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Abstract

A globally convergent numerical method is developed for a 2-d Coefficient Inverse
Problem for a hyperbolic PDE with the backscattering data. An important part of this
technique is the quasi-reversibility method. A global convergence theorem is proven
via a Carleman estimate. Results of numerical experiments for the problem modeling
imaging of plastic land mines are presented.
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1 Introduction

In this work we extend the recently developed globally convergent numerical method of
[1, 2, 3, 4] for a hyperbolic Coefficient Inverse Problem (CIP) for the case of backscattering
data. Note that only the case of the data given at the entire boundary was considered
[1, 2, 3, 4]. Just as before, we work with a CIP with the data resulting from a single
measurement, i.e. either a single position of the point source or a single direction of the
initializing plane wave. Since we have both Dirichlet and Neumann boundary conditions
on the backscattering part of the boundary of the domain of interest, we use the Quasi-
Reversibility Method (QRM) [15], which was not a part of [1, 2, 3, 4]. We refer to, e.g.
[5, 6, 8, 13, 14] for some recent publications on the QRM.
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The main new analytical result here is the proof of the global convergence theorem in
the case when the QRM is used. To do so, we first obtain an analog of a priori upper
estimate of the QRM solution using a Carleman estimate. Next, the global convergence
result is established. Applications of our CIP are in imaging of dielectric constants of ex-
plosives, since their dielectric constants are much higher than those of regular materials,
see http://www.clippercontrols.com/info/. The target application of this publication is in
imaging of plastic land mines. We also mention an important application of CIPs with
backscattering data to geophysics.

We point out that an independent verification of the technique of [1] was carried out
in [12] for the case of experimental data. Computations were conducted for blind data
only. Comparison of computed refractive indices of dielectric abnormalities with a posteriori
measured ones has revealed an excellent accuracy of computational results. Because of this
accuracy, it was concluded in [12] that the technique of [1, 2] “is completely validated now”,
regardless on a certain approximation, which is a part of that technique. This conclusion
justifies the same approximation of the current paper. In our opinion, some approximation
like this one are inevitable for such challenging problems as CIPs are. Indeed, CIPs are both
nonlinear and ill-posed.

That approximation is due to the truncation of certain Volterra-like integrals at a high
value s > 1 of the parameter s > 0 of the Laplace transform of the original hyperbolic PDE.
We call s pseudo frequency. This truncation is similar with the truncation of high frequen-
cies. As an analogy, we point out that such truncations are routinely done in engineering
without any proofs of convergence, and still those things usually work quite well in practice.
The meaning of this approximation was discussed in detail in subsection 3.3 of [12] and in
subsection 6.3 of [2], where a new mathematical model was proposed. In particular, it was
shown in these references that this model has the same nature as the truncation of divergent
asymptotic series in the classical Real Analysis.

We use a two-stage numerical procedure here, the framework of which was developed in
[2, 3, 4]. Indeed, because of the above approximation, the global convergence theorem only
guarantees that the resulting solution is sufficiently close to the correct one. However, it does
not guarantee that this solution can be made infinitely close to the correct one, because the
truncation pseudo frequency s cannot be made infinitely large in practical computations.
On the other hand, the availability of a good first approximation for the correct solution
is the key component of any locally convergent algorithm. Therefore, our procedure works
as follows. On the first stage the globally convergent numerical method provides a good
first approximation for the solution. On the second stage this approximation is refined via
a locally convergent modified gradient method, which uses the solution of the first stage as
its starting point.

More precisely, our numerical experience shows that the first stage provides good locations
of mine-like targets. The subsequent application of the second stage, which is a modified
gradient method in our case, provides accurate values of the unknown coefficient within those
targets. At the same time, it is worthy to note that the modified gradient method being
applied without the first stage results in quite inaccurate images (not shown here), even if
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the background value of the unknown coefficient is taken as the starting point, see subsection
8.4 of [12] for a similar observation.

In section 2 we formulate both forward and inverse problems. In section 3 we formulate
the layer stripping procedure with respect to s. In section 4 we describe the algorithm.
New analytical results are presented in sections 5 and 6. In section 5 estimates for solutions
resulting from the QRM are derived. The global convergence theorem is proven in section
6. In section 7 a simplified mathematical model of imaging of land mines is formulated. In
section 8 results of numerical studies are presented.

2 Statements of Forward and Inverse Problems

We work with the 2-d case only. Some properties of the solution of the forward problem
were established in the 3-d case in [3]. Their extensions to the 2-d case can be done along
the same lines, although it is space consuming. Hence, for brevity we use these properties
here, assuming that they hold for 2-d.

Denote x = (x, z) ∈ R2. As the forward problem, we consider the Cauchy problem for a
hyperbolic PDE

c (x) utt = ∆u in R2 × (0,∞) , (2.1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2.2)

Equation (2.1) governs, e.g. propagation of acoustic and electromagnetic waves. In the
acoustical case 1/

√
c (x) is the sound speed. In the 2-d case of EM waves propagation in

a non-magnetic medium the coefficient c (x) is c (x) := εr (x) , where εr (x) is the spatially
distributed dielectric constant, i.e. εr (x) = ε (x) /ε0, where ε (x) is the spatially distributed
electric permittivity of the medium and ε0 is the dielectric permittivity of the vacuum, see
[7] for the derivation of (2.1) from Maxwell’s equations in the 2-d case. Let Ω ⊂ R2 be a
convex bounded domain with the piecewise smooth boundary ∂Ω. As it is always the case
of the QRM, we need to assume a certain over-smoothness of the solution. So, we assume
that the function c (x) satisfies the following conditions

c (x) ≥ 1, c (x) = 1 for x ∈ R2�Ω, (2.3)

c (x) ∈ C4
(
R2

)
. (2.4)

We will work with the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s ≥ s = const. > 0, (2.5)

where s is a certain number. In our numerical studies we choose s experimentally. We call
the parameter s pseudo frequency. Equation for the function w is

∆w − s2c (x) w = −δ (x− x0) , ∀s ≥ s, (2.6)

lim
|x|→∞

w(x, s) = 0,∀s ≥ s. (2.7)
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The condition (2.7) was established in [3] for sufficiently large values of s. In addition, for
these values of s [3]

w (x, s) > 0. (2.8)

In the course of the proof of the convergence theorem (section 6) we will work with functions
c ∈ C1 (R2) ⊂ Cγ (R2) , ∀γ ∈ (0, 1) . Below Ck+γ are Hölder spaces, where k ≥ 0 is an
integer. It follows from the classic theory of elliptic PDEs [11] that if c ∈ Ck+γ (R2) , then
w ∈ Ck+2+γ (R2� {|x− x0| < θ}) , ∀θ > 0.

In our derivations we need an asymptotic behavior of the function w(x, s) at s → ∞,
which is formulated in Lemma 2.1. Although this lemma is now formulated only for the 3-d
case, we assume that it is valid in the 2-d case as well, see the beginning of this section.

Lemma 2.1 [1]. Assume that conditions (2.3) and (2.4) are satisfied and that we work
in R3. Let the function w(x, s) ∈ C5+γ (R3� {|x− x0| < θ}) , ∀θ > 0 be the solution of
the problem (2.6), (2.7). Assume that geodesic lines, generated by the eikonal equation
corresponding to the function c (x) are regular, i.e. any two points in R3 can be connected
by a single geodesic line. Let l (x,x0) be the length of the geodesic line connecting points x
and x0. Then the following asymptotic behavior of the function w and its derivatives takes
place for |α| ≤ 2, k = 0, 1,x 6= x0

Dα
xDk

sw(x, s) = Dα
xDk

s

{
exp [−sl (x,x0)]

f (x,x0)

[
1 + O

(
1

s

)]}
, s →∞, (2.9)

where f (x,x0) is a certain function and f (x,x0) 6= 0 for x 6= x0.
An interesting question here is about an easily verifiable sufficient condition of the reg-

ularity of geodesic lines. In general, such a condition is unknown, except of the trivial case
when the function c (x) is close to a constant. To our best knowledge, the only case of such
a condition in 2-d is

∆ ln c (x) ≥ 0,∀x ∈ R2,

see [17] as well as Theorem 2 in Chapter 2 of [9]. However, this condition is not satisfied in
our computational examples. So, we verify (2.9) numerically in our computations (subsection
7.2 of [1]): this is a typical case when the computational experience is less pessimistic than
the theory. Thus, everywhere below we assume that the asymptotic behavior (2.9) is valid.

To simplify the presentation and also because of our target application to imaging of
plastic land mines, we now specify the domain Ω ⊂ R2. Let B > 0 be a constant. Below

Ω = (−B, B)× (0, 2B), ∂Ω = ∪4
i=1Γi, (2.10a)

Γ1 = ∂Ω ∩ {z = 0}, Γ2 = ∂Ω ∩ {x = B}, (2.10b)

Γ3 = ∂Ω ∩ {x = −B}, Γ4 = ∂Ω ∩ {z = 2B}. (2.10c)

Inverse Problem. Suppose that the coefficient c (x) in equation (2.6) satisfies conditions
(2.3), (2.4) and is unknown in the domain Ω. Determine the function c (x) for x ∈ Ω,
assuming that the following functions ϕ0 (x, s) and ϕ1 (x, s) are known for a single source
position x0 /∈ Ω

w (x, s) |Γ1 = ϕ0 (x, s) , wz (x, s) |Γ1 = ϕ1 (x, s) , ∀s ∈ [s, s] , (2.11)
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where s > s is a number, which should be chosen experimentally in numerical studies.
Note that in experiments usually only the function u(x, 0, t) is measured. One can ap-

proximately assume that the function u(x, 0, t) is known for all x ∈ R implying that the
function ϕ0 (x, s) is known for all x ∈ R and for all s ∈ [s, s] via the Laplace transform
(2.5) of u(x, 0, t). Next, since the coefficient c (x) = 1 is known for z < 0, then solv-
ing the forward problem (2.6), (2.7) in the half plane {z < 0} with the boundary condition
w (x, 0, s) = ϕ0 (x, s), one can uniquely determine the function w(x, s) for z < 0, thus coming
up with the function wz (x, 0, s) = ϕ1 (x, s).

The question of uniqueness of this CIP is a well known long standing problem. Currently
it can be addressed positively via the method of Carleman estimates only in the case when
the δ (x− x0) in (2.2) is replaced with such a function f (x) that f (x) 6= 0 in Ω [13].
Nevertheless, the authors believe that, because of the applied aspect, it makes sense to
develop a globally convergent method for this CIP, assuming that uniqueness holds.

3 Layer Stripping With Respect to s

By (2.8) we can consider the function v = ln w/s2. Hence, (2.6) and (2.11) lead to

∆v + s2 |∇v|2 = c (x) , x ∈ Ω, (3.1)

v|Γ1 = ϕ2 (x, s) , vz|Γ1 = ϕ3 (x, s) , ∀s ∈ [s, s] , (3.2)

where ϕ2 = ln ϕ0/s
2, ϕ3 = ϕ1/ (s2ϕ0) . The term δ (x− x0) is not present in (3.1) because

x0 /∈ Ω. We now eliminate the function c (x) from equation (3.1) via the differentiation with
respect to s, since ∂sc (x) = 0. Introduce a new function q (x, s) = ∂sv (x, s) . Lemma 2.1

implies that

Dα
x(v) = O

(
1

s

)
, Dα

x(q) = O

(
1

s2

)
, s →∞; |α| ≤ 2, (3.3)

v (x, s) = −
∞∫

s

q (x, τ) dτ. (3.4)

We truncate the integral in (3.4) as

v (x, s) ≈ −
s∫

s

q (x, τ) dτ, (3.5)

where s > s is a large parameter which should be chosen in numerical experiments. Actually,
s is one of regularization parameters of our method. In fact, we have truncated here the
function V (x, s) , which we call the tail function,

V (x, s) = −
∞∫

s

q (x, τ) dτ.
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By (3.3)
∥∥Dk

sV (x, s)
∥∥

C2(Ω) = O

(
1

sk+1

)
, k = 0, 1; s →∞. (3.6)

Although by (3.6) the tail is small for the large values of s, the numerical experience of
[1, 2, 3, 4, 12] shows one should that it would be better to somehow approximate the tail
function updating it via an iterative procedure.

Thus, still taking into account the tail, we obtain from (3.1) and (3.5) the following
nonlinear integral differential equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

+ 2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )2 = 0.

(3.7)

Let ψ0 (x, s) = ∂sϕ2 (x, s) , ψ1 (s) = ∂sϕ3 (x, s) . Then (3.2) implies that

q|Γ1 = ψ0 (x, s) , qz|Γ1 = ψ1 (x, s) , ∀s ∈ [s, s] . (3.8)

A slight modification of arguments of subsection 2.2 of [3] shows that, for if s > s and
s is sufficiently large, then the function w (x, s) tends to zero together with its appropriate
(x, s)−derivatives as |x| → ∞ (in both 3-d and 2-d cases), which is slightly more general
than (2.7). Hence, we have the following radiation condition

lim
B→∞

(
∂w

∂νi

+ sw

)
|Γi

= 0, i = 2, 3, 4.

where νi is the outer normal vector on Γi. Since q(x, s) = ∂s (s−2 ln w) , then we obtain from
the latter the following approximate Neumann boundary condition for the function q at Γi

∂νi
q |Γi

= s−2, i = 2, 3, 4. (3.9)

So, while conditions (3.8) change with the change of the unknown coefficient c (x) , the
condition (3.9) is generic and it is independent on c (x) . Thus, we use conditions (3.9) only
to stabilize the problem.

The presence of integrals in (3.7) implies the nonlinearity, which is the main difficulty
here. If the functions q and V are approximated well from (3.7)-(3.9) together with their
x−derivatives up to the second order, then the target unknown coefficient c (x) is also ap-
proximated well from (3.1), where the function v is computed from (3.5), where the function
V is added. Thus, below we focus on the following question: How to solve numerically the
problem (3.7)-(3.9)?

Remark 3.1. Since the tail function V is unknown, equation (3.7) contains two unknown
functions q and V . The reason why we can approximate both of them is that we treat them
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differently: while we approximate the function q via inner iterations, the function V is
approximated via outer iterations.

We approximate the function q (x, s) as a piecewise constant function with respect to the
pseudo frequency s. That is, we assume that there exists a partition s = sN < sN−1 < ... <
s1 < s0 = s of the interval [s, s] with the sufficiently small grid step size h = si−1 − si such
that q (x, s) = qn (x) for s ∈ (sn, sn−1] . We approximate the boundary condition (3.8), (3.9)
as

qn|Γ1 = ψ0,n(x), ∂zqn|Γ1 = ψ1,n(x), ∂νqn|Γi
= (snsn−1)

−1 , i = 2, 3, 4. (3.10)

where ψ0,n, ψ1,n and (snsn−1)
−1 are averages of functions ψ0, ψ1 and s−1 over the interval

(sn, sn−1) . Rewrite (3.7) for s ∈ (sn, sn−1] using this piecewise constant approximation. Then
multiply the resulting approximate equation by the s-dependent Carleman Weight Function
(CWF) of the form

Cn,µ (s) = exp [−µ |s− sn−1|] , s ∈ (sn, sn−1] ,

and integrate with respect to s ∈ (sn, sn−1] . We obtain the following approximate equation
in Ω for the function qn (x) , n = 1, ..., N

Ln (qn) : = ∆qn − A1n

(
h

n−1∑
j=1

∇qj −∇Vn

)
∇qn = (3.11)

= Bn (∇qn)2 − A2,nh2

(
n−1∑
j=1

∇qj

)2

+ 2A2,n∇Vn

(
h

n−1∑
j=1

∇qj

)
− A2,n (∇Vn)2 .

We have intentionally inserted dependence of the tail function Vn from the iteration number
n here because we will approximate these functions iteratively. In (3.11) A1,n = A1,n (µ, h) ,
A2,n = A2,n (µ, h) , Bn = Bn (µ, h) are certain numbers depending on µ and h, see specific
formulas in [1]. It is convenient to set in (3.11)

q0 ≡ 0. (3.12)

Since boundary value problems (3.10), (3.11) are actually generated by equation (3.7),
which contains Volterra-like s-integrals, then these problems can be solved sequentially start-
ing from q1. Since boundary conditions (3.10) are over-determined ones, it is natural to apply
a version of the QRM here, because the QRM finds “least squares” solutions in the case of
over-determined boundary conditions.

Remark 3.2. As to (3.11), an important point is that |Bn (µ, h)| ≤ 8s2/µ for µh ≥ 1
[1]. We have used µ = 50 in our computations. Hence, assuming that µ >> 1,we ignore the
nonlinear term in (3.11) below via setting Bn (∇qn)2 := 0. This allows us to solve a linear
problem for each qn.

4 The Algorithm

Our algorithm reconstructs iterative approximations cn,k (x) ∈ C1
(
Ω

)
of the function c (x).

On the other hand, to iterate with respect to the tails, we need to solve the forward problem
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(2.6), (2.7) in R2 on each iterative step. To do this, we extend each function cn,k (x) outside
of the Ω, so that the resulting function ĉn,k (x) = 1 outside of Ω, ĉn,k (x) = cn,k (x) in a
subdomain Ω′ ⊂⊂ Ω and ĉn,k ∈ C1 (R2). In addition, to ensure the ellipticity of the operator
in (2.6), we need to have ĉn,k (x) ≥ const. > 0 in R2. So, we now describe a rather standard
procedure of such an extension. Choose a function χ (x) ∈ C∞ (R2) such that

χ (x) =





1 in Ω′,
between 0 and 1 in Ω�Ω′,

0 outside of Ω.

The existence of such functions χ (x) is well known from the Real Analysis course. Define the
target extension of the function cn,k as ĉn,k (x) := (1− χ (x))+χ (x) cn,k (x) ,∀x ∈ R2. Hence,

ĉn,k (x) = 1 outside of Ω and ĉn,k ∈ C1 (R2). Let Ω̃ ⊆ Ω be a subdomain and Ω′ ⊂⊂ Ω̃.

Suppose that cn,k (x) ≥ 1/2 in Ω̃. Then ĉn,k (x) ≥ 1/2 in Ω. Indeed, ĉn,k (x) − 1/2 =
(1− χ (x)) /2 + χ (x) (cn,k (x)− 1/2) ≥ 0.

4.1 The iterative process

We now present our algorithm. On each iterative step n we approximate both the function
qn and the tail function Vn, see Remark 3.1. Each iterative step requires an approximate
solution of the boundary value problem (4.10), (4.11). This is done via the QRM, which is
described in subsection 4.2. First, we choose an initial tail function V1,1 (x) ∈ C2

(
Ω

)
and use

(3.12). As to the choice of V1,1, it was taken as V1,1 ≡ 0 in [1]. In later publications [2, 3, 4, 12]
V1,1 was taken as the one, which corresponds to the case c (x) ≡ 1, where c (x) := 1 is the
value of the unknown coefficient outside of the domain of interest Ω, see (2.3). An observation
was that while both these choices give the same result, the second choice leads to a faster
convergence and both choices satisfy conditions of the global convergence theorem. For each
qn we have inner iterations with respect to tails.

Step nk, where n, k ≥ 1. Recall that by (3.12) q0 ≡ 0. Suppose that functions qi ∈
H5 (Ω) , i = 1, ..., n − 1 and tails V1, ..., Vn−1, Vn,k ∈ C2

(
Ω

)
are constructed. To construct

the function qn.k, we use the QRM (subsection 4.2) to find an approximate solution of the
following boundary value problem in Ω

∆qn,k − A1n

(
h

n−1∑
j=1

∇qj −∇Vn,k

)
∇qn,k =

−A2,nh
2

(
n−1∑
j=1

∇qj

)2

+ 2A2,n∇Vn,k ·
(

h

n−1∑
j=1

∇qj

)
− A2,n (∇Vn,k)

2 , (4.1)

qn,k|Γ1 = ψ0,n(x), ∂zqn,k|Γ1 = ψ1,n(x), ∂νi
qn,k|Γi

= (snsn−1)
−1 , i = 2, 3, 4.

Hence, we obtain the function qn,k ∈ H5 (Ω) . By the embedding theorem qn,k ∈ C3
(
Ω

)
. To

reconstruct an approximation cn,k (x) for the function c (x) , we first, use (3.5) to calculate
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an approximation for v (x, sn) as

vn,k (x, sn) = −hqn,k (x)− h

n−1∑
j=1

qj (x) + Vn,k (x) . (4.2)

Next, using (3.1), we set for n ≥ 1

cn,k (x) = ∆vn,k (x, sn) + s2
n |∇vn,k (x, sn)|2 ,x ∈ Ω. (4.3)

Assuming that the exact solution of our Inverse Problem c∗ ≥ 1 in R2 (see (2.3)), it follows
from Theorem 6.1 that cn,k (x) ≥ 1/2 in Ωκ ⊂ Ω, where the subdomain Ωκ is defined in
section 5. Next, we construct the function ĉn,k (x) as in the beginning of this section. Hence,
by (4.1)-(4.3) the function ĉn,k∈Cγ (R2) . Next, we solve the forward problem (2.6), (2.7)
with c (x) := ĉn,k (x) for s := s and obtain the function wn.k (x, s) . Next, we set for the new
tail

Vn,k+1 (x) =
ln wn.k (x, s)

s2 ∈ C2
(
Ω

)
.

We continue these iterations with respect to tails until convergence occurs. We cannot prove
this convergence. However, we have always observed numerically that functions qn,k, cn,k and
Vn,k have stabilized at k := m for a certain m. So, assuming that they are stabilized, we set

cn (x) := cn,m (x) , qn (x) := qn,m (x) , Vn (x) := Vn,m (x) := Vn+1,1 (x) for x ∈ Ω.

We stop iterations with respect to n at n := N .

4.2 The quasi-reversibility method

Let Hn,k (x) be the right hand side of equation (4.1) for n ≥ 1. Denote

an,k (x) = A1,n

(
h

n−1∑
j=1

∇qj −∇Vn,k

)
(4.4)

Then the boundary value problem (4.1) can be rewritten as

∆qn,k − an,k · ∇qn,k = Hn,k, (4.5)

qn,k|Γ1 = ψ0,n(x), ∂zqn,k|Γ1 = ψ1,n(x), ∂νi
qn,k|Γi

= (snsn−1)
−1 , i = 2, 3, 4. (4.6)

Since we have two boundary conditions rather then one at Γ1, we find the “least squares”
solution of the problem (4.5), (4.6) via the QRM. Specifically, we minimize the following
Tikhonov functional

Jα
n,k(u) = ‖∆u− an,k · ∇u−Hn,k‖2

L2(Ω) + α ‖u‖2
H5(Ω) , (4.7)
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subject to boundary condition (4.6), where the small regularization parameter α ∈ (0, 1).
Let u (x) be the minimizer of this functional. Then we set qn,k (x) := u (x) . Local minima do
not occur here because (4.7) is the sum of square norms of two expressions, both of which
are linear with respect to u, also see Lemmata 5.2 and 5.3 in section 5. The second term in
the right hand side of (4.7) is the Tikhonov regularization term. We use the H5 (Ω)−norm
here in order to ensure that the minimizer u := qn,k ∈ C3

(
Ω

)
, which implies in turn that

functions ĉn,k ∈ C1 (R2).
Remarks 4.1. 1. In our computations we relax the smoothness assumptions via consid-

ering the H2 (Ω)−norm in the second term in the right hand side of (4.7). This is possible
because in computations we actually work with finite dimensional spaces. Specifically, we
work with finite differences and do not use “overly fine” mesh, which means that dimensions
of our “computational spaces” are not exceedingly large. In this case all norms are equivalent
not only theoretically but practically as well. To the contrary, if the mesh would be too fine,
then the corresponding space would be “almost” infinite dimensional.

2. One may pose a question on why we would not avoid the QRM via using just one
of two boundary conditions at Γ1 in (4.6), since we have the Neumann boundary condition
at ∂Ω�Γ1. However, in this case we would be unable to prove the C3− smoothness of the
function qn,k, because the boundary ∂Ω is not smooth. In the case of the Dirichlet boundary
condition only qn,k|Γ1 we would be unable to prove smoothness even assuming that ∂Ω ∈ C∞,
because of the Neumann boundary condition at the rest of the boundary. Besides, in our
convergence estimate of the QRM in Theorem 5.1 we do not use the boundary condition
(4.6) at Γ4. Finally, since conditions ∂νi

qn,k|Γi
= (snsn−1)

−1 are independent on the target
coefficient, it seems to be that two boundary conditions rather than one at Γ1 should provide
a better reconstruction.

5 Estimates for the QRM

For brevity we scale variables in such a way that in sections 5 and 6 Ω = (−1/4, 1/4)×(0, 1/2).
In sections 5 and 6 C = C (Ω) > 0 denotes different positive constants depending only on the
domain Ω. Let λ, ν > 2 be two parameters. Introduce another Carleman Weight Function
(CWF) K(z),

K (z) := Kλ,ν(z) = exp(λρ−ν), where ρ (z) = z +
1

4
, z > 0.

Note that ρ (z) ∈ (0, 3/4) in Ω and ρ (z) |Γ4= 3/4. Let the number κ ∈ (1/3, 1) . Denote
Ωκ = {x ∈ Ω : ρ (z) < 3κ/4} . Hence, if κ1 < κ2, then Ωκ1 ⊂⊂ Ωκ2 . Also, Ω1 = Ω and
Ω1/3 = ∅. Lemma 5.1 established the Carleman estimate for the Laplace operator. Although
such estimates are well known [13, 16], we still need to prove this lemma, because we use a
non-standard CWF and also because when integrating the pointwise Carleman estimate over
Ω, we should take into account that only one, rather than conventional two, zero boundary
condition (5.1) is given at both Γ2 and Γ3. These were not done before.
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Lemma 5.1. Fix a number ν := ν0 (Ω) > 2. Consider functions u ∈ H3 (Ω) such that
(see (2.10a-c))

u |Γ1= uz |Γ1= ux |Γ2= ux |Γ3= 0. (5.1)

Then there exists a constant C = C (Ω) > 0 such that for any λ > 2 the following Carleman
estimate is valid for all these functions

∫

Ω

(∆u)2K2dxdz ≥ C

λ

∫

Ω

(
u2

xx + u2
zz + u2

xz

)
K2dxdz + Cλ

∫

Ω

[
(∇u)2 + λ2u2

]
K2dxdz

−Cλ3 ‖u‖2
H3(Ω) exp

[
2λ

(
4

3

)ν0
]

.

Proof. It is convenient to assume initially that ν > 2 is an arbitrary number. We have

(∆u)2 K2 =
(
u2

xx + u2
zz + 2uxxuzz

)
K2 =(

u2
xx + u2

zz

)
K2 + ∂x

(
2uxuzzK

2
)− 2uxuzzxK

2 + 4λνρ−ν−1uxuzzK
2

=
(
u2

xx + u2
zz + 2u2

xz

)
K2 + ∂x

(
2uxuzzK

2
)

+ ∂z

(−2uxuxzK
2
)

+4λνρ−ν−1 (uxuzz − uxuzx) K2.

Since

4λνρ−ν−1 (uxuzz − uxuxz) K2 ≥ −1

2

(
u2

zz + u2
xz

)
K2 − 8λ2ν2ρ−2ν−2u2

xK
2,

then we obtain that

(∆u)2 K2 ≥ 1

2

(
u2

xx + u2
zz + u2

xz

)
K2 − 8λ2ν2ρ−2ν−2u2

xK
2 (5.2)

+∂x

(
2uxuzzK

2
)

+ ∂z

(−2uxuxzK
2
)
.

Consider a new function v = u ·K. Substituting u = v ·K−1, we obtain

(∆u)2ρν+1K2 = (y1 + y2 + y3)
2ρν+1 ≥ 2y2(y1 + y3)ρ

ν+1, (5.3)

y1 = ∆v, y2 = 2λνρ−ν−1vz, y3 = (λν)2ρ−2ν−2(1− ν + 1

λν
ρν)v.

We have
2y1y2ρ

ν+1 = ∂x (4λνvzvx) + ∂z

[
2λν

(
v2

z − v2
x

)]
. (5.4)

Next, by (6.3)

2y2y3ρ
ν+1 = 4(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
vzv

= ∂z

[
2(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
v2

]
(5.5)

+4(λν)3 (ν + 1) ρ−2ν−3

(
1− ν + 2

2λν
ρν

)
v2

≥ 2λ3ν4ρ−2ν−3v2 + ∂z

[
2(λν)3

(
ρ−2ν−2 − ν + 1

λν
ρ−ν−2

)
v2

]
.
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Summing up (5.4) and (5.5), using the backwards substitution u = v ·K and using (5.3), we
obtain

(∆u)2ρν+1K2 ≥ 2λ3ν4ρ−2ν−3u2K2 + ∂xU1 + ∂zU2, (5.6)

where the following estimates are valid for functions U1 and U2

|U1| ≤ Cλν |ux|
(|uz|+ λνρ−ν−1 |u|) K2, (5.7)

|U2| ≤ Cλν
(|∇u|2 + λ2ν2ρ−2ν−2u2

)
K2.

Since we do not have the term λ (∇u)2 K2 in the right hand side of (5.6),we continue as
follows:

−λνu ·∆uK2 = ∂x

(−λνuuxK
2
)

+ ∂z

(−λνuuzK
2
)

+ λν (∇u)2 K2 − 2λ2ν2ρ−ν−1uzuK2

= λν (∇u)2 K2 − 2λ3ν3ρ−2ν−2u2K2 + ∂xU3 + ∂zU4,

Hence,

−λνu∆uK2 = λν (∇u)2 K2 − 2λ3ν3ρ−2ν−2u2K2 + ∂xU3 + ∂zU4, (5.8)

U3 = −λνuuxK
2, |U4| ≤ C

(
λνu2

z + λ2ν2ρ−ν−1u2
)
K2.

Add (6.8) to (6.6) and take into account (6.7) as well as the fact that 2λ3ν4ρ−2ν−3 >
4λ3ν3ρ−2ν−2 for ν > 2. Likewise, by the Cauchy inequality−λνu·∆uK2 ≤ λ2ν2ρ−ν−1u2K2/2+
(∆u)2ρν+1K2/2. Fix the number ν := ν0 > 2. Then we can incorporate ν0 in C and also we
can regard that ρν0+1 < C, since ρν0+1 < 1. Hence, we obtain

(∆u)2K2 ≥ Cλ
[
(∇u)2 + λ2u2

]
K2 + ∂xU5 + ∂zU6, (5.9)

|U5| ≤ Cλ |ux| (|uz|+ λ |u|) K2, |U6| ≤ Cλ
[|∇u|2 + λ2u2

]
K2.

Now we set in (5.2) ν := ν0, divide it by λd with a positive constant d = d (ν0) such that
4λν2

0ρ
−2ν0−2/d ≤ C/2 and next add it to (5.9). Then we can choose a constant obtain the

following pointwise Carleman estimate for the Laplace operator in the domain Ω

(∆u)2K2 ≥ C

λ

(
u2

xx + u2
zz + u2

xz

)
K2 + Cλ

[
(∇u)2 + λ2u2

]
K2 + ∂xU7 + ∂zU8, (5.10)

|U7| ≤ Cλ |ux| (|uzz|+ |uz|+ λ |u|) K2, |U8| ≤ Cλ
[|uxz|2 + |∇u|2 + λ2u2

]
K2.

We now integrate (5.10) over the rectangle Ω using the Gauss-Ostrogradsky formula. It
is important that because of (5.1) and the estimate for |U7| , resulting boundary integrals
over Γ1, Γ2 and Γ3 will be zero. Finally, to obtain the estimate of this lemma, we note that

K2

(
1

2

)
= K2 (z) |Γ4= min

Ω
K2 (z) = exp

[
2λ

(
4

3

)ν0
]

.

Thus, ∫

Γ4

λ
[|uxz|2 + |∇u|2 + λ2u2

]
K2dx ≤ Cλ3 ‖u‖2

H3(Ω) exp

[
2λ

(
4

3

)ν0
]

. ¤
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We now establish both existence and uniqueness of the minimizer of the functional (4.7).
Lemma 5.2. Suppose that in (4.7) Hn,k ∈ L2 (Ω) and that there exists a function

Φ ∈ H5 (Ω) satisfying boundary conditions (4.6), except of maybe at Γ4. Assume that in

(4.4) both components a
(j)
n,k, j = 1, 2 of the vector function an,k are such that a

(j)
n,k ∈ C

(
Ω

)

and
∥∥∥a

(j)
n,k

∥∥∥
C(Ω)

≤ 1. Then there exists unique minimizer uε ∈ H5 (Ω) of the functional (5.7).

Furthermore,

‖uε‖H5(Ω) ≤
C√
α

(
‖Hn,k‖L2(Ω) + ‖Φ‖H5(Ω)

)
.

Proof. We assume here that
∥∥∥a

(j)
n,k

∥∥∥
C(Ω)

≤ 1 for the purpose of Theorem 6.1 only, since

actually we can impose any a priori upper estimate on these numbers. Let u be a minimizer
of Jα

n,k(u) satisfying boundary conditions (4.6). Denote U = u− Φ. The function U satisfies
boundary conditions (5.1). By the variational principle

(Gn,kU,Gn,kv) + α [U, v] = (Hn,k −Gn,kΦ, Gn,kv) ,

for all functions v ∈ H5 (Ω) satisfying boundary conditions (5.1). Here

Gn,kU := ∆U − an,k · ∇U. (5.11)

Here and below (·, ·) denotes the scalar product in L2 (Ω) and [·, ·] denotes the scalar product
in H5 (Ω). The rest of the proof follows from the Riesz theorem. ¤

In the course of the proof of Theorem 6.1 we will need
Lemma 5.3. Consider an arbitrary function g ∈ H5 (Ω) . Let the function u ∈ H5 (Ω)

satisfies boundary conditions (5.1) as well as the variational equality

(Gn,ku,Gn,kv) + α [u, v] = (Hn,k, Gn,kv) + α [g, v] , (5.12)

for all functions v ∈ H5 (Ω) satisfying (5.1). Then

‖u‖H5(Ω) ≤
‖Hn,k‖L2(Ω)√

α
+ ‖g‖H5(Ω) .

Proof. Set in (5.12) v := u and use the Cauchy-Schwarz inequality. ¤
Theorem 5.1. Consider an arbitrary function g ∈ H5 (Ω) . Let u ∈ H5 (Ω) be the func-

tion satisfying (5.1) and (5.12). Let
∥∥∥a

(j)
n,k

∥∥∥
C(Ω)

≤ 1, where a
(j)
n,k, j = 1, 2 are two components

of the vector function an,k in (5.4). Choose an arbitrary number κ such that κ ∈ (κ, 1) .
Consider the numbers b1, b2,

b1 =
1

2
(
1 + (1− κν0) (3κ)−ν0

) <
1

2
, b2 =

1

2
− b1 > 0,
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where ν0 is the parameter of Lemma 5.1. Then there exists a sufficiently small number
α0 = α0 (ν0,κ,κ) ∈ (0, 1) such that for all α ∈ (0, α0) the following estimate holds

‖u‖H2(Ωκ) ≤ C
‖Hn,k‖L2(Ω)

αb1
+ αb2 ‖g‖H5(Ω) .

Proof. Setting (5.12) v := u and using the Cauchy-Schwarz inequality, we obtain

‖Gn,ku‖2
L2(Ω) ≤ F 2 := ‖Hn,k‖2

L2(Ω) + α ‖g‖2
H5(Ω) . (5.13)

Note that K2 (0) = maxΩ K2 (z) = exp (2λ · 4ν0) . Hence, K−2 (0) ‖K ·Gn,ku‖2
L2(Ω) ≤ F 2.

Clearly (Gn,ku)2 K2 ≥ (∆u)2 K2/2− C (∇u)2 K2. Hence,

∫

Ω

(∆u)2 K2dxdz ≤ C

∫

Ω

(∇u)2 K2dxdz + K2 (0) F 2. (5.14)

Applying Lemma 5.1 to (5.14), choosing λ > 1 sufficiently large and observing that the term
with (∇u)2 in (5.14) will be absorbed for such λ, we obtain

λK2 (0) F 2 + Cλ4 ‖u‖2
H3(Ω) exp

[
2λ

(
4

3

)ν0
]

≥ C

∫

Ω

(
u2

xx + u2
zz + u2

xz + |∇u|2 + u2
)
K2dxdz

≥ C

∫

Ωκ

(
u2

xx + u2
zz + u2

xz + |∇u|2 + u2
)
K2dxdz

≥ C exp

[
2λ

(
4

3κ

)ν0
]
‖u‖2

H2(Ω) .

Comparing the first line with the last in this sequence of inequalities, dividing by the expo-
nential term in the last line, taking λ ≥ λ0 (C,κ,κ) > 1 sufficiently large and noting that
for such λ

λ4 exp

[
−2λ

(
4

3κ

)ν0
]

< exp

[
−2λ

(
4

3κ

)ν0
]

,

we obtain a stronger estimate,

‖u‖2
H2(Ωκ) ≤ CK2 (0) F 2 + C ‖u‖2

H3(Ω) exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]
(5.15)

Applying Lemma 5.3 to the second term in the right hand side of (5.15), we obtain

‖u‖2
H2(Ωκ) ≤ CF 2

{
exp (2λ · 4ν0) + α−1 exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]}
. (5.16)
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Since α ∈ (0, α0) and α0 is sufficiently small, we can choose sufficiently large λ = λ (α) such
that

exp (2λ · 4ν0) = α−1 exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]
. (5.17)

We obtain from (5.17) that 2λ · 4ν0 = ln α−2b1 . Hence, (5.13) and (5.15)-(5.17) imply the
validity of this theorem. ¤

6 Global Convergence Theorem

We follow the concept of Tikhonov for ill-posed problems [18]. By this concept, one should
assume that there exists an “ideal” exact solution of an ill-posed problem with the “ideal”
exact data. Next, one should prove that the regularized solution is close to the exact one.

6.1 Exact solution

First, we need to introduce the definition of the exact solution. We assume that there
exists a coefficient c∗ (x) satisfying conditions (2.3), (2.4), and this function is the unique
exact solution of our Inverse Problem with the exact data ϕ∗0 (x, s) , ϕ∗1 (x, s) in (2.11), where
ϕ∗0 (x, s) = w∗ (x, 0, s) , ϕ∗1 (x, s) = w∗

z (x, 0, s) , ∀s ∈ [s, s] . Here the function w∗ (x, s) ∈
C5+γ (R2� {|x− x0| < ε}) × C2([s, s]), ∀ε > 0, ∀γ ∈ (0, 1) ,∀s ≥ s is the solution of the
forward problem (2.6), (2.7) with c (x) := c∗ (x). Let

v∗ (x, s) = s−2 ln [w∗ (x, s)] , q∗ (x, s) = ∂sv
∗ (x, s) , V ∗ (x) = v∗ (x, s) .

Hence, q∗ (x, s) ∈ C5+γ (Ω)× C1 [s, s]. By (3.1)

c∗ (x) = ∆v∗ (x, s) + s2 |∇v∗ (x, s)|2 ,∀s ∈ [s, s]. (6.1)

The function q∗ satisfies equation (3.7) where V is replaced with V ∗. Boundary conditions
for q∗ are the same as ones (3.8), (3.9), where functions ψ0 (x, s) , ψ1 (x, s) are replaced with
the exact boundary conditions ψ∗0 (x, s) , ψ∗1 (x, s) for s ∈ [s, s] ,

q∗|Γ1 = ψ∗0 (x, s) , q∗z |Γ1 = ψ∗1 (x, s) , ∂νi
q∗ |Γi

= s−2, i = 2, 3, 4. (6.2)

We call the function q∗ (x, s) the exact solution of the problem (3.7)-(3.9) with the exact
boundary conditions (6.2). For n ≥ 1 let q∗n, ψ

∗
0,n and ψ

∗
1,n be averages of functions q∗, ψ∗0

and ψ∗1 over the interval (sn, sn−1) . Hence, it is natural to assume that

q∗0 ≡ 0, max
1≤n≤N

‖q∗n‖H5(Ω) ≤ C∗, C∗ = const. > 1, (6.3)

∥∥∥ψ
∗
0,n − ψ0,n

∥∥∥
H2(Γ1)

+
∥∥∥ψ

∗
1,n − ψ1,n

∥∥∥
H1(Γ1)

≤ C∗ (σ + h) , (6.4)

max
s∈[sn,sn−1]

‖q∗n − q∗‖H5(Ω) ≤ C∗h (6.5)
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Here the constant C∗ = C∗
(
‖q∗‖H5(Ω)×C1[s,s]

)
depends only on the C5

(
Ω

) × C1 [s, s] norm

of the function q∗ (x, s) and σ > 0 is a small parameter characterizing the level of the error
in the data ψ0 (x, s) , ψ1 (x, s) . We use the H5 (Ω) norm because of the quasi-reversibility,
see (4.7). The step size h = sn−1 − sn can also be considered as a part of the error in the
data. In addition, because of (6.2)

q∗n|Γ1 = ψ
∗
0,n(x), ∂zq

∗
n|Γ1 = ψ

∗
1,n(x), ∂νq

∗
n|Γi

= (snsn−1)
−1 , i = 2, 3, 4. (6.6)

The function q∗n satisfies the following analogue of equation (3.11)

∆q∗n − A1,n

(
h

n−1∑
i=1

∇q∗i (x)−∇V ∗
)
· ∇q∗n = −A2,nh

2

(
n−1∑
i=1

∇q∗i (x)

)2

+ 2A2,n∇V ∗ ·
(

h

n−1∑
i=1

∇q∗i (x)

)
− A2,n (∇V ∗)2 + Fn (x, h, µ) .

(6.7)

Since we have dropped the nonlinear term Bn (∇qn)2 in (4.1) (Remark 3.2), we incorporate
this term in the error function Fn (x, h, µ) ∈ L2 (Ω) in (6.7). So, it is reasonably to assume
that

max
µh≥1

‖Fn (x, h, ξ, µ) ‖L2(Ω) ≤ C∗ (
h + µ−1

)
. (6.8)

6.2 Global convergence theorem

Assume that
s > 1, µh ≥ 1. (6.9)

Then [1]
max

1≤n≤N
{|A1,n|+ |A2,n|} ≤ 8s2. (6.10)

We assume for brevity that
ψ
∗
0,n = ψ0,n, ψ

∗
1,n = ψ1,n. (6.11)

The proof of Theorem 6.1 for the more general case (6.4) can easily be extended along the
same lines, although it would take more space. Still, we keep the parameter σ of (6.4) as a
part of the error in the data and incorporate it in the function Fn. Thus, we obtain instead
of (6.8)

max
µh≥1

‖Fn (x, h, ξ, µ) ‖L2(Ω) ≤ C∗ (
h + µ−1 + σ

)
. (6.12)

We also recall that by the embedding theorem H5 (Ω) ⊂ C3
(
Ω

)
and

‖f‖C3(Ω) ≤ C ‖f‖H5(Ω) ,∀f ∈ H5 (Ω) . (6.13)

Theorem 6.1. Let the exact coefficient c∗ (x) satisfy conditions (2.3), (2.4). Suppose
that conditions (6.2)-(6.9), (6.11) and (6.12) are satisfied. Assume that for each n ∈ [1, N ]
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there exists a function Φn ∈ H5 (Ω) satisfying boundary conditions (4.6), except of maybe
at Γ4. For any function c ∈ Cγ (R2) such that c (x) ≥ 1/2, c (x) = 1 in R2�Ω consider
the solution wc (x, s) ∈ C2+γ (R2� {|x− x0| < θ}) ,∀θ > 0 of the problem (2.6), (2.7). Let
Vc (x) = s−2 ln wc (x, s) ∈ C2+γ (R2� {|x− x0| < θ}) , θ > 0 be the corresponding tail func-
tion and V1,1 (x, s) ∈ C2

(
Ω

)
be the initial tail function. Suppose that the cut-off pseudo

frequency s is so large that the following estimates hold

‖V ∗‖C1(Ω) ≤
ξ

2
, ‖V1,1‖C1(Ω) ≤

ξ

2
, ‖Vc‖C1(Ω) ≤

ξ

2
, (6.14)

for any such function c (x) . Here ξ ∈ (0, 1) is a sufficiently small number. Introduce the
parameter β := s−s, which is the total length of the s-interval covered in our algorithm. Let
α0 be so small that it satisfies the corresponding condition of Theorem 5.1 . Let α ∈ (0, α0)
be the regularization parameter of the QRM. Assume that numbers h, σ, ξ, β, are so small
that

h + µ−1 + σ + ξ ≤ β, (6.15)

β ≤
√

α

136s2 (C∗)2 C1

, (6.16)

where the number b2 was introduced in Theorem 5.1 and the constant C1 depends only on
the domain Ω. We assume without loss of generality that C1 ∈ (1, C∗). Then the following
estimates hold for all α ∈ (0, α0) and all n ∈ [1, N ]

‖qn‖H5(Ω) ≤ 3C∗, (6.17)

‖qn − q∗n‖H2(Ωκ) ≤ 2C∗αb2 , (6.18)

‖cn − c∗‖C1(Ωκ) ≤ 2C∗αb2 , cn ≥ 1

2
in Ωκ. (6.19)

Remarks 6.1.
1. Because of the term s−2 in inequalities (6.16), there is a discrepancy between these

inequalities and (3.6). This discrepancy was discussed in detail in subsection 3.3 of [12] and
in subsection 6.3 of [2], also see Introduction above. A new mathematical model proposed
in these references allows the parameter ξ in (6.14) to become infinitely small independently
on the truncation pseudo frequency s, also see discussion in the Introduction section above.
We point out that this mathematical model was verified on experimental data. Indeed,
actually the derivatives ∂sVn,k instead of functions Vn,k were used in the numerical imple-
mentation of [12], and this implementation was done prior experimental data were actually
measured, see subsections 7.1 and 7.2 of [12]. It follows from (3.6) that one should expect
that ‖∂sVn,k‖C2(Ω) << ‖Vn,k‖C2(Ω) = O (1/s) , s → ∞. Finally, we believe that, as in any

applied problem, the independent verification on blind experimental data in [12] represents
a valuable justification of this new mathematical model.

2. In our definition “global convergence” means that, given the above new mathematical
model, there is a rigorous guarantee that a good approximation for the exact solution can
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be obtained, regardless on the availability of a good first guess about this solution. Further-
more, such a global convergence analysis should be confirmed by numerical experiments. So,
Theorem 6.1, complemented by our numerical results below, satisfies these requirements.

3. The assumption of the smallness of the parameter β = s− s is a natural one because
equations (4.1) are actually generated by equation (3.7), which contains the nonlinearity in
Volterra-like integrals. It is well known from the standard Ordinary Differential Equations
course that solutions of nonlinear integral Volterra-like equations might have singularities on
large intervals.

Proof of Theorem 6.1. Denote q̃n,k = qn,k − q∗n, Ṽn,k = Vn,k − V ∗. By (6.14)

∥∥∥Ṽn,k

∥∥∥
C1(Ω)

≤ ξ. (6.20)

This proof basically consists in estimating norms ‖q̃n,k‖Hi(Ωκ) from the above. Compared

with proofs in [1, 2], the main difficulty here is that we have to analyze integral identities
resulting from the QRM, instead of pointwise equations of [1, 2]. Hence, we use results of
Theorem 5.1 here instead of the Schauder theorem of [1]. Recall that (·, ·) denotes the scalar
product in L2 (Ω) and [·, ·] denotes the scalar product in H5 (Ω).

Since by (3.12) and (6.5) q0 ≡ q∗0 ≡ 0, then (6.17) and (6.18) are true for n = 0. Assume
that they are true for functions qj with j ≤ n−1, n ≥ 1. Below we will prove them for j := n.
Denote Q∗

n = q∗n − Φn, Qn,k = qn,k − Φn. Below in this proof v ∈ H5 (Ωn) is an arbitrary
function satisfying (5.1). Let G∗

n,k be the operator in the left hand side of (6.7). Let H∗
n,k be

the right hand side of (6.7). Substituting in (6.7) q∗n := Q∗
n + Φn, multiplying both sides by

the function Gn,kv, integrating over Ω and then adding to both sides α [q∗n, v] , we obtain

(
G∗

n,kQ
∗
n, Gn,kv

)
+ α [Q∗

n + Φn, v] =
(
H∗

n,k −Gn,kΦn, Gn,kv
)

+ α [q∗n, v] . (6.21)

It follows from the proof of Lemma 5.2 that

(Gn,kQn,k, Gn,kv) + α [Qn,k + Φn, v] = (Hn,k −Gn,kΦn, Gn,kv) . (6.22)

Subtracting (6.21) from (6.22), we obtain

(
Gn,kQn,k −G∗

n,kQ
∗
n, Gn,kv

)
+ α [q̃n,k, v] =

(
Hn,k −H∗

n,k, Gn,kv
)− α [q∗n, v] , (6.23)

Elementary calculations show that (6.23) is equivalent with

(Gn,kq̃n,k, Gn,kv) + α [q̃n,k, v] = (Pn.k, Gn,kv)− α [q∗n, v] . (6.24)

In addition, it follows from (6.11) that

q̃n,k |Γ1= ∂z q̃n,k |Γ1= ∂xq̃n,k |Γ2= ∂xq̃n,k |Γ3= 0. (6.25)
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The function Pn.k in (6.24) is

Pn.k (x) = −A1,n

(
h

n−1∑
j=1

∇q̃j − Ṽn,k

)
∇q∗n

−A2,n

(
h

n−1∑
j=1

∇q̃j

)(
h

n−1∑
j=1

(∇qj +∇q∗j
)− 2∇Vn,k

)
(6.26)

+A2,n∇Ṽn,k ·
(

2h
n−1∑
j=1

∇q∗j − (∇Vn,k +∇V ∗)

)
− Fn.

It follows from (6.14)-(6.16) as well as from (6.17) for qj, j ≤ n− 1 that components of the
vector function an,k in the operator Gn,k satisfy the corresponding condition of Theorem 5.1,∥∥∥a

(i)
n,k

∥∥∥
C(Ω)

≤ 1, i = 1, 2. Hence, Lemma 5.3 and Theorem 5.1, (6.3), (6.24) and (6.25) imply

that

‖q̃n,k‖H5(Ω) ≤
‖Pn,k‖L2(Ω)√

α
+ C∗, (6.27)

‖q̃n,k‖H2(Ωκ) ≤ C1

‖Pn,k‖L2(Ω)

αb1
+ αb2C∗. (6.28)

It follows from (6.27) and (6.28) that we now need to estimate the norm ‖Pn,k‖L2(Ω)

from the above. First, using (6.3), (6.10), (6.14), (6.15) as well as (6.17) and (6.18) for
qj, j ≤ n− 1, we obtain

∥∥∥∥∥−A1,n

(
h

n−1∑
j=1

∇q̃j − Vn,k

)
∇q∗n

∥∥∥∥∥
L2(Ω)

≤ 24s2 (C∗)2 C1β. (6.29)

Similarly we obtain

∥∥∥∥∥A2,n

(
h

n−1∑
j=1

∇q̃j

)(
h

n−1∑
j=1

(∇qj +∇q∗j
)− 2∇Vn,k

)∥∥∥∥∥
L2(Ω)

≤ 80s2 (C∗)2 C1β. (6.30)

Likewise,

∥∥∥∥∥A2,n∇Ṽn,k ·
(

2h
n−1∑
j=1

∇q∗j − (∇Vn,k +∇V ∗)

)
− Fn

∥∥∥∥∥
L2(Ω)

≤ 32s2C∗C1β. (6.31)

Summing up (6.29)-(6.31), we obtain ‖Pn,k‖L2(Ω) ≤
[
136s2 (C∗)2 C1

]
β. Hence, (6.16) implies

that
‖Pn,k‖L2(Ω) ≤

√
α. (6.32)
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Hence, using (6.27), (6.28) and (6.32), we obtain

‖q̃n,k‖H5(Ω) ≤ 2C∗, ‖q̃n,k‖H2(Ωκ) ≤ 2C∗αb2 . (6.33)

The second inequality (6.33) proves (6.18). To prove (6.17), we use the first inequality (6.33)
in ‖qn,k‖H5(Ω) ≤ ‖q̃n,k‖H5(Ω) + ‖q∗n‖H5(Ω) ≤ 3C∗. As soon as (6.17) and (6.18) are established,

the proof of the first inequality (6.19) is straightforward. To do so, one needs to subtract (6.1)
from (4.3) and then use (6.13), (6.17), (6.18), (4.2) and (6.5) in a straightforward manner.
The second inequality (6.19) follows from (2.3) and the smallness condition imposed on the
number α0. ¤

7 A Simplified Mathematical Model of Imaging of An-

tipersonnel Plastics Land Mines

The first main simplification of our model is that we consider the 2-D instead of the 3-D
case. Second, we ignore the air/ground interface, assuming that the governing PDE is valid
on the entire 2-D plane. The third simplification is that we consider a plane wave instead
of the point source in (2.1). This is because our current computer code is designed only for
the plane wave. As it is always the case of sophisticated computer codes, it takes quite an
effort to re-design it for the case of a point source and this work is currently underway. The
point source was considered above only for the convenience of analytical derivations due to
Lemma 2.1.

Let the ground be {x = (x, z) : z > 0} ⊂ R2. Suppose that a polarized electric field is
generated by a plane wave, which is initialized at the point (0, z0), z0 < 0 at the moment of
time t = 0. The following hyperbolic equation can be derived from Maxwell equations [7]

εr(x)utt = ∆u, (x, t) ∈ R2 × (0,∞) , (7.1)

u (x, 0) = 0, ut (x, 0) = δ
(
z − z0

)
, (7.2)

where the function u(x, t) is a component of the electric field. Recall that εr (x) is the
spatially distributed dielectric constant, see the beginning of section 2. We assume that the
function εr (x) satisfies the same conditions (2.3), (2.4) as the function c (x) . The Laplace
transform (2.5) leads to the following analog of the problem (2.6), (2.7)

∆w − s2εr(x)w = −δ
(
z − z0

)
, ∀s ≥ s, (7.3)

lim
|x|→∞

(w − w0) (x, s) = 0,∀s ≥ s, (7.4)

where w0 (z, s) = exp (−s |z − z0|) /(2s) is such a solution of equation (7.3) for the case
εr(x) ≡ 1 that lim|z|→∞ w0 (z, s) = 0.

It is well known that the maximal depth of an antipersonnel land mine does not ex-
ceed about 10 cm=0.1 m. So, we model these mines as small squares with the 0.1 m
length of sides, and their centers should be at the maximal depth of 0.1 m. We set Ω =
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{x = (x, z) ∈ (−0.3m, 0.3m)× (0m, 0.6m)} . Consider dimensionless variables x′ = x/0.1, z0′ =
z0/0.1. For brevity we keep the same notations both for these variables and the new domain
Ω,

Ω = (−3, 3)× (0, 6) . (7.5)

We now use the values of the dielectric constant given at http://www.clippercontrols.com.
Hence, εr = 5 in the dry sand and εr = 22 in the trinitrotoluene (TNT). We also take
εr = 2.5 in a piece of wood submersed in the ground. Hence,

εr (TNT)

εr (dry sand)
=

22

5
≈ 4.

Since the dry sand should be considered as a background outside of our domain of interest
Ω, we introduce parameters ε′r = εr/5, s

′ = s · 0.1 · √5, and again do not change notations.
Then relations (7.3) and (7.4) are valid. Hence, we now can assume that the following values
of this scaled dielectric constant

εr (dry sand) = 1, εr (TNT) = 4, εr (piece of wood) = 0.5. (7.6)

In addition, centers of small squares modeling our targets should be in the rectangle

{x = (x, z) ∈ [−2.5, 2.5]× [0.5, 1.0]} . (7.7)

The side of each of our small square should be 1, i.e. 10 cm. The interval [0.5, 1.0] in (7.7)
corresponds to depths of centers between 5 cm and 10 cm and the interval [−2.5, 2.5] means
that any such square is fully inside of Ω. Hence, an accurate image of the location of that
small square as well as of the value of the coefficient εr (x) both inside and outside of it would
provide a useful information about the possible presence of a land mine and also might help
to differentiate between mines and non-mines.

8 Numerical Studies

In this paper, we work only with the computationally simulated data. The data are generated
by solving numerically equation (7.3) in the rectangle R = [−4, 4]× [−2, 8] . By (7.5) Ω ⊂ R.
To avoid the singularity in δ (z − z0), we actually solve in R the equation for the function
w̃ = w − w0 with zero Dirichlet boundary condition for this function, see (7.4). We solve
the resulting Dirichlet boundary value problem via the FDM with the uniform mesh size
hf = 0.0675.

It is quite often the case in numerical studies, one should slightly modify the numerical
scheme given by the theory, and so we did the same. Indeed, it is well known in computations
that numerical results are usually more optimistic than analytical ones. We have modified
our above algorithm via considering the function ṽ = s−2 · ln (w/w0) . In other words, we
have divided our solution w of the problem (7.3), (7.4) by the initializing plane wave w0.
This has resulted in an insignificant modification of equations (4.1). We have observed in our
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computations that the function w/w0 at the measurement part Γ1 ⊂ ∂Ω is poorly sensitive
to the presence of abnormalities, as long as s > 1.2, see Figure 1-b). Hence, one should
expect that the modified tail function for the function ṽ should be small for s > 1.2, which is
exactly what is required by the above theory. For this reason, we have chosen the truncation
pseudo frequency s = 1.2 and the initial tail function V1,1 ≡ 0.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

center at depth 1.0

center at depth 1.5

a) b)

Figure 1: a) The schematic diagram of our data collection. The plane wave falls from the top
and backscattering data are collected at the top side of this rectangle. b) The “sensitivity” function
f (s) = w (0, 0, s) /w0 (0, s) , s ∈ [0.5, 1.2] for two different centers (0, 1) and (0, 1.5) of mine-like
targets, which correspond to 10 cm and 15 cm depths respectively.

8.1 Some details of the numerical implementation of the globally
convergent method

We have generated the data for s ∈ [0.5, 1.2] with the grid step size h = 0.1 in the s direction.
Since the grid step size in the s-direction is h = 0.1 for s ∈ [0.5, 1.2] , then β = 0.7 and N = 7.
Also, we took the number of iterations with respect to the tail m1 = m2 = ... = mN :=
m = 10, since we have numerically observed the stabilization of functions qn,k, ε

(n,k)
r , Vn,k at

k = 10, also, see section 4. In our computations we have relaxed the smoothness assumption
in the QRM via taking in (4.7) the H2−norm instead of the H5−norm, see the first Remark
4.1.

Based on the experience of some earlier works on the QRM [8, 14] for linear ill-posed
Cauchy problems, we have implemented the QRM via the FDM. Indeed, the FDM has
allowed in [14] to image sharp peaks. On the other hand, the FEM of [8] did not let to
image such peaks. So, we have written both terms under signs of norms of (4.7) in the FDM
form. Next, to minimize the functional (4.7), we have used the conjugate gradient method.
It is important that the derivatives with respect to the values of the unknown function at
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grid points should be calculated explicitly. This was done using the Kronecker symbol, see
details in [14]. As soon as discrete values ε̃

(n,k)
r were computed, we have averaged each such

value at the point (xi, zj) over nine (9) neighboring grid points, including the point (xi, zj) :

to decrease the reconstruction error. The resulting discrete function was taken as ε
(n,k)
r .

We have used the 49×49 mesh in Ω. However, an attempt to use a finer 98×98 mesh led to
a poor quality results. Most likely this is because the dimension of our above mentioned finite
dimensional space was becoming too large, thus making it “almost” infinitely dimensional,
which would require to use in (4.7) the H5−norm instead of the H2−norm, see the first
Remark 4.1. The regularization parameter in (4.7) was taken α = 0.04.

We have made several sweeps over the interval s ∈ [0.5, 1.2] as follows. Suppose that

on the first s-sweep we have computed the discrete function ε
(1)
r (x) := ε

(N,10)
r (x), which

corresponds to the last s-subinterval [sN , sN−1] = [0.5, 0.6]. Hence, we have also computed
the corresponding discrete tail function V (1) (x) . Next, we return to the first s−interval

[s1, s] = [1.1, 1.2], set V
(2)
1,1 (x) := V (1) (x) and repeat the algorithm of section 4. We kept

repeating these s−sweeps p times until either the stabilization has was observed, i.e.

‖ε(p)
r − ε(p−1)

r ‖ ≤ 10−5 (8.1)

or an “explosion” of the gradient of the functional Jα
n,k on the sweep number p took place.

“Explosion” means that
‖∇Jα

n,k(q
(p)
n,k)‖ ≥ 105, (8.2)

for any appropriate values of indices n, k. Here and below ‖·‖ is the discrete L2 (Ω)−norm.
The stopping criterion (8.2) corresponds well with one of backbone principles of the theory
of ill-posed problems. According to this principle, the iteration number can serve as one of
regularization parameters, see pages 156 and 157 of [10].

Suppose that either (8.1) or (8.2) takes place. Then we work with the function ε
(p)
r .

First, as it is usually done in imaging, we apply a truncation procedure. In this procedure

we truncate to unity 85% of the max
∣∣∣ε(p)

r (x)
∣∣∣, see Figure 2. If we have several local maxima

of
∣∣∣ε(p)

r (x)
∣∣∣, then we apply the truncation procedure as follows. Let {xi}r

i=1 ⊂ Ω be points

where those local maxima are achieved, and values of those maxima are respectively {ai}r
i=1 .

Consider certain circles {B (xi)}r
i=1 ⊂ Ω with the centers at points {xi}r

i=1 and such that
B (xi) ∩B (xj) = ∅ for i 6= j. In each circle B (xi) set

ε̃(p)
r (x) :=

{
ε
(p)
r (x) if

∣∣∣ε(p)
r (x)

∣∣∣ ≥ 0.85ai

1, otherwise.

Next, for all points x ∈ Ω� ∪r
i=1 B (xi) , we set ε̃

(p)
r (x) := 1. As a result, we have obtained

the truncated function ε̃
(p)
r (x) . Finally we set εglob

r (x) := ε̃
(p)
r (x) and go to Stage 2.
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Figure 2: A typical example of the image resulting from the globally convergent stage. The rectangle
is the domain Ω. This is the image of Test 1 (subsection 7.3). a) The correct coefficient. Inclusions
are two squares with the same size d = 1 of their sides, which corresponds to 10 cm in real
dimensions. In the left square εr = 6, in the right one εr = 4 and εr = 1 everywhere else, see
(7.5) and (7.6). However, we do not assume knowledge of εr (x) in Ω. Centers of these squares are
at (x∗1, z

∗
1) = (−1.5, 0.4) and (x∗2, z

∗
2) = (1.5, 1.0). b) The computed coefficient before truncation.

Locations of targets are judged by two local maxima. So, locations are imaged accurately. However,
the error of the computed values of the coefficient εr in them is about 40%. c) The image of b)
after the truncation procedure, see the text.

8.2 The second stage of our two-stage numerical procedure: a
modified gradient method

Recall that this method is used on the second stage of our two-stage numerical procedure.
Since this method is secondary to us and since we want to save space, we derive a modi-
fied gradient method only briefly here. A complete, although space consuming derivation,
including the rigorous derivation of Frechét derivatives, can be done using the framework
developed in [3, 4]. We call our technique the “modified gradient method” because rather
than following usual steps of the gradient method, we find zero of the Fréchet derivative of
the Tikhonov functional via solving an equation with a contractual mapping operator.

Consider a wider rectangle Ω′ ⊃ Ω, where Ω′ = (−4, 4) × (0, 6) . We assume that both
Dirichlet ϕ0 and Neumann ϕ1 boundary conditions are given on a wider interval Γ′1 =

{z = 0} ∩ Ω
′
, Γ1 ⊂⊂ Γ′1, i.e. similarly with (2.11)

w̃ (x, s) |Γ′1 = ϕ̃0 (x, s) , (8.3)

w̃z (x, s) |Γ′1 = ϕ̃1 (x, s) + e−s|z0|. (8.4)

Also, we have observed in our computations that lim|x|→∞ |∇w̃ (x, s)| = 0. Hence, we use

∂nw̃x |∂Ω′�Γ′1= 0. (8.5)
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In addition, by (7.3)

∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s) = 0, in Ω′. (8.6)

So, we now consider the solution of the boundary value problem (8.4)-(8.6), keeping the
same notation. We want to find such a coefficient εr (x) , which would minimize the following
Tikhonov functional

T (εr) =
1

2

b∫

a

∫

Γ′1

(w̃(x, 0, s)− ϕ̃0 (x, s))2dxds +
θ

2

∥∥εr − εglob
r

∥∥2

L2(Ω)
(8.7)

+

b∫

a

∫

Ω′

λ[∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s)]dxds,

where θ > 0 is the regularization parameter and λ (x, s) is the solution of the so-called
“adjoint problem”,

∆λ− s2εr(x)λ = 0, in Ω′, (8.8)

λz(x, 0, s) = w̃(x, 0, s)− ϕ0(x, s), ∂nλ|∂Ω′�Γ′1 = 0. (8.9)

If the coefficient εr(x) is such that, in addition to (8.4)-(8.6), (8.3) is true, then T (εr) = 0,
i.e. this coefficient provides the minimum value for the functional T. Because of (8.8), the
second line in (8.7) equals zero. Although boundary value problems (8.4)-(8.6) and (8.8),
(8.9) are considered in the domain Ω′ with a non-smooth boundary, a discussion about
existence of their solutions is outside of the scope of this paper. We have always observed
existence of numerical solutions with no singularities in our computations. Although, by
the Tikhonov theory, one should consider a stronger Hk−norm of εr − εglob

r in (8.7) [18],
we have found in our computations that the simpler L2−norm is sufficient. This is likely
because we have worked computationally worked with not too many grid points. Using the
framework of [3, 4], one can derive the following expression for the Fréchet derivative T ′ (εr)
of the functional T

T ′ (εr) (x) = θ
(
εr − εglob

r

)
(x)−

b∫

a

s2 [λ(w̃ + w0)] (x, s) ds,x ∈ Ω.

Hence, to find a minimizer, one should solve the equation T ′ (εr) = 0. We solve it iteratively
as follows

εn
r (x) = εglob

r (x) +
1

θ

b∫

a

s2 [λ(w̃ + w0)] (x, s, εn−1
r )ds,x ∈ Ω, (8.10)
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where functions w̃(x, s, εn−1
r ) and λ(x, s, εn−1

r ) are solutions of problems (8.4)-(8.6) and (8.8),
(8.9) respectively with εr (x) := εn−1

r (x) . One can easily prove that one can choose the
number (b− a) /θ so small that the operator in (8.10) is contractual mapping. We have
worked with such an operator in our computations. We have iterated in (8.10) until the
stabilization has occurred, i.e. we have stopped iterations as soon as ‖εn

r − εn−1
r ‖/‖εn−1

r ‖ ≤
10−5, where ‖·‖ is the discrete L2 (Ω) norm. Then we set that our computed solution is
εn

r (x) . In our computations we took a = 0.01, b = 0.05, θ = 0.15.

8.3 Numerical results

In our numerical tests we have introduced the multiplicative random noise in the boundary
data using the following expression

wσ (xi, 0, sj) = w (xi, 0, sj) [1 + ςσ] , i = 0, ..., M ; , j = 1, .., N,

where w (xi, 0, sj) is the value of the computationally simulated function w at the grid point
(xi, 0) ∈ Γ′1 and at the value s := sj of the pseudo frequency, ς is a random number in the
interval [−1; 1] with the uniform distribution, and σ = 0.05 is the noise level. Hence, the
random error is presented only in Dirichlet data but not in Neumann data.

Test 1. We test our numerical method for the case of two squares with the same size
d = 1 of their sides. In the left square εr = 6, in the right one εr = 4 and εr = 1 everywhere
else, see (7.6). Centers of these squares are at (x∗1, z

∗
1) = (−1.5, 0.4) and (x∗2, z

∗
2) = (1.5, 1.0).

However, we do not assume a priori in our algorithm neither the presence of these squares
nor a knowledge of εr (x) at any point of the rectangle Ω. See Figure 2 for the globally
convergent stage and Figure 3 for the final result.

Test 2. Consider now the case of imaging of a piece of wood, see (7.6). So, now our
target is a square with the d = 1 size of its side. Inside of this square εr = 0.5 < 1 and
εr = 1 outside. Figure 4 displays both this square and the reconstruction result.
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Figure 3: Test 1. The image obtained on the globally convergent stage is displayed on Fig. 2-c). a)
The correct image. Centers of small squares are at (x∗1, z

∗
1) = (−1.5, 0.4) and (x∗2, z

∗
2) = (1.5, 1.0)

and values of the target coefficient are εr = 6 in the left square, εr = 4 in the right square and εr = 1
everywhere else. b) The imaged coefficient εr (x) resulting of our two-stage numerical procedure.
Both locations of centers of targets and values of εr (x) at those centers are imaged accurately. We
have not used truncation on the second stage.
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Figure 4: Test 2. Imaging of a wooden-like targets: small square with the length of its side d = 1,
see a). Inside of this small square r = 0.5 and εr = 1 outside of it.However, neither the presence
of the small square nor the value of the unknown coefficient εr (x) at any point of this rectangle Ω
are not assumed to be known a priori in our algorithm. b) The image computed after the two-stage
numerical procedure. Location of the center of the small square and the value of εr = 0.5 at that
center are imaged accurately. The value εr = 1 outside of the imaged small square is also accurately
imaged.
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