
Spatial Structures and Generalized Travelling

Waves for an Integro-Differential Equation

N. Apreutesei1, N. Bessonov2, V. Volpert3, V. Vougalter4

1 Department of Mathematics, Technical University of Iasi, Iasi, Romania
2 Institute of Mechanical Engineering Problems, 199178 Saint Petersburg, Russia

3 Institute of mathematics, University Lyon 1, UMR 5208 CNRS
69622 Villeurbanne, France

4University of Toronto, Department of Mathematics, Toronto, ON, M5S 2E4, Canada

Abstract. Some models in population dynamics with intra-specific competition lead to
inegro-differential equations where the integral term corresponds to nonlocal consumption of
resources [8], [9]. The principal difference of such equations in comparison with traditional
reaction-diffusion equation is that homogeneous in space solutions can lose their stability
resulting in emergence of spatial or spatio-temporal structures [4]. We study the existence
and global bifurcations of such structures. In the case of unbounded domains, transition
between stationary solutions can be observed resulting in propagation of generalized travel-
ling waves (GTW). GTWs are introduced in [18] for reaction-diffusion systems as global in
time propagating solutions. In this work their existence and properties are studied for the
integro-differential equation. Similar to the reaction-diffusion equation in the monostable
case, we prove the existence of generalized travelling waves for all values of the speed greater
or equal to the minimal one. We illustrate these results by numerical simulations in one and
two space dimensions and observe a variety of structures of GTWs.
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1 Introduction

This work is devoted to the integro-differential equation

∂u

∂t
= ∆u + ku(1− au− bJ) (1.1)

where k and b are some positive constants, a ≥ 0,

J(x, t) =

∫

Ω

φ(x− y)u(y, t)dy,
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Ω ⊂ Rn is a bounded or unbounded domain, φ(x) is a nonnegative function. It is defined in
the whole Rn and has a finite support. We will assume that

∫
Rn φ(y)dy = 1.

If Ω = Rn, then it can be easily verified that equation (1.1) has two homogeneous in
space stationary solutions, u0 = 0 and u1 = 1/(a + b). If we replace φ(x) by the Dirac
delta-function and consider for simplicity the 1D case, then we obtain the reaction-diffusion
equation

∂u

∂t
=

∂2u

∂x2
+ F (u), (1.2)

where F (u) = ku(1−pu), p = a+b. This is the KPP equation [11] describing some problems
in population dynamics and other applications [21]. One of the important properties of
this equation is the existence of travelling waves, that is of solutions u(x, t) = w(x − ct).
Here c is a constant, the wave speed. It is known that the waves exist for all positive c.
If c ≥ 2

√
k, then they are monotone in space and stable, while for 0 < c < 2

√
k they

are nonmonotone and unstable (see, e.g., [11], [21]). These waves have limits at infinity:
w(+∞) = 0, w(−∞) = 1/p. The first point is unstable with respect to the equation
du/dt = F (u), the second point is stable. As a consequence, this case is called monostable.

The principal difference of equation (1.1) with respect to equation (1.2) is that the homo-
geneous in space stationary solution u1 can lose its stability [4], [8]-[10]. If this is the case,
then some spatial or temporal-spatial structures can bifurcate from it. Therefore, instead
of travelling waves connecting u0 and u1 in the case of the reaction-diffusion equation we
can expect the existence of some other solutions connecting u0 at +∞ with some structures
at −∞. We call such solutions generalized travelling waves (GTW) and study them in this
work.

The notion of GTW was first introduced in [18] for reaction-diffusion systems. In order
to explain it, let us consider the perturbed reaction-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ F (u) + εg(x, u), (1.3)

where ε is a small parameter, g(x, u) is some given function and F (u) is a bistable nonlin-
earity, that is F (w±) = 0 for some w+ and w−, and F ′(w±) < 0. If ε = 0, then under certain
conditions on the function F there exists a unique up to translation in space travelling wave
solution u(x, t) = w(x−ct) of this equation. If ε 6= 0 and g(x, u) depends on x, then travelling
wave solution of this equation does not exist. However, we can expect that similar in some
sense solutions may exist at least for small values of ε. Such solutions can be characterized
by two main properties:

(1) They exist for all t from −∞ to +∞. The solution of the Cauchy problem for equation
(1.3) exists for positive time and, generally speaking, cannot be extended for all negative
t. It appears that the existence of such global solutions, which exist for all t ∈ R, can be
proved. Moreover, under certain conditions such solution can be unique and stable.

(2) These are propagating solutions. The property of propagation can be explained as
follows. Let q be a constant, w+ < q < w−. For each t fixed consider the equation u(x, t) = q
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with respect to x. Denote by m+
q (t) its maximal solution (if it exists) and by m−

q (t) its
minimal solution. If m±

q (t)/t → c as t →∞, then we say that this solution propagates with
the speed c.

Thus, GTW are global propagating solutions. Their existence and structure are studied
in [18]-[20] for reaction-diffusion systems of equations. We note that this definition applies
also for autonomous equations. In particular, various oscillating solutions, which appear
when a usual travelling wave loses its stability, are particular examples of GTW. Periodic
travelling waves in a nonhomogeneous medium provide another example [3], [15], [23].

In this work, we study GTW for the integro-differential equation (1.1). Equations of this
type arise in population dynamics with nonlocal consumption of resources (intra-specific
competition) [8], [9] and in other biological applications [6], [12], [17]. Models in population
dynamics with nonlocal boundary conditions are discussed in [5]. If the support of the
function φ under the integral is small, the integro-differential equation is in some sense
close to the reaction-diffusion equation. The wave existence in this case is proved for the
monostable case [7] and for the bistable case [1], [2]. An approach based on the Hamilton-
Jacobi equation is developed in [16].

If the support of φ is not small, then numerical simulations show the existence of periodic
travelling waves and of propagating solutions with a more complex structure. The main goal
of this work is to prove the existence of such generalized travelling waves. We begin with
the analysis of the existence of nonhomogeneous in space stationary solutions in bounded or
unbounded domains (Section 2). We use here the methods based on the topological degree
theory and linear stability analysis.

We then study the existence of solutions u(x, t) of the GTW type such that u(x, t) → 0 as
x →∞ (Section 3). The main result of this work asserts the existence of positive GTW for
all values c of the velocity grater or equal to the minimal velocity c0. This result generalizes
the existence of travelling waves for the KPP equation. To the best of our knowledge, this
is the first result on the existence of GTW with multiple speeds. The method of proof is
based on some a priori estimates of solutions. We cannot specify the behavior of GTW as
x → −∞. We can expect that they converge to the nonhomogeneous solutions the existence
of which is discussed above.

The last section of this work is devoted to numerical simulations. We observe GTW with
various structures and with various speeds of propagation. In the 2D case they depend on
the form of the support of the function φ.

2 Existence of stationary solutions

We begin the study of the integro-differential equation (1.1) with the existence of its sta-
tionary solutions. The method of proof is based on the analysis of continuous branches of
solutions which start either with the trivial solution u = 0 or with the constant solution
u = 1/(a + b). We investigate the first case in more detail. In the second case we restrict
ourselves to the linear stability analysis of the homogeneous in space solution when the do-
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main is the whole Rn. This simple analysis shows an important property of this equation:
it can lose its stability resulting in the appearance of spatial structures. This stability anal-
ysis and the subsequent investigation of the branches of solutions can also be carried out
for bounded or unbounded domains. The existence of spatial structures makes it possible
a transition between them, that is the existence of generalized travelling waves studied in
Sections 3 and 4.

2.1 Formulation and a priori estimates

Consider the integro-differential equation

∆u + ku(1− au− bJ(x)) = 0 (2.1)

in a bounded domain Ω ⊂ Rn with the Dirichlet boundary condition:

u|∂Ω = 0. (2.2)

Here k and b are some positive constants, a ≥ 0,

J(x) =

∫

Ω

φ(x− y)u(y)dy, (2.3)

where φ(x) is a nonnegative function. By (x − y) we understand (x1 − y1, ..., xn − yn). We
introduce the operator A corresponding to the left-hand side of (2.1) and suppose that it
acts from the space

E0 = {u ∈ C2+α(Ω̄), u|∂Ω = 0}
into E = Cα(Ω̄). The boundary of the domain belongs to C2+α.

Lemma 2.1. The operator A(u) : E0 → E is bounded and continuous. Its Fréchet derivative

A′(u0)v = ∆v + p1(x)v − p2(x)

∫

Ω

φ(x− y)v(y)dy,

where

p1(x) = k(1− 2au0 − bJ0(x)), p2(x) = kbu0(x), J0(x) =

∫ ∞

−∞
φ(x− y)u0(y)dy

is a bounded operator from E0 into E and continuous with respect to u0 in the operator norm.

The proof of this lemma is standard and it is omitted. We note that J0(x) in the formulation
of the lemma is obtained from J(x) in (2.3) if we replace u by u0.

Suppose that problem (2.1), (2.2) has a positive in Ω solution u0(x). Then

0 ≤ u0(x) ≤ 1

a
, x ∈ Ω̄. (2.4)
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Indeed, if this is not the case, then u0(x) attains its maximum at some point x0 ∈ Ω and
u0(x0) > 1/a. Since J(x0) ≥ 0, we obtain a contradiction in signs in equation (2.1) at the
point x = x0. From estimate (2.4) it follows that

0 ≤ J(x) ≤ 1

a

∫

Ω

φ(x− y)dy ≤ M, x ∈ Ω̄ (2.5)

for some positive constant M . Hence

−bM
k

a
≤ ku0(x)(1− au0(x)− bJ(x)) ≤ k

a
, x ∈ Ω̄. (2.6)

Denote
f(x) = −ku0(x)(1− au0(x)− bJ(x))

and consider the problem
∆u = f, u|Ω = 0. (2.7)

By virtue of (2.6), f ∈ Lp(Ω) for any p. Hence, we obtain for the solution u0 of this problem
the estimate

‖u0‖W 2,p(Ω) ≤ K‖f‖Lp(Ω),

where K is the norm of the inverse to the Laplace operator. For p > n we obtain from
the embedding theorem an estimate of the norm ‖u0‖C1+α(Ω̄). This allows us to estimate
the norm ‖f‖C1+α(Ω̄) and, from problem (2.7), the norm ‖u0‖C2+α(Ω̄). In fact, we obtain the
estimate of the stronger norm ‖u0‖C3+α(Ω̄) but we will not use it. Thus, we have proved the
following lemma.

Lemma 2.2. Any positive solution u of problem (2.1), (2.2) admits the estimate

‖u‖C2+α(Ω̄) ≤ K,

where K depends on a, b, k,M and on the domain Ω and does not depend on the solution.

2.2 Existence of solutions in bounded domains

In this section we will use the topological degree theory in order to prove existence of solutions
of problem (2.1), (2.2). We begin with the case b = 0. Problem (2.1), (2.2) becomes a semi-
linear elliptic problem:

∆u + ku(1− au) = 0 (2.8)

u|∂Ω = 0. (2.9)

Consider the eigenvalue problem

∆u = λu, u|∂Ω = 0. (2.10)

We denote by λ0 its principal eigenvalue and by λ1 the next eigenvalue. Then λ1 < λ0 < 0.
The principal eigenvalue is simple.
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We now increase k from k = 0. For k = |λ0|, there is a bifurcation of two new solutions
of problem (2.8), (2.9) from the trivial solution u = 0. One solution, w+(x) is positive in Ω,
another one, w−(x) is negative.

We fix the value of k, |λ0| < k < |λ1| and consider positive values of b. Let now b be
sufficiently small. Lemma 2.1 allows us to apply the implicit function theorem. We obtain
the following result.

Lemma 2.3. Suppose that the operator linearized about w+(w−) does not have zero eigen-
value. Then for all b > 0 sufficiently small, there exists a positive (negative) in Ω solution
u ∈ C2+α(Ω̄) of problem (2.1), (2.2), which converges to w+ (w−) as b → 0.

The positiveness (negativeness) of the solution follows from the fact that it is close to
w+(x) (w−(x)) in the C2+α(Ω̄) norm and the normal derivatives of w±(x) at the boundary
are different from zero.

Lemma 2.4. Suppose that wb is a solution of problem (2.1), (2.2) continuous with respect
to b in the C2+α(Ω̄) norm. If for some b = b0, wb(x) is positive, negative or have a variable
sign, then it preserves this property for all positive b.

Proof. Suppose that wb0(x) > 0 for x ∈ Ω and wb(x) has some negative values for some x
and b > b0. Then there exists b1 > b0 such that the positiveness of the solution is preserved
for b0 < b < b1 and it is not preserved for b > b1. Then wb1(x) ≥ 0 for x ∈ Ω̄ and there are
three possible cases:

1. wb(x) 6≡ 0 and wb1(x0) = 0 for some x0 ∈ Ω,
2. wb(x) 6≡ 0 and ∂wb1(x0)/∂n = 0 for some x0 ∈ ∂Ω.
3. wb(x) ≡ 0.

In the first two cases, this contradicts the maximum principle if we consider wb as a solution
of the problem

∆u + s(x)u = 0, u|∂Ω = 0,

where

s(x) = k

(
1− awb(x)− bq(x)

∫

Ω

φ(x− y)wb(y)dy.

)

This coefficient is not necessarily positive.
The third case is not possible since the problem linearized about u = 0 does not have

zero eigenvalue and, as a consequence, the trivial solution is isolated.
The prove remains the same in the case of negative solutions. If a solution of a variable

sign become positive (negative), then we can vary b in the opposite direction. In this case,
a positive (negative) solution becomes with variable sign and we can repeat the arguments
above. The lemma is proved.

Consider the following set:

D = {u ∈ E0, ‖u‖C2+α(Ω̄) < K1, u(x) > ε(x), x ∈ Ω,
∂u

∂n
< 0, x ∈ ∂Ω},
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where K1 > K (Lemma 2.2), ε(x) is a non-negative C∞ function with the support strictly
inside Ω. Obviously, it is an open bounded set in E0.

Lemma 2.5. Let b0 > 0. The function ε(x) can be chosen in such a way that there are
no solutions of problem (2.1), (2.2) at ∂D for any b ∈ [0, b0].

Proof. Consider the sequence of functions εn(x) such that Ωn = supp εn ⊂ Ω, εn(x) > 0
for x ∈ Ωn. Let the distance from the boundaries ∂Ωn to the boundary ∂Ω tend to zero as
n →∞. Moreover, we suppose that εn → 0 in C1(Ω̄).

Denote

Dn = {u ∈ E0, ‖u‖C2+α(Ω̄) < K1, u(x) > εn(x), x ∈ Ω,
∂u

∂n
< 0, x ∈ ∂Ω}.

We should prove that there exists such n that there are no solutions of problem (2.1), (2.2)
at ∂Dn. Suppose that this is not the case. Then there is a sequence un(x) of solutions of
this problem such that for each of them

εn(x) ≤ un(x) ≤ K1, x ∈ Ω,
∂un

∂n
≤ 0, x ∈ ∂Ω

and one of the following conditions is satisfied: a). un(xn) = K1 for some xn ∈ Ω, b).
un(xn) = εn(xn) for some xn ∈ Ω, c). ∂un(xn)/∂n = 0 for some xn ∈ ∂Ω.

We show that this assumption leads to a contradiction. Indeed, the case a) is not possible
due to Lemma 2.2, while the case c) contradicts the Hopf lemma which asserts that the
normal derivative at the boundary is negative. It remains to consider the case b). We can
choose a convergent subsequence from the sequence xn. Moreover, it follows from Lemma
2.2 that we can choose a convergent subsequence from the sequence un(x). The limiting
function u0(x) is nonnegative and satisfies problem (2.1), (2.2).

If the limiting point x0 of xn is inside Ω, then u0(x0) = 0 and we obtain a contradiction
with the maximum principle. Suppose now that x0 ∈ ∂Ω. Then

∂u0

∂n
|x0 = 0. (2.11)

Indeed, un(xn) = εn(xn) and un(x) ≥ εn(x) for x ∈ Ω. Hence ∇un(xn) = ∇εn(xn). By
virtue of the convergence εn → 0 in C1(Ω̄), |∇un(xn)| → 0. This convergence proves (2.11).
However, this equality contradicts the Hopf lemma. The lemma is proved.

Consider the operator A : E0 → E introduced in the previous section. The topological
degree can be defined for it similarly to elliptic operators without the integral terms [22]. We
note that this degree is defined for Fredholm and proper operators with the zero index. Its
construction is different in comparison with the Leray-Schauder degree defined for compact
perturbations of the identity operator. We can now apply the Leray-Schauder method to
prove the existence of solutions. We will use the notation Ab to show the dependence on the
parameter b. It follows from the previous lemma that the degree γ(Ab, D) is independent of
b. It remains to verify that it is different from zero for b = 0.
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Lemma 2.6. γ(A0, D) = 1.
Proof. For b = 0 and k crossing the bifurcation point |λ0|, there is a single positive

solution w+ of problem (2.8), (2.9). Therefore, γ(A0, D) = γ(A0, U(w+)), where U(w+) is a
small neighborhood in E0 of w+. On the other hand, γ(A0, U(w+)) = (−1)ν , where ν is the
number of positive eigenvalues of the operator linearized about w+. It remains to note that
ν = 0. The lemma is proved.

We have proved the following theorem.

Theorem 2.7. For any k, |λ0| < k < |λ1| and b ≥ 0, there is a positive solution u(x) of
problem (2.1), (2.2). It satisfies the estimate u(x) ≤ 1/a in Ω̄.

Remark 2.8. Each eigenvalue λi of the Laplace operator is a bifurcation point of
problem (2.8), (2.9). This means that when the value of k passes for example |λ1|, there are
two other solutions of this problem that bifurcate from the trivial solution. These solutions
have a variable sign for k close to the critical value since only the principal eigenfunction
is positive. Due to Lemma 2.4, these solutions have variable sign under further increase of
k and for positive b. Therefore, there are no other solutions which can enter the domain
D. For the same reason, positive solutions from D cannot merge with the trivial solution.
Hence the assertion of the theorem remains true for all positive k.

2.3 Problem in Rn

Existence of solutions in unbounded domains can be proved approximating them by a se-
quence of bounded domains and passing to the limit. In this section we consider a problem
in the whole space and present a linear stability analysis which shows that the homogeneous
in space solution can lose its stability. In this case some periodic in space solutions appear.
They determine the behavior of generalized travelling waves studied below.

Consider equation (2.1) in Rn:

∆u + ku

(
1− au− b

∫

Rn

φ(x− y)u(y)dy

)
= 0. (2.12)

It has a constant solution u0(x) ≡ 1/(a + b). The eigenvalue problem for the operator
linearized about u0(x) has the form:

∆v − k1v − k2

∫

Rn

φ(x− y)v(y)dy = λv, (2.13)

where

k1 =
ka

a + b
, k2 =

kb

a + b
.

We consider the linearized operator L on L2(Rn), such that

Lu := −∆u + k1u + k2

∫

Rn

φ(x− y)u(y)dy, k1 ≥ 0, k2 > 0
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with φ(x) ≥ 0 and
∫
Rn φ(x)dx = 1. The spectrum of this operator is denoted σ(L). The

problem
Lu = λu

is considered to be spectrally stable if σ(L) ⊂ [0, +∞) and spectrally unstable if there exists
λ < 0, λ ∈ σ(L). For the quadratic form of this operator we easily obtain

(Lu, u) =

∫

Rn

[p2 + k1 + k2(2π)
n
2 φ̂(p)]|û(p)|2dp. (2.14)

Here and further down p2 = p2
1+ ...+p2

n and the hat symbol stands for the Fourier transform,
such that

û(p) =
1

(2π)
n
2

∫

Rn

u(x)e−ipxdx,

where px = p1x1 + ... + pnxn. Let us introduce

Φ(p) := p2 + k1 + k2(2π)
n
2 φ̂(p).

We give here some simple qualitative properties of the spectrum. Its more detailed analysis
in the particular case k1 = 0 is presented in the appendix.

1. First let us consider the situation in one dimension, such that

φ(x) =
1

2N
χ[−N,N ](x), x ∈ R, N > 0

and χ stands for the characteristic function of a set. A trivial computation yields

φ̂(p) =
1√
2π

sinpN

pN
, p ∈ R

and therefore, Φ(p) = p2 + k1 + k2
sinpN

pN
. Qualitatively speaking, when

5π

4N
< p <

7π

4N
, k2

is large enough and k1 is small, we have Φ(p) < 0. Thus by choosing the trial function û(p)

with support on the interval [
5π

4N
,

7π

4N
] by means of (2.14) we obtain (Lu, u) < 0 which by

means of the min-max principle (see [14]) implies the existence of the negative spectrum for
the operator L and, therefore, instability. On the other hand, Φ(p) is a continuous function

with limit at zero equal to k1 + k2 > 0, the term
sinpN

pN
is bounded. Thus when k1 is large

enough and k2 is small we have the positivity of Φ(p) on the whole real line and therefore,
stability.

2. In two dimensions we consider

φ(x, y) =
1

4N2
χ{(x,y)∈R2|−N≤x≤N, −N≤y≤N}, N > 0.
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By applying the Fourier transform we easily obtain

φ̂(p) =
1

2πN2

sin(p1N)

p1

sin(p2N)

p2

, p = (p1, p2) ∈ R2.

Thus Φ(p) = p2 + k1 + k2

N2

sin(p1N)
p1

sin(p2N)
p2

. Let us choose the trial function û(p) with support

in the domain [ 5π
4N

, 7π
4N

] × [ π
4N

, 3π
4N

] ∈ R2. When k2 is large enough and k1 is small, we
have (Lu, u) < 0 and therefore, spectral instability. The function Φ(p) has a limit at the

origin equal to k1 + k2 > 0, the term
1

N2

sin(p1N)

p1

sin(p2N)

p2

is bounded and continuous and

therefore, when k1 is large enough and k2 is small, Φ(p) is positive in R2 and we have spectral
stability.

We conclude this section with a more detailed analysis of the spectrum of the linearized
operator in a particular case. We consider the linearized operator L on L2(Rn), n ∈ N, with
k1 = 0, such that

Lu := −∆u + k2

∫

Rn

φ(x− y)u(y)dy, k2 > 0.

Clearly its quadratic form is given by (Lu, u) =
∫
Rn Φ(p)|û(p)|2dp, where Φ(p) = p2 +

(2π)
n
2 k2φ̂(p) and p ∈ Rn and the spectral problem for it on L2(Rn) is

Lu = λu. (2.15)

The first two examples of the kernel function are in two dimensions. We choose

φ(x, y) =
1

2N
χ[−N,N ](x)

√
α

π
e−αy2

, x, y ∈ R (2.16)

and

φ(x, y) =
1

2N
χ[−N,N ](x)

α

2
e−α|y|, x, y ∈ R, (2.17)

where α and N are positive parameters. Clearly φ(x, y) ≥ 0, x, y ∈ R and an easy compu-
tation yields

∫
R2 φ(x, y)dxdy = 1 in both cases. The third example of the nonnegative kernel

used in the nonlocal term of the operator L is the four dimensional generalization of the
second one, namely

φ(x, y) =
1

2N
χ[−N,N ](x)

α3

8π
e−α|y|, x ∈ R, y ∈ R3, α,N > 0. (2.18)

A straightforward computation gives
∫
R4 φ(x, y)dxdy = 1. We have the following statement

on the regions of stability and instability for the spectral problem (2.15) in all of these
examples.

Theorem 2.9 Let the kernel φ be given either by (2.16), (2.17) or (2.18) . Then the problem

(2.15) is spectrally stable if
1

k2

≥ −N2 sinz1

z3
1

and spectrally unstable if
1

k2

< −N2 sinz1

z3
1

.

The proof of the theorem is given in the appendix.
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3 Generalized travelling waves

Equation (2.1) can have a nontrivial solution which bifurcates either from the trivial solution
u = 0 (Section 2.2) or from the constant solution u = 1/(a + b) (Section 2.3). Therefore,
we can expect the existence of propagating solutions providing the transition between u = 0
and the nontrivial solution. Such propagating solutions are called generalized travelling
waves. We prove here their existence in the 1D case. Similar results can be obtained for
multi-dimensional equations in the whole space or in cylindrical domains.

3.1 Some properties of the parabolic problem

Consider the problem

∂u

∂t
= ∆u + ku

(
1− au− b

∫

Ω

φ(x− y)u(y, t)dy

)
(3.1)

with the boundary condition
u|∂Ω = 0 (3.2)

and initial conditions
u(x, 0) = u0(x), (3.3)

where the function u0(x) satisfies (3.2). The domain Ω can be bounded or unbounded. Its
boundary is C2+α. By standard arguments we can easily prove the following results.

Lemma 3.1. Let u0(x) ∈ C0(Ω̄) and 0 ≤ u0(x) ≤ 1/a for all x ∈ Ω. If the solution u(x, t)
of problem (3.1)-(3.3) exists, then it satisfies the estimate

0 ≤ u(x, t) ≤ 1

a
, x ∈ Ω̄, t ≥ 0.

For an arbitrary T > 0, let C1+α/2,2+α (QT ) be the space of all functions of class C1+α/2

with respect to t and of class C2+α with respect to x, defined on QT .

Theorem 3.2. If 0 ≤ u0(x) ≤ 1/a, (∀) x ∈ Ω, then there exists a global solution of problem
(3.1)-(3.3), u ∈ C1+α/2,2+α (QT ) , with QT = Ω̄× [0, T ] , for any arbitrary T > 0.

3.2 Generalized travelling waves in the 1D case

Consider the Cauchy problem for the 1D equation

∂u

∂t
=

∂2u

∂x2
+ c

∂u

∂x
+ ku

(
1− au− b

∫ ∞

−∞
φ(x− y)u(y, t)dy

)
, (3.4)

11



where x ∈ R. Here c ≥ 2
√

k is a given constant. Assume that the initial condition u(x, 0) =
u0(x) is nonnegative. Then the solution u(x, t) exists and is also nonnegative for all t ≥ 0.
(This can be proved like in Theorem 3.2.) Therefore

I(x, t) ≡
∫ ∞

−∞
φ(x− y)u(y, t)dy ≥ 0.

Hence
d(x, t) ≡ 1− au− bI(x, t) ≤ 1.

We can write equation (3.4) in the form

∂u

∂t
=

∂2u

∂x2
+ c

∂u

∂x
+ kd(x, t)u. (3.5)

Consider also the equation
∂v

∂t
=

∂2v

∂x2
+ c

∂v

∂x
+ kv (3.6)

and denote z = v − u. Taking the difference of equations (3.6) and (3.5), we obtain

∂z

∂t
=

∂2z

∂x2
+ c

∂z

∂x
+ kz + k(1− d (x, t))u. (3.7)

Since the last term in the right-hand side of this equation is nonnegative, then from the
inequality z(x, 0) ≥ 0 for all x ∈ R it follows that z(x, t) ≥ 0 for all t ≥ 0 and x ∈ R. Hence,

u(x, 0) ≤ v(x, 0), x ∈ R ⇒ u(x, t) ≤ v(x, t), x ∈ R, t ≥ 0. (3.8)

The functions

v1
c (x) = k1e

−σ1x, v2
c (x) = k1e

−σ2x, σ1 =
c

2
−

√
c2

4
− k, σ2 =

c

2
+

√
c2

4
− k

are stationary solutions of equation (3.6) if c > 2
√

k. In the special case when c = 2
√

k, we
have σ1 = σ2 =

√
k, so

v1
c (x) = k1e

−
√

kx, v2
c (x) = k1xe−

√
kx.

Denote by vc (x) any of them. For x ∈ R, from (3.8) it follows

u(x, 0) ≤ vc(x), x ∈ R ⇒ u(x, t) ≤ vc(x), x ∈ R, t ≥ 0. (3.9)

Thus, we obtain an estimate from above of the solution of the Cauchy problem associated
to (3.5). We now estimate it from below. From the last inequality,

I(x, t) ≤
∫ ∞

−∞
φ(x− y)vc(y)dy ≡ J(x).

12



Consider the equation

∂w

∂t
=

∂2w

∂x2
+ c

∂w

∂x
+ kw(1− avc − bJ(x)) (3.10)

and denote s = u− w. Then

∂s

∂t
=

∂2s

∂x2
+ c

∂s

∂x
+ ks(1− avc − bJ(x)) + kbu(J (x)− I (x, t)) + kau (vc − u) . (3.11)

Since the last two terms in the right-hand side of this equation are nonnegative, then

w(x, 0) ≤ u(x, 0), x ∈ R ⇒ w(x, t) ≤ u(x, t), x ∈ R, t ≥ 0. (3.12)

We will take as w a stationary solution wc(x) of equation (3.10). It verifies the equation

w′′ + cw′ + kw(1− avc − bJ(x)) = 0. (3.13)

Lemma 3.3. If c ≥ 2
√

k, there exists a solution wc (x) of (3.13) such that wc (x0) = 0 for
some x0, wc (x) > 0 for x > x0, wc (x) < 0 for x < x0 and

wc(x) ∼ k2e
−σ1x (c > 2

√
k) or wc (x) ∼ k2xe−

√
kx (c = 2

√
k) as x → +∞. (3.14)

Proof. Since
1− avc − bJ(x) → 0 as x → +∞,

then the solutions of (3.13) are exponentially decaying at +∞. More exactly,

wc(x) ∼ k2e
−σ1x or wc(x) ∼ k2e

−σ2x, x → +∞, for c > 2
√

k, (3.15)

and
wc(x) ∼ k2e

−
√

kx or wc(x) ∼ k2xe−
√

kx, x → +∞, for c = 2
√

k, (3.16)

respectively, with some real k2. So we can take them positive.
Then we prove the existence of a solution which has a zero. Denote g (x) = 1−avc−bJ(x)

and let I = (−∞, ω) be the interval where g (x) ≤ 0. Then any nonzero solution of (3.13)
has at most one zero in I. Indeed, let w (x) be solution of (3.13) and x0 one of its zeros. Put

W (x) = ec(x−x0)w (x) w′ (x) , x ∈ I.

Taking into account the equation (3.13), we have

W ′ (x) = ec(x−x0)
[
(w′)2 − g (x) w2

]
, x ∈ I,

so W is nondecreasing on I. If W has another zero x1 ∈ I, then W (x) = 0 on [x0, x1] . Thus
w is constant on [x0, x1] , namely w = 0 (from (3.13)) on [x0, x1] and consequently on I. The
contradiction shows that w has at most one zero in I.
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Let wc be a solution of (3.13), satisfying (3.15) (for c > 2
√

k) or (3.16) (for c = 2
√

k).
Case 1. If wc has a unique zero in I, say x0, we may suppose that wc (x) < 0, for x < x0. If

it is not the case, we change the sign of the solution and thus the same inequality is verified.
Case 2. If wc preserves a constant sign on I, say wc (x) > 0, then the general solution of

(3.13) is given by

w (x) = wc (x)

[
c1 + c2

∫ x

a0

e−c(t−a0)

w2
c (t)

dt

]
, x ∈ R,

where a0 is an arbitrary fixed number and c1, c2 are real constants. Denote by h (x) the
square bracket above. If c2 > 0, then h is strictly increasing on R. We can chose c1 < 0 and
c2 > 0 such that h has an only zero x0 and h (x) < 0 for x < x0, x ∈ I. Then, w has the
same property, i. e. w (x) < 0 for x < x0. In addition, w (x) behaves as k2e

−σ1x, if c > 2
√

k
and like k2xe−x, if c = 2

√
k. Indeed, we have the following situations.

1. If c > 2
√

k and wc (x) ∼ e−σ2x as x → +∞, then the integral grows and w(x) ∼ e−σ1x,
that is w decays slower than the corresponding solution vc (x) = k−σ2x

1 of (3.6). Hence we
cannot have the estimate w(x) ≤ u (x, 0) ≤ vc (x) for the initial condition.

2. If c > 2
√

k and wc (x) ∼ e−σ1x as x → +∞, then the integral is bounded and
w(x) ∼ e−σ1x. We can have the estimate w(x) ≤ u (x, 0) ≤ vc (x) = k1e

−σ1x for the initial
condition.

3. If c = 2
√

k and wc (x) ∼ e−σ1x = e−
√

kx, the integral grows like x, w (x) ∼ xe−
√

kx;
there is no appropriate estimate for the initial condition.

4. If c = 2
√

k and wc (x) ∼ xe−σ1x = xe−
√

kx, the integral is bounded and w (x) ∼ xe−
√

kx.
In this case we can have the estimate for the initial condition.

Thus we have shown that in all cases there exists a solution of (3.13). Denote it again by
wc (x) , such that wc (x) < 0 for x < x0, wc (x) > 0 for x > x0 and (3.14) holds. The claim
is proved.

Lemma 3.4. Let z1 (x) = max (0, wc(x)) and z2 (x1) = min (1/a, vc(x)) . If

z1(x) ≤ u0(x) ≤ z2(x), x ∈ R,

then the solution of the Cauchy problem for equation (3.4) with the initial condition u0(x)
satisfies the estimate

z1(x) ≤ u(x, t) ≤ z2(x), x ∈ R,

for all t ≥ 0.

The proof of this lemma is based on the maximum principle. It is standard and we omit it.

Definition 3.5. Generalized travelling wave (GTW) of equation (3.1) is a nontrivial solution
u(x, t) of this equation defined for all t ∈ R. If for some a > 0, the maximal solution
x = ma(t) of the equation u(x, t) = a is defined, ma(t)/t → c as t → ∞ and for any b 6= a,
limt→∞mb(t)/t ≤ c, then the generalized travelling wave has the speed c.
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Theorem 3.6. There exist positive GTW solutions of equation (3.1) for all c ≥ 2
√

k.
Positive GTW converging to zero as x →∞ do not exist for c < 2

√
k.

Proof. The existence of GTWs for all c ≥ 2
√

k follows from the previous lemma. Indeed,
consider solution of equation (3.1) in the form u(x, t) = w(x− ct, t). Then

∂w

∂t
=

∂2w

∂x2
+ c

∂w

∂x
+ kw

(
1− aw − b

∫ ∞

−∞
φ(x− y)w(y, t)dy

)
. (3.17)

It follows from Lemma 3.4 that there exists an ω-limit solution wc(x, t) of equation (3.17)
such that

z1(x) ≤ wc(x, t) ≤ z2(x), x ∈ R, (3.18)

for all t ∈ R. In order to construct this solution, consider the solution w(x, t) of equation
(3.17) with an initial condition w0(x) which satisfies the inequality z1(x) ≤ w0(x) ≤ z2(x)
for all x. Let tn →∞ as n →∞. Consider next solutions wn(x, t) with the initial conditions
wn

0 = w(x, tn). Obviously, each of them is defined for t ≥ −tn. A locally convergent
subsequence of the sequence of functions wn(x, t) is a solution of equation (3.17) defined for
all t ∈ R. It satisfies inequality (3.18). It can be easily verified that it is a GTW with the
speed c.

Suppose now that there exists a positive GTW wc(x, t), converging to 0 as x →∞, with
a speed c < 2

√
k. Then wc(x− ct, t) satisfies equation (3.17). Let us take c < c0 < 2

√
k and

consider the equation

w′′ + c0w
′ + kw = 0.

It has a solution w0(x) = exp(−c0x/2) sin(ax), where a =
√
|c2

0/4− k|. Therefore, equation

∂w

∂t
=

∂2w

∂x2
+ c

∂w

∂x
+ kw (3.19)

has a solution w∗(x, t) = εw0(x − (c0 − c)t), where ε is a positive constant. Let x = N1

and x = N2 be two consecutive zeros of the function w0(x) such that w0 is positive between
them. Then w∗(x, t) is a solution of the initial boundary value problem for equation (3.19)
in the domain

N1 + (c0 − c)t ≤ x ≤ N2 + (c0 − c)t

with the zero boundary conditions. For ε small enough, similarly to (3.12) we can obtain
the inequality

w∗(x, t) < wc(x− ct, t), N1 + (c0 − c)t ≤ x ≤ N2 + (c0 − c)t.

Since c0 > c and wc(x, t) converges to zero as x → ∞, then the last inequality contradicts
the assumption that wc(x, t) is a GTW with the speed c. Indeed, if ma(t) is the maximal
solution of the equation

wc(x, t) = a, 0 < a < max
N1+(c0−c)t≤x1≤N2+(c0−c)t

w∗(x, t),
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then
limt→∞ma(t)/t ≥ c0 > c.

This contradiction proves the theorem.

4 Numerical simulations

In this section we present the results of numerical simulations of equation (1.1) with a = 0 in
one and two space dimensions. We begin with the 1D case. The function φ(x) is piece-wise
constant with the support I = [ξ1, ξ2], that is φ(x) = 1/(ξ2− ξ1) inside this interval and zero
outside.

Figure 1: Travelling wave (left) and periodic travelling wave (right) in 1D.

If the support of φ is symmetric and sufficiently small, then there is a usual travelling
wave propagating with a constant speed. Figure 1 (left) shows the solution u(x, t) of equation
(1.1) with the initial condition which has a bounded support. The solution represents two
waves propagating in the opposite directions. It is interesting to note that the wave is not
monotone with respect to x. Such waves can exist for the scalar reaction-diffusion equations
but they are unstable. If we increase the support of the function φ, then the homogeneous in
space stationary solution u1 = 1/(a + b) loses its stability and a periodic in space structure
appears. In this case we observe propagation of a periodic wave (Figure 1, right).

The structure of solution is different if the function φ is not symmetric. Figure 2 shows
the solution u(x, t) (left) and its level lines (right). We observe spatio-temporal oscillations
behind the wave front. This behavior is related to the fact that loss of stability of the
homogeneous in space solution u1 results in this case in the emergence of oscillating in time
spatially distributed solutions [4]. Qualitatively, they can behave as sin(sx − ωt). Such
sinusoidal waves interact with the wave front possibly creating more complex structures.

The initial condition u(x, 0) in the simulations described above is a function with a
finite support. In the case of the scalar reaction-diffusion equation, solutions of the Cauchy
problem converge in this case to the waves with a minimal speed. In order to obtain the
convergence to other waves, the initial condition should decay exponentially at infinity with
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Figure 2: Generalized travelling wave in the case of asymmetric function φ. Function u(x, t)
(left) and its level lines (right).

Figure 3: Generalized travelling waves with exponential initial conditions. Level lines of the
function u(x, t) with different initial conditions.

Figure 4: Snapshot of the solution in the case of circular (left) and elliptic (right) support
of the function φ.
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Figure 5: Snapshot of the solution in the case of square support of the function φ (left);
asymmetric support of φ (right).

the same exponent as the wave. Similar behavior is observed for the integro-differential
equation. We have proved in the previous section that positive GTW exist for all values
of the speed greater or equal to some minimal speed. Figure 3 shows the level lines of the
solution u(x, t) with the same values of parameters as in Figure 2 but with the exponentially
decaying initial conditions. Though we consider in numerical simulations a finite interval,
if it is sufficiently large, then the solution can approach the corresponding GTW. We recall
that the function φ is not even. Therefore, even if the initial condition is even, the solution
is not (Figure 3, right). The speeds of the left and of the right waves are the same. They
are different if the decay rates of the initial condition at the left and at the right differ from
each other (Figure 3, left).

Let us now discuss the results of two-dimensional simulations. As in the 1D case, the
function φ is piece-wise constant. However, we need now to specify the form of its support.
It appears that it influences the properties of the GTW. Figure 4 shows the solution u(x, t)
at some fixed t. The initial condition has the support in the center of the computation
domain. In the case where the support of the function φ s circular (Figure 4, left), the wave
front is also circular and there is a weak circular structure behind the front. If the support
is elliptic (Figure 4, right), then the wave front remains circular. However, there are some
elliptic structures behind the front followed by the region with strongly pronounced picks. In
the case of the square support and with the same values of parameters (Figure 5, left), the
wave front remains circular with square structures and even more pronounced picks behind.

If the support of the function φ is not symmetric, then the structure emerging after the
wave propagation is not stationary. In the case of the square support, it is shown in Figure
5 (right) at some fixed moment of time. Observing its evolution in time we can notice that
it moves along the diagonal of the computational domain. The direction of its motion is
determined by the support of φ, which is shifted along the diagonal from its symmetric
configuration.

To conclude the description of the numerical simulations, we note that they confirm the
theoretical results presented in the previous sections. The nonuniqueness of GTW and the
variety of their structures, revealed in this work, require further investigations.
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5 Appendix. Proof of Theorem 2.9

We precede the proof of the theorem by an auxiliary result. Consider the following equation

tanz =
1

3
z. (5.1)

We have the following technical statement concerning its solutions.

Lemma A1 On each interval (πj − π

2
, πj +

π

2
), j ∈ N the equation (5.1) has a unique so-

lution zj ∈ (πj, πj +
π

2
). Moreover, for odd values of j the following inequality holds

−sin(z2n+1)

z3
2n+1

> −sin(z2n+3)

z3
2n+3

, n ∈ N ∪ {0}. (5.2)
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Proof. First of all, the equation (5.1) does not have any solutions on the subintervals

(πj − π

2
, πj], j ∈ N since the left and the right sides of the equation (5.1) have the opposite

signs.

On a subinterval (πj, πj +
π

2
), j ∈ N consider the function f(z) := tanz − 1

3
z, which

is continuous, monotonically increasing, negative near the left corner and positive near the

right corner. Therefore, f(z) has a unique zero zj ∈ (πj, πj +
π

2
), j ∈ N.

Let us turn our attention to the odd values of j = 2n + 1, n ∈ N ∪ {0}. We write

z2n+3 = z2n+1 + 2π + ∆z2n+1 with the term ∆z2n+1 > 0. Indeed, f(z2n+1 + 2π) = −2π

3
< 0,

the point z2n+3 ∈ (3π+2πn, 31
2
π+2πn), the monotonically increasing and continuous function

f(z) on this subinterval is positive near 7π/2 + 2πn. Therefore, z2n+3 > z2n+1 + 2π.
An easy computation shows that proving the inequality (5.2) is equivalent to proving the

positivity of the fraction

sin(z2n+1 + ∆z2n+1)− sin(z2n+1)
(
1 + 2π+∆z2n+1

z2n+1

)3

(z2n+1 + 2π + ∆z2n+1)3
.

We write its numerator as

−cos(z2n+1)
[
− 1

3
z2n+1cos(∆z2n+1)− sin(∆z2n+1) +

1

3
z2n+1

(
1 +

2π + ∆z2n+1

z2n+1

)3]

such that cos(z2n+1) < 0 and the expression in square brackets can be estimated below as

1

3
z2n+1(1− cos(∆z2n+1)) +

2π

3
+

∆z2n+1

3
− sin(∆z2n+1) > 0.

¤

Armed with this technical statement we prove the propositions about the regions of
stability and instability mentioned above.

Proof of Theorem 2.9. Step I. A straightforward computation yields that the Fourier

transform of the kernel given by (2.16) equals to φ̂(p) =
1

2π

sin(p1N)

p1N
e−

p2
2

4α , p = (p1, p2) ∈ R2

and therefore, Φ(p) = p2 + k2
sin(p1N)

p1N
e−

p2
2

4α . This function is smooth, bounded below, grow-

ing to infinity at infinity, attains the value of k2 > 0 at the origin, positive if the coefficient
k2 is small enough and sign indefinite for values of k2 sufficiently large. In the critical case it
has the minimal value of zero, such that the following system of three equations is satisfied
at its critical point 




Φ(p) = 0,
∂Φ
∂p1

(p) = 0
∂Φ
∂p2

(p) = 0 .
(5.3)
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Thus we have 



p2 + k2
sin(p1N)

p1N
e−

p2
2

4α = 0

2p1 + k2

[
cos(p1N)

p1
− sin(p1N)

p2
1N

]
e−

p2
2

4α = 0

2p2 − k2
sin(p1N)

p1N
e−

p2
2

4α
p2

2α
= 0 .

The necessary condition for the compatibility of the first and the third equations in the
system above is p2 = 0, which reduces the system to





p2
1 + k2

sin(p1N)
p1N

= 0

2p1 + k2

[
cos(p1N)

p1
− sin(p1N)

p2
1N

]
= 0 .

(5.4)

Since the function Φ(p) is even in the first variable, we consider only p1 > 0. Let us
introduce the new variable z := p1N > 0. The system of the two equations above easily
implies, that it must satisfy the equation (5.1) with sinz < 0. To satisfy this condition
we need to consider only the solutions zj with odd values of j = 2n + 1, n ∈ N ∪ {0},
such that z2n+1 ∈ (π + 2πn,

3π

2
+ 2πn). Therefore, the set of critical points of the function

Φ(p), p ∈ R2, p1 > 0 satisfying the system (5.3) is given by

(z2n+1

N
, 0

)
, n ∈ N ∪ {0} . (5.5)

Let us compute the second derivatives of Φ(p) at these points. Using the first equation in
(5.4) along with (5.1) we obtain the Hessian matrix at (5.5):

(
6 + z2

2n+1 0

0 2 +
z2
2n+1

2αN2

)
,

which is positive definite. This confirms that (5.5) are the minimal points of Φ(p). From the
first equation of the system (5.4) we easily obtain the relation

1

k2

= −N2 sin(z2n+1)

z3
2n+1

, n ∈ N ∪ {0} ,

which produces the family of parabolas on the (N,
1

k2

) plane. For a fixed value of N the

function Φ(p) is positive in a neighborhood of the point
(z2n+1

N
, 0

)
if

1

k2

> −N2 sin(z2n+1)

z3
2n+1

and negative near this point if
1

k2

< −N2 sin(z2n+1)

z3
2n+1

. By choosing the trial function û(p)

compactly supported in the region where Φ(p) < 0 we show that the quadratic form of the
operator L can attain the negative values which by means of the min-max principle yields the
existence of the negative spectrum for the problem (2.15) and therefore, spectral instability.
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Due to the statement of the Lemma A1 when increasing k2 for a fixed N the transition to
instability occurs at the boundary curve

1

k2

= −N2 sin(z1)

z3
1

. (5.6)

Step II. When the kernel function is given by (2.17), its Fourier transform is equal

to φ̂(p) =
1

2π

sin(p1N)

p1N

α2

p2
2 + α2

, p = (p1, p2) ∈ R2. Thus Φ(p) = p2 + k2
sin(p1N)

p1N

α2

p2
2 + α2

.

Clearly, it has the qualitative properties analogous to those in the Step I. In the critical
case by means of (5.3) we obtain the system





p2 + k2
sin(p1N)

p1N
α2

p2
2+α2 = 0

2p1 + k2

[
cos(p1N)

p1
− sin(p1N)

p2
1N

]
α2

p2
2+α2 = 0

2p2 − k2
sin(p1N)

p1N
2α2p2

(p2
2+α2)2

= 0 .

The first and the third equations in it are compatible only if p2 = 0, which implies the
system (5.4). By the same argument as in the Step I, the sequence of critical points of
Φ(p), p ∈ R2, p1 > 0 satisfying the system (5.3) is given by (5.5). A straightforward
computation yields the Hessian matrix for Φ(p) at these points

(
6 + z2

2n+1 0

0 2 +
2z2

2n+1

α2N2

)
, n ∈ N ∪ {0} .

Due to its positive definiteness the critical points (5.5) of the function Φ(p) are the points of
local minima. By the argument analogous to the one in the Step I, the region of the spectral

instability for the problem is located below the parabola (5.6) on the
(
N,

1

k2

)
plane and the

complement of this set is the stability region.

Step III. The proof for the last example about the regions of stability and instability has
a lot in common with the previous two, with the principal exception that the problem now
is four dimensional.

Having the formula for the heat kernel of the root of the Laplacian handy (see e.g. p.169
of [13] ), we easily obtain

ê−α|x|(p) =
(2π)

3
2 α

π2[α2 + p2]2
, p ∈ R3 .

Therefore, the Fourier transform of the function (2.18) equals to

φ̂(p) =
1

(2π)2

sin(p1N)

p1N

α4

[α2 + p2
2]

2
, p = (p1, p2,1, p2,2, p2,3) ∈ R4
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such that

Φ(p) = p2 + k2
sin(p1N)

p1N

α4

[α2 + p2
2]

2
.

It possesses the properties similar to the ones discussed in the previous two steps such that
in the critical case we have the system





Φ(p) = 0
∂Φ
∂p1

(p) = 0
∂Φ

∂p2,i
(p) = 0, i = 1, 2, 3 .

(5.7)

Hence we arrive at 



p2 + k2
sin(p1N)

p1N
α4

[α2+p2
2]2

= 0

2p1 + k2

[
cos(p1N)

p1
− sin(p1N)

p2
1N

]
α4

[α2+p2
2]2

= 0

2p2,i − k2
sin(p1N)

p1N

4α4p2,i

[α2+p2
2]3

= 0, i = 1, 2, 3 .

The first and the third equations in this system are incompatible unless p2 = 0, which reduces
the system to (5.4). By the same reasoning as in the previous two steps the set of critical
points of the function Φ(p), p ∈ R4, p1 > 0 satisfying the system (5.7) is given by

(z2n+1

N
, 0, 0, 0

)
, n ∈ N ∪ {0} . (5.8)

Evaluating the Hessian matrix for Φ(p) at these points we arrive at




6 + z2
2n+1 0 0 0

0 2 +
4z2

2n+1

α2N2 0 0

0 0 2 +
4z2

2n+1

α2N2 0

0 0 0 2 +
4z2

2n+1

α2N2


 , n ∈ N ∪ {0} .

The positive definiteness of the Hessian implies that (5.8) are the points of local minima of
the function Φ(p). By the same reasoning as in the two previous steps the points on the(
N,

1

k2

)
plane located on the parabola (5.6) and above it correspond to spectral stability

and below it to instability.

¤
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