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Abstract. The concept of weak stability boundary has been successfully used in the design of
several fuel efficient space missions. In this paper we give a rigorous definition of the weak stability
boundary in the context of the planar circular restricted three-body problem, and we provide a
geometric argument for the fact that, for some energy range, the points in the weak stability boundary
of the small primary are the points with zero radial velocity that lie on the stable manifolds of the
Lyapunov orbits about the libration points L1 and L2, provided that these manifolds satisfy some
topological conditions. The geometric method is based on the property of the invariant manifolds
of Lyapunov orbits being separatrices of the energy manifold. We support our geometric argument
with numerical experiments.
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1. Introduction. The notion of weak stability boundary (WSB) was first intro-
duced heuristically by Belbruno in 1987 for designing fuel efficient space missions and
was proven to be useful in applications [2, 3, 4, 12, 13, 6, 45, 33, 14, 35, 22, 7, 39, 38, 44].
The WSB can be used to construct low energy transfers to the Moon, requiring little
or no fuel for capture into lunar orbit. The first application for an operational space-
craft occurred in 1991 with the rescue of the Japanese mission Hiten. WSB was also
applied in ESA’s spacecraft SMART-1 in 2004 (see [40]). The WSB technique will be
applied again in ESA’s mission BepiColombo to explore planet Mercury in 2013 (see
[25]), and in some upcoming NASA missions.

A different methodology of designing fuel efficient trajectories, based on hyper-
bolic invariant manifolds, was proposed in [1, 26, 28, 29, 30, 31], and was successfully
applied in several space missions (see also [18, 19, 20, 21]). In some of these works
it has been suggested that the hyperbolic invariant manifold method can be used to
explain the trajectories obtained through the WSB method. Supporting this asser-
tion, Garćıa and Gómez present in [22] numerical explorations that suggests that, for
some range of energies, the WSB is contained in the closure of the union of the stable
manifolds of the periodic orbits about two of the equilibrium points of the planar
circular restricted three-body problem.

In this paper we use the separatrix property of the invariant manifolds of the
periodic orbits about the equilibrium points to argue that, under some conditions,
the points on the stable manifolds are WSB points. We support our geometrical
argument with numerical experiments. Our result, corroborated with the result in
[22], demonstrates, by double inclusion, that, for some range of energies, the WSB
coincides with the set of points on the stable manifolds with zero radial velocity and
negative Kepler energy relative to the small primary.

In Section 2 we give some background on the planar circular restricted three-body
problem. In Section 3 we define the WSB as follows: in the context of the planar
circular restricted three-body problem, for each radial segment emanating from the
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small primary, we consider trajectories that leave that segment at the periapsis of an
osculating ellipse whose semi-major axis is a part of the radial segment; a trajectory
is called n-stable if it makes n full turns around the small primary without going
about the large primary and it has negative Kepler energy when it returns to the
radial segment; otherwise the trajectory is called n-unstable; the points that make
the transition from the n-stable regime to the n-unstable one are by definition the
points of the WSB of index n. We make precise what means a full turn about a primary
through the measurement of the net change in the angle swept by the position vector.
We also require that the n intersections of the trajectory with the radial line are
transverse. In this way, the n-stability condition is an open condition and the set of
the n-stable points on the radial segment is a countable union of open intervals. Thus,
the WSB consists in the union of endpoints of such intervals, resembling a Cantor set
(in agreement with [22]). In Section 4 we give a numerical and geometric argument
for the fact that the points on the stable manifolds of the periodic orbits around the
libration points L1 and L2, with the property that they have zero radial velocity and
negative Kepler energy relative to the small primary, are contained in the WSB, for
some range of energies. The key idea for our argument is the separatrix property of
these invariant manifolds, meaning that these manifolds separate two types of motions:
transfer orbits between the primaries, and non-transfer orbits. Section 5 exposes the
main conclusions of this paper: the WSB theory overlaps with the invariant manifold

theory for a significant range of energies.

It is important to note that the WSB is not an invariant object for the dynamics.
It is therefore somewhat surprising that the WSB is related to hyperbolic invariant
manifolds. The remarkable feature of the weak stability boundary is that the local
behavior near the small primary and hence far from the equilibrium points is sufficient
to assess whether the trajectory lies on the stable manifold of a periodic orbit near
an equilibrium point.

We remark that the definition of the WSB does not rely on the existence of the
hyperbolic invariant manifolds. That is, one can still define and apply the properties of
the WSB in models where the hyperbolic invariant manifolds are no longer well defined
or they are not separatrices. Some examples include the elliptic restricted three-body
problem and the bicircular restricted four body problem, for which WSB sets were
computed in [38]. These problems are described by non-autonomous Hamiltonian
systems where the notions of stable and unstable manifolds are not well-defined in
the phase space1. It seems possible that the WSB may turn out to provide a good
substitute for the hyperbolic invariant manifolds in such models (see [23]).

2. Background.

2.1. Planar Circular Restricted Three-Body Problem. The model that
we use to describe the motion of an infinitesimal particle relative to the Earth–Moon
system is the planar circular restricted three-body problem (PCRTBP). In this model,
relative to an inertial frame, two primary bodies P1, P2 of masses m1 > m2 > 0,
respectively, move under mutual gravity on circular orbits about their common center
of mass. The third body P3, assumed of infinitesimal mass, moves under the gravity of

1One can transform a non-autonomous Hamiltonian system into autonomous one by adding an
extra variable symplectically conjugated with time. Then one can compute invariant manifolds for
the extended system. However, these invariant manifolds contain a dependency on time, so they do
not separate transfer orbits from non-transfer orbits. If one considers a time-discretization of the
system by a Poincaré map, one obtains time-independent invariant manifolds, but these manifolds
again do not separate transfer orbits from non-transfer orbits.
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the primaries in the same plane as them. The motion of the primaries is not affected
by the motion of the infinitesimal mass. In our case, P3 represents a spacecraft, and
P1, P2 represent the Earth and the Moon, respectively. Let the mass ratio of the
small body vs. total mass be µ = m2/(m1 + m2). In the following we will consider
µ = 0.0121506683.

The motion of the infinitesimal mass, relative to a co-rotating coordinate system
(x, y) with the origin at the center of mass of the two bodies, and in normalized units
of distance, mass and time, is described by the following equations (following [43]):

ẍ − 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
, (2.1)

where the effective potential Ω is given by

Ω(x, y) =
1

2
(x2 + y2) +

1 − µ

r1
+

µ

r2
+

1

2
µ(1 − µ), (2.2)

with r1 = ((x + µ)2 + y2)1/2, r2 = ((x + µ − 1)2 + y2)1/2 as P1, P2 are located at
(−µ, 0), (1 − µ, 0), respectively.

The problem has the following symmetry

(x, y, ẋ, ẏ, t) −→ (x,−y,−ẋ, ẏ,−t), (2.3)

meaning that each solution of (2.1) is either symmetric or has a symmetric counter-
part.

The motion described by (2.1) has five equilibrium points Lk, k = 1, 2, ..., 5, known
as the Euler–Lagrange libration points. Three of these, L1, L2, L3, lie along the x-
axis, at the approximate coordinates x1 = 0.8369147188, x2 = 1.1556824834, x3 =
−1.0050626802, respectively. In our notation L1 lies between the Earth and Moon,
and L2 lies outside the Moon. The other two points, L4, L5, lie at the vertices of two
equilateral triangles with common base extending from P1 to P2.

The system of differential equations (2.1) admits an integral of motion, the Jacobi
integral,

J(x, y, ẋ, ẏ) = 2Ω(x, y) − (ẋ2 + ẏ2). (2.4)

The projection of an energy manifold

J (C) = {(x, y, ẋ, ẏ) ∈ R
4|J(x, y, ẋ, ẏ) = C}, (2.5)

onto the configuration space (x, y) is called a Hill’s region. The motion of P3 is always
confined to the Hill’s region of the corresponding Jacobi energy C. The boundary
of a Hill’s region is a zero-velocity curve. The Hill regions vary with the Jacobi
energy C (see [43]). The Jacobi constants corresponding to the libration points are
C1 ≈ 3.2003449098, C2 ≈ 3.1841641431, C3 ≈ 3.0241502628, and C4 = C5 = 3.

2.2. Equations of motion in polar coordinates. The equations of motion
(2.1) can be written in polar coordinates (r, θ) relative to P2, where r is the dis-
tance from P2 to P3 and θ is the angle between the axis P1P2 and P2P3 measured
counterclockwise. See [44].

If the motion of P3 starts at the periapsis (ṙ = 0) of an osculating ellipse around
the Moon of semi-major axis a and eccentricity e ∈ [0, 1), and has initial velocity v
with respect to the sidereal reference frame, then we have

r = a(1 − e), v =

√

(1 + e)µ

r
. (2.6)
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The Jacobi integral of the motion takes the form (ṙ = 0):

J(r, v, θ) =(1 − µ)

[

1 + 2r cos θ +
2√

r2 + 2r cos θ + 1

]

+
2µ

r
+ 2vr − v2, or

J(r, e, θ) =(1 − µ)

[

1 + 2r cos θ +
2√

r2 + 2r cos θ + 1

]

+
2µ

r

+ 2

√

(1 + e)µ

r
r − (1 + e)µ

r
.

(2.7)

In the definition of the WSB, we will need to refer to the Kepler energy H2 of P3

with respect to the the primary P2. This is given by

H2 =
1

2
v2 − µ

r
. (2.8)

From (2.6) it follows

H2 =
(e − 1)µ

2r
. (2.9)

2.3. Invariant Manifolds of Lyapunov Orbits. The collinear libration points
Li, i ∈ {1, 2, 3}, are of center-saddle type. For some range of energies C, there
exists a one-parameter family of periodic orbits {γi(C)}C , also called Lyapunov orbits,
emanating from the libration point Li. As the energy C is decreased, the Lyapunov
family of Li approach the closest primary and collision occurs. When the energy
is further decreased, the Lyapunov family continues to periodic orbits around the
closest primary; such orbits can describe multiple loops about the primary, which can
eventually shrink or coalesce into one loop. See [43, 8, 16].

For fixed C in some appropriate energy range, each periodic orbit γi possesses sta-
ble and unstable manifolds W s(γi) and Wu(γi). For some values of C, the manifolds
experience collisions and close encounters with the primaries. To avoid ill condition-
ing and increase of errors during numerical integration the equations of motion have
been regularized, using Levi-Civita regularization [43], when the motion of the small
particle is inside a disc of radius 10−2 around either primary.

The stable and unstable manifolds are 2-dimensional manifolds locally diffeomor-
phic to cylinders in the 3-dimensional energy manifold, and they are separatrices
of the dynamics restricted to the energy manifold (see [15]). This means that, for
C . C2, the trajectories starting inside the stable cylinder make a transfer from one
lobe of the Hill’s region to the other lobe or to the exterior region in forward time,
while the trajectories starting inside the unstable cylinder make a transfer from one
lobe of the Hill’s region to the other lobe or to the exterior region in backwards time.
See Fig. 2.1.

2.4. Poincaré sections. We consider the cuts made by the stable and unstable
manifolds of the Lyapunov orbits about L1 and L2 for a fixed Jacobi energy C, with
a varying Poincaré section through P2. Let

Sθ0
= {(r, ṙ, θ, θ̇) | θ = θ0, θ̇ > 0},

be the Poincaré section through P2 which makes an angle θ0 with P1P2. The coordi-
nates (r, ṙ) of a point in Sθ0

determines a unique trajectory through that point: the
θ-coordinate equals θ0 in this section, and the θ̇-coordinate can be solved uniquely
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Fig. 2.1. Zero velocity curves, Lyapunov orbit γ1, and two branches of the stable and unstable
manifolds, W s(γ1) and W u(γ1), for C = 3.19.

from the energy condition J(r, ṙ, θ, θ̇) = C, provided θ̇ > 0. Thus, each section Sθ0
is

plotted as an (r, ṙ)-coordinate plane. The Poincaré first return map to Sθ0
is denoted

by Φθ0
.

We are interested in the successive cuts made by the invariant manifolds of γi,
i = 1, 2, with Sθ0

, where γi is the Lyapunov orbit about Li for a fixed energy level
C. We label the cuts in a way that the label of each cut matches with the number
of complete turns about P2 made by a trajectory starting from that cut until it
approaches γi (in positive or negative time). We denote by W s

θ0,j(γi) the cut made by
the stable manifold W s(γi) with Sθ0

with the property that all the points in this cut
make j-complete turns about P2 before approaching γi in forward time. Similarly,
we denote by Wu

θ0,j(γi) the cut made by the unstable manifold Wu(γi) with Sθ0
with

the property that all the points in this cut make j-complete turns about P2 before
approaching γi in backwards time. This labels can be assigned inductively in the
manner described below.

Consider the branch of W s(γ1) in the P2-region, and a varying Poincaré section
Sθ0

rotating clockwise about P2. Assume that W s(γ1) does not collide with P2 and
turns around P2. Let −θ1 and θ1 be the angles made by the tangent lines from
P2 to the Lyapunov orbit γ1. For −θ1 < θ0 < θ1, the first cut between W s(γ1)
with Sθ0

is not well defined, as the trajectories on the stable manifold approach
asymptotically γ1 and intersect Sθ0

infinitely many times. If we rotate clockwise Sθ0

to an angle θ1 < θ0 < 2π − θ1, the first cut between W s(γ1) with Sθ0
is well defined,

but the trajectories starting from this first cut make less than 1-turn about P2 before
approaching γ1. For these values of θ0, we denote the first cut made by W s(γ1) with
Sθ0

by W s
θ0,0(γ1). The angle θ(t) swept by a trajectory starting from W s

θ0,0(γ1) until
it approaches asymptotically γ1 is less than 2π, that is, such a trajectory completes
0-turns about P2. When we rotate clockwise Sθ0

to an angle 2π − θ1 < θ0 < 2π + θ1,
the first cut of W s(γ1) with Sθ0

is still well defined if we restrict the trajectories off
some convenient neighborhood of γ1. The angle θ(t) swept by a trajectory starting
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0
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angles are measured clockwise starting from P2P1.

from this first cut until it approaches asymptotically γ1 is a little more than 2π, thus
such a trajectory completes 1-turn about P2, and the cut is labeled by W s

θ0,1(γ1).
If we rotate clockwise Sθ0

to an angle 2π + θ1 < θ0 < 4π − θ1, the second cut
of W s(γ1) with Sθ0

consists of points that still make 1-turns about P2 until they
approach γ1, so such a cut is denoted by W s

θ0,1(γ1). For 4π − θ1 < θ0 < 6π − θ1 a
similar argument yields a cut with the property that the trajectories emerging from
this cut completes 2-turns about P2 until it approaches γ1, so such a cut is denoted
by W s

θ0,2(γ1). Inductively, this procedure produces a labeling W s
θ0,j(γ1) for the cuts

of W s(γ1) with Sθ0
with 2jπ−θ1 < θ0 < 2(j+1)π−θ1, where j ≥ 0. The trajectories

staring from W s
θ0,j(γ1) complete j-turns about P2 until they approach γ1 in forward

time. In a similar manner, one can produce a labeling Wu
θ0,j(γ1) of the cuts of Wu(γ1)

with Sθ0
, such that the trajectories staring from Wu

θ0,j(γ1) make j-turns about P2 until
they approach γ1 in backwards time. See Fig. 2.2.

A similar procedure can be applied to label the cuts made by W s(γ2) and Wu(γ2)
with a varying Poincaré section Sθ0

by W s
θ0,j(γ2) and Wu

θ0,j(γ2), respectively, such that
the label j equals the number of complete turns made by the infinitesimal mass about
P2 until it approaches γ2 (in positive or negative time). The threshold values of the
angle θ at which the number of complete turns about P2 changes from (j − 1) to j
are the values 2jπ + θ2, j ≥ 1, where −θ2 and θ2 represent the angles made by the
tangent lines from P2 to the Lyapunov orbit γ2.

The successive cuts made by the invariant manifolds W s,u(γi) with the Poincaré
sections are topological circles in Sθ0

up to some number of turns about the primary.
When the first transverse intersection of Wu(γi1 ) with W s(γi2 ) occurs, where i1, i2 ∈
{1, 2}, some number of turns afterwards the topological circles are destroyed (see [24]).
For example, if W s

θ0,j(γi) intersects transversally Wu
θ0,k(γi) at some point P , then the

k-th negative iterate of W s
θ0,j(γi) under Φθ0

, which is W s
θ0,j+k(γi), is no longer a

topological circle, but a finite union of curves open at both ends, whose ends wrap
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around W s
θ0,j(γi) infinitely many times. See Fig 2.3. Also, by the Smale’s Homoclinic

Orbit Theorem, the iterate Φ−k
θ0

of Φθ0
has a hyperbolic horseshoe near P ; the orbits

corresponding to the horseshoe display chaotic behavior that can be coded through
symbolic dynamics. See [30, 24].

3. Weak Stability Boundary. In this section we give a rigorous algorithmic
definition of the WSB (similar to [22]).

We consider trajectories of the infinitesimal particle with the following initial
conditions:

(i) The initial position of the trajectory is on a radial segment l(θ) in the con-
figuration space departing from P2 and making an angle of θ with the P1P2

line, relative to the rotating system. The trajectory is assumed to start at
the periapsis of an osculating ellipse around P2, whose semi-major axis lies
on l(θ) and whose eccentricity e is held fixed along l(θ). The initial velocity
of the trajectory is perpendicular to l(θ); there are two different such choices
of initial velocities, one positive (direct motion) and one negative (retrograde
motion).

(ii) The initial Keplerian energy H2 relative to P2 is negative, i.e., H2 < 0.
(iii) Then, the motion is said to be n-stable if the infinitesimal mass P3 leaves l(θ),

makes n complete turns about P2 without making a complete turn around
P1, and the intersections of the trajectory with l(θ) along this trajectory are
all transverse intersections and have negative Kepler energy with respect to
P2, i.e. H2 < 0. The motion is otherwise said to be n-unstable.

In condition (i) the distance from P3 to P2 is given by r = a(1 − e), where a is
the semi-major axis of the osculating ellipse. The initial velocity vector fulfilling the
above condition can be chosen in two ways, which only differ from one another by the
sense of the vector. The initial radial velocity satisfies ṙ = 0. The motion, for fixed
values of the parameters θ and e, and for a choice of direction of the initial velocity
vector depends only on the initial distance r. Below, we will restrict ourselves to
the case of positive initial velocity. The negative initial velocity case is discussed in
[22, 38].
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In condition (ii), the initial Kepler energy is given by (2.9) so the condition H2 < 0
is automatically satisfied since e ∈ [0, 1).

Since v = r(1 + θ̇), from (2.8) we obtain H2 =
1

2
r2(1 + θ̇)2 − µ

r
, so the condition

H2 = 0 defines a 2-dimensional surface in the 3-dimensional energy manifold {J = C}.
This surface separates the energy manifold into two disjoint regions where H2 < 0
and H2 > 0 respectively. So the condition that an intersection point of the trajectory
with l(θ) has negative Kepler energy relative to P2 means that the intersection point
is in {J = C} ∩ {H2 < 0}.

In condition (iii), by P3 making 1 complete turn around P2 we mean the following.
Let θ2(t) be the angle made by the position vector of P3 relative to P2, measured
continuously along the trajectory of P3. If we consider that P3 starts from l(θ) we
have θ2(0) = θ. Let τ1 be the smallest positive time for which ‖θ2(τ1) − θ2(0)‖ = 2π.
Assume that the intersection of the trajectory with l(θ) at t = τ1 is transverse (for
definition, see e.g. [9]). If such a τ1 exists then we say that P3 performed 1 complete
turn around P2 in the time interval [0, τ1]. Similarly, let τ2 be the smallest positive
time τ for which ‖θ2(τ2)−θ2(τ1)‖ = 2π. Assume that the intersection of the trajectory
with l(θ) at t = τ2 is transverse. If such a τ2 exists then it means that P3 performed
2 complete turns around P2 in the time interval [0, τ2]. We can define inductively, in
a similar fashion, what it means for P3 to perform n complete turns about P2. In this
definition we require that the successive intersections of the trajectory of P3 with l(θ)
are all transverse.

In the same manner, we define what means for P3 to perform 1 complete turn
about P1. Also, if θ1(t) is the angle made by the position vector of P3 relative to
P1, measured continuously along the trajectory of P3, if for some τ > 0 we have
‖θ1(t) − θ1(0)‖ < 2π for all t ∈ [0, τ ], it means that P3 did not perform one complete
turn about P1 in the interval [0, τ ].

We note that in condition (iii) the initial point of the trajectory satisfies ṙ = 0
but the subsequent intersections of the trajectory with l(θ) do not have to satisfy
ṙ = 0. Also, between intersections, the Kepler energy H2 is allowed to be locally
positive. These two conditions are imposed for applications to designing low-energy
space missions and not for mathematical reasons.

In summary, condition (iii) says that a motion is said to be n-stable if there exist
τn > 0 such that P3 performed n complete turns about P2 in the interval [0, τn] and
did not complete 1 turn around P1 in the same interval.

In the above definition we require that the successive intersections of the trajec-
tory of P3 with l(θ) are all transverse. This makes the notion of n-stability under small
perturbation, that is, if a trajectory is n-stable then any sufficiently close trajectory
will also be n-stable. This additional restriction does not have any practical conse-
quences in the numerical computation of the WSB, as the initial conditions whose
trajectories will fail the transversality condition have zero measure.

We note that the n-stability condition defined as above is an open condition.
This is due to the fact that H2 < 0 is an open condition, and that the mapping
θ(0) 7→ θ(τn) on l(θ) is smooth. The stability of the number of turns about a primary,
as discussed earlier, implies that if for some value of r the motion is n-stable, then
there exists a small δ > 0 depending on r such that, for each r′ ∈ (r − δ, r + δ), the
corresponding motion is also n-stable.

We have observed numerically that for any fixed value of the eccentricity e ∈ [0, 1)
all points r ∈ l(θ) that are sufficiently close to P2 are n-stable. It seems possible
that one can argue this behavior for sufficiently large positive values of the Jacobi
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energy and in some small open neighborhood of P2 using the KAM theorem and the
Nekhoroshev theorem (see [32, 37]).

Thus the set of the n-stable points on l(θ) is an open subset of l(θ), hence it is a
countable union of open intervals which we denote

Wn(θ, e) =
⋃

k≥1

(r∗2k−1, r
∗
2k). (3.1)

with r∗1 = 0. The points r∗ that are at the endpoints of intervals above (except for
r∗1) are n-unstable. In the numerical experiments, it would be impossible to detect
a countable collection of stability intervals. The apparent Cantor-like structures of
these sets, also noted in [22], support the possibility of having countable collection
of stability intervals. In this sense, our notion of stability seems to resemble KAM
stability (see e.g. [11]).

One example of unstable points are those lying on the stable manifold of the
Lyapunov orbit, since they approach asymptotically the Lyapunov orbit and they
never return to l(θ).

By varying the parameters θ and e we obtain the following stable sets

Wn(e) =
⋃

θ∈[0,2π]

Wn(θ, e),

Wn =
⋃

θ∈[0,2π]
e∈[0,1)

Wn(θ, e).

These sets are also open sets since the n-stability of points depends smoothly on e and
θ. We emphasize that it is essential in the definition of the WSB that the conditions
(i)-(iii) for n-stable points are open conditions to ensure the smooth dependence of
the n-stability on e and θ.

We remark that Wm(e) ⊂ Wn(e) and Wm ⊂ Wn for m > n.
Definition 3.1. The WSB of index n, denoted by W∗

n, is the locus of all points

r∗(θ, e) along the radial segment l(θ) where there is a change of stability of the initial

trajectory, that is, r∗(θ, e) is one of the endpoints of an interval (r∗2k−1, r
∗
2k) charac-

terized by the fact that for all r ∈ (r∗2k−1, r
∗
2k) the motion is n-stable, and there exist

r′, r′′ 6∈ (r∗2k−1, r
∗
2k) arbitrarily close to r∗2k−1, r

∗
2k, respectively, for which the motion

is n-unstable. Thus

W∗
n = ∂Wn = {r∗(θ, e) | θ ∈ [0, 2π], e ∈ [0, 1)}.

We also denote

W∗
n(e) = ∂Wn(e) = {r∗(θ, e) | θ ∈ [0, 2π]}.

In Fig. 3.1 we show the WSB sets W∗
n(e) for n = 1 and e = 0.00, e = 0.20,

e = 0.60 and e = 0.95, which were generated by first computing the stable sets Wn(e)
and then computing the boundary sets W∗

n(e) = ∂Wn(e), using a bisection method
as described in [44]. We emphasize that the points in the same WSB set W∗

n(e) do
not all have the same Jacobi constant.

Remark 3.2. The WSB is not an invariant object for the dynamics. Moreover,
the WSB is not a manifold but rather appears to be a fractal set (estimating the fractal
dimension of the WSB is beyond the scope of this paper). The WSB is concerned only
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Fig. 3.1. Weak stability boundary sets W∗
1

for eccentricities e = 0.00, e = 0.20, e = 0.60, e = 0.95.

with the behavior of a trajectory for some limited number of turns about the small
primary. Counting the number of turns imposes some artificial cutoff conditions, in
the sense that points with trajectories behaving rather similarly may be classified
differently in terms of their stability, as they can different in the number of turns
about P1 or P2. For example, the trajectory in Fig. 3.2 (left) is 1-stable, although
it seems that it completes 1-turn around P1. In reality, the total angle swept by the
trajectory relative to P1 is a little less than 2π. On the other hand, the trajectory
in Fig. 3.2 (right) is 1-unstable although it is close to the previous orbit and it is
similarly looking in the first part.

4. Weak Stability Boundary and Invariant Manifolds. In this section we
describe a geometric mechanism that distinguishes n-stable points from n-unstable
points and produces points in the WSB. This is based on the separatrix property of
the hyperbolic invariant manifolds of the Lyapunov orbits. Then we present numerical
experiments that verify the geometric mechanism.

4.1. Geometric mechanism. We give a geometric argument that, for some
range of energies, the points on the stable manifold of the Lyapunov orbits about
L1 and L2 belong to the WSB set, provided that they satisfy the zero radial velocity
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Fig. 3.2. A 1-stable trajectory that almost completes a 1-turn about P1 (left), and a 1-unstable

trajectory that returns on l(θ) with positive Kepler energy (right). The initial condition is represented
by the red point.

condition and the negative Kepler energy condition relative to the small primary. This
argument is based on the fact that the invariant manifolds of the Lyapunov orbits
are separatrices of the energy manifold in a neighborhood of the libration points.
The stable and unstable manifolds of the Lyapunov orbits are global invariant objects
diffeomorphic to 2-dimensional cylinders. The trajectories inside the cylinder bounded
by the stable manifold of the Lyapunov orbit about L1 or L2 transfer from the P2-
region to the P1-region or to the exterior region in forward time, while the trajectories
outside the cylinder bounce back to the P2-region and remain in that region until they
reach the interior of a cylinder. When these stable manifolds are cut by a plane of
section that makes an angle of θ0 with the axis between the primaries, the points in
the section that are on the stable manifolds and that satisfy the zero radial velocity
condition and the negative Kepler energy condition are points in the WSB: the nearby
trajectories on one side of such points are stable orbits, while the nearby trajectories
on the other side of such points are unstable orbits.

The geometric argument below relates the WSB set W∗
n with the stable mani-

folds of the Lyapunov orbits about L1 and L2. We assume the following topological
conditions on the invariant manifolds of the Lyapunov orbits. These conditions are
sufficient but not necessary.

Hypothesis A. We assume that the stable manifolds and unstable manifolds of
the Lyapunov orbits γ1 and γ2 satisfy the following topological conditions:

(i) All the trajectories on the branch of W s(γ1) in the P2-region make at least
n-turns about P2;

(ii) All the trajectories on the branch of Wu(γ1) in the P1-region make at least
1-turn about P1;

(iii) All the trajectories on the branch of W s(γ2) in the P2-region make at least
n-turns about P2;

(iv) All the trajectories on the branch of Wu(γ2) in the exterior region make at
least 1-turn about P1.

For some values of µ and C there exist analytical arguments that ensure that
some of these conditions are satisfied. In the case when the mass ratio µ is very small
and (µ, C) is in some open set in the (µ, C) plane, the papers [34] and [27] imply the
conditions (i) and (iv) from above. We do not know of analytical results to ensure
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Fig. 4.1. The region {J = C1} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0,
θ = ±π/2, and θ = −π. The red curves represent the boundary of {J = C1} and the blue curve
represents {H2 = 0}. In the first figure (θ = 0) the closest red curve to the vertical axis corresponds
to boundary of the inner Hill region, while the farthest red curve corresponds to boundary of the
outer Hill region. In the second figure (θ = ±π/2) the blue curve is so distant from the vertical axis
that the two red curves corresponding to the inner and outer boundaries of the Hill region cannot be
distinguished in the plot. In the third figure (θ = π) the red curves correspond to boundaries of the
two components of the inner Hill region. In each plot, the region between the vertical axis and the
rightmost red curve represents {J = C1} and is always inside the region between the vertical axis
and blue the curve which represents {H2 < 0}.

the conditions (ii) and (iii) for above. In the case of the Sun-Jupiter system, for some
values of C < C2, numerical and analytical methods in [30] show the existence of a
symbolic dynamics which ensure the conditions (i)-(iv) from above for a certain range
of values of n. A similar type of symbolic dynamics in the case of the Earth-Moon is
more informally described in [31].

There are situations under which the conditions (i)-(iv) from above are not sat-
isfied. For example, in the case when Wu(γ1) and W s(γ1) collide with P2 is possible
that these manifolds intersect at some point x < 1 − µ, so there exist trajectories
on W s(γ1) that do not turn around P2, so condition (i) fails. In a similar fashion,
collisions of the other branches of the invariant manifolds with either P1 or P2 can
yield to trajectories that fail the conditions (ii), (iii) or (iv). We will exclude these
situation from the geometric analysis below.

We denote by W∗,A
n the subset of the weak stability boundary W∗

n for which the
conditions of Hypotheses A are satisfied. We denote by W∗,B

n the complementary
subset of W∗,A

n relative to W∗
n.

In the sequel, we will show that, for some range of energies C > Cmin,

W∗,A
n = {(r, ṙ, θ, θ̇) ∈ W s

θ,n−1(γ1) ∪ W s
θ,n−1(γ2) | ṙ = 0, H2 < 0}, (4.1)

where W s
θ,n−1(γ1) and W s

θ,n−1(γ2) represent the (n−1)-th cut of W s(γ1) and W s(γ2)
with the Poincaré section Sθ, where the cuts of the invariant manifolds are labeled as
described in Subsection 2.4.

4.1.1. Case C ≥ C1. When C ≥ C1 the Hill’s region is closed at L1 so there are
no transitions between P2-region and the P1-region. Inside the P2-region the condition
H2 < 0 is always satisfied, see Fig. 4.1. Therefore all trajectories are n-stable, for
any n.

4.1.2. Case C2 < C < C1. We consider a Jacobi energy level C2 < C < C1. The
corresponding Hill’s region is open at L1 and closed at L2, so transitions are possible
between the P2-region and P1-region but not between the inner and the outer region.
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We consider the Lyapunov orbit γ1 near the libration point L1, corresponding to
a fixed energy level, and the stable and unstable manifolds W s(γ1) and Wu(γ1) of γ1.

We relate the dynamics of points on the stable manifold W s(γ1) to the dynamics
of points in the WSB set W∗,A

n . We label the successive cuts made by W s(γ1) with
Sθ0

by W s
θ0,j(γ1) in the manner as described in Subsection 2.4, such that a trajectory

starting from W s
θ0,j(γ1) completes precisely j-turns about P2 before it approaches γ1.

By Hypothesis A (i), all the cuts with 0 ≤ j ≤ n are well defined.

It is possible that all successive cuts of the stable manifold with the section
Sθ0

, up to the order (n − 1), are topological circles: W s
θ0,0(γ1), W s

θ0,1(γ1), W s
θ0,2(γ1),

. . . , W s
θ0,n−1(γ1). If P is an initial point in Sθ0

inside the region bounded by W s
θ0,0(γ1),

but sufficiently close to it, then the trajectory of P will make a transfer to the P1-
region by making less than 1 complete turn about P2. If P is outside the region
bounded by W s

θ0,0(γ1) but sufficiently close to it, the trajectory will stay in the P2-
region for at least 1-turn. Similarly, if P is an initial point in Sθ0

inside the region
bounded by W s

θ0,1(γ1), then the trajectory of P will make a transfer to the P1 region
by completing 1-turn about P2 but turning less than 2 times about P2. If P is outside
the region bounded by W s

θ0,1(γ1) but sufficiently close to it, the trajectory will stay in
the P2-region for at least 2-turns. In general, if P is an initial point in Sθ0

inside the
region bounded by W s

θ0,n−1(γ1) then the trajectory of P will make a transfer to the
P1-region by completing (n − 1)-turns about P2 but turning less than n times about
P2, and if P is outside the region bounded by W s

θ0,n−1(γ1), but sufficiently close to
it, the trajectory will stay in the P2-region for at least n-turns. A trajectory that
goes to the P1-region enters it through the interior of the region bounded by unstable
manifold Wu(γ1). By condition (ii) of Hypothesis (A), the trajectory will make one
or more complete turns around P1 before it can return to the P2-region. It is of course
possible to also study trajectories that, once in the P1-region, fail to make 1 complete
turn around P1 and they return to the P2-region, but this will involve a more intricate
analysis of the associated symbolic dynamics. We will avoid this analysis here.

We represent the section Sθ0
in coordinates (r, ṙ). In the case when the stable

manifold cut W s
θ0,n−1(γ1) intersects transversally the axis ṙ = 0 at some point w∗ of co-

ordinates (r∗, 0), the points (r, 0) with r near r∗ will be interior points to W s
θ0,n−1(γ1)

on one side of (r∗, 0) and exterior points to W s
θ0,n−1(γ1) on the other side of (r∗, 0).

The exterior points (r, 0) are n-stable, provided they satisfy the Kepler energy con-
dition H2 < 0. We note that not all points in this case satisfy the negative Kepler
energy condition relative to P2. See Fig. 4.2. The interior points are n-unstable. The
corresponding point w∗ makes the transition from n-stability to n-instability, so it is
a point in the WSB. Moreover, the eccentricity of the osculating ellipse at w∗ can be

computed from (2.6) as e∗ =
(v∗)2r∗

µ
− 1, where v∗ = r∗(1 + θ̇|θ=θ0

). Thus, the point

w∗ is in the WSB set W∗,A
n (θ0, e

∗). If the cut W s
θ0,n−1(γ1) does not intersect the axis

ṙ = 0 it means that on the cut W s
θ0,n−1(γ1) there are no WSB points from the set

W∗,A
n (θ0, e) for any eccentricity e.

We remark that in the case when θ0 = 0 and θ0 = π the WSB points in the
section Sθ0

are symmetric homoclinic points. Indeed, the symmetry (2.3) implies
that if (r(t), θ(t), ṙ(t), θ̇(t)) is an orbit, then (r(−t),−θ(−t),−ṙ(−t), θ̇(−t)) is also an
orbit. Thus, an orbit that intersects Sθ0

with ṙ = 0, for θ0 = 0 or θ0 = π, is a
symmetric orbit. Since the stable and unstable manifolds are also symmetric, a point
in W s

θ0,n−1(γ1) with ṙ = 0 is a symmetric homoclinic point provided θ0 = 0 or θ0 = π.

It is possible that not all the cuts made by the stable manifold with the plane of
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Fig. 4.2. The region {J = C2} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0,
θ = ±π/2, and θ = −π. The red curve represents the boundary of {J = C2} and the blue curve
represents {H2 = 0}. The region between the vertical axis and the rightmost red curve represents
{J = C2} and is always inside the region between the vertical axis and blue curve which is {H2 < 0}.

section are topological circles, as noted in Subsection 2.4. If W s
θ0,j(γ1) is a topological

circle in Sθ0
that intersects Wu

θ0,k(γ1) which is also a topological circle, then any
intersection point is a homoclinic point which makes j + k − 1 turns around P2,
and the region bounded by both W s

θ0,j(γ1) and Wu
θ0,k(γ1) consists of trajectories that

make transitions to the P1-region in negative time, after j + k − 1 turns about P2.
Thus W s

θ0,j+k(γ1) is no longer a topological circle; it consists of a finite number of
curves open at both ends that wrap asymptotically around W s

θ0,j(γ1) infinitely many
times. Although the topological circle property is lost, we can still distinguish between
‘interior’ points to the region bounded by W s

θ0,j+k(γ1) and ‘exterior’ points (from the
point of view of separatrix property): the interior points are precisely the image
under Φ−k

θ0
of the points inside the region bounded by W s

θ0,j(γ1) and outside the
region bounded by Wu

θ0,k(γ1) in Sθ0
. The conclusion is that the points interior to the

region bounded by W s
θ0,j+k(γ1) correspond to trajectories that leave the P2-region

in (j + k − 1)-turns, while the points exterior to the region bounded by W s
θ0,j+k(γ1)

correspond to trajectories that remain in the P2-region for at least (j + k)-turns.
The same type of argument can be carried out when a broken topological circle,

like W s
θ0,j+k(γ1) from above, intersects some unstable manifold cut Wu

θ0,ℓ(γ1). All the
points interior to the region bounded by both W s

θ0,j+k(γ1) and Wu
θ0,ℓ(γ1) correspond to

trajectories that make a transition to the P1-region in negative time, after (j+k+ℓ−1)-
turns about P2. The return W s

θ0,j+k+ℓ(γ1) of W s
θ0,j+k(γ1) to Sθ0

under Φ−ℓ
θ0

consists
of a finite number of curves open at both ends that wrap asymptotically around the
components of W s

θ0,j+k(γ1) infinitely many times. The interior points to the region

bounded by W s
θ0,j+k+ℓ(γ1) are the image under Φ−ℓ

θ0
of the points interior to the region

bounded by W s
θ0,j+k(γ1) and exterior to Wu

θ0,ℓ(γ1) in Sθ0
. The interior points to the

region bounded by W s
θ0,j+k+ℓ(γ1) correspond to trajectories that leave the P2-region in

(j +k+ ℓ−1)-turns, while the points exterior to the region bounded by W s
θ0,j+k+ℓ(γ1)

correspond to trajectories that remain in the P2-region for at least (j + k + ℓ)-turns.
The conclusion is that the transverse intersection points between the stable man-

ifold cut W s
θ0,n−1(γ1) with the axis ṙ = 0 in Sθ0

are points in the WSB set W∗
n(θ0, e

∗)
for some e∗, regardless on whether W s

θ0,n−1(γ1) is a topological circle or not.

4.1.3. Case Cmin < C < C2. We consider a Jacobi energy level Cmin < C < C2

for some Cmin large enough so that the Lyapunov orbits around L1 and L2 do not
collide with P2. A safe choice is assuming Cmin = 3.15. The corresponding Hill’s
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Fig. 4.3. The region {J = C3} ∩ {H2 < 0} in (r, ṙ)-coordinates for θ fixed, where θ = 0,
θ = ±π/2, and θ = −π. The red curve represents the boundary of {J = C3} and the blue curve
represents {H2 = 0}. The region between the vertical axis and the rightmost red curve represents
{J = C3} and is always inside the region between the vertical axis and blue curve which is {H2 < 0}.

region is open at both L1 and L2, so transitions are possible between P2-region and
P1-region and also between the inner region and the outer region. In the numerical
computations in Subsection 2.3 the value of Cmin will be restricted by our numerical
methods to compute the Lyapunov orbits and their invariant manifolds.

We consider the Lyapunov orbits γ1 near the libration point L1 and γ2 near
the libration point L2, corresponding to a fixed energy level. We also consider the
stable and unstable manifolds W s(γ1) and Wu(γ1) of γ1, and the stable and unstable
manifolds W s(γ2) and Wu(γ2) of γ2. The stable manifolds W s(γ1) and W s(γ2) never
intersect, and the unstable manifolds Wu(γ1) and Wu(γ2) never intersect as well. On
the other hand, the stable manifolds can pass very close to one another, and so can
the unstable manifolds.

We label the successive cuts made by W s(γ1) with the Poincaré section Sθ0
by

W s
θ0,j(γ1) in the manner as described in Subsection 2.4, such that a trajectory starting

from W s
θ0,j(γ1) completes precisely j-turns about P2 before it approaches γ1, and

the successive cuts made by W s(γ2) with Sθ0
by W s

θ0,j(γ2), such that a trajectory
starting from W s

θ0,j(γ2) completes precisely j-turns about P2 before it approaches γ2.
By Hypothesis A (i) and (iii), all the cuts with 0 ≤ j ≤ n are well defined.

These successive cuts made by the stable manifolds with the surface of section
are topological circles or broken circles, but in either case they bound regions with
well defined interior points (in the sense of the separatrix property), as explained in
the Subsection 4.1.3. If an initial point P in Sθ0

is an interior point to the region
bounded by W s

θ0,n−1(γ1) then the trajectory of P will complete (n − 1)-turns about
P2 and make a transfer to the P1 region. Once in the P1 region, it will complete at
least 1-turn about P1 before it can return to the P2 region, due to Hypothesis A (ii).
On the other hand, if P is outside the region bounded by W s

θ0,n−1(γ1) but sufficiently
close to it then the trajectory will stay in the P2-region for at least n-turns.

Similarly, if an initial point P in Sθ0
is an interior point to the region bounded

by W s
θ0,n−1(γ2) then the trajectory of P will complete (n − 1)-turns about P2 and

make a transfer to the exterior region. Once the trajectory is in the exterior region,
it will complete at least 1-turn about P1 before it can return to the interior region,
according to Hypothesis A (iv). If P is outside the region bounded by W s

θ0,n−1(γ2)
but sufficiently close to it the trajectory will stay in the P2-region for at least n-turns.

To detect the WSB points we consider the transverse intersection points w∗ of
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the stable manifold cuts W s
θ0,n−1(γ1)∪W s

θ0,n−1(γ2) with the axis ṙ = 0 in Sθ0
. These

intersection points are points in the WSB set W∗
n(θ0, e) for some e∗ provided they sat-

isfy the following conditions: the points near w∗ interior to W s
θ0,n−1(γ1)∪W s

θ0,n−1(γ2)
satisfy the Kepler energy condition H2 < 0. We note that not all points in this case
satisfy the negative Kepler energy condition relative to P2 (see Fig. 4.3). The points
near w∗ exterior to W s

θ0,n−1(γ1)∪W s
θ0,n−1(γ2) that leave the P2-region make at least

1 full turn about P1 inside the P1-region or in the exterior region before they may
eventually return to the P2-region. In addition, the points w∗ as above that are found
in a plane of section Sθ0

with θ0 = 0 or θ0 = π are symmetric homoclinic points.

Remark 4.1. The key geometrical argument in the above is that the stable
and unstable manifolds of a Lyapunov orbit are 2-dimensional invariant manifolds
that separate the 3-dimensional energy manifold. It shows that, for a fixed energy
level, the corresponding WSB points lie on the stable manifold of the Lyapunov orbit.
However, the WSB set consists of points on different energy manifolds. The WSB set
itself is not an invariant manifold and does not have the separatrix property. As the
WSB is not restricted to an energy manifold, the WSB concept can be extended to
other situations where energy manifolds are not invariant or where stable invariant
manifolds of periodic orbits cannot be defined.

Remark 4.2. In the case when W s
θ0,n−1(γi) is a broken topological circle con-

sisting of infinitely many open curves that wrap around asymptotically about some
W s

θ0,m(γ1) with m < n − 1, each intersection point w∗
j between such a component

with the axis ṙ = 0 in Sθ0
yields a point in the WSB set W∗

n(θ0, e
∗
j ) for some e∗j .

We emphasize here that the eccentricities of the osculating orbits corresponding to
the points w∗

j are all different, although very close to one another, so these points

belong to different WSB sets W∗,A
n (e) of different eccentricities e, as those in Fig.

3.1. However, a small change in the energy level of γi yields a small change in the
positions w∗

j and hence of the corresponding eccentricities e∗j of the osculating ellipses.
Thus, through a sequence of successive small perturbations of the energy level we can
slightly move each point w∗

j , one at a time, so that all resulting points will have the
same eccentricity for their osculating ellipses (with the resulting points w∗

j at different

energy levels). Here we recall that the WSB sets W∗,A
n (e) contains points not neces-

sarily at the same energy level. This perturbation argument supports the possibility
of having a countably infinite collection of stable intervals (r∗2k−1, r

∗
2k) in (3.1), and

could perhaps explain some of the fine Cantor set-like structures that are visible in
some regions of the WSB sets. See the plots in Fig. 3.1.

Remark 4.3. It seems possible to analyze the WSB in the context of the planar
Hill problem. The structure of invariant manifolds of periodic orbits near the equi-
librium points is similar to that in the PCRTBP ([42]). It is expected that the same
relationship between the WSB and the stable invariant manifold of periodic orbits
holds in the planar Hill problem as in the PCRTBP.

4.2. Numerical experiments. We describe a numerical algorithm to test that
the points on the WSB coincide with the points on the stable manifolds of the Lya-
punov orbits which satisfy the zero radial velocity condition and the negative Kepler
energy condition relative to the small primary. This algorithm is centered on the idea
that the hyperbolic invariant manifolds are separatrices of the energy manifold. We
illustrate this algorithm with several examples and we discuss the results.

In Subsection 4.1 we provided a geometric argument to show that, for some range
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of energies,

{(r, ṙ, θ, θ̇) ∈ W s
θ,n−1(γ1) ∪ W s

θ,n−1(γ2) | ṙ = 0, H2 < 0} (4.2)

is the subset W∗,A
n of W∗

n, consisting of the WSB points for which the invariant
manifolds of the Lyapunov orbits by L1 and L2 satisfy some topological conditions
described by Hypothesis A. However, Hypothesis A is a sufficient condition for a point
in W∗

n to be in the set (4.2) but not necessary. It is possible that the stable and unsta-
ble manifolds of γ1 and γ2 as a whole fail Hypothesis A, but nevertheless individual
trajectories on those manifolds exhibit behavior consistent with the conditions of Hy-
pothesis A. The numerical experiments below detect the points in W∗

n that are also
in the set (4.2); we will call these points of type A. There are also points in in W∗

n

that are not in the set (4.2); we will call these points of type B. The set of all points
of type A includes W∗,A

n .
In the sequel, we will compute numerically W∗

n and we will identify the subset of
points of type A, as the WSB points that satisfy (4.2) modulo some margin of error.
The numerical algorithm consists of the following steps.

(1) We compute numerically the WSB set W∗
n(e) for a fixed number of turns n

and for a fixed eccentricity e. We limit to points with energy Cmin < C < C2.
This computation is done in two steps. In the first step we compute the
n-stable set Wn(e). For this, we divide the eccentricity range into a grid
of values e = {0, 0.05, ..., 0.95}. We fix one value of e at a time and we
compute the corresponding n-stable orbits as follows. We choose a range of
radius values around P2 and we approximate this range by a grid of values
r ∈ {0, 2 · 10−3, . . . , 1.5}. We also approximate the angular range θ ∈ [0, 2π]
around P2 by a grid of values θ ∈ {0, 2π · 10−3, . . . , 2π}. For each fixed θ
from the grid, we consider an initial point (r, θ) with r from the grid, and an
initial velocity perpendicular to the position vector (r, θ), of size v given by
(2.6). We integrate this initial condition forward in time in polar coordinates
with respect to both P2 and P1. The evolution in time of the angle swept
around P2 and P1 is tracked and the negative Kepler energy relative to P2

is verified at the intersection points with l(θ). The point is redeemed as n-
stable or n-unstable according to the algorithmic definition in Section 3. The
coordinates (r, ṙ, θ, θ̇), and the Jacobi constant C of each n-stable point are
recorded. The Jacobi constant is also given by (2.7). In the second step, the
WSB is computed as the boundary set W∗

n(e) = ∂(Wn(e)) of the n-stable set,
using a bisection algorithm. The output is a data set of points w∗

i with their
coordinates and Jacobi constants. The details of this computation are given
in [44].

(2) For each fixed value of the eccentricity e, the points w∗
i of the WSB set W∗

n(e)
are analyzed one at a time with respect to their relationship with the stable
manifolds of the Lyapunov orbits. Each point is retrieved from the data
set together with its coordinates (r∗i , ṙ∗i , θ∗i , θ̇∗i ) and the corresponding Jacobi
constant Ci.

(3) For each Jacobi constant Ci the Lyapunov orbits γ1 and γ2 are computed
numerically.

(4) The stable manifolds W s(γ1) and W s(γ2) are integrated numerically in polar
coordinates relative to P2.

(5) The stable manifolds W s(γ1) and W s(γ2) are cut with the Poincaré section
Sθ∗

i
, where θ∗i is the angle coordinate associated with the point r∗i . The
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Poincaré section Sθ∗

i
is represented in the coordinates (r, ṙ). The points in the

(n− 1)-th cut of W s(γ1) and W s(γ2) with the Poincaré section are retained.
(6) The intersection points between W s(γ1) ∪ W s(γ2) with the axis ṙ = 0 in

Sθ∗

i
are computed numerically. As in general there might be several such

intersection points, only one of them, w∗∗
i = (r∗∗i , 0, θ∗∗i , θ̇∗∗i ) will have the

eccentricity of the corresponding osculating ellipse equal to e, modulo some
small margin of error. Moreover, we select only those points w∗∗

i that have
negative Kepler energy relative to P2

(7) We select the points w∗
i that are within a small margin of error from the

corresponding points w∗∗
i . These are the points of type A and they include

the set W∗,A
n , the set of points in W∗

n that satisfy the Hypothesis A. The
complementary set are the points of type B. The practical method to select
the points of type A is the following. We compute the Euclidean distance in
phase space between the original point w∗

i , computed through the bisection
algorithm, and the new point w∗∗

i , computed as the cuts between the stable
manifold and the axis ṙ = 0 in the the Poincaré section:

d = ‖w∗
i − w∗∗

i ‖.
We only select those points w∗∗

i for which the distance from the corresponding
w∗

i is within a tolerance of δ = 10−3. (Since our numerical procedures are
automatic procedures that explore a large number of points in the WSB
sets, generate the Lyapunov orbits for the energy level of each point on the
WSB, integrate the stable manifolds of these Lyapunov orbits, compute and
count the cuts of these manifolds with Poincaré sections of prescribed angles,
and detect the intersection of these cuts with ṙ = 0, we found that this
indirect procedure to identify the subset W∗,A

n is computationally effective.
It is nevertheless true that these procedures have intrinsic limitations by the
choice of algorithm for each component numerical routine, and by numerical
errors.)

(8) To the selected points w∗∗
i found in the intersections between the stable

manifold and the axis ṙ = 0 in the Poincaré section, we apply a test to
verify numerically that they make the transition between n-stability and n-
instability. This test confirms that the selected points w∗∗

i are in the WSB
set W∗

n(e). For a given point w∗∗
i = (r∗∗i , 0, θ∗∗i , θ̇∗∗i ), two nearby points w′

i

and w′′
i are chosen on the radial line θ = θi, of coordinates w′

i = (r′i, ṙ
′
i, θ

′
i, θ̇

′
i)

and w′′
i = (r′′i , ṙ′′i , θ′′i , θ̇′′i ). The coordinates are chosen so that w′

i and w′′
i

are in the same Poincaré section Sθ∗

i
as w∗∗

i and their associated osculating
ellipse have the same eccentricity e as w∗∗

i , i.e. r′i = r∗∗i + ǫ, ṙ′i = 0, θ′i = θ∗i ,

θ̇′i =
√

µ(1+e)
(r′

i
)3 −1, and r′′i = r∗∗i −ǫ, ṙ′′i = 0, θ′′i = θ∗i , θ̇′′i =

√

µ(1+e)
(r′′

i
)3 −1, where

ǫ = 10−8. The points w′
i and w′′

i are integrated forward in time in polar co-
ordinates with respect to both P2 and P1. The evolution in time of the angle
swept around P2 and P1 is tracked, and the negative Kepler energy condition
relative to P2 is verified at the intersection points with l(θ∗i ). This test is
assessed as successful if one of the points w′

i, w
′′
i is redeemed as n-stable and

the other one is redeemed as n-unstable. In the numerical examples explored,
all selected points are found to satisfy this condition.

Example 4.4. An example of applying the algorithm is illustrated in Fig. 4.4.
We select a point w∗

i from the WSB set W∗
1 (0) in a Poincaré section Sθ∗

i
, θ∗i ≃

3π/4. The Lyapunov orbits γ1 and γ2 for the Jacobi constant Ci = 3.1645669491
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Fig. 4.4. From left to right: (a) a point in the WSB and the Lyapunov orbits for the corre-
sponding energy level, (b) the stable manifold of the Lyapunov orbit about L1, (c) the cut made by
the stable manifold with the Poincaré section and its intersection with ṙ = 0, (d) forward integration
of two initial points near the intersection of the stable manifold with ṙ = 0.

corresponding to the point wi are computed numerically. The stable manifold W s(γ1)
is cut with the Poincaré section Sθ∗

i
. This cut is W s

θ∗

i
,0(γ1), as the points in the cut

complete 0-turns about P2 before approaching γ1. The intersection between W s(γ1)
and the axis ṙ = 0 in Sθ∗

i
is identified. In the same plot, the original point w∗

i is shown.
The intersection w∗∗

i between W s
θ∗

i
,0(γ1) and the axis ṙ = 0 in Sθ∗

i
and the original

point w∗
i almost overlap in the plot. The points w∗

i and w∗∗
i are within a δ-tolerance,

so the point w∗
i ≈ w∗∗

i is of type A. To apply the test described in (8), the intersection
point between W s(γ1) and the axis ṙ = 0 is fixed and two nearby points in Sθ∗

i
, with

the eccentricities of the associated osculating ellipses chosen to be e = 0, are chosen.
The two nearby points are integrated forward in time. The trajectories of the two
points show that one is 1-stable and the other one is 1-unstable, which confirms our
test.

Example 4.5. Another example of applying this algorithm is illustrated in Fig.
4.5. This is similar to the previous example with the only difference being that the
WSB point selected matches a point on the stable manifold W s(γ2) of the Lyapunov
orbit about L2 for the Jacobi constant Ci = 3.1539757951.
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Fig. 4.5. From left to right: (a) a point in the WSB and the Lyapunov orbits for the corre-
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the stable manifold with the Poincaré section and its intersection with ṙ = 0, (d) forward integration
of two initial points near the intersection of the stable manifold with ṙ = 0.

Example 4.6. We restrict to an energy range C ∈ [Cmin, C2], and we consider
the WSB sets W∗

n(e) with n = 1, 2 and e = 0.4. We match the points w∗
i obtained

from the algorithmic definition of the WSB as in (1) with the points w∗∗
i obtained

from the (n − 1)-th cut of W s(γ1) or W s(γ2) with Poincaré section Sθ∗

i intersected
with the axis ṙ = 0 inside this section, as described in (6).

In Fig. 4.6 the displayed curve represents the points (r, θ) for which J = Cmin

for e fixed (see (2.7)). The gray points are the points w∗
i found by the algorithmic

definition as in (1). The points w∗
i in the interior region bounded by the curve are

those that satisfy the energy restriction C ∈ [Cmin, C2]. The points displayed in black
are the points w∗∗

i that are obtained as in (7). These are the points of type A and
they contain W∗,A

n Thus, for these points we have a matching between the WSB
points obtained through the algorithmic definition and the points obtained through
the invariant manifold approach.

There are a few WSB points in the interior region bounded by the energy con-
dition curve which do not match with points on the stable manifolds. These are the
points of type B. These are points whose trajectories experience close encounters or
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Fig. 4.7. Trajectory of a type A point lying on the stable manifold of a Lyapunov orbit (solid).
Trajectory of a type B point undergoing a close encounter with the primary (dashed).

symbolic dynamics. In Fig 4.7 a type A point and a type B point of the WSB are
chosen inside the region bounded by the energy curve. The trajectory of the type
A point approaches asymptotically a Lyapunov orbit for the corresponding energy
level, therefore the type A point lies on the stable manifold of the Lyapunov orbit.
Meanwhile the trajectory of the type B point undergoes a close encounter with the
primary.

In Fig. 4.8 we show the trajectories of a collection of type A points chosen from
the WSB. These trajectories approach asymptotically the Lyapunov orbit about L1

or the Lyapunov orbit about L2 corresponding to the energy level. Therefore these
points lie on the union of the stable manifolds of the Lyapunov orbits about L1 and L2.
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In Fig. 4.9 we show the distribution of errors d = ‖w∗
i − w∗∗

i ‖ for the type A
points, for C = [Cmin, C2], n = 1, 2 and e = 0.4. The horizontal axis represents the
angle coordinate θ about P2 while the vertical axis shows the distance between the
original point w∗

i from W∗
n(e) and the matching point at the corresponding intersection

between W s(γ1) or W s(γ2) and the axis ṙ = 0 in Sθ∗

i
. Most of these selected points

meet a tolerance level of 10−4, while a few of them only meet a tolerance level of
10−3.

Example 4.7. In WSB there are regions where the points of W s(γ1) are inter-
twined with those of W s(γ2). See Fig. 4.10. Since the points in W s(γ1) and W s(γ2)
cannot overlap, we want to examine this region closer. For example, we choose a point
w∗

i ∈ W∗
1 (0) of Jacobi constant Ci = 3.159347461. We compute the stable manifolds

W s(γ1) and W s(γ2) and we intersect them with the corresponding Poincaré section
Sθ∗

i
. In this section, the cut made by W s(γ2) appears to be a topological circle and

the cut made by W s(γ1) appears to be a broken circle. Both circles intersect the
horizontal axis ṙ = 0. Zooming in, although both intersections are close to the origi-
nal point w∗

i on the WSB, it turns out that it is the intersection point w1
i of W s(γ1)

with ṙ = 0 that is closer. See Fig. 4.11. Of course W s(γ2) also has an intersection
point w2

i with ṙ = 0 in the section, but this point does not correspond to e = 0, so
it actually belongs to a different WSB set W∗

1 (e) with e 6= 0 small. When we take
both intersection points w1

i , w2
i and integrate them forward, the point w1

i , which is
essentially the same as the original point on the WSB, when flown forward, generates
an orbit that gets close to γ2 (because this point is close to W s

γ2
), but then it changes

course and approaches asymptotically γ1 (because it is on W s
γ1

). See Fig. 4.10. This
orbit is close to a heteroclinic connection between γ2 and γ1. For comparison, we also
integrate forward the second point w2

i , which is also close to the original point w∗
i on

the WSB. This second orbit is asymptotic to γ2. The orbits of w1
i and of w2

i are very
close to one another and seem to overlap for a while, but their final behavior is rather
different. Note that the plotted orbits do not remain close to γ1 and γ2, respectively,
as theoretically predicted, due to the numerical manifolds computed.

Example 4.8. An important remark is that the points in the WSB set W∗
n(e) in

general lie on different Jacobi energy levels. Indeed, for a fixed value of the eccentricity
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e and a fixed radial axis l(θ), a point w∗ ∈ W∗
n(e) corresponds to a precise Jacobi

energy level J(r∗, θ, e) given by (2.7). Thus, by moving along the radial axis l(θ), J
changes according to (2.7). However, only certain points on the radial axis l(θ) will be
in the WSB set W∗

n(e). When the Jacobi constant corresponding to W∗
1 (0) is plotted

versus the angle θ one obtain the structure shown in Fig. 4.12. The two dips in the
plot correspond to the two spiral arms of the set W∗

1 (0). We note that the points on
the two spiral arms reach very low values of the Jacobi energy, corresponding to the
case when the Hill’s region allows a trajectory to move within the entire plane.

4.3. Summary of geometrical and numerical arguments. We provided a
geometrical argument that for a range of energy C ∈ [Cmin, C1], Cmin = 3.15, the
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points on W s(γ1)∪W s(γ2) that have zero radial velocity and negative Kepler energy
relative to P2 are part of the WSB set, provided that the invariant manifolds of γ1

and γ2 satisfy some topological conditions described in Hypothesis A. The geometrical
argument relies on the separatrix property of the invariant manifolds. We considered
the cuts W s

θ0,n−1(γ1) and W s
θ0,n−1(γ2) made by W s(γ1) and W s(γ2) with Sθ0

. If a
point is outside the region bounded by W s

θ0,n−1(γ1) or W s
θ0,n−1(γ2) then it will stay in

the P2-region for at least n-turns around P2. If a point is inside the region bounded by
W s

θ0,n−1(γ1) or W s
θ0,n−1(γ2) then it will leave the P2-region after (n−1)-turns around

P2 and then it will make a complete turn around P1. Thus the points on W s
θ0,n−1(γ1)

and W s
θ0,n−1(γ2) with ṙ = 0 and H2 < 0 are points in W∗

n.
We verified numerically this geometric argument for a selection of points. We

computed the WSB set for a fixed eccentricity e. For a given point in the WSB we
computed W s(γ1) and W s(γ2), and their cuts W s

θ0,n−1(γ1) and W s
θ0,n−1(γ2) with Sθ0

.
We intersected the cuts with ṙ = 0 and with the H2 < 0 set. We found that one
of these intersection points coincides, within some tolerance, with the original point
chosen from the WSB. We tested the point by taking two nearby initial conditions
inside the plane of section θ = θ0 with ṙ = 0, one inside the region bounded by
W s

θ0,n−1(γ1) or W s
θ0,n−1(γ2) and the other one outside that region. We found that

one point is stable and the other is unstable in the sense of the algorithmic definition
of the WSB.

5. Conclusions. In this paper we provided a geometric argument, based on the
separatrix property of the invariant manifolds of the Lyapunov orbits, for the fact
that, for some range of energies, the points on the stable manifold of the Lyapunov
orbits about L1 and L2 are points in the WSB, provided these points satisfy the zero
radial velocity condition and the negative Kepler energy condition relative to the small
primary. We supported our geometric argument with numerical experiments. This
geometric argument justifies the numerical findings in [22]. The results in this paper,
corroborated with those in [22], establish that the WSB method for the design of
fuel efficient spacecraft trajectories substantially overlaps with the invariant manifold
method.

A consequence of our findings is that the algorithmic definition of the WSB pro-
vides a method of finding trajectories on the stable manifold of a Lyapunov orbit
which does not require the a priori knowledge of the Lyapunov orbit. In particular,
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one can obtain symmetric homoclinic orbits. This type of approach contrasts with
the traditional method for computing the stable manifold of a Lyapunov orbit, which
first computes the Lyapunov orbit and then integrates nearby initial conditions in
the direction of the stable eigenvectors. It is well known that long term integration
of the invariant manifolds is prone to large numerical errors. It seems possible that
the algorithmic definition of the WSB can be used as a method of verification and
correction for long term integration of the invariant manifolds.

The existence of homoclinic points inside the WSB is consistent with the results
shown analytically in [6] in the case of near parabolic motion. However our numerical
experiments indicate that the WSB contains symmetric homoclinic points for the
whole range of Jacobi constants for which the WSB is defined.

Weak stability boundaries exist even in models where the hyperbolic invariant
manifolds are no longer well defined. It seems possible that the WSB may turn out
to provide a good substitute for the hyperbolic invariant manifolds in such models.
We believe that this idea could be exploited in space mission design and it should be
explored further.
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[20] Gómez, G., Jorba, Á., Simó, C., and Masdemont, J.J.: Dynamics and Mission Design Near
Libration Points Volume III: Advanced Methods For Collinear Points. World Scientific Mono-
graph Series in Mathematics, (2001)
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