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Abstract. We describe an automatic chaos verification scheme based on set oriented numerical
methods, which is especially well suited to the study of area and volume preserving diffeomorphisms.
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computation of chain recurrent sets. We give several example computations in dimension two and
three.
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1. Introduction. The main goal of this paper is to develop a set of computa-
tional tools, based on set-oriented numerical methods, which automatically, efficiently,
and rigorously verify the existence of chaotic subsystems of conservative dynamical
systems. Unlike the dissipative case, we cannot exploit phase space contraction in the
design of efficient algorithms. Instead, we fix a-priori a particular geometric mech-
anism called a tangle, and develop algorithms which converge iteratively to chaotic
subsystems associated with the tangle. We also develop an interface between our
algorithms and tools from the discrete Conley Index theory, in order to a-posteriori
validate the results of our computations. We illustrate the effectiveness of these tools
in several example computations for area and volume preserving diffeomorphisms.

Our computations are built on the so called set-oriented numerical methods, which
we discuss in Sections 2.1 and 2.2. Loosely speaking, a set-oriented discretization of a
dynamical system consists of discretizing the domain of the system by a finite grid of
cubes, and discretizing the dynamics by associating with each cube in the domain a
collection of grid cubes which cover its image. With set-oriented methods, one studies
the evolution of sets under combinatorial dynamics, rather than following iterates of
individual points.

Set-oriented methods have been applied to a wide variety of computational prob-
lems in dynamical systems, including orbit design in celestial mechanics [DJK+05,
DJPT06], optimal control theory [GJ05], bifurcations giving rise to connecting orbits
[DJT01], computation of invariant measures on attractors [Jun01], computation of
global dynamics over a wide range of parameters in ecological models [AKK+09], and
automatic chaos verification [DJM05, DFT08]. Expositions of set-oriented methods
are found, for example, in [Osi07, KMM04, GJ05].

A typical set-oriented computation consists of two parts. In the first part, qual-
itative algorithms are used to locate some interesting combinatorial dynamics. The
second part is validation, where one attempts to rigorously establish that some proper-
ties of the combinatorial dynamics are inherited by the original system. The validation
step is necessary as the combinatorial discretization of the dynamical system always
involves some loss of information.

When working with dissipative systems, it is natural to exploit the Conley De-
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composition Theorem [HMZ88] during the qualitative portion of the computation.
This far reaching generalization of Morse decompositions states that the phase space
of a dissipative dynamical system is decomposed into chain recurrent components,
and gradient-like sets. This approach leads to a very complete theory of set-oriented
computations for dissipative systems. For details see [KMV05, HB06].

Another powerful qualitative tool is Smale’s Tangle Theorem [Sma65], which
states that the transverse crossing of the stable and unstable manifolds of a hyperbolic
fixed point gives rise to a chaotic subsystems called a tangle. In [BW95], this theorem
is weakened to require only topological crossing of the stable and unstable manifolds,
and extended to collections of hyperbolic fixed and periodic points. Since crossings
of the stable and unstable manifolds of fixed points give rise to heteroclinic or homo-
clinic orbits, tangles are often detected and localized in set-oriented computations by
searching for combinatorial connecting orbits between fixed and periodic points.

The following set-oriented meta-algorithm sketches the proof of the existence
of a topological horseshoe factor in a dissipative dynamical system system (X, f).
(Topological horse shoe factors are defined in Section 2.3). The meta-algorithm is in
the spirt of [DJM05, DFT08].

Algorithm 1.1 (Chaos Proof Meta-Algorithm; Dissipative Case).

function chaosSearch (X0, f)
Part 1: (Qualitative Computation)

Let X = X0

Let (X ,F) = discretization of (X, f)
do (until resolution of X is fine enough)

Compute S = Invariant Part of X
Subdivide S
Let (X ,F) = discretization of (S, f)

end

• Choose some collection of combinatorial fixed or periodic orbits in X .
• Compute combinatorial connecting orbits.

Part 2: (Verification)
• Grow an index pair for the special orbits and the connections.
• Compute discrete Conley Index index of the pair.

Return the index pair and the Conley Index.
End Algorithm

Remarks 1.2.

1. The discretization and invariant part computation are discussed in Sections
2.1 and 2.2 respectively. We note that the invariant part computation is
combinatorial, and produces a cover of the chain recurrent set of f |X by cubes
in X . By subdividing and recomputing the discretization, the iterative step of
the algorithm produces a decreasing sequence of finer and finer approximations
to the chain recurrent set.

2. Once the chain recurrent set has been localized at high resolution, some con-
necting orbits are typically computed using graph theoretic shortest paths al-
gorithms such as Dijkstra’s Algorithm. (A reference on graph algorithms we
found useful is [MMP05]).

3. The verification stage, is discussed in Section 2.3. There, we recall the formal
definitions of index pair and the discrete Conley Index. Studying the homo-
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morphism induced by f on the relative homology of the Index Pair leads to
the proof that f has a chaotic subsystem in X0. (See the worked examples in
[KMM04], Chapter 10.7)

4. In terms of the present work, the essential point concerning Algorithm 1.1 is
that since the chain recurrent components of a dissipative dynamical systems
have measure zero, the iterative procedure in Algorithm 1.1 can produce major
reductions in the region of phase space which needs to be searched. Expensive
topological and graph theoretic computations need only be carried out on this
greatly reduced region.

Conservative systems admit invariant sets of large measure, so that the iterative
loop in Algorithm 1.1 is of little or no help. (See Example A.1 in the Appendix).
We make the following modification to the meta-algorithm; instead of computing
global chain recurrent sets in the qualitative step, we choose a-priori some hyperbolic
fixed or periodic orbits, and apply an iterative geometric algorithm which localizes
combinatorial connecting orbits directly. Here is a sketch of our scheme;

Algorithm 1.3 (Chaos Proof Meta-Algorithm; Conservative Case).

Fix p; some hyperbolic fixed or periodic points.
function conservativeChaosSearch (p,X, f)
Part 1: (Qualitative Computation)

Let (X ,F) = discretization of (X, f)
do (until resolution of X is high enough)

S = reliable combinatorial connecting orbits for p.
Subdivide S
Let (X ,F) = discretization of (S, f)

end
Part 2: (Verification)

...
return

The main result of the paper is Algorithm 3.7 in Section 3.1. Algorithm 3.7 computes
S in the iterative loop of Algorithm 1.3, for the case when p is a hyperbolic fixed
point. In Section 4 we look at procedures for some other choices of p.

Remarks 1.4.

1. In Examples A.2 and A.3 in the Appendix, we look at difficulties which arise if
we naively apply graph theoretic shortest path algorithms to compute S in the
iterative loop. The material in the appendix motivates the need for algorithm
3.7.

2. Algorithm 3.7 is not strictly graph theoretic. Rather, the algorithm is based
on insights provided by the qualitative theory of dynamical systems. Namely
Smale’s Tangle Theorem [Sma65] and the λ-Lemma (see [PdM82]).

3. By focusing on zero dimensional objects such as tangles, we are able to rapidly
cull the phase space for conservative systems in much the same way as is done
for dissipative systems in Algorithm 1.1.

4. Algorithm 1.3 is in the spirit of the quantitative theory of Hamiltonian systems
developed in [MG08], [GR04], [GdlL06], [RdlL], and [Rob02]. In fact the
present work can be seen as an attempt to blend the qualitative work just
mentioned with the computational theory of [KMV05], [HB06], in order to
bring conservative systems into the automated chaos verification paradigm of
[DJM04a], and [DJM05].
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5. Strictly speaking, Algorithm 1.3 does not require f to be conservative. In fact,
even though a satisfactory theory of automatic chaos verification in dissipa-
tive system already exists, it is possible that in higher dimensions the cost
of computing global chain recurrent sets could impose the same constraints
required by conservative systems. Namely a-priori focus on some interesting
set p and application of a scheme like Algorithm 1.3.

The remainder of the paper is organized as follows. Sections 2.1 and 2.2 review
the formal definitions of set-oriented discretization and combinatorial dynamics, as
well as the notation and fundamental algorithms of set oriented numerics. Section
2.3 reviews some notions from the discrete Conley Index theory, which we use in the
validation stage of the computations.

In Section 3.1 we present Algorithm 3.7. Section 4 presents four example compu-
tations. Each example highlights some important feature of our methods.

In Example 4.1 we use meta-algorithm 1.3 in conjunction with Algorithm 3.7,
and the Conley Index methods discussed in Section 2.3 to verify the existence of a
topological horseshoe factor for a non-perturbative parameter value in the standard
map.

In Example 4.2 we use a modification of Algorithm 3.7 to compute combinatorial
connections between the two hyperbolic fixed points of the Suris map. Example 4.2
shows that the methods of computation used on Example 4.1 are easily modified to
compute heteroclinic tangles. Examples 4.1 and 4.2 illustrate clearly the fact that our
scheme is able to automatically culls invariant tori form the computations, and avoid
the saturation with undesired cubes exhibited in Appendix Example A.1.

A third and final planar example is Example 4.3. Here we discuss the compu-
tation, in the area preserving Henon map, of a heteroclinic tangle with a different
geometry than in Example 4.2. The difference in geometry poses no problems for
our automated scheme. In addition, we choose parameters for the map close to the
‘anti-integrable limit’, where no phase space structure is easily seen using classical
phase space sampling. This highlights that our scheme can automatically cull tori,
but it in no way depends on their presence.

The final computation is Example 4.4, where we compute a homoclinic tangle for
the volume preserving ABC map. Example 4.4 shows that the utility of the ideas
presented in this paper are not limited to the plane.

In Section 5 we discuss the implementation of our software, and its performance.
Implementation is discussed in some detail, so as to give the performance notes some
context. We also list specific files in which to find the source code if the implemen-
tations. Finally, in the appendix we give specific numerical examples which highlight
some difficulties that arise when applying set-oriented computations to conservative
systems.

2. Background and Notation. In this section we review material from [KMV05],
[DJM05], [BW95], [KMM04], [HMZ88], [HB06], [Srz00], [MM98], [DH97a], [Szy95],
and [Szy97], which we use throughout the remainder of the paper.

2.1. Combinatorial Representation of a Dynamical Systems. Let M ⊂
RN and f : M → M be a homeomorphism. The pair (M, f) is a discrete time topo-
logical dynamical system. In order to study a dynamical system using the computer,
it is necessary to discretize both M and f , meaning that we must choose some finite
representation of each. To this end, we make the following geometric definitions. The
first set of definitions explains the discretization of phase space, the second explains
the discretization of the dynamics.
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Fig. 2.1. A cube Q and its image under f . The combinatorial image F(Q) is a set of grid
cubes which contain f(Q) on its interior. The combinatorial image pictured here is minimal, but
this need not always be the case.

Definition 2.1. (Set-Oriented Discretization of Phase Space)
1. A full cube Q in Rn is a product of intervals Q = [a1, b1]× . . .× [an, bn] where

ai < bi for all 1 ≤ i ≤ n. A cube Q ⊂ Rn is a uniform cube if bi− ai = r > 0
for some fixed r ∈ R and all 1 ≤ i ≤ n. We call r the resolution of the
uniform cube.

2. Let Zn be the set of vectors with integer coordinates, and fix both an α ∈ Rn,
and an 0 < r ∈ R. The uniform cubical grid with resolution r and origin α,
denoted Gr,α is defined to be the set

Gr,α = r · Zn + α.

The r and α subscripts are suppressed for simplicity whenever there is no
danger of confusion. The elements of G are called grid points.

3. If q ∈ Zn we say that q = (q1, . . . , qn) are the grid coordinates of the grid
point v = r · q + α ∈ Gr,α. The unit cube based at q in Zn is the cube
[q1, q1 + 1]× . . .× [qn, qn + 1], which we denote Bq.

4. The grid cube with base v = rq + α in G is defined to be

Qv = r ·Bq + α.

Note that Qv is a full uniform cube in Rn with resolution r. To say simply
that Q is a grid cube of G means that Q is a grid cube with base v for some
unspecified v ∈ G.

5. A finite collection X , of grid cubes in G, is called a uniform full cubical
complex in Rn subordinate to the grid Gr,α. A cubical complex is a topological
space under the subspace topology inherited from Rn. In the remainder of this
paper a cubical complex is always a full uniform cubical complex subordinate
to some grid G.

6. If X is compact subset of Rn, an outer cubical cover of X is a cubical complex
X such that X ⊂ X ◦. Throughout this paper, a cubical cover always means
an outer cubical cover.

7. Suppose X is a cubical cover of a compact set X ⊂ Rn such that for each
Q ∈ X , Q ∩X 6= ∅. We say that X is a minimal cubical cover of X.
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Definition 2.2. (Set-Oriented Discretization of Dynamics)
1. A combinatorial image, F(Q) of Q ∈ X , is defined to be an outer cubical

covering of f(Q) by cubes of X . More precisely let {Qj}j∈I be any collection
of cubes in X having

f(Q) ⊂

⋃

j∈I

Qj



◦

,

and take

F(Q) =
⋃

j∈I

Qj .

We refer to the condition f(Q) ⊂ F(Q)◦ as the outer enclosure property of
F . The definition is due to [Szy97]. The term symbolic image is used by
[Osi07]. A schematic of this construction is given in Fig 2.1.

2. If, in addition F(Q) is a minimal cubical covering of f(Q), then we call F(Q)
the minimal combinatorial image of Q. (Minimality depends on a fixed choice
of underlying grid Gr,α).

3. The association of each Q ∈ X a combinatorial image F(Q) defines a com-
binatorial outer enclosure of f on X . The enclosure is a function F : X →
Pow(X ) (where Pow is the collection of all subsets of X ). In order to high-
light the fact that this is a multivalued function, the notation

F : X ⇒ X

is used. F is also refereed to as a combinatorial multivalued map. In this
paper, combinatorial enclosure always means an outer enclosure.

4. We call the pair (X ,F) a combinatorial dynamical system. This is the notion
of discretization we use throughout the paper.

5. The combinatorial inverse F−1 of F is defined to be

F−1(Qi) = {Qj ∈ X : Qi ∈ F(Qj)}.

Note that the combinatorial inverse F−1 also has the outer enclosure property,
in the sense that

f−1(Q) ⊂ (F−1(Q)
)◦

6. Let A =
⋃

i∈I Qi be a cubical subset of X . Define the combinatorial image
of A by F(A) =

⋃
i∈I F(Qi). Similarly, define Fn(A) to be the set defined

inductively by F0(A) = A and Fn(A) = Fn−1(A) for all integer n ≥ 1.
Define F−n(A) = [F−1]n(A)

7. The dynamical graph associated with (X ,F), denoted GX ,F , is the directed
graph wherein we associate a node with each Q ∈ X , and a directed arrow
from node Q to node Q′ if and only if Q′ ∈ F(Q). We suppress the subscripts
when the combinatorial dynamical system is understood. The dynamical graph
G−1 associated with F−1 is obtained by reversing the direction of the arrows
of G.

8. For Q ∈ X , a combinatorial trajectory through Q under F is a function
TQ : Z→ X so that TQ(0) = Q and TQ(n + 1) ∈ F(TQ(n)) for all n ∈ Z.
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9. An combinatorial orbit segment TQ|I is the restriction of an orbit TQ to a
finite set of integers of the form I = {0, . . . , n}. In terms of the dynamical
graph, a combinatorial orbit segment TQ|I is path through Q.

10. Let Q ∈ X , and TQ be a combinatorial trajectory through Q under F . TQ is
called a false positive if there exist n ∈ N, and Q′ ∈ X so that Q′ = TQ(n)
but fn(x) /∈ Q′ for all x ∈ Q.

11. Let N ⊂ X . The maximal combinatorial invariant subset of N under F is
the set

Inv(N ,F) = {Q ∈ N : ∃ TQ : Z→ N ⊂ X}.
12. Suppose that S = Inv(N ,F) for N ⊂ X and S 6= ∅. The sets

Ws
N (S) = {Q ∈ N : there is a TQ : Z→ N so that

TQ(n) ∈ S for some n ≥ 0},
and

Wu
N (S) = {Q ∈ N : there is a TQ : Z→ N so that

TQ(n) ∈ S for some n ≤ 0},
are called the combinatorial stable and unstable subsets of S, relative to N .

13. Let A ⊂ X . Then

Ck =
k⋃

i=0

Fk(A),

with k ∈ Z, is called a k-set orbit of A. If k > 0 then Ck is called a forward
orbit, while if k < 0, Ck is called a backward or inverse orbit. Ck is also
refereed to as a globalization of A.

Remarks 2.3.
(a) It is perfectly acceptable to have F (Q) = ∅ for some Q ∈ X . This often happens

in applications when f : M → M is a homeomorphism which we discretize on
some compact sub-domain X ⊂ M , with X not invariant under f . On the graph
level, Q corresponds to a node with no outgoing arrow.

(b) If Gr,α is a fixed cubical grid, X is a fixed compact set, and X is the minimal
cubical covering of X relative to G, then the function f : X → Rn has a unique
minimal combinatorial outer enclosure. In practice it is difficult to compute the
minimal combinatorial outer enclosure and we settle for computing a combina-
torial outer enclosure. Our implementation of this computation is explained in
detail in Section 5

(c) Images of cubical subsets inherit the outer enclosure property of individual cubes,
as

f(A) = f

(⋃

i∈I

Qi

)
=

⋃

i∈I

f(Q) ⊂
⋃

i∈I

[F(Q)]◦(2.1)

=

[⋃

i∈I

F(Q)

]◦
= [F(A)]◦.
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(d) We make the following definition: Suppose that for some Q ∈ X , and x ∈ Q
there is a Q′ ∈ X so that fn(x) ∈ Q′, but that F does not admit combinatorial
trajectory through Q with TQ(n) = Q′. In this case we say that F admits a false
negative. Note that the outer enclosure property prohibits false negatives.

(e) On the level of graph dynamics, S = Inv(N ,F) is the strongly connected compo-
nent of the the subgraph of GX associated with N .

(f) The existence of a nonempty combinatorial invariant subset does not imply the
existence of a pointwise f -invariant subset S ⊂ S. Nevertheless, we can claim
that if N ⊂ X and Inv(N ,F) = ∅, then the pointwise maximal f invariant subset
in N is empty, as an outer enclosures does not admit false negatives.

(g) Q is in the local stable set of S relative to N if there is a combinatorial trajectory
TQ, and a Q′ ∈ S so that for some n ≥ 0, TQ(n) = Q′ and so that TQ(i) ∈ N
for 0 ≤ i ≤ n. A similar comment holds for the unstable set by considering F−1.
Since, once a trajectory enters S it can stay there for all time, the unstable and
stable sets are made up of cubes for which there are combinatorial orbits which
stay in N for all backward or respectively forward time.

2.2. Set Oriented Numerical Algorithms. This section presents the core
set-oriented algorithms used in the remainder of the paper. First we collect several
simple utility functions which we use freely in the sequel. The functions below depend
on a cubical complex X , the underlying grid Gr,α, and the cubical multivalued map
F , even when this dependence is not explicitly indicated.

1. #(X ) returns the integer number of cubes in X . Recall that this is finite by
definition.

2. dimensionOf(X ) returns the dimension X ,
3. resolutionOf(X ) returns the resolution of X .
4. Let N ⊂ X a cubical subset. The function

wrapX (N ) = {Q ∈ X : Q ∩N 6= ∅}
returns N and all of its neighbors in X .

5. For N ⊂ X , denote the restriction of F to N by

F ′ = restrict(F ,N ),

where F ′ : N ⇒ N and F ′(Q) = F(Q) ∩N , for all Q ∈ N .
6. collar(N ) = wrap(N )\N .
7. For a cubical complex X subordinate to the grid Gr,α, let

X ′ = subdivide(X )

be the cubical complex obtained by including X into the refined cubical grid
Gr/2,α. Note that

#(subdivide(X )) = 2n #(X ),

where n = dimensionOf(X ).
8. For a dynamical system (M, f), let

(X ,F) = enclose(X , f)

denote the discretization operator which returns the combinatorial dynamical
system (X ,F). The implementation of this operator is discussed in Section
5.
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Algorithm 2.5 below computes the maximal combinatorial invariant subset of a cu-
bical subset as defined in section 2.1. We also explain how the invariant part algorithm
can be modified to compute stable and unstable subsets. The algorithms described in
this section are the fundamental building blocks of the set-oriented numerical meth-
ods we develop in the remainder of the paper. For discussion of the convergence and
complexity of the algorithms, see [DH96], [KMM04], [DH97b], [Osi07], and [DH97a].
We begin with a theorem.

Theorem 2.4 (Combinatorial Invariant Sets). Let X be a cubical cover of a
compact X ⊂ Rn, and let F : X → X be an outer combinatorial enclosure for a
homeomorphism f : X → X. Suppose that N ⊂ X , and define the sequence

S0 = N

Sj+1 = F(Sj) ∩ F−1(Sj) ∩ Sj

Then there is a K ∈ N so that

SK = SK−1,

and we have that

SK = Inv(N ,F).

For the proof, see [KMM04] section 10.6.
Note that neither SK = ∅ nor SK = N are ruled out, and that if the sequence is

constant at one step then it is constant at all future iterations. Similar theorems can be
stated and proved for the local stable and unstable sets Ws,u

N (S) of the combinatorial
invariant set S relative to the cubical subset N ⊂ X , by considering the partial
sequences

Wu
j+1 = F(Wu

j ) ∩Wu
j ,

and

Ws
j+1 = F−1(Ws

j ) ∩Ws
j .

For further discussion of the stable and unstable set algorithms, see [DH96], [DH97b],
or [DH97a].

The constructive nature of the Theorem 2.4 give rise to practical set-oriented
algorithms. We give, for example the pseudo-code for the invariant part algorithm.

Algorithm 2.5 (Compute combinatorial invariant part of N ).

function InvariantPart(N ,F)
S := N ;
do

A := S;
S := S ∩ F(S) ∩ F−1(S);

while (S 6= A)
return S
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The pseudo-code for

Ws(N ) = localStableSet(N ,F),

and

Wu(N ) = localUnstableSet(N ,F),

is similar.

2.3. A-Posteriori Validation and Discrete Conley Index Theory. In or-
der to verify that the underlying dynamical system inherits a combinatorial property
of its set-oriented discretization, we use the some tools from the discrete Conley Index
theory. For more complete discussion of the Discrete Conley Index and its application
to rigorous verification see [KMM04, Mis99, KMV05, DJM04a, DJM04b, DFT08].

Consider a continuous map f : X ⊂ Rn → Rn with X compact.
Definition 2.6. If N ⊂ X and Inv(N, f) ⊂ N◦, then we say that N is an

isolating neighborhood. An invariant set S ⊂ X is isolated under f if there exists and
isolating neighborhood N such that S = Inv(N, f).

Note that if S ⊂ X is invariant under f , andN ⊂ X with S ⊂ invariantPart(F ,N ),
then N isolates S by the outer enclosure property of F .

Definition 2.7. A topological pair (P1, P0) with P0 ⊂ P1 ⊂ X is called an index
pair for f if it satisfies

• Inv(cl(P1\P0, f) ⊂ int(cl(P1\P0)) (isolation)
• f(P0) ∩ P1 ⊂ P0 (positive invariance)
• ∂f (P1) ⊂ P0 (exit set)

Here the f-boundary of a set A ⊂ X is defined to be ∂f (A) ≡ cl(f(A)\A) ∩A.
Definition 2.8. N is called a cubical isolating neighborhood of S in X if

wrap(InvariantPart(N ,F)) ⊂ N .

If S is a maximal combinatorial invariant set for which there exist a cubical isolating
neighborhood, then S is said to be an isolated invariant set.

We note that weaker notions of isolation appear in the literature [PS08].
Let N ⊂ X with X a cubical cover of X, and F be a combinatorial outer enclosure

of f on X . The following combinatorial index pair algorithm, from [KMM04] chapter
10.6, always stops and produces either a “failure” or a combinatorial index pair for
f .

Algorithm 2.9 (Compute Combinatorial Index Pair).

function indexPair(N ,F)
S = invariantPart(N ,F);
M = wrapG(S);
if (M⊂ N );

F = restrict(F ,M);
C = collar(S);
P0 = F(S) ∩ C;
do;

lastP0 = P0;
P0 = F(P0) ∩ C;
P0 = P0 ∪ lastP0;
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while (P0 = lastP0);
P1 = S ∪ P0;
P̄1 = F(P1);
P̄0 = P̄1\S;
return (P1,P0, P̄1, P̄0) ;

else
return “failure” ;

endif
Let S = InvariantPart(N ,F). The following theorem is from [KMM04] section

10.6.
Theorem 2.10. If Algorithm (2.9) returns without failure,
• S is an isolating neighborhood for f .
• The pair (P1,P0) is an index pair for f and isolates Inv(S, f).
• P1 ⊂ P̄1 and P0 ⊂ P̄0.
• f(P1) ⊂ P̄1 and f(P0) ⊂ P̄0.

The sets P̄0 and P̄1 are used in the definition of the index map (see definition
2.12 below).

Note that while the inputs to algorithm 2.9 involve only the combinatorial data
(X ,F), and N , the conclusions of Theorem 2.10 tell us about the dynamics of the
underlying map f on the topological pair (P1,P0). This is a first step toward obtaining
rigorous information about f from its combinatorial enclosure. However, Algorithm
2.9 and Theorem 2.10 are insufficient, as the theorem does not guarantee that S 6= ∅.

The following lemma can be found in [KMM04] section 10.6;
Lemma 2.11. if f , P1,P0, P̄1, and P̄0 are as in Algorithm 2.9. Then the

homomorphism induced on relative homology by the inclusion map ι : (P1,P0) ↪→
(P̄1, P̄0) is in fact an isomorphism. It follows that

ι−1
∗ : H∗(P̄1, P̄0) → H∗(P1,P0)

is well defined.
By Theorem 2.10, f is a pair map and induces a homomorphism on relative

homology, which we denote by f∗ : H∗(P1,P0) → H∗(P̄1, P̄0). From a computational
point of view, it is essential that the induced homomorphism f∗ can be computed only
from the combinatorial data F . See Theorem 7.15 in [KMM04] for technical details,
and [Pil97] for numerical implementation.

Definition 2.12. Define the index map fP∗ of f relative to the pair P = (P1,P0)
by

fP∗ = ι−1
∗ ◦ f∗ : H∗(P1,P0) → H∗(P1,P0)

The index map is the basis of the definition of the Discrete Conley Index. See for
example [Mis99] or [KMM04]. In the present work however, we will not need the
full power of the Conley Index. Rather we exploit the following notion of Lefschetz
number on pairs.

Definition 2.13. If S ⊂ Rn be an isolated invariant set for the map f , and P
be any index pair for S. The Lefschetz number of S relative to P is defined to be

L(S, f) =
n∑

j=0

(−1)jtr(fP∗).
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Theorem 2.14. If L(S, f) 6= 0, one has not only that inv(S, f) 6= ∅ but that the
invariant set actually contains a fixed point. See [Srz00] for the proof and details.

We close this section with an example application of the discrete Conley Index
machinery to the problem of ‘chaos verification’.

Example 2.15 (Verification of a Topological Horseshoe Factor.).
Definition 2.16. The dynamical system (M,f) is said to admit a topological

horseshoe factor if there exists a compact subset X ⊂ M so that f |X semi-conjugate
to ΣA, where ΣA is a sub-shift of finite type with positive topological entropy.
For the formal definition of sub-shift of finite type, and topological entropy see [Kat]
chapters 1.9 and 3.1 respectively.

Let S, and (P1,P0) be as in Algorithm 2.9.
Theorem 2.17. Suppose that (P1,P0) ⊂ X is the finite union of disjoint, com-

pact pairs, (P1,P0)1, . . ., (P1,P0)m, and define the sets Ni = cl(P1\P0). Denote by
fNi the map f |Ni , and by {i1, . . . , iK = i1} a finite length-K periodic sequence of the
numbers 1, . . . , m. Then if

L(Nj , fNi1
◦ . . . ◦ fNiK

) 6= 0

there exists a periodic orbit of period K in S that passes through the regions Ni1 , . . .,
NiK in i1, . . . , iK order.

The result can be found in [DFT08], and [Srz00], along with the proof. Define the
preliminary m×m transition matrix Ā for the index pair by

āij =
{

1 if F(Nj) ∩Ni 6= ∅
0 otherwise

These are the combinatorial, or potential connecting orbits. Theorem 2.17 is used
to verify the existence of f orbits corresponding to the transitions suggested by Ā.
Since it may be impossible to verify all the potential transitions, one typically has to
settle for a smaller matrix A of verified transitions where A contains the entries of Ā
which correspond cycles having non-zero Lefschetz index. The topological entropy of
σA : ΣA → ΣA is equal to the natural logarithm of the spectral radius of A (see [Kat]
3.2). If the topological entropy of σA is greater than zero, then f has a horseshoe
factor.

A detailed example of the argument just sketched is found in [KMM04] chapter
10.6. In [DFT08], the authors develop algorithms which automate this analysis. Using
their automated procedure they are able to verify a semiconjugacy between an index
pair for the the Henon map and a subshift of finite type on 199 symbols.

3. Top-Down Set-Oriented Computations for Conservative Dynamical
Systems.

3.1. Top-Down Computation of Combinatorial Connecting Orbits. In
this section we present Algorithm 3.7, the main result of the paper. The algorithm
executes a top-down search for combinatorial connecting orbits between hyperbolic
objects. This constitutes an implementation of the heuristic set-oriented search men-
tioned in Algorithm 1.3 Here follows an outline.

Algorithm 3.1 (Connecting orbit meta-algorithm).
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Step 1: Local computation about some hyperbolic object.
Step 2: Globalize stable and unstable sets and cover some connecting orbits.
Step 3: Restrict, subdivide, and repeat.

In order to formalize this procedure, we focus on computing homoclinic orbits for a
hyperbolic fixed point and elaborate on each step. Some modifications are discussed
in Section 4.

Step 1: (Local Computation) Let p be a hyperbolic fixed point of a continuous map
f : X ⊂ Rn → Rn. Let X0 be a uniform cubical cover of X, and F0 = enclose(X0, f).
Take P0 to be the smallest collection of cubes covering p.

We must assume that X0 is of high enough resolution that the following isolation
condition is met: We require that there is a connected cubical set FP0 with P0 ⊂ FP0

and such that FP0 = invariantPart(wrap(FP0),F0). In other words, FP0 is the
smallest cubical isolated invariant set containing p.

Example 3.2. The following example illustrates the need for the distinction
between P0 and FP0. Consider the linear map given by the matrix

L =
(

10/9 0
0 −9/10

)
,

and take X0 to be a cubical complex covering [−2, 2]2 with resolution r = 0.5. Note
that P0 is the four cubes making up the square [−0.5, 0.5]× [−0.5, 0.5].

To see that P0 is not isolated, let Q = [0, 0.5]× [0.5, 1] ∈ X0 and note that Q /∈ P0.
Q contains the point x = (0, 0.8), and since L2(x) = (0, 0.64) ∈ Q, the cube Q has
combinatorial period two. While this period two trajectory is a false positive, Q is
nevertheless combinatorially invariant. Since Q ∈ wrap(P0), the combinatorial fixed
point set in this example is not isolated at this level of resolution.

Since we do not want to consider FP0 as part of our initial data, we give an
algorithm for finding it.

Algorithm 3.3 (Compute isolated invariant component of combinatorial fixed
cubes).

function invariantComponent (P,X ,F)
FP := P;
do

A := FP;
B := wrap(A);
C := invariantPart(B,F);
FP := C;

while (A 6= FP)
if (FP ∩ ∂X 6= ∅);

return “failure”;
else

return FP
end
The algorithm stops as X0 is a finite collection of cubes, and fails if P0 cannot be
isolated in X0.

Now that we have isolated the fixed point, the next step in the local computation
is to compute a larger cubical neighborhood which still isolates FP0.
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Algorithm 3.4 (Expand the isolating neighborhood about FP).

function growIsolatingBlock (FP,X ,F)
S := FP;
W := wrap(S);
S ′ := invariantPart(W);
while (S = S ′);

S := W;
W := wrap(S);
S ′ := invariantPart(W);

end while
N := S;
if (N = FP);

return “failure”;
else

return N
end
This algorithm wraps FP0 until a further wrap would introduce new invariant cubes.
If FP0 cannot be isolated then the algorithm fails. However if FP0 is the output of
algorithm 3.3, then FP0 is preconditioned for successful execution of algorithm 3.4.

Remark 3.5 (Global Meaning of N0). Consider the dynamics on N0. Apply the
stable and unstable set algorithms to N0 and obtain both

Wu
0 ≡ localUnstableSet(N0, F0),

and

Ws
0 ≡ localStableSet(N0, F0).

If

x ∈ Q ∈ N0\ (Ws
0 ∪Wu

0 ) ,(3.1)

then the pointwise orbit of x under the true dynamics f leaves N0 in a finite number
of both forward and backward iterations. By Remark c in Section 2.1, the subdivision
operation can increase neither an invariant set, nor its local stable or unstable sets.
Then Equation 3.1 persists as we increase the resolution, and any homoclinic orbits
of p pass through Ws

0 ∪ Wu
0 . It follows that the cubes in N0\ (Ws

0 ∪Wu
0 ) are of no

further interest throughout the remainder of the computation.

Step 2: (Globalize) The idea now is to iterate the stable and unstable cubical sets
until we are confident that their intersection covers a heteroclinic connection. An
efficient globalization algorithm must strike a balance between two considerations;
globalize long enough to insure that a connection is covered, but not so long that the
intersection contains too many unwanted cubes.

Our globalization scheme is guided by the λ-lemma, which says that the stable
and unstable manifolds must accumulate on themselves whenever there is a tangle.
This provides the following heuristic stopping condition: we globalize the stable and
unstable sets until the globalization returns to the local block N0. Once this occurs,
we are confident that a homoclinic excursion is covered. (Of course, a full verification
will be obtained in the second stage of the computation).
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This choice is formalized in the following algorithm.
Algorithm 3.6 (globalization algorithm for the local unstable cover).

function globalizeUnstableSet (X ,Wu
loc,Nloc,F)

A := wrapX (Wu
loc) ∩Nloc;

B := A\Wu
loc;

Cu := F(Wu
loc);

while (Cu ∩ B = ∅);
Clast = Cu;
Cu := F(Cu);
if (Cu = Clast)

return “failure”;
end if

end while
return Cu

This algorithm stops as Fk(Wu
loc) is eventually constant (X0 consists of only finitely

many cubes). The algorithm fails if the sequence becomes constant without intersect-
ing B. The globalization of the stable set is simply

Cs
0 = globalizeUnstableSet(Ws

0 ,N0,F−1).

Now let

I0 = (Cu
0 ∩ Cs

0)\N0,

and

D0 = Wu
0 ∪Ws

0 .

I0 ∪ D0 is our candidate for a cubical cover of a connecting orbit for p.

Step 3: (Restrict, Subdivide and Repeat) Let

X1 = subdivide(I0 ∪ D0),

define the new domain for the next loop through Algorithm 3.1. To loop the algorithm
we repeat the steps from the base case (just described), with one important difference:
there is no need to recompute the isolating neighborhood, as any subdivision of N0

continues to isolate p. We let

N1 = subdivide(D0).

and throw away all data from the earlier stage of the computation. Iteration of the
algorithm proceeds exactly as just described for all further subdivisions.

This discussion is formalized in following pseudo-code. The input to the algorithm
is the cubical cover X0, the fixed cubes P0, the map f , and the stopping resolution
εf .

Algorithm 3.7 (Top down search for a combinatorial homoclinic excursion).

function connectingOrbitSearch (X0,P0, εf , f)
F := enclose(X0, f);
FP := invariantNeighbors(P0,F);
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N := growIsolatingBlock(FP,F);
Ws

loc := localStableSet(N ,F);
Wu

loc := localUnstableSet(N ,F);
Cs := globalizeStableSet(Ws

loc,Nloc,F);
Cu := globalizeStableSet(Wu

loc,N ,F);
D := (Ws

loc ∪Wu
loc);

I := (Cs ∩ Cu)\D;
while(diameter(I) ≥ εf );

X := subdivide(I ∪ D);
N := subdivide(D);
F := enclose(X , f);
Ws

loc := localStableSet(N ,F);
Wu

loc := localUnstableSet(N ,F);
Cs := globalizeStableSet(Ws

loc,N ,F);
Cu := globalizeStableSet(Wu

loc,N ,F);
D := (Ws

loc ∪Wu
loc);

I := (Cs ∩ Cu)\D;
end while
return connectingOrbit := invariantPart(I ∪ D);
end;

The algorithm fails if any of its sub-functions fail. The algorithm always stops as
εf > 0 and the subdivide operator reduces the resolution at a geometric rate.

Remarks 3.8.

1. In practice, P0 can be computed from the dynamical graph by considering
nodes with self connections.

2. If X0 contains a large number of cubes, the process of repeatedly wrapping a
set and computing the invariant part of the wrap is computationally expensive.
However Algorithm 3.4 is called only once during the initial stage of Algorithm
3.7.

3. If growIsolatingNbhd returns X0, then the only invariant cubes in X0 are
FP0, and there is no possibility of detecting a horseshoe. This means either
that X0 does not cover a horseshoe, or that all the interesting dynamics are
covered by FP0 (in which case the initial resolution is too large).

4. Algorithms 3.3 and 3.4 determine the needed balance between the initial num-
ber of cubes, and the initial resolution. The grid must be fine enough that
isolation is achieved in algorithm 3.3, but not so fine that algorithm 3.4 is
impractical. This trade off is used in order to chose a satisfactory initial grid.

5. The geometric stopping condition in the globalization step, is decidedly differ-
ent from the choice of ‘first intersection’ employed in [DJT01]. In [DJT01],
the unreliability of the ‘first intersection’ is exploited to define a hat-function,
which picks out parameter values at which bifurcations occur. In our case
however this unreliability of first intersections will destroy our subdivision
scheme. The purpose of the geometric globalization is to increase our confi-
dence that a connecting orbit is covered, before restriction and subdivision.

6. Since we are assuming that FP0 covers the hyperbolic fixed point p, it follows
that Wu,s

0 actually cover the local stable and unstable manifolds of p (see
[DH97b], and [DH97a]).

7. Experimentation is often needed in order choose an effective stopping condi-
tion εf . For the examples in Section 4 we subdivide until Im is composed of
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Fig. 4.1. Phase Space Sample for the Standard Map.

several distinct topological components. This indicates that invariant part of
Xm covers only the desired zero dimensional set (see Figure 4.6). Vagueness
of stopping condition is present in most automated chaos verification schemes,
and is not a idiosyncracy of the present work. (See [DJM04a], [DFT08], and
[DJM05]).

8. The functions in Algorithm 3.7 which might fail are invariantNeighbors,
and the globalization calls. The failure of the first indicates too high an initial
resolution. The failure of the second indicates that X0 was chosen too small
to cover a homoclinic tangle.

4. Example Computations.

4.1. Example 1: Homoclinic Tangle at the Origin in the Standard Map.
Consider the family of maps fε : R2 → R2 given by

fε(x, y) =
(

x + ε sin(y)
x + y + ε sin(y)

)
.

fε is called the standard map, and is the subject of a substantial literature. Fig
(4.1) shows a sample of the phase space dynamics for ε = 1.2. At this parameter
value the phase space is dominated by secondary the KAM tori in the resonance zone
about the elliptic fixed point (0, 2π), and the Birkhoff instability zone containing the
hyperbolic fixed point at p = (0, 0). Note that due to the presence of invariant circles,
the dynamics of the map is neither minimal nor mixing. Nevertheless we expect an
abundance of chaotic orbits in the Birkhoff zone.

Set X = [−2, 8]×[−2, 8], and let X0 be a 50×50 cubical grid covering X. Then this
grid has resolution is r = 0.2 and contains 2500 cubes. Direct computation confirms
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Fig. 4.2. Compute Local Picture: The combinatorial fixed point FP0 (black), the local block
N0 (light blue), as well as the local stable and unstable sets Ws

N0
(FP0) and Wu

N0
(FP0) (red and

dark blue respectively).

that the resolution is low enough that invariantNeighbors and growIsolatingNbd
execute successfully, yet high enough that they run in negligible time. We impose a
stopping resolution of εf = 0.0065.

Remarks 4.1 (Set-Oriented Computation Details). Figures 4.2 - 4.6 illustrate
graphically the major steps of mata-algorithm 3.1.

1. Figure 4.2 shows the results of the local computation and highlights graphically
comment 3.5 from Section 3.1. The point is that any orbit homoclinic to p
must pass through the local stable and unstable sets of N0. Then the remainder
of the local block is of no interest.

2. Figure 4.4 shows the state of the computation at the end of the first pass
through the meta-algorithm. Note that the resonance zone has already been
culled from the computation, even though the location of the resonance is not
an explicit input to the algorithm. This is an essential feature of our scheme
(Compare with Figures A.1 and A.2.)

3. Figure 4.5 shows the set I from algorithm (3.7) just before exit from the while
loop. Note that the covering has resolved itself into several distinct pieces.

4. Figure 4.6 shows the output of Algorithm 3.7 for the standard map example.
Remarks 4.2 (Empirical Complexity of the Algorithm). Table 4.1 chronicles

the complexity of the search.
1. A “brute force” computation with an initial resolution of h = 0.00625 (the

final resolution of the iterative scheme) on the original domain of [−5, 5] ×
[−2, 7] would required a 1600 × 1600 grid of 2,560,000 domain cubes, and as
many enclosure computations.
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Fig. 4.3. Globalize: Iterate the local stable and unstable sets until they return to the local
block. Note that the global unstable set (in blue) is underneath the global stable set (in red). This is
confused slightly by the fact that the local unstable and stable sets (blue and red within the magenta
box) are on top of the global unstable and stable sets once they return to the local (magenta) block.
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Fig. 4.4. Restrict and Subdivide: X1 (with FP1 also shown).
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Fig. 4.5. X5:In X5 the intersection is resolved into several clear disjoint pieces.
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Fig. 4.6. Algorithm 3.7 Output: Combinatorial approximation to the homoclinic excursion in
the standard map.
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2. With the top-down search, the homoclinic excursion was obtained with only
30,400 enclosure computations, or one percent of brute force requirements.

3. The largest set arising in the top-down computation contained 13,400 cubes.
This is less than one percent of the size of the brute force grid. Since our
implementation of the union and intersection operations are order N in the
set size, this reduction makes a substantial difference in the run time of the
program.

4. The final cover S of the homoclinic connection contains roughly 2,200 cubes.
This is fewer cubes than the initial domain.

Remarks 4.3 (Post-Processing and Verification). In order to obtain rigorous
results, S = invariantPart(X5) is passed into Algorithm 2.9, which executes suc-
cessfully. The result is an index pair P = (P1,P0) for S (See also the comments in
Section 5.3).

1. P and F are passed into the program ‘homcubes’ (part of the CHomP suite),
which computes the relative homology of the pair, as well as the induced ho-
momorphism.

2. The relative homology is

H0(P1,P0) = 0
H1(P1,P0) = Z24

H2(P1,P0) = 0.

Intuitively, the relative homology of the pair is isomorphic to the reduced
homology of the topological space obtained by taking the quotient of the index
pair by its exit set. The quotient has one topological component, 24 non-trivial
1-generators, no 2-generators (a space homotopic to the wedge of twenty four
circles).

3. We represent the index map by listing its action on the 24 generators H1(P1,P0).
The result is shown in Table 4.1.

4. Note that in this example, generator 14 is mapped to itself, indicating that
the topological component associated generator 14 covers the fixed point.

5. One can check that the following orbit on generators is present in the index
map:

14 → 12 → 21 → −19 → −6 → 24 → −18 → −4

→ 22 → 15 → 16 → 23 → 20 → 5 → −3 → 10 → 17 → 1 → 14.

We refer to such an algebraic orbit as a generator excursion.
6. The generator excursion indicates the existence of a homoclinic excursion in

the underlying dynamics. To complete the argument and rigorously establish
that the index pair isolates a topological horseshoe factor, one follows the
sketch described in section (2.3).

The intuitive interpretation of the algebraic data is that A) each topological com-
ponent of P gives rise to roughly one generator in the first level of the relative homol-
ogy, and B) fP∗ describes how these generators, and hence the underlying topological
components, are mapped across each other under f . A) is because each topological
component of the index pair corresponds roughly to an intersection of the stable and
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Subdivisions number of Cubes resolution
0 2,500 0.2
1 828 0.1
2 1,860 0.05
3 4,092 0.025
4 7,720 0.0125
5 13,400 0.00625

Table 4.1
Resolution and Cube Count

fP∗(α1) = α12 + α14 fP∗(α13) = α3

fP∗(α2) = α21 fP∗(α14) = α12 + α14

fP∗(α3) = α10 fP∗(α15) = α16

fP∗(α4) = α22 fP∗(α16) = α23

fP∗(α5) = −α3 fP∗(α17) = α1 + α2

fP∗(α6) = α24 fP∗(α18) = −α4

fP∗(α7) = α10 fP∗(α19) = −α6

fP∗(α8) = 0 fP∗(α20) = α5 − α8

fP∗(α9) = α10 fP∗(α21) = −α19

fP∗(α10) = α17 fP∗(α22) = α15

fP∗(α11) = 0 fP∗(α23) = α11 + α20

fP∗(α12) = α21 fP∗(α24) = −α18

Table 4.2
Induced homomorphism in the standard map; The action of fP∗ on the generators of H∗(P1,P0)

unstable manifolds. The exit sets are due to the stretching of components in the
unstable direction. The collapse of the exit set of a component produces a generator
on the first level of homology. Then B) suggests that fP∗ maps the generator αi as-
sociated with a particular topological component Ni of P, to the generators fP∗(αi)
of the topological components that are accessible from Ni under the application of f .

4.2. Heteroclinic Tangle in the The Suris Map. The Suris map is defined
by

f(θ, r) =
(

θ + r + V ′(θ) + εP (θ)
r + V ′(θ) + εP (θ)

)

where

V ′(θ) = − 2
π

atan

(
δ sin(2πθ)

1 + δ cos(2πθ)

)

and

P (θ) = 2π cos(πθ) sin(πθ)

This map was presented in [Sur94] as an example a family of area preserving twist
maps which is integrable when ε = 0, and where the integrable map contains both
elliptic and hyperbolic fixed points. In the integrable system W s(p1) = Wu(p2) and
Wu(p1) = W s(p2) so the phase space of the integrable map is qualitatively similar to



Chaos Verrification for Conservative Maps 23

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 4.7. A phase space sample for the Suris map, as well as an index pair (P1,P0) for a
topological horseshoe factor between two hyperbolic fixed points.

the phase space of the mathematical pendulum. Numerics suggest that for ε > 0 the
manifolds split, and a heteroclinic tangle develops.

Consider the map at the parameter values δ = 0.4 and ε = 0.05. The notable
difference between the present computation and algorithm 3.7 is that here we are
trying to compute a heteroclinic excursion. The present computation follows the same
meta-search outline given in 3.1, with the difference being that the local computations
are performed about two distinct fixed points. Then, in the globalization step the
stable and unstable sets of one fixed point are continued into the neighborhood of the
other, rather than back into themselves.

The computation proceeds as in Section 4.1. For this computation we took an
initial region X = [−1.5, 1.5]2, an initial resolution of ε0 = 0.03, and require a final
resolution less than εf = 0.002. The algorithm converges after four iterations to a
combinatorial connection S between p1 and p2. The resulting index pair is depicted
in Fig. 4.7.

4.3. Heteroclinic Tangle in the Area Preserving Henon Map. As a final
planar example, consider the family of quadratic mappings

f(x, y) =
(

1 + y − ax2

x

)

This is the area preserving Henon Family. We take a = 1.2, putting the family
close to the “anti-integrable” limit. At this parameter value no elliptic behavior is
readily observable, and naive phase space sampling of trajectories yields little useful
information about the dynamics. Nevertheless the map admits a pair of hyperbolic
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Fig. 4.8. A phase space sample for the area preserving Henon map, as well as an index pair
(P1,P0) about the hyperbolic fixed points. While the phase space sample does not reveal any regular
dynamics, the search is able to localize the horseshoe.

fixed points; p1 = (−1/
√

a, −1/
√

a), and p2 = (1/
√

a,1/
√

a). If the stable and
unstable manifolds of these intersect transversally, there is still chaos in the region.

Even though we know exactly where the hyperbolic points are located, we do
not use this information in the program. Instead we begin with a 50 × 50 grid on
the square X = [−7, 7]2 and have the program find the fixed cubes as well as the
connecting trajectories along the lines discussed in Section 3.1 (the point is that the
algorithm is given only very rough and qualitative information about where to look
for the connecting orbits).

We take an initial resolution of ε0 = 0.28 and require a final resolution of less
than εf = 0.005. The top-down search stops after six subdivisions and returns a
combinatorial connection S, which we use to grow the index pair (P1,P0). The index
pair, as well as a number of pointwise trajectories are shown in Fig 4.8.

Remark 4.4. Observe that the symbolic dynamics in this example are somewhat
more complicated than in the previous examples. As in the case of the Suris map
there is one connection from p1 to p2. However, for this Henon map there are two
connections from p2 back to p1, and the system is semi-conjugate to a sub-shift on three
symbols. This added complexity is handled automatically by the top-down search.

4.4. Homoclinic Tangle in the Volume Preserving ABC Map. Although
the algorithms run faster, and the pictures are easier to render and view in the plane,
the utility of the scheme developed in this work is not limited to the study of two
dimensional maps. Consider the three parameter family of maps defined by
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xn+1

yn+1

zn+1


 =




xn + A sin(zn) + C cos(yn)
yn + B sin(xn+1) + A cos(zn)

zn + C sin(yn+1) + B cos(xn+1)


 .

This is the so called ABC map. The example comes from fluid mechanics, and arises
as a truncation of the time-τ map for the so called ABC flow. The ABC flow is
a particular stationary solution of Euler equation, and the ABC map is a useful
bridge between the study of 2 and 4 dimensional symplectic maps. (Notice that if we
evaluate the components in xyz order, the expression does explicitly define a mapping
on R3). The ABC map was introduced in [FKP88] in order to study chaos in the three
dimensional volume preserving setting.

It is not hard to show that the phase space contains hyperbolic fixed points.
Furthermore, it has been observed (at least empirically) that for many parameter
values the ABC map admits chaotic motions [FKP88]. We use the tools developed in
section 3.2 to compute a topological horseshoe factor about the fixed point p.

Take (somewhat arbitrarily) A = 0.6543, B = 0.562, C = 0.701, and consider the
region X = [−3, 7] × [−1, 9] × [−3, 7] with an initial resolution of r = 0.125. This
gives an initial cubical complex containing 512,000 cubes. The large number of initial
cubes illustrates the dependance of the complexity of set-oriented methods on the
dimension. Note that this is an 80 × 80 × 80 grid. In the plane the same resolution
requires only 6,400 cubes, or roughly the same number of initial cubes as used in the
standard map example.

Figure 4.9 shows the cubical fixed point set for this set of parameter values, as
well as the local block N0 for one of the fixed points. We apply a homoclinic excursion
search similar to algorithm 3.7 at the fixed point. A close-up of the initial local stable
and unstable covers relative to this block are shown in figure 4.10.

The images of the low resolution globalized manifolds are hard to render effectively
in three dimensions, (the eye makes some sense of the pictures if they are rotating,
but still projections onto the page are very little help). Nevertheless, on the level of
algorithms, the search proceeds as before. Figure 4.11 shows a cover of a homoclinic
excursion which was obtained after five subdivisions.

5. Performance and Implementation. A C++ implementation of the com-
putational scheme discussed in this work is available at [MJ]. All references below to
timing, performance, and source code refer to this implementation.

5.1. Discretization of a C2 Dynamical System. We implement a cubical
complex as a vector of cubes, a cube as a vector of intervals, and an interval as a pair
of double precision floating point numbers. Two intervals are the same if their end
points agree to some specified precision, which we usually take to be 10−14. Vector
containers are implemented using the C++ standard template library class vector (for
the STL see [PP00]). The source code for these elementary data structures is in the
files doubleCubical.h and doubleCubical.cc.

To implement the discretization operator F = enclose(X , f) it is necessary to
compute, for each cube Q ∈ X , a combinatorial image with f(Q) ⊂ [F(Q)]◦. To
compute the enclosure, we begin with the linear approximation of f by its derivative,
and refine this approximation by bounding the nonlinearities. Assume then that
f ∈ C2(X ) (In the applications considered in this work, f is in fact real analytic).

Let r > 0 be the resolution of X , and xQ be the center of Q. For any x ∈ Q we
have, by Taylor’s Theorem
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Fig. 4.9. The local block N0 grown for a fixed cube.

Fig. 4.10. Initial coarse local stable and unstable covers about a fixed cubes.
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Fig. 4.11. A cover of a homoclinic excursion for the ABC map. The fixed cube component can
still be seen in black.

f(x) = f(xQ) + Df(xQ) · [x− xQ] + R(xQ, x− xQ),

where the Taylor Remainder R : Rn × Rn → Rn can be computed explicitly, and has

sup
x∈Q

(‖ R(x, r) ‖) ≤ 1
2
‖ D2f ‖C0

nr2

4
≡ R(r)

We call R the truncation error estimate. Then f(Q) is approximated by the parallel-
ogram

f(Q) ≈ PQ ≡ f(xQ) + Df(xQ)[Q− xQ],

and the truncation error in this approximation is explicitly known.
These observation form the basis for the following algorithms. The algorithms

require that we have analytic expressions for f , Df , and the truncation error estimate
R.

Algorithm 5.1 (Compute Linear Image).

function linearImageOf (Q, f, Df);
xQ = center of Q;
y = f(xQ);
for (each vi a vertex of Q:);

ei = vi − xQ;
Ti = Df(xQ) ei;
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Pi = y + Ti;
end for
return {Pi};

Algorithm 5.2 (Compute an n-rectangle enclosing the image).

function computeEnclosure (X , Q, f, Df,R);
n = dimensionOf(X );
r = resolutionOf(X );
xQ = centerOf(Q);
ε = |R(xQ,

√
nr/2)|;

Pi = linearImageOf(Q, f, Df);
P = parallelogram({Pi}2n

i=1);
for (1 ≤ j ≤ n);

Ij = πj(P );
a = leftEnd(Ij);
b = rightEnd(Ij);
I ′j = [ a− ε, b + ε ];

end for;
B = I ′1 × . . .× I ′n;
RQ = include(X , B);
return RQ;

Algorithm 5.3 (Minimize the Combinatorial Enclosure.).

function minimizeEnclosure (X , Q, f, Df,R);
n = dimensionOf(X );
r = resolutionOf(X );
xQ = centerOf(Q);
ε = R(xQ,

√
nr/2);

Pi = linearImageOf(Q, f, Df);
P = parallelogram({Pi}2n

i=1);
P ′ = expand(P, ε);
RQ = computeEnclosure(X , Q, f, Df,R);
for (each Qj ∈ RQ);

if (Qj is outside P ′);
delete(Qj ,RQ);

end if ;
end for;
return F(Q) = RQ;
To compute the combinatorial outer enclosure for a map f on a cubical domain X ,
we call algorithm 5.3 for every Q ∈ X . Note that algorithms 5.2 and 5.3 make use of
some shared data. In practice the algorithms can be implemented so that this data
is computed only once.

Algorithms 5.1 - 5.3 are implemented as member functions of a class C2diffeo.
The maps f,Df , and the truncation estimator R are passed into the C2diffeo object
as template parameters. (Passing the function definitions as template parameters
forces the compiler to inline the function calls. See [Yan00], chapter 7.7). The source
code for this data structure is found in the files C2diffeomorphism.h.

The class parallelogram is defined in the files parallelogram.h and parallelogram.cc.
A parallelogram is implemented as a vector containing the center, a collection of
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2n vertices, and a collection of 2n faces. The class face holds a collection of 2n−1

references to the vertices of the parallelogram, as well as the outward unit normal
vector to the face. The outward direction is defined by requiring that the center of
the parallelogram has negative projection.

The call P = parallelogram({Pi}2n

i=1) instantiates a parallelogram P whose
vertices are defined by the collection {Pi}2n

i=1. In this case the vertices are the images of
the vertices of Q under the linear approximation. The function call P ′ = expand(P, ε)
returns a parallelogram P ′ enclosing the parallelogram P , and whose faces are a
distance ε from, and parallel to the faces of P .

Expanding the parallelogram makes use of the outward unit normal directions of
the faces. Similarly, in order to test if a grid cube Qj ∈ RQ is outside the parallelogram
P ′, we test to see if there is a face F of P ′ so that all the vertices of Qj are on one side
of F . This is tested by choosing a point w ∈ F and for each vertex vk ∈ Qj testing
the sign of the projection of vk − w onto the unit outward normal of F .

The functions πj are the canonical projection operators, which in this case re-
turn the intervals onto which which P projects. The functions leftEnd(I), and
rightEnd(I) return the left and right endpoints of an interval I respectively. The
function include(·, ·) is best thought of as a combinatorial outer enclosure of the
identity map. It is a map which, given a cubical complex X and a set of points V ,
returns the minimal cubical sub-complex of X which covers the points in V . The
include function is implemented as a member function of the doubleCubicalSet class.
All parallelogram objects are in scope only during the execution of Algorithm 5.1.

For the maps used in this paper, where we have explicit expressions of f in terms
of elementary functions, so that we can derive explicitly formulas for the differential
and the error estimate. The standard map, for example, has differential

Dfε(x, θ) =
(

1 ε cos(θ)
1 1 + ε cos(θ)

)
,

and truncation error estimate

R(xQ, |h|) = 2ε (| cos(h2)− 1|+ | sin(h2)− h2|) .

Similar estimates can be worked out for all the examples used in this paper. The
expressions for the differentials and the error estimators of all maps used throughout
the present work, as well as the expressions of maps themselves are found in the file
discreteDynamicalSystems.h.

Rather than employing interval arithmetic to account for round off error, the
software over-estimates the number of floating point operations in the discretization
process and adjusts the truncation error accordingly. For maps the computation of
a combinatorial image involves only a few hundred floating point operations, so that
it is reasonable to expect round off errors on the order of no more than 10−14. In
practice we simply double the (rigorous) truncation error estimate throughout the
computation. In the examples in Section 4 the highest resolutions occurring in the
computations are on the order of r ≈ 10−4 so that truncation errors are on the order of
10−8, and doubling the truncation error estimate more than compensates for roundoff
error. Nevertheless, the inclusion of interval arithmetic into the software could be
easily accomplished by modifying only Algorithm 5.1.

5.2. Implementation of Combinatorial Data Structures. The combinato-
rial data F is stored as a vector of ordered sets of integers. For each Q ∈ X we
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store the index set i1, . . . in where F(Q) = {Qi1 , . . . , Qin
}. The sets {i1, . . . , in} are

implemented using the standard template library ordered set class. The source code
for the combinatorial enclosure data structure is found in the files dynamics.h and
dynamics.cc.

Once a system is discretized, the remaining combinatorial analysis is based on the
operations of union, intersection, and difference for ordered sets of integers. Define
the function Index : X → N+ by

Index(Qi) = i

where i is the vector index of a grid cube, and for A ⊂ X let

Indices(A) = {i = Index(Qi) | Qi ∈ A}

be the function that returns the ordered set of indices of A. If S is an ordered set of
integers set of integers with S ⊂ Indices(X ) let

Indices−1(S) = {Qi ∈ X | i ∈ S}

be the cubical sub-collection whose indices are the elements of S. We implement all of
the set operations used in our algorithms on the index level. So for example when an
algorithm calls for the computation of A ∪ B, this is evaluated simply by computing
the union Indices(A) ∪ Indices(B).

For integer sets A and B with small cardinality we implement the set operations
of union, intersection, and difference using standard template library algorithms. The
complexity of the STL set operations is N log(N) with N the cardinality of the larger
set. For sets with a large number of elements we implement the set operations using
an axillary hash, in which case the complexity is be reduced to N . (This is a standard
trick. See [CLRS01]).

5.3. Interface with CHomP and Graph Algorithms. The output of Al-
gorithm 3.7 is a cubical set which presumably covers some homoclinic orbits. To
rigorously verify the existence of a topological horseshoe, it is necessary to grow an
index pair which is then processed by CHomP. While the Algorithm 2.9 is sufficient
for computing the index pair, in practice we use a somewhat more involved procedure
which grows an index pair which is pre-conditioned for the ‘homcubes’ program and
which is minimal in some sense. The interested reader should consult the source code
for the functions indexPairSurgery, and growIndexPairNeighborhood. These
are defined in the header file C2diffeomorphism.h.

In order to process this index pair using CHomP, it is necessary to convert both
the index pair (P1,P0) and the combinatorial enclosure F into a form appropriate
for input into CHomP. The reader interested in this interface can consult the source
code for the member function outToChomp in the class ‘combinatorialEnclosure’.
The class and function are defined and implemented in the files dynamics.h and
dynamics.cc.

One more comment on implementation. For several computations in appendix
B we need to call Dijkstra’s shortest path algorithm. To implement the dynamical
graph we use the Boost Graph Library [JS], which provides templates for directed
graph data structures as well as templates for the standard graph searches, including
Dijkstra’s Algorithm. Since we have already implemented the combinatorial enclosure
data structure as a vector of ordered sets of integers, it is a trivial matter to convert
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System Total Run Time Discretization Time Set Operations Time
Henon Map 2.02 sec 1.08 sec (53.46%) 0.72 sec (35.64%)
Standard Map 9.92 sec 5.01 sec (50.5%) 4.91 sec (49.4%)
Suris Map 13.84 sec 9.65 sec (69.73%) 3.59 sec (25.94%)

Table 5.1
Performance of the transition chain searches.

System Initial Grid Size Initial h Final Grid Size Final h

Henon Map 2,500 cubes 0.28 558 cubes 0.004
Standard Map 6,400 cubes 0.15 4,703 cubes 0.005
Suris Map 10,000 cubes 0.03 2,470 cubes 0.002

Table 5.2
Initial and final complex data.

this data into a directed graph. The graph is implemented as an adjacency list, and the
Boost Graph Library is equipped with constructors which facilitate this conversion.
The source code for our implementation of the dynamical graph class is found in
dynamicalGraph.h and dynamicalGraph.cc.

5.4. Performance. With these comments on implementation in place, we briefly
discuss the performance of our algorithms. We only give the timing results for the
discretization of the dynamical systems, and the connecting orbit search 3.7. We do
not include performance data for the post processing and Conley computation stages,
as these computations are well documented elsewhere in the literature.

Table 2 gives the timing data for the example computations in Section 4. The
total program time, time spent in the discretization and set-oriented stages, as well as
the percentage of time in each stage of the computation is shown for all four examples.
The complexity of the computations depends strongly on the number of cubes in the
domain. In order to tie the timing results to domain size, we give the initial and final
grid sizes and resolutions in Table 3.

We remark that the difference between the initial resolution required in each of
the examples is related to the dynamics of the given map. The fewest initial cubes are
needed for the area preserving Henon map, while the Suris map requires the largest
initial grid. The reason for this is that we chose to study the Henon map toward the
anti-integrable limit, and to study the Suris map near the perturbative regime, while
the parameter values for the standard map were taken between the integrable and
anti-integrable limits.
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Fig. A.1. Cubical cover of resonance island in the standard map. Computed using the invariant
part algorithm.

during this work.

Appendix A. Direct Application of Graph-Theoretic Methods to Con-
servative Maps..

In this Appendix we give three examples of how standard set oriented strategies
fail for conservative systems. These examples illustrate explicitly the need for the
approach considered in the body of the paper.

Example A.1.
One stumbling block for applying the methods of [KMV05] to conservative systems

is the presence of chain recurrent subsets of large measure. Figure A.1 shows the
results of applying algorithm 2.5 to the standard map, with a 50× 50 cubical covering
of the domain [−3, 3]× [−1, 7] ⊂ R2. The resulting invariant cubes are shown in blue.

There is a topological horseshoe factor near the resonance, which we computed
in Section 3.1. However, subdividing the chain recurrent set and recomputing the
invariant part brings us no closer to isolating the horseshoe. Figure A.2 illustrate this.
The figure shows the combinatorial invariant set after two additional subdivisions.

While the subdivision process culls cubes near the boundary of the set, it can never
cull cubes in the interior of the resonance due to the existence of invariant circles. If
we continue to subdivide this set, the number of cubes grows by roughly a factor of four
at each step, but there is no improvement in the culling of the resonance. Compare this
to the fast convergence of the subdivision scheme to the Henon attractor, as discussed
in [DJM05] and [DFT08]. The presence of invariant tori in volume preserving maps
makes this problem even more pronounced in three dimensions.

Another possible strategy is the direct computation of graph theoretic search pro-
cedures to the chain recurrent subset containing the resonance zone. The next two
examples illustrate the fact that graph searches are especially unreliable for conser-
vative systems.

Example A.2.
In this example we attempt to compute a homoclinic excursion for the hyperbolic

fixed point at the origin in the standard map, using Dijkstra’s Algorithm. We take the
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Fig. A.2. Result of applying the top-down strategy for dissipative maps to a chain recurrent
subset of the standard map. The figure shows the resulting invariant cubes after two subdivisions.
Number of cubes in cover grows geometrically.

same 50× 50 grid of 2,500 cubes as in example A.1. Denote the output of Dijkstra’s
shortest path algorithm by SP. The result of the search is shown in Fig A.3.

The resulting combinatorial excursion is a false positive, as can be either verified
graphically (by noting that the orbit passes from the interior to the exterior of an
invariant circle), or by subdividing the connection and re-computing the invariant
part. If this is done, the connection disappears, and it is clear that the shortest path
algorithm has failed to locate a true homoclinic excursion.

It could be argued that we have chosen too poor an initial resolution, however
this is the same initial grid used in section 4.1 to compute a horseshoe factor for the
standard map. The point of the example is that while the initial grid may be too coarse
for the straight forward application of graph-theoretic algorithms, the grid is not so
coarse that we cannot proceed by more geometrical means.

Example A.3.
A final example highlights problems associated with the abundance of recurrence

in measure preserving systems. The abundance of recurrent orbits tends to make the
dynamical graph associated with a conservative system strongly connected, regardless
of resolution. Then we subdivide the domain from example A.2 twice, and obtain a
cubical grid composed of 40,000 cubes. Applying the Dijkstra’s Shortest Path algo-
rithm to the elliptic and hyperbolic fixed points gives the result shown in Fig A.4.
The red cubes in the center and the blue cubes at the bottom of the figure are the
combinatorial fixed cubes, covering neighborhoods of the elliptic and hyperbolic fixed
points respectively. The black cubes show a combinatorial shortest path from the hy-
perbolic, to the elliptic fixed point. It is obvious that while no such orbit is possible
in the underlying dynamics, we must expect an abundance of such false positives near
rotational dynamics in conservative systems.
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Fig. A.3. Dijkstra shortest path from the fixed cube back to itself (after the self path has been
disallowed).
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Fig. A.4. Fixed cubes shown red and blue. Black cubes are Dijkstra’s shortest path from fixed
set to fixed set.
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