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ABSTRACT. We study a simple nucleation-and-growth model with a very rich be-
havior. Unlike other models, here the microscopic details of the critical cycle can
influence the pattern and time of decay from a metastable state. Depending on
the speed of growth, the system goes trough four different regimes: 1) both the
“shape of the critical droplet” and the typical relaxation time are the same as in
finite volume; 2) the “shape of the critical droplet” and its “formation rate” are the
same as in finite volume but the “relaxation time” is shorter; 3) the “shape of the
critical droplet” is the same as in finite volume while the nucleation rate and the
“relaxation time” are smaller; 4) the “shape of the critical droplet” is different from
what we have in finite volume and its formation rate is smaller than the formation
rate of the finite-volume droplet.
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1. Introduction.

Metastability is a typical phenomenon for thermodynamic systems out of equilibrium
in the vicinity of phase coexistence regions. Suppose you have a thermodynamic sys-
tem in a state A and you change abruptly one of the thermodynamic parameters
to a value that corresponds to a new phase B. Many systems, instead of undergo-
ing immediately the phase transition, remain for a very long time in an apparent
equilibrium A’, often ”close” to the old phase.

A natural interpretation of metastability is that the metastable state corresponds
to a local minimum in the free energy, a reminiscence of the stable phase beyond
the transition. The system is somehow trapped in this local minimum and has to
overcome a barrier or go through a bottleneck to reach the equilibrium.
Unfortunately, make this picture a rigorous argument or at least a clear heuristics is
quite complicated. First of all, it is clear that the role of the dynamics is crucial: if

the dynamics allows to go directly (i.e. without any barrier) from A’ to the new stable
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state B, we do not have any metastable behavior, if on the contrary the dynamics is
non-ergodic, we never see the relaxation.

The barrier in the naif picture above is due both to a bottleneck of the dynamics and
to an energy barrier to overcome. In other words, we need to find the relationship
between the microscopic point of view of the dynamics and the macroscopic point of
view of the free energy. In general, this correspondence is not clear.

While a physical theory of metastability is still lacking, in the last fifteen years
metastability was successfully studied in the framework of lattice spin models with
stochastic dynamics. For these systems we have rigorous results and, in some specific
regimes, a full understanding of the problem. Provided we are able to describe the
energy landscape in a suitable way, the methods developed allow to understand
completely this phenomenon in two cases: the finite volume, low temperature limit
and the mean field, many particle limit.

In these regimes, we are able to transform the heuristic picture in a rigorous argument
and answer the questions in full generality. The key idea is to regard the problem
as the exit of a Markov process from a general domain, under the condition (to be
verified in the given model) that starting in the trap it is very unlikely that the
system exits the trap before reaching the "metastable state”. Each time the system
reaches this state, it looses memory of its past, and since it typically needs many
attempts to exit, the exit time has an exponential behavior. In the reversible case,
the trap can be seen as a deep well in the free-energy landscape, and the relaxation
time is characterized by the depth of this well, a fee-energy barrier that the system
must cross in order to reach the equilibrium.

The finite-volume case and the mean field case, share a key feature: the entropic
contribution to the measure is trivial to compute. Indeed, in the finite volume case
this contribution is always negligible when the temperature goes to zero, while in
the mean field case, the projection of the dynamics onto the space of macroscopic
variables is a close markovian dynamics, so that the problem can be stated directly
in macroscopic terms.

Behind these cases, the relaxation to the stable state was described only in a few
Ising-like ferromagnetic models, by means of model-specific extensions of the finite
volume ideas and techniques. In particular, two key properties needed to link finite
volume and infinite volume results are the low range and attractivity (ferromag-
netism) of the microscopic energy. A typical feature of Ising-like ferromagnetic mod-
els is that the relaxation from the metastable phase is triggered by the formation of a
suitable "nucleus”: a well described droplet that grow until eventually coalesce with
other droplets or fill the entire volume. The easiest of these regimes is the infinite-
volume, low temperature limit, analyzed in [DS2], [CM] for the Ising model in two or
higher dimensions, respectively, and in [MO2] for the two-dimensional Blume-Capel
model. The other remarkable case is the coexistence limit (infinite volume, vanishing
magnetic ficld) for the two-dimensional Ising model studied in [ShSch].
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In these cases, the shape of the nucleus can be understood as the minimizer of the
free-energy at a critical value of the magnetization. In other words, in all the models
analyzed, few macroscopic characteristics of the free-energy landscape are needed to
describe the relaxation to the equilibrium.

Still, a fundamental question remains open: is it possible, in general, to give a
thermodynamic description of the phenomenon, including the metastable state, the
two time-scales, and the relaxation path? In other terms, is it possible to understand
the mechanism that traps the system and to describe the relaxation in terms the
macroscopic variables? Despite the encouraging examples cited above, we give here
a negative answer.

The paper is written for non experts, and can be used as an introduction to metasta-
bility methods in statistical mechanics. The model we study is simple enough to
be analyzed directly, without any previous knowledge of the general theorems. The
setting is the easiest of the regimes where the entropic contribution is non-negligible:
the low temperature limit in infinite volume.

The model is largely inspired to the kinetic Ising model (KI in the following), studied
in the infinite volume, low temperature regime in [DS2] in dimension 2 and in [CM]
for higher dimensions. In these papers, the results rely on the finite volume analisys,
in particular [DS2] on the description of the energy landscape obtained in [NS].

In the KI model in a finite volume A, the configuration space is {—1,1}* (very high-
dimensional). The a single flip Metropolis dynamics turns out to produce plenty of
local wells. In the finite volume regime, general results ensure that these details do
not need to be taken into account to determine the relaxation time or the shape of
the critical nucleus: the only relevant quantity to compute is the hight of the energy
barrier to the stable state. In infinite volume, this is not the case: the details can
play a role and modify the scenario changing the nucleation rate and the nucleus
itself. This is what will happen in the model studied here, while in both the models
studied in the literature in this regime, the KI model and the Blume-Capel model
studied in [MO2], the energy landscape is ”smooth enough” to preserve the shape of
the critical droplet and its formation rate.

Notice that since the dynamics allows only single spin flips, the system must take
all the values of the magnetization in order to go from the configuration with all
minuses —1 (the metastable configuration) to the configuration with all pluses +1
(stable).

Let I' be the energy gap between the saddle point and —1 and 7 the hitting time
to +1 . In finite volume, for g large enough,

E(ry) = ce’ (1 + o),
P(ry > E(my)t) = !9 (1 + o), (1.2)
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where ¢ is a constant computed in [BM] and o is exponentially small with 5. More-
over, during the last excursion from —1 to 41, the process visits a critical nucleus
with probability exponentially close to 1 (see e.g. [MNOS]).

When the volume is infinitely large, a nucleus is formed immediately somewhere.
We look at a local observable, say near the origin, and compute the time when it
changes from the value it assumes in the —1 configuration to the value it assumes in
the 4+1 configuration. Since the speed of growth in the KI model is limited, it is clear
that the droplet that invades the origin does not come from too far away. A good
heuristic assumption to compute the invasion time for the KI model in dimension
d consists in assuming that the critical nuclei originate independently of each other
with rate e P« and grow with speed e #”. Let us consider the “space-time cone”
with vertex in (o,t) and slope e #”. By definition, if a critical droplet is generated
into the cone, it reaches the origin within ¢. The value t. of the typical time required
by the droplet to reach the origin is given by

te (e"B”tC)de—BFd ~ 1, (1.3)
which gives
T ;4+dv
te ~ P T (1.4)

In [CM] is shown that in the KI model the growth speed is determined by a (d — 1)-
dimensional metastability problem in infinite volume and it is the multiplicative
inverse of the invasion time in dimension (d — 1). With an inductive argument,

Z%:Q Tk

te~ P TET (1.5)

The value in the r.h.s. of (1.4) has to be compared with the typical nucleation time
at finite volume, that is e’T.

The ansatz that the formation time of a critical droplet is exponential with rate e
for times of order t. is verified a posteriori, but it is clear that it is a much stronger
assumption than (1.2).

2. Notation and results.

We denote by [z]; := max {z, O} the positive part of of the real number x.
The model. We consider a one-dimensional spin system on the lattice Z where the
spin variable o(i) can take values in Q := { —1,0,1,2, 3}. The values 1 and 2 of

the spin variable should be thought of as “inner degrees of freedom” (sub-critical
droplets) of the system, while —1,0, and 3 as observable states.
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The single site Hamiltonian is

40
H(-1) = —
(=1) %6
HO) = 0
33
H(1) = —
(1) 36
3
H(2) = 36
H3) =1
and is shown in Fig. 1.
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FIGURE 1. Single-site Hamiltonian.

The single site dynamics is given by the following transition rates:

Fora%{—l,ii},

by { PO it — b1
=9 otherwise.

(2.1)

(2.2)
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If a = —1 or a = 3, then cg(a,b) = 0 and no transition is allowed. This dynamics is
Metropolis reversible in {0, 1, 2} with absorbing states in —1 and in 3. Therefore,
we will be allowed to use the results in [OS] and [MO2] about reversible Markov
chains up to the hitting time to { —-1,3;.

The parameter 5 has the meaning of the inverse temperature.
We denote by o] the single-site process on €2 distributed according with the above
defined dynamics and by

74 = min {t; o) € Q}, (2.3)

=T (2.4)

The infinite volume dynamics is defined as follows: at time ¢ = 0 the initial config-
uration is 0 (all zeroes). Afterwards, the sites evolve according to their single-site
dynamics (namely, with the same law of ¢*) until they have one nearest neighbor
with spin —1 or 3. Then, they assume the value of the spin of their nearest neighbor
with spin —1 or 3 with rate

e P (2.5)

If a site has both nearest neighbors with spin in { -1, 3}, it will assume one of the

two values with uniform probability and rate e #”. v is the only parameter in our
model and e ?” has the meaning of growth speed of super-critical configurations.
This model can be considered as the counterpart of the nucleation-and-growth model
introduced in [DS1]. While in that case Dehghanpour and Schonmann focused their
attention on the supercritical growth, here we are interested on how the speed of
growth influence the nucleation pattern.

Given a volume ® C Z and a configuration p (boundary condition), we define the
restriction og,, of the process to ® by freezing the spins outside ® to p(i).

We focus our attention on the following hitting time

7 := min {t; 7,(0) € { . 1,3}}. (2.6)

For @ C Z, we consider the auxiliary hitting time:
#0(®) := min {t; Jied of,(i) e { - 1,3}}. (2.7)
We omit the volume from notation if ® = Z and the boundary condition if p = 0.
Obviously, if ® C ®” and for all 4, p'(i) < p"(i), then
(@) < #'(@") (2:8)

We call the first appearance of a —1 or a 3 in a given volume nucleation, the site
where we see this —1 or 3 critical droplet and the value of this spin shape of the
critical droplet. If v < 1/3, we say that the —1-droplets are of the right kind whereas
the 3-droplet are of the wrong kind; if v > 1/3, it is vice versa.
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Let us introduce some useful notation before stating our main result.

Given a set B C ), we define F(B) as the set of the minima of the Hamiltonian H
in B. We denote by 0B its outer boundary and the energy of the points in this set
by H(F(B)).

A cycle A C Q is a connected set such that H(F(0A)) > maxuea H(a) (in our
case, O}, {2}, and {O, 1, 2} are cycles). Given a cycle A, we define its depth as

I'(A) :== H(F(0A)) — H(F(A)) and its largest inner resistance ©(A) as the maximal
depth of a sub-cycle A’ C A that does not contain the whole F'(A):

O(A4) = | max  T(4) (2.9)

if such a sub-cycle does not exist, we set ©(A) := 0. We will use results about the
exit from cycles from [OS] and [MOZ2].
Let us introduce some useful functions of v:

Ka(v) = %+g (2.10)
k() = %+§ (2.11)
k() = %Jrg (2.12)
Ev) = 1 (2.13)

The time of the first appearance of a stable phase in the origin is characterized by
the following exponent:

k(v) := min {k“, k4, max {kb, kc}} (2.14)
In Fig. 2, k is plotted v.s. v.

0,k(v) has three discontinuity points for the values v = 1/3, 2/3, and 1. These points
correspond to “dynamical phase transitions”, namely to changes in the nucleation
patterns. We remark once more that the single-point energy landscape does not
depend on v and thus these transitions have no finite-volume counterpart.

Notice that k(v) is strictly monotonic for v < 1. We denote the inverse function of

k(v) by

v(k):[3,1] = [0,1]. (2.15)
A particular role will be played by the slab
A= { PO Le5<k<”>—”>J} (2.16)

that corresponds to the heuristic notion of base of the “critical space-time cone”
described in the introduction (sce (1.3)).
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FIGURE 2. k v.s. v.

Our main result is contained in the following Theorem:

Theorem 2.1. Vv > 0, Ve > 0 in the limit 51 oo,

Py (7 > ePt=9)) 1 (2.17)
Py (7 < fk0+e)) 1. (2.18)
Moreover,
P(o.(0)=—-1) —1lifr< 3 (2.19)
1
P(o,(0)=3) —1ifv> 3 (2.20)

The Theorem above shows that both the exit time and the exit state may depend
on the inner structure of the critical cycle. This dependence shows up only at very
high speed of growth and it is hidden in the Ising and Blume-Capel model studied
in [DS1], [DS2], [MO1], and [MO2] where the speed of growth is not independent
of the energy of the critical droplet. Depending on the parameter, we detect in our
model four different nucleation behaviors:

i) for v > 1 (where k(v) = k%(v)), the system behaves like in finite volume,
and both the exit time and state are “the same” as in finite volume;
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ii) for 2/3 < v < 1 (where k(v) = k°(v)), the system is in the Dehghanpour
and Schonmann regime: the typical exit time is exp (ﬂ (HT”)) and the exit
state is the same as in finite volume; both this case and case i were described
in [DS1] (see the introduction for the heuristic discussion of case ii).

iii) for 1/3 < v < 2/3 (where k(v) = k®(v)), the inner structure of the cycle

0,1,2¢ in Fig. 1 becomes relevant. Indeed, since it is very unlikely that
the process once reached 2 goes back to 0, both the exit from {0} and the

exit from {2} are rare event to take into consideration. The exit rate is

therefore lower than the one we get from the heuristics in [DS1] while the
exit state is the same as in previous cases;

iv) for v < 1/3 (where k(v) = k%(v)), like in case iii, the exit trough 3 entails
two rare events and its probability is so low that it is more likely to exit from
—1; the exit rate is consistently affected. In this case the system reaches the
“state” where value of the spin is a.s. —1 despite of the fact that the Gibbs
measure gives a.s. the value 3 and the fact that the energy barrier between
0 and —1 is higher than that between 0 and 3.!

3. Basic tools.

In this Section, we review the basic results about finite-volume metastability in the
context of [OS] and [MO2]. The setting is that of Markov chains with exponentially
small transition rates (e.g. Metropolis dynamics in the f — oo limit) with finite
state-space.

The extension to the continuous-time case is immediate (via large-deviation esti-
mates) as far as exponential times are concerned.

We will use these results to bound the probability of exit through a given state at a
given time from above and from below.

The following Lemma gives the desired upper bound:

Lemma 3.1 (Lemma 3.1 in [OS]). For all a,b such that H(b) > H(a), for all k > 0
and e >0
P, (7-; < eﬁf@) < e—,B(H(b)—H(a)—s) (31)
If Kk <T'(A), we immediately get the bound
P, (T;A =7,7 < eﬂ") < g AHE)—H(a)—e) (3.2)
In particular, when £ < T'(A), the exit probability goes to zero. The counterpart of
this fact is the content of the following Lemma from [OS]:

Hn a reversible situation, the system would go to the intermediate state and then reach the
Gibbs state at a later time.
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Lemma 3.2 (Proposition 3.7 in [OS] i and iii). For alla € A, for alle >0
P, (44 < PTF) > 1 =he (3.3)

for some positive constant ¢ and sufficiently large 3.
Moreover, for alla € A, b € 0A, for all e > 0,

P, (15, = 77) > e FHO-HEF@A)-2) (3.4)

While the two previous Lemmata give sharp bounds on the exit time at finite volume,
their results are not sufficient to deal with the infinite-volume case.

The following Lemma from [MO2] shows that if the exit time is not too small, the
inner details of the cycle do not influence the exit state. In this case, the bound on
the exit probability is “exponentially equivalent” to the bound (3.2).

Lemma 3.3. (Lemma 4.3 in [MO2].) Given a non-trivial cycle A and a positive
number k such that

O(A) <k <T(A),
we haveVa € A, Vb€ 0A, Ve >0 and B sufficiently large

P, (TgA < Pt y Toa = 7',;*) > g AUH ) —H(F(A)—r+e) (3.5)
4. Proof of Theorem 2.1.

We now focus on the model described in §2. In the following key Lemma we estimate
the exit probability at a given time 7', showing that the most likely exit state depends
onT.

Lemma 4.1. For all0 < k < 1, Ve > 0 and sufficiently large [3,
e Bl—v()+e) < Py (r* < e,@n) < e Bla—v(x)=e) (4.1)
Moreover,
Py (" =715 | 7 < €P%) (4.2)
tends to 0 if k < 26/36 (i.e. v(k) < 1/3) and to 1 if Kk > 26/36.
Proor. We split the proof into three parts:?

2In the general case, the analogue of this proof would be to pass to a “renormalized Markov
chain” (see [S]) where the state space is partitioned into the subsets of states that are “equivalent”
at time T' (meaning that starting from any state in a subset all the other states in the same subset
are visited within 7" with large probability). The probability of a transition is “exponentially
equivalent” to the probability of the best path in this renormalized Markov chain (the product of
the transition probabilities in the path).
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a) k < 26/36 (ie. v(k) <1/3).
By applying Lemma 3.3 on the cycle {0}:

Po ({r = b n{r <ot} > ematiosonta (4.3)
while, from 3.2
By ([ =, } [ 2 7)) < s (1)

On the other hand, the exit passing through 3 entails a transition from 0
to 1 and a transition from 2 to 3; therefore, by using Lemma 3.1 and the
Markov property, we get

P, ({7‘* _ T;} n {T* < eaﬁ}) < ¢ 2B(33/36-K) (4.5)

Since 40/36 — k = k — v(K) < 66/36 — 2k, by (4.3), (4.4) and (4.5), we get
(4.1) in casc a). By (4.3) and (4.5) we get (4.2):

P =N < efr
g L (e s R
b) if 26/36 < k < 30/36 (i.e. 1/3 < v(k) < 2/3) then we still have the bounds

in (4.4) and (4.5) but now k — v(k) = 66/36 — 2x and the leading term is
(4.5). To get a lower bound on the probability to exit through 3, we observe

that
Py ({7’* = Tg‘} N {T* < eﬁ’i}) >

Py (17 < 2eP7) Py (15 < 1) Py (15 < SePi—1) >
¢~ 28(33/36—r-te) (4.7)

where, to get the last inequality, we used Lemma 3.3 on the cycles {0} and

{2}. By (4.3), (4.4) and (4.7), we get (4.1) in casc b). By (4.4) and (4.7)
we get (4.2):

(T IR (e e KON

c) 30/36 <k <1 (i.e. 2/3 <v(k)). In this case, we can deal directly with the
cycle {O, 1, 2}. By (3.2) and Lemma 3.3, respectively, we get the following

bounds on the probability to exit through 3:

P, ({7‘* = 7'5‘} N {7‘* < eB"}) < g Al=K) (4.9)
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and
P ({r =m}n{r <e}) > i, (4.10)
By (4.3), (4.4) and (4.10), we get (4.1) in case ¢). By the same procedure
leading to (4.8) we get (4.2).
o
THE LOWER BOUND ON T (PROOF OF (2.17) ).
We use Lemma 4.1 when k£ = k(v) — ¢ (notice that if ¥ > 1 this choice gives
k—v(k) =¢).
Since the spins are independent from each other until time 7(A),

Py (F(A) <t) =1— (1 =Py (7 < t)* (4.11)
by using the definition of A (see (2.16)), we get from (4.11)
Py (7(A) < Pt=2)) <
Leﬁ(k(V)—V)J6—5([k(V)—V]+)e—/3€' — 0; (4.12)

namely, it is very unlikely that the nucleation occurs into A within time e?*®)+e).
Next, we prove that L is too large to be crossed within the allotted time:

|eBk(w)—v) |

Py (7 < PK7 | #(A) > PEO=N) <o [ Y ((n) < PF9 | (413)
n=0

where the ((n)’s are i.i.d. exponential variables with rate e . Let Z be a Poisson
variable with mean e#*)==) v hs. of (4.13) is equal to

k() —v—c)

Bk(v)—v) -
2P (Z > |e J) < [PHG)—7) |

0, (4.14)

where in the last inequality we used Chebychev inequality.
This concludes the proof of the lower bound (2.17). O

UPPER BOUND ON 7 (PROOF OF (2.18)). Let us start by considering the case v < 1
(so that k(v) + € can be taken smaller than 1). By using Lemma 4.1 and (4.11),
we see that A is so large that (with large probability) nucleation in it occurs within
eBk@)+e).

Now we show that A is small enough to be crossed in the allotted time: by the same
procedure of (4.13), we get

[ef k() =v) |
Py (r > " F0F) [ #(A) > LSEOTN) < Py [ YT ((n) > PEOF | (415)

n=0
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where the ((n)’s are i.i.d. exponential variables with mean ¢”. By using Chebychev
inequality, we bound r.h.s. of (4.15) by

| BEE)—) | B

BT — 0 (4.16)

In the case v > 1, Lemma 3.2 applied on the cycle {0, 1, 2} gives

Py (r" =75, 70 < f0H9)) > 1 - Fe (4.17)

Since with large probability nucleation occurs in the origin within the allotted time
e#(+2) and since, by (2.8), nucleation in other sites can only help, we conclude the
proof. 0]

THE SHAPE OF THE DROPLET (PROOF OF (2.19) AND (2.20)). By the same pro-
cedure leading to (4.12), we immediately show that with overwhelming probability
all the droplets of the “wrong” kind formed within e?*®)+2) are very far away from
the origin (more than [e#*¥)=¥) A for some 6 > 0). Since the presence of droplets
of the “right” kind does not increase the speed of growth of the the droplets of the
“wrong kind” (indeed, they prevent the growth), we can proceed as for (4.14) and
conclude the proof. 0]
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