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It is shown how the fundamental theorem of calculus for several variables can
be used for efficiently computing the electrostatic potential of moderately compli-
cated charge distributions. This is exemplified with a charge distribution which
resembles the letter F in shape.

1 Introduction

As it was shown in [1], the integral of a function 1 f over a generalized rectangle 2 R ⊂ Rn can
be expressed as a simple linear combination of values which an antiderivative F of f takes
at the corners of R. Here the antiderivative can equivalently be defined as any cumulative
distribution function

F(x1, . . . ,xn) =
Z xn

an

(
. . .

(Z x1

a1

f (y1, . . . ,yn) dy1
)
. . .

)
dyn (1)

or as any function F satisfying

∂

∂x1
· · · ∂

∂xn
F(x1, . . . ,xn) = f (x1, . . . ,xn) . (2)

This constitutes a direct generalization of the fundamental theorem of calculus from a single
real variable to n such variables. For the linear combination mentioned above the following
notation has been introduced [2]Z

R
f (x1, . . . ,xn)dx1 . . . dxn = ∑

c∈∇R
αR(c)F(c) . (3)

Here ∇R is the set of 2n corners of R and the term αR(c), which I will call the weight of corner
c, takes values in {−1,+1}. These weights satisfy

∑
c∈∇R

αR(c) = 0 . (4)

1 In this article we do not specify the regularity properties of the functions involved. One consistent setting is to
assume that all functions to be integrated over some domain are continuous there.

2 Special names are interval, rectangle, cuboid for n = 1,2,3 respectively. We will omit the adjective ‘generalized’
if the context makes clear which value of n is under consideration.
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Equation (3) can easily be seen to persist if R is replaced by any finite non-overlapping 3 union
of compatible 4 rectangles. The only difference is that now the weights may take integer values
different from +1,−1. In this form, this relation has been given the name discrete Green’s
theorem [3], which also found its way into Wikipedia.

We need to catch up on defining αR for the case that R is a rectangle in Rn. We assume that
R is not void. Then we have two ‘main corners’ a,b ∈ Rn such that a1 < b1 , . . . , an < bn and all
corners can be represented as

∇R = {(a1ε1 +b1(1− ε1) , . . . , anεn +bn(1− εn)) | (ε1 , . . . , εn) ∈ {0,1}n} . (5)

Then the weight of the generic corner is given by

αR((a1ε1 +b1(1− ε1) , . . . , anεn +bn(1− εn))) = (−1)ε1+...+εn . (6)

The present work carries out the electrostatic application which in [1] was mentioned as
the motivation for investigating fast evaluation of integrals over rectangular domains. It is
interesting to notice that in our case the essential efficiency gain comes from being able to
compute antiderivatives in the sense of (2), whereas the newer applications of (3) seem to
deal with analyzing digital images and get their efficiency gain from forming the discrete
analog of (1) (for n = 2) for an image once, and then using it many times for the analysis of
varying image regions.

2 Combining the contributions of compatible rectangles

On the right-hand side of equation (3) the domain of integration R enters as a set

R̂ := {(α(c),c) | c ∈ ∇R} (7)

of 2n elements of Z×Rn and thus as a finite subset of Z×Rn. Let us denote, as usual, by
P (X) the set of all subsets of any set X , and by Pf(X) the set of all finite such subsets. Then
it is the element R̂ ∈ Pf(Z×Rn) which (together with F) determines the expression that forms
the right-hand side of equation (3). This expression can easily be generalized: for any Γ ∈
Pf(Z×Rn) and any real-valued function F on Rn we define the real number Γ(F) by

Γ(F) := ∑
p∈Γ

p1F(p2) . (8)

This gives equation (3) the concise formZ
R

f (x1 , . . . , xn)dx1 . . . dxn =
Z

R

∂

∂x1
· · · ∂

∂xn
F(x1 , . . . , xn)dx1 . . . dxn = R̂(F) . (9)

It will turn out convenient to have a name for elements of Pf(Z×Rn): Let us call any such
element a corner complex. If the corner complex results from a single rectangle R, and thus is
of the form R̂, we call it a simple corner complex. Figure 1 shows three simple corner complexes
for n = 2. Actually, only the points together with the accompanying numbers constitute the
corner complex. The connecting lines symbolize the corresponding rectangle. A non-simple
corner complex with 15 corners appears in Figure 2.

3 This means that no intersection of such rectangles contains a non-void open set.
4 This means that they all have the same dimension n and are axis-parallel to each other.
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A natural question to ask is whether for all Γ1,Γ2 ∈ Pf(Z×Rn) there is a Γ3 ∈ Pf(Z×Rn)
such that for every real-valued function F on Rn we have

Γ3(F) = Γ1(F)+Γ2(F) . (10)

The answer is yes and we can define an operation

] : Pf(Z×Rn)×Pf(Z×Rn) → Pf(Z×Rn)

such that such a Γ3 is given as Γ1 ]Γ2. The definition of this operation suggests itself: First
we define an equivalence relation on Pf(Z×Rn) by

(w,x)∼= (w′,x′) iff x = x′ . (11)

To define Γ1]Γ2 we first form Γ1∪Γ2 ∈ Pf(Z×Rn). With respect to the relation ∼= this set falls
into equivalence classes. To each equivalence class we define a single element (s,x) ∈ Z×Rn

where x is the second component of any member of the class (all these members have the
same second component by definition of ∼=) and s is the sum over all first components of
elements in the class. From the set of all the elements (s,x) obtained in this way we eliminate
the elements for which s = 0. The remaining elements constitute Γ1]Γ2 by definition. Since
the operation combines forming set unions and adding numbers, the symbol ] really fits. A
typical situation leading to elimination of corners is symbolized in Figure 1.

Let (R1, . . . ,Rm) be a finite list of non-overlapping compatible rectangles and let (Γ1, . . . ,Γm)
be the list of the corresponding simple corner complexes. Then the corner complex

Γ := Γ1] . . . ]Γm (12)

has the property that Γ(F) equals the value of the integral of ∂

∂x1
· · · ∂

∂xn
F over the domain

D := R1∪ . . . ∪Rm . (13)

Let us re-state this as an equation:Z
R1∪ ...∪Rm

f (x1 , . . . , xn)dx1 . . . dxn = (R̂1] . . . ] R̂m)(F) (14)

for all R1, . . . ,Rm as introduced above and for any antiderivative F of f . This is a direct gener-
alization of (9). It is remarkable from a conceptual viewpoint and also from a computational
one. Several remarks are in order. Some of them are to substantiate this claim.

1. The operation ‘]’ does not assume that the corner complexes are generated by starting
from axis-parallel rectangles. If we would rotate one such rectangle a bit out of its initially
fitting direction and leave the weights unchanged, we should not expect (14) to hold. A
corresponding phenomenon can already be observed with a single rectangle and (3). If no
assumption concerning overlap is made, the equation remains valid in a natural sense: an
area belonging to more than one rectangle delivers more than one contributions to the inte-
gral. If the function f had an interpretation as a mass density attributed to the rectangles, this
behavior would correspond to a kind of matter which allows the rectangles to penetrate each
other without disturbance, so that the overlap of two rectangles has twice the matter density
than a single rectangle.

2. It is essential that the operation ‘]’ is defined for general corner complexes and not only
for simple ones. Already R̂1] R̂2 may no longer be simple and nevertheless we need to form
(R̂1] R̂2)] R̂3.
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3. The successive ‘addition’ of simple corner complexes is very simple to program. For each
corner of the new rectangle R we have to see whether it is already present in the complex to
which we have to ‘add’ R. If not, we add the corner together with the weight which it has
in R. If it is already there, then it already has a weight, and we only have to add to this the
weight coming from R.

4. It is instructive to compare this approach with the one which seems most natural at a
first glance, and that seems to be the only one used so far in the literature: One considers the
list (R1, . . . ,Rm) as the input to an algorithm which outputs the set of corners together with
their proper weights. See Figure 1 in [2] where the occurrence of weights ∈ {−2,−1,1,2} is
classified in terms of geometrical aspects of the corner. In [3] the weight factors are expressed
as limits which play a natural role in an extended calculus developed there. I know of no
attempt to treat the case n > 2 that way.

5. In the present treatment, the corners and the weights are in the game from the very
beginning and they have only to be updated with each new rectangle to join the integration
domain. This is one example more for the often-made observation that a good match between
data types (here corner complexes) and algorithms (here ]) is the key to clear and efficient
programs.

6. If the union of rectangles R1, . . . ,Rm forms a compact body with a well-defined surface,
all corners belong to this surface so that the right-hand side of equation (14) is a linear com-
bination of function values which F takes on the surface. Therefore it is interesting to see
that also the general Stokes formula gives such a representation: Let us define the alternating
(n−1)-form

ω :=
1
n

n

∑
i=1

(−1)i−1
n

∏
j=1, j 6=i

∂

∂x j
F

n̂

j=1, j 6=i

dx j (15)

then we have

dω =
(

∂

∂x1
. . .

∂

∂xn
F

)
dx1∧ . . .∧ dxn . (16)

Then Stokes’ theorem says for suitable subsets Ω ⊂ Rn with surface ∂ΩZ
Ω

f (x1 , . . . , xn)dx1 . . . dxn =
Z

Ω

dω =
Z

∂Ω

ω . (17)

One easily shows that
R

∂R ω and R̂(F) coincide for any rectangle R and it is very plausible that
also Z

∂(R1∪ ...∪Rm)
ω = (R̂1] . . . ] R̂m)(F)

for Ri as in (14). An interesting special case is the representation of the volume in terms of a
surface integral:

f (x1 , . . . , xn) := 1

F(x1 , . . . , xn) = x1 . . .xn

ω =
1
n

n

∑
i=1

(−1)i−1xi

n̂

j=1, j 6=i

dx jZ
Ω

dx1 . . . dxn =
Z

∂Ω

ω .

(18)
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3 Closed formulas for the electrostatic potential of rectangular
sources

The electrostatic potential of distributed charges will be computed by means of antideriva-
tives of the Coulomb potential 1/r and equation (3). In equation (18) the antiderivative of the
constant {1}-valued function is given for any value of n. The antiderivative of the Coulomb
potential is much more complicated and results for general n seem to be beyond reach. Here
is all we need for the intended electrostatic application:

The following three real-valued functions on R3

Φ1(x,y,z) := log(x+ r) , where r :=
√

x2 + y2 + z2 ,

Φ2(x,y,z) := x log(y+ r)+ y log(x+ r)− zarctan
xy
zr

,

Φ3(x,y,z) := yz log(x+ r)+ zx log(y+ r)+ xy log(z+ r)

− x2

2
arctan

yz
xr
− y2

2
arctan

zx
yr
− z2

2
arctan

xy
zr

(19)

are antiderivatives of 1/r with respect to as many variables as their index says. Precisely

∂

∂x
Φ1(x,y,z) =

∂

∂x
∂

∂y
Φ2(x,y,z) =

∂

∂x
∂

∂y
∂

∂z
Φ3(x,y,z) =

1√
x2 + y2 + z2

. (20)

The validity of (20) can easily be verified using e. g. Mathematica. Finding the expression
Φ3 from the primary output of Mathematica 7 required much non-trivial manual interference,
just as finding the expression Φ2 required such interference when using Mathematica 3.0 (see
[1]). Since r is a symmetric function of its three variables it is a natural requirement that
Φ2 should be symmetric with respect to an interchange of x and y and that Φ3 should be
symmetric with respect to any permutation of the variables. The expressions given in (19)
satisfy these conditions. Achieving this involved some trial and error. I’m confident that the
antiderivatives given here are the most simple ones possible.

Let us now describe in detail how the formulas (19) can be used to compute the electrostatic
potential of a charge distribution 5. Although our motivation was about areal charges (surface
charges) we will now use volume charges as a pattern for the general case (linear charges,
areal charges, spatial charges). We are interested in the integral

ϕ(p) =
Z

G

ρ(q)
|p−q|

d3q . (21)

Let us assume that the charge density ρ is constant in the domain G. Then the integral of
interest is Z

G

1
|p−q|

d3q =:
Z

G
K(p,q)d3q . (22)

Considering p as fixed during the q-integration, we see that the task is to integrate the func-
tion fp : q 7→ K(p,q) over domain G. From our previous discussion it is natural to look for an
antiderivative of fp i. e. for a function Fp which satisfies

∂

∂q1

∂

∂q2

∂

∂q3
Fp(q) = fp(q) = K(p,q) =

1
|p−q|

. (23)

5 Here we deal with numbers and not with physical quantities. As a physical application we could also speak
of the gravitational potential of a mass distribution.
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To find a solution to this equation it helps to make a substitution q− p =: s. Since p is constant
in the process, we have ∂

∂qi
= ∂

∂si
and thus

∂

∂s1

∂

∂s2

∂

∂s3
Fp(p+ s) =

1
|s|

. (24)

Writing s =: (x,y,z) and p =: (x̂, ŷ, ẑ) this says

∂

∂x
∂

∂y
∂

∂z
F(x̂,ŷ,ẑ)(x̂+ x, ŷ+ y, ẑ+ z) =

1√
x2 + y2 + z2

. (25)

According to (19) one solution is

F(x̂,ŷ,ẑ)(x̂+ x, ŷ+ y, ẑ+ z) = Φ3(x,y,z) (26)

or
F(x̂,ŷ,ẑ)(x,y,z) = Φ3(x− x̂,y− ŷ,z− ẑ) . (27)

This allows us to give an exact representation of the integral (22) for the special case that G is
a cuboid and, hence, ∇G the set of its 8 corners. Equations (25), (3), (27) say

ϕG(x̂, ŷ, ẑ) :=
Z

G

dxdydz√
(x̂− x)2 +(ŷ− y)2 +(ẑ− z)2

= ∑
x∈∇G

αG(x) F(x̂,ŷ,ẑ)(x,y,z)

= ∑
x∈∇G

αG(x) Φ3(x− x̂,y− ŷ,z− ẑ)

(28)

and thus gives the electrostatic potential of a uniformly charged cuboid as a rather manage-
able explicit expression. This is even more true for charge distributions of lower dimension-
ality for which the corresponding expressions are as follows:

For a rectangular patch R (located in the plane z = 0) of uniform surface charge we have

ϕR(x̂, ŷ, ẑ) :=
Z

R

dxdy√
(x̂− x)2 +(ŷ− y)2 + ẑ2

= ∑
x∈∇R

αR(x) Φ2(x− x̂,y− ŷ,−ẑ) .
(29)

Obviously |∇R|= 4.
For a linear piece I (located on the x-axis and thus in the planes z = 0 and y = 0) we have

ϕI(x̂, ŷ, ẑ) :=
Z

I

dx√
(x̂− x)2 + ŷ2 + ẑ2

= ∑
x∈∇I

αI(x) Φ1(x− x̂,−ŷ,−ẑ) .
(30)

Of course, in this case I is an interval and the corners are the end-points of this interval,
|∇I|= 2.
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Figure 1: Merging two simple corner complexes

4 Building sources of complex shape from rectangular sources

Computing the electric fields emanating from areal charge patterns on the photo-conductor of
an electrophotographic copier was the task from which the present investigation originated.
For studying electrophotographic image development (see the introduction of [5],[6] for a
short explanation of this) by means of computational models it is desirable to deal with more
complex charge patterns than just a single rectangle. Although the underlying industrial
project was discontinued before this point became vital, the present work is still inspired by
the old problem field. So we will choose a letter (actually the letter F) as a concrete example
of a charge distribution. See Figure 2 for the definition of the shape of this model letter. This
shape is a bit contrived in that the upper mostly horizontal branch comes finally down to
touch the short horizontal branch in just one point. This creates a special situation (expressed
by the number 2 assigned to the merging point) which we would not see in a regular letter.
As given by the figure, we have an areal charge distribution (2D, in short). Since we aim at
treating a spatial example too (3D, in short), we let the charge distribution optionally have a
constant vertical extension. With respect to the system of coordinates which is indicated in
Figure 2 the 3D charge distribution is confined to the slice −u/2 ≤ z < u/2, whereas the 2D
charge distribution is confined to the plane z = 0. The height of the letter is 6u. As is clear
from the auxiliary thin lines, the areal shape is a non-overlapping union of the generating
square −u/2 ≤ x,y ≤ u/2 and 13 shifted copies of it.

Of course, we can consider the potential of the letter as the linear superposition of these
14 patches. This would be computationally waste-full (although trivial to program). A more
economical method is the one described in Section 2, culminating in equation (14). It was
carried out numerically and the next section describes and shows some results.
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Figure 2: Corner complex of the F-shaped source
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5 Numerical computation of areal potential distributions

Figures 3, 4, and 5 were created with a small C++ program which constructs instances of
classes MultiPatchCharge and MultiVolCharge and calls a few member functions of it. Details
can be seen from the first code section in the Appendix. The inner workings of these classes
can be seen from the files cpmforcesx.h and cpmforcescpp.h (don’t care about the weird file
names, there are reasons) for which both listings and compilable code can be freely down-
loaded from [7]. The most important part of the inner working is the algorithm for the oper-
ation ‘]’. It forms the definition of an auxiliary member function ini () which is called in the
constructor code of its class. The code of function ini () is also given in the Appendix, in the
last code section.

The images show the potential always on a planar cross section through the field-filled
space. For the images not marked as ‘rotated 90 degrees’ this image plane is given by z = 0,
otherwise it is the plane x = 1 (the program sets u = 1 in Figure 2). The antiderivative of
1/r is regularized at the origin in such a manner that it causes no adverse effects when the
imaged plane runs straight through the charge distribution. The value range of the potential
is transformed into a range of color hues according to ‘photon energy coding’: violet indicates
the highest values and red the lowest ones, in between are the colors in spectral order. To
improve our ability to compare levels there is also a very distinct brightness modulation that
creates dark ‘Fraunhofer lines’ which connect points of approximately the same potential.

Figure 5 with mirror charges shows the potential distribution as it holds for the electrostatic
image in a copier. Here we have a conducting layer in the photo-conductor loop the influence
of which can be modeled by introducing a charge inverted system at the mirrored positions
with respect to the conducting layer. Fortunately we obtain the corner complex of this system
simply by shifting the corners of the original system. Actually classes MultiPatchCharge
and MultiVolCharge are defined such that each instance has its own ‘personal’ system of
reference which controls all interactions of the objects with the out-side world. Therefore, all
geometric transformations (including rotations!) can be implemented by only transforming
this personal system of reference.

Computing the potential at 700× 800 points (one point per image pixel, no interpolation)
and storing the pixel data in RAM took 1.9 s on an off the shelf 2.4 GHz laptop computer.
This says that one pixel consumes 8100 processor cycles.
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(a) 2D (b) 3D

Figure 3: Potential distributions of a F-shaped source

(a) 2D (b) 3D

Figure 4: Potential distributions of a F-shaped source rotated 90 degrees
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(a) normal view (b) rotated 90 degrees

Figure 5: Potential distributions of a F-shaped source including mirror charges
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6 Appendix

This is the code that created the figures 3, 4, 5. Input is expected from file temptest.ini to be
shown subsequently. The classes (or types) occurring in the code are: Frame: graphical win-
dow, Camera: universal visualization tool (also stereo), Word: character string, SysControl:
general control parameters, R: real numbers, RefSys: reference system in space, Vec: geo-
metrical vector, Iv: interval, R2: pairs of real numbers, R3: triplets of real numbers, V: vector
template, ScalarField: scalar field, MultiPatchCharge: corner complexes which result
from a single 2D rectangle and a family of translation vectors to build complex shapes in a
plane. MultiVolCharge: corner complexes which result from a single 3D rectangle and a
family of translation vectors to build complex shapes in space. These last two classes were
added to the CPM files cpmforcesx.h and cpmforcescpp.h for the purpose of the present in-
vestigation. All the other classes belong to the CPM file system [7] (free download) since
years.

#define CPM_SC\
vr[1]=e2;\
vr[2]=vr[1]+e2;\
vr[3]=vr[2]+e2;\
vr[4]=vr[3]+e1;\
vr[5]=vr[3]+e2;\
vr[6]=vr[5]+e2;\
vr[7]=vr[6]+e1;\
vr[8]=vr[7]+e1;\
vr[9]=vr[8]+e1;\
vr[10]=vr[9]-e2;\
vr[11]=vr[4]+e1;\
vr[12]=vr[1]-e2+e1;\
vr[13]=vr[1]-e2-e1;

// this is the definition of the ’F’, uses the shared code macro
// for avoiding code duplication

void CpmTests::TempTestAppl::doTheWork()
{

cpmmessage("TempTestAppl::doTheWork() started");
Frame fr;
Word sec("cameracontrol");
Camera ca(rch,sec,fr); // rch is an instance of class RecordHandler

// which holds all data contained in file temptest.ini
ca.clr();
sec="syscontrol";
SysControl::read(rch,sec);
sec="data";
R tWait=10, dz=0;
bool areal=true;
cpmrh(tWait); // ’read handler’ general input macro
cpmrh(areal);
cpmrh(dz);
RefSys rs; // Euclidean reference system in 3-space
Vec shift(V<R>("",0,0,dz));
R sigma=1./CpmPhysics::influence_PHYS; // Then ePot gets multiplied by

// influence_PHYS. So the value of this physical constant cancels
// out, as intended here.

R r=1e-4;
Iv iv1(-0.5,0.5);
Iv iv2=iv1;
R s1=iv1.abs();
R s2=iv2.abs();
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if (areal){
R2 e1(s1,0);
R2 e2(0,s2);
V<R2> vr(13);
CPM_SC
MultiPatchCharge mpc(iv1, iv2, rs, sigma,r,vr);
ScalarField pot=mpc.fieldU();
if (dz!=0){ // then add mirror charges

MultiPatchCharge mpc2(mpc); // cheap duplication
mpc2.invChr_(); // invert charge
mpc2+=shift; // move the mirror charges to a parallel plane
pot+=mpc2.fieldU(); // scalar fields may be added

}
pot.mark(ca);

}else{
Iv iv3=iv1;
R s3=iv3.abs();
R3 e1(s1,0,0);
R3 e2(0,s2,0);
R3 e3(0,0,s3);
V<R3> vr(13);
CPM_SC
MultiVolCharge mpc(iv1, iv2, iv3,rs, sigma,r,vr);
ScalarField pot=mpc.fieldU();
if (dz!=0){ // then add mirror charges

MultiVolCharge mpc2(mpc); // cheap duplication
mpc2.invChr_();
mpc2+=shift;
pot+=mpc2.fieldU();

}
pot.mark(ca); // creates the image data

}
ca.display(true); // creates image file in ppm format
cpmwait(tWait,3); // gives time to inspect the image on screen
cpmmessage("TempTestAppl::doTheWork() done");

}
#undef CPM_SC

This is the file with the control data which determine the actual computation. Notice that
input is associates with a type (one of B, Z, R, W, Bs, Zs, Rs, Ws), a name (e.g. tWait) and a
section (e.g. data).

// temptest.ini
about
//------------------------------------------------------------------------

W file=temptest.ini
Ws line1=Testing class MultiPatchCharge
Ws line2=and class MultiVolCharge

selection
//------------------------------------------------------------------------
Z sel=1

// selection; if not zero, a documentation file will be created

Z cpmverbose=1
// controls the degree of detail with which program run
// information will be written to log file cpmcerr.txt

Z cpmdbg=2
// 0: asserts ignored, 1: failing asserts warn, 2: failing asserts stop
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W runName=100725b
// run identifier; gets appended to documentation and result files

Z mode=-1
// not needed, no influence as long as negative

.....

data
//----------------------------------------------------------------------
R tWait=12
B areal=true
R dz=0.2

// if this is not 0 there are mirrorcharges at that distance

cameracontrol
//------------------------------------------------------------------------

R aspectRatio=0.875
R fieldOfViewCenterX=1.0
R fieldOfViewCenterY=2.5
R fieldOfViewCenterZ=0.0
R fieldOfViewHeight=8
R panDeg=90

// 0 and 90
R rollDeg=0.0
R shiftX=0.0
R shiftY=0.0
R tiltDeg=0
R viewingAngleDegree=30
Z yPixel=800

// here equal to nyScalarFields, thus no interpolation
Z responseMode=6
R responseGamma=-1

syscontrol
//------------------------------------------------------------------------

Z nyScalarFields=800
// number of points in y-direction in which
// scalar fields are sampled for visualization

Coding the algorithm which defines operation ‘]’

////////////// class MultiPatchCharge ////////////////////////////////////

void MultiPatchCharge::ini_(void)
{

S<R2> sr; // set of R2
M<R2,Z> mrz; // map with keys of type R2 and values of type Z
Z i; // Z integer numbers
R2 c1(xr_[1],yr_[1]); // xr_: x-range of reference patch
R2 c2(xr_[1],yr_[2]); // yr_: y-range of reference patch
R2 c3(xr_[2],yr_[1]); // names of data members end in ’_’
R2 c4(xr_[2],yr_[2]);
sr.add(c1); sr.add(c2); sr.add(c3); sr.add(c4);
R2 cc1=c1, cc2=c2, cc3=c3, cc4=c4;
Z z1=1, z2=-1, z3=-1, z4=1;
mrz[cc1]=z1;
mrz[cc2]=z2;
mrz[cc3]=z3;
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mrz[cc4]=z4;

bool bi;
for (i=v_.b();i<=v_.e();++i){ // v_ is an array of translation vectors

R2 vi=v_[i];
cc1=c1+vi;
cc2=c2+vi;
cc3=c3+vi;
cc4=c4+vi;
bi=sr.addAct(cc1); // returns true if cc1 is not yet in sr
if (bi) mrz[cc1]=z1; else mrz[cc1]+=z1;
bi=sr.addAct(cc2);
if (bi) mrz[cc2]=z2; else mrz[cc2]+=z2;
bi=sr.addAct(cc3);
if (bi) mrz[cc3]=z3; else mrz[cc3]+=z3;
bi=sr.addAct(cc4);
if (bi) mrz[cc4]=z4; else mrz[cc4]+=z4;

}
for (i=mrz.b();i<=mrz.e();++i){ // purging corners with weight 0

R2 ci=mrz.x(i);
Z zi=mrz.y(i);
if (zi!=0){

sx_.add(X2<R2,Z>(ci,zi));
}

}
}
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