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Abstract. Some models in population dynamics with intra-specific competition lead to
inegro-differential equations where the integral term corresponds to nonlocal consumption of
resources [8], [9]. The principal difference of such equations in comparison with traditional
reaction-diffusion equation is that homogeneous in space solutions can lose their stability
resulting in emergence of spatial or spatio-temporal structures [4]. We study the existence
and global bifurcations of such structures. In the case of unbounded domains, transition
between stationary solutions can be observed resulting in propagation of generalized travel-
ling waves (GTW). GTWs are introduced in [18] for reaction-diffusion systems as global in
time propagating solutions. In this work their existence and properties are studied for the
integro-differential equation. Similar to the reaction-diffusion equation in the monostable
case, we prove the existence of generalized travelling waves for all values of the speed greater
or equal to the minimal one. We illustrate these results by numerical simulations in one and
two space dimensions and observe a variety of structures of GTWs.
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1 Introduction

This work is devoted to the integro-differential equation

% = Au + ku(l — au — bJ) (1.1)

where k and b are some positive constants, a > 0,

J(r.t) = / oz — y)uly, t)dy,



2 C R" is a bounded or unbounded domain, ¢(z) is a nonnegative function. It is defined in
the whole R™ and has a finite support. We will assume that [, ¢(y)dy = 1.

If & = R", then it can be easily verified that equation (1.1) has two homogeneous in
space stationary solutions, vy = 0 and u; = 1/(a + b). If we replace ¢(x) by the Dirac
delta-function and consider for simplicity the 1D case, then we obtain the reaction-diffusion
equation

ou  0%u
E = w‘FF(u), (1.2)
where F(u) = ku(1—pu), p = a+b. This is the KPP equation [11] describing some problems
in population dynamics and other applications [21]. One of the important properties of
this equation is the existence of travelling waves, that is of solutions u(z,t) = w(x — ct).
Here ¢ is a constant, the wave speed. It is known that the waves exist for all positive c.
If ¢ > 2vk, then they are monotone in space and stable, while for 0 < ¢ < 2vk they
are nonmonotone and unstable (see, e.g., [11], [21]). These waves have limits at infinity:
w(+o00) = 0, w(—o0) = 1/p. The first point is unstable with respect to the equation
du/dt = F(u), the second point is stable. As a consequence, this case is called monostable.
The principal difference of equation (1.1) with respect to equation (1.2) is that the homo-
geneous in space stationary solution u; can lose its stability [4], [8]-[10]. If this is the case,
then some spatial or temporal-spatial structures can bifurcate from it. Therefore, instead
of travelling waves connecting uy and u; in the case of the reaction-diffusion equation we
can expect the existence of some other solutions connecting uy at +o0o with some structures
at —oo. We call such solutions generalized travelling waves (GTW) and study them in this
work.
The notion of GTW was first introduced in [18] for reaction-diffusion systems. In order
to explain it, let us consider the perturbed reaction-diffusion equation
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% = % + F(u) + eg(z,u), (1.3)
where € is a small parameter, g(x,u) is some given function and F'(u) is a bistable nonlin-
earity, that is F'(wy) = 0 for some w, and w_, and F'(wy) < 0. If € = 0, then under certain
conditions on the function F' there exists a unique up to translation in space travelling wave
solution u(z,t) = w(z—ct) of this equation. If € # 0 and g(x,u) depends on z, then travelling
wave solution of this equation does not exist. However, we can expect that similar in some
sense solutions may exist at least for small values of €. Such solutions can be characterized

by two main properties:

(1) They exist for all ¢ from —oo to +00. The solution of the Cauchy problem for equation
(1.3) exists for positive time and, generally speaking, cannot be extended for all negative
t. It appears that the existence of such global solutions, which exist for all ¢ € R, can be
proved. Moreover, under certain conditions such solution can be unique and stable.

(2) These are propagating solutions. The property of propagation can be explained as
follows. Let ¢ be a constant, w, < ¢ < w_. For each ¢ fixed consider the equation u(z,t) = ¢



with respect to x. Denote by m; () its maximal solution (if it exists) and by m (t) its
minimal solution. If m¥(t)/t — ¢ as t — oo, then we say that this solution propagates with
the speed c.

Thus, GTW are global propagating solutions. Their existence and structure are studied
in [18]-[20] for reaction-diffusion systems of equations. We note that this definition applies
also for autonomous equations. In particular, various oscillating solutions, which appear
when a usual travelling wave loses its stability, are particular examples of GTW. Periodic
travelling waves in a nonhomogeneous medium provide another example [3], [15], [23].

In this work, we study GTW for the integro-differential equation (1.1). Equations of this
type arise in population dynamics with nonlocal consumption of resources (intra-specific
competition) [8], [9] and in other biological applications [6], [12], [17]. Models in population
dynamics with nonlocal boundary conditions are discussed in [5]. If the support of the
function ¢ under the integral is small, the integro-differential equation is in some sense
close to the reaction-diffusion equation. The wave existence in this case is proved for the
monostable case [7] and for the bistable case [1], [2]. An approach based on the Hamilton-
Jacobi equation is developed in [16].

If the support of ¢ is not small, then numerical simulations show the existence of periodic
travelling waves and of propagating solutions with a more complex structure. The main goal
of this work is to prove the existence of such generalized travelling waves. We begin with
the analysis of the existence of nonhomogeneous in space stationary solutions in bounded or
unbounded domains (Section 2). We use here the methods based on the topological degree
theory and linear stability analysis.

We then study the existence of solutions u(z, t) of the GTW type such that u(z,t) — 0 as
x — oo (Section 3). The main result of this work asserts the existence of positive GTW for
all values ¢ of the velocity grater or equal to the minimal velocity cyg. This result generalizes
the existence of travelling waves for the KPP equation. To the best of our knowledge, this
is the first result on the existence of GTW with multiple speeds. The method of proof is
based on some a priori estimates of solutions. We cannot specify the behavior of GTW as
xr — —oo. We can expect that they converge to the nonhomogeneous solutions the existence
of which is discussed above.

The last section of this work is devoted to numerical simulations. We observe GTW with
various structures and with various speeds of propagation. In the 2D case they depend on
the form of the support of the function ¢.

2 Existence of stationary solutions

We begin the study of the integro-differential equation (1.1) with the existence of its sta-
tionary solutions. The method of proof is based on the analysis of continuous branches of
solutions which start either with the trivial solution v = 0 or with the constant solution
u = 1/(a +b). We investigate the first case in more detail. In the second case we restrict
ourselves to the linear stability analysis of the homogeneous in space solution when the do-



main is the whole R". This simple analysis shows an important property of this equation:
it can lose its stability resulting in the appearance of spatial structures. This stability anal-
ysis and the subsequent investigation of the branches of solutions can also be carried out
for bounded or unbounded domains. The existence of spatial structures makes it possible
a transition between them, that is the existence of generalized travelling waves studied in
Sections 3 and 4.

2.1 Formulation and a priori estimates

Consider the integro-differential equation
Au+ku(l —au—bJ(z)) =0 (2.1)
in a bounded domain €2 C R™ with the Dirichlet boundary condition:
uloa = 0. (2.2)

Here k and b are some positive constants, a > 0,

J(z) = / o — y)uly)dy, (2.3)

where ¢(z) is a nonnegative function. By (z — y) we understand (x1 — y1, ..., Z, — y,). We
introduce the operator A corresponding to the left-hand side of (2.1) and suppose that it
acts from the space

Ey = {u € C2+Q(Q), u‘ag = 0}

into £ = C*(Q2). The boundary of the domain belongs to C?*.

Lemma 2.1. The operator A(u) : Ey — E is bounded and continuous. Its Fréchet derivative

Ao} = 8o+ pu(o)o = pata) [ 6o =)oty
where
p1(z) = k(1 — 2aug — bJy(z)), pa(x) = kbug(x), Jo(z) = /_OO oz — y)uo(y)dy

1s a bounded operator from Ey into E and continuous with respect to ug in the operator norm.

The proof of this lemma is standard and it is omitted. We note that Jy(z) in the formulation
of the lemma is obtained from J(z) in (2.3) if we replace u by wy.
Suppose that problem (2.1), (2.2) has a positive in 2 solution uy(z). Then

0<wuy(x)< =, ze€. (2.4)

SN



Indeed, if this is not the case, then ug(z) attains its maximum at some point zo € 2 and
uo(zo) > 1/a. Since J(xo) > 0, we obtain a contradiction in signs in equation (2.1) at the
point = . From estimate (2.4) it follows that

O§J(x)§l/¢(x—y)dy§M, x € () (2.5)
a Ja

for some positive constant M. Hence

—ng < kup(z)(1 — aug(z) — bJ(x)) < S, x € . (2.6)
Denote
f(z) = —kuop(z)(1 — aug(z) — bJ (z))
and consider the problem

By virtue of (2.6), f € LP(£2) for any p. Hence, we obtain for the solution uq of this problem
the estimate
|uollw2r) < K| f]l Lo (o),

where K is the norm of the inverse to the Laplace operator. For p > n we obtain from
the embedding theorem an estimate of the norm |lug||c1+a(q). This allows us to estimate
the norm || f||c1+e(q) and, from problem (2.7), the norm [Jug||c2+a(q). In fact, we obtain the
estimate of the stronger norm ||ug||cs+a(qy but we will not use it. Thus, we have proved the
following lemma.

Lemma 2.2. Any positive solution u of problem (2.1), (2.2) admits the estimate
[ullc2to@) < K,

where K depends on a,b, k, M and on the domain Q) and does not depend on the solution.

2.2 Existence of solutions in bounded domains

In this section we will use the topological degree theory in order to prove existence of solutions
of problem (2.1), (2.2). We begin with the case b = 0. Problem (2.1), (2.2) becomes a semi-
linear elliptic problem:

Au+ ku(l —au) =0 (2.8)
ulpq = 0. (2.9)

Consider the eigenvalue problem
Au = Au, u|apg = 0. (2.10)

We denote by A its principal eigenvalue and by A; the next eigenvalue. Then A\; < Ay < 0.
The principal eigenvalue is simple.



We now increase k from k = 0. For k = |)\¢|, there is a bifurcation of two new solutions
of problem (2.8), (2.9) from the trivial solution u = 0. One solution, w, (z) is positive in €,
another one, w_(z) is negative.

We fix the value of k, |\g| < k& < |\i| and consider positive values of b. Let now b be
sufficiently small. Lemma 2.1 allows us to apply the implicit function theorem. We obtain
the following result.

Lemma 2.3. Suppose that the operator linearized about w,(w_) does not have zero eigen-
value. Then for all b > 0 sufficiently small, there exists a positive (negative) in Q solution
u € C?T(Q) of problem (2.1), (2.2), which converges to wy (w_) as b — 0.

The positiveness (negativeness) of the solution follows from the fact that it is close to
wy(z) (w_(x)) in the C***(Q) norm and the normal derivatives of w4 (x) at the boundary
are different from zero.

Lemma 2.4. Suppose that wy is a solution of problem (2.1), (2.2) continuous with respect
to b in the C*T*(Q) norm. If for some b = by, wy(x) is positive, negative or have a variable
sign, then it preserves this property for all positive b.

Proof. Suppose that wy,(z) > 0 for z € Q and w,(x) has some negative values for some z
and b > by. Then there exists b; > by such that the positiveness of the solution is preserved
for by < b < by and it is not preserved for b > b;. Then wy, () > 0 for € Q and there are
three possible cases:

1. wy(x) Z 0 and wy, (x¢) = 0 for some zy € 2,

2. wy(x) # 0 and Jwy, (zg)/On = 0 for some xy € ON.

3. wy(x) = 0.
In the first two cases, this contradicts the maximum principle if we consider wy as a solution
of the problem

Au+s(x)u=0, ulsgg =0,

where

() = & (1 - aun(e) ~ bale) [ ole y)wb@)dy.)

This coefficient is not necessarily positive.

The third case is not possible since the problem linearized about v = 0 does not have
zero eigenvalue and, as a consequence, the trivial solution is isolated.

The prove remains the same in the case of negative solutions. If a solution of a variable
sign become positive (negative), then we can vary b in the opposite direction. In this case,
a positive (negative) solution becomes with variable sign and we can repeat the arguments
above. The lemma is proved.

Consider the following set:
ou
D ={u € Ey, ||ullczra@) < K1, u(x)>e(x), x€Q, < 0, =€ 0N},

6



where K7 > K (Lemma 2.2), €(x) is a non-negative C*° function with the support strictly
inside §2. Obviously, it is an open bounded set in Fj.

Lemma 2.5. Let by > 0. The function e(x) can be chosen in such a way that there are
no solutions of problem (2.1), (2.2) at 0D for any b € [0, bo).

Proof. Consider the sequence of functions €, (x) such that €2, = supp €, C , €,(x) >0
for x € €),,. Let the distance from the boundaries 0€2,, to the boundary 02 tend to zero as
n — oo. Moreover, we suppose that e, — 0 in C1(£).

Denote

9
Dy ={u€ Ey, |Jullcren@ < Ki, u(x)> ea(x), x€Q, 8—:“; <0, €00}

We should prove that there exists such n that there are no solutions of problem (2.1), (2.2)
at 0D,,. Suppose that this is not the case. Then there is a sequence u,(z) of solutions of
this problem such that for each of them

ou,,
on

and one of the following conditions is satisfied: a). wu,(x,) = K; for some z, € Q, b).
Un () = €,(zy,) for some x,, € Q, ¢). du,(z,)/0n = 0 for some z,, € IS

We show that this assumption leads to a contradiction. Indeed, the case a) is not possible
due to Lemma 2.2, while the case c¢) contradicts the Hopf lemma which asserts that the
normal derivative at the boundary is negative. It remains to consider the case b). We can
choose a convergent subsequence from the sequence x,. Moreover, it follows from Lemma
2.2 that we can choose a convergent subsequence from the sequence u,(x). The limiting
function ug(x) is nonnegative and satisfies problem (2.1), (2.2).

If the limiting point xy of z,, is inside €2, then ug(zo) = 0 and we obtain a contradiction
with the maximum principle. Suppose now that zy € 02. Then

en(r) <wup(z) < Ky, z€Q, <0, =z €00

Ouo

on
Indeed, u,(x,) = €,(z,) and w,(z) > €,(x) for z € Q. Hence Vu,(x,) = Ve,(z,). By

virtue of the convergence ¢, — 0 in C*(Q), |Vu,(x,)] — 0. This convergence proves (2.11).
However, this equality contradicts the Hopf lemma. The lemma is proved.

|£Eo = 0. (2.11)

Consider the operator A : Ey — F introduced in the previous section. The topological
degree can be defined for it similarly to elliptic operators without the integral terms [22]. We
note that this degree is defined for Fredholm and proper operators with the zero index. Its
construction is different in comparison with the Leray-Schauder degree defined for compact
perturbations of the identity operator. We can now apply the Leray-Schauder method to
prove the existence of solutions. We will use the notation A, to show the dependence on the
parameter b. It follows from the previous lemma that the degree (A, D) is independent of
b. It remains to verify that it is different from zero for b = 0.

7



Lemma 2.6. v(Ay, D) = 1.

Proof. For b = 0 and k crossing the bifurcation point ||, there is a single positive
solution w of problem (2.8), (2.9). Therefore, v(Ag, D) = v(Ao, U(wy)), where U(w,) is a
small neighborhood in Ej of w,. On the other hand, (Ao, U(wy)) = (—1)”, where v is the
number of positive eigenvalues of the operator linearized about w,. It remains to note that
v = 0. The lemma is proved.

We have proved the following theorem.

Theorem 2.7. For any k, [Ao| <k < [\i| and b > 0, there is a positive solution u(x) of
problem (2.1), (2.2). It satisfies the estimate u(x) < 1/a in €.

Remark 2.8. Each eigenvalue \; of the Laplace operator is a bifurcation point of
problem (2.8), (2.9). This means that when the value of k passes for example |\ |, there are
two other solutions of this problem that bifurcate from the trivial solution. These solutions
have a variable sign for k close to the critical value since only the principal eigenfunction
is positive. Due to Lemma 2.4, these solutions have variable sign under further increase of
k and for positive b. Therefore, there are no other solutions which can enter the domain
D. For the same reason, positive solutions from D cannot merge with the trivial solution.
Hence the assertion of the theorem remains true for all positive k.

2.3 Problem in R"

Existence of solutions in unbounded domains can be proved approximating them by a se-
quence of bounded domains and passing to the limit. In this section we consider a problem
in the whole space and present a linear stability analysis which shows that the homogeneous
in space solution can lose its stability. In this case some periodic in space solutions appear.
They determine the behavior of generalized travelling waves studied below.

Consider equation (2.1) in R™:

Au+ ku (1 —au—1> - oz — y)u(y)dy) = 0. (2.12)

It has a constant solution wug(z) = 1/(a + b). The eigenvalue problem for the operator
linearized about ug(z) has the form:

Av—Fkv—ky [ oz —y(y)dy = v, (2.13)
Rn
where
L _ka kb
Pakb P awd

We consider the linearized operator £ on L*(R™), such that

Lu:=—Au+ kyu+ ko oz —y)uly)dy, ki >0, ky>0
R
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with ¢(z) > 0 and [, ¢(z)de = 1. The spectrum of this operator is denoted o(L). The
problem
Lu = u

is considered to be spectrally stable if o(L) C [0, +00) and spectrally unstable if there exists
A <0, A€ c(L). For the quadratic form of this operator we easily obtain

(Cww) = [ 1+ b+ a(2) 2300 ) P (2.14)

Here and further down p* = p?+...+p? and the hat symbol stands for the Fourier transform,
such that

-~ 1 —1ipT
)= s | e,

where pr = p1x1 + ... + pp2,. Let us introduce

D(p) := p* + k1 + k2(27) 3 (p).

We give here some simple qualitative properties of the spectrum. Its more detailed analysis
in the particular case k1 = 0 is presented in the appendix.

1. First let us consider the situation in one dimension, such that

1

01) = 5

o X[ NN]( ),JZGR, N >0

and x stands for the characteristic function of a set. A trivial computation yields

1 sinpN
5n pN y P

inpN % 7
Stnp . Qualitatively speaking, when N <p< 4; ko

is large enough and k; is small, we have ®(p) < 0. Thus by choosing the trial function u(p)

bt Tn
i 4N] by means of (2.14) we obtain (Lu,u) < 0 which by

means of the min-max principle (see [14]) implies the existence of the negative spectrum for
the operator £ and, therefore, instability. On the other hand, ®(p) is a continuous function

o(p) = €eR

and therefore, ®(p) = p* + k1 + ks

with support on the interval [—

sin
with limit at zero equal to ky + ko > 0, the term

is bounded. Thus when k; is large
enough and ks is small we have the positivity of ®(p) on the whole real line and therefore,
stability.

2. In two dimensions we consider

1
(z,y) = 4N2X{(x y)ER2|—N<z<N, —N<y<N}, IV > 0.



By applying the Fourier transform we easily obtain

1 sin(p1N) sin(paN)

b = y = y E RQ.

o(p) R b p = (p1,p2)
Thus ®(p) = p* + k1 + %%%. Let us choose the trial function u(p) with support
in the domain [2%, TT] x [=, 3T] € R%. When k, is large enough and ki is small, we

have (Lu,u) < 0 and therefore, spectral instability. The function ®(p) has a limit at the

1 sin(p1N) sin(ps N
origin equal to ky + ko > 0, the term N2 (L) sin(p,N) is bounded and continuous and
b1 P2

therefore, when k; is large enough and k, is small, ®(p) is positive in R? and we have spectral
stability.

We conclude this section with a more detailed analysis of the spectrum of the linearized
operator in a particular case. We consider the linearized operator £ on L?(R"), n € N, with
ki1 = 0, such that

Lu:=—Au+ky | ¢(x—yuly)dy, ke >0.
Rn

Clearly its quadratic form is given by (Lu,u) = [,. ®(p)|u(p)[*dp, where ®(p) = p* +
(27) 2 kyo(p) and p € R™ and the spectral problem for it on L2(R™) is

Lu = \u. (2.15)
The first two examples of the kernel function are in two dimensions. We choose

1 (07 2

- e W
o(z,y) 2NX[—N,N}($)\/;€ , T,y EeR (2.16)

and
o(z,y) = L iww (@)oe M, zyeR (2.17)
7T N AT B a =

where o and N are positive parameters. Clearly ¢(x,y) > 0, x,y € R and an easy compu-
tation yields [z, ¢(z,y)drdy = 1 in both cases. The third example of the nonnegative kernel
used in the nonlocal term of the operator L is the four dimensional generalization of the
second one, namely

1 a’
o(z,y) = ﬁx[_NyN](a:)Eg—We’o"m, reR,yeR® o, N>0. (2.18)

A straightforward computation gives fR4 ¢(z,y)drdy = 1. We have the following statement
on the regions of stability and instability for the spectral problem (2.15) in all of these
examples.

Theorem 2.9 Let the kernel ¢ be given either by (2.16), (2.17) or (2.18) . Then the problem

1 ) 1 ;
(2.15) is spectrally stable if T > —N? Szrgzl and spectrally unstable if T < —N? Smfl.
2 23 ) 2

The proof of the theorem is given in the appendix.
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3 Generalized travelling waves

Equation (2.1) can have a nontrivial solution which bifurcates either from the trivial solution
u = 0 (Section 2.2) or from the constant solution u = 1/(a + b) (Section 2.3). Therefore,
we can expect the existence of propagating solutions providing the transition between u = 0
and the nontrivial solution. Such propagating solutions are called generalized travelling
waves. We prove here their existence in the 1D case. Similar results can be obtained for
multi-dimensional equations in the whole space or in cylindrical domains.

3.1 Some properties of the parabolic problem

Consider the problem

% = Au+ ku <1 —au — b/ oz — y)u(y, t)dy) (3.1)
Q
with the boundary condition
u|aQ =0 (32)
and initial conditions
u(z,0) = u'(2), (3.3)

where the function u°(z) satisfies (3.2). The domain € can be bounded or unbounded. Its
boundary is C?T®. By standard arguments we can easily prove the following results.

Lemma 3.1. Let u’(z) € C°(Q) and 0 < u°(x) < 1/a for all x € Q. If the solution u(z,t)
of problem (3.1)-(3.3) exists, then it satisfies the estimate

0<u(z,t) <=, z€Q, t>0.

SHES

For an arbitrary 7 > 0, let C1**/22+% (Q1) be the space of all functions of class C1+*/2
with respect to ¢ and of class C*T® with respect to z, defined on Q7.

Theorem 3.2. If0 < u’(z) < 1/a, (V) z € Q, then there exists a global solution of problem
(8.1)-(8.3), u € CY*/22% (Qp) | with Qp = Q x [0, T, for any arbitrary T > 0.

3.2 Generalized travelling waves in the 1D case

Consider the Cauchy problem for the 1D equation

ou O*u  Ou o
5= 3 + c% + ku (1 —au — b/oo o(z — y)u(y, t)dy) ) (3.4)

11



where z € R. Here ¢ > 2v/k is a given constant. Assume that the initial condition u(x,0) =
u®(x) is nonnegative. Then the solution u(x,t) exists and is also nonnegative for all ¢ > 0.
(This can be proved like in Theorem 3.2.) Therefore

I(x,t) = /OO o(x — y)u(y, t)dy > 0.

Hence
dz,t)=1—au—bl(z,t) < 1.

We can write equation (3.4) in the form

ou 0*u  Ou
— = — 4+ c— + kd(z,t)u. 3.5
ot Jx? +C@x + kd(w, (35)
Consider also the equation
ov v v
E—w—l—C%—Fk’U (3.6)
and denote z = v — u. Taking the difference of equations (3.6) and (3.5), we obtain
0z 0% 0z
A 1- . .
% a2 +C@x +kz4+ k(1 —d(z,t))u (3.7)

Since the last term in the right-hand side of this equation is nonnegative, then from the
inequality z(z,0) > 0 for all z € R it follows that z(z,¢) > 0 for all ¢ > 0 and = € R. Hence,

u(z,0) <v(z,0), r € R = u(z,t) <wv(z,t), z€ R, t>0. (3.8)
The functions
vi(z) = kem " vz(x)—ke"’”a—g— f—ka—g—l— C—Q—k
c — Ml y Ye — M y V1 — 9 4 y U2 — 9 A

are stationary solutions of equation (3.6) if ¢ > 2v/k. In the special case when ¢ = 2vk, we
have o1 = 09 = Vk, so
vl (z) = ke VE®, v (z) = fywe VR

Denote by v, (z) any of them. For z € R, from (3.8) it follows
u(z,0) <ve(x), x € R = u(x,t) <wv.z), R, t>0. (3.9)

Thus, we obtain an estimate from above of the solution of the Cauchy problem associated
to (3.5). We now estimate it from below. From the last inequality,

I(z,t) < /Oo P(x — y)ve(y)dy = J ().

12



Consider the equation

ow Pw  Ow
5 = %ﬁ—c%jtkw(l—cwc—b(]( x)) (3.10)

and denote s = u — w. Then

ds  0*s  Os
5= @+08_ + ks(1 —av. — bJ(z)) + kbu(J (z) — I (z,t)) + kau (v —u).  (3.11)

Since the last two terms in the right-hand side of this equation are nonnegative, then
w(z,0) <u(x,0), r € R = w(x,t) <u(z,t), z€R, t>0. (3.12)
We will take as w a stationary solution w.(x) of equation (3.10). It verifies the equation

w” + cw' + kw(1l — av. — bJ(z)) = 0. (3.13)

Lemma 3.3. If ¢ > 2k, there exists a solution w. (z) of (3.13) such that w, (z°) =0 for
some x°, w. () >0 for z > 2° w, (x) <0 for x < 2° and

We() ~ kye ™ (¢ > 2Vk) or w, () ~ kpwe VH (c=2VEk) as © — +o0. (3.14)

Proof. Since
1 —av. —bJ(x) - 0asz — +o0,

then the solutions of (3.13) are exponentially decaying at +00. More exactly,
We() ~ kye ™ or we(x) ~ koe 7, & — +o00, for ¢ > 2V/E, (3.15)

and
we () ~ ke VAT or we(x) ~ kyze V¥ 2 — 400, for ¢ = 2Vk, (3.16)

respectively, with some real ky. So we can take them positive.

Then we prove the existence of a solution which has a zero. Denote g () = 1—av.—bJ(x)
and let I = (—oo,w) be the interval where g (z) < 0. Then any nonzero solution of (3.13)
has at most one zero in I. Indeed, let w () be solution of (3.13) and z° one of its zeros. Put

W (z) = e (2)w' (), = € 1.
Taking into account the equation (3.13), we have
W' (x) = eo(a=2°) [(w’)2 —g(@)w?|, z€l,

so W is nondecreasing on I. If W has another zero z' € I, then W (z) = 0 on [z°, '] . Thus
w is constant on [z°, #'] , namely w = 0 (from (3.13)) on [2°, 2!] and consequently on I. The

contradiction shows that w has at most one zero in I.
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Let w. be a solution of (3.13), satisfying (3.15) (for ¢ > 2v/k) or (3.16) (for ¢ = 2vVk).

Case 1. If w, has a unique zero in I, say 2°, we may suppose that w. (z) < 0, for z < 2°. If
it is not the case, we change the sign of the solution and thus the same inequality is verified.

Case 2. If w, preserves a constant sign on I, say w,. (x) > 0, then the general solution of
(3.13) is given by

z e—c(t—ao)
w(x) = w, () |:Cl+02/ao W2 (D) dt} , x € R,
where ag is an arbitrary fixed number and ¢y, ¢y are real constants. Denote by h(z) the
square bracket above. If ¢y > 0, then h is strictly increasing on R. We can chose ¢; < 0 and
¢y > 0 such that h has an only zero 2° and h(x) < 0 for z < 2°, 2 € I. Then, w has the
same property, i. e. w (x) < 0 for z < 2°. In addition, w (x) behaves as koe=%, if ¢ > 2V/k
and like koze ™, if ¢ = 2v/k. Indeed, we have the following situations.

1. If ¢ > 2vk and w, (x) ~ e 7" as x — 00, then the integral grows and w(z) ~ e~7'*,
that is w decays slower than the corresponding solution v, () = k; 7" of (3.6). Hence we
cannot have the estimate w(x) < u (z,0) < v, () for the initial condition.

2. If ¢ > 2vk and w.(z) ~ e 7 as 2 — +oo, then the integral is bounded and
w(z) ~ e 7. We can have the estimate w(z) < u(x,0) < v.(x) = ke 7" for the initial
condition.

3. If ¢ = 2vk and w, (z) ~ e=1* = ¢~V*_ the integral grows like z, w (z) ~ ze~VFe:
there is no appropriate estimate for the initial condition.

4. If ¢ = 2vk and w, (z) ~ ze~* = ze~ V¥ the integral is bounded and w (z) ~ ze~VF?.
In this case we can have the estimate for the initial condition.

Thus we have shown that in all cases there exists a solution of (3.13). Denote it again by
w, (z), such that w, (z) < 0 for z < 2°, w, (x) > 0 for z > 2° and (3.14) holds. The claim
is proved.

Lemma 3.4. Let z; (x) = max (0, w.(x)) and z3 (z1) = min (1/a,v.(x)). If
z1(7) <ul(z) < 2(2), = €R,

then the solution of the Cauchy problem for equation (3.4) with the initial condition u®(z)
satisfies the estimate

z1(x) <ulz,t) < z9(z), v eR,

for all t > 0.
The proof of this lemma is based on the maximum principle. It is standard and we omit it.

Definition 3.5. Generalized travelling wave (GTW) of equation (3.1) is a nontrivial solution
u(z,t) of this equation defined for all ¢ € R. If for some a > 0, the maximal solution
x = my,(t) of the equation u(z,t) = a is defined, m,(t)/t — ¢ as t — oo and for any b # a,
limy ooy (t)/t < ¢, then the generalized travelling wave has the speed c.
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Theorem 3.6. There exist positive GTW solutions of equation (3.1) for all ¢ > 2k.
Positive GTW converging to zero as & — oo do not exist for ¢ < 2Vk.

Proof. The existence of GTWs for all ¢ > 2v/k follows from the previous lemma. Indeed,
consider solution of equation (3.1) in the form u(z,t) = w(x — ct,t). Then

ow  O*w ow o
o _ O Pk (1 —aw=t [~ e y)w(y,wdy) | (3.17)

It follows from Lemma 3.4 that there exists an w-limit solution w.(x,t) of equation (3.17)
such that

21(x) < we(x,t) < 29(x), x €R, (3.18)

for all ¢ € R. In order to construct this solution, consider the solution w(z,t) of equation
(3.17) with an initial condition wy(z) which satisfies the inequality z;(z) < wo(x) < zo(x)
for all x. Let t,, — 0o as n — oo. Consider next solutions wy,(z,t) with the initial conditions
wy = w(x,t,). Obviously, each of them is defined for ¢ > —t,. A locally convergent
subsequence of the sequence of functions w,,(z,t) is a solution of equation (3.17) defined for
all ¢ € R. It satisfies inequality (3.18). It can be easily verified that it is a GTW with the
speed c.

Suppose now that there exists a positive GTW w.(z,t), converging to 0 as x — oo, with
a speed ¢ < 2vk. Then w,(x — ct,t) satisfies equation (3.17). Let us take ¢ < ¢y < 2v/k and
consider the equation

w” 4+ cow’ + kw = 0.
It has a solution wq(z) = exp(—coz/2) sin(ax), where a = \/|c2/4 — k|. Therefore, equation

2

%—?:%qtcg—z%—kw (3.19)
has a solution w,(z,t) = ewg(x — (co — ¢)t), where € is a positive constant. Let = = N;
and x = Ny be two consecutive zeros of the function wg(x) such that wyg is positive between
them. Then w,(x,t) is a solution of the initial boundary value problem for equation (3.19)

in the domain
Ni+(co—c)t <ax < Noy+ (co— )t

with the zero boundary conditions. For e small enough, similarly to (3.12) we can obtain
the inequality

wy(z,t) <we(x —ct,t), Ni+(co—c)t <ax < Ny~ (co— o)t

Since ¢y > ¢ and w.(z,t) converges to zero as & — o0, then the last inequality contradicts
the assumption that w.(z,t) is a GTW with the speed c. Indeed, if m,(t) is the maximal
solution of the equation

we(z,t) =a, 0<a< max Wy (z, 1),
N1+(Cofc)tgx1§N2+(007c)t
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then .
limyooma(t) /T > ¢o > c.

This contradiction proves the theorem.

4 Numerical simulations

In this section we present the results of numerical simulations of equation (1.1) with a = 0 in
one and two space dimensions. We begin with the 1D case. The function ¢(x) is piece-wise
constant with the support I = [£, &), that is ¢(x) = 1/(& — &) inside this interval and zero
outside.

I \‘l‘\‘\‘\‘m‘\ i
’;‘1’1‘!’1’!

]
i
ﬂu,“,“,'u’\fﬂ’ﬂ’ ‘

"“ il
i

f
s
i
il
i \’”’ﬂﬁ‘hh’\
il

il

Figure 1: Travelling wave (left) and periodic travelling wave (right) in 1D.

If the support of ¢ is symmetric and sufficiently small, then there is a usual travelling
wave propagating with a constant speed. Figure 1 (left) shows the solution u(z, t) of equation
(1.1) with the initial condition which has a bounded support. The solution represents two
waves propagating in the opposite directions. It is interesting to note that the wave is not
monotone with respect to . Such waves can exist for the scalar reaction-diffusion equations
but they are unstable. If we increase the support of the function ¢, then the homogeneous in
space stationary solution u; = 1/(a + b) loses its stability and a periodic in space structure
appears. In this case we observe propagation of a periodic wave (Figure 1, right).

The structure of solution is different if the function ¢ is not symmetric. Figure 2 shows
the solution u(z,t) (left) and its level lines (right). We observe spatio-temporal oscillations
behind the wave front. This behavior is related to the fact that loss of stability of the
homogeneous in space solution u; results in this case in the emergence of oscillating in time
spatially distributed solutions [4]. Qualitatively, they can behave as sin(sz — wt). Such
sinusoidal waves interact with the wave front possibly creating more complex structures.

The initial condition u(z,0) in the simulations described above is a function with a
finite support. In the case of the scalar reaction-diffusion equation, solutions of the Cauchy
problem converge in this case to the waves with a minimal speed. In order to obtain the
convergence to other waves, the initial condition should decay exponentially at infinity with
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Figure 2: Generalized travelling wave in the case of asymmetric function ¢. Function u(x,t)
(left) and its level lines (right).
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Figure 3: Generalized travelling waves with exponential initial conditions. Level lines of the
function u(x,t) with different initial conditions.

Figure 4: Snapshot of the solution in the case of circular (left) and elliptic (right) support
of the function ¢.
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Figure 5: Snapshot of the solution in the case of square support of the function ¢ (left);
asymmetric support of ¢ (right).

the same exponent as the wave. Similar behavior is observed for the integro-differential
equation. We have proved in the previous section that positive GTW exist for all values
of the speed greater or equal to some minimal speed. Figure 3 shows the level lines of the
solution u(x,t) with the same values of parameters as in Figure 2 but with the exponentially
decaying initial conditions. Though we consider in numerical simulations a finite interval,
if it is sufficiently large, then the solution can approach the corresponding GTW. We recall
that the function ¢ is not even. Therefore, even if the initial condition is even, the solution
is not (Figure 3, right). The speeds of the left and of the right waves are the same. They
are different if the decay rates of the initial condition at the left and at the right differ from
each other (Figure 3, left).

Let us now discuss the results of two-dimensional simulations. As in the 1D case, the
function ¢ is piece-wise constant. However, we need now to specify the form of its support.
It appears that it influences the properties of the GTW. Figure 4 shows the solution wu(z, t)
at some fixed t. The initial condition has the support in the center of the computation
domain. In the case where the support of the function ¢ s circular (Figure 4, left), the wave
front is also circular and there is a weak circular structure behind the front. If the support
is elliptic (Figure 4, right), then the wave front remains circular. However, there are some
elliptic structures behind the front followed by the region with strongly pronounced picks. In
the case of the square support and with the same values of parameters (Figure 5, left), the
wave front remains circular with square structures and even more pronounced picks behind.

If the support of the function ¢ is not symmetric, then the structure emerging after the
wave propagation is not stationary. In the case of the square support, it is shown in Figure
5 (right) at some fixed moment of time. Observing its evolution in time we can notice that
it moves along the diagonal of the computational domain. The direction of its motion is
determined by the support of ¢, which is shifted along the diagonal from its symmetric
configuration.

To conclude the description of the numerical simulations, we note that they confirm the
theoretical results presented in the previous sections. The nonuniqueness of GTW and the
variety of their structures, revealed in this work, require further investigations.
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5 Appendix. Proof of Theorem 2.9

We precede the proof of the theorem by an auxiliary result. Consider the following equation

1
tanz = 3% (5.1)

We have the following technical statement concerning its solutions.

Lemma A1l On each interval (7j — g, T+ %), j € N the equation (5.1) has a unique so-

lution z; € (mj,7j + g) Moreover, for odd values of 7 the following inequality holds

sin(zony1) sin(zony3)
23 T ’
2n+1 2n+3

n € NU{0}. (5.2)
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Proof. First of all, the equation (5.1) does not have any solutions on the subintervals

(mj — g, 7j], j € N since the left and the right sides of the equation (5.1) have the opposite
signs.

1
3

is continuous, monotonically increasing, negative near the left corner and positive near the

On a subinterval (7j,7j + g), j € N consider the function f(z) := tanz — %z, which

right corner. Therefore, f(z) has a unique zero z; € (7j, 7j + g), jeN.
Let us turn our attention to the odd values of j = 2n 4+ 1, n € N U {0}. We write

2
Zon+3 = Zont1 + 27 + Azg, 1 with the term Azg,; > 0. Indeed, f(z9,41 + 27) = —% <0,

the point 29,13 € (37+27n, 3%7r+27rn), the monotonically increasing and continuous function
f(z) on this subinterval is positive near 7m/2 4 2mn. Therefore, 29,13 > 2zop11 + 27.

An easy computation shows that proving the inequality (5.2) is equivalent to proving the
positivity of the fraction

3
sin(zony1 + Azont1) — sin(zan41) (1 + M)

Z22n+1
(2on+1 + 2T + Azgpiq)3

We write its numerator as

2m + A22n+1 ) 3]

1 . 1
—c08(zon11) | — =22n11008(Azony1) — sin(Azoni1) + =2ont1 (1
3 2on+1

3
such that cos(z2,11) < 0 and the expression in square brackets can be estimated below as

1 2r Az,
= 2o (1 = cos(Azapyq)) + — + —2nt

3 3 3 sin(Azgpi1) > 0.

O

Armed with this technical statement we prove the propositions about the regions of
stability and instability mentioned above.

Proof of Theorem 2.9. Step I. A straightforward computation yields that the Fourier

~ 1 si N) _»
transform of the kernel given by (2.16) equals to ¢(p) = 2—%];;)640‘, p = (p1,p2) € R?
™ D1
. N
and therefore, ®(p) = p* + ks %];;)6_4?!. This function is smooth, bounded below, grow-
D1

ing to infinity at infinity, attains the value of ky > 0 at the origin, positive if the coefficient
k5 is small enough and sign indefinite for values of ks sufficiently large. In the critical case it
has the minimal value of zero, such that the following system of three equations is satisfied
at its critical point

(5.3)



Thus we have )
2 . sin(pN) T3 _
p°+ ko PN e 1a =0

. 2
2p1 + ko Cos(ppllN) — S’T;(;&N)] e i =0

2
sin(piN) %2 py _
2p2 —k'gpl—Ne 40¢£ =0.

The necessary condition for the compatibility of the first and the third equations in the
system above is po = 0, which reduces the system to

p% + stin(plN) —0

p1N
cos sin (54)
2p1 + ko (ppllN) _ p(%}lvN)] =0.

Since the function ®(p) is even in the first variable, we consider only p; > 0. Let us
introduce the new variable z := pyN > 0. The system of the two equations above easily
implies, that it must satisfy the equation (5.1) with sinz < 0. To satisfy this condition
we need to consider only the solutions z; with odd values of j = 2n + 1, n € NU {0},

3
such that zo,41 € (7 4 27n, > + 27n). Therefore, the set of critical points of the function

®(p), p € R? p; > 0 satisfying the system (5.3) is given by

< Z22n+1

- ,O),neNU{O}. (5.5)

Let us compute the second derivatives of ®(p) at these points. Using the first equation in
(5.4) along with (5.1) we obtain the Hessian matrix at (5.5):

6 + Z%n-i—l 0
0 2+ Zgn+1 ?

2aN?2

which is positive definite. This confirms that (5.5) are the minimal points of ®(p). From the
first equation of the system (5.4) we easily obtain the relation

1 A2 sin(2zan+1)

— = , ne NU{0},
k‘lz Zgn—i—l {}

1
which produces the family of parabolas on the (N, k:_) plane. For a fixed value of N the
2

mn . ]‘ ) mn
function ®(p) is positive in a neighborhood of the point (ZQJ\;A , O) if — > —NQM

ks Z§n+1
and negative near this point if 1 < —-N 2%
ks “2n4+1

compactly supported in the region where ®(p) < 0 we show that the quadratic form of the
operator L can attain the negative values which by means of the min-max principle yields the
existence of the negative spectrum for the problem (2.15) and therefore, spectral instability.

. By choosing the trial function u(p)
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Due to the statement of the Lemma A1l when increasing ks for a fixed N the transition to
instability occurs at the boundary curve
1 5 5in(21)

— = _N
kQ Z%

(5.6)

Step II. When the kernel function is given by (2.17), its Fourier transform is equal
~ 1 sin(pyN) «a? ) ) sin(pyN)  a?
to = — , p=(p1, e R°. Thus ®(p)=p°+k :
o(p) 7 N et ! (p1,p2) (p) =p" + ko DN ol
Clearly, it has the qualitative properties analogous to those in the Step I. In the critical
case by means of (5.3) we obtain the system

2 sin(piN) o2 _
p + k2 plN ij‘Oé2 o
cos(p1N) sin(p1N) 2
2p1 + k2[ p ;N pgi‘ﬂ =0
2p2 . kQ sin(PlN) 2a2p2 — O .

N (p5+a?)?

The first and the third equations in it are compatible only if ps = 0, which implies the
system (5.4). By the same argument as in the Step I, the sequence of critical points of
d(p), p € R?% p; > 0 satisfying the system (5.3) is given by (5.5). A straightforward
computation yields the Hessian matrix for ®(p) at these points

6+ 23, 0
( et 0,2 ),neNu{m.
0 2+ one

Due to its positive definiteness the critical points (5.5) of the function ®(p) are the points of
local minima. By the argument analogous to the one in the Step I, the region of the spectral

1
instability for the problem is located below the parabola (5.6) on the (N , k_> plane and the
2

complement of this set is the stability region.

Step II1. The proof for the last example about the regions of stability and instability has
a lot in common with the previous two, with the principal exception that the problem now
is four dimensional.

Having the formula for the heat kernel of the root of the Laplacian handy (see e.g. p.169
of [13] ), we easily obtain

o (2m)2a 3

Therefore, the Fourier transform of the function (2.18) equals to

~ 1 sin(ppN) ot

gf)(m:(%)? nN |02+ p3

2’ p = (P1,P2,1,P22,P23) € R*
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such that
sin(;mN) ot
piN - [a® + p3]?
It possesses the properties similar to the ones discussed in the previous two steps such that
in the critical case we have the system

®(p) =0
o) =0 (5.7)

0P s
L 0,i=1,23.

o(p) = p* + ks

S
I

Hence we arrive at

2 sin(piN) o
p°+ k I N [a2+p2]2 0

cos(p1N) szn(plN) ot _
2]?1 + ko ” T TN ] [a®p2Z — 0

sin do0tpo ; .
2p2l_k plpij) [a2+1’})722]3 =0,71=1,2,3.

The first and the third equations in this system are incompatible unless po = 0, which reduces
the system to (5.4). By the same reasoning as in the previous two steps the set of critical
points of the function ®(p), p € R*, p; > 0 satisfying the system (5.7) is given by

(22;]“ 0,0, 0), neNU{0}. (5.8)

Evaluating the Hessian matrix for ®(p) at these points we arrive at

6+ 22,., 0 0 0
422
0 2+ it 0 0
. 02N2 2+4Z2n+1 0 , neNU{0} .
oo 422
0 0 0 2+

The positive definiteness of the Hessian implies that (5.8) are the points of local minima of
the function ®(p). By the same reasoning as in the two previous steps the points on the

1

<N k > plane located on the parabola (5.6) and above it correspond to spectral stability
2

and below it to instability.

O
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