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KAM theory (Kolmogorov–Arnold–Moser theory) is the theory of condi-

tionally periodic motions in nonintegrable dynamical systems. The name of the theory

(proposed by F.M.Izrailev and B.V.Chirikov in 1968) stems from the first letters of the names

of its founders A.N.Kolmogorov [K1, K2], V.I.Arnold [A2, A3], and J.Moser [M1, M3]. The

theory started with A.N.Kolmogorov’s note [K1] of 1954.

The prototype of most of the results in KAM theory is the theorem on the persistence

of invariant tori under small perturbations of integrable Hamiltonian systems. Consider a

completely integrable Hamiltonian system with n ≥ 2 degrees of freedom and Hamilton

function H0(I):

ϕ̇ = ω(I) = ∂H0(I)/∂I, İ = 0, (1)

where (I, ϕ) are the action-angle variables (I ranges in a certain finite domain G of the

n-dimensional Euclidean space R
n). The whole phase space of this system is smoothly foliated

into invariant n-tori I = const, the motion on each torus being conditionally periodic with

frequencies ω1(I) = ∂H0(I)/∂I1, . . . , ωn(I) = ∂H0(I)/∂In. Let us now subject system (1) to

a small Hamiltonian perturbation, i.e., consider a Hamiltonian system

ϕ̇ = ω(I) + ε∂H1(I, ϕ, ε)/∂I, İ = −ε∂H1(I, ϕ, ε)/∂ϕ (2)

with Hamilton function H(I, ϕ, ε) = H0(I)+εH1(I, ϕ, ε), where 0 < ε ≪ 1 is the perturbation

parameter.

Theorem. Suppose that the unperturbed system (1) is Kolmogorov nondegenerate, i.e., the

frequencies ω1, ω2, . . . , ωn are functionally independent at each point of the domain G:

det
∂ω

∂I
= det

∂2H0

∂I2
6= 0. (3)

Then for ε sufficiently small, most of the invariant n-tori I = const of the unperturbed

system (1) do not disappear but are only slightly deformed—so that in the phase space of the

perturbed system (2), there also exist many invariant n-tori. The motion on each perturbed

torus is still conditionally periodic and, moreover, with the same collection of frequencies

ω1, ω2, . . . , ωn as those on the corresponding unperturbed torus. The perturbed tori generically

form a nowhere dense set, but the Lebesgue measure of the complement to this set is O
(√

ε
)

.

On the other hand, assume that the unperturbed system (1) is isoenergetically nondegen-

erate, i.e.,

det

(

∂ω/∂I ω
ω 0

)

= det

(

∂2H0/∂I2 ∂H0/∂I
∂H0/∂I 0

)

6= 0 (4)

at each point of the domain G (for ω1 6= 0, this inequality expresses the functional independence

of the frequency ratios ω2/ω1, . . . , ωn/ω1 on every energy level H0 = const). Then for ε

sufficiently small, most of the invariant n-tori I = const of the unperturbed system (1) lying

on any fixed energy level H0 = h do not disappear but are only slightly deformed—so that on

the energy level H = h of the perturbed system (2), there also exist many invariant n-tori.
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The motion on each perturbed torus is still conditionally periodic and, moreover, with the

same frequency ratios ω1 : ω2 : . . . : ωn as those for the corresponding unperturbed torus.

The perturbed tori on the hypersurface H = h generically form a nowhere dense set, but the

measure of the complement to this set is O
(√

ε
)

.

In both the cases, there persist for sure the unperturbed invariant tori I = I∗ on which

the frequencies ω1, ω2, . . . , ωn of the conditionally periodic motion satisfy the so-called strong

incommensurability, or Diophantine condition. This condition consists in the existence of

positive constants τ and γ such that for any integers k1, k2, . . . , kn that do not vanish simul-

taneously, the inequality

|k1ω1 + k2ω2 + . . . + knωn| > γ
(

|k1| + |k2| + . . . + |kn|
)−τ

(5)

holds. Let the exponent τ > n − 1 be fixed. Then there persist all the unperturbed tori on

which the frequencies of the motion satisfy inequalities (5) with a coefficient γ no less than a

certain quantity of the order of
√

ε.

In the phase space of the perturbed system (2), the perturbed invariant n-tori whose exis-

tence is guaranteed by this theorem are called the Kolmogorov tori, while their union is called

the Kolmogorov set. The symplectic 2-form dI ∧ dϕ vanishes on each Kolmogorov torus. Tak-

ing into account that the dimension of the Kolmogorov tori is half the phase space dimension,

one concludes that all the Kolmogorov tori are Lagrangian submanifolds of the phase space

(like the unperturbed tori I = const). The first part of the theorem (where the Kolmogorov

nondegeneracy is considered) is called the Kolmogorov theorem [K1], or the basic theorem of

KAM theory. The second part (where the isoenergetic nondegeneracy is treated) is due to

V.I.Arnold [A2, A3]. The determinant in the left-hand side of inequality (4) is called some-

times the Arnold determinant. The estimate O
(√

ε
)

of the measure of the complement to the

Kolmogorov set was obtained by V.F.Lazutkin, N.V.Svanidze, A.I.Neishtadt, and J.Pöschel

(see e.g. [N, P]).

It is important to emphasize that in the case of Kolmogorov nondegeneracy, an unper-

turbed invariant torus with Diophantine frequencies and the corresponding perturbed torus

are characterized, generally speaking, by different energy values H0 = h and H = h′ 6= h.

As to the energy level H = h, it is possible that there will be no perturbed torus on this

hypersurface with the given frequencies and even with the given frequency ratios. In the case

of isoenergetic nondegeneracy, on the other hand, an unperturbed torus and the corresponding

perturbed torus are characterized by the same energy value H0 = h and H = h, but in return

only the frequency ratios (rather than the frequencies themselves) of these tori coincide. As

to a perturbed torus with the given frequencies, it is possible that there will be no such torus

on the energy level H = h and even in the whole phase space. The conditions of Kolmogorov

nondegeneracy (3) and isoenergetic nondegeneracy (4) are independent. For instance, con-

sider system (1) with the Hamilton function H0(I) = a1 ln I1 + a2 ln I2 + . . . + an ln In, where

a1, a2, . . . , an are nonzero constants whose sum vanishes. This system is Kolmogorov nonde-

3



generate in the domain Ij > 0, 1 ≤ j ≤ n, but isoenergetically degenerate everywhere. On the

other hand, system (1) with the Hamilton function H0(I) = I1 + 1

2
I2
2 + . . .+ 1

2
I2
n is isoenerget-

ically nondegenerate but Kolmogorov degenerate everywhere. System (1) with the Hamilton

function H0(I) = 1

2
I2
1 + 1

2
I2
2 + . . .+ 1

2
I2
n is both Kolmogorov nondegenerate and isoenergetically

nondegenerate.

The gaps between Kolmogorov tori (the so-called resonant zones) contain: a) complicated

infinite hierarchical structures of invariant tori of various dimensions from 1 to n; b) asymptotic

surfaces constituted by the phase trajectories that approach these tori as t → +∞ or t → −∞;

c) stochastic layers with chaotic behavior of the trajectories.

The theorem above is valid if both the unperturbed Hamilton function H0 and the perturbed

one H are of smoothness class C l with l > 2n. The higher the smoothness of H0 and H , the

higher is the smoothness of the Kolmogorov tori. If H0 and H are real analytic, so are the

Kolmogorov tori. If H0 and H are infinitely differentiable, then the Kolmogorov tori are

of smoothness class C∞ as well. If H0 and H are of finite smoothness C l with l > 2n,

system (1) is Kolmogorov nondegenerate, and the frequencies ω1, ω2, . . . , ωn of conditionally

periodic motion on a perturbed torus satisfy inequalities (5) with n − 1 < τ < 1

2
(l − 2), then

the torus in question is of smoothness class C l−τ−1−δ for any δ > 0. The initial results by

A.N.Kolmogorov and V.I.Arnold [A2, A3, K1] on the persistence of conditionally periodic

motions pertained to analytic Hamiltonian systems only. The case of finitely smooth systems

was first examined by J.Moser in 1961–62 [M1].

Although the Kolmogorov set is nowhere dense, it is organized in some sense very regularly.

The first results in this direction were due to V.F.Lazutkin (1972–74) [L]. In the sequel, a major

contribution to studies of the structure of the Kolmogorov set has been made by J.Pöschel

[P].

There are an enormous number of quite diverse modifications, refinements, and (sometimes

very far) generalizations of the theorem above. It is these results that constitute, in the

aggregate, KAM theory. Below, we list several most important achievements.

1. The nondegeneracy conditions in the theorem we formulated can be relaxed consider-

ably. For instance, if the unperturbed Hamilton function H0 is analytic and the domain

G is connected, then Rüssmann nondegeneracy [R] of the unperturbed system (1) is suffi-

cient for the existence of invariant n-tori filling in the most part of the phase space of a

perturbed system (2). The Rüssmann nondegeneracy condition consists in that the image

of the mapping ω : G → R
n does not lie in any hyperplane (of the frequency space) passing

through the origin. This condition is optimal: if it fails then one can find an arbitrarily small

perturbation εH1 for which the system (2) will admit no invariant torus at all. Another ex-

ample is provided by so-called proper degeneracy where the unperturbed Hamilton function

H0 is independent of some of the action variables: H0 = H0(I1, I2, . . . , Is) with s < n, i.e.,

ωs+1(I) = . . . = ωn(I) ≡ 0 (this rules Rüssmann nondegeneracy out), but the perturbation is

of the special form H1 = H01(I) + εH11(I, ϕ, ε).
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2. There exists the local KAM theory that explores invariant tori near a critical element—

an equilibrium or a closed trajectory (to be more precise, a one-parameter family of closed

trajectories). In this situation (sometimes called limit degeneracy), the role of the perturbation

parameter ε is played by the distance ρ to the critical element. In the Arnold theorem on

conditionally periodic motions [A3] (the central result in the applications of KAM theory

to Celestial Mechanics), one considers a combination of proper and limit degeneracies.

3. Recall that a submanifold L of a symplectic manifold is said to be isotropic if the

symplectic 2-form vanishes on L, and is said to be coisotropic if the tangent space TpL

contains its skew-orthogonal complement (in the sense of the symplectic 2-form) at each point

p ∈ L. By now, very many results have been obtained on isotropic invariant tori whose

dimension m is less than the number n of degrees of freedom of the Hamiltonian system

in question (such tori are said to be lower dimensional). For instance, consider again a

completely integrable Hamiltonian system (1) and an invariant n-torus I = I∗ of this system.

Let the frequencies ω1, ω2, . . . , ωn of conditionally periodic motion on the torus I = I∗ be

commensurable (such tori are said to be resonant). Suppose that these frequencies satisfy d

independent resonance relations k1iω1(I
∗)+ k2iω2(I

∗)+ . . .+ kniωn(I∗) = 0, 1 ≤ i ≤ d, so that

the unperturbed torus I = I∗ is smoothly foliated into invariant (n − d)-tori. Then a small

Hamiltonian perturbation of system (1) leads, under some additional genericity conditions, to

a break-up of the torus I = I∗ into a finite collection of invariant (n−d)-tori of the perturbed

system. Other theorems treat invariant m-tori (2 ≤ m ≤ n − 1) in a neighborhood of an

equilibrium or a one-parameter family of closed trajectories. Besides, there often occurs the

situation where the unperturbed system with n degrees of freedom is not completely integrable

but possesses an invariant 2r-dimensional surface S smoothly foliated into invariant r-tori, the

motions on these tori being conditionally periodic (2 ≤ r ≤ n − 1). Then one can establish,

under certain conditions, the existence (near the surface S) of invariant r-tori of perturbed

systems, as well as of invariant tori of dimensions m from r+1 to n in the unperturbed system

and all its perturbations. The Arnold theorem on conditionally periodic motions mentioned

above describes a particular case of this situation where for arbitrary r and n, one looks for

tori of dimension m = n. Lower dimensional invariant tori of Hamiltonian systems were first

considered in the context of KAM theory by V.K.Melnikov in 1965 [Mel]. The first results on

break-up of resonant unperturbed tori into invariant tori of smaller dimension n − d ≥ 2 are

due to D.V.Treshchëv [T] (1989).

4. A number of results in KAM theory obtained mainly by I.O.Parasyuk (starting in 1984

[Par]) and partially also by M.R.Herman and other authors relate to coisotropic invariant tori

whose dimension M is greater than the number n of degrees of freedom of the Hamiltonian

system. In this situation, the phase space of the unperturbed system is smoothly foliated into

such tori and the motions on these tori are conditionally periodic, while the most part of the

phase space of a perturbed system is also filled in by invariant M-tori (n + 1 ≤ M ≤ 2n− 1).

The symplectic 2-form is not exact in this set-up. In the case where M = 2n−1, each invariant
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M-torus is a connected component of an energy level.

5. On all the invariant tori whose existence is guaranteed by various results in KAM theory,

there take place quasi-periodic motions, i.e., conditionally periodic motions with incommen-

surable frequencies (these frequencies are, as a rule, Diophantine, but sometimes one succeeds

in establishing the existence of invariant tori with less restrictive conditions on the incom-

mensurability “degree” of the frequencies). On the other hand, invariant sets of nonintegrable

systems are known that are analogues of the resonant (or nearly resonant) invariant tori of

integrable systems. Such sets have, as a rule, a rather complicated structure and are called

cantori or Aubry–Mather sets. The conventional Kolmogorov tori also turn to Aubry–Mather

sets as the perturbation increases. The Kolmogorov tori as well as the Aubry–Mather sets

satisfy a certain variational principle.

6. In some theorems of KAM theory, one treats perturbations dependent on time (periodi-

cally or even quasi-periodically).

7. In early works on KAM theory, only Hamiltonian systems were considered. In 1965–67,

J.Moser [M2, M3] and independently Yu.N.Bibikov and V.A.Pliss [BP] obtained first results on

quasi-periodic motions in nonintegrable reversible dynamical systems that are not Hamil-

tonian. By now, the KAM theory for various classes of non-Hamiltonian dynamical systems

(first of all for reversible systems, but also for volume-preserving systems and general systems)

has been developed to almost the same extent as the Hamiltonian KAM theory has. Invariant

m-tori of typical systems of general form are isolated in the phase space, and the motions

on such tori for m ≥ 2 are not conditionally periodic. Therefore, in the KAM theory for

general systems, one considers systems dependent on one or several external parameters, and

one studies a quasi-periodic motion on an isolated invariant torus of such systems for special

values of the parameters. Some results in KAM theory pertain to Hamiltonian, reversible, or

volume-preserving systems also depending on external parameters.

8. Along with the KAM theory for dynamical systems with continuous time (i.e., for systems

of ordinary differential equations), there exists the parallel KAM theory for dynamical systems

with discrete time, i.e., for mappings (symplectic mappings, reversible ones, volume-preserving

ones, or general mappings).

9. There is the quasi-periodic bifurcation theory which is a combination of KAM theory and

Singularity Theory. In this direction of research, one studies, e.g., multi-dimensional quasi-

periodic analogues of such well-known metamorphoses of closed trajectories as saddle-node,

period doubling, and Poincaré–Andronov (also known as Hopf) bifurcations.

10. As a special branch of KAM theory, one may mention the theory of quasi-periodic or

almost periodic motions in nonintegrable infinite dimensional systems, i.e., of quasi-periodic

or almost periodic (in time) solutions of partial differential equations.

KAM theory implies failure of the ergodic and quasi-ergodic hypotheses in Hamiltonian

Mechanics.

An overwhelming majority of the applications of KAM theory in Mathematics, Physics,
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and Astronomy relate to problems of stability of motion. For instance, consider a Hamiltonian

system (2) with n degrees of freedom sufficiently close to the completely integrable system (1).

If system (1) is nondegenerate (in the sense of Kolmogorov, isoenergetically, or at least in the

sense of Rüssmann), then the trajectories of system (2) for most of the initial conditions

(in the sense of Lebesgue measure) lie on Kolmogorov tori close to the unperturbed tori

I = const. Hence, the values of the action variables I1(t), I2(t), . . . , In(t) for such trajectories

will remain forever close to their initial values I1(0), I2(0), . . . , In(0), respectively. If n = 2 and

system (1) is isoenergetically nondegenerate, then such an absence of evolution of the action

variables along the trajectories of system (2) holds not only for a majority but for all the

initial conditions. The reason is that in this case, the two-dimensional Kolmogorov tori of the

perturbed system (2) divide the three-dimensional energy level H = h into narrow resonant

zones which do not overlap each other. Any trajectory that does not lie on one of the tori finds

itself trapped inside one of such zones. Within the framework of KAM theory, one succeeds

in proving the stability of equilibria and closed trajectories of Hamiltonian systems with two

degrees of freedom in the so-called general elliptic case. One more example is applications of

KAM theory to the problem of perpetual conservation of adiabatic invariants.

Less traditional applications of KAM theory pertain to Quantum Mechanics and are con-

nected with the calculation of the short-wave approximation for the eigenvalues and eigen-

functions of the Schrödinger, Laplace, and Beltrami–Laplace operators.

What is a characteristic feature of KAM theory is an extreme complicacy of the proofs

of almost all the results. The main difficulty here is connected with the appearance of the

so-called small divisors, or small denominators, in any calculation scheme of constructing

invariant tori carrying quasi-periodic motions. Small divisors are linear combinations of the

motion frequencies (and sometimes of other auxiliary quantities) with integer coefficients.

These combinations one has to divide by often lead to the divergence of the whole procedure.

The method of an infinite sequence of coordinate transformations with a quadratic growth of

the orders of “discrepancies” (this method was introduced by A.N.Kolmogorov in 1954 [K1])

was for many years (and, to a large extent, has been until now) the main tool of the proofs in

KAM theory. Kolmogorov’s method generalizes Newton’s method of tangents for numerically

solving equations f(x) = 0. After the N -th change of variables in the perturbed system (2), the

dependence on the phases ϕ remains only in terms of order ε2N

. Such “superconvergence” of

Kolmogorov’s procedure enables one to “paralyze” the influence of small divisors for strongly

incommensurable frequencies. The first detailed exposition of Kolmogorov’s method was given

by V.I.Arnold in the article [A1] of 1961 devoted to mappings of a circle onto itself. There

are also known other methods for finding quasi-periodic motions in nonintegrable systems.

For instance, in 1974–76, E.Zehnder [Z] proposed a method based on rather general Implicit

Function Theorems. Lately, the so-called direct proofs of the convergence of Lindstedt-type

series for invariant tori in KAM theory have become widely used. These proofs exploit a

complicated technique of regrouping the terms in the Lindstedt series. The technique was
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introduced by L.H.Eliasson in 1986–88 [E], it goes back to C.L.Siegel’s paper [S] of 1942 on

the linearization of analytic mappings in neighborhoods of fixed points.

See also Arnold diffusion, Nekhoroshev theorem on an exponential estimate of the

diffusion.

For fundamentals of KAM theory for finite dimensional systems, basic theorems, their

proofs, and a general review, the reader is referred to the monographs [BHS, Bru, Laz],

manuals [Arn, AKN, SM, Tre], tutorials [Chi, CLHB, dlL, Pos], memoirs [BBH, BHT], and

surveys [Bos, Sev1, Sev2, Sev3]. The works [AKN, BHS, dlL, Sev3] contain an extensive

bibliography. The infinite dimensional KAM theory is presented in detail in the books [KP,

Kuk1, Kuk2] and review [Kuk3].
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[KP] T.Kappeler and J.Pöschel, KdV & KAM, Springer, Berlin, 2003.
[Kuk1] S.B.Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in

Mathematics, vol. 1556, Springer, Berlin, 1993.
[Kuk2] S.B.Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and Its

Applications, vol. 19, Oxford University Press, Oxford, 2000.
[Kuk3] S.B.Kuksin, Fifteen years of KAM for PDE, in “Geometry, Topology, and Mathematical

Physics. S.P.Novikov’s Seminar: 2002–2003”, Amer. Math. Soc. Transl. (2), vol. 212, Advances in the
Mathematical Sciences, vol. 55 (eds. V.M.Buchstaber and I.M.Krichever), American Mathematical
Society, Providence, RI, 2004, 237–258.
[Laz] V.F.Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer,

Berlin, 1993.
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Integrability of a dynamical system is an extreme regularity of the behavior of its

trajectories. This regularity manifests itself in, first, the existence of many independent first

integrals of the system and, second, simplicity of the motions on the common level surfaces

of these integrals. One distinguishes complete integrability (integrability in the whole phase

space) and partial integrability (integrability on a separate invariant surface). Integrable sys-

tems are often encountered in studying various physical phenomena as the first approximation

or as a result of averaging over angular variables. There are many nonequivalent precise

definitions of integrability. The most explored class of integrable systems is constituted by

integrable Hamiltonian systems. In the theory of such systems, the following statement is the

central one.

Liouville–Arnold theorem [A]. Suppose that an autonomous Hamiltonian system with n de-

grees of freedom and Hamilton function H possesses n smooth integrals F1 = H, F2, . . . , Fn

that are pairwise in involution. Let M be a connected component of one of the common

level surfaces {Fi = ci, 1 ≤ i ≤ n} of these integrals, and let the differentials of the functions

F1, F2, . . . , Fn be linearly independent at each point of the set M . Moreover, assume that when-

ever a trajectory of any of the Hamiltonian systems with Hamilton functions F1, F2, . . . , Fn

lies on M , it is defined for all t ∈ R. Then:

a) The surface M is diffeomorphic to the product of the k-torus T
k and the (n − k)-

dimensional Euclidean space R
n−k for a certain k in the range 0 ≤ k ≤ n (M ≈ T

k × R
n−k).

b) In T
k×R

n−k, one can introduce coordinates ϕ = (ϕ1, . . . , ϕk) ∈ T
k, x = (x1, . . . , xn−k) ∈

R
n−k in which the Hamilton equations with Hamilton functions Fi (1 ≤ i ≤ n) on M take the

form

ϕ̇µ = ωµi, ẋν = aνi

with constant ωµi, aνi (1 ≤ µ ≤ k, 1 ≤ ν ≤ n − k).

c) The Hamilton equations with Hamilton functions F1, F2, . . . , Fn can be integrated by

quadratures.

d) Suppose additionally that the manifold M is compact, i.e., k = n (in this case, the

condition of infinite extendibility of the trajectories on M is fulfilled automatically). Then

some small neighborhood of the surface M in the phase space is diffeomorphic to the product

D × T
n of a domain D in the n-dimensional Euclidean space R

n and the n-torus T
n and,

moreover, there are coordinates I = (I1, . . . , In) ∈ D, ϕ = (ϕ1, . . . , ϕn) ∈ T
n in D × T

n with

the following properties:

i) the torus M is given by the equation I = I∗ for a certain I∗ ∈ D;

ii) the functions F1, F2, . . . , Fn in the variables (I, ϕ) depend on I only;

iii) the symplectic 2-form is

dI ∧ dϕ = dI1 ∧ dϕ1 + dI2 ∧ dϕ2 + . . . + dIn ∧ dϕn.

In particular, properties ii) and iii) imply that in the coordinates (I, ϕ), the Hamilton

equations with Hamilton functions Fi (1 ≤ i ≤ n) in a neighborhood of the manifold M have
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the form

ϕ̇ = ∂Fi(I)/∂I, İ = 0.

A Hamiltonian system with Hamilton function H satisfying the hypotheses of this theorem

is said to be completely integrable (in a neighborhood of the manifold M). The coordinates

(I, ϕ) one speaks of in item d) of the theorem are called the action-angle variables. Under

the hypotheses of item d), a neighborhood of the manifold M is foliated into invariant n-tori

I = const of the completely integrable system (M is one of these tori), the motions on the

tori being conditionally periodic.

H.Poincaré called studying the motions in Hamiltonian systems close to completely inte-

grable ones “the principal problem of dynamics” [P]. An essential progress in solving this

problem has been achieved within the framework of KAM theory.

Some classical examples of completely integrable Hamiltonian systems with two degrees of

freedom.

A. The motion of a particle of mass µ on the (x, y)-plane in the central force field with

potential U(r), where r = (x2 + y2)1/2. The equations of motion read µẍ = −xU ′(r)/r,

µÿ = −yU ′(r)/r. This system with two degrees of freedom always possesses two independent

integrals in involution: the energy integral h = µ(ẋ2+ẏ2)/2+U(r), i.e., the Hamilton function,

and the area integral σ = xẏ − yẋ, and is therefore integrable for any potential U(r).

In the case of the gravitational potential U(r) = −γ/r with γ > 0 (Kepler’s problem), all

the bounded orbits are closed (they are ellipses with a focus at the origin) due to the presence

of an additional integral. As such an integral, one can take any of the two Laplace integrals

f1 = x(ẋ2 + ẏ2) − γx

µr
− rṙẋ ≡ ẏ(xẏ − yẋ) − γx

µr
,

f2 = y(ẋ2 + ẏ2) − γy

µr
− rṙẏ ≡ ẋ(yẋ− xẏ) − γy

µr
.

Note that these integrals are connected by the relation µ2(f 2
1 + f 2

2 ) ≡ γ2 + 2µhσ2.

In the case where U(r) = γr2 with γ > 0 (oscillations obeying Hooke’s law), all the orbits

are also closed (they are ellipses with a center at the origin) due to the presence of an additional

integral. As such an integral, one can take any of the two partial energy integrals

h1 = µẋ2/2 + γx2, h2 = µẏ2/2 + γy2.

The sum h1 + h2 of these integrals is equal to h.

The potentials const − γ/r and const + γr2 constitute all the analytic potentials U(r) for

which there is a stable circular orbit and all the orbits sufficiently close to this stable circular

one are closed (the Bertrand theorem).

B. The planar motion in the gravitational field of two fixed centers is an integrable Hamil-

tonian system with two degrees of freedom (L.Euler, 1760). The same holds for the planar
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motion under the gravitational attraction of a fixed center and an additional constant force

(J.L.Lagrange, 1766).

C. The motion of a heavy rigid body with a fixed (fastened) point is described by the Euler–

Poisson equations Aω̇ = Aω ×ω + Pe× r, ė = e×ω, where ω is the angular velocity vector

of the body with respect to the coordinate frame attached to the body, e is the unit vertical

vector in this coordinate frame, r is the radius vector of the center-of-mass of the body with

respect to the fixed point in this coordinate frame (so that ṙ = 0), A is the inertia operator with

respect to the fixed point, and P is the weight of the body. On the four-dimensional invariant

manifolds NC given by the relation 〈Aω, e〉 = C = const, the Euler–Poisson equations define

Hamiltonian systems with two degrees of freedom. Here 〈a,b〉 and a× b denote respectively

the scalar (inner) and vector (outer) products of vectors a and b. Let A1, A2, A3 be the

eigenvalues of the inertia operator A and let r1, r2, r3 be the coordinates of the center-of-mass

of the body with respect to the principal axes of this operator. We list the known cases of

integrability of the Euler–Poisson equations on NC .

a) The Euler case (1750; also known as the Euler–Poinsot case): r1 = r2 = r3 = 0, C is

arbitrary.

b) The Lagrange case (1788; also known as the Lagrange–Poisson case): A1 = A2, r1 =

r2 = 0, C is arbitrary.

c) The Kovalevskaya case (1889): A1 = A2 = 2A3, r3 = 0, C is arbitrary.

d) The Goryachev–Chaplygin case (1900): A1 = A2 = 4A3, r3 = 0, C = 0.

D. The geodesic flow on an n-dimensional Riemannian manifold is a Hamiltonian system

with n degrees of freedom. There are the following three classical examples of integrable

geodesic flows on two-dimensional surfaces (n = 2):

a) the geodesic flow on an ellipsoid in the three-dimensional Euclidean space R
3 (in fact,

the geodesic flow on an ellipsoid of any dimension n in R
n+1 is integrable—this is the so-called

Jacobi theorem),

b) the geodesic flow on a surface of revolution in the three-dimensional Euclidean space R
3

(the statement that such a flow is integrable is called the Clairaut theorem),

c) the geodesic flow of a Liouville metric, i.e., a metric that has the form ds2 = [f(x) +

g(y)](dx2 + dy2) with arbitrary smooth positive-valued functions f and g in some local coor-

dinates (x, y) on the surface. The metrics on the surfaces of revolution constitute a particular

class of Liouville metrics.

Many Hamiltonian systems with n degrees of freedom encountered in applications possess

more than n independent first integrals (not all of these integrals are in involution). This

situation is exemplified by the planar motion in a central force field with potential −γ/r or

γr2. The Liouville–Arnold theorem is carried over to the case of more than n integrals as

follows.

Nekhoroshev theorem (1969–72) [N1]. Suppose that an autonomous Hamiltonian system

with n degrees of freedom possesses n + m smooth integrals F1, . . . , Fn+m (0 ≤ m ≤ n), each
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of the first n − m functions F1, . . . , Fn−m being in involution with all the n + m functions

F1, . . . , Fn+m. Let M be a compact connected component of one of the common level sur-

faces {Fi = ci, 1 ≤ i ≤ n + m}, and let the differentials of the integrals F1, . . . , Fn+m be

linearly independent at each point of the set M . Then the surface M is diffeomorphic to

the (n − m)-torus. Moreover, in a neighborhood of the manifold M , there are coordinates

I = (I1, . . . , In−m), ϕ = (ϕ1, . . . , ϕn−m) ∈ T
n−m, p = (p1, . . . , pm), q = (q1, . . . , qm) such that

Ij = Ij(F1, . . . , Fn−m), 1 ≤ j ≤ n − m,

ps = ps(F1, . . . , Fn+m), 1 ≤ s ≤ m,

qs = qs(F1, . . . , Fn+m), 1 ≤ s ≤ m,

while the symplectic 2-form is

n−m
∑

j=1

dIj ∧ dϕj +
m
∑

s=1

dps ∧ dqs.

Finally, a neighborhood of the surface M is foliated into invariant (n − m)-tori I = const,

p = const, q = const of the system in question (M is one of these tori). The motions on the

tori are conditionally periodic with frequencies dependent on F1, . . . , Fn−m only.

The coordinates (I, ϕ, p, q) here are called generalized action-angle variables.

There exist various methods of searching for first integrals of Hamiltonian systems: the

method of separation of variables (or the Jacobi–Hamilton method), the method of L–A pairs

(or the Lax method, this method is a particular case of the inverse scattering problem method),

and others.

Typical Hamiltonian systems with n ≥ 2 degrees of freedom are not integrable. The first

rigorous results on non-integrability of Hamiltonian systems were due to H.Poincaré (1890).

The essence of Poincaré’s approach is that a complicated behavior (to be revealed) of the tra-

jectories of the system in question is incompatible with the existence of many first integrals.

As an obstruction to integrability of Hamiltonian systems close to integrable ones, one can

encounter, for instance, the birth of isolated (on an energy level hypersurface) periodic tra-

jectories or the so-called splitting of asymptotic surfaces. Poincaré’s ideas have been strongly

developed in V.V.Kozlov’s works. The problems whose non-integrability follows from a com-

plicated structure of the set of long-periodic solutions are exemplified by the problem of the

planar motion in the gravitational field of two bodies that revolve around their common center-

of-mass in circular orbits (H.Poincaré, 1890). Other methods of proving non-integrability are

based on estimates from below for the coefficients of the power series for the so-called formal

integrals in a neighborhood of an equilibrium of the Hamiltonian system (the Siegel method)

or on examining the branching of solutions in the plane of complex time. There are also known

a number of obstructions to integrability that are connected with the geometry and topology

of the configuration space. For instance, obstructions of this kind are used in the proof of
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non-integrability of the problem of the planar motion in the gravitational field of N ≥ 3 fixed

centers (S.V.Bolotin, 1984).

The concept of integrability can be generalized to infinite dimensional systems. There are

known many examples of completely integrable infinite dimensional nonlinear Hamiltonian

systems: the Korteweg–de Vries (KdV) equation, the sine-Gordon equation, and others.

Some original works of major importance:

[A] V.I.Arnold, On Liouville’s theorem concerning integrable problems of dynamics, Amer. Math.
Soc. Transl. (2) 61 (1967) 292–296 (the Russian original: 1963).
[MM] L.Markus and K.R.Meyer, Generic Hamiltonian dynamical systems are neither integrable nor

ergodic, Mem. Amer. Math. Soc. 144 (1974) 1–52.
[N1] N.N.Nekhoroshev, Action-angle variables and their generalizations, Trans. Moscow Math. Soc.

26 (1972) 180–198.
[N2] N.N.Nekhoroshev, Types of integrability on a submanifold and generalizations of Gordon’s

theorem, Trans. Moscow Math. Soc. 66 (2005) 169–241.
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Basel, 1990.
[RSTSh] A.G.Reyman and M.A.Semenov-Tian-Shansky, Integrable Systems. An Approach Based

on Group Theory, Computer Research Institute, Moscow–Izhevsk, 2003 (in Russian).
[TF] V.V.Trofimov and A.T.Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential

Equations, Faktorial, Moscow, 1995 (in Russian).
[Ts] A.V.Tsyganov, Integrable Systems in the Method of Separation of Variables, Computer Research

Institute, Moscow–Izhevsk, 2005 (in Russian).

16



Small divisors (small denominators) are expressions of the form

k1λ1 + k2λ2 + . . . + kNλN

which appear in the denominators (or enable one to estimate the denominators) of the terms

of series in the Perturbation Theory or the Normal Form Theory for differential equations

or differentiable mappings. Here λ1, λ2, . . . , λN are fixed real or complex quantities while

k1, k2, . . . , kN are integer coefficients (it is assumed that not all of k1, k2, . . . , kN vanish). For

N ≥ 2 in the real case and for N ≥ 3 in the complex case, among these expressions there are

numbers arbitrarily close to zero or even (for resonant values of λ1, λ2, . . . , λN) equal to zero.

For instance, the mean angular velocities of the motions of Jupiter and Saturn around the Sun

are equal respectively to ωJ = 0.5297 year−1 and ωS = 0.2133 year−1. The ratio ωS/ωJ = 0.4027

is very close to 2/5, and the small divisor Ω = 5ωS − 2ωJ ≈ 0.007 year−1 is much smaller than

any of the frequencies ωJ and ωS (ωJ/Ω ≈ 75, ωS/Ω ≈ 30). This leads to a large long-periodic

perturbation in the motions of these planets (the so-called “great inequality”). The presence of

small divisors often results in the divergence of the corresponding series—Taylor ones, Fourier

ones, Poisson ones (combinations of Taylor and Fourier series), and so on—even when exact

resonances are absent. In the cases where the series converge, the differential properties of the

series sum (the smoothness class and estimates for the derivatives) depend in an essential way

on the arithmetical properties of the collection of quantities λ1, λ2, . . . , λN .

One can easily illustrate the appearance of small divisors by the following two model ex-

amples.

Example 1. The equation
n
∑

j=1

ωj
∂f(x)

∂xj
= F (x), (1)

where F is a given function in n variables x1, x2, . . . , xn while f is an unknown function, ωj

being certain real constants (“frequencies”). Both the functions f and F are assumed to be

2π-periodic in each argument and to have zero mean values. Expand the function F in a

Fourier series:

F (x) =
∑

k

Fke
i〈k,x〉,

where k = (k1, k2, . . . , kn) is a collection of integers not equal to zero simultaneously and

〈k, x〉 = k1x1 + k2x2 + . . . + knxn. The solution of equation (1) is given by the formula

f(x) = −i
∑

k

Fk

〈k, ω〉e
i〈k,x〉, (2)

where 〈k, ω〉 = k1ω1 + k2ω2 + . . . + knωn are small divisors.

Example 2. The equation

f(x + ω) − f(x) = F (x) (3)
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in the same notation and under the same conditions on F and f as in example 1. The solution

of equation (3) is given by the formula

f(x) =
∑

k

Fk

ei〈k,ω〉 − 1
ei〈k,x〉. (4)

One can easily estimate the absolute values of the differences ei〈k,ω〉 − 1 in terms of the small

divisors 〈k, ω〉 − 2k0π where k0 is an arbitrary integer:

2

π
min

k0

∣

∣〈k, ω〉 − 2k0π
∣

∣ ≤
∣

∣ei〈k,ω〉 − 1
∣

∣ ≤ min
k0

∣

∣〈k, ω〉 − 2k0π
∣

∣,

since 2|ϕ|/π ≤
∣

∣eiϕ − 1
∣

∣ ≤ |ϕ| for −π ≤ ϕ ≤ π.

If the frequencies ω1, ω2, . . . , ωn are commensurable, i.e. if 〈k, ω〉 = 0 for some k1, k2, . . . , kn

not equal to zero simultaneously, then series (2) is not well-defined (only a finite segment

of the series is defined). If the frequencies ωj are incommensurable but anomalously well

approximable by commensurable frequencies, then series (2) is generally divergent. In both

the situations, there exists no solution f of equation (1). On the other hand, if the frequen-

cies ωj are incommensurable and, moreover, not too well approximable by commensurable

frequencies, then series (2) converges. The same is valid for equation (3), but in the case

of equation (3), one should consider commensurability of the n + 1 numbers ω1, ω2, . . . , ωn, π

instead of commensurability of the n numbers ω1, ω2, . . . , ωn.

The differential properties of the solution f depend on those of the given function F and

on the arithmetical properties of the frequency collection.

The expression “the frequencies ωj are incommensurable and not too well approximable by

commensurable frequencies” is usually understood as strong incommensurability, or Diophan-

tine property of the frequency collection ω1, ω2, . . . , ωn. The Diophantine condition consists

in the existence of positive constants τ and γ such that for any integers k1, k2, . . . , kn that do

not vanish simultaneously, the inequality

∣

∣〈k, ω〉
∣

∣ > γ|k|−τ (5)

holds, where |k| = |k1|+ |k2|+ . . .+ |kn|. The Lebesgue measure of the set of non-Diophantine

frequency collections is zero. Suppose that the frequency collection (ω1, ω2, . . . , ωn) ranges in

a certain finite domain of the n-dimensional Euclidean space while the exponent τ > n − 1 is

fixed. Then the Lebesgue measure of the set of the frequency collections that do not satisfy

at least one of the inequalities (5) is (for n ≥ 2) of the order of γ.

In the context of equation (3), the Diophantine property of the frequency collection consists

in the existence of positive constants τ and γ such that for any integers k0, k1, k2, . . . , kn subject

to the condition |k| = |k1| + |k2| + . . . + |kn| > 0, the inequality

∣

∣〈k, ω〉 − 2k0π
∣

∣ > γ|k|−τ (6)
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holds. The Lebesgue measure of the set of frequency collections non-Diophantine in this sense

is also zero. If the frequency collection (ω1, ω2, . . . , ωn) ranges in a certain finite domain of the

n-dimensional Euclidean space and the exponent τ > n is fixed, then the Lebesgue measure

of the set of the frequency collections that do not satisfy at least one of the inequalities (6) is

of the order of γ.

Problem (1) is often encountered in studies of quasi-periodic motions in the case of

ordinary differential equations and problem (3), in the case of mappings.

Various methods of struggling with the influence of small divisors have been developed in

the framework of KAM theory.

[A] V.I.Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed.,
Springer, New York, 1988.
[Sch] W.M.Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer,

Berlin, 1980.
[S] V.G.Sprindžuk, Metric Theory of Diophantine Approximations, John Wiley, New York, 1979.

See also the bibliography to the article “KAM theory”.
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Arnold theorem on conditionally periodic motions is one of the theorems in

KAM theory. This theorem plays the central role in applications of KAM theory to problems

of Celestial Mechanics. The Arnold theorem implies the existence, under certain assumptions,

of numerous quasi-periodic solutions in the many-body problem, the Lebesgue measure of the

union of invariant tori filled in by the trajectories of these solutions being positive. The

theorem was announced by V.I.Arnold in 1962 [A1], a detailed proof was published in 1963

[A2]. Below we give a simplified formulation of the Arnold theorem.

Consider a Hamiltonian system with n+m degrees of freedom and a real analytic Hamilton

function of the form

H(I, ϕ, p, q, µ) = H0(I) + µH1(I, ϕ, p, q) + µ2H2(I, ϕ, p, q, µ), (1)

where I = (I1, . . . , In) ranges in a finite domain G of the n-dimensional Euclidean space

R
n, ϕ = (ϕ1, . . . , ϕn) ∈ T

n are angular variables (Tn denotes the n-torus), the variables

p = (p1, . . . , pm) ∈ R
m and q = (q1, . . . , qm) ∈ R

m range in a neighborhood of the origin of the

m-dimensional Euclidean space R
m, and µ is a small parameter. The symplectic 2-form is

n
∑

l=1

dIl ∧ dϕl +
m
∑

i=1

dpi ∧ dqi.

It is supposed that the function H1 has the form

H1(I, ϕ, p, q) = F0(I, τ) + F1(I, p, q) + F2(I, ϕ, p, q),

F0(I, τ) = λ0(I) +

m
∑

i=1

λi(I)τi +

m
∑

i,j=1

λij(I)τiτj +

m
∑

i,j,k=1

λijk(I)τiτjτk,

where τi = 1

2
(p2

i + q2
i ) for i = 1, . . . , m, λij(I) ≡ λji(I), the function F1 satisfies the inequality

∣

∣F1(I, p, q)
∣

∣ < C

m
∑

i=1

(

|pi|7 + |qi|7
)

with a certain constant C > 0, while the mean value of the function F2 over the variables ϕ

vanishes:
∫

Tn

F2(I, ϕ, p, q) dϕ1 . . . dϕn ≡ 0.

Theorem. Assume that in the domain G, there hold the inequalities

det
∂2H0(I)

∂I2
6= 0, det

(

λij(I)
)

6= 0.

Then for any δ > 0, there exists ε0 > 0 with the following properties. For ε > 0, let the domain

Aε of the phase space of the system with Hamilton function (1) be defined by the inequalities

0 < τi < ε for all i = 1, . . . , m. Then for any ε and µ such that 0 < ε < ε0 and 0 < µ < ε4,
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the domain Aε contains invariant analytic (n +m)-tori Tω,θ of the system in question that are

given parametrically by the equations

I = Iω + fω,θ(Ω, Θ),

ϕ = Ω + gω,θ(Ω, Θ),

p =
[

2
(

τω,θ + αω,θ(Ω, Θ)
)]1/2

cos
(

Θ + βω,θ(Ω, Θ)
)

,

q =
[

2
(

τω,θ + αω,θ(Ω, Θ)
)]1/2

sin
(

Θ + βω,θ(Ω, Θ)
)

.

Here Ω = (Ω1, . . . , Ωn) ∈ T
n and Θ = (Θ1, . . . , Θm) ∈ T

m are angular parameters, while

Iω ∈ G and τω,θ ∈ R
m are constants dependent on the label (ω, θ) ∈ R

n+m of the torus.

Moreover,

ω = ∂H0(Iω)/∂I, θ = µ∂F0(Iω, τω,θ)/∂τ.

The Lebesgue measure mes of the complement to the union Bε,µ =
⋃

ω,θ Tω,θ of these tori is

small:

mes(Aε \ Bε,µ) < δ mes Aε.

The invariant tori Tω,θ differs but slightly from the tori I = Iω, τ = τω,θ, namely,

|fω,θ| < δε, |gω,θ| < δε, |αω,θ| < δε, |βω,θ| < δε

(here the absolute value of a vector-valued function is defined as the sum of the absolute values

of its components). Finally, each torus Tω,θ carries quasi-periodic motions with frequencies

(ω1, . . . , ωn, θ1, . . . , θm):

Ω̇ = ω, Θ̇ = θ.

Later on, it was found that under the hypotheses of the theorem just formulated, the system

with Hamilton function (1) admits in the domain Aε (under some additional assumptions)

not only invariant (n + m)-tori but also invariant analytic tori of smaller dimensions n, n +

1, . . . , n + m − 1. These latter tori carry quasi-periodic motions as well. The invariant d-tori

are exponentially “condensing” as they approach a torus of smaller dimension d′ < d [JV].

[A1] V.I.Arnold, On the classical perturbation theory and the problem of stability of planetary sys-
tems, Soviet Math. Dokl. 3 (1962) 1008–1012.
[A2] V.I.Arnold, Small denominators and problems of stability of motion in classical and celestial

mechanics, Russian Math. Surveys 18(6) (1963) 85–191.
[AKN] V.I.Arnold, V.V.Kozlov and A.I.Neishtadt, Mathematical Aspects of Classical and Celes-

tial Mechanics, 3rd ed., Encyclopaedia of Mathematical Sciences, vol. 3; Dynamical Systems – III,
Springer, Berlin, 2006.
[F] J.Féjoz, Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après

Herman), Ergodic Theory Dynamical Systems 24 (2004) 1521–1582; a revised version is available at
http://www.math.jussieu.fr/~fejoz.
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Nekhoroshev theorem on an exponential estimate of the diffusion is the

theorem stating that the rate of Arnold diffusion (to be more precise, the average rate

of evolution of the action variables in analytic Hamiltonian systems close to completely

integrable ones) is exponentially small with respect to the perturbation parameter, with the

exception of very degenerate cases. Consider a Hamiltonian system with n ≥ 2 degrees of

freedom and real analytic Hamilton function H(I, ϕ, ε) = H0(I) + εH1(I, ϕ, ε):

ϕ̇ = ω(I) + ε∂H1(I, ϕ, ε)/∂I, İ = −ε∂H1(I, ϕ, ε)/∂ϕ, (1)

where (I, ϕ) are the action-angle variables for the unperturbed system with Hamilton

function H0(I) and ω(I) = ∂H0(I)/∂I is the frequency vector of the unperturbed motion,

while 0 < ε ≪ 1 is the perturbation parameter. It is supposed that I ranges in some finite

domain G of the n-dimensional Euclidean space R
n. In the unperturbed system, evolution of

the action variables I is absent: İ = 0.

Theorem. Let the unperturbed Hamilton function H0 satisfy in G a certain nondegeneracy

condition called steepness. Then there exist positive constants a, b, R∗, K∗, and ε∗ such that

for any solution ϕ(t), I(t) of system (1), the inequality

(

n
∑

j=1

[

Ij(t) − Ij(0)
]2

)1/2

≤ R∗ε
b for |t| ≤ exp(K∗ε

−a) (2)

holds whenever 0 < ε ≤ ε∗.

This theorem was announced by N.N.Nekhoroshev in 1971 [N1], a detailed proof (rather

complicated) was published in 1977–79 [N3, N4]. The constants a and b are called the stability

exponents ; of them, exponent a is the most important one. These exponents depend on the

number n of degrees of freedom and the geometric properties of the function H0 and tend

to zero as n → ∞. One usually calls the quantity T (ε) = exp(K∗ε
−a) the stability time,

the distance R(ε) = R∗ε
b the radius of confinement, and the constant ε∗ the threshold of

validity. Having estimate (2) in view, one sometimes speaks of effective stability of the action

variables in system (1). The larger the exponents a and b, the “more stable” are the action

variables. Analyticity of the Hamilton function H is essential for the existence of exponential

estimate (2), although there are classes of non-analytic Hamilton functions for which this

estimate holds as well [MS].

The steepness condition is very weak: the nonsteep Hamilton functions H0 for which evo-

lution of the action variables in the perturbed system (1) can proceed fast (e.g., with a rate of

the order of ε) constitute an extremely rare exception among all the analytic functions defined

in domain G [N2, N3]. The linear functions are typical examples of such nonsteep functions.

On the other hand, among all the steep Hamilton functions H0, the “steepest” ones for which

the values of the stability exponents a and b are maximal (for a fixed number n of degrees of

freedom) are convex and quasi-convex functions.
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Definition. An unperturbed Hamilton function H0 : G → R, for which the frequency vector

ω(I) nowhere vanishes, is said to be convex if there exists a constant c > 0 such that
∣

∣

∣

∣

〈

η,
∂ω(I)

∂I
η

〉
∣

∣

∣

∣

≥ c
n
∑

j=1

η2
j (3)

for all I ∈ G and for all vectors η ∈ R
n (the angular brackets here denote the scalar product).

A Hamilton function H0 is said to be quasi-convex if there exists a constant c > 0 such that

inequality (3) holds for all I ∈ G and η ∈ R
n such that 〈ω(I), η〉 = 0.

For instance, the function H0(I) = 1

2

∑n
j=1

I2
j is convex whereas the function H0(I) = I1 +

1

2

∑n
j=2

I2
j is quasi-convex but not convex. For quasi-convex unperturbed Hamilton functions

H0, estimate (2) holds for a = b = 1/(2n). Moreover, for any 0 < µ ≤ 1 one can take [L2, P]

a =
µ

2n
, b =

1 − µ

2
+

µ

2n
.

These values of the stability exponents seem to be optimal, they are known to be at least very

close to being so [LM].

All the unperturbed systems with convex Hamilton functions H0 are Kolmogorov non-

degenerate (the converse is not true). All the unperturbed systems with quasi-convex (and

a fortiori convex) Hamilton functions H0 are isoenergetically nondegenerate (the converse

for n ≥ 3 is not true).

Combining the Nekhoroshev theorem with the results of KAM theory, we arrive at the

following picture of the evolution of the action variables in Hamiltonian systems close to

integrable ones. Let, for instance, the unperturbed Hamilton function H0 be quasi-convex.

For sufficiently small perturbation parameter ε, system (1) possesses Kolmogorov invariant

n-tori close to the tori I = const. The motions on these invariant tori are quasi-periodic,

and the Lebesgue measure of the complement to the union of the tori is O
(√

ε
)

. For a

trajectory lying on one of these tori, the values of the action variables Ij(t) will remain forever

close to their initial values Ij(0), 1 ≤ j ≤ n. In the case n = 2, the same holds for trajectories

in the resonant zones between the tori as well. In the case n ≥ 3, on the other hand,

the action variables Ij(t) along trajectories in the resonant zones remain close to their initial

values Ij(0) during a time period exponentially large with respect to the inverse perturbation

parameter.

In 1992, P.Lochak published an essentially new proof of the Nekhoroshev theorem for the

case of quasi-convex Hamilton functions H0 [L1]. There are generalizations of estimate (2) on

the evolution rate of the action variables I to time-periodic perturbations, as well as to systems

with Hamilton functions of the form H0(I)+εH1(I, ϕ, εt, ε) and H0(I)+εH1(I, ϕ, p, q, ε) [N3].

Here p ∈ R
m, q ∈ T

m (Tm denoting the m-torus), while the symplectic 2-form in the case

where the variables p and q are present is
n
∑

j=1

dIj ∧ dϕj +
m
∑

s=1

dps ∧ dqs.

24



There exist also analogues of the Nekhoroshev theorem for infinite dimensional Hamiltonian

systems. The Nekhoroshev theorem and its generalizations have numerous applications in the

problems of Celestial Mechanics.
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Reversible system is a dynamical system that becomes the system with the reverse

time direction under the action of a certain phase space involution (i.e., a mapping whose

square is the identity transformation). Thus, a differential equation ẋ = V (x, t) is reversible

with respect to a smooth involution G, if this equation is invariant under the change t 7→ −t,

x 7→ G(x), i.e., if G
(

x(−t)
)

is a solution of this equation whenever x(t) is. A one-to-one

mapping A of a space onto itself is reversible with respect to an involution G, if GA = A−1G.

For instance, any system of Newtonian equations r̈ = F(r) is reversible with respect to

the involution G : (r, ṙ) 7→ (r,−ṙ) of the phase space. It is entirely inessential here whether

the “forces” F are conservative. A more general system of equations of motion r̈ = F(r, ṙ) is

still reversible with respect to the same involution G provided that the “forces” F are even

in the velocities: F(r, ṙ) ≡ F(r,−ṙ). A still more general example: a system ṗ = P (p, q),

q̇ = Q(p, q) with p = (p1, . . . , pn−k), q = (q1, . . . , qk) is reversible with respect to the involution

G : (p, q) 7→ (−p, q) if and only if P (p, q) ≡ P (−p, q), Q(p, q) ≡ −Q(−p, q). The manifold of

fixed points of this involution G is the k-dimensional surface p = 0.

As a rule, reversible systems of differential equations are not Hamiltonian. Moreover, it

is typical for reversible systems that in their phase space, there coexist domains where the

general picture of the motion is the same as that in Hamiltonian systems, and domains with

dynamics characteristic for dissipative systems. There are also known examples of Hamiltonian

systems that are not reversible. On the other hand, the similarity between reversible systems

(in some domains of the phase space) and Hamiltonian systems is really striking and concerns,

in particular:

1) the spectra, normal forms, and versal unfoldings of linear systems, as well as parametric

resonance in linear systems,

2) the properties and bifurcations of periodic solutions (closed trajectories) of nonlinear

systems,

3) Birkhoff-type normal forms of nonlinear systems in neighborhoods of equilibria and closed

trajectories,

4) the properties of homoclinic and heteroclinic trajectories,

5) invariant tori carrying quasi-periodic motions (such tori are studied in KAM the-

ory).

For instance, closed trajectories of an autonomous Hamiltonian system are generically not

isolated in the phase space; instead, they are organized into smooth one-parameter families (the

parameter being the value of the Hamilton function). Now consider an autonomous reversible

system in an n-dimensional space, and let the manifold Σ of fixed points of the reversing

involution G be of dimension k < n. It turns out that if 2k ≥ n then G-invariant closed

trajectories of this system (each of such trajectories intersects Σ at exactly two points) are

generically not isolated in the phase space either: they are organized into smooth (2k−n+1)-

parameter families (V.I.Arnold [A]). If λ is a multiplier of a closed trajectory, so is λ−1 (in

both the Hamiltonian and reversible cases).
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The relation between reversible and symplectic (or canonical, in more traditional terminol-

ogy) mappings is similar to that between reversible and Hamiltonian differential equations.

As a generalization of reversible systems, one may consider weakly reversible systems that

become the systems with the reverse time direction under the action of a certain—not nec-

essarily involutive—transformation of the phase space. The concept of a weakly reversible

system was introduced by V.I.Arnold in 1984 [A].
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Invariant torus is an invariant manifold of a dynamical system (i.e., of a mapping or a

system of ordinary differential equations) that is diffeomorphic to the n-torus T
n. Invariant tori

are a mathematical description of multi-frequency oscillatory processes in dynamical systems.

An invariant zero-dimensional torus (0-torus) is an equilibrium of a system of differential

equations or a fixed point of a mapping. An invariant one-dimensional torus (1-torus) is

a closed trajectory of a system of differential equations or an invariant closed curve of a

mapping. In the general theory of invariant tori, one usually considers invariant n-tori of

nonlinear systems of differential equations for n ≥ 2 and of nonlinear mappings for n ≥ 1,

because for smaller values of n as well as in the linear case, most of the aspects of this theory

become trivial. The theory of invariant tori studies such questions as the conditions for the

existence of an invariant torus and its stability under small perturbations of the system, the

behavior of trajectories on an invariant torus and in its neighborhood, bifurcations of invariant

tori and their families.

The properties of invariant tori in dynamical systems with various symmetries or conser-

vation laws (for instance, in Hamiltonian or reversible systems) and in general dynamical

systems differ drastically. For Hamiltonian or reversible systems, the situation is typical where

invariant tori of a given dimension occur in the phase space in large quantities and consti-

tute everywhere discontinuous families with a complicated structure. The motions on these

tori are conditionally periodic with strongly incommensurable frequencies (see KAM

theory). The smoothness of an invariant torus is only slightly less than the smoothness of

the system itself, and if the latter is infinitely differentiable or analytic, so are the invariant

tori. On the contrary, invariant tori of general systems are, as a rule, isolated in the phase

space. The motions on the tori are usually not conditionally periodic, and these tori are often

finitely smooth only, even if the system itself is infinitely differentiable or analytic.

One of the widespread bifurcations of invariant tori is the birth of (n + 1)-tori from n-tori,

e.g., the birth of an invariant 2-torus from a limit cycle. Another typical bifurcation consists

in that an invariant torus loses its smoothness gradually, turns to a so-called strange attractor

and, finally, breaks-up with the onset of stochastic oscillations.

A special branch of the theory of invariant tori explores invariant tori in infinite dimensional

systems.
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Ergodic hypothesis in Hamiltonian Mechanics consists in that a generic Hamil-

tonian system with n ≥ 2 degrees of freedom is ergodic on typical connected components of

the energy levels (a measure-preserving dynamical system with a compact phase space is said

to be ergodic if each invariant set of this system is either of measure zero or of full mea-

sure). This conjecture was regarded as quite plausible for a long time, up to the middle

of the 20-th century. Nevertheless, it fails for any n, which is one of the most important

corollaries of KAM theory. Indeed, consider an isoenergetically nondegenerate com-

pletely integrable Hamiltonian system with n degrees of freedom whose energy level

hypersurfaces are compact and connected, for instance, the system with Hamilton function

H0(I) = 1

2
(I2

1 + I2
2 + . . . + I2

n) in the domain 0 < H0(I) < C, where I denotes the action vari-

ables and C is a positive constant. Consider also a sufficiently small (of the order of ε ≪ 1)

generic Hamiltonian perturbation of such a system. On each energy level hypersurface of the

perturbed system, there are Kolmogorov invariant n-tori. The measure of their union is

positive, the measure of the complement to the union is also positive (and does not exceed a

quantity of the order of
√

ε). Thus, the perturbed system is not ergodic on any energy level.
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Quasi-ergodic hypothesis in Hamiltonian Mechanics consists in that a

generic Hamiltonian system with n ≥ 2 degrees of freedom is quasi-ergodic on typical con-

nected components of the energy levels (a measure-preserving dynamical system with a com-

pact phase space is said to be quasi-ergodic if it admits an everywhere dense trajectory).

KAM theory implies that this conjecture fails for any n. Indeed, consider an isoenerget-

ically nondegenerate completely integrable Hamiltonian system with two degrees of

freedom whose energy level hypersurfaces are compact and connected, for instance, the sys-

tem with Hamilton function H0(I) = 1

2
(I2

1 + I2
2 ) in the domain 0 < H0(I) < C, where I

denotes the action variables and C is a positive constant. Consider also a sufficiently small

generic Hamiltonian perturbation of such a system. On each three-dimensional energy level

hypersurface of the perturbed system, there are Kolmogorov invariant 2-tori. They divide

this hypersurface into resonant zones which do not overlap each other, and any trajectory

lies either on one of the Kolmogorov tori or inside one of the resonant zones. Thus, the

perturbed system is not quasi-ergodic on any energy level. For n ≥ 3, one should consider,

instead of a completely integrable Hamiltonian system, a Hamiltonian system whose phase

space is foliated into invariant tori of dimension 2n − 2. Then one may apply the results by

I.O.Parasyuk and M.R.Herman on small perturbations of such systems. The reason for the

absence of quasi-ergodicity in the case n ≥ 3 is the same as in the case n = 2: the invariant

(2n− 2)-tori of the perturbed system divide a (2n− 1)-dimensional energy level hypersurface

into resonant zones which do not overlap each other.

On the other hand, the symplectic 2-form in the Parasyuk–Herman theorems is not exact.

The question whether the quasi-ergodic hypothesis is valid for Hamiltonian systems with n ≥ 3

degrees of freedom under the condition that the symplectic 2-form is exact remains open. The

studies of Arnold diffusion suggest that the answer to this question is most likely affirmative.
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