative and the next higher
derivative. An example is §6.3 where the symmetric part of the basis of §6.2 is used.

The most interesting parts of the tables concern three to five nodes in each direction
in three dimensions, which are often encountered in industrial applications.

The degrees of freedom permit to optimize the error. Suppression of the highest deri-
vative(s) normal to the streamline in an advection equation has the effect of increasing the
order of accuracy, as is explained in this paper. The optimization in the Fourier domain
leads to discretizations with improved stability, which in optimal cases gives the time step
restriction of diagonal discretizations.
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Table B.1. The number of stencils in one dimension for a given number of nodes and order of the
error in the approximation. The numbers in the table are the degrees of freedom for each grid-
based derivative which contributes to the derivative d1 = ∂u/∂e1, d2 = ∂2u/∂e21, or d3 = ∂3u/∂e31
respectively. The total number of stencils is given, and for d1 the number of asymmetric and
symmetric basis stencils.

order 1 2 3 4 5 6 7 8

nodes

2 d1 0

3 d1 1 0
0, 1

d2 0 0

4 d1 2 1 0
1, 1 1, 0

d2 1 0
d3 0

5 d1 3 2 1 0
1, 2 1, 1 0, 1

d2 2 1 0 0
d3 1 0

6 d1 4 3 2 1 0
2, 2 2, 1 1, 1 1, 0

d2 3 2 1 0
d3 2 1 0

7 d1 5 4 3 2 1 0
2, 3 2, 2 1, 2 1, 1 0, 1

d2 4 3 2 1 0 0
d3 3 2 1 0

8 d1 6 5 4 3 2 1 0
3, 3 3, 2 2, 2 2, 1 1, 1 1, 0

d2 5 4 3 2 1 0
d3 4 3 2 1 0

9 d1 7 6 5 4 3 2 1 0
3, 4 3, 3 2, 3 2, 2 1, 2 1, 1 0, 1

d2 6 5 4 3 2 1 0 0
d3 5 4 3 2 1 0
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Table B.2. The number of stencils in two dimensions for a given number of nodes and order of the
error in the approximation. The numbers are the degrees of freedom for each grid-based derivative
which contributes to the derivative d1 = ∂u/∂e1, d2 = ∂2u/∂e21, or d3 = ∂3u/∂e31 respectively. The
total number of stencils is given, and for d1 and some d2 bases the number of asymmetric and
symmetric basis stencils.

order 1 2 3 4 5 6 7 8

nodes

2 d1 1(1)

0, 1

3 d1 6(3) 3(2)

2, 4 2, 1
d2 1(4)

3 0, 1

4 d1 13 10 6(7)

6, 7 6, 4 2, 4
d2 10 6
d3 6

5 d1 22 19(8) 15(6) 10(5)

10, 12 10, 9 6, 9 6, 4
d2 19 15 10 6

2, 4
d3 15 10

6 d1 33 30 26 21 15
16, 17 16, 14 12, 14 12, 9 6, 9

d2 30 26 21 15
d3 26 21 15

7 d1 46 43 39 34 28 21
22, 24 22, 21 18, 21 18, 16 12, 16 12, 9

d2 43 39 34 28 21 15
6, 9

d3 39 34 28 21

8 d1 61 58 54 49 43 36 28
30, 31 30, 28 26, 28 26, 23 20, 23 20,16 12, 16

d2 58 54 49 43 36 28
d3 54 49 43 36 28

9 d1 78 75 71 66 60 53 45 36
38, 40 38, 37 34, 37 34, 32 28, 32 28, 25 20, 25

d2 75 71 66 60 53 45 36 28
12, 16

d3 71 66 60 53 45 36
(1) : see §5.1. (4) : see §5.4.
(2) : see §5.2. (5) : see §5.6.
(3) : see §5.3. (6,7,8) : see §5.7.



98 robert struijs

Table B.3. The number of stencils in three dimensions for a given number of nodes and order of the
error in the approximation. The numbers are the degrees of freedom for each grid-based derivative
which contributes to the derivative d1 = ∂u/∂e1, d2 = ∂2u/∂e21, or d3 = ∂3u/∂e31 respectively. The
total number of stencils is given, and for d1 and some d2 some bases the number of asymmetric
and symmetric basis stencils.

order 1 2 3 4 5 6 7 8

nodes

2 d1 4(1)

1, 3
3 d1 23 17(2)

10, 13 10, 7
d2 17 10(3)

3, 7

4 d1 60 54 44
29, 31 29, 25 19, 25

d2 54 44
d3 44

5 d1 121 115 105 90
59, 62 59, 56 49, 56 49, 41

d2 115 105 90 72
31, 41

d3 105 90

6 d1 212 206 196 181 160
105, 107 105, 101 95, 101 95, 86 74, 86

d2 206 196 181 160
d3 196 181 160

7 d1 339 333 323 308 287 259
168, 171 168, 165 158, 165 158, 150 137, 150 137, 122

d2 333 323 308 287 259 226
104, 122

d3 323 308 287 259

8 d1 508 502 492 477 456 428 392
253, 255 253, 249 243, 249 243, 234 222, 234 222, 206 186, 206

d2 502 492 477 456 428 392

9 d1 725 719 709 694 673 645 609 564
361, 364 361, 358 351, 358 351, 343 330, 343 330, 315 294, 315 294, 270

(1) : see §6.1.
(2) : see §6.2.
(3) : see §6.3.



a basis for discretizations 99

References

[1] G.D. Raithby. Skew upstream differencing schemes for problems involving fluid flow.
Comput. Meth. Appl. Mech. Eng., 9:153–164, 1976. Citation on p. 1.

[2] R.H. Ni. A multiple-grid scheme for solving the Euler equations. AIAA J., 20:1565–
1571, 1982. Citation on p. 1.

[3] S.F. Davis. A rotationally biased upwind difference scheme for the Euler equations.
J. Comp. Phys., 56:65–92, 1984. Citation on p. 1.

[4] J.G. Rice and R.J. Schnipke. A monotone streamline upwind finite element method
for convection-dominated flows. Comp. Meth. in Appl. Mech. and Eng., 48:313–327,
1985. Citations on p. 1, 6, and 86.

[5] T.J.R. Hughes, M. Mallet, and A. Mizukami. A new finite-element formulation for
computational fluid dynamics, II. Beyond SUPG. Comp. Meth. Appl. Mech. & Eng.,
84, 1986. Citation on p. 1.

[6] B. van Leer. Progress in multidimensional upwind differencing. Technical Report 92-
43, ICASE, NASA Langley Research Center, Hampton, Virginia, sep 1992. Citations
on p. 1 and 81.

[7] R. Struijs. Flux vector distribution. Available at http://www.ma.utexas.edu/mp_
arc, January 2010. Citations on p. 1, 6, 14, 18, 48, 49, 53, 54, 81, and 84.

[8] D. Sidilkover. Numerical solution to steady-state problems with discontinuities. PhD
thesis, The Weizmann Institute of Science, Rehovot, Israel, 1989. Citations on p. 2,
6, 12, 14, 15, 21, 22, 23, 36, 39, 45, and 86.

[9] G. Dahlquist and A. Bjork. Numerical Methods. Prentice Hall, Englewood Cliffs, NJ,
1974. Citations on p. 2 and 42.

[10] P.L. Roe and D. Sidilkover. Optimum positive linear schemes for advection in two
and three dimensions. SIAM J. Num. Anal., 29(6):1505–1825, 1992. Citations on
p. 6, 12, 23, 56, 57, 59, and 86.

[11] F.B. Hildebrand. Introduction to numerical analysis. McGraw-Hill, New York, 1956.
Citation on p. 10.

[12] B. Taylor. Methodus Incrementorum Directa & Inversa. London, 1715. Citation on
p. 10.

[13] C. Hirsch. Compact schemes for two-dimensional convection problems. In Von Kar-
man Institute Lecture Series 1991-04, Computational Fluid Dynamics. Von Karman
Institute, Brussels, February 18-22 1991. Citations on p. 12, 14, 21, 22, 25, and 26.

[14] B. Koren. Low-diffusion rotated upwind schemes, multigrid and defect correction for
steady, multi-dimensional Euler flows. In International Series of Numerical Mathe-
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