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Abstract

Typically, big bang bifurcation occurs for one (or higher)-dimensional
piecewise-defined systems whenever two border collision bifurcation
curves collide transversely in the parameter space. At that point, two
(feasible) fixed points collide with the boundary in state space and
become virtual. Depending on the properties of the map at the col-
liding fixed points, there exist different scenarios regarding how the
infinite periodic orbits are born, mainly the so-called period adding
and period increment. In our work we prove that, in order to undergo
a big bang bifurcation of the period increment type, it is sufficient for a
one-dimensional map to be contractive near the boundary and to have
slopes of opposite sign at each side of the discontinuity.

Kewywords: organizing centers, piecewise-smooth maps, border collision
bifurcations

1 Introduction

Big bang bifurcations have been reported in the literature (see references
below) as a specific type of organizing centers in parameter space, where an
infinite number of bifurcation curves separating existence regions of different
periodic orbits issue from. Typically, this phenomenon has been detected
in one-dimensional piecewise-smooth maps when globally investigating two-
dimensional parameter spaces ([4, 5, 6]), although it is known that they
occur also in higher-dimensional maps and flows.
∗This work has been partially supported by a DAAD–“La Caixa” grant program and

by the German Research Foundation (DFG).
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The importance of these points remains on the fact that they organize the
dynamics in the parameter space, as all the possible periodic orbits existing
in a neighborhood of such a point are “created” there. In the cited works it
was shown that the global structure of a multi-dimensional parameter space
can be explained by describing only a few of such points, as the regions
originating from them cover large parts of the parameter space. It was also
shown that there are several types of big bang bifurcations, which cause
different bifurcation scenarios to occur around them.

Usually, these detections have been performed numerically and sup-
ported by analytical calculations, as no systematic procedures in that di-
rection have been reported until now. As these bifurcations were observed
in many systems in several fields, the question arises how to predict their
occurrence and how to determine their type. The goal of our work is to
prove sufficient conditions for one specific type of these bifurcations.

First references of such a point were reported for a low-dimensional sys-
tem in [7] when analyzing a one-dimensional two-parameter first return map
of an n-dimensional flow (n ≥ 3) near a double homoclinic connection. The
homoclinic orbits are contained in a two-branched manifold and the two pa-
rameters control the overlapping between both branches. This was done for
the contractive case, for which the eigenvalue corresponding to the stable
direction is greater in modulus than the negative one, without distinguish-
ing between the so-called “figure of eight” and “butterfly” configurations1.
It is given in that reference a first scheme of the behavior of the system
in the two-dimensional parameter space. The authors mentioned in a foot-
note that going through a certain region in this space one could find an
infinite number of periodic (and also aperiodic) orbits and that this region
shrinks infinitely to the origin of the parameter space, the big bang bifurca-
tion. As in the contractive modification (see for example [19]) of the famous
expansive Lorenz system, varying both parameters through that point one
has that two periodic orbits in the two-branched manifold are “glued” in
a double homoclinic connection. After that, infinitely many different (sta-
ble) periodic orbits looping around both branches are possible, posessing an
arbitrary large number of loops before closing2. One month later, it was
stated in [10] a first relation between the order of the loops and the Farey

1There exists a large number of publications explaining the topological differences
between these two configurations. However, we refer to [13] for a compact and extensive
overview.

2In the original expansive flow, the so-called homoclinic explosion takes place at this
point [22].
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numbers, and was finally proved in [11] for a contraction ratio less than 1
2

and later in [9] for the pure contracting case.
Obviously, this behavior is reflected in the dynamics of the map, which is
in fact our focus of interest. In general, this map has a single discontinu-
ity at x = 0, and the two parameters control the gap at the discontinuity
representing the overlap between both branches (see [22] for all the details).
Varying these two parameters through the origin as described above, two
stable fixed points (one at each side of x = 0) get closer until they collide at
x = 0 at the origin of the parameter space. At that point, the map becomes
continuous and, after that, the gap changes its sign and the fixed points
“disappear” (become virtual). Then, an infinite number of (stable) different
periodic orbits stepping between each side of x = 0 are possible.

In the context of non-smooth dynamics the previous situation is a par-
ticular case of a more general problem. Consider an n-dimensional space X
split into two parts, X` and Xr, by a hypersurface Σ and two one-parameter
diffeomorphisms f`(x; c`), fr(x; cr) : X → X. Suppose that fi, i ∈ {`, r},
possesses a unique3 ω-limit set given by a (stable) fixed point x∗i and such
that x∗i ∈ Xi if ci < 0. Suppose that x∗i crosses Σ transversely for ci = 0
and consider the piecewise-defined map

f(x) =

{
f`(x; c`), if x ∈ X`

fr(x; cr), if x ∈ Xr

It is clear that, whenever one of these points crosses transversely the bound-
ary, f undergoes a border collision bifurcation and the fixed point becomes
virtual. Then, all initial values tend to the other fixed point or, eventu-
ally, to a two-periodic orbit with one iteration at each side of Σ. How-
ever, if both fixed points become virtual (varying both parameters through
(c`, cr) = (0, 0)) then stable periodic orbits with several iterations at each
side of Σ before closing are possible. If one then encodes the periodic or-
bits depending on which side of Σ the consecutive iterates belong to, it is
easy to see that the possible encodings of the periodic orbits mainly depend
on the sign of the eigenvalues of the Jacobian matrix corresponding to the
eigendirections pointing to Σ. An explicit description of which encodings
are possible and which are not, for every case, remains an open problem.
However, in our work we will stick to a one-dimensional map f contractive
on both sides. In that case, one has X = R, Σ = {0} (up to translation)

3We consider it unique for simplicity. Obviously, everything in what follows remains the
same if both fixed points can be isolated from other ω-limit sets in a certain neighborhood.
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and f becomes a map with a single discontinuity at x = 0. The distance
between the fixed points and the boundary is controlled by the offsets at
the origin, and the sign of the eigenvalues is, obviously, given by the slopes
of f` and fr near x = 0. Then, one can consider two different interest-
ing cases: increasing-increasing and increasing-decreasing4. These two cases
correspond to the first return map of the double homoclinic connection for
the “butterfly” configuration; the difference between them is given by the
fact whether the stable manifold along one of the branches is orientable
or not which leads to different bifurcation scenarios in the c` × cr parame-
ter space (see also [13] for a comprehensive extension of what immediately
follows).

The bifurcation scenario for the increasing-increasing case was first de-
scribed in [18] for a piecewise-linear map using explicit computations (see
[20] for a translation). Twenty years after that, it was stated for f` and fr
quadratic maps at the same time in [12] and [23], and then studied in more
detail in [19, 21] using direct computations for low periods and renormaliza-
tion techniques. There, it was shown that the infinite number of periodic or-
bits emerging from the origin of the parameter space are created by “gluing”
them and adding their periods. More recent studies ([4, 5, 6]) have shown,
using direct computations and numerical simulations, that this phenomenon
seems to appear for other piecewise-defined maps without any relation to
the double homoclinic bifurcation. In these works this codimension-2 bifur-
cation was denoted as period adding big bang bifurcation.
On the other hand, very rigorous works ([1, 2, 3, 14, 15, 16, 17]) also gave
classification, properties and the sets of periods of the possible periodic
orbits using kneading invariants. This was done for expansive increasing-
increasing maps (also called Lorenz-like maps) for which an explicit list of
the possible periodic orbits is still missing.

The periodic orbits emerging from the origin of the parameter space for
the increasing-decreasing case were first studied also in [18] for a piecewise-
linear map. The resulting bifurcation scenario was proven in [13] for f` and
fr quadratic functions by collapsing the three-dimensional flow of the con-
tractive modification of the Lorenz flow mentioned above to a 2-dimensional
branched template. This bifurcation scenario was named in [4] period in-
crement scenario when analyzing a piecewise-linear map, as the periods of
the periodic orbits emerging at the origin of the parameter space are in-

4Recall that we are dealing in that work with maps contractive on both sides. Then,
the decreasing-increasing case is equivalent to the increasing-decreasing one, and for the
decreasing-decreasing one, only a two-periodic orbit or one or two fixed points are possible.

4



cremented by a constant value. This is precisely what we topologically
independently prove in our work through Theorem 2. There we show for a
general piecewise-smooth one-dimensional map that, whenever two (stable)
fixed points collide at the boundary in such a way that the map is increasing
and decreasing at each side of the discontinuity, then a big bang bifurcation
of the period increment type takes place.
Although we assume for the increasing-increasing case the existence of a
period adding big bang bifurcation in section 5, we emphasize that a similar
rigorous result for this case has not been stated (neither proved) anywhere.

This work is organized as follows. In §2 we state some notation and
definitions and present our result. In §3 we prove this result for globally
contracting maps. After that, this result is extended to locally contracting
ones near the discontinuity in §4. This can be proved directly but, for clarity
reasons, we prefer to do this intermediate step. In order to give details on
how the bifurcations occur, we obtain in §4.1 a first order approximation of
the border collision bifurcation curves that emerge at the big bang bifurca-
tion. As these two sections are mainly technical, we encourage the reader not
interested on the proofs to skip them up to §5. There, by two examples, we
verify the predictions and give evidences that the sufficient conditions that
we use can be relaxed permitting also the slopes to vary with the parameters
that control the offsets. We also verify the increasing-increasing case, and
we conjecture that, in those examples, the period adding big bifurcation is
caused by an infinite chain of big bang bifurcations of the period increment
type. We finally conclude in §6 with some remarks.

2 Definitions, properties and statement of the re-
sults

Before restricting ourselves to the class of maps we are interested in, let us
start with some standard definitions and properties of the symbolic dynamics
which we are going to use in this work.

Definition 1. Given a map f : R → R and x ∈ R, we define the symbolic
representation of an orbit starting at x, also called the itinerary of x, as
If (x) ∈ {L,R}N, where

If (x)(i) =

{
L if f i(x) ≤ 0

R if f i(x) > 0
, i ≥ 0.

5



Definition 2. If x belongs to a n-periodic orbit of a map f , then we will
write If (x) = θ := (θ, θ, . . . ) for some finite sequence θ of length n consisting
of symbols L and R.

Definition 3. Given the shift map σ defined as σ(α1, α2, α3, . . . ) = (α2, α3, . . . )
where αi ∈ {L,R}, we will say that two n-periodic sequences, θ1 and θ2, are
shift-equivalent (or just equivalent), θ1 ∼ θ2, if, and only if, there exists
0 ≤ m < n such that σm(θ1) = θ2.

It is easy to see that the relation ∼ defines an equivalence class in the
set of symbolic sequences.

Definition 4. We will say that a n-periodic orbit x1, . . . , xn of a map f is
of type θ if one has If (xi) ∼ θ, with 1 ≤ i ≤ n and θ a finite sequence of
length n. We will also call it a θ periodic orbit.

Let us now consider a two-parametric map f(x; c`, cr)5 of the form

f(x; c`, cr) =

{
c` + g`(x) =: f`(x; c`) if x ≤ 0
−cr + gr(x) =: fr(x; cr) if x > 0

(1)

such that

C.1 g` and gr are smooth functions at x = 0 such that g`(0) = gr(0) = 0

C.2 There exists ε` > 0 such that 0 ≤ g′`(x) < 1 ∀x ∈ (−ε`, 0]

C.3 There exists εr > 0 such that −1 < g′`(x) ≤ 0 ∀x ∈ [0, εr)

Note that if c` 6= −cr then f has a discontinuity at x = 0. Note also that
if −1 � c`, cr < 0 then the map has two fixed points, one at every side of
x = 0 (see Fig. 1). Due to C.2 and C.3, both fixed points are attracting and,
therefore, all orbits with sufficiently small initial conditions will be attracted
to one of them, depending on the sign of the initial condition. If one of
both parameters becomes positive, the corresponding fixed point disappears
(becomes virtual trough a border collision bifurcation) and all those orbits
will be attracted to the other fixed point. However, if both parameters are
positive but small enough, both fixed points disappear (are virtual) and the
orbits starting near the origin stay forever near the origin jumping from one
side of x = 0 to the other one. The possible asymptotic behaviors of these
orbits is precisely what our result describes, which is reflected in the next

5We will also avoid writing the dependence on the parameters explicitly and we will
refer to it just as f(x) or f .
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(a) (b) (c)

Figure 1: Influence of the parameters c`, cr on a map as defined in (1). a)
c`, cr < 0, b) c` = cr = 0 and c) c`, cr > 0.

Theorem 1. Let f be a map of type (1) fulfilling conditions C.1–C.3. Then,
there exists ε0 > 0 such that, for every n > 0 arbitrary large and every
ε0 > ε > 0,

a) There exist two curves6 in parameter space c`×cr, ξdRLn−1(c`) and ξcRLn+1(c`),
passing through the origin, such that for every 0 < c` < ε with ξdRLn−1(c`) <
cr < ξcRLn+1(c`), there exists a unique periodic orbit, which is stable and
of type RLn.

b) For every 0 < c` < ε, ξcRLn+1(c`) < cr < ξdRLn(c`), there coexist two
periodic orbits, which are stable and of type RLn and RLn+1.

Moreover, for (c`, cr) = (0, 0) there exists an open set containing the origin
where the unique invariant object is the stable fixed point x = 0.

This means that, when considering the parameter space c` × cr ' R2,
there exists an infinite number of border collision bifurcation curves emerg-
ing from the origin, ξd,cRLn , separating all the possible dynamics that one can
find near x = 0. These curves are ordered anti-clockwise as follows (see also
Fig 7(a) for a graphical explanation). Given n ≥ 1, one first finds a curve
where an RLn periodic orbit is created through a border collision, ξcRLn , and
coexists with an other one of type RLn−1 until one finds the curve ξdRLn−1

where the RLn−1 orbit is destroyed. After that, only the RLn periodic
orbit exists until the next border collision bifurcation occurs at the curve

6The meaning of the upper indices d and c refer to “creation” and “destruction” of the
corresponding periodic orbits.
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ξcRLn+1 where a periodic orbit of type RLn+1 is created. Again, both orbits
coexist until the RLn periodic orbit is destroyed at ξdRLn . This procedure
is repeated ad infinitum, starting with the curve ξcRL which is located in
the 4th quadrant and continuing with ξdR which is the horizontal axis. All
other border collision bifurcation curves mentioned above are located in the
first quadrant and accumulate at the vertical axis. Details on how these
bifurcation curves are obtained will be given in §4.1. As already stated in
Theorem 1, all the dynamics described above disappear at the origin of the
parameter space, where only a stable fixed point exists.

Regarding what has been said in the introduction, we will refer to such
a point as a Big Bang bifurcation. In particular, for the situation exposed
above one has the following

Definition 5. Let B be a point in a 2-dimensional parameter space such
that the bifurcation scenario along the boundary of an arbitrary small neigh-
borhood of B is equivalent to the one exposed in Theorem 1 for the origin.
Then we will say that there exists a big bang bifurcation of period increment
type in B.

Then one can formulate Theorem 1 in a more compact form as

Theorem 2. For a map of type (1) which satisfies the conditions C.1–C.3,
the origin of the parameter space cr × c` represents a big bang bifurcation
point of the period increment type.

3 Increasing-decreasing globally-contracting maps

As already mentioned in the introduction, in this section we will harden
conditions C.1–C.3 to be globally fulfilled and prove our main result in this
case. Then, in §4 using a simple result (Lemma 8) we will see that Theo-
rem 2 also holds for conditions C.1–C.3.
Before going into details, let us state the strategy that we are going to follow.
In order to show that only RLn periodic orbits are possible for c`, cr > 0,
we will show that other type of periodic orbits can not exist (Lemmas 1, 2,
3 and 6). Then, considering the sequence of preimages of 0 by f`, we will see
that RLn periodic orbits exist for every n (Lemma 7), that they are created
and destroyed via border collision bifurcations and that at most two of them
can coexist (Lemma 5).

Let us consider a map of the form defined in (1) such that
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C.1’ g`(x) and gr(x) are smooth functions such that gr(0) = g`(0) = 0

C.2’ 0 ≤ g′`(x) < 1 if x ≤ 0

C.3’ −1 < g′r(x) ≤ 0 if x ≥ 0

C.4’ f is unbounded.

We start proofs of these results with the next

Lemma 1. Given θ = If (x) with f as defined in (1) fulfilling the conditions
C.1’–C.4’, if If (x)(i) = R and cr > 0 then If (x)(i + 1) = L. That is, no
consecutive R’s are possible in θ.

Proof. Obvious, as (0,∞) is mapped into (−∞, 0).

Remark 1. Note that the previous Lemma does not need If (x) to be a
periodic sequence.

Lemma 1 obviously prohibits Rn periodic orbits to exist. Although two
consecutives L’s are possible, Ln periodic orbits are not, as the next result
shows.

Lemma 2. If x belongs to a periodic orbit of a map f as defined in (1)
fulfilling the conditions C.1’–C.4’, then, if c` > 0 there exists an i such that
If (x)(i) = R.

Proof. If x > 0, then one has If (x)(0) = R. Otherwise, as f` is monotoni-
cally increasing with slope less than one and f`(0) > 0, further iterates of x
by f` will necessarily reach the positive domain.

As a next step we show now that the wordRLnRLn can not be contained
in any periodic orbit. It is worth to emphasize that with such a word, we
obviously refer here (and in the following) to the compact representation,
that is, it has to be followed by an R, because a successive L would lead
to the word RLnRLn+1. This result is shown in the next Lemma based
on a similar one presented in [13]. It is stated there using geometrical
arguments in the Lorenz template that similar orbits are not possible for
a three-dimensional flow undergoing a homoclinic bifurcation of the single
twisted butterfly type. By contrast, we will use here only the nature of the
map to prove it.
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Figure 2: “Trapped” orbit

Lemma 3. If f is of type (1) with c`, cr > 0, holding C.1’–C.4’, and there
exists x1 such that If (x1) = θ, then the word RLnRLn can not be contained
in θ.

Proof. Let us suppose that there exists x1 such that If (x1) = θ with θ =
RLnRLnθ2 for some finite word θ2. Note that using the relation ∼ one can
consider that θ is given in this form. Let us write this periodic orbit as

x1, y
1
1, y

2
1, . . . , y

n
1 , x2, y

1
2, y

2
2, . . . , y

n
2︸ ︷︷ ︸

RLnRLn

, x3, . . . ,︸ ︷︷ ︸
θ2

x1, . . .︸ ︷︷ ︸
RLnRLn

, . . . ,

where xi > 0 and yji < 0 (see Fig. 2). Let us also assume that x1 < x2

(otherwise the same argument can be performed with the points x2 and x3)
and let us iterate the whole interval [x1, x2]. As fr is decreasing and cr > 0,
fr([x1, x2]) = [y1

2, y
1
1] with fr(x2) = y1

2 < fr(x1) = y1
1 < 0, the interval is

twisted. Moreover, as fr and f` are, respectively, decreasing and increasing
contracting functions, we have

µ([x1, x2]) > µ([y1
2, y

1
1]) > µ([y2

2, y
2
1]) > · · · > µ([yn2 , y

n
1 ]) > µ([x3, x2]),

where µ([a, b]) = |b− a| is the length of the interval [a, b].
Now, as f` preserves orientation and the length of [x1, x2] is decreased,

x3 ∈ (x1, x2) and therefore y1
3 = fr(x3) needs also n iterations to return to

the right side.
Repeating the same argument with [x3, x2], one has that fnl (y1

3) = x4 ∈
(x3, x2). Iterating the argument, the orbit of x1 will be “trapped” in (x3, x2)
and will never reach x1 again, so it can not be periodic.

Remark 2. Note that it is crucial in the last proof that both points x1 and
x2 return to the right domain (0,∞) after exactly the same number n of
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iterations by f`. That is, the interval fm([x1, x2]) remains connected for all
m.

Before considering periodic sequences containing the word RLnRLm
with n 6= m, let us state some properties and definitions of maps of type (1)
fulfilling the conditions C.1’–C.4’.
We first note that the left branch f` reaches its maximum value at x = 0
(f`(0) = c` > 0) and, therefore, when a point y < 0 is re-injected into the
right domain by f` it has to be necessarily in (0, c`]. On the other hand,
as fr is monotonically decreasing, every point x ∈ (0, c`] will be injected
into the left domain in the interval [ν, 0], where ν = fr(c`) < 0. Hence, the
interval [ν, c`] acts as an “absorbing” interval as all orbits starting at any
point x ∈ R will reach it after some number of iterations and will never leave
it. Therefore we have the next

Lemma 4. Let f(x) be a map of type (1) which fulfills the conditions C.1’–
C.4’ and let ν = fr(c`). For every x ∈ R there exists an m0 such that
fm(x) ∈ [ν, c`] ∀m ≥ m0. Therefore, the map f can be considered as a map
on the interval [ν, c`]:

f : [ν, c`]→ [ν, c`]

Remark 3. Note that this global reduction is true as functions g` and gr are
globally increasing and contractive (C.1’–C.4’). In the next section, where
the conditions C.1’–C.4’ are going to be relaxed, this reduction will be valid
only locally.

Let us now consider the sequences {an} and {bn} formed, respectively,
by the preimages of 0 by the left branch and by the preimages of these
preimages by the right branch

a0 = 0, an = f−1
` (an−1) with n > 0, (2)

bn = f−1
r (an) with n ≥ n0, (3)

with some n0 as explained below (see Fig. 3). Note that, as f` is a monoton-
ically increasing function, if c` > 0 the sequence {an} verifies an+1 < an ≤ 0
∀n ≥ 07. Although the preimages of 0 by the left branch (an) exist ∀n, bn
is defined for n ≥ n0 where n0 is such that an0 ≤ −cr < an0−1.
Due to the contractiveness of both functions f` and fr, the following in-

7Note that f0(0) = 0 as the function f0(x) equals the identity.
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Figure 3: Definition of the sequences {an} and {bn}. The box shown dotted
corresponds to the absorbing interval.

equalities hold

µ([an+1, an])
µ([an, an−1])

> 1, n > 0 (4)

µ([bn, bn+1])
µ([bn−1, bn])

> 1, n > n0.

The sequence {an} defined in Eq. (2) splits the interval (−∞, 0] into
sub-intervals of the form (an+1, an] (see Fig. 3) such that ∀y ∈ (an+1, an]
the number of iterations needed by y to return to the right domain is exactly
n+ 1. On the other hand, the intervals (0, bn0) and [bn, bn+1) with n ≥ n0,
form a partition of (0,∞), such that ∀x ∈ [bn, bn+1) the point fr(x) needs
exactly n+ 1 iterations by f` to return to the positive domain.

For a fixed value (c`, cr) ∈ R+ × R+, the number of iterations that a
periodic orbit can perform in the negative domain is determined by the
number of elements of the sequence {bn} contained in the absorbing interval
[ν, c`]. For example if b2 and b3 would be contained in the absorbing interval
[ν, cl], then the number of iterations of a periodic orbit can be two, three or
four. However, as the next result shows, at most one element of the sequence
{bn} can be contained in the absorbing interval [ν, c`].
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Figure 4: Backward and forward iterates of (0, c`]. fr((0, c`]) (dark segment)
is smaller than f−n` ((0, c`]) ∀n. Therefore, at most one aj can be reached by
fr((0, c`]).

Lemma 5. If f is a map of type (1) fulfilling conditions C.1’–C.4’, then
there exists at most one aj (equiv. bj) such that aj ∈ fr ((0, c`]) (equiv.
bj ∈ (0, c`]).

Proof. Recalling that c` = f`(0), one has (see Fig. 4)

[an+1, an] = f−1
` ([an, an−1])

[a1, 0] = f−1
` ([0, c`]).

Using the property shown in Eq. (4) one has

µ([0, c`]) < µ([an+1, an]) ∀n,

and, since fr is a contractive function one obtains

µ(fr((0, c`]) < µ([an+1, an]) ∀n.

Therefore, at most one an can be located in f((0, c`]).

For a fixed j, the uniqueness of such a bj (in case of existence) in the
last Lemma implies that the periodic sequences of a map under the con-
sidered conditions can be either RLj , RLj+1 or sequences containing these
two words only. However, what we want to show is that the last case is not
possible and in fact the only admissible periodic sequences are exactly RLj
and RLj+1. Therefore, let us consider the two only possible cases: for a
certain j, either (0, c`] ⊂ (bj , bj+1) (which means bj = 0 or bj /∈ [0, c`]) or
(0, c`] = (0, bj) ∪ [bj , c`] (which means bj ∈ (0, c`]) (c` < bj+1), which is the
case shown in Fig. 3.
In the first case, as the periodic orbits have to be contained in the interval
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[ν, c`], they always need the same number of iterations on the negative do-
main and the result comes from Lemmas 1, 2 and 3.
In the second case, we have to show that if a periodic orbit reaches (0, bj) it
can not reach [bj , c`] and vice versa, that is, once an orbit enters the absorb-
ing interval [ν, c`], the number of iterations needed to return to the positive
domain is preserved and is either j or j + 1.
Both cases are included in the following

Lemma 6. Let f be a map as defined in (1) fulfilling conditions C.1’–C.4’.
If x ∈ R belongs to a periodic orbit of f then there exists n > 0 such that
If (x) = RLn up to shift-equivalence.

Figure 5: The interval fr((0, c`]) is split at its return to the right domain.

Proof. If @ aj ∈ fr((0, c`]), then the result comes from Lemmas 1, 2 and 3.
Now let us suppose that there exists aj ∈ fr((0, c`]) which, by Lemma 5,
must be unique. We also have a unique bj ∈ (0, c`]. As fr is monotonously
decreasing and thus the interval (0, c`] is inverted, we can write

fr((0, c`]) = [ν, aj + δ)

for some δ > 0.
As f` is continuous in (−∞, 0] and f`(an) = an−1 ∀n > 1, the interval
fn` ([ν, aj + δ)) remains connected and contains aj−n for n = 1, . . . , j (see
Fig. 5). For n = j, the interval contains 0 and therefore it contains posi-
tive and negative points. The positive ones are immediately mapped into
(aj , aj+δ) by fr in such a way that fr(0+) = (aj+δ)−. Negative points need
one more iteration by f` and will be mapped into (bj , c`] with f`(0−) = c−` ,
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so the initial interval is split. After that, these points will be mapped into
[ν, aj) verifying that fr(c−` ) = ν+. Summarizing,

fr((0, bj)) = (aj , aj + δ)
fr([bj , c`] = [ν, aj ]

and

f j+1
` ([ν, aj ]) ⊂ [bj , c`]

f j` ((aj , aj + δ)) ⊂ (0, bj),

so

f j+1
` (fr([bj , c`])) ⊂ [bj , c`]

f j` (fr(0, bj)) ⊂ (0, bj),

and the number of steps needed by an orbit starting in (0, c`] to be re-
injected to the positive domain will remain constant and equal to j or j + 1
depending on whether it starts in (0, bj) or [bj , c`], respectively. Therefore,
only symbolic sequences of the form RLjRLj . . . or RLj+1RLj+1. . . with
starting points in (0, c`] are possible.

As it has been proven above, that the number of steps on the left side
of a periodic orbit must be preserved, we can apply Lemma 3 to show that
if x belongs to a periodic orbit of a map under the considered conditions,
then necessarily If (x) = RLn for some n > 0.

Now we ask about the reciprocal of Lemma 6, that is, we want to show
that periodic orbits of type RLn exist ∀n > 0.

Lemma 7. Let f be of the form defined in (1) and fulfilling conditions C.1’–
C.4’. Then, for every n ≥ 1 and every c` > 0, there exists cr > 0 such that
f possesses an orbit with the symbolic sequence RLn.

Proof. It is clear that for every n ≥ 2 and every c` > 0 there exists cr > 0
such that

fr((0, c`]) ∩ [an, an−2] 6= ∅,

which can be given due to one of the next three situations (see Figs. 4 and
5)

S.1 an−1 ∈ fr(0, c`])
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S.2 fr(0, c`] ⊂ (an, an−1)

S.3 an ∈ fr((0, c`])

If S.1 holds, bn−1 ∈ (0, c`] and

fn` fr : [bn−1, c`] −→ [bn−1, c`]

fn−1
` fr : (0, bn−1) −→ (0, bn−1),

are continuous contracting functions which must have a unique (stable) fixed
point. Therefore, two stable periodic orbits RLn and RLn−1 coexist. Note
that for n = 2 this proves also the existence of a RL orbit.
In the second case (S.2), bn−1 /∈ (0, c`] ([0, c`] ⊂ (bn−1, bn)) and

fn` fr : (0, c`] −→ (0, c`]

is a continuous contracting function which also must have a unique (stable)
fixed point. In this case, there exists a unique periodic orbit of type RLn
which is the unique attractor in a sufficiently small vecinity of x = 0.
Finally, if S.3 holds, replacing n by n−1 and arguing as in S.1, one has that
a stable periodic orbit of type RLn coexists with a stable RLn+1 periodic
one.

Remark 4. By contrast to all orbits RLn with n ≥ 2, the periodic orbit RL
exists not only for cr > 0 but also for cr ≤ 0. In that case, it coexists with
the fixed point R.

Remark 5. Note that the transitions between cases S.1, S.2 and S.3 are
given by border collision bifurcations where the respective periodic orbits are
created or destroyed when they collide with the boundary x = 0. This defines
the curves ξc and ξd used in Theorem 1. See §4.1 for more details.

Remark 6. As it is known, invariant objects of piecewise-smooth systems
do not necessarily have to be separated by another invariant object. In this
case, the coexistence of stable periodic objects may also be separated by the
discontinuity (and its preimages) (see [8] for an extensive overview about
piecewise-smooth dynamics).

Theorem 3. For a map of type (1) which fulfills the conditions C.1’–C.4’,
the origin of the parameter space c` × cr represents a big bang bifurcation
point of the period increment type.
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Proof. It is clear that for (c`, cr) = (0, 0) the map f possesses a stable fixed
point at x = 0. Now we have to show that an infinite number of bifurcation
curves separating existence regions of different periodic orbits are issuing
from the origin. As a second step we have to show that a smooth change of
the parameters across the bifurcation curve confining the regions of existence
of a unique RLn orbit lead to the creation of (coexisting) RLn+1 or RLn−1

periodic orbits.
The key to show the first step is the fact that the sequence {an} collapses

to the origin as c` → 0, that is

lim
c`→0

an = 0 ∀n ≥ 1.

This is due to the continuity of f` and the fact that it is a monotonically
increasing function. As [a1, 0] = f−1

` ([0, c`]) (compare Fig. 4), it is clear
that a1 → 0 as c` → 0. Now, iterating the argument and using that an =
f−1
` (an−1), it is clear that for every ε > 0, arbitrarily small, there exists
c`(ε) small enough such that −ε < an < 0. By Lemma 7, there exists cr
such that fr((0, c`]) contains an and, therefore, a periodic orbit of type RLn
exists.
On the other hand, it is clear that cr → 0 as an → 0 and, therefore, a
RLn periodic orbit exists for every n for values of (c`, cr) arbitrarily close
to the origin. Finally, if (c`, cr) = (0, 0), the map possesses a stable fixed
point which absorbs all orbits and thus all periodic orbits disappear at that
point.

4 Increasing-decreasing locally-contracting maps

In this section we relax the global monotonically-contracting conditions
C.1’–C.4’ to be fulfilled near the origin and show that the results of the
previous section are valid sufficiently close to the origin of the parameter
space. Thus we restrict our selves to maps of type (1) fulfilling the condi-
tions C.1–C.3.
Due to the smoothness of functions f` and fr near the origin, there exists an
open neighborhood of this point where both functions are contracting and
which contains the absorbing interval [ν, c`] if cr and c` are small enough.
On the other hand, the values of cr given by Lemma 7 tend to 0 as c` → 0+,
and therefore all results of the previous section hold under these conditions.
From the previous arguments one has the next result, which proves Theo-
rem 2.
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Lemma 8. Let f be a map of type (1) keeping conditions C.1–C.3. Then
there exist c0` and c0r such that if 0 < c` < c0` and 0 < cr < c0r f is contracting
in [ν, c`]. Moreover, for every cr < c0r and every n, there exists 0 < ε < c0`
such that aj ∈ [ν, 0] ∀j ≤ n if c` < ε.

Remark 7. If one changes condition C.3’ by gr to be a constant function for
x ≥ 0, then all the results presented above are still valid except for one detail.
In such a case, one has only to take into account that, as fr((0, c`]) would be
a single point. Then, conditions S.1 and S.3 in the proof of Lemma 7 become
an−1 = fr(0, c`]) and an = fr((0, c`]), respectively, preventing the coexistence
between two different orbits. Therefore, (ii) in Theorem 1 no longer holds as
ξcRLn−1 = ξdRLn. Such a situation has been referred to in the literature ([4])
as pure period increment scenario, and therefore the origin of the parameter
space represents a pure period increment big bang bifurcation.

Recalling Remark 5, the orbits given in Theorem 2 are created and de-
stroyed at border collision bifurcations curves, which are mentioned in the
first version of the same result, Theorem 1. In the next section, approximat-
ing them up to first order, we will give details on how are they obtained.

4.1 Border collision curves near the origin

Given n > 0 and c` > 0 (which we will always assume to be small enough),
we know (Lemma 7) that there exists cr > 0 such that one of the next cases
hold

S.1 an−1 ∈ fr(0, c`])

S.2 fr(0, c`] ⊂ (an, an−1)

S.3 an ∈ fr((0, c`])

implying the existence of an RLn periodic orbit. As has been shown in the
proof of Lemma 7, every case above leads to different dynamics. Therefore,
the limiting parameter values define the (border collision) bifurcation. Then
for each of the cases above, for every c` we will find the extremal value of cr
and obtain the bifurcation curves, ξc,dRLn , mentioned in Theorem 1 at which
an RLn orbit is created or destroyed.

The smallest value of cr which leads S.1 to be fulfilled is given by

fr(c`) = an−1 (5)
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and corresponds to the creation of the RLn periodic orbit coexisting with
the RLn−1 one.
The transition between S.1 to S.2 is given by

fr(0) = an−1

where the periodic orbit RLn−1 no longer exists leading RLn be the unique
attractor (near the origin).
Increasing cr, one finds the value of this parameter which satisfies the con-
dition

fr(c`) = an.

At this parameter value, representing the transition from S.2 to S.3, the
RLn+1 orbit is created and coexists with RLn.
Finally, the next bifurcation is given by

fr(0) = an (6)

where the periodic orbit RLn is destroyed as S.3 no longer holds.
Summarizing, for every c` > 0 and n > 0, Eqs. (5) and (6) give the value of
cr for the border collision bifurcations where, respectively, the RLn periodic
orbit is created and destroyed. Therefore, in parameter space, the respective
border collision bifurcations curves in a sufficiently small open set U of the
origin will be given by

ξcRLn = {(c`, cr) ∈ U , c` > 0 | fr(c`) = an−1}
ξdRLn = {(c`, cr) ∈ U , c` > 0 | fr(0) = an}

Now, in order to obtain a linear approximation of these curves, let us
assume that functions f` and fr are analytic and hence we can consider their
power expansions up to first order

f(x) =

{
f`(x) = c` + g′`(0)x+O(x2) if x ≤ 0

fr(x) = −cr + g′r(0)x+O(x2) if x > 0.
(7)

If g′`(0) > 0, the preimages of a0 = 0 by f` are given by

aj = −
j∑
i=1

c`
(g′`(0))i

+O(c2` ), j > 0. (8)
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Using Eq. (8) and solving Eqs. (5) and (6) one has that

ξcRLn =

{
(c`, cr) ∈ U , c` > 0 | cr = c`

(
n−1∑
i=1

1
(g′`(0))i

+ g′r(0)

)
+O(c2` )

}
(9)

ξdRLn =

{
(c`, cr) ∈ U | cr =

n∑
i=1

c`
(g′`(0))i

+O(c2` )

}
(10)

Note that, as mentioned in §2, the ξcRL bifurcation curve is located in the
4th quadrant, as the sum vanishes for n = 1 and g′r(0) < 0. All other curves
are located in the first quadrant.

Obviously, one can proceed in the same way in order to have an approx-
imation up to higher order just considering the corresponding higher order
terms in Eq. (7).

5 Examples

In this section we will illustrate the results obtained so far with two exam-
ples.

5.1 Example 1

Let us consider

f(x) =

{
c` + 0.9 sin(x) if x ≤ 0
−cr − 0.5 sin(x) if x > 0

(11)

shown in Fig. 6, which fulfills the conditions C.1–C.3.
As one can see in Fig. 7, there exists a big bang bifurcation of the period

increment type at the origin of the parameter space c` × cr, as predicted
by Theorem 2. A global overview of the bifurcation scenario is presented in
Fig. 7(a), and a blow up near the origin of this space is shown in Fig. 7(b).
There one can see an infinite number of border collision bifurcation curves
separating the regions of existence of the different periodic orbits. There it is
also shown the first order approximation of the bifurcation curves reported in
§4.1. As one can see in the one-dimensional bifurcation diagram presented
in Fig. 7(c) along the curve parametrized by φ in Fig. 7(b), the periodic
orbits that exist near the origin are of type RLn. As labeled in the figures,

20



Figure 6: System function of Example 1 defined in Eq. (11)

there exist regions where only one periodic orbit of type RLn exists, and
there exist other regions where two periodic orbits of type RLn and RLn+1

coexist.
As one can see in Fig. 7(a), near (0, π) there exists another point where

an infinite number of bifurcation curves seem to emerge from.
In order to investigate this point in more detail, let us first note that it

is given by the intersection between the border collision bifurcation curves
ξdR (the vertical axis) and ξdRL. This means that, at this point, a periodic
orbit of type RL collides with the boundary together with the fixed point
L. This is exactly what we have considered in that work, the simultaneous
collision of two fixed points with the boundary. Let us therefore consider
the following composite map

f2(x) =

{
f`(x) if x ≤ 0

f`fr(x) if x > 0
(12)

which collapses the RL periodic orbit of (11) to a the fixed point R. Easily,
one sees that, at (c`, cr) = (0+, π−), f`(0) = 0+, f`fr(0) = 0−, f ′`(0

−) > 0
and (f`fr)′(0+) > 0. This means that f2(x) is continuous at the parameter
values (0, π) and positive-negative offsets appear when increasing c` and
decreasing cr. However, f2(x) does not fulfill the conditions of Theorem 2
as the map increases on each side of the discontinuity. Moreover, the slope
at the origin of the right branch, (f`fr)′(0) = −0.5 ·0.9 cos(−cr), depends on
the parameter cr. However, if we consider the power series expansions of the
gap and the slope of the right branch of f2(x) at x = 0 near (c`, cr) = (0, π)

21



(a)

(b)

(c)

(d)

Figure 7: (a): border collision bifurcation curves for Example 1. A blow up
of the neighborhood of the point A is shown in Fig. 9(a). (b): numerical
(black) and analytical (gray) border collision bifurcation curves near the
origin. (c): bifurcation diagram through the curve surrounding the origin in
(b) parametrized by φ anti-clockwise. The gray regions indicate coexistence
between two periodic orbits (d): periods of the detected orbits in (c).

one has

f`fr(0)(c`, cr) = c` + 0.9(cr − π) +O((cr − π)2)

(f`fr)′(0)(c`, cr) = 0.5 · 0.9 +O((cr − π)2)

As the gap depends on lower order terms than the slope, it grows one order
faster than the slope. Then, if cr is close enough to π one can consider that
the gap is varied while the slope remains constant. As mentioned in the
introduction, this undergoes the so-called period adding big bang bifurcation
and the orbits are organized by a Farey-tree-like structure. That is, near
the big bang bifurcation, there exist an infinite number of bifurcation curves
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(a) (b)

Figure 8: Bifurcation structure around the period adding big bang bifur-
cation ocuring at (0, π) for Example 1. (a) Bifurcation diagram along the
curve labeled in Fig. 7(a) and parametrized clockwise by φ . (b) Periods of
the detected periodic orbits.

separating existence regions of different periodic orbits in such a way that, in
between two regions there exists another region locating a unique periodic
orbit obtained by “gluing” them and thus having a period which results
from the addition of the periods of those. This implies that between two
different bifurcation curves there exist an infinite number of them (see for
example [4] for an extended explanation). This is shown in Fig. 8 by the
one-dimensional bifurcation diagram along the curve shown in Fig. 7(a).

From the global overview of the bifurcation scenario shown in Fig. 7(a)
it seems that all the bifurcation curves created at (0, π) disappear at the
intersection points of the curves ξdRLn and ξcRLn+1 . However, as we will
immediately show, this can not be the case. Let us take a closer look for
example at the point labeled with A in Fig. 7(a) as A whose surrounding
is magnified in Fig. 9(a). As this point is given by the intersection of the
curves ξcRL2 and ξdRL, arguing as before, one can consider the map

f3(x) =

{
f`frf`(x) if x ≤ 0
f`fr(x) if x > 0

(13)

and solve equations {
f`frf`(0) = 0
f`fr(0) = 0

to obtain the coordinates ofA, which leads toA = (cA` , c
A
r ) ' (0.88325, 1.37759).
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One could also consider the iterated function frf`f` for the left branch.
However, one can see that the first option is the proper way of writing the
corresponding iterate, as it collapses the corresponding periodic orbit of (11)
to the fixed point x = 0 of (13) at A.

Expanding the gaps and the slopes of each branch of f3(x) at the dis-
continuity in series of powers near A, one has

f`frf`(0)(c̃`, c̃r) '1.05483c̃` + 0.17280c̃r +O(c̃`2, c2r , c̃`c̃r) (14)

(f`frf`)′(0)(c̃`, c̃r) '0.4935 · 10−1 + 0.1994 · 10−1c̃`+ (15)

0.25224c̃r +O(c̃`2, c̃r2, c̃`c̃r)

f`fr(0)(c̃`, c̃r) 'c̃` − 0.17280c̃r +O(c̃r2) (16)

(f`fr)′(0)(c̃`, c̃r) '− 0.86401 · 10−1 + 0.44162c̃r +O(c̃r2), (17)

where c̃` = c`−cA` and c̃r = cr−cAr . From Eqs. (14) and (16), it is clear that
there exist two directions in the parameter space (presented in Fig. 9(a) as
two dotted straight lines) along which the two gaps can be (locally) varied
independently adding a positive offset at the left branch and a negative at
the right one. As one can see from Eqs. (15) and (17), near the point A, f3(x)
is of type increasing-decreasing. However, in that case, the slopes can not
be decoupled from the offsets because they depend on the same order on the
parameters c` and cr. Nevertheless, we state that Theorem 2 remains valid
as long as they do not change their sign and, therefore, there exists a big
bang bifurcation of the period increment type at the point A. As the map
undergoing the big bang bifurcation is the one defined in Eq. (13), the peri-
odic orbits emerging at the point A are of type RL(RL2)n. This is shown in
Fig. 9(b) where a one-dimensional bifurcation diagram is performed along
the corresponding segment labeled in Fig. 9(a). As the coexistence regions
between the periodic orbits of type RL(RL2)n and RL(RL2)n+1 can not
be there observed, a magnification for the case n = 2 is shown in Fig. 9(c).

However, the question remains, where do all other border collision bi-
furcation curves created at (0, π) end? As shown in Fig. 9(d), when mov-
ing away from A, there exists a point between the two segments labeled
in Fig. 9(a) where the coexistence shown in Fig. 9(c) disappears. This
point is given by the intersection of the corresponding curves ξcRL(RL2)3 and
ξdRL(RL2)2 exactly as happened at the point A with the curves ξcRL2 and ξdRL.
Such a point would be the analagous to the given by the intersection of the
curves ξcRL(RL2) and ξdRL labeled with B in Fig. 9(a). This self similarity
suggests that this process takes place for every border collision curve, so
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forming an infinite tree of big bang bifurcations of period increment type
whose mother node is the point (0, 0), generating the complete period adding
structure absorbed by the point (0, π).

5.2 Example 2

Let us now consider a second example fulfilling conditions C.1–C.3

f(x) =

{
c` + 0.4x(x+ 2) =: f`(x) if x ≤ 0
−cr + 0.5x(x− 1) =: fr(x) if x > 0

(18)

which is shown in Fig. 10(a).
As expected, the origin of the parameter space c` × cr, presented in

Fig. 10(b), is a big bang bifurcation point of the period increment type.
Moreover, arguing exactly as before, one can show that the situation between
the points (0, 2) and (0, 0) is the same as in the previous example between
(0, π) and (0, 0). This has been validated with numerical simulations which
we do not show as they are equivalent to the ones presented in Figs. 7(b),
7(c), 7(d) and 8. Therefore we omit further comments in that direction.
However, there exists in the c` axis of Fig. 10(b) several points that deserve
special interest. For example, let us consider the point (1, 0). One can easily
see that the function

f2(x) =

{
frf`(x) if x ≤ 0
fr(x) if x > 0

(19)

is continuous at (c`, cr) = (1, 0) and, after re-parametrizing along proper
directions in c` × cr8, fulfills conditions C.1–C.3. Therefore, the point (1, 0)
represents a big bang bifurcation of period increment type where the orbits
corresponding to the original map, f , are of type R(RL)n. This is shown
in Figs. 11(a) and 11(b) through the one-dimensional bifurcation diagram
along the curve labeled in Fig. 10(b).

One can proceed analogously and show that the situation is repeated for
the other points, (pn, 0), also located at the horizontal axis of Fig. 10(b).
In order to show that, let us consider the equation

fnr f`(0) = fr(0), cr = 0 (20)
8We skip the details as one has just to proceed as in Example 1.
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(a) (b)

(c) (d)

Figure 9: Bifurcation scenario near the point A (see Fig. 7(a)). (a): Blow up
labeled in Fig. 7(a). The two dotted straight lines are the directions along
which the right and left images of 0 by f3(x) remain (locally) constant. (b):
one-dimensional bifurcation diagram along the segment labeled in (a): pe-
riod increment scenario. (c): maximization of the coexistence (gray region)
between the periodic orbits RL(RL2)2 and RL(RL2)3. (d): bifurcation
diagram along the segment labeled in (d); far enough from A, the period
increment structure generated at A disappears.

26



(a) (b)

Figure 10: (a): system function of Example 2 defined in Eq. (18). (b):
border collision bifurcation curves of Example 2.

and let pn be the root of the Eq. (20) which is not a root of the same equation
using n− 1 instead of n. Then, one can easily see that the map

fn(x) =

{
fnr f`(x) if x ≤ 0
fr(x) if x > 0

(21)

is continuous at (c`, cr) = (pn, 0) and, again under proper re-parametrization,
the conditions C.1–C.3 are hold at (c`, cr) = (pn, 0). Therefore, for every
(pn, 0) there exists an open set containing that point such that only periodic
orbits of type R(RnL)m exist for all m. Moreover, there exist regions in
that open set where two R(RnL)m and R(RnL)m−1 orbits coexist ∀m.

6 Conclusions

Big bang bifurcations occur in low-dimensional piecewise-smooth systems
typically whenever two fixed points cross the boundary and become virtual.
This is given by a transverse intersection between two border collision bifur-
cation curves when the considered parameters control the distance between
the boundary and the fixed points.
So far we have presented this situation for the one-dimensional case for which
the boundary is represented by a single point (x = 0) where the map has a
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(a)

(b)

(c)

(d)

Figure 11: Bifurcation structure around the big bang bifurcation points at
(c`, cr) = (1, 0) ((a) and (b)) and (c`, cr) = (p2, 0) ((c) and (d)). (a) and
(c) Bifurcation diagram along the curves labeled in Fig. 10(b). (b) and (d)
periods of the periodic orbits. The gray regions indicate coexistence betwee
two periodic orbits.
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jump discontinuity. By Theorem 2, we have explicitly and rigorously charac-
terized the infinite number of periodic orbits that appear after the collision
of two fixed points with the boundary when the map is locally contractive
and has eigenvalues of opposite sign: a big bang bifurcation of periodic in-
crement type occurs. As mentioned in Remark 7, in the case that one of
the slopes vanishes in an open set containing x = 0, the bifurcation scenario
remains the same except that the coexistence regions disappear, and a big
bang of the so-called pure increment type occurs.
We have also given examples showing that one can consider a proper renor-
malization of the map in order to study other big bang bifurcations in the
parameter space. We have given evidence that the same result holds when
allowing the eigenvalues of the linearization at the fixed points to vary with
the parameters, although they should at least preserve their sign and the
attracting condition. In the same examples we have also checked the result
conjectured in the introduction; that is, when both eigenvalues are positive
then the so-called period adding big bang bifurcation takes place. A proof
of that we leave for future work. Using also renormalization arguments we
have suggested that the bifurcation curves issuing from the detected period
adding big bang bifurcation are “collected” by an infinite cascade of period
increment big bang bifurcations. A rigorous and more detailed study of this
situation will be reported elsewhere.
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pp. 711–714.

[11] J. M. Gambaudo, P. Glendinning, and T. Tresser, The gluing
bifurcation: symbolic dynamics of the closed curves, Nonlinearity, 1
(1988), pp. 203–14.

[12] J. M. Gambaudo, I. Procaccia, S. Thomae, and C. Tresser,
New Universal Scenarios for the Onset of Chaos in Lorenz-Type Flows,
Phys. Rev. Lett, 57 (1986), pp. 925–928.

[13] R. Ghrist and P. J. Holmes, Knotting within the gluing bifurcation,
in IUTAM Symposium on Nonlinearilty and Chaos in the Enginnering
Dynamics, J. Thompson and S. Bishop, eds., John Wiley Press, 1994,
pp. 299–315.

[14] P. Glendinning, Topological conjugation of lorenz maps to β-
transformations, Math. Proc. Camb. Phil. Soc., 107 (1990), pp. 401–
413.

[15] J. H. Hubbard and C. T. Sparrow, The Classification of Topolog-
ically Expansive Lorenz Maps, Communications of Pure and Applied
Mathematics, XLIII (1990), pp. 431–443.

[16] R. Labarca and C. Moreira, Bifurcation on the essential dynamics
of lorenz maps and applications to lorenz-like flows: contributions to
study of expanding case, Bol. Soc. Bras. Mat., 32 (2001), pp. 107–44.

30



[17] , Essential dynamics for lorenz maps on the real line and the lexi-
cographical world, Ann. I.H. Poincaré, AN 23 (2006).
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